xref: /openbmc/linux/kernel/events/uprobes.c (revision 9d749629)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>		/* anon_vma_prepare */
32 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33 #include <linux/swap.h>		/* try_to_free_swap */
34 #include <linux/ptrace.h>	/* user_enable_single_step */
35 #include <linux/kdebug.h>	/* notifier mechanism */
36 #include "../../mm/internal.h"	/* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 
39 #include <linux/uprobes.h>
40 
41 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
42 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
43 
44 static struct rb_root uprobes_tree = RB_ROOT;
45 /*
46  * allows us to skip the uprobe_mmap if there are no uprobe events active
47  * at this time.  Probably a fine grained per inode count is better?
48  */
49 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
50 
51 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
52 
53 #define UPROBES_HASH_SZ	13
54 /* serialize uprobe->pending_list */
55 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
56 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
57 
58 static struct percpu_rw_semaphore dup_mmap_sem;
59 
60 /* Have a copy of original instruction */
61 #define UPROBE_COPY_INSN	0
62 /* Can skip singlestep */
63 #define UPROBE_SKIP_SSTEP	1
64 
65 struct uprobe {
66 	struct rb_node		rb_node;	/* node in the rb tree */
67 	atomic_t		ref;
68 	struct rw_semaphore	register_rwsem;
69 	struct rw_semaphore	consumer_rwsem;
70 	struct list_head	pending_list;
71 	struct uprobe_consumer	*consumers;
72 	struct inode		*inode;		/* Also hold a ref to inode */
73 	loff_t			offset;
74 	unsigned long		flags;
75 	struct arch_uprobe	arch;
76 };
77 
78 /*
79  * valid_vma: Verify if the specified vma is an executable vma
80  * Relax restrictions while unregistering: vm_flags might have
81  * changed after breakpoint was inserted.
82  *	- is_register: indicates if we are in register context.
83  *	- Return 1 if the specified virtual address is in an
84  *	  executable vma.
85  */
86 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
87 {
88 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
89 
90 	if (is_register)
91 		flags |= VM_WRITE;
92 
93 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
94 }
95 
96 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
97 {
98 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
99 }
100 
101 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
102 {
103 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
104 }
105 
106 /**
107  * __replace_page - replace page in vma by new page.
108  * based on replace_page in mm/ksm.c
109  *
110  * @vma:      vma that holds the pte pointing to page
111  * @addr:     address the old @page is mapped at
112  * @page:     the cowed page we are replacing by kpage
113  * @kpage:    the modified page we replace page by
114  *
115  * Returns 0 on success, -EFAULT on failure.
116  */
117 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
118 				struct page *page, struct page *kpage)
119 {
120 	struct mm_struct *mm = vma->vm_mm;
121 	spinlock_t *ptl;
122 	pte_t *ptep;
123 	int err;
124 	/* For mmu_notifiers */
125 	const unsigned long mmun_start = addr;
126 	const unsigned long mmun_end   = addr + PAGE_SIZE;
127 
128 	/* For try_to_free_swap() and munlock_vma_page() below */
129 	lock_page(page);
130 
131 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
132 	err = -EAGAIN;
133 	ptep = page_check_address(page, mm, addr, &ptl, 0);
134 	if (!ptep)
135 		goto unlock;
136 
137 	get_page(kpage);
138 	page_add_new_anon_rmap(kpage, vma, addr);
139 
140 	if (!PageAnon(page)) {
141 		dec_mm_counter(mm, MM_FILEPAGES);
142 		inc_mm_counter(mm, MM_ANONPAGES);
143 	}
144 
145 	flush_cache_page(vma, addr, pte_pfn(*ptep));
146 	ptep_clear_flush(vma, addr, ptep);
147 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
148 
149 	page_remove_rmap(page);
150 	if (!page_mapped(page))
151 		try_to_free_swap(page);
152 	pte_unmap_unlock(ptep, ptl);
153 
154 	if (vma->vm_flags & VM_LOCKED)
155 		munlock_vma_page(page);
156 	put_page(page);
157 
158 	err = 0;
159  unlock:
160 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
161 	unlock_page(page);
162 	return err;
163 }
164 
165 /**
166  * is_swbp_insn - check if instruction is breakpoint instruction.
167  * @insn: instruction to be checked.
168  * Default implementation of is_swbp_insn
169  * Returns true if @insn is a breakpoint instruction.
170  */
171 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
172 {
173 	return *insn == UPROBE_SWBP_INSN;
174 }
175 
176 static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
177 {
178 	void *kaddr = kmap_atomic(page);
179 	memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
180 	kunmap_atomic(kaddr);
181 }
182 
183 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
184 {
185 	uprobe_opcode_t old_opcode;
186 	bool is_swbp;
187 
188 	copy_opcode(page, vaddr, &old_opcode);
189 	is_swbp = is_swbp_insn(&old_opcode);
190 
191 	if (is_swbp_insn(new_opcode)) {
192 		if (is_swbp)		/* register: already installed? */
193 			return 0;
194 	} else {
195 		if (!is_swbp)		/* unregister: was it changed by us? */
196 			return 0;
197 	}
198 
199 	return 1;
200 }
201 
202 /*
203  * NOTE:
204  * Expect the breakpoint instruction to be the smallest size instruction for
205  * the architecture. If an arch has variable length instruction and the
206  * breakpoint instruction is not of the smallest length instruction
207  * supported by that architecture then we need to modify is_swbp_at_addr and
208  * write_opcode accordingly. This would never be a problem for archs that
209  * have fixed length instructions.
210  */
211 
212 /*
213  * write_opcode - write the opcode at a given virtual address.
214  * @mm: the probed process address space.
215  * @vaddr: the virtual address to store the opcode.
216  * @opcode: opcode to be written at @vaddr.
217  *
218  * Called with mm->mmap_sem held (for read and with a reference to
219  * mm).
220  *
221  * For mm @mm, write the opcode at @vaddr.
