xref: /openbmc/linux/kernel/events/uprobes.c (revision a06c488d)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>		/* anon_vma_prepare */
32 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33 #include <linux/swap.h>		/* try_to_free_swap */
34 #include <linux/ptrace.h>	/* user_enable_single_step */
35 #include <linux/kdebug.h>	/* notifier mechanism */
36 #include "../../mm/internal.h"	/* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40 
41 #include <linux/uprobes.h>
42 
43 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
45 
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
52 
53 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
54 
55 #define UPROBES_HASH_SZ	13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59 
60 static struct percpu_rw_semaphore dup_mmap_sem;
61 
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN	0
64 
65 struct uprobe {
66 	struct rb_node		rb_node;	/* node in the rb tree */
67 	atomic_t		ref;
68 	struct rw_semaphore	register_rwsem;
69 	struct rw_semaphore	consumer_rwsem;
70 	struct list_head	pending_list;
71 	struct uprobe_consumer	*consumers;
72 	struct inode		*inode;		/* Also hold a ref to inode */
73 	loff_t			offset;
74 	unsigned long		flags;
75 
76 	/*
77 	 * The generic code assumes that it has two members of unknown type
78 	 * owned by the arch-specific code:
79 	 *
80 	 * 	insn -	copy_insn() saves the original instruction here for
81 	 *		arch_uprobe_analyze_insn().
82 	 *
83 	 *	ixol -	potentially modified instruction to execute out of
84 	 *		line, copied to xol_area by xol_get_insn_slot().
85 	 */
86 	struct arch_uprobe	arch;
87 };
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @page:     the cowed page we are replacing by kpage
148  * @kpage:    the modified page we replace page by
149  *
150  * Returns 0 on success, -EFAULT on failure.
151  */
152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153 				struct page *page, struct page *kpage)
154 {
155 	struct mm_struct *mm = vma->vm_mm;
156 	spinlock_t *ptl;
157 	pte_t *ptep;
158 	int err;
159 	/* For mmu_notifiers */
160 	const unsigned long mmun_start = addr;
161 	const unsigned long mmun_end   = addr + PAGE_SIZE;
162 	struct mem_cgroup *memcg;
163 
164 	err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg,
165 			false);
166 	if (err)
167 		return err;
168 
169 	/* For try_to_free_swap() and munlock_vma_page() below */
170 	lock_page(page);
171 
172 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
173 	err = -EAGAIN;
174 	ptep = page_check_address(page, mm, addr, &ptl, 0);
175 	if (!ptep)
176 		goto unlock;
177 
178 	get_page(kpage);
179 	page_add_new_anon_rmap(kpage, vma, addr, false);
180 	mem_cgroup_commit_charge(kpage, memcg, false, false);
181 	lru_cache_add_active_or_unevictable(kpage, vma);
182 
183 	if (!PageAnon(page)) {
184 		dec_mm_counter(mm, mm_counter_file(page));
185 		inc_mm_counter(mm, MM_ANONPAGES);
186 	}
187 
188 	flush_cache_page(vma, addr, pte_pfn(*ptep));
189 	ptep_clear_flush_notify(vma, addr, ptep);
190 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
191 
192 	page_remove_rmap(page, false);
193 	if (!page_mapped(page))
194 		try_to_free_swap(page);
195 	pte_unmap_unlock(ptep, ptl);
196 
197 	if (vma->vm_flags & VM_LOCKED)
198 		munlock_vma_page(page);
199 	put_page(page);
200 
201 	err = 0;
202  unlock:
203 	mem_cgroup_cancel_charge(kpage, memcg, false);
204 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
205 	unlock_page(page);
206 	return err;
207 }
208 
209 /**
210  * is_swbp_insn - check if instruction is breakpoint instruction.
211  * @insn: instruction to be checked.
212  * Default implementation of is_swbp_insn
213  * Returns true if @insn is a breakpoint instruction.
214  */
215 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
216 {
217 	return *insn == UPROBE_SWBP_INSN;
218 }
219 
220 /**
221  * is_trap_insn - check if instruction is breakpoint instruction.
222  * @insn: instruction to be checked.
223  * Default implementation of is_trap_insn
224  * Returns true if @insn is a breakpoint instruction.
225  *
226  * This function is needed for the case where an architecture has multiple
227  * trap instructions (like powerpc).
228  */
229 bool __weak is_trap_insn(uprobe_opcode_t *insn)
230 {
231 	return is_swbp_insn(insn);
232 }
233 
234 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
235 {
236 	void *kaddr = kmap_atomic(page);
237 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
238 	kunmap_atomic(kaddr);
239 }
240 
241 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
242 {
243 	void *kaddr = kmap_atomic(page);
244 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
245 	kunmap_atomic(kaddr);
246 }
247 
248 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
249 {
250 	uprobe_opcode_t old_opcode;
251 	bool is_swbp;
252 
253 	/*
254 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
255 	 * We do not check if it is any other 'trap variant' which could
256 	 * be conditional trap instruction such as the one powerpc supports.
257 	 *
258 	 * The logic is that we do not care if the underlying instruction
259 	 * is a trap variant; uprobes always wins over any other (gdb)
260 	 * breakpoint.
261 	 */
262 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
263 	is_swbp = is_swbp_insn(&old_opcode);
264 
265 	if (is_swbp_insn(new_opcode)) {
266 		if (is_swbp)		/* register: already installed? */
267 			return 0;
268 	} else {
269 		if (!is_swbp)		/* unregister: was it changed by us? */
270 			return 0;
271 	}
272 
273 	return 1;
274 }
275 
276 /*
277  * NOTE:
278  * Expect the breakpoint instruction to be the smallest size instruction for
279  * the architecture. If an arch has variable length instruction and the
280  * breakpoint instruction is not of the smallest length instruction
281  * supported by that architecture then we need to modify is_trap_at_addr and
282  * uprobe_write_opcode accordingly. This would never be a problem for archs
283  * that have fixed length instructions.
284  *
285  * uprobe_write_opcode - write the opcode at a given virtual address.
286  * @mm: the probed process address space.
287  * @vaddr: the virtual address to store the opcode.
288  * @opcode: opcode to be written at @vaddr.
289  *
290  * Called with mm->mmap_sem held for write.
291  * Return 0 (success) or a negative errno.
292  */
293 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
294 			uprobe_opcode_t opcode)
295 {
296 	struct page *old_page, *new_page;
297 	struct vm_area_struct *vma;
298 	int ret;
299 
300 retry:
301 	/* Read the page with vaddr into memory */
302 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
303 	if (ret <= 0)
304 		return ret;
305 
306 	ret = verify_opcode(old_page, vaddr, &opcode);
307 	if (ret <= 0)
308 		goto put_old;
309 
310 	ret = anon_vma_prepare(vma);
311 	if (ret)
312 		goto put_old;
313 
314 	ret = -ENOMEM;
315 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
316 	if (!new_page)
317 		goto put_old;
318 
319 	__SetPageUptodate(new_page);
320 	copy_highpage(new_page, old_page);
321 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
322 
323 	ret = __replace_page(vma, vaddr, old_page, new_page);
324 	page_cache_release(new_page);
325 put_old:
326 	put_page(old_page);
327 
328 	if (unlikely(ret == -EAGAIN))
329 		goto retry;
330 	return ret;
331 }
332 
333 /**
334  * set_swbp - store breakpoint at a given address.
