1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/export.h> 31 #include <linux/rmap.h> /* anon_vma_prepare */ 32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 33 #include <linux/swap.h> /* try_to_free_swap */ 34 #include <linux/ptrace.h> /* user_enable_single_step */ 35 #include <linux/kdebug.h> /* notifier mechanism */ 36 #include "../../mm/internal.h" /* munlock_vma_page */ 37 #include <linux/percpu-rwsem.h> 38 39 #include <linux/uprobes.h> 40 41 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 42 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 43 44 static struct rb_root uprobes_tree = RB_ROOT; 45 /* 46 * allows us to skip the uprobe_mmap if there are no uprobe events active 47 * at this time. Probably a fine grained per inode count is better? 48 */ 49 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 50 51 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 52 53 #define UPROBES_HASH_SZ 13 54 /* serialize uprobe->pending_list */ 55 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 56 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 57 58 static struct percpu_rw_semaphore dup_mmap_sem; 59 60 /* Have a copy of original instruction */ 61 #define UPROBE_COPY_INSN 0 62 /* Can skip singlestep */ 63 #define UPROBE_SKIP_SSTEP 1 64 65 struct uprobe { 66 struct rb_node rb_node; /* node in the rb tree */ 67 atomic_t ref; 68 struct rw_semaphore register_rwsem; 69 struct rw_semaphore consumer_rwsem; 70 struct list_head pending_list; 71 struct uprobe_consumer *consumers; 72 struct inode *inode; /* Also hold a ref to inode */ 73 loff_t offset; 74 unsigned long flags; 75 struct arch_uprobe arch; 76 }; 77 78 /* 79 * valid_vma: Verify if the specified vma is an executable vma 80 * Relax restrictions while unregistering: vm_flags might have 81 * changed after breakpoint was inserted. 82 * - is_register: indicates if we are in register context. 83 * - Return 1 if the specified virtual address is in an 84 * executable vma. 85 */ 86 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 87 { 88 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED; 89 90 if (is_register) 91 flags |= VM_WRITE; 92 93 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 94 } 95 96 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 97 { 98 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 99 } 100 101 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 102 { 103 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 104 } 105 106 /** 107 * __replace_page - replace page in vma by new page. 108 * based on replace_page in mm/ksm.c 109 * 110 * @vma: vma that holds the pte pointing to page 111 * @addr: address the old @page is mapped at 112 * @page: the cowed page we are replacing by kpage 113 * @kpage: the modified page we replace page by 114 * 115 * Returns 0 on success, -EFAULT on failure. 116 */ 117 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 118 struct page *page, struct page *kpage) 119 { 120 struct mm_struct *mm = vma->vm_mm; 121 spinlock_t *ptl; 122 pte_t *ptep; 123 int err; 124 /* For mmu_notifiers */ 125 const unsigned long mmun_start = addr; 126 const unsigned long mmun_end = addr + PAGE_SIZE; 127 128 /* For try_to_free_swap() and munlock_vma_page() below */ 129 lock_page(page); 130 131 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 132 err = -EAGAIN; 133 ptep = page_check_address(page, mm, addr, &ptl, 0); 134 if (!ptep) 135 goto unlock; 136 137 get_page(kpage); 138 page_add_new_anon_rmap(kpage, vma, addr); 139 140 if (!PageAnon(page)) { 141 dec_mm_counter(mm, MM_FILEPAGES); 142 inc_mm_counter(mm, MM_ANONPAGES); 143 } 144 145 flush_cache_page(vma, addr, pte_pfn(*ptep)); 146 ptep_clear_flush(vma, addr, ptep); 147 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 148 149 page_remove_rmap(page); 150 if (!page_mapped(page)) 151 try_to_free_swap(page); 152 pte_unmap_unlock(ptep, ptl); 153 154 if (vma->vm_flags & VM_LOCKED) 155 munlock_vma_page(page); 156 put_page(page); 157 158 err = 0; 159 unlock: 160 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 161 unlock_page(page); 162 return err; 163 } 164 165 /** 166 * is_swbp_insn - check if instruction is breakpoint instruction. 167 * @insn: instruction to be checked. 168 * Default implementation of is_swbp_insn 169 * Returns true if @insn is a breakpoint instruction. 170 */ 171 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 172 { 173 return *insn == UPROBE_SWBP_INSN; 174 } 175 176 static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode) 177 { 178 void *kaddr = kmap_atomic(page); 179 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE); 180 kunmap_atomic(kaddr); 181 } 182 183 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 184 { 185 uprobe_opcode_t old_opcode; 186 bool is_swbp; 187 188 copy_opcode(page, vaddr, &old_opcode); 189 is_swbp = is_swbp_insn(&old_opcode); 190 191 if (is_swbp_insn(new_opcode)) { 192 if (is_swbp) /* register: already installed? */ 193 return 0; 194 } else { 195 if (!is_swbp) /* unregister: was it changed by us? */ 196 return 0; 197 } 198 199 return 1; 200 } 201 202 /* 203 * NOTE: 204 * Expect the breakpoint instruction to be the smallest size instruction for 205 * the architecture. If an arch has variable length instruction and the 206 * breakpoint instruction is not of the smallest length instruction 207 * supported by that architecture then we need to modify is_swbp_at_addr and 208 * write_opcode accordingly. This would never be a problem for archs that 209 * have fixed length instructions. 