222  * Return 0 (success) or a negative errno.
223  */
224 static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
225 			uprobe_opcode_t opcode)
226 {
227 	struct page *old_page, *new_page;
228 	void *vaddr_old, *vaddr_new;
229 	struct vm_area_struct *vma;
230 	int ret;
231 
232 retry:
233 	/* Read the page with vaddr into memory */
234 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
235 	if (ret <= 0)
236 		return ret;
237 
238 	ret = verify_opcode(old_page, vaddr, &opcode);
239 	if (ret <= 0)
240 		goto put_old;
241 
242 	ret = -ENOMEM;
243 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
244 	if (!new_page)
245 		goto put_old;
246 
247 	__SetPageUptodate(new_page);
248 
249 	/* copy the page now that we've got it stable */
250 	vaddr_old = kmap_atomic(old_page);
251 	vaddr_new = kmap_atomic(new_page);
252 
253 	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
254 	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
255 
256 	kunmap_atomic(vaddr_new);
257 	kunmap_atomic(vaddr_old);
258 
259 	ret = anon_vma_prepare(vma);
260 	if (ret)
261 		goto put_new;
262 
263 	ret = __replace_page(vma, vaddr, old_page, new_page);
264 
265 put_new:
266 	page_cache_release(new_page);
267 put_old:
268 	put_page(old_page);
269 
270 	if (unlikely(ret == -EAGAIN))
271 		goto retry;
272 	return ret;
273 }
274 
275 /**
276  * set_swbp - store breakpoint at a given address.
277  * @auprobe: arch specific probepoint information.
278  * @mm: the probed process address space.
279  * @vaddr: the virtual address to insert the opcode.
280  *
281  * For mm @mm, store the breakpoint instruction at @vaddr.
282  * Return 0 (success) or a negative errno.
283  */
284 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
285 {
286 	return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
287 }
288 
289 /**
290  * set_orig_insn - Restore the original instruction.
291  * @mm: the probed process address space.
292  * @auprobe: arch specific probepoint information.
293  * @vaddr: the virtual address to insert the opcode.
294  *
295  * For mm @mm, restore the original opcode (opcode) at @vaddr.
296  * Return 0 (success) or a negative errno.
297  */
298 int __weak
299 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
300 {
301 	return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
302 }
303 
304 static int match_uprobe(struct uprobe *l, struct uprobe *r)
305 {
306 	if (l->inode < r->inode)
307 		return -1;
308 
309 	if (l->inode > r->inode)
310 		return 1;
311 
312 	if (l->offset < r->offset)
313 		return -1;
314 
315 	if (l->offset > r->offset)
316 		return 1;
317 
318 	return 0;
319 }
320 
321 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
322 {
323 	struct uprobe u = { .inode = inode, .offset = offset };
324 	struct rb_node *n = uprobes_tree.rb_node;
325 	struct uprobe *uprobe;
326 	int match;
327 
328 	while (n) {
329 		uprobe = rb_entry(n, struct uprobe, rb_node);
330 		match = match_uprobe(&u, uprobe);
331 		if (!match) {
332 			atomic_inc(&uprobe->ref);
333 			return uprobe;
334 		}
335 
336 		if (match < 0)
337 			n = n->rb_left;
338 		else
339 			n = n->rb_right;
340 	}
341 	return NULL;
342 }
343 
344 /*
345  * Find a uprobe corresponding to a given inode:offset
346  * Acquires uprobes_treelock
347  */
348 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
349 {
350 	struct uprobe *uprobe;
351 
352 	spin_lock(&uprobes_treelock);
353 	uprobe = __find_uprobe(inode, offset);
354 	spin_unlock(&uprobes_treelock);
355 
356 	return uprobe;
357 }
358 
359 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
360 {
361 	struct rb_node **p = &uprobes_tree.rb_node;
362 	struct rb_node *parent = NULL;
363 	struct uprobe *u;
364 	int match;
365 
366 	while (*p) {
367 		parent = *p;
368 		u = rb_entry(parent, struct uprobe, rb_node);
369 		match = match_uprobe(uprobe, u);
370 		if (!match) {
371 			atomic_inc(&u->ref);
372 			return u;
373 		}
374 
375 		if (match < 0)
376 			p = &parent->rb_left;
377 		else
378 			p = &parent->rb_right;
379 
380 	}
381 
382 	u = NULL;
383 	rb_link_node(&uprobe->rb_node, parent, p);
384 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
385 	/* get access + creation ref */
386 	atomic_set(&uprobe->ref, 2);
387 
388 	return u;
389 }
390 
391 /*
392  * Acquire uprobes_treelock.
393  * Matching uprobe already exists in rbtree;
394  *	increment (access refcount) and return the matching uprobe.
395  *
396  * No matching uprobe; insert the uprobe in rb_tree;
397  *	get a double refcount (access + creation) and return NULL.
398  */
399 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
400 {
401 	struct uprobe *u;
402 
403 	spin_lock(&uprobes_treelock);
404 	u = __insert_uprobe(uprobe);
405 	spin_unlock(&uprobes_treelock);
406 
407 	return u;
408 }
409 
410 static void put_uprobe(struct uprobe *uprobe)
411 {
412 	if (atomic_dec_and_test(&uprobe->ref))
413 		kfree(uprobe);
414 }
415 
416 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
417 {
418 	struct uprobe *uprobe, *cur_uprobe;
419 
420 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
421 	if (!uprobe)
422 		return NULL;
423 
424 	uprobe->inode = igrab(inode);
425 	uprobe->offset = offset;
426 	init_rwsem(&uprobe->register_rwsem);
427 	init_rwsem(&uprobe->consumer_rwsem);
428 	/* For now assume that the instruction need not be single-stepped */
429 	__set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
430 
431 	/* add to uprobes_tree, sorted on inode:offset */
432 	cur_uprobe = insert_uprobe(uprobe);
433 
434 	/* a uprobe exists for this inode:offset combination */
435 	if (cur_uprobe) {
436 		kfree(uprobe);
437 		uprobe = cur_uprobe;
438 		iput(inode);
439 	}
440 
441 	return uprobe;
442 }
443 
444 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
445 {
446 	down_write(&uprobe->consumer_rwsem);
447 	uc->next = uprobe->consumers;
448 	uprobe->consumers = uc;
449 	up_write(&uprobe->consumer_rwsem);
450 }
451 
452 /*
453  * For uprobe @uprobe, delete the consumer @uc.
