1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* try_to_free_swap */ 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include "../../mm/internal.h" /* munlock_vma_page */ 26 #include <linux/percpu-rwsem.h> 27 #include <linux/task_work.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/khugepaged.h> 30 31 #include <linux/uprobes.h> 32 33 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 34 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 35 36 static struct rb_root uprobes_tree = RB_ROOT; 37 /* 38 * allows us to skip the uprobe_mmap if there are no uprobe events active 39 * at this time. Probably a fine grained per inode count is better? 40 */ 41 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 42 43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 44 45 #define UPROBES_HASH_SZ 13 46 /* serialize uprobe->pending_list */ 47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 48 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 49 50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 51 52 /* Have a copy of original instruction */ 53 #define UPROBE_COPY_INSN 0 54 55 struct uprobe { 56 struct rb_node rb_node; /* node in the rb tree */ 57 refcount_t ref; 58 struct rw_semaphore register_rwsem; 59 struct rw_semaphore consumer_rwsem; 60 struct list_head pending_list; 61 struct uprobe_consumer *consumers; 62 struct inode *inode; /* Also hold a ref to inode */ 63 loff_t offset; 64 loff_t ref_ctr_offset; 65 unsigned long flags; 66 67 /* 68 * The generic code assumes that it has two members of unknown type 69 * owned by the arch-specific code: 70 * 71 * insn - copy_insn() saves the original instruction here for 72 * arch_uprobe_analyze_insn(). 73 * 74 * ixol - potentially modified instruction to execute out of 75 * line, copied to xol_area by xol_get_insn_slot(). 76 */ 77 struct arch_uprobe arch; 78 }; 79 80 struct delayed_uprobe { 81 struct list_head list; 82 struct uprobe *uprobe; 83 struct mm_struct *mm; 84 }; 85 86 static DEFINE_MUTEX(delayed_uprobe_lock); 87 static LIST_HEAD(delayed_uprobe_list); 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @old_page: the page we are replacing by new_page 148 * @new_page: the modified page we replace page by 149 * 150 * If @new_page is NULL, only unmap @old_page. 151 * 152 * Returns 0 on success, negative error code otherwise. 153 */ 154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 155 struct page *old_page, struct page *new_page) 156 { 157 struct mm_struct *mm = vma->vm_mm; 158 struct page_vma_mapped_walk pvmw = { 159 .page = compound_head(old_page), 160 .vma = vma, 161 .address = addr, 162 }; 163 int err; 164 struct mmu_notifier_range range; 165 166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 167 addr + PAGE_SIZE); 168 169 if (new_page) { 170 err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL); 171 if (err) 172 return err; 173 } 174 175 /* For try_to_free_swap() and munlock_vma_page() below */ 176 lock_page(old_page); 177 178 mmu_notifier_invalidate_range_start(&range); 179 err = -EAGAIN; 180 if (!page_vma_mapped_walk(&pvmw)) 181 goto unlock; 182 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 183 184 if (new_page) { 185 get_page(new_page); 186 page_add_new_anon_rmap(new_page, vma, addr, false); 187 lru_cache_add_active_or_unevictable(new_page, vma); 188 } else 189 /* no new page, just dec_mm_counter for old_page */ 190 dec_mm_counter(mm, MM_ANONPAGES); 191 192 if (!PageAnon(old_page)) { 193 dec_mm_counter(mm, mm_counter_file(old_page)); 194 inc_mm_counter(mm, MM_ANONPAGES); 195 } 196 197 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 198 ptep_clear_flush_notify(vma, addr, pvmw.pte); 199 if (new_page) 200 set_pte_at_notify(mm, addr, pvmw.pte, 201 mk_pte(new_page, vma->vm_page_prot)); 202 203 page_remove_rmap(old_page, false); 204 if (!page_mapped(old_page)) 205 try_to_free_swap(old_page); 206 page_vma_mapped_walk_done(&pvmw); 207 208 if (vma->vm_flags & VM_LOCKED) 209 munlock_vma_page(old_page); 210 put_page(old_page); 211 212 err = 0; 213 unlock: 214 mmu_notifier_invalidate_range_end(&range); 215 unlock_page(old_page); 216 return err; 217 } 218 219 /** 220 * is_swbp_insn - check if instruction is breakpoint instruction. 