335  * @auprobe: arch specific probepoint information.
336  * @mm: the probed process address space.
337  * @vaddr: the virtual address to insert the opcode.
338  *
339  * For mm @mm, store the breakpoint instruction at @vaddr.
340  * Return 0 (success) or a negative errno.
341  */
342 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
343 {
344 	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
345 }
346 
347 /**
348  * set_orig_insn - Restore the original instruction.
349  * @mm: the probed process address space.
350  * @auprobe: arch specific probepoint information.
351  * @vaddr: the virtual address to insert the opcode.
352  *
353  * For mm @mm, restore the original opcode (opcode) at @vaddr.
354  * Return 0 (success) or a negative errno.
355  */
356 int __weak
357 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
358 {
359 	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
360 }
361 
362 static struct uprobe *get_uprobe(struct uprobe *uprobe)
363 {
364 	atomic_inc(&uprobe->ref);
365 	return uprobe;
366 }
367 
368 static void put_uprobe(struct uprobe *uprobe)
369 {
370 	if (atomic_dec_and_test(&uprobe->ref))
371 		kfree(uprobe);
372 }
373 
374 static int match_uprobe(struct uprobe *l, struct uprobe *r)
375 {
376 	if (l->inode < r->inode)
377 		return -1;
378 
379 	if (l->inode > r->inode)
380 		return 1;
381 
382 	if (l->offset < r->offset)
383 		return -1;
384 
385 	if (l->offset > r->offset)
386 		return 1;
387 
388 	return 0;
389 }
390 
391 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
392 {
393 	struct uprobe u = { .inode = inode, .offset = offset };
394 	struct rb_node *n = uprobes_tree.rb_node;
395 	struct uprobe *uprobe;
396 	int match;
397 
398 	while (n) {
399 		uprobe = rb_entry(n, struct uprobe, rb_node);
400 		match = match_uprobe(&u, uprobe);
401 		if (!match)
402 			return get_uprobe(uprobe);
403 
404 		if (match < 0)
405 			n = n->rb_left;
406 		else
407 			n = n->rb_right;
408 	}
409 	return NULL;
410 }
411 
412 /*
413  * Find a uprobe corresponding to a given inode:offset
414  * Acquires uprobes_treelock
415  */
416 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
417 {
418 	struct uprobe *uprobe;
419 
420 	spin_lock(&uprobes_treelock);
421 	uprobe = __find_uprobe(inode, offset);
422 	spin_unlock(&uprobes_treelock);
423 
424 	return uprobe;
425 }
426 
427 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
428 {
429 	struct rb_node **p = &uprobes_tree.rb_node;
430 	struct rb_node *parent = NULL;
431 	struct uprobe *u;
432 	int match;
433 
434 	while (*p) {
435 		parent = *p;
436 		u = rb_entry(parent, struct uprobe, rb_node);
437 		match = match_uprobe(uprobe, u);
438 		if (!match)
439 			return get_uprobe(u);
440 
441 		if (match < 0)
442 			p = &parent->rb_left;
443 		else
444 			p = &parent->rb_right;
445 
446 	}
447 
448 	u = NULL;
449 	rb_link_node(&uprobe->rb_node, parent, p);
450 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451 	/* get access + creation ref */
452 	atomic_set(&uprobe->ref, 2);
453 
454 	return u;
455 }
456 
457 /*
458  * Acquire uprobes_treelock.
459  * Matching uprobe already exists in rbtree;
460  *	increment (access refcount) and return the matching uprobe.
461  *
462  * No matching uprobe; insert the uprobe in rb_tree;
463  *	get a double refcount (access + creation) and return NULL.
464  */
465 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466 {
467 	struct uprobe *u;
468 
469 	spin_lock(&uprobes_treelock);
470 	u = __insert_uprobe(uprobe);
471 	spin_unlock(&uprobes_treelock);
472 
473 	return u;
474 }
475 
476 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
477 {
478 	struct uprobe *uprobe, *cur_uprobe;
479 
480 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
481 	if (!uprobe)
482 		return NULL;
483 
484 	uprobe->inode = igrab(inode);
485 	uprobe->offset = offset;
486 	init_rwsem(&uprobe->register_rwsem);
487 	init_rwsem(&uprobe->consumer_rwsem);
488 
489 	/* add to uprobes_tree, sorted on inode:offset */
490 	cur_uprobe = insert_uprobe(uprobe);
491 	/* a uprobe exists for this inode:offset combination */
492 	if (cur_uprobe) {
493 		kfree(uprobe);
494 		uprobe = cur_uprobe;
495 		iput(inode);
496 	}
497 
498 	return uprobe;
499 }
500 
501 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
502 {
503 	down_write(&uprobe->consumer_rwsem);
504 	uc->next = uprobe->consumers;
505 	uprobe->consumers = uc;
506 	up_write(&uprobe->consumer_rwsem);
507 }
508 
509 /*
510  * For uprobe @uprobe, delete the consumer @uc.
511  * Return true if the @uc is deleted successfully
512  * or return false.
513  */
514 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
515 {
516 	struct uprobe_consumer **con;
517 	bool ret = false;
518 
519 	down_write(&uprobe->consumer_rwsem);
520 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
521 		if (*con == uc) {
522 			*con = uc->next;
523 			ret = true;
524 			break;
525 		}
526 	}
527 	up_write(&uprobe->consumer_rwsem);
528 
529 	return ret;
530 }
531 
532 static int __copy_insn(struct address_space *mapping, struct file *filp,
533 			void *insn, int nbytes, loff_t offset)
534 {
535 	struct page *page;
536 	/*
537 	 * Ensure that the page that has the original instruction is populated
538 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
539 	 * see uprobe_register().