454  * Return true if the @uc is deleted successfully
455  * or return false.
456  */
457 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
458 {
459 	struct uprobe_consumer **con;
460 	bool ret = false;
461 
462 	down_write(&uprobe->consumer_rwsem);
463 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
464 		if (*con == uc) {
465 			*con = uc->next;
466 			ret = true;
467 			break;
468 		}
469 	}
470 	up_write(&uprobe->consumer_rwsem);
471 
472 	return ret;
473 }
474 
475 static int
476 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
477 			unsigned long nbytes, loff_t offset)
478 {
479 	struct page *page;
480 	void *vaddr;
481 	unsigned long off;
482 	pgoff_t idx;
483 
484 	if (!filp)
485 		return -EINVAL;
486 
487 	if (!mapping->a_ops->readpage)
488 		return -EIO;
489 
490 	idx = offset >> PAGE_CACHE_SHIFT;
491 	off = offset & ~PAGE_MASK;
492 
493 	/*
494 	 * Ensure that the page that has the original instruction is
495 	 * populated and in page-cache.
496 	 */
497 	page = read_mapping_page(mapping, idx, filp);
498 	if (IS_ERR(page))
499 		return PTR_ERR(page);
500 
501 	vaddr = kmap_atomic(page);
502 	memcpy(insn, vaddr + off, nbytes);
503 	kunmap_atomic(vaddr);
504 	page_cache_release(page);
505 
506 	return 0;
507 }
508 
509 static int copy_insn(struct uprobe *uprobe, struct file *filp)
510 {
511 	struct address_space *mapping;
512 	unsigned long nbytes;
513 	int bytes;
514 
515 	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
516 	mapping = uprobe->inode->i_mapping;
517 
518 	/* Instruction at end of binary; copy only available bytes */
519 	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
520 		bytes = uprobe->inode->i_size - uprobe->offset;
521 	else
522 		bytes = MAX_UINSN_BYTES;
523 
524 	/* Instruction at the page-boundary; copy bytes in second page */
525 	if (nbytes < bytes) {
526 		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
527 				bytes - nbytes, uprobe->offset + nbytes);
528 		if (err)
529 			return err;
530 		bytes = nbytes;
531 	}
532 	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
533 }
534 
535 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
536 				struct mm_struct *mm, unsigned long vaddr)
537 {
538 	int ret = 0;
539 
540 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
541 		return ret;
542 
543 	/* TODO: move this into _register, until then we abuse this sem. */
544 	down_write(&uprobe->consumer_rwsem);
545 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
546 		goto out;
547 
548 	ret = copy_insn(uprobe, file);
549 	if (ret)
550 		goto out;
551 
552 	ret = -ENOTSUPP;
553 	if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
554 		goto out;
555 
556 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
557 	if (ret)
558 		goto out;
559 
560 	/* write_opcode() assumes we don't cross page boundary */
561 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
562 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
563 
564 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
565 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
566 
567  out:
568 	up_write(&uprobe->consumer_rwsem);
569 
570 	return ret;
571 }
572 
573 static inline bool consumer_filter(struct uprobe_consumer *uc,
574 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
575 {
576 	return !uc->filter || uc->filter(uc, ctx, mm);
577 }
578 
579 static bool filter_chain(struct uprobe *uprobe,
580 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
581 {
582 	struct uprobe_consumer *uc;
583 	bool ret = false;
584 
585 	down_read(&uprobe->consumer_rwsem);
586 	for (uc = uprobe->consumers; uc; uc = uc->next) {
587 		ret = consumer_filter(uc, ctx, mm);
588 		if (ret)
589 			break;
590 	}
591 	up_read(&uprobe->consumer_rwsem);
592 
593 	return ret;
594 }
595 
596 static int
597 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
598 			struct vm_area_struct *vma, unsigned long vaddr)
599 {
600 	bool first_uprobe;
601 	int ret;
602 
603 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
604 	if (ret)
605 		return ret;
606 
607 	/*
608 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
609 	 * the task can hit this breakpoint right after __replace_page().
610 	 */
611 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
612 	if (first_uprobe)
613 		set_bit(MMF_HAS_UPROBES, &mm->flags);
614 
615 	ret = set_swbp(&uprobe->arch, mm, vaddr);
616 	if (!ret)
617 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
618 	else if (first_uprobe)
619 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
620 
621 	return ret;
622 }
623 
624 static int
625 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
626 {
627 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
628 	return set_orig_insn(&uprobe->arch, mm, vaddr);
629 }
630 
631 static inline bool uprobe_is_active(struct uprobe *uprobe)
632 {
633 	return !RB_EMPTY_NODE(&uprobe->rb_node);
634 }
635 /*
636  * There could be threads that have already hit the breakpoint. They
637  * will recheck the current insn and restart if find_uprobe() fails.
638  * See find_active_uprobe().