221 * @insn: instruction to be checked. 222 * Default implementation of is_swbp_insn 223 * Returns true if @insn is a breakpoint instruction. 224 */ 225 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 226 { 227 return *insn == UPROBE_SWBP_INSN; 228 } 229 230 /** 231 * is_trap_insn - check if instruction is breakpoint instruction. 232 * @insn: instruction to be checked. 233 * Default implementation of is_trap_insn 234 * Returns true if @insn is a breakpoint instruction. 235 * 236 * This function is needed for the case where an architecture has multiple 237 * trap instructions (like powerpc). 238 */ 239 bool __weak is_trap_insn(uprobe_opcode_t *insn) 240 { 241 return is_swbp_insn(insn); 242 } 243 244 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 245 { 246 void *kaddr = kmap_atomic(page); 247 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 248 kunmap_atomic(kaddr); 249 } 250 251 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 252 { 253 void *kaddr = kmap_atomic(page); 254 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 255 kunmap_atomic(kaddr); 256 } 257 258 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 259 { 260 uprobe_opcode_t old_opcode; 261 bool is_swbp; 262 263 /* 264 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 265 * We do not check if it is any other 'trap variant' which could 266 * be conditional trap instruction such as the one powerpc supports. 267 * 268 * The logic is that we do not care if the underlying instruction 269 * is a trap variant; uprobes always wins over any other (gdb) 270 * breakpoint. 271 */ 272 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 273 is_swbp = is_swbp_insn(&old_opcode); 274 275 if (is_swbp_insn(new_opcode)) { 276 if (is_swbp) /* register: already installed? */ 277 return 0; 278 } else { 279 if (!is_swbp) /* unregister: was it changed by us? */ 280 return 0; 281 } 282 283 return 1; 284 } 285 286 static struct delayed_uprobe * 287 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 288 { 289 struct delayed_uprobe *du; 290 291 list_for_each_entry(du, &delayed_uprobe_list, list) 292 if (du->uprobe == uprobe && du->mm == mm) 293 return du; 294 return NULL; 295 } 296 297 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 298 { 299 struct delayed_uprobe *du; 300 301 if (delayed_uprobe_check(uprobe, mm)) 302 return 0; 303 304 du = kzalloc(sizeof(*du), GFP_KERNEL); 305 if (!du) 306 return -ENOMEM; 307 308 du->uprobe = uprobe; 309 du->mm = mm; 310 list_add(&du->list, &delayed_uprobe_list); 311 return 0; 312 } 313 314 static void delayed_uprobe_delete(struct delayed_uprobe *du) 315 { 316 if (WARN_ON(!du)) 317 return; 318 list_del(&du->list); 319 kfree(du); 320 } 321 322 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 323 { 324 struct list_head *pos, *q; 325 struct delayed_uprobe *du; 326 327 if (!uprobe && !mm) 328 return; 329 330 list_for_each_safe(pos, q, &delayed_uprobe_list) { 331 du = list_entry(pos, struct delayed_uprobe, list); 332 333 if (uprobe && du->uprobe != uprobe) 334 continue; 335 if (mm && du->mm != mm) 336 continue; 337 338 delayed_uprobe_delete(du); 339 } 340 } 341 342 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 343 struct vm_area_struct *vma) 344 { 345 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 346 347 return uprobe->ref_ctr_offset && 348 vma->vm_file && 349 file_inode(vma->vm_file) == uprobe->inode && 350 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 351 vma->vm_start <= vaddr && 352 vma->vm_end > vaddr; 353 } 354 355 static struct vm_area_struct * 356 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 