210 */ 211 212 /* 213 * write_opcode - write the opcode at a given virtual address. 214 * @mm: the probed process address space. 215 * @vaddr: the virtual address to store the opcode. 216 * @opcode: opcode to be written at @vaddr. 217 * 218 * Called with mm->mmap_sem held (for read and with a reference to 219 * mm). 220 * 221 * For mm @mm, write the opcode at @vaddr. 222 * Return 0 (success) or a negative errno. 223 */ 224 static int write_opcode(struct mm_struct *mm, unsigned long vaddr, 225 uprobe_opcode_t opcode) 226 { 227 struct page *old_page, *new_page; 228 void *vaddr_old, *vaddr_new; 229 struct vm_area_struct *vma; 230 int ret; 231 232 retry: 233 /* Read the page with vaddr into memory */ 234 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma); 235 if (ret <= 0) 236 return ret; 237 238 ret = verify_opcode(old_page, vaddr, &opcode); 239 if (ret <= 0) 240 goto put_old; 241 242 ret = -ENOMEM; 243 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 244 if (!new_page) 245 goto put_old; 246 247 __SetPageUptodate(new_page); 248 249 /* copy the page now that we've got it stable */ 250 vaddr_old = kmap_atomic(old_page); 251 vaddr_new = kmap_atomic(new_page); 252 253 memcpy(vaddr_new, vaddr_old, PAGE_SIZE); 254 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE); 255 256 kunmap_atomic(vaddr_new); 257 kunmap_atomic(vaddr_old); 258 259 ret = anon_vma_prepare(vma); 260 if (ret) 261 goto put_new; 262 263 ret = __replace_page(vma, vaddr, old_page, new_page); 264 265 put_new: 266 page_cache_release(new_page); 267 put_old: 268 put_page(old_page); 269 270 if (unlikely(ret == -EAGAIN)) 271 goto retry; 272 return ret; 273 } 274 275 /** 276 * set_swbp - store breakpoint at a given address. 277 * @auprobe: arch specific probepoint information. 278 * @mm: the probed process address space. 279 * @vaddr: the virtual address to insert the opcode. 280 * 281 * For mm @mm, store the breakpoint instruction at @vaddr. 282 * Return 0 (success) or a negative errno. 283 */ 284 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 285 { 286 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN); 287 } 288 289 /** 290 * set_orig_insn - Restore the original instruction. 291 * @mm: the probed process address space. 292 * @auprobe: arch specific probepoint information. 293 * @vaddr: the virtual address to insert the opcode. 294 * 295 * For mm @mm, restore the original opcode (opcode) at @vaddr. 296 * Return 0 (success) or a negative errno. 297 */ 298 int __weak 299 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 300 { 301 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn); 302 } 303 304 static int match_uprobe(struct uprobe *l, struct uprobe *r) 305 { 306 if (l->inode < r->inode) 307 return -1; 308 309 if (l->inode > r->inode) 310 return 1; 311 312 if (l->offset < r->offset) 313 return -1; 314 315 if (l->offset > r->offset) 316 return 1; 317 318 return 0; 319 } 320 321 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 322 { 323 struct uprobe u = { .inode = inode, .offset = offset }; 324 struct rb_node *n = uprobes_tree.rb_node; 325 struct uprobe *uprobe; 326 int match; 327 328 while (n) { 329 uprobe = rb_entry(n, struct uprobe, rb_node); 330 match = match_uprobe(&u, uprobe); 331 if (!match) { 332 atomic_inc(&uprobe->ref); 333 return uprobe; 334 } 335 336 if (match < 0) 337 n = n->rb_left; 338 else 339 n = n->rb_right; 340 } 341 return NULL; 342 } 343 344 /* 345 * Find a uprobe corresponding to a given inode:offset 346 * Acquires uprobes_treelock 347 */ 348 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 349 { 350 struct uprobe *uprobe; 351 352 spin_lock(&uprobes_treelock); 353 uprobe = __find_uprobe(inode, offset); 354 spin_unlock(&uprobes_treelock); 355 356 return uprobe; 357 } 358 359 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 360 { 361 struct rb_node **p = &uprobes_tree.rb_node; 362 struct rb_node *parent = NULL; 363 struct uprobe *u; 364 int match; 365 366 while (*p) { 367 parent = *p; 368 u = rb_entry(parent, struct uprobe, rb_node); 369 match = match_uprobe(uprobe, u); 370 if (!match) { 371 atomic_inc(&u->ref); 372 return u; 373 } 374 375 if (match < 0) 376 p = &parent->rb_left; 377 else 378 p = &parent->rb_right; 379 380 } 381 382 u = NULL; 383 rb_link_node(&uprobe->rb_node, parent, p); 384 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 385 /* get access + creation ref */ 386 atomic_set(&uprobe->ref, 2); 387 388 return u; 389 } 390 391 /* 392 * Acquire uprobes_treelock. 393 * Matching uprobe already exists in rbtree; 394 * increment (access refcount) and return the matching uprobe. 395 * 396 * No matching uprobe; insert the uprobe in rb_tree; 397 * get a double refcount (access + creation) and return NULL. 398 */ 399 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 400 { 401 struct uprobe *u; 402 403 spin_lock(&uprobes_treelock); 404 u = __insert_uprobe(uprobe); 405 spin_unlock(&uprobes_treelock); 406 407 return u; 408 } 409 410 static void put_uprobe(struct uprobe *uprobe) 411 { 412 if (atomic_dec_and_test(&uprobe->ref)) 413 kfree(uprobe); 414 } 415 416 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 417 { 418 struct uprobe *uprobe, *cur_uprobe; 419 420 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 421 if (!uprobe) 422 return NULL; 423 424 uprobe->inode = igrab(inode); 425 uprobe->offset = offset; 426 init_rwsem(&uprobe->register_rwsem); 427 init_rwsem(&uprobe->consumer_rwsem); 428 /* For now assume that the instruction need not be single-stepped */ 429 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags); 430 431 /* add to uprobes_tree, sorted on inode:offset */ 432 cur_uprobe = insert_uprobe(uprobe); 433 434 /* a uprobe exists for this inode:offset combination */ 435 if (cur_uprobe) { 436 kfree(uprobe); 437 uprobe = cur_uprobe; 438 iput(inode); 439 } 440 441 return uprobe; 442 } 443 444 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 445 { 446 down_write(&uprobe->consumer_rwsem); 447 uc->next = uprobe->consumers; 448 uprobe->consumers = uc; 449 up_write(&uprobe->consumer_rwsem); 450 } 451 452 /* 453 * For uprobe @uprobe, delete the consumer @uc. 454 * Return true if the @uc is deleted successfully 455 * or return false. 