540 	 */
541 	if (mapping->a_ops->readpage)
542 		page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
543 	else
544 		page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
545 	if (IS_ERR(page))
546 		return PTR_ERR(page);
547 
548 	copy_from_page(page, offset, insn, nbytes);
549 	page_cache_release(page);
550 
551 	return 0;
552 }
553 
554 static int copy_insn(struct uprobe *uprobe, struct file *filp)
555 {
556 	struct address_space *mapping = uprobe->inode->i_mapping;
557 	loff_t offs = uprobe->offset;
558 	void *insn = &uprobe->arch.insn;
559 	int size = sizeof(uprobe->arch.insn);
560 	int len, err = -EIO;
561 
562 	/* Copy only available bytes, -EIO if nothing was read */
563 	do {
564 		if (offs >= i_size_read(uprobe->inode))
565 			break;
566 
567 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
568 		err = __copy_insn(mapping, filp, insn, len, offs);
569 		if (err)
570 			break;
571 
572 		insn += len;
573 		offs += len;
574 		size -= len;
575 	} while (size);
576 
577 	return err;
578 }
579 
580 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
581 				struct mm_struct *mm, unsigned long vaddr)
582 {
583 	int ret = 0;
584 
585 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
586 		return ret;
587 
588 	/* TODO: move this into _register, until then we abuse this sem. */
589 	down_write(&uprobe->consumer_rwsem);
590 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
591 		goto out;
592 
593 	ret = copy_insn(uprobe, file);
594 	if (ret)
595 		goto out;
596 
597 	ret = -ENOTSUPP;
598 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
599 		goto out;
600 
601 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
602 	if (ret)
603 		goto out;
604 
605 	/* uprobe_write_opcode() assumes we don't cross page boundary */
606 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
607 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
608 
609 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
610 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
611 
612  out:
613 	up_write(&uprobe->consumer_rwsem);
614 
615 	return ret;
616 }
617 
618 static inline bool consumer_filter(struct uprobe_consumer *uc,
619 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
620 {
621 	return !uc->filter || uc->filter(uc, ctx, mm);
622 }
623 
624 static bool filter_chain(struct uprobe *uprobe,
625 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
626 {
627 	struct uprobe_consumer *uc;
628 	bool ret = false;
629 
630 	down_read(&uprobe->consumer_rwsem);
631 	for (uc = uprobe->consumers; uc; uc = uc->next) {
632 		ret = consumer_filter(uc, ctx, mm);
633 		if (ret)
634 			break;
635 	}
636 	up_read(&uprobe->consumer_rwsem);
637 
638 	return ret;
639 }
640 
641 static int
642 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
643 			struct vm_area_struct *vma, unsigned long vaddr)
644 {
645 	bool first_uprobe;
646 	int ret;
647 
648 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
649 	if (ret)
650 		return ret;
651 
652 	/*
653 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
654 	 * the task can hit this breakpoint right after __replace_page().
655 	 */
656 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
657 	if (first_uprobe)
658 		set_bit(MMF_HAS_UPROBES, &mm->flags);
659 
660 	ret = set_swbp(&uprobe->arch, mm, vaddr);
661 	if (!ret)
662 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
663 	else if (first_uprobe)
664 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
665 
666 	return ret;
667 }
668 
669 static int
670 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
671 {
672 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
673 	return set_orig_insn(&uprobe->arch, mm, vaddr);
674 }
675 
676 static inline bool uprobe_is_active(struct uprobe *uprobe)
677 {
678 	return !RB_EMPTY_NODE(&uprobe->rb_node);
679 }
680 /*
681  * There could be threads that have already hit the breakpoint. They
682  * will recheck the current insn and restart if find_uprobe() fails.
683  * See find_active_uprobe().
684  */
685 static void delete_uprobe(struct uprobe *uprobe)
686 {
687 	if (WARN_ON(!uprobe_is_active(uprobe)))
688 		return;
689 
690 	spin_lock(&uprobes_treelock);
691 	rb_erase(&uprobe->rb_node, &uprobes_tree);
692 	spin_unlock(&uprobes_treelock);
693 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
694 	iput(uprobe->inode);
695 	put_uprobe(uprobe);
696 }
697 
698 struct map_info {
699 	struct map_info *next;
700 	struct mm_struct *mm;
701 	unsigned long vaddr;
702 };
703 
704 static inline struct map_info *free_map_info(struct map_info *info)
705 {
706 	struct map_info *next = info->next;
707 	kfree(info);
708 	return next;
709 }
710 
711 static struct map_info *
712 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
713 {
714 	unsigned long pgoff = offset >> PAGE_SHIFT;
715 	struct vm_area_struct *vma;
716 	struct map_info *curr = NULL;
717 	struct map_info *prev = NULL;
718 	struct map_info *info;
719 	int more = 0;
720 
721  again:
722 	i_mmap_lock_read(mapping);
723 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
724 		if (!valid_vma(vma, is_register))
725 			continue;
726 
727 		if (!prev && !more) {
728 			/*
729 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
730 			 * reclaim. This is optimistic, no harm done if it fails.
731 			 */
732 			prev = kmalloc(sizeof(struct map_info),
733 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
734 			if (prev)
735 				prev->next = NULL;
736 		}
737 		if (!prev) {
738 			more++;
739 			continue;
740 		}
741 
742 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
743 			continue;
744 
745 		info = prev;
746 		prev = prev->next;
747 		info->next = curr;
748 		curr = info;
749 
750 		info->mm = vma->vm_mm;
751 		info->vaddr = offset_to_vaddr(vma, offset);
752 	}
753 	i_mmap_unlock_read(mapping);
754 
755 	if (!more)
756 		goto out;
757 
758 	prev = curr;
759 	while (curr) {
760 		mmput(curr->mm);
761 		curr = curr->next;
762 	}
763 
764 	do {
765 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
766 		if (!info) {
767 			curr = ERR_PTR(-ENOMEM);
768 			goto out;
769 		}
770 		info->next = prev;
771 		prev = info;
772 	} while (--more);
773 
774 	goto again;
775  out:
776 	while (prev)
777 		prev = free_map_info(prev);
778 	return curr;
779 }
780 
781 static int
782 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
783 {
784 	bool is_register = !!new;
785 	struct map_info *info;
786 	int err = 0;
787 
788 	percpu_down_write(&dup_mmap_sem);
789 	info = build_map_info(uprobe->inode->i_mapping,
790 					uprobe->offset, is_register);
791 	if (IS_ERR(info)) {
792 		err = PTR_ERR(info);
793 		goto out;
794 	}
795 
796 	while (info) {
797 		struct mm_struct *mm = info->mm;
798 		struct vm_area_struct *vma;
799 
800 		if (err && is_register)
801 			goto free;
802 
803 		down_write(&mm->mmap_sem);
804 		vma = find_vma(mm, info->vaddr);
805 		if (!vma || !valid_vma(vma, is_register) ||
806 		    file_inode(vma->vm_file) != uprobe->inode)
807 			goto unlock;
808 
809 		if (vma->vm_start > info->vaddr ||
810 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
811 			goto unlock;
812 
813 		if (is_register) {
814 			/* consult only the "caller", new consumer. */
815 			if (consumer_filter(new,
816 					UPROBE_FILTER_REGISTER, mm))
817 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
818 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
819 			if (!filter_chain(uprobe,
820 					UPROBE_FILTER_UNREGISTER, mm))
821 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
822 		}
823 
824  unlock:
825 		up_write(&mm->mmap_sem);
826  free:
827 		mmput(mm);
828 		info = free_map_info(info);
829 	}
830  out:
831 	percpu_up_write(&dup_mmap_sem);
832 	return err;
833 }
834 
835 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
836 {
837 	consumer_add(uprobe, uc);
838 	return register_for_each_vma(uprobe, uc);
839 }
840 
841 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
842 {
843 	int err;
844 
845 	if (WARN_ON(!consumer_del(uprobe, uc)))
846 		return;
847 
848 	err = register_for_each_vma(uprobe, NULL);
849 	/* TODO : cant unregister? schedule a worker thread */
850 	if (!uprobe->consumers && !err)
851 		delete_uprobe(uprobe);
852 }
853 
854 /*
855  * uprobe_register - register a probe
856  * @inode: the file in which the probe has to be placed.