357 { 358 struct vm_area_struct *tmp; 359 360 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next) 361 if (valid_ref_ctr_vma(uprobe, tmp)) 362 return tmp; 363 364 return NULL; 365 } 366 367 static int 368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 369 { 370 void *kaddr; 371 struct page *page; 372 struct vm_area_struct *vma; 373 int ret; 374 short *ptr; 375 376 if (!vaddr || !d) 377 return -EINVAL; 378 379 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 380 FOLL_WRITE, &page, &vma, NULL); 381 if (unlikely(ret <= 0)) { 382 /* 383 * We are asking for 1 page. If get_user_pages_remote() fails, 384 * it may return 0, in that case we have to return error. 385 */ 386 return ret == 0 ? -EBUSY : ret; 387 } 388 389 kaddr = kmap_atomic(page); 390 ptr = kaddr + (vaddr & ~PAGE_MASK); 391 392 if (unlikely(*ptr + d < 0)) { 393 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 394 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 395 ret = -EINVAL; 396 goto out; 397 } 398 399 *ptr += d; 400 ret = 0; 401 out: 402 kunmap_atomic(kaddr); 403 put_page(page); 404 return ret; 405 } 406 407 static void update_ref_ctr_warn(struct uprobe *uprobe, 408 struct mm_struct *mm, short d) 409 { 410 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 411 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 412 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 413 (unsigned long long) uprobe->offset, 414 (unsigned long long) uprobe->ref_ctr_offset, mm); 415 } 416 417 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 418 short d) 419 { 420 struct vm_area_struct *rc_vma; 421 unsigned long rc_vaddr; 422 int ret = 0; 423 424 rc_vma = find_ref_ctr_vma(uprobe, mm); 425 426 if (rc_vma) { 427 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 428 ret = __update_ref_ctr(mm, rc_vaddr, d); 429 if (ret) 430 update_ref_ctr_warn(uprobe, mm, d); 431 432 if (d > 0) 433 return ret; 434 } 435 436 mutex_lock(&delayed_uprobe_lock); 437 if (d > 0) 438 ret = delayed_uprobe_add(uprobe, mm); 439 else 440 delayed_uprobe_remove(uprobe, mm); 441 mutex_unlock(&delayed_uprobe_lock); 442 443 return ret; 444 } 445 446 /* 447 * NOTE: 448 * Expect the breakpoint instruction to be the smallest size instruction for 449 * the architecture. If an arch has variable length instruction and the 450 * breakpoint instruction is not of the smallest length instruction 451 * supported by that architecture then we need to modify is_trap_at_addr and 452 * uprobe_write_opcode accordingly. This would never be a problem for archs 453 * that have fixed length instructions. 454 * 455 * uprobe_write_opcode - write the opcode at a given virtual address. 456 * @mm: the probed process address space. 457 * @vaddr: the virtual address to store the opcode. 458 * @opcode: opcode to be written at @vaddr. 459 * 460 * Called with mm->mmap_sem held for write. 461 * Return 0 (success) or a negative errno. 462 */ 463 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 464 unsigned long vaddr, uprobe_opcode_t opcode) 465 { 466 struct uprobe *uprobe; 467 struct page *old_page, *new_page; 468 struct vm_area_struct *vma; 469 int ret, is_register, ref_ctr_updated = 0; 470 bool orig_page_huge = false; 471 unsigned int gup_flags = FOLL_FORCE; 472 473 is_register = is_swbp_insn(&opcode); 474 uprobe = container_of(auprobe, struct uprobe, arch); 475 476 retry: 477 if (is_register) 478 gup_flags |= FOLL_SPLIT_PMD; 479 /* Read the page with vaddr into memory */ 480 ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags, 481 &old_page, &vma, NULL); 482 if (ret <= 0) 483 return ret; 484 485 ret = verify_opcode(old_page, vaddr, &opcode); 486 if (ret <= 0) 487 goto put_old; 488 489 if (WARN(!is_register && PageCompound(old_page), 490 "uprobe unregister should never work on compound page\n")) { 491 ret = -EINVAL; 492 goto put_old; 493 } 494 495 /* We are going to replace instruction, update ref_ctr. */ 496 