456 */ 457 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 458 { 459 struct uprobe_consumer **con; 460 bool ret = false; 461 462 down_write(&uprobe->consumer_rwsem); 463 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 464 if (*con == uc) { 465 *con = uc->next; 466 ret = true; 467 break; 468 } 469 } 470 up_write(&uprobe->consumer_rwsem); 471 472 return ret; 473 } 474 475 static int 476 __copy_insn(struct address_space *mapping, struct file *filp, char *insn, 477 unsigned long nbytes, loff_t offset) 478 { 479 struct page *page; 480 void *vaddr; 481 unsigned long off; 482 pgoff_t idx; 483 484 if (!filp) 485 return -EINVAL; 486 487 if (!mapping->a_ops->readpage) 488 return -EIO; 489 490 idx = offset >> PAGE_CACHE_SHIFT; 491 off = offset & ~PAGE_MASK; 492 493 /* 494 * Ensure that the page that has the original instruction is 495 * populated and in page-cache. 496 */ 497 page = read_mapping_page(mapping, idx, filp); 498 if (IS_ERR(page)) 499 return PTR_ERR(page); 500 501 vaddr = kmap_atomic(page); 502 memcpy(insn, vaddr + off, nbytes); 503 kunmap_atomic(vaddr); 504 page_cache_release(page); 505 506 return 0; 507 } 508 509 static int copy_insn(struct uprobe *uprobe, struct file *filp) 510 { 511 struct address_space *mapping; 512 unsigned long nbytes; 513 int bytes; 514 515 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK); 516 mapping = uprobe->inode->i_mapping; 517 518 /* Instruction at end of binary; copy only available bytes */ 519 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size) 520 bytes = uprobe->inode->i_size - uprobe->offset; 521 else 522 bytes = MAX_UINSN_BYTES; 523 524 /* Instruction at the page-boundary; copy bytes in second page */ 525 if (nbytes < bytes) { 526 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes, 527 bytes - nbytes, uprobe->offset + nbytes); 528 if (err) 529 return err; 530 bytes = nbytes; 531 } 532 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset); 533 } 534 535 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 536 struct mm_struct *mm, unsigned long vaddr) 537 { 538 int ret = 0; 539 540 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 541 return ret; 542 543 /* TODO: move this into _register, until then we abuse this sem. */ 544 down_write(&uprobe->consumer_rwsem); 545 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 546 goto out; 547 548 ret = copy_insn(uprobe, file); 549 if (ret) 550 goto out; 551 552 ret = -ENOTSUPP; 553 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn)) 554 goto out; 555 556 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 557 if (ret) 558 goto out; 559 560 /* write_opcode() assumes we don't cross page boundary */ 561 BUG_ON((uprobe->offset & ~PAGE_MASK) + 562 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 563 564 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 565 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 566 567 out: 568 up_write(&uprobe->consumer_rwsem); 569 570 return ret; 571 } 572 573 static inline bool consumer_filter(struct uprobe_consumer *uc, 574 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 575 { 576 return !uc->filter || uc->filter(uc, ctx, mm); 577 } 578 579 static bool filter_chain(struct uprobe *uprobe, 580 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 581 { 582 struct uprobe_consumer *uc; 583 bool ret = false; 584 585 down_read(&uprobe->consumer_rwsem); 586 for (uc = uprobe->consumers; uc; uc = uc->next) { 587 ret = consumer_filter(uc, ctx, mm); 588 if (ret) 589 break; 590 } 591 up_read(&uprobe->consumer_rwsem); 592 593 return ret; 594 } 595 596 static int 597 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 598 struct vm_area_struct *vma, unsigned long vaddr) 599 { 600 bool first_uprobe; 601 int ret; 602 603 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 604 if (ret) 605 return ret; 606 607 /* 608 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 609 * the task can hit this breakpoint right after __replace_page(). 610 */ 611 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 612 if (first_uprobe) 613 set_bit(MMF_HAS_UPROBES, &mm->flags); 614 615 ret = set_swbp(&uprobe->arch, mm, vaddr); 616 if (!ret) 617 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 618 else if (first_uprobe) 619 clear_bit(MMF_HAS_UPROBES, &mm->flags); 620 621 return ret; 622 } 623 624 static int 625 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 626 { 627 set_bit(MMF_RECALC_UPROBES, &mm->flags); 628 return set_orig_insn(&uprobe->arch, mm, vaddr); 629 } 630 631 static inline bool uprobe_is_active(struct uprobe *uprobe) 632 { 633 return !RB_EMPTY_NODE(&uprobe->rb_node); 634 } 635 /* 636 * There could be threads that have already hit the breakpoint. They 637 * will recheck the current insn and restart if find_uprobe() fails. 