857  * @offset: offset from the start of the file.
858  * @uc: information on howto handle the probe..
859  *
860  * Apart from the access refcount, uprobe_register() takes a creation
861  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
862  * inserted into the rbtree (i.e first consumer for a @inode:@offset
863  * tuple).  Creation refcount stops uprobe_unregister from freeing the
864  * @uprobe even before the register operation is complete. Creation
865  * refcount is released when the last @uc for the @uprobe
866  * unregisters.
867  *
868  * Return errno if it cannot successully install probes
869  * else return 0 (success)
870  */
871 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
872 {
873 	struct uprobe *uprobe;
874 	int ret;
875 
876 	/* Uprobe must have at least one set consumer */
877 	if (!uc->handler && !uc->ret_handler)
878 		return -EINVAL;
879 
880 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
881 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
882 		return -EIO;
883 	/* Racy, just to catch the obvious mistakes */
884 	if (offset > i_size_read(inode))
885 		return -EINVAL;
886 
887  retry:
888 	uprobe = alloc_uprobe(inode, offset);
889 	if (!uprobe)
890 		return -ENOMEM;
891 	/*
892 	 * We can race with uprobe_unregister()->delete_uprobe().
893 	 * Check uprobe_is_active() and retry if it is false.
894 	 */
895 	down_write(&uprobe->register_rwsem);
896 	ret = -EAGAIN;
897 	if (likely(uprobe_is_active(uprobe))) {
898 		ret = __uprobe_register(uprobe, uc);
899 		if (ret)
900 			__uprobe_unregister(uprobe, uc);
901 	}
902 	up_write(&uprobe->register_rwsem);
903 	put_uprobe(uprobe);
904 
905 	if (unlikely(ret == -EAGAIN))
906 		goto retry;
907 	return ret;
908 }
909 EXPORT_SYMBOL_GPL(uprobe_register);
910 
911 /*
912  * uprobe_apply - unregister a already registered probe.
913  * @inode: the file in which the probe has to be removed.
914  * @offset: offset from the start of the file.
915  * @uc: consumer which wants to add more or remove some breakpoints
916  * @add: add or remove the breakpoints
917  */
918 int uprobe_apply(struct inode *inode, loff_t offset,
919 			struct uprobe_consumer *uc, bool add)
920 {
921 	struct uprobe *uprobe;
922 	struct uprobe_consumer *con;
923 	int ret = -ENOENT;
924 
925 	uprobe = find_uprobe(inode, offset);
926 	if (WARN_ON(!uprobe))
927 		return ret;
928 
929 	down_write(&uprobe->register_rwsem);
930 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
931 		;
932 	if (con)
933 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
934 	up_write(&uprobe->register_rwsem);
935 	put_uprobe(uprobe);
936 
937 	return ret;
938 }
939 
940 /*
941  * uprobe_unregister - unregister a already registered probe.
942  * @inode: the file in which the probe has to be removed.
943  * @offset: offset from the start of the file.
944  * @uc: identify which probe if multiple probes are colocated.
945  */
946 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
947 {
948 	struct uprobe *uprobe;
949 
950 	uprobe = find_uprobe(inode, offset);
951 	if (WARN_ON(!uprobe))
952 		return;
953 
954 	down_write(&uprobe->register_rwsem);
955 	__uprobe_unregister(uprobe, uc);
956 	up_write(&uprobe->register_rwsem);
957 	put_uprobe(uprobe);
958 }
959 EXPORT_SYMBOL_GPL(uprobe_unregister);
960 
961 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
962 {
963 	struct vm_area_struct *vma;
964 	int err = 0;
965 
966 	down_read(&mm->mmap_sem);
967 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
968 		unsigned long vaddr;
969 		loff_t offset;
970 
971 		if (!valid_vma(vma, false) ||
972 		    file_inode(vma->vm_file) != uprobe->inode)
973 			continue;
974 
975 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
976 		if (uprobe->offset <  offset ||
977 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
978 			continue;
979 
980 		vaddr = offset_to_vaddr(vma, uprobe->offset);
981 		err |= remove_breakpoint(uprobe, mm, vaddr);
982 	}
983 	up_read(&mm->mmap_sem);
984 
985 	return err;
986 }
987 
988 static struct rb_node *
989 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
990 {
991 	struct rb_node *n = uprobes_tree.rb_node;
992 
993 	while (n) {
994 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
995 
996 		if (inode < u->inode) {
997 			n = n->rb_left;
998 		} else if (inode > u->inode) {
999 			n = n->rb_right;
1000 		} else {
1001 			if (max < u->offset)
1002 				n = n->rb_left;
1003 			else if (min > u->offset)
1004 				n = n->rb_right;
1005 			else
1006 				break;
1007 		}
1008 	}
1009 
1010 	return n;
1011 }
1012 
1013 /*
1014  * For a given range in vma, build a list of probes that need to be inserted.
1015  */
1016 static void build_probe_list(struct inode *inode,
1017 				struct vm_area_struct *vma,
1018 				unsigned long start, unsigned long end,
1019 				struct list_head *head)
1020 {
1021 	loff_t min, max;
1022 	struct rb_node *n, *t;
1023 	struct uprobe *u;
1024 
1025 	INIT_LIST_HEAD(head);
1026 	min = vaddr_to_offset(vma, start);
1027 	max = min + (end - start) - 1;
1028 
1029 	spin_lock(&uprobes_treelock);
1030 	n = find_node_in_range(inode, min, max);
1031 	if (n) {
1032 		for (t = n; t; t = rb_prev(t)) {
1033 			u = rb_entry(t, struct uprobe, rb_node);
1034 			if (u->inode != inode || u->offset < min)
1035 				break;
1036 			list_add(&u->pending_list, head);
1037 			get_uprobe(u);
1038 		}
1039 		for (t = n; (t = rb_next(t)); ) {
1040 			u = rb_entry(t, struct uprobe, rb_node);
1041 			if (u->inode != inode || u->offset > max)
1042 				break;
1043 			list_add(&u->pending_list, head);
1044 			get_uprobe(u);
1045 		}
1046 	}
1047 	spin_unlock(&uprobes_treelock);
1048 }
1049 
1050 /*
1051  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1052  *
1053  * Currently we ignore all errors and always return 0, the callers
1054  * can't handle the failure anyway.