639  */
640 static void delete_uprobe(struct uprobe *uprobe)
641 {
642 	if (WARN_ON(!uprobe_is_active(uprobe)))
643 		return;
644 
645 	spin_lock(&uprobes_treelock);
646 	rb_erase(&uprobe->rb_node, &uprobes_tree);
647 	spin_unlock(&uprobes_treelock);
648 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
649 	iput(uprobe->inode);
650 	put_uprobe(uprobe);
651 }
652 
653 struct map_info {
654 	struct map_info *next;
655 	struct mm_struct *mm;
656 	unsigned long vaddr;
657 };
658 
659 static inline struct map_info *free_map_info(struct map_info *info)
660 {
661 	struct map_info *next = info->next;
662 	kfree(info);
663 	return next;
664 }
665 
666 static struct map_info *
667 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
668 {
669 	unsigned long pgoff = offset >> PAGE_SHIFT;
670 	struct vm_area_struct *vma;
671 	struct map_info *curr = NULL;
672 	struct map_info *prev = NULL;
673 	struct map_info *info;
674 	int more = 0;
675 
676  again:
677 	mutex_lock(&mapping->i_mmap_mutex);
678 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
679 		if (!valid_vma(vma, is_register))
680 			continue;
681 
682 		if (!prev && !more) {
683 			/*
684 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
685 			 * reclaim. This is optimistic, no harm done if it fails.
686 			 */
687 			prev = kmalloc(sizeof(struct map_info),
688 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
689 			if (prev)
690 				prev->next = NULL;
691 		}
692 		if (!prev) {
693 			more++;
694 			continue;
695 		}
696 
697 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
698 			continue;
699 
700 		info = prev;
701 		prev = prev->next;
702 		info->next = curr;
703 		curr = info;
704 
705 		info->mm = vma->vm_mm;
706 		info->vaddr = offset_to_vaddr(vma, offset);
707 	}
708 	mutex_unlock(&mapping->i_mmap_mutex);
709 
710 	if (!more)
711 		goto out;
712 
713 	prev = curr;
714 	while (curr) {
715 		mmput(curr->mm);
716 		curr = curr->next;
717 	}
718 
719 	do {
720 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
721 		if (!info) {
722 			curr = ERR_PTR(-ENOMEM);
723 			goto out;
724 		}
725 		info->next = prev;
726 		prev = info;
727 	} while (--more);
728 
729 	goto again;
730  out:
731 	while (prev)
732 		prev = free_map_info(prev);
733 	return curr;
734 }
735 
736 static int
737 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
738 {
739 	bool is_register = !!new;
740 	struct map_info *info;
741 	int err = 0;
742 
743 	percpu_down_write(&dup_mmap_sem);
744 	info = build_map_info(uprobe->inode->i_mapping,
745 					uprobe->offset, is_register);
746 	if (IS_ERR(info)) {
747 		err = PTR_ERR(info);
748 		goto out;
749 	}
750 
751 	while (info) {
752 		struct mm_struct *mm = info->mm;
753 		struct vm_area_struct *vma;
754 
755 		if (err && is_register)
756 			goto free;
757 
758 		down_write(&mm->mmap_sem);
759 		vma = find_vma(mm, info->vaddr);
760 		if (!vma || !valid_vma(vma, is_register) ||
761 		    vma->vm_file->f_mapping->host != uprobe->inode)
762 			goto unlock;
763 
764 		if (vma->vm_start > info->vaddr ||
765 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
766 			goto unlock;
767 
768 		if (is_register) {
769 			/* consult only the "caller", new consumer. */
770 			if (consumer_filter(new,
771 					UPROBE_FILTER_REGISTER, mm))
772 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
773 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
774 			if (!filter_chain(uprobe,
775 					UPROBE_FILTER_UNREGISTER, mm))
776 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
777 		}
778 
779  unlock:
780 		up_write(&mm->mmap_sem);
781  free:
782 		mmput(mm);
783 		info = free_map_info(info);
784 	}
785  out:
786 	percpu_up_write(&dup_mmap_sem);
787 	return err;
788 }
789 
790 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
791 {
792 	consumer_add(uprobe, uc);
793 	return register_for_each_vma(uprobe, uc);
794 }
795 
796 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
797 {
798 	int err;
799 
800 	if (!consumer_del(uprobe, uc))	/* WARN? */
801 		return;
802 
803 	err = register_for_each_vma(uprobe, NULL);
804 	/* TODO : cant unregister? schedule a worker thread */
805 	if (!uprobe->consumers && !err)
806 		delete_uprobe(uprobe);
807 }
808 
809 /*
810  * uprobe_register - register a probe
811  * @inode: the file in which the probe has to be placed.
812  * @offset: offset from the start of the file.
813  * @uc: information on howto handle the probe..
814  *
815  * Apart from the access refcount, uprobe_register() takes a creation
816  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
817  * inserted into the rbtree (i.e first consumer for a @inode:@offset
818  * tuple).  Creation refcount stops uprobe_unregister from freeing the
819  * @uprobe even before the register operation is complete. Creation
820  * refcount is released when the last @uc for the @uprobe
821  * unregisters.
822  *
823  * Return errno if it cannot successully install probes
824  * else return 0 (success)
825  */
826 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
827 {
828 	struct uprobe *uprobe;
829 	int ret;
830 
831 	/* Racy, just to catch the obvious mistakes */
832 	if (offset > i_size_read(inode))
833 		return -EINVAL;
834 
835  retry:
836 	uprobe = alloc_uprobe(inode, offset);
837 	if (!uprobe)
838 		return -ENOMEM;
839 	/*
840 	 * We can race with uprobe_unregister()->delete_uprobe().
841 	 * Check uprobe_is_active() and retry if it is false.
842 	 */
843 	down_write(&uprobe->register_rwsem);
844 	ret = -EAGAIN;
845 	if (likely(uprobe_is_active(uprobe))) {
846 		ret = __uprobe_register(uprobe, uc);
847 		if (ret)
848 			__uprobe_unregister(uprobe, uc);
849 	}
850 	up_write(&uprobe->register_rwsem);
851 	put_uprobe(uprobe);
852 
853 	if (unlikely(ret == -EAGAIN))
854 		goto retry;
855 	return ret;
856 }
857 EXPORT_SYMBOL_GPL(uprobe_register);
858 
859 /*
860  * uprobe_apply - unregister a already registered probe.
861  * @inode: the file in which the probe has to be removed.
862  * @offset: offset from the start of the file.