638 * See find_active_uprobe(). 639 */ 640 static void delete_uprobe(struct uprobe *uprobe) 641 { 642 if (WARN_ON(!uprobe_is_active(uprobe))) 643 return; 644 645 spin_lock(&uprobes_treelock); 646 rb_erase(&uprobe->rb_node, &uprobes_tree); 647 spin_unlock(&uprobes_treelock); 648 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 649 iput(uprobe->inode); 650 put_uprobe(uprobe); 651 } 652 653 struct map_info { 654 struct map_info *next; 655 struct mm_struct *mm; 656 unsigned long vaddr; 657 }; 658 659 static inline struct map_info *free_map_info(struct map_info *info) 660 { 661 struct map_info *next = info->next; 662 kfree(info); 663 return next; 664 } 665 666 static struct map_info * 667 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 668 { 669 unsigned long pgoff = offset >> PAGE_SHIFT; 670 struct vm_area_struct *vma; 671 struct map_info *curr = NULL; 672 struct map_info *prev = NULL; 673 struct map_info *info; 674 int more = 0; 675 676 again: 677 mutex_lock(&mapping->i_mmap_mutex); 678 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 679 if (!valid_vma(vma, is_register)) 680 continue; 681 682 if (!prev && !more) { 683 /* 684 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through 685 * reclaim. This is optimistic, no harm done if it fails. 686 */ 687 prev = kmalloc(sizeof(struct map_info), 688 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 689 if (prev) 690 prev->next = NULL; 691 } 692 if (!prev) { 693 more++; 694 continue; 695 } 696 697 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 698 continue; 699 700 info = prev; 701 prev = prev->next; 702 info->next = curr; 703 curr = info; 704 705 info->mm = vma->vm_mm; 706 info->vaddr = offset_to_vaddr(vma, offset); 707 } 708 mutex_unlock(&mapping->i_mmap_mutex); 709 710 if (!more) 711 goto out; 712 713 prev = curr; 714 while (curr) { 715 mmput(curr->mm); 716 curr = curr->next; 717 } 718 719 do { 720 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 721 if (!info) { 722 curr = ERR_PTR(-ENOMEM); 723 goto out; 724 } 725 info->next = prev; 726 prev = info; 727 } while (--more); 728 729 goto again; 730 out: 731 while (prev) 732 prev = free_map_info(prev); 733 return curr; 734 } 735 736 static int 737 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 738 { 739 bool is_register = !!new; 740 struct map_info *info; 741 int err = 0; 742 743 percpu_down_write(&dup_mmap_sem); 744 info = build_map_info(uprobe->inode->i_mapping, 745 uprobe->offset, is_register); 746 if (IS_ERR(info)) { 747 err = PTR_ERR(info); 748 goto out; 749 } 750 751 while (info) { 752 struct mm_struct *mm = info->mm; 753 struct vm_area_struct *vma; 754 755 if (err && is_register) 756 goto free; 757 758 down_write(&mm->mmap_sem); 759 vma = find_vma(mm, info->vaddr); 760 if (!vma || !valid_vma(vma, is_register) || 761 vma->vm_file->f_mapping->host != uprobe->inode) 762 goto unlock; 763 764 if (vma->vm_start > info->vaddr || 765 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 766 goto unlock; 767 768 if (is_register) { 769 /* consult only the "caller", new consumer. */ 770 if (consumer_filter(new, 771 UPROBE_FILTER_REGISTER, mm)) 772 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 773 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 774 if (!filter_chain(uprobe, 775 UPROBE_FILTER_UNREGISTER, mm)) 776 err |= remove_breakpoint(uprobe, mm, info->vaddr); 777 } 778 779 unlock: 780 up_write(&mm->mmap_sem); 781 free: 782 mmput(mm); 783 info = free_map_info(info); 784 } 785 out: 786 percpu_up_write(&dup_mmap_sem); 787 return err; 788 } 789 790 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc) 791 { 792 consumer_add(uprobe, uc); 793 return register_for_each_vma(uprobe, uc); 794 } 795 796 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 797 { 798 int err; 799 800 if (!consumer_del(uprobe, uc)) /* WARN? */ 801 return; 802 803 err = register_for_each_vma(uprobe, NULL); 804 /* TODO : cant unregister? schedule a worker thread */ 805 if (!uprobe->consumers && !err) 806 delete_uprobe(uprobe); 807 } 808 809 /* 810 * uprobe_register - register a probe 811 * @inode: the file in which the probe has to be placed. 812 * @offset: offset from the start of the file. 813 * @uc: information on howto handle the probe.. 814 * 815 * Apart from the access refcount, uprobe_register() takes a creation 816 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 817 * inserted into the rbtree (i.e first consumer for a @inode:@offset 818 * tuple). Creation refcount stops uprobe_unregister from freeing the 819 * @uprobe even before the register operation is complete. Creation 820 * refcount is released when the last @uc for the @uprobe 821 * unregisters. 822 * 823 * Return errno if it cannot successully install probes 824 * else return 0 (success) 825 */ 826 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 827 { 828 struct uprobe *uprobe; 829 int ret; 830 831 /* Racy, just to catch the obvious mistakes */ 832 if (offset > i_size_read(inode)) 833 return -EINVAL; 834 835 retry: 836 uprobe = alloc_uprobe(inode, offset); 837 if (!uprobe) 838 return -ENOMEM; 839 /* 840 * We can race with uprobe_unregister()->delete_uprobe(). 841 * Check uprobe_is_active() and retry if it is false. 842 */ 843 down_write(&uprobe->register_rwsem); 844 ret = -EAGAIN; 845 if (likely(uprobe_is_active(uprobe))) { 846 ret = __uprobe_register(uprobe, uc); 847 if (ret) 848 __uprobe_unregister(uprobe, uc); 849 } 850 up_write(&uprobe->register_rwsem); 851 put_uprobe(uprobe); 852 853 if (unlikely(ret == -EAGAIN)) 854 goto retry; 855 return ret; 856 } 857 EXPORT_SYMBOL_GPL(uprobe_register); 858 859 /* 860 * uprobe_apply - unregister a already registered probe. 