1055  */
1056 int uprobe_mmap(struct vm_area_struct *vma)
1057 {
1058 	struct list_head tmp_list;
1059 	struct uprobe *uprobe, *u;
1060 	struct inode *inode;
1061 
1062 	if (no_uprobe_events() || !valid_vma(vma, true))
1063 		return 0;
1064 
1065 	inode = file_inode(vma->vm_file);
1066 	if (!inode)
1067 		return 0;
1068 
1069 	mutex_lock(uprobes_mmap_hash(inode));
1070 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1071 	/*
1072 	 * We can race with uprobe_unregister(), this uprobe can be already
1073 	 * removed. But in this case filter_chain() must return false, all
1074 	 * consumers have gone away.
1075 	 */
1076 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1077 		if (!fatal_signal_pending(current) &&
1078 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1079 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1080 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1081 		}
1082 		put_uprobe(uprobe);
1083 	}
1084 	mutex_unlock(uprobes_mmap_hash(inode));
1085 
1086 	return 0;
1087 }
1088 
1089 static bool
1090 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1091 {
1092 	loff_t min, max;
1093 	struct inode *inode;
1094 	struct rb_node *n;
1095 
1096 	inode = file_inode(vma->vm_file);
1097 
1098 	min = vaddr_to_offset(vma, start);
1099 	max = min + (end - start) - 1;
1100 
1101 	spin_lock(&uprobes_treelock);
1102 	n = find_node_in_range(inode, min, max);
1103 	spin_unlock(&uprobes_treelock);
1104 
1105 	return !!n;
1106 }
1107 
1108 /*
1109  * Called in context of a munmap of a vma.
1110  */
1111 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1112 {
1113 	if (no_uprobe_events() || !valid_vma(vma, false))
1114 		return;
1115 
1116 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1117 		return;
1118 
1119 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1120 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1121 		return;
1122 
1123 	if (vma_has_uprobes(vma, start, end))
1124 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1125 }
1126 
1127 /* Slot allocation for XOL */
1128 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1129 {
1130 	struct vm_area_struct *vma;
1131 	int ret;
1132 
1133 	down_write(&mm->mmap_sem);
1134 	if (mm->uprobes_state.xol_area) {
1135 		ret = -EALREADY;
1136 		goto fail;
1137 	}
1138 
1139 	if (!area->vaddr) {
1140 		/* Try to map as high as possible, this is only a hint. */
1141 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1142 						PAGE_SIZE, 0, 0);
1143 		if (area->vaddr & ~PAGE_MASK) {
1144 			ret = area->vaddr;
1145 			goto fail;
1146 		}
1147 	}
1148 
1149 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1150 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1151 				&area->xol_mapping);
1152 	if (IS_ERR(vma)) {
1153 		ret = PTR_ERR(vma);
1154 		goto fail;
1155 	}
1156 
1157 	ret = 0;
1158 	smp_wmb();	/* pairs with get_xol_area() */
1159 	mm->uprobes_state.xol_area = area;
1160  fail:
1161 	up_write(&mm->mmap_sem);
1162 
1163 	return ret;
1164 }
1165 
1166 static struct xol_area *__create_xol_area(unsigned long vaddr)
1167 {
1168 	struct mm_struct *mm = current->mm;
1169 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1170 	struct xol_area *area;
1171 
1172 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1173 	if (unlikely(!area))
1174 		goto out;
1175 
1176 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1177 	if (!area->bitmap)
1178 		goto free_area;
1179 
1180 	area->xol_mapping.name = "[uprobes]";
1181 	area->xol_mapping.pages = area->pages;
1182 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1183 	if (!area->pages[0])
1184 		goto free_bitmap;
1185 	area->pages[1] = NULL;
1186 
1187 	area->vaddr = vaddr;
1188 	init_waitqueue_head(&area->wq);
1189 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1190 	set_bit(0, area->bitmap);
1191 	atomic_set(&area->slot_count, 1);
1192 	copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1193 
1194 	if (!xol_add_vma(mm, area))
1195 		return area;
1196 
1197 	__free_page(area->pages[0]);
1198  free_bitmap:
1199 	kfree(area->bitmap);
1200  free_area:
1201 	kfree(area);
1202  out:
1203 	return NULL;
1204 }
1205 
1206 /*
1207  * get_xol_area - Allocate process's xol_area if necessary.
1208  * This area will be used for storing instructions for execution out of line.
1209  *
1210  * Returns the allocated area or NULL.
1211  */
1212 static struct xol_area *get_xol_area(void)
1213 {
1214 	struct mm_struct *mm = current->mm;
1215 	struct xol_area *area;
1216 
1217 	if (!mm->uprobes_state.xol_area)
1218 		__create_xol_area(0);
1219 
1220 	area = mm->uprobes_state.xol_area;
1221 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1222 	return area;
1223 }
1224 
1225 /*
1226  * uprobe_clear_state - Free the area allocated for slots.
1227  */
1228 void uprobe_clear_state(struct mm_struct *mm)
1229 {
1230 	struct xol_area *area = mm->uprobes_state.xol_area;
1231 
1232 	if (!area)
1233 		return;
1234 
1235 	put_page(area->pages[0]);
1236 	kfree(area->bitmap);
1237 	kfree(area);
1238 }
1239 
1240 void uprobe_start_dup_mmap(void)
1241 {
1242 	percpu_down_read(&dup_mmap_sem);
1243 }
1244 
1245 void uprobe_end_dup_mmap(void)
1246 {
1247 	percpu_up_read(&dup_mmap_sem);
1248 }
1249 
1250 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1251 {
1252 	newmm->uprobes_state.xol_area = NULL;
1253 
1254 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1255 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1256 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1257 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1258 	}
1259 }
1260 
1261 /*
1262  *  - search for a free slot.
1263  */
1264 static unsigned long xol_take_insn_slot(struct xol_area *area)
1265 {
1266 	unsigned long slot_addr;
1267 	int slot_nr;
1268 
1269 	do {
1270 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1271 		if (slot_nr < UINSNS_PER_PAGE) {
1272 			if (!test_and_set_bit(slot_nr, area->bitmap))
1273 				break;
1274 
1275 			slot_nr = UINSNS_PER_PAGE;
1276 			continue;
1277 		}
1278 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1279 	} while (slot_nr >= UINSNS_PER_PAGE);
1280 
1281 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1282 	atomic_inc(&area->slot_count);
1283 
1284 	return slot_addr;
1285 }
1286 
1287 /*
1288  * xol_get_insn_slot - allocate a slot for xol.
1289  * Returns the allocated slot address or 0.
1290  */
1291 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1292 {
1293 	struct xol_area *area;
1294 	unsigned long xol_vaddr;
1295 
1296 	area = get_xol_area();
1297 	if (!area)
1298 		return 0;
1299 
1300 	xol_vaddr = xol_take_insn_slot(area);
1301 	if (unlikely(!xol_vaddr))
1302 		return 0;
1303 
1304 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1305 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1306 
1307 	return xol_vaddr;
1308 }
1309 
1310 /*
1311  * xol_free_insn_slot - If slot was earlier allocated by
1312  * @xol_get_insn_slot(), make the slot available for
1313  * subsequent requests.