863  * @uc: consumer which wants to add more or remove some breakpoints
864  * @add: add or remove the breakpoints
865  */
866 int uprobe_apply(struct inode *inode, loff_t offset,
867 			struct uprobe_consumer *uc, bool add)
868 {
869 	struct uprobe *uprobe;
870 	struct uprobe_consumer *con;
871 	int ret = -ENOENT;
872 
873 	uprobe = find_uprobe(inode, offset);
874 	if (!uprobe)
875 		return ret;
876 
877 	down_write(&uprobe->register_rwsem);
878 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
879 		;
880 	if (con)
881 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
882 	up_write(&uprobe->register_rwsem);
883 	put_uprobe(uprobe);
884 
885 	return ret;
886 }
887 
888 /*
889  * uprobe_unregister - unregister a already registered probe.
890  * @inode: the file in which the probe has to be removed.
891  * @offset: offset from the start of the file.
892  * @uc: identify which probe if multiple probes are colocated.
893  */
894 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
895 {
896 	struct uprobe *uprobe;
897 
898 	uprobe = find_uprobe(inode, offset);
899 	if (!uprobe)
900 		return;
901 
902 	down_write(&uprobe->register_rwsem);
903 	__uprobe_unregister(uprobe, uc);
904 	up_write(&uprobe->register_rwsem);
905 	put_uprobe(uprobe);
906 }
907 EXPORT_SYMBOL_GPL(uprobe_unregister);
908 
909 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
910 {
911 	struct vm_area_struct *vma;
912 	int err = 0;
913 
914 	down_read(&mm->mmap_sem);
915 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
916 		unsigned long vaddr;
917 		loff_t offset;
918 
919 		if (!valid_vma(vma, false) ||
920 		    vma->vm_file->f_mapping->host != uprobe->inode)
921 			continue;
922 
923 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
924 		if (uprobe->offset <  offset ||
925 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
926 			continue;
927 
928 		vaddr = offset_to_vaddr(vma, uprobe->offset);
929 		err |= remove_breakpoint(uprobe, mm, vaddr);
930 	}
931 	up_read(&mm->mmap_sem);
932 
933 	return err;
934 }
935 
936 static struct rb_node *
937 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
938 {
939 	struct rb_node *n = uprobes_tree.rb_node;
940 
941 	while (n) {
942 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
943 
944 		if (inode < u->inode) {
945 			n = n->rb_left;
946 		} else if (inode > u->inode) {
947 			n = n->rb_right;
948 		} else {
949 			if (max < u->offset)
950 				n = n->rb_left;
951 			else if (min > u->offset)
952 				n = n->rb_right;
953 			else
954 				break;
955 		}
956 	}
957 
958 	return n;
959 }
960 
961 /*
962  * For a given range in vma, build a list of probes that need to be inserted.
963  */
964 static void build_probe_list(struct inode *inode,
965 				struct vm_area_struct *vma,
966 				unsigned long start, unsigned long end,
967 				struct list_head *head)
968 {
969 	loff_t min, max;
970 	struct rb_node *n, *t;
971 	struct uprobe *u;
972 
973 	INIT_LIST_HEAD(head);
974 	min = vaddr_to_offset(vma, start);
975 	max = min + (end - start) - 1;
976 
977 	spin_lock(&uprobes_treelock);
978 	n = find_node_in_range(inode, min, max);
979 	if (n) {
980 		for (t = n; t; t = rb_prev(t)) {
981 			u = rb_entry(t, struct uprobe, rb_node);
982 			if (u->inode != inode || u->offset < min)
983 				break;
984 			list_add(&u->pending_list, head);
985 			atomic_inc(&u->ref);
986 		}
987 		for (t = n; (t = rb_next(t)); ) {
988 			u = rb_entry(t, struct uprobe, rb_node);
989 			if (u->inode != inode || u->offset > max)
990 				break;
991 			list_add(&u->pending_list, head);
992 			atomic_inc(&u->ref);
993 		}
994 	}
995 	spin_unlock(&uprobes_treelock);
996 }
997 
998 /*
999  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1000  *
1001  * Currently we ignore all errors and always return 0, the callers
1002  * can't handle the failure anyway.
1003  */
1004 int uprobe_mmap(struct vm_area_struct *vma)
1005 {
1006 	struct list_head tmp_list;
1007 	struct uprobe *uprobe, *u;
1008 	struct inode *inode;
1009 
1010 	if (no_uprobe_events() || !valid_vma(vma, true))
1011 		return 0;
1012 
1013 	inode = vma->vm_file->f_mapping->host;
1014 	if (!inode)
1015 		return 0;
1016 
1017 	mutex_lock(uprobes_mmap_hash(inode));
1018 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1019 	/*
1020 	 * We can race with uprobe_unregister(), this uprobe can be already
1021 	 * removed. But in this case filter_chain() must return false, all
1022 	 * consumers have gone away.
1023 	 */
1024 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1025 		if (!fatal_signal_pending(current) &&
1026 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1027 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1028 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1029 		}
1030 		put_uprobe(uprobe);
1031 	}
1032 	mutex_unlock(uprobes_mmap_hash(inode));
1033 
1034 	return 0;
1035 }
1036 
1037 static bool
1038 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1039 {
1040 	loff_t min, max;
1041 	struct inode *inode;
1042 	struct rb_node *n;
1043 
1044 	inode = vma->vm_file->f_mapping->host;
1045 
1046 	min = vaddr_to_offset(vma, start);
1047 	max = min + (end - start) - 1;
1048 
1049 	spin_lock(&uprobes_treelock);
1050 	n = find_node_in_range(inode, min, max);
1051 	spin_unlock(&uprobes_treelock);
1052 
1053 	return !!n;
1054 }
1055 
1056 /*
1057  * Called in context of a munmap of a vma.