861 * @inode: the file in which the probe has to be removed. 862 * @offset: offset from the start of the file. 863 * @uc: consumer which wants to add more or remove some breakpoints 864 * @add: add or remove the breakpoints 865 */ 866 int uprobe_apply(struct inode *inode, loff_t offset, 867 struct uprobe_consumer *uc, bool add) 868 { 869 struct uprobe *uprobe; 870 struct uprobe_consumer *con; 871 int ret = -ENOENT; 872 873 uprobe = find_uprobe(inode, offset); 874 if (!uprobe) 875 return ret; 876 877 down_write(&uprobe->register_rwsem); 878 for (con = uprobe->consumers; con && con != uc ; con = con->next) 879 ; 880 if (con) 881 ret = register_for_each_vma(uprobe, add ? uc : NULL); 882 up_write(&uprobe->register_rwsem); 883 put_uprobe(uprobe); 884 885 return ret; 886 } 887 888 /* 889 * uprobe_unregister - unregister a already registered probe. 890 * @inode: the file in which the probe has to be removed. 891 * @offset: offset from the start of the file. 892 * @uc: identify which probe if multiple probes are colocated. 893 */ 894 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 895 { 896 struct uprobe *uprobe; 897 898 uprobe = find_uprobe(inode, offset); 899 if (!uprobe) 900 return; 901 902 down_write(&uprobe->register_rwsem); 903 __uprobe_unregister(uprobe, uc); 904 up_write(&uprobe->register_rwsem); 905 put_uprobe(uprobe); 906 } 907 EXPORT_SYMBOL_GPL(uprobe_unregister); 908 909 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 910 { 911 struct vm_area_struct *vma; 912 int err = 0; 913 914 down_read(&mm->mmap_sem); 915 for (vma = mm->mmap; vma; vma = vma->vm_next) { 916 unsigned long vaddr; 917 loff_t offset; 918 919 if (!valid_vma(vma, false) || 920 vma->vm_file->f_mapping->host != uprobe->inode) 921 continue; 922 923 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 924 if (uprobe->offset < offset || 925 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 926 continue; 927 928 vaddr = offset_to_vaddr(vma, uprobe->offset); 929 err |= remove_breakpoint(uprobe, mm, vaddr); 930 } 931 up_read(&mm->mmap_sem); 932 933 return err; 934 } 935 936 static struct rb_node * 937 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 938 { 939 struct rb_node *n = uprobes_tree.rb_node; 940 941 while (n) { 942 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 943 944 if (inode < u->inode) { 945 n = n->rb_left; 946 } else if (inode > u->inode) { 947 n = n->rb_right; 948 } else { 949 if (max < u->offset) 950 n = n->rb_left; 951 else if (min > u->offset) 952 n = n->rb_right; 953 else 954 break; 955 } 956 } 957 958 return n; 959 } 960 961 /* 962 * For a given range in vma, build a list of probes that need to be inserted. 963 */ 964 static void build_probe_list(struct inode *inode, 965 struct vm_area_struct *vma, 966 unsigned long start, unsigned long end, 967 struct list_head *head) 968 { 969 loff_t min, max; 970 struct rb_node *n, *t; 971 struct uprobe *u; 972 973 INIT_LIST_HEAD(head); 974 min = vaddr_to_offset(vma, start); 975 max = min + (end - start) - 1; 976 977 spin_lock(&uprobes_treelock); 978 n = find_node_in_range(inode, min, max); 979 if (n) { 980 for (t = n; t; t = rb_prev(t)) { 981 u = rb_entry(t, struct uprobe, rb_node); 982 if (u->inode != inode || u->offset < min) 983 break; 984 list_add(&u->pending_list, head); 985 atomic_inc(&u->ref); 986 } 987 for (t = n; (t = rb_next(t)); ) { 988 u = rb_entry(t, struct uprobe, rb_node); 989 if (u->inode != inode || u->offset > max) 990 break; 991 list_add(&u->pending_list, head); 992 atomic_inc(&u->ref); 993 } 994 } 995 spin_unlock(&uprobes_treelock); 996 } 997 998 /* 999 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1000 * 1001 * Currently we ignore all errors and always return 0, the callers 1002 * can't handle the failure anyway. 1003 */ 1004 int uprobe_mmap(struct vm_area_struct *vma) 1005 { 1006 struct list_head tmp_list; 1007 struct uprobe *uprobe, *u; 1008 struct inode *inode; 1009 1010 if (no_uprobe_events() || !valid_vma(vma, true)) 1011 return 0; 1012 1013 inode = vma->vm_file->f_mapping->host; 1014 if (!inode) 1015 return 0; 1016 1017 mutex_lock(uprobes_mmap_hash(inode)); 1018 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1019 /* 1020 * We can race with uprobe_unregister(), this uprobe can be already 1021 * removed. But in this case filter_chain() must return false, all 1022 * consumers have gone away. 1023 */ 1024 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1025 if (!fatal_signal_pending(current) && 1026 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1027 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1028 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1029 } 1030 put_uprobe(uprobe); 1031 } 1032 mutex_unlock(uprobes_mmap_hash(inode)); 1033 1034 return 0; 1035 } 1036 1037 static bool 1038 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1039 { 1040 loff_t min, max; 1041 struct inode *inode; 1042 struct rb_node *n; 1043 1044 inode = vma->vm_file->f_mapping->host; 1045 1046 min = vaddr_to_offset(vma, start); 1047 max = min + (end - start) - 1; 1048 1049 spin_lock(&uprobes_treelock); 1050 n = find_node_in_range(inode, min, max); 1051 spin_unlock(&uprobes_treelock); 1052 1053 return !!n; 1054 } 1055 1056 /* 1057 * Called in context of a munmap of a vma. 1058 */ 1059 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1060 { 1061 if (no_uprobe_events() || !valid_vma(vma, false)) 1062 return; 1063 1064 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1065 return; 1066 1067 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1068 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1069 return; 1070 1071 if (vma_has_uprobes(vma, start, end)) 1072 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1073 } 1074 1075 /* Slot allocation for XOL */ 1076 static int xol_add_vma(struct xol_area *area) 1077 { 1078 struct mm_struct *mm = current->mm; 1079 int ret = -EALREADY; 1080 1081 down_write(&mm->mmap_sem); 1082 if (mm->uprobes_state.xol_area) 1083 goto fail; 1084 1085 ret = -ENOMEM; 1086 /* Try to map as high as possible, this is only a hint. */ 1087 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0); 1088 if (area->vaddr & ~PAGE_MASK) { 1089 ret = area->vaddr; 1090 goto fail; 1091 } 1092 1093 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1094 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); 1095 if (ret) 1096 goto fail; 1097 1098 smp_wmb(); /* pairs with get_xol_area() */ 1099 mm->uprobes_state.xol_area = area; 1100 ret = 0; 1101 fail: 1102 up_write(&mm->mmap_sem); 1103 1104 return ret; 1105 } 1106 1107 /* 1108 * get_xol_area - Allocate process's xol_area if necessary. 1109 * This area will be used for storing instructions for execution out of line. 1110 * 1111 * Returns the allocated area or NULL. 1112 */ 1113 static struct xol_area *get_xol_area(void) 1114 { 1115 struct mm_struct *mm = current->mm; 1116 struct xol_area *area; 1117 1118 area = mm->uprobes_state.xol_area; 1119 if (area) 1120 goto ret; 1121 1122 area = kzalloc(sizeof(*area), GFP_KERNEL); 1123 if (unlikely(!area)) 1124 goto out; 1125 1126 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1127 if (!area->bitmap) 1128 goto free_area; 1129 1130 area->page = alloc_page(GFP_HIGHUSER); 1131 if (!area->page) 1132 goto free_bitmap; 1133 1134 init_waitqueue_head(&area->wq); 1135 if (!xol_add_vma(area)) 1136 return area; 1137 1138 __free_page(area->page); 1139 free_bitmap: 1140 kfree(area->bitmap); 1141 free_area: 1142 kfree(area); 1143 out: 1144 area = mm->uprobes_state.xol_area; 1145 ret: 1146 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1147 return area; 1148 } 1149 1150 /* 1151 * uprobe_clear_state - Free the area allocated for slots. 1152 */ 1153 void uprobe_clear_state(struct mm_struct *mm) 1154 { 1155 struct xol_area *area = mm->uprobes_state.xol_area; 1156 1157 if (!area) 1158 return; 1159 1160 put_page(area->page); 1161 kfree(area->bitmap); 1162 kfree(area); 1163 } 1164 1165 void uprobe_start_dup_mmap(void) 1166 { 1167 percpu_down_read(&dup_mmap_sem); 1168 } 1169 1170 void uprobe_end_dup_mmap(void) 1171 { 1172 percpu_up_read(&dup_mmap_sem); 1173 } 1174 1175 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1176 { 1177 newmm->uprobes_state.xol_area = NULL; 1178 1179 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1180 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1181 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1182 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1183 } 1184 } 1185 1186 /* 1187 * - search for a free slot. 1188 */ 1189 static unsigned long xol_take_insn_slot(struct xol_area *area) 1190 { 1191 unsigned long slot_addr; 1192 int slot_nr; 1193 1194 do { 1195 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1196 if (slot_nr < UINSNS_PER_PAGE) { 1197 if (!test_and_set_bit(slot_nr, area->bitmap)) 1198 break; 1199 1200 slot_nr = UINSNS_PER_PAGE; 1201 continue; 1202 } 1203 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1204 } while (slot_nr >= UINSNS_PER_PAGE); 1205 1206 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1207 atomic_inc(&area->slot_count); 1208 1209 return slot_addr; 1210 } 1211 1212 /* 1213 * xol_get_insn_slot - allocate a slot for xol. 1214 * Returns the allocated slot address or 0. 1215 */ 1216 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1217 { 1218 struct xol_area *area; 1219 unsigned long offset; 1220 unsigned long xol_vaddr; 1221 void *vaddr; 1222 1223 area = get_xol_area(); 1224 if (!area) 1225 return 0; 1226 1227 xol_vaddr = xol_take_insn_slot(area); 1228 if (unlikely(!xol_vaddr)) 1229 return 0; 1230 1231 /* Initialize the slot */ 1232 offset = xol_vaddr & ~PAGE_MASK; 1233 vaddr = kmap_atomic(area->page); 1234 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES); 1235 kunmap_atomic(vaddr); 1236 /* 1237 * We probably need flush_icache_user_range() but it needs vma. 1238 * This should work on supported architectures too. 1239 */ 1240 flush_dcache_page(area->page); 1241 1242 return xol_vaddr; 1243 } 1244 1245 /* 1246 * xol_free_insn_slot - If slot was earlier allocated by 1247 * @xol_get_insn_slot(), make the slot available for 1248 * subsequent requests. 1249 */ 1250 static void xol_free_insn_slot(struct task_struct *tsk) 1251 { 1252 struct xol_area *area; 1253 unsigned long vma_end; 1254 unsigned long slot_addr; 1255 1256 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1257 return; 1258 1259 slot_addr = tsk->utask->xol_vaddr; 1260 if (unlikely(!slot_addr)) 1261 return; 1262 1263 area = tsk->mm->uprobes_state.xol_area; 1264 vma_end = area->vaddr + PAGE_SIZE; 1265 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1266 unsigned long offset; 1267 int slot_nr; 1268 1269 offset = slot_addr - area->vaddr; 1270 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1271 if (slot_nr >= UINSNS_PER_PAGE) 1272 return; 1273 1274 clear_bit(slot_nr, area->bitmap); 1275 atomic_dec(&area->slot_count); 1276 if (waitqueue_active(&area->wq)) 1277 wake_up(&area->wq); 1278 1279 tsk->utask->xol_vaddr = 0; 1280 } 1281 } 1282 1283 /** 1284 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1285 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1286 * instruction. 