1314  */
1315 static void xol_free_insn_slot(struct task_struct *tsk)
1316 {
1317 	struct xol_area *area;
1318 	unsigned long vma_end;
1319 	unsigned long slot_addr;
1320 
1321 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1322 		return;
1323 
1324 	slot_addr = tsk->utask->xol_vaddr;
1325 	if (unlikely(!slot_addr))
1326 		return;
1327 
1328 	area = tsk->mm->uprobes_state.xol_area;
1329 	vma_end = area->vaddr + PAGE_SIZE;
1330 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1331 		unsigned long offset;
1332 		int slot_nr;
1333 
1334 		offset = slot_addr - area->vaddr;
1335 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1336 		if (slot_nr >= UINSNS_PER_PAGE)
1337 			return;
1338 
1339 		clear_bit(slot_nr, area->bitmap);
1340 		atomic_dec(&area->slot_count);
1341 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1342 		if (waitqueue_active(&area->wq))
1343 			wake_up(&area->wq);
1344 
1345 		tsk->utask->xol_vaddr = 0;
1346 	}
1347 }
1348 
1349 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1350 				  void *src, unsigned long len)
1351 {
1352 	/* Initialize the slot */
1353 	copy_to_page(page, vaddr, src, len);
1354 
1355 	/*
1356 	 * We probably need flush_icache_user_range() but it needs vma.
1357 	 * This should work on most of architectures by default. If
1358 	 * architecture needs to do something different it can define
1359 	 * its own version of the function.
1360 	 */
1361 	flush_dcache_page(page);
1362 }
1363 
1364 /**
1365  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1366  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1367  * instruction.
1368  * Return the address of the breakpoint instruction.
1369  */
1370 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1371 {
1372 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1373 }
1374 
1375 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1376 {
1377 	struct uprobe_task *utask = current->utask;
1378 
1379 	if (unlikely(utask && utask->active_uprobe))
1380 		return utask->vaddr;
1381 
1382 	return instruction_pointer(regs);
1383 }
1384 
1385 static struct return_instance *free_ret_instance(struct return_instance *ri)
1386 {
1387 	struct return_instance *next = ri->next;
1388 	put_uprobe(ri->uprobe);
1389 	kfree(ri);
1390 	return next;
1391 }
1392 
1393 /*
1394  * Called with no locks held.
1395  * Called in context of a exiting or a exec-ing thread.
1396  */
1397 void uprobe_free_utask(struct task_struct *t)
1398 {
1399 	struct uprobe_task *utask = t->utask;
1400 	struct return_instance *ri;
1401 
1402 	if (!utask)
1403 		return;
1404 
1405 	if (utask->active_uprobe)
1406 		put_uprobe(utask->active_uprobe);
1407 
1408 	ri = utask->return_instances;
1409 	while (ri)
1410 		ri = free_ret_instance(ri);
1411 
1412 	xol_free_insn_slot(t);
1413 	kfree(utask);
1414 	t->utask = NULL;
1415 }
1416 
1417 /*
1418  * Allocate a uprobe_task object for the task if if necessary.
1419  * Called when the thread hits a breakpoint.
1420  *
1421  * Returns:
1422  * - pointer to new uprobe_task on success
1423  * - NULL otherwise
1424  */
1425 static struct uprobe_task *get_utask(void)
1426 {
1427 	if (!current->utask)
1428 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1429 	return current->utask;
1430 }
1431 
1432 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1433 {
1434 	struct uprobe_task *n_utask;
1435 	struct return_instance **p, *o, *n;
1436 
1437 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1438 	if (!n_utask)
1439 		return -ENOMEM;
1440 	t->utask = n_utask;
1441 
1442 	p = &n_utask->return_instances;
1443 	for (o = o_utask->return_instances; o; o = o->next) {
1444 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1445 		if (!n)
1446 			return -ENOMEM;
1447 
1448 		*n = *o;
1449 		get_uprobe(n->uprobe);
1450 		n->next = NULL;
1451 
1452 		*p = n;
1453 		p = &n->next;
1454 		n_utask->depth++;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 static void uprobe_warn(struct task_struct *t, const char *msg)
1461 {
1462 	pr_warn("uprobe: %s:%d failed to %s\n",
1463 			current->comm, current->pid, msg);
1464 }
1465 
1466 static void dup_xol_work(struct callback_head *work)
1467 {
1468 	if (current->flags & PF_EXITING)
1469 		return;
1470 
1471 	if (!__create_xol_area(current->utask->dup_xol_addr))
1472 		uprobe_warn(current, "dup xol area");
1473 }
1474 
1475 /*
1476  * Called in context of a new clone/fork from copy_process.
1477  */
1478 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1479 {
1480 	struct uprobe_task *utask = current->utask;
1481 	struct mm_struct *mm = current->mm;
1482 	struct xol_area *area;
1483 
1484 	t->utask = NULL;
1485 
1486 	if (!utask || !utask->return_instances)
1487 		return;
1488 
1489 	if (mm == t->mm && !(flags & CLONE_VFORK))
1490 		return;
1491 
1492 	if (dup_utask(t, utask))
1493 		return uprobe_warn(t, "dup ret instances");
1494 
1495 	/* The task can fork() after dup_xol_work() fails */
1496 	area = mm->uprobes_state.xol_area;
1497 	if (!area)
1498 		return uprobe_warn(t, "dup xol area");
1499 
1500 	if (mm == t->mm)
1501 		return;
1502 
1503 	t->utask->dup_xol_addr = area->vaddr;
1504 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1505 	task_work_add(t, &t->utask->dup_xol_work, true);
1506 }
1507 
1508 /*
1509  * Current area->vaddr notion assume the trampoline address is always
1510  * equal area->vaddr.
1511  *
1512  * Returns -1 in case the xol_area is not allocated.
1513  */
1514 static unsigned long get_trampoline_vaddr(void)
1515 {
1516 	struct xol_area *area;
1517 	unsigned long trampoline_vaddr = -1;
1518 
1519 	area = current->mm->uprobes_state.xol_area;
1520 	smp_read_barrier_depends();
1521 	if (area)
1522 		trampoline_vaddr = area->vaddr;
1523 
1524 	return trampoline_vaddr;
1525 }
1526 
1527 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1528 					struct pt_regs *regs)
1529 {
1530 	struct return_instance *ri = utask->return_instances;
1531 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1532 
1533 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1534 		ri = free_ret_instance(ri);
1535 		utask->depth--;
1536 	}
1537 	utask->return_instances = ri;
1538 }
1539 
1540 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1541 {
1542 	struct return_instance *ri;
1543 	struct uprobe_task *utask;
1544 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1545 	bool chained;
1546 
1547 	if (!get_xol_area())
1548 		return;
1549 
1550 	utask = get_utask();
1551 	if (!utask)
1552 		return;
1553 
1554 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1555 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1556 				" nestedness limit pid/tgid=%d/%d\n",
1557 				current->pid, current->tgid);
1558 		return;
1559 	}
1560 
1561 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1562 	if (!ri)
1563 		return;
1564 
1565 	trampoline_vaddr = get_trampoline_vaddr();
1566 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1567 	if (orig_ret_vaddr == -1)
1568 		goto fail;
1569 
1570 	/* drop the entries invalidated by longjmp() */
1571 	chained = (orig_ret_vaddr == trampoline_vaddr);
1572 	cleanup_return_instances(utask, chained, regs);
1573 
1574 	/*
1575 	 * We don't want to keep trampoline address in stack, rather keep the
1576 	 * original return address of first caller thru all the consequent
1577 	 * instances. This also makes breakpoint unwrapping easier.