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 497 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 498 if (ret) 499 goto put_old; 500 501 ref_ctr_updated = 1; 502 } 503 504 ret = 0; 505 if (!is_register && !PageAnon(old_page)) 506 goto put_old; 507 508 ret = anon_vma_prepare(vma); 509 if (ret) 510 goto put_old; 511 512 ret = -ENOMEM; 513 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 514 if (!new_page) 515 goto put_old; 516 517 __SetPageUptodate(new_page); 518 copy_highpage(new_page, old_page); 519 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 520 521 if (!is_register) { 522 struct page *orig_page; 523 pgoff_t index; 524 525 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 526 527 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 528 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 529 index); 530 531 if (orig_page) { 532 if (PageUptodate(orig_page) && 533 pages_identical(new_page, orig_page)) { 534 /* let go new_page */ 535 put_page(new_page); 536 new_page = NULL; 537 538 if (PageCompound(orig_page)) 539 orig_page_huge = true; 540 } 541 put_page(orig_page); 542 } 543 } 544 545 ret = __replace_page(vma, vaddr, old_page, new_page); 546 if (new_page) 547 put_page(new_page); 548 put_old: 549 put_page(old_page); 550 551 if (unlikely(ret == -EAGAIN)) 552 goto retry; 553 554 /* Revert back reference counter if instruction update failed. */ 555 if (ret && is_register && ref_ctr_updated) 556 update_ref_ctr(uprobe, mm, -1); 557 558 /* try collapse pmd for compound page */ 559 if (!ret && orig_page_huge) 560 collapse_pte_mapped_thp(mm, vaddr); 561 562 return ret; 563 } 564 565 /** 566 * set_swbp - store breakpoint at a given address. 567 * @auprobe: arch specific probepoint information. 568 * @mm: the probed process address space. 569 * @vaddr: the virtual address to insert the opcode. 570 * 571 * For mm @mm, store the breakpoint instruction at @vaddr. 572 * Return 0 (success) or a negative errno. 573 */ 574 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 575 { 576 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 577 } 578 579 /** 580 * set_orig_insn - Restore the original instruction. 581 * @mm: the probed process address space. 582 * @auprobe: arch specific probepoint information. 583 * @vaddr: the virtual address to insert the opcode. 584 * 585 * For mm @mm, restore the original opcode (opcode) at @vaddr. 586 * Return 0 (success) or a negative errno. 587 */ 588 int __weak 589 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 590 { 591 return uprobe_write_opcode(auprobe, mm, vaddr, 592 *(uprobe_opcode_t *)&auprobe->insn); 593 } 594 595 static struct uprobe *get_uprobe(struct uprobe *uprobe) 596 { 597 refcount_inc(&uprobe->ref); 598 return uprobe; 599 } 600 601 static void put_uprobe(struct uprobe *uprobe) 602 { 603 if (refcount_dec_and_test(&uprobe->ref)) { 604 /* 605 * If application munmap(exec_vma) before uprobe_unregister() 606 * gets called, we don't get a chance to remove uprobe from 607 * delayed_uprobe_list from remove_breakpoint(). Do it here. 608 */ 609 mutex_lock(&delayed_uprobe_lock); 610 delayed_uprobe_remove(uprobe, NULL); 611 mutex_unlock(&delayed_uprobe_lock); 612 kfree(uprobe); 613 } 614 } 615 616 static int match_uprobe(struct uprobe *l, struct uprobe *r) 617 { 618 if (l->inode < r->inode) 619 return -1; 620 621 if (l->inode > r->inode) 622 return 1; 623 624 if (l->offset < r->offset) 625 return -1; 626 627 if (l->offset > r->offset) 628 return 1; 629 630 return 0; 631 } 632 633 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 634 { 635 struct uprobe u = { .inode = inode, .offset = offset }; 636 struct rb_node *n = uprobes_tree.rb_node; 637 struct uprobe *uprobe; 638 int match; 639 640 while (n) { 641 uprobe = rb_entry(n, struct uprobe, rb_node); 642 match = match_uprobe(&u, uprobe); 643 if (!match) 644 return get_uprobe(uprobe); 645 646 if (match < 0) 647 n = n->rb_left; 648 else 649 n = n->rb_right; 650 } 651 return NULL; 652 } 653 654 /* 655 * Find a uprobe corresponding to a given inode:offset 656 * Acquires uprobes_treelock 657 */ 658 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 659 { 660 struct uprobe *uprobe; 661 662 spin_lock(&uprobes_treelock); 663 uprobe = __find_uprobe(inode, offset); 664 spin_unlock(&uprobes_treelock); 665 666 return uprobe; 667 } 668 669 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 670 { 671 struct rb_node **p = &uprobes_tree.rb_node; 672 struct rb_node *parent = NULL; 673 struct uprobe *u; 674 int match; 675 676 while (*p) { 677 parent = *p; 678 u = rb_entry(parent, struct uprobe, rb_node); 679 match = match_uprobe(uprobe, u); 680 if (!match) 681 return get_uprobe(u); 682 683 if (match < 0) 684 p = &parent->rb_left; 685 else 686 p = &parent->rb_right; 687 688 } 689 690 u = NULL; 691 rb_link_node(&uprobe->rb_node, parent, p); 692 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 693 /* get access + creation ref */ 694 refcount_set(&uprobe->ref, 2); 695 696 return u; 697 } 698 699 /* 700 * Acquire uprobes_treelock. 701 * Matching uprobe already exists in rbtree; 702 * increment (access refcount) and return the matching uprobe. 703 * 704 * No matching uprobe; insert the uprobe in rb_tree; 705 * get a double refcount (access + creation) and return NULL. 706 */ 707 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 708 { 709 struct uprobe *u; 710 711 spin_lock(&uprobes_treelock); 712 u = __insert_uprobe(uprobe); 713 spin_unlock(&uprobes_treelock); 714 715 return u; 716 } 717 718 static void 719 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 720 { 721 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 722 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 723 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 724 (unsigned long long) cur_uprobe->ref_ctr_offset, 725 (unsigned long long) uprobe->ref_ctr_offset); 726 } 727 728 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 729 loff_t ref_ctr_offset) 730 { 731 struct uprobe *uprobe, *cur_uprobe; 732 733 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 734 if (!uprobe) 735 return NULL; 736 737 uprobe->inode = inode; 738 uprobe->offset = offset; 739 uprobe->ref_ctr_offset = ref_ctr_offset; 740 init_rwsem(&uprobe->register_rwsem); 741 init_rwsem(&uprobe->consumer_rwsem); 742 743 /* add to uprobes_tree, sorted on inode:offset */ 744 cur_uprobe = insert_uprobe(uprobe); 745 /* a uprobe exists for this inode:offset combination */ 746 if (cur_uprobe) { 747 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 748 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 749 put_uprobe(cur_uprobe); 750 kfree(uprobe); 751 return ERR_PTR(-EINVAL); 752 } 753 kfree(uprobe); 754 uprobe = cur_uprobe; 755 } 756 757 return uprobe; 758 } 759 760 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 761 { 762 down_write(&uprobe->consumer_rwsem); 763 uc->next = uprobe->consumers; 764 uprobe->consumers = uc; 765 up_write(&uprobe->consumer_rwsem); 766 } 767 768 /* 769 * For uprobe @uprobe, delete the consumer @uc. 770 * Return true if the @uc is deleted successfully 771 * or return false. 772 */ 773 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 774 { 775 struct uprobe_consumer **con; 776 bool ret = false; 777 778 down_write(&uprobe->consumer_rwsem); 779 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 780 if (*con == uc) { 781 *con = uc->next; 782 ret = true; 783 break; 784 } 785 } 786 up_write(&uprobe->consumer_rwsem); 787 788 return ret; 789 } 790 791 static int __copy_insn(struct address_space *mapping, struct file *filp, 792 void *insn, int nbytes, loff_t offset) 793 { 794 struct page *page; 795 /* 796 * Ensure that the page that has the original instruction is populated 797 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 798 * see uprobe_register(). 