1058  */
1059 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1060 {
1061 	if (no_uprobe_events() || !valid_vma(vma, false))
1062 		return;
1063 
1064 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1065 		return;
1066 
1067 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1068 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1069 		return;
1070 
1071 	if (vma_has_uprobes(vma, start, end))
1072 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1073 }
1074 
1075 /* Slot allocation for XOL */
1076 static int xol_add_vma(struct xol_area *area)
1077 {
1078 	struct mm_struct *mm = current->mm;
1079 	int ret = -EALREADY;
1080 
1081 	down_write(&mm->mmap_sem);
1082 	if (mm->uprobes_state.xol_area)
1083 		goto fail;
1084 
1085 	ret = -ENOMEM;
1086 	/* Try to map as high as possible, this is only a hint. */
1087 	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1088 	if (area->vaddr & ~PAGE_MASK) {
1089 		ret = area->vaddr;
1090 		goto fail;
1091 	}
1092 
1093 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1094 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1095 	if (ret)
1096 		goto fail;
1097 
1098 	smp_wmb();	/* pairs with get_xol_area() */
1099 	mm->uprobes_state.xol_area = area;
1100 	ret = 0;
1101  fail:
1102 	up_write(&mm->mmap_sem);
1103 
1104 	return ret;
1105 }
1106 
1107 /*
1108  * get_xol_area - Allocate process's xol_area if necessary.
1109  * This area will be used for storing instructions for execution out of line.
1110  *
1111  * Returns the allocated area or NULL.
1112  */
1113 static struct xol_area *get_xol_area(void)
1114 {
1115 	struct mm_struct *mm = current->mm;
1116 	struct xol_area *area;
1117 
1118 	area = mm->uprobes_state.xol_area;
1119 	if (area)
1120 		goto ret;
1121 
1122 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1123 	if (unlikely(!area))
1124 		goto out;
1125 
1126 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1127 	if (!area->bitmap)
1128 		goto free_area;
1129 
1130 	area->page = alloc_page(GFP_HIGHUSER);
1131 	if (!area->page)
1132 		goto free_bitmap;
1133 
1134 	init_waitqueue_head(&area->wq);
1135 	if (!xol_add_vma(area))
1136 		return area;
1137 
1138 	__free_page(area->page);
1139  free_bitmap:
1140 	kfree(area->bitmap);
1141  free_area:
1142 	kfree(area);
1143  out:
1144 	area = mm->uprobes_state.xol_area;
1145  ret:
1146 	smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1147 	return area;
1148 }
1149 
1150 /*
1151  * uprobe_clear_state - Free the area allocated for slots.
1152  */
1153 void uprobe_clear_state(struct mm_struct *mm)
1154 {
1155 	struct xol_area *area = mm->uprobes_state.xol_area;
1156 
1157 	if (!area)
1158 		return;
1159 
1160 	put_page(area->page);
1161 	kfree(area->bitmap);
1162 	kfree(area);
1163 }
1164 
1165 void uprobe_start_dup_mmap(void)
1166 {
1167 	percpu_down_read(&dup_mmap_sem);
1168 }
1169 
1170 void uprobe_end_dup_mmap(void)
1171 {
1172 	percpu_up_read(&dup_mmap_sem);
1173 }
1174 
1175 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1176 {
1177 	newmm->uprobes_state.xol_area = NULL;
1178 
1179 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1180 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1181 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1182 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1183 	}
1184 }
1185 
1186 /*
1187  *  - search for a free slot.
1188  */
1189 static unsigned long xol_take_insn_slot(struct xol_area *area)
1190 {
1191 	unsigned long slot_addr;
1192 	int slot_nr;
1193 
1194 	do {
1195 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1196 		if (slot_nr < UINSNS_PER_PAGE) {
1197 			if (!test_and_set_bit(slot_nr, area->bitmap))
1198 				break;
1199 
1200 			slot_nr = UINSNS_PER_PAGE;
1201 			continue;
1202 		}
1203 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1204 	} while (slot_nr >= UINSNS_PER_PAGE);
1205 
1206 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1207 	atomic_inc(&area->slot_count);
1208 
1209 	return slot_addr;
1210 }
1211 
1212 /*
1213  * xol_get_insn_slot - allocate a slot for xol.
1214  * Returns the allocated slot address or 0.
1215  */
1216 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1217 {
1218 	struct xol_area *area;
1219 	unsigned long offset;
1220 	unsigned long xol_vaddr;
1221 	void *vaddr;
1222 
1223 	area = get_xol_area();
1224 	if (!area)
1225 		return 0;
1226 
1227 	xol_vaddr = xol_take_insn_slot(area);
1228 	if (unlikely(!xol_vaddr))
1229 		return 0;
1230 
1231 	/* Initialize the slot */
1232 	offset = xol_vaddr & ~PAGE_MASK;
1233 	vaddr = kmap_atomic(area->page);
1234 	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1235 	kunmap_atomic(vaddr);
1236 	/*
1237 	 * We probably need flush_icache_user_range() but it needs vma.
1238 	 * This should work on supported architectures too.
1239 	 */
1240 	flush_dcache_page(area->page);
1241 
1242 	return xol_vaddr;
1243 }
1244 
1245 /*
1246  * xol_free_insn_slot - If slot was earlier allocated by
1247  * @xol_get_insn_slot(), make the slot available for
1248  * subsequent requests.
1249  */
1250 static void xol_free_insn_slot(struct task_struct *tsk)
1251 {
1252 	struct xol_area *area;
1253 	unsigned long vma_end;
1254 	unsigned long slot_addr;
1255 
1256 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1257 		return;
1258 
1259 	slot_addr = tsk->utask->xol_vaddr;
1260 	if (unlikely(!slot_addr))
1261 		return;
1262 
1263 	area = tsk->mm->uprobes_state.xol_area;
1264 	vma_end = area->vaddr + PAGE_SIZE;
1265 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1266 		unsigned long offset;
1267 		int slot_nr;
1268 
1269 		offset = slot_addr - area->vaddr;
1270 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1271 		if (slot_nr >= UINSNS_PER_PAGE)
1272 			return;
1273 
1274 		clear_bit(slot_nr, area->bitmap);
1275 		atomic_dec(&area->slot_count);
1276 		if (waitqueue_active(&area->wq))
1277 			wake_up(&area->wq);
1278 
1279 		tsk->utask->xol_vaddr = 0;
1280 	}
1281 }
1282 
1283 /**
1284  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1285  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1286  * instruction.
1287  * Return the address of the breakpoint instruction.
1288  */
1289 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1290 {
1291 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1292 }
1293 
1294 /*
1295  * Called with no locks held.
1296  * Called in context of a exiting or a exec-ing thread.
1297  */
1298 void uprobe_free_utask(struct task_struct *t)
1299 {
1300 	struct uprobe_task *utask = t->utask;
1301 
1302 	if (!utask)
1303 		return;
1304 
1305 	if (utask->active_uprobe)
1306 		put_uprobe(utask->active_uprobe);
1307 
1308 	xol_free_insn_slot(t);
1309 	kfree(utask);
1310 	t->utask = NULL;
1311 }
1312 
1313 /*
1314  * Called in context of a new clone/fork from copy_process.
1315  */
1316 void uprobe_copy_process(struct task_struct *t)
1317 {
1318 	t->utask = NULL;
1319 }
1320 
1321 /*
1322  * Allocate a uprobe_task object for the task if if necessary.
1323  * Called when the thread hits a breakpoint.
1324  *
1325  * Returns:
1326  * - pointer to new uprobe_task on success
1327  * - NULL otherwise
1328  */
1329 static struct uprobe_task *get_utask(void)
1330 {
1331 	if (!current->utask)
1332 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1333 	return current->utask;
1334 }
1335 
1336 /* Prepare to single-step probed instruction out of line. */
1337 static int
1338 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1339 {
1340 	struct uprobe_task *utask;
1341 	unsigned long xol_vaddr;
1342 	int err;
1343 
1344 	utask = get_utask();
1345 	if (!utask)
1346 		return -ENOMEM;
1347 
1348 	xol_vaddr = xol_get_insn_slot(uprobe);
1349 	if (!xol_vaddr)
1350 		return -ENOMEM;
1351 
1352 	utask->xol_vaddr = xol_vaddr;
1353 	utask->vaddr = bp_vaddr;
1354 
1355 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1356 	if (unlikely(err)) {
1357 		xol_free_insn_slot(current);
1358 		return err;
1359 	}
1360 
1361 	utask->active_uprobe = uprobe;
1362 	utask->state = UTASK_SSTEP;
1363 	return 0;
1364 }
1365 
1366 /*
1367  * If we are singlestepping, then ensure this thread is not connected to
1368  * non-fatal signals until completion of singlestep.  When xol insn itself
1369  * triggers the signal,  restart the original insn even if the task is
1370  * already SIGKILL'ed (since coredump should report the correct ip).  This
1371  * is even more important if the task has a handler for SIGSEGV/etc, The
1372  * _same_ instruction should be repeated again after return from the signal
1373  * handler, and SSTEP can never finish in this case.
1374  */
1375 bool uprobe_deny_signal(void)
1376 {
1377 	struct task_struct *t = current;
1378 	struct uprobe_task *utask = t->utask;
1379 
1380 	if (likely(!utask || !utask->active_uprobe))
1381 		return false;
1382 
1383 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1384 
1385 	if (signal_pending(t)) {
1386 		spin_lock_irq(&t->sighand->siglock);
1387 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1388 		spin_unlock_irq(&t->sighand->siglock);
1389 
1390 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1391 			utask->state = UTASK_SSTEP_TRAPPED;
1392 			set_tsk_thread_flag(t, TIF_UPROBE);
1393 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1394 		}
1395 	}
1396 
1397 	return true;
1398 }
1399 
1400 /*
1401  * Avoid singlestepping the original instruction if the original instruction
1402  * is a NOP or can be emulated.
1403  */
1404 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1405 {
1406 	if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1407 		if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1408 			return true;
1409 		clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1410 	}
1411 	return false;
1412 }
1413 
1414 static void mmf_recalc_uprobes(struct mm_struct *mm)
1415 {
1416 	struct vm_area_struct *vma;
1417 
1418 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1419 		if (!valid_vma(vma, false))
1420 			continue;
1421 		/*
1422 		 * This is not strictly accurate, we can race with
1423 		 * uprobe_unregister() and see the already removed
1424 		 * uprobe if delete_uprobe() was not yet called.
1425 		 * Or this uprobe can be filtered out.
1426 		 */
1427 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1428 			return;
1429 	}
1430 
1431 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1432 }
1433 
1434 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1435 {
1436 	struct page *page;
1437 	uprobe_opcode_t opcode;
1438 	int result;
1439 
1440 	pagefault_disable();
1441 	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1442 							sizeof(opcode));
1443 	pagefault_enable();
1444 
1445 	if (likely(result == 0))
1446 		goto out;
1447 
1448 	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1449 	if (result < 0)
1450 		return result;
1451 
1452 	copy_opcode(page, vaddr, &opcode);
1453 	put_page(page);
1454  out:
1455 	return is_swbp_insn(&opcode);
1456 }
1457 
1458 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1459 {
1460 	struct mm_struct *mm = current->mm;
1461 	struct uprobe *uprobe = NULL;
1462 	struct vm_area_struct *vma;
1463 
1464 	down_read(&mm->mmap_sem);
1465 	vma = find_vma(mm, bp_vaddr);
1466 	if (vma && vma->vm_start <= bp_vaddr) {
1467 		if (valid_vma(vma, false)) {
1468 			struct inode *inode = vma->vm_file->f_mapping->host;
1469 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1470 
1471 			uprobe = find_uprobe(inode, offset);
1472 		}
1473 
1474 		if (!uprobe)
1475 			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1476 	} else {
1477 		*is_swbp = -EFAULT;
1478 	}
1479 
1480 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1481 		mmf_recalc_uprobes(mm);
1482 	up_read(&mm->mmap_sem);
1483 
1484 	return uprobe;
1485 }
1486 
1487 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1488 {
1489 	struct uprobe_consumer *uc;
1490 	int remove = UPROBE_HANDLER_REMOVE;
1491 
1492 	down_read(&uprobe->register_rwsem);
1493 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1494 		int rc = uc->handler(uc, regs);
1495 
1496 		WARN(rc & ~UPROBE_HANDLER_MASK,
1497 			"bad rc=0x%x from %pf()\n", rc, uc->handler);
1498 		remove &= rc;
1499 	}
1500 
1501 	if (remove && uprobe->consumers) {
1502 		WARN_ON(!uprobe_is_active(uprobe));
1503 		unapply_uprobe(uprobe, current->mm);
1504 	}
1505 	up_read(&uprobe->register_rwsem);
1506 }
1507 
1508 /*
1509  * Run handler and ask thread to singlestep.
1510  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1511  */
1512 static void handle_swbp(struct pt_regs *regs)
1513 {
1514 	struct uprobe *uprobe;
1515 	unsigned long bp_vaddr;
1516 	int uninitialized_var(is_swbp);
1517 
1518 	bp_vaddr = uprobe_get_swbp_addr(regs);
1519 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1520 
1521 	if (!uprobe) {
1522 		if (is_swbp > 0) {
1523 			/* No matching uprobe; signal SIGTRAP. */
1524 			send_sig(SIGTRAP, current, 0);
1525 		} else {
1526 			/*
1527 			 * Either we raced with uprobe_unregister() or we can't
1528 			 * access this memory. The latter is only possible if
1529 			 * another thread plays with our ->mm. In both cases
1530 			 * we can simply restart. If this vma was unmapped we
1531 			 * can pretend this insn was not executed yet and get
1532 			 * the (correct) SIGSEGV after restart.
1533 			 */
1534 			instruction_pointer_set(regs, bp_vaddr);
1535 		}
1536 		return;
1537 	}
1538 
1539 	/* change it in advance for ->handler() and restart */
1540 	instruction_pointer_set(regs, bp_vaddr);
1541 
1542 	/*
1543 	 * TODO: move copy_insn/etc into _register and remove this hack.
1544 	 * After we hit the bp, _unregister + _register can install the
1545 	 * new and not-yet-analyzed uprobe at the same address, restart.
1546 	 */
1547 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1548 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1549 		goto out;
1550 
1551 	handler_chain(uprobe, regs);
1552 	if (can_skip_sstep(uprobe, regs))
1553 		goto out;
1554 
1555 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1556 		return;
1557 
1558 	/* can_skip_sstep() succeeded, or restart if can't singlestep */
1559 out:
1560 	put_uprobe(uprobe);
1561 }
1562 
1563 /*
1564  * Perform required fix-ups and disable singlestep.
1565  * Allow pending signals to take effect.
1566  */
1567 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1568 {
1569 	struct uprobe *uprobe;
1570 
1571 	uprobe = utask->active_uprobe;
1572 	if (utask->state == UTASK_SSTEP_ACK)
1573 		arch_uprobe_post_xol(&uprobe->arch, regs);
1574 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1575 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1576 	else
1577 		WARN_ON_ONCE(1);
1578 
1579 	put_uprobe(uprobe);
1580 	utask->active_uprobe = NULL;
1581 	utask->state = UTASK_RUNNING;
1582 	xol_free_insn_slot(current);
1583 
1584 	spin_lock_irq(&current->sighand->siglock);
1585 	recalc_sigpending(); /* see uprobe_deny_signal() */
1586 	spin_unlock_irq(&current->sighand->siglock);
1587 }
1588 
1589 /*
1590  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1591  * allows the thread to return from interrupt. After that handle_swbp()
1592  * sets utask->active_uprobe.
1593  *
1594  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1595  * and allows the thread to return from interrupt.
1596  *
1597  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1598  * uprobe_notify_resume().
1599  */
1600 void uprobe_notify_resume(struct pt_regs *regs)
1601 {
1602 	struct uprobe_task *utask;
1603 
1604 	clear_thread_flag(TIF_UPROBE);
1605 
1606 	utask = current->utask;
1607 	if (utask && utask->active_uprobe)
1608 		handle_singlestep(utask, regs);
1609 	else
1610 		handle_swbp(regs);
1611 }
1612 
1613 /*
1614  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1615  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1616  */
1617 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1618 {
1619 	if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1620 		return 0;
1621 
1622 	set_thread_flag(TIF_UPROBE);
1623 	return 1;
1624 }
1625 
1626 /*
1627  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1628  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1629  */
1630 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1631 {
1632 	struct uprobe_task *utask = current->utask;
1633 
1634 	if (!current->mm || !utask || !utask->active_uprobe)
1635 		/* task is currently not uprobed */
1636 		return 0;
1637 
1638 	utask->state = UTASK_SSTEP_ACK;
1639 	set_thread_flag(TIF_UPROBE);
1640 	return 1;
1641 }
1642 
1643 static struct notifier_block uprobe_exception_nb = {
1644 	.notifier_call		= arch_uprobe_exception_notify,
1645 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1646 };
1647 
1648 static int __init init_uprobes(void)
1649 {
1650 	int i;
1651 
1652 	for (i = 0; i < UPROBES_HASH_SZ; i++)
1653 		mutex_init(&uprobes_mmap_mutex[i]);
1654 
1655 	if (percpu_init_rwsem(&dup_mmap_sem))
1656 		return -ENOMEM;
1657 
1658 	return register_die_notifier(&uprobe_exception_nb);
1659 }
1660 module_init(init_uprobes);
1661 
1662 static void __exit exit_uprobes(void)
1663 {
1664 }
1665 module_exit(exit_uprobes);
1666