1287 * Return the address of the breakpoint instruction. 1288 */ 1289 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1290 { 1291 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1292 } 1293 1294 /* 1295 * Called with no locks held. 1296 * Called in context of a exiting or a exec-ing thread. 1297 */ 1298 void uprobe_free_utask(struct task_struct *t) 1299 { 1300 struct uprobe_task *utask = t->utask; 1301 1302 if (!utask) 1303 return; 1304 1305 if (utask->active_uprobe) 1306 put_uprobe(utask->active_uprobe); 1307 1308 xol_free_insn_slot(t); 1309 kfree(utask); 1310 t->utask = NULL; 1311 } 1312 1313 /* 1314 * Called in context of a new clone/fork from copy_process. 1315 */ 1316 void uprobe_copy_process(struct task_struct *t) 1317 { 1318 t->utask = NULL; 1319 } 1320 1321 /* 1322 * Allocate a uprobe_task object for the task if if necessary. 1323 * Called when the thread hits a breakpoint. 1324 * 1325 * Returns: 1326 * - pointer to new uprobe_task on success 1327 * - NULL otherwise 1328 */ 1329 static struct uprobe_task *get_utask(void) 1330 { 1331 if (!current->utask) 1332 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1333 return current->utask; 1334 } 1335 1336 /* Prepare to single-step probed instruction out of line. */ 1337 static int 1338 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1339 { 1340 struct uprobe_task *utask; 1341 unsigned long xol_vaddr; 1342 int err; 1343 1344 utask = get_utask(); 1345 if (!utask) 1346 return -ENOMEM; 1347 1348 xol_vaddr = xol_get_insn_slot(uprobe); 1349 if (!xol_vaddr) 1350 return -ENOMEM; 1351 1352 utask->xol_vaddr = xol_vaddr; 1353 utask->vaddr = bp_vaddr; 1354 1355 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1356 if (unlikely(err)) { 1357 xol_free_insn_slot(current); 1358 return err; 1359 } 1360 1361 utask->active_uprobe = uprobe; 1362 utask->state = UTASK_SSTEP; 1363 return 0; 1364 } 1365 1366 /* 1367 * If we are singlestepping, then ensure this thread is not connected to 1368 * non-fatal signals until completion of singlestep. When xol insn itself 1369 * triggers the signal, restart the original insn even if the task is 1370 * already SIGKILL'ed (since coredump should report the correct ip). This 1371 * is even more important if the task has a handler for SIGSEGV/etc, The 1372 * _same_ instruction should be repeated again after return from the signal 1373 * handler, and SSTEP can never finish in this case. 1374 */ 1375 bool uprobe_deny_signal(void) 1376 { 1377 struct task_struct *t = current; 1378 struct uprobe_task *utask = t->utask; 1379 1380 if (likely(!utask || !utask->active_uprobe)) 1381 return false; 1382 1383 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1384 1385 if (signal_pending(t)) { 1386 spin_lock_irq(&t->sighand->siglock); 1387 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1388 spin_unlock_irq(&t->sighand->siglock); 1389 1390 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1391 utask->state = UTASK_SSTEP_TRAPPED; 1392 set_tsk_thread_flag(t, TIF_UPROBE); 1393 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1394 } 1395 } 1396 1397 return true; 1398 } 1399 1400 /* 1401 * Avoid singlestepping the original instruction if the original instruction 1402 * is a NOP or can be emulated. 1403 */ 1404 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs) 1405 { 1406 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) { 1407 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1408 return true; 1409 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags); 1410 } 1411 return false; 1412 } 1413 1414 static void mmf_recalc_uprobes(struct mm_struct *mm) 1415 { 1416 struct vm_area_struct *vma; 1417 1418 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1419 if (!valid_vma(vma, false)) 1420 continue; 1421 /* 1422 * This is not strictly accurate, we can race with 1423 * uprobe_unregister() and see the already removed 1424 * uprobe if delete_uprobe() was not yet called. 1425 * Or this uprobe can be filtered out. 1426 */ 1427 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1428 return; 1429 } 1430 1431 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1432 } 1433 1434 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr) 1435 { 1436 struct page *page; 1437 uprobe_opcode_t opcode; 1438 int result; 1439 1440 pagefault_disable(); 1441 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, 1442 sizeof(opcode)); 1443 pagefault_enable(); 1444 1445 if (likely(result == 0)) 1446 goto out; 1447 1448 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 1449 if (result < 0) 1450 return result; 1451 1452 copy_opcode(page, vaddr, &opcode); 1453 put_page(page); 1454 out: 1455 return is_swbp_insn(&opcode); 1456 } 1457 1458 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1459 { 1460 struct mm_struct *mm = current->mm; 1461 struct uprobe *uprobe = NULL; 1462 struct vm_area_struct *vma; 1463 1464 down_read(&mm->mmap_sem); 1465 vma = find_vma(mm, bp_vaddr); 1466 if (vma && vma->vm_start <= bp_vaddr) { 1467 if (valid_vma(vma, false)) { 1468 struct inode *inode = vma->vm_file->f_mapping->host; 1469 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1470 1471 