799 */ 800 if (mapping->a_ops->readpage) 801 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 802 else 803 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 804 if (IS_ERR(page)) 805 return PTR_ERR(page); 806 807 copy_from_page(page, offset, insn, nbytes); 808 put_page(page); 809 810 return 0; 811 } 812 813 static int copy_insn(struct uprobe *uprobe, struct file *filp) 814 { 815 struct address_space *mapping = uprobe->inode->i_mapping; 816 loff_t offs = uprobe->offset; 817 void *insn = &uprobe->arch.insn; 818 int size = sizeof(uprobe->arch.insn); 819 int len, err = -EIO; 820 821 /* Copy only available bytes, -EIO if nothing was read */ 822 do { 823 if (offs >= i_size_read(uprobe->inode)) 824 break; 825 826 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 827 err = __copy_insn(mapping, filp, insn, len, offs); 828 if (err) 829 break; 830 831 insn += len; 832 offs += len; 833 size -= len; 834 } while (size); 835 836 return err; 837 } 838 839 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 840 struct mm_struct *mm, unsigned long vaddr) 841 { 842 int ret = 0; 843 844 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 845 return ret; 846 847 /* TODO: move this into _register, until then we abuse this sem. */ 848 down_write(&uprobe->consumer_rwsem); 849 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 850 goto out; 851 852 ret = copy_insn(uprobe, file); 853 if (ret) 854 goto out; 855 856 ret = -ENOTSUPP; 857 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 858 goto out; 859 860 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 861 if (ret) 862 goto out; 863 864 /* uprobe_write_opcode() assumes we don't cross page boundary */ 865 BUG_ON((uprobe->offset & ~PAGE_MASK) + 866 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 867 868 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 869 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 870 871 out: 872 up_write(&uprobe->consumer_rwsem); 873 874 return ret; 875 } 876 877 static inline bool consumer_filter(struct uprobe_consumer *uc, 878 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 879 { 880 return !uc->filter || uc->filter(uc, ctx, mm); 881 } 882 883 static bool filter_chain(struct uprobe *uprobe, 884 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 885 { 886 struct uprobe_consumer *uc; 887 bool ret = false; 888 889 down_read(&uprobe->consumer_rwsem); 890 for (uc = uprobe->consumers; uc; uc = uc->next) { 891 ret = consumer_filter(uc, ctx, mm); 892 if (ret) 893 break; 894 } 895 up_read(&uprobe->consumer_rwsem); 896 897 return ret; 898 } 899 900 static int 901 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 902 struct vm_area_struct *vma, unsigned long vaddr) 903 { 904 bool first_uprobe; 905 int ret; 906 907 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 908 if (ret) 909 return ret; 910 911 /* 912 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 913 * the task can hit this breakpoint right after __replace_page(). 914 */ 915 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 916 if (first_uprobe) 917 set_bit(MMF_HAS_UPROBES, &mm->flags); 918 919 ret = set_swbp(&uprobe->arch, mm, vaddr); 920 if (!ret) 921 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 922 else if (first_uprobe) 923 clear_bit(MMF_HAS_UPROBES, &mm->flags); 924 925 return ret; 926 } 927 928 static int 929 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 930 { 931 set_bit(MMF_RECALC_UPROBES, &mm->flags); 932 return set_orig_insn(&uprobe->arch, mm, vaddr); 933 } 934 935 static inline bool uprobe_is_active(struct uprobe *uprobe) 936 { 937 return !RB_EMPTY_NODE(&uprobe->rb_node); 938 } 939 /* 940 * There could be threads that have already hit the breakpoint. They 941 * will recheck the current insn and restart if find_uprobe() fails. 942 * See find_active_uprobe(). 