1578 	 */
1579 	if (chained) {
1580 		if (!utask->return_instances) {
1581 			/*
1582 			 * This situation is not possible. Likely we have an
1583 			 * attack from user-space.
1584 			 */
1585 			uprobe_warn(current, "handle tail call");
1586 			goto fail;
1587 		}
1588 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1589 	}
1590 
1591 	ri->uprobe = get_uprobe(uprobe);
1592 	ri->func = instruction_pointer(regs);
1593 	ri->stack = user_stack_pointer(regs);
1594 	ri->orig_ret_vaddr = orig_ret_vaddr;
1595 	ri->chained = chained;
1596 
1597 	utask->depth++;
1598 	ri->next = utask->return_instances;
1599 	utask->return_instances = ri;
1600 
1601 	return;
1602  fail:
1603 	kfree(ri);
1604 }
1605 
1606 /* Prepare to single-step probed instruction out of line. */
1607 static int
1608 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1609 {
1610 	struct uprobe_task *utask;
1611 	unsigned long xol_vaddr;
1612 	int err;
1613 
1614 	utask = get_utask();
1615 	if (!utask)
1616 		return -ENOMEM;
1617 
1618 	xol_vaddr = xol_get_insn_slot(uprobe);
1619 	if (!xol_vaddr)
1620 		return -ENOMEM;
1621 
1622 	utask->xol_vaddr = xol_vaddr;
1623 	utask->vaddr = bp_vaddr;
1624 
1625 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1626 	if (unlikely(err)) {
1627 		xol_free_insn_slot(current);
1628 		return err;
1629 	}
1630 
1631 	utask->active_uprobe = uprobe;
1632 	utask->state = UTASK_SSTEP;
1633 	return 0;
1634 }
1635 
1636 /*
1637  * If we are singlestepping, then ensure this thread is not connected to
1638  * non-fatal signals until completion of singlestep.  When xol insn itself
1639  * triggers the signal,  restart the original insn even if the task is
1640  * already SIGKILL'ed (since coredump should report the correct ip).  This
1641  * is even more important if the task has a handler for SIGSEGV/etc, The
1642  * _same_ instruction should be repeated again after return from the signal
1643  * handler, and SSTEP can never finish in this case.
1644  */
1645 bool uprobe_deny_signal(void)
1646 {
1647 	struct task_struct *t = current;
1648 	struct uprobe_task *utask = t->utask;
1649 
1650 	if (likely(!utask || !utask->active_uprobe))
1651 		return false;
1652 
1653 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1654 
1655 	if (signal_pending(t)) {
1656 		spin_lock_irq(&t->sighand->siglock);
1657 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1658 		spin_unlock_irq(&t->sighand->siglock);
1659 
1660 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1661 			utask->state = UTASK_SSTEP_TRAPPED;
1662 			set_tsk_thread_flag(t, TIF_UPROBE);
1663 		}
1664 	}
1665 
1666 	return true;
1667 }
1668 
1669 static void mmf_recalc_uprobes(struct mm_struct *mm)
1670 {
1671 	struct vm_area_struct *vma;
1672 
1673 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1674 		if (!valid_vma(vma, false))
1675 			continue;
1676 		/*
1677 		 * This is not strictly accurate, we can race with
1678 		 * uprobe_unregister() and see the already removed
1679 		 * uprobe if delete_uprobe() was not yet called.
1680 		 * Or this uprobe can be filtered out.
1681 		 */
1682 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1683 			return;
1684 	}
1685 
1686 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1687 }
1688 
1689 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1690 {
1691 	struct page *page;
1692 	uprobe_opcode_t opcode;
1693 	int result;
1694 
1695 	pagefault_disable();
1696 	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1697 							sizeof(opcode));
1698 	pagefault_enable();
1699 
1700 	if (likely(result == 0))
1701 		goto out;
1702 
1703 	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1704 	if (result < 0)
1705 		return result;
1706 
1707 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1708 	put_page(page);
1709  out:
1710 	/* This needs to return true for any variant of the trap insn */
1711 	return is_trap_insn(&opcode);
1712 }
1713 
1714 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1715 {
1716 	struct mm_struct *mm = current->mm;
1717 	struct uprobe *uprobe = NULL;
1718 	struct vm_area_struct *vma;
1719 
1720 	down_read(&mm->mmap_sem);
1721 	vma = find_vma(mm, bp_vaddr);
1722 	if (vma && vma->vm_start <= bp_vaddr) {
1723 		if (valid_vma(vma, false)) {
1724 			struct inode *inode = file_inode(vma->vm_file);
1725 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1726 
1727 			uprobe = find_uprobe(inode, offset);
1728 		}
1729 
1730 		if (!uprobe)
1731 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1732 	} else {
1733 		*is_swbp = -EFAULT;
1734 	}
1735 
1736 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1737 		mmf_recalc_uprobes(mm);
1738 	up_read(&mm->mmap_sem);
1739 
1740 	return uprobe;
1741 }
1742 
1743 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1744 {
1745 	struct uprobe_consumer *uc;
1746 	int remove = UPROBE_HANDLER_REMOVE;
1747 	bool need_prep = false; /* prepare return uprobe, when needed */
1748 
1749 	down_read(&uprobe->register_rwsem);
1750 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1751 		int rc = 0;
1752 
1753 		if (uc->handler) {
1754 			rc = uc->handler(uc, regs);
1755 			WARN(rc & ~UPROBE_HANDLER_MASK,
1756 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1757 		}
1758 
1759 		if (uc->ret_handler)
1760 			need_prep = true;
1761 
1762 		remove &= rc;
1763 	}
1764 
1765 	if (need_prep && !remove)
1766 		prepare_uretprobe(uprobe, regs); /* put bp at return */
1767 
1768 	if (remove && uprobe->consumers) {
1769 		WARN_ON(!uprobe_is_active(uprobe));
1770 		unapply_uprobe(uprobe, current->mm);
1771 	}
1772 	up_read(&uprobe->register_rwsem);
1773 }
1774 
1775 static void
1776 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1777 {
1778 	struct uprobe *uprobe = ri->uprobe;
1779 	struct uprobe_consumer *uc;
1780 
1781 	down_read(&uprobe->register_rwsem);
1782 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1783 		if (uc->ret_handler)
1784 			uc->ret_handler(uc, ri->func, regs);
1785 	}
1786 	up_read(&uprobe->register_rwsem);
1787 }
1788 
1789 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1790 {
1791 	bool chained;
1792 
1793 	do {
1794 		chained = ri->chained;
1795 		ri = ri->next;	/* can't be NULL if chained */
1796 	} while (chained);
1797 
1798 	return ri;
1799 }
1800 
1801 static void handle_trampoline(struct pt_regs *regs)
1802 {
1803 	struct uprobe_task *utask;
1804 	struct return_instance *ri, *next;
1805 	bool valid;
1806 
1807 	utask = current->utask;
1808 	if (!utask)
1809 		goto sigill;
1810 
1811 	ri = utask->return_instances;
1812 	if (!ri)
1813 		goto sigill;
1814 
1815 	do {
1816 		/*
1817 		 * We should throw out the frames invalidated by longjmp().
1818 		 * If this chain is valid, then the next one should be alive
1819 		 * or NULL; the latter case means that nobody but ri->func
1820 		 * could hit this trampoline on return. TODO: sigaltstack().
1821 		 */
1822 		next = find_next_ret_chain(ri);
1823 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1824 
1825 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
1826 		do {
1827 			if (valid)
1828 				handle_uretprobe_chain(ri, regs);
1829 			ri = free_ret_instance(ri);
1830 			utask->depth--;
1831 		} while (ri != next);
1832 	} while (!valid);
1833 
1834 	utask->return_instances = ri;
1835 	return;
1836 
1837  sigill:
1838 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1839 	force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1840 
1841 }
1842 
1843 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1844 {
1845 	return false;
1846 }
1847 
1848 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1849 					struct pt_regs *regs)
1850 {
1851 	return true;
1852 }
1853 
1854 /*
1855  * Run handler and ask thread to singlestep.
1856  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1857  */
1858 static void handle_swbp(struct pt_regs *regs)
1859 {
1860 	struct uprobe *uprobe;
1861 	unsigned long bp_vaddr;
1862 	int uninitialized_var(is_swbp);
1863 
1864 	bp_vaddr = uprobe_get_swbp_addr(regs);
1865 	if (bp_vaddr == get_trampoline_vaddr())
1866 		return handle_trampoline(regs);
1867 
1868 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1869 	if (!uprobe) {
1870 		if (is_swbp > 0) {
1871 			/* No matching uprobe; signal SIGTRAP. */
1872 			send_sig(SIGTRAP, current, 0);
1873 		} else {
1874 			/*
1875 			 * Either we raced with uprobe_unregister() or we can't
1876 			 * access this memory. The latter is only possible if
1877 			 * another thread plays with our ->mm. In both cases
1878 			 * we can simply restart. If this vma was unmapped we
1879 			 * can pretend this insn was not executed yet and get
1880 			 * the (correct) SIGSEGV after restart.
1881 			 */
1882 			instruction_pointer_set(regs, bp_vaddr);
1883 		}
1884 		return;
1885 	}
1886 
1887 	/* change it in advance for ->handler() and restart */
1888 	instruction_pointer_set(regs, bp_vaddr);
1889 
1890 	/*
1891 	 * TODO: move copy_insn/etc into _register and remove this hack.
1892 	 * After we hit the bp, _unregister + _register can install the
1893 	 * new and not-yet-analyzed uprobe at the same address, restart.
1894 	 */
1895 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1896 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1897 		goto out;
1898 
1899 	/* Tracing handlers use ->utask to communicate with fetch methods */
1900 	if (!get_utask())
1901 		goto out;
1902 
1903 	if (arch_uprobe_ignore(&uprobe->arch, regs))
1904 		goto out;
1905 
1906 	handler_chain(uprobe, regs);
1907 
1908 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1909 		goto out;
1910 
1911 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1912 		return;
1913 
1914 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1915 out:
1916 	put_uprobe(uprobe);
1917 }
1918 
1919 /*
1920  * Perform required fix-ups and disable singlestep.
1921  * Allow pending signals to take effect.
1922  */
1923 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1924 {
1925 	struct uprobe *uprobe;
1926 	int err = 0;
1927 
1928 	uprobe = utask->active_uprobe;
1929 	if (utask->state == UTASK_SSTEP_ACK)
1930 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1931 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1932 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1933 	else
1934 		WARN_ON_ONCE(1);
1935 
1936 	put_uprobe(uprobe);
1937 	utask->active_uprobe = NULL;
1938 	utask->state = UTASK_RUNNING;
1939 	xol_free_insn_slot(current);
1940 
1941 	spin_lock_irq(&current->sighand->siglock);
1942 	recalc_sigpending(); /* see uprobe_deny_signal() */
1943 	spin_unlock_irq(&current->sighand->siglock);
1944 
1945 	if (unlikely(err)) {
1946 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1947 		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1948 	}
1949 }
1950 
1951 /*
1952  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1953  * allows the thread to return from interrupt. After that handle_swbp()
1954  * sets utask->active_uprobe.
1955  *
1956  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1957  * and allows the thread to return from interrupt.
1958  *
1959  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1960  * uprobe_notify_resume().
1961  */
1962 void uprobe_notify_resume(struct pt_regs *regs)
1963 {
1964 	struct uprobe_task *utask;
1965 
1966 	clear_thread_flag(TIF_UPROBE);
1967 
1968 	utask = current->utask;
1969 	if (utask && utask->active_uprobe)
1970 		handle_singlestep(utask, regs);
1971 	else
1972 		handle_swbp(regs);
1973 }
1974 
1975 /*
1976  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1977  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1978  */
1979 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1980 {
1981 	if (!current->mm)
1982 		return 0;
1983 
1984 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1985 	    (!current->utask || !current->utask->return_instances))
1986 		return 0;
1987 
1988 	set_thread_flag(TIF_UPROBE);
1989 	return 1;
1990 }
1991 
1992 /*
1993  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1994  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1995  */
1996 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1997 {
1998 	struct uprobe_task *utask = current->utask;
1999 
2000 	if (!current->mm || !utask || !utask->active_uprobe)
2001 		/* task is currently not uprobed */
2002 		return 0;
2003 
2004 	utask->state = UTASK_SSTEP_ACK;
2005 	set_thread_flag(TIF_UPROBE);
2006 	return 1;
2007 }
2008 
2009 static struct notifier_block uprobe_exception_nb = {
2010 	.notifier_call		= arch_uprobe_exception_notify,
2011 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2012 };
2013 
2014 static int __init init_uprobes(void)
2015 {
2016 	int i;
2017 
2018 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2019 		mutex_init(&uprobes_mmap_mutex[i]);
2020 
2021 	if (percpu_init_rwsem(&dup_mmap_sem))
2022 		return -ENOMEM;
2023 
2024 	return register_die_notifier(&uprobe_exception_nb);
2025 }
2026 __initcall(init_uprobes);
2027