uprobe = find_uprobe(inode, offset); 1472 } 1473 1474 if (!uprobe) 1475 *is_swbp = is_swbp_at_addr(mm, bp_vaddr); 1476 } else { 1477 *is_swbp = -EFAULT; 1478 } 1479 1480 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1481 mmf_recalc_uprobes(mm); 1482 up_read(&mm->mmap_sem); 1483 1484 return uprobe; 1485 } 1486 1487 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1488 { 1489 struct uprobe_consumer *uc; 1490 int remove = UPROBE_HANDLER_REMOVE; 1491 1492 down_read(&uprobe->register_rwsem); 1493 for (uc = uprobe->consumers; uc; uc = uc->next) { 1494 int rc = uc->handler(uc, regs); 1495 1496 WARN(rc & ~UPROBE_HANDLER_MASK, 1497 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1498 remove &= rc; 1499 } 1500 1501 if (remove && uprobe->consumers) { 1502 WARN_ON(!uprobe_is_active(uprobe)); 1503 unapply_uprobe(uprobe, current->mm); 1504 } 1505 up_read(&uprobe->register_rwsem); 1506 } 1507 1508 /* 1509 * Run handler and ask thread to singlestep. 1510 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1511 */ 1512 static void handle_swbp(struct pt_regs *regs) 1513 { 1514 struct uprobe *uprobe; 1515 unsigned long bp_vaddr; 1516 int uninitialized_var(is_swbp); 1517 1518 bp_vaddr = uprobe_get_swbp_addr(regs); 1519 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1520 1521 if (!uprobe) { 1522 if (is_swbp > 0) { 1523 /* No matching uprobe; signal SIGTRAP. */ 1524 send_sig(SIGTRAP, current, 0); 1525 } else { 1526 /* 1527 * Either we raced with uprobe_unregister() or we can't 1528 * access this memory. The latter is only possible if 1529 * another thread plays with our ->mm. In both cases 1530 * we can simply restart. If this vma was unmapped we 1531 * can pretend this insn was not executed yet and get 1532 * the (correct) SIGSEGV after restart. 1533 */ 1534 instruction_pointer_set(regs, bp_vaddr); 1535 } 1536 return; 1537 } 1538 1539 /* change it in advance for ->handler() and restart */ 1540 instruction_pointer_set(regs, bp_vaddr); 1541 1542 /* 1543 * TODO: move copy_insn/etc into _register and remove this hack. 1544 * After we hit the bp, _unregister + _register can install the 1545 * new and not-yet-analyzed uprobe at the same address, restart. 1546 */ 1547 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1548 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1549 goto out; 1550 1551 handler_chain(uprobe, regs); 1552 if (can_skip_sstep(uprobe, regs)) 1553 goto out; 1554 1555 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1556 return; 1557 1558 /* can_skip_sstep() succeeded, or restart if can't singlestep */ 1559 out: 1560 put_uprobe(uprobe); 1561 } 1562 1563 /* 1564 * Perform required fix-ups and disable singlestep. 1565 * Allow pending signals to take effect. 1566 */ 1567 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1568 { 1569 struct uprobe *uprobe; 1570 1571 uprobe = utask->active_uprobe; 1572 if (utask->state == UTASK_SSTEP_ACK) 1573 arch_uprobe_post_xol(&uprobe->arch, regs); 1574 else if (utask->state == UTASK_SSTEP_TRAPPED) 1575 arch_uprobe_abort_xol(&uprobe->arch, regs); 1576 else 1577 WARN_ON_ONCE(1); 1578 1579 put_uprobe(uprobe); 1580 utask->active_uprobe = NULL; 1581 utask->state = UTASK_RUNNING; 1582 xol_free_insn_slot(current); 1583 1584 spin_lock_irq(¤t->sighand->siglock); 1585 recalc_sigpending(); /* see uprobe_deny_signal() */ 1586 spin_unlock_irq(¤t->sighand->siglock); 1587 } 1588 1589 /* 1590 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1591 * allows the thread to return from interrupt. After that handle_swbp() 1592 * sets utask->active_uprobe. 1593 * 1594 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1595 * and allows the thread to return from interrupt. 1596 * 1597 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1598 * uprobe_notify_resume(). 1599 */ 1600 void uprobe_notify_resume(struct pt_regs *regs) 1601 { 1602 struct uprobe_task *utask; 1603 1604 clear_thread_flag(TIF_UPROBE); 1605 1606 utask = current->utask; 1607 if (utask && utask->active_uprobe) 1608 handle_singlestep(utask, regs); 1609 else 1610 handle_swbp(regs); 1611 } 1612 1613 /* 1614 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1615 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1616 */ 1617 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1618 { 1619 if (!current->mm || !test_bit(MMF_HAS_UPROBES, ¤t->mm->flags)) 1620 return 0; 1621 1622 set_thread_flag(TIF_UPROBE); 1623 return 1; 1624 } 1625 1626 /* 1627 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1628 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1629 */ 1630 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1631 { 1632 struct uprobe_task *utask = current->utask; 1633 1634 if (!current->mm || !utask || !utask->active_uprobe) 1635 /* task is currently not uprobed */ 1636 return 0; 1637 1638 utask->state = UTASK_SSTEP_ACK; 1639 set_thread_flag(TIF_UPROBE); 1640 return 1; 1641 } 1642 1643 static struct notifier_block uprobe_exception_nb = { 1644 .notifier_call = arch_uprobe_exception_notify, 1645 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 1646 }; 1647 1648 static int __init init_uprobes(void) 1649 { 1650 int i; 1651 1652 for (i = 0; i < UPROBES_HASH_SZ; i++) 1653 mutex_init(&uprobes_mmap_mutex[i]); 1654 1655 if (percpu_init_rwsem(&dup_mmap_sem)) 1656 return -ENOMEM; 1657 1658 return register_die_notifier(&uprobe_exception_nb); 1659 } 1660 module_init(init_uprobes); 1661 1662 static void __exit exit_uprobes(void) 1663 { 1664 } 1665 module_exit(exit_uprobes); 1666