943 */ 944 static void delete_uprobe(struct uprobe *uprobe) 945 { 946 if (WARN_ON(!uprobe_is_active(uprobe))) 947 return; 948 949 spin_lock(&uprobes_treelock); 950 rb_erase(&uprobe->rb_node, &uprobes_tree); 951 spin_unlock(&uprobes_treelock); 952 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 953 put_uprobe(uprobe); 954 } 955 956 struct map_info { 957 struct map_info *next; 958 struct mm_struct *mm; 959 unsigned long vaddr; 960 }; 961 962 static inline struct map_info *free_map_info(struct map_info *info) 963 { 964 struct map_info *next = info->next; 965 kfree(info); 966 return next; 967 } 968 969 static struct map_info * 970 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 971 { 972 unsigned long pgoff = offset >> PAGE_SHIFT; 973 struct vm_area_struct *vma; 974 struct map_info *curr = NULL; 975 struct map_info *prev = NULL; 976 struct map_info *info; 977 int more = 0; 978 979 again: 980 i_mmap_lock_read(mapping); 981 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 982 if (!valid_vma(vma, is_register)) 983 continue; 984 985 if (!prev && !more) { 986 /* 987 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 988 * reclaim. This is optimistic, no harm done if it fails. 989 */ 990 prev = kmalloc(sizeof(struct map_info), 991 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 992 if (prev) 993 prev->next = NULL; 994 } 995 if (!prev) { 996 more++; 997 continue; 998 } 999 1000 if (!mmget_not_zero(vma->vm_mm)) 1001 continue; 1002 1003 info = prev; 1004 prev = prev->next; 1005 info->next = curr; 1006 curr = info; 1007 1008 info->mm = vma->vm_mm; 1009 info->vaddr = offset_to_vaddr(vma, offset); 1010 } 1011 i_mmap_unlock_read(mapping); 1012 1013 if (!more) 1014 goto out; 1015 1016 prev = curr; 1017 while (curr) { 1018 mmput(curr->mm); 1019 curr = curr->next; 1020 } 1021 1022 do { 1023 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1024 if (!info) { 1025 curr = ERR_PTR(-ENOMEM); 1026 goto out; 1027 } 1028 info->next = prev; 1029 prev = info; 1030 } while (--more); 1031 1032 goto again; 1033 out: 1034 while (prev) 1035 prev = free_map_info(prev); 1036 return curr; 1037 } 1038 1039 static int 1040 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1041 { 1042 bool is_register = !!new; 1043 struct map_info *info; 1044 int err = 0; 1045 1046 percpu_down_write(&dup_mmap_sem); 1047 info = build_map_info(uprobe->inode->i_mapping, 1048 uprobe->offset, is_register); 1049 if (IS_ERR(info)) { 1050 err = PTR_ERR(info); 1051 goto out; 1052 } 1053 1054 while (info) { 1055 struct mm_struct *mm = info->mm; 1056 struct vm_area_struct *vma; 1057 1058 if (err && is_register) 1059 goto free; 1060 1061 down_write(&mm->mmap_sem); 1062 vma = find_vma(mm, info->vaddr); 1063 if (!vma || !valid_vma(vma, is_register) || 1064 file_inode(vma->vm_file) != uprobe->inode) 1065 goto unlock; 1066 1067 if (vma->vm_start > info->vaddr || 1068 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1069 goto unlock; 1070 1071 if (is_register) { 1072 /* consult only the "caller", new consumer. */ 1073 if (consumer_filter(new, 1074 UPROBE_FILTER_REGISTER, mm)) 1075 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1076 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1077 if (!filter_chain(uprobe, 1078 UPROBE_FILTER_UNREGISTER, mm)) 1079 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1080 } 1081 1082 unlock: 1083 up_write(&mm->mmap_sem); 1084 free: 1085 mmput(mm); 1086 info = free_map_info(info); 1087 } 1088 out: 1089 percpu_up_write(&dup_mmap_sem); 1090 return err; 1091 } 1092 1093 static void 1094 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1095 { 1096 int err; 1097 1098 if (WARN_ON(!consumer_del(uprobe, uc))) 1099 return; 1100 1101 err = register_for_each_vma(uprobe, NULL); 1102 /* TODO : cant unregister? schedule a worker thread */ 1103 if (!uprobe->consumers && !err) 1104 delete_uprobe(uprobe); 1105 } 1106 1107 /* 1108 * uprobe_unregister - unregister an already registered probe. 1109 * @inode: the file in which the probe has to be removed. 1110 * @offset: offset from the start of the file. 1111 * @uc: identify which probe if multiple probes are colocated. 1112 */ 1113 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1114 { 1115 struct uprobe *uprobe; 1116 1117 uprobe = find_uprobe(inode, offset); 1118 if (WARN_ON(!uprobe)) 1119 return; 1120 1121 down_write(&uprobe->register_rwsem); 1122 __uprobe_unregister(uprobe, uc); 1123 up_write(&uprobe->register_rwsem); 1124 put_uprobe(uprobe); 1125 } 1126 EXPORT_SYMBOL_GPL(uprobe_unregister); 1127 1128 /* 1129 * __uprobe_register - register a probe 1130 * @inode: the file in which the probe has to be placed. 1131 * @offset: offset from the start of the file. 1132 * @uc: information on howto handle the probe.. 1133 * 1134 * Apart from the access refcount, __uprobe_register() takes a creation 1135 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1136 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1137 * tuple). Creation refcount stops uprobe_unregister from freeing the 1138 * @uprobe even before the register operation is complete. Creation 1139 * refcount is released when the last @uc for the @uprobe 1140 * unregisters. Caller of __uprobe_register() is required to keep @inode 1141 * (and the containing mount) referenced. 1142 * 1143 * Return errno if it cannot successully install probes 1144 * else return 0 (success) 1145 */ 1146 static int __uprobe_register(struct inode *inode, loff_t offset, 1147 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1148 { 1149 struct uprobe *uprobe; 1150 int ret; 1151 1152 /* Uprobe must have at least one set consumer */ 1153 if (!uc->handler && !uc->ret_handler) 1154 return -EINVAL; 1155 1156 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1157 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 1158 return -EIO; 1159 /* Racy, just to catch the obvious mistakes */ 1160 if (offset > i_size_read(inode)) 1161 return -EINVAL; 1162 1163 retry: 1164 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1165 if (!uprobe) 1166 return -ENOMEM; 1167 if (IS_ERR(uprobe)) 1168 return PTR_ERR(uprobe); 1169 1170 /* 1171 * We can race with uprobe_unregister()->delete_uprobe(). 1172 * Check uprobe_is_active() and retry if it is false. 1173 */ 1174 down_write(&uprobe->register_rwsem); 1175 ret = -EAGAIN; 1176 if (likely(uprobe_is_active(uprobe))) { 1177 consumer_add(uprobe, uc); 1178 ret = register_for_each_vma(uprobe, uc); 1179 if (ret) 1180 __uprobe_unregister(uprobe, uc); 1181 } 1182 up_write(&uprobe->register_rwsem); 1183 put_uprobe(uprobe); 1184 1185 if (unlikely(ret == -EAGAIN)) 1186 goto retry; 1187 return ret; 1188 } 1189 1190 int uprobe_register(struct inode *inode, loff_t offset, 1191 struct uprobe_consumer *uc) 1192 { 1193 return __uprobe_register(inode, offset, 0, uc); 1194 } 1195 EXPORT_SYMBOL_GPL(uprobe_register); 1196 1197 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1198 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1199 { 1200 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1201 } 1202 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1203 1204 /* 1205 * uprobe_apply - unregister an already registered probe. 1206 * @inode: the file in which the probe has to be removed. 1207 * @offset: offset from the start of the file. 1208 * @uc: consumer which wants to add more or remove some breakpoints 1209 * @add: add or remove the breakpoints 1210 */ 1211 int uprobe_apply(struct inode *inode, loff_t offset, 1212 struct uprobe_consumer *uc, bool add) 1213 { 1214 struct uprobe *uprobe; 1215 struct uprobe_consumer *con; 1216 int ret = -ENOENT; 1217 1218 uprobe = find_uprobe(inode, offset); 1219 if (WARN_ON(!uprobe)) 1220 return ret; 1221 1222 down_write(&uprobe->register_rwsem); 1223 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1224 ; 1225 if (con) 1226 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1227 up_write(&uprobe->register_rwsem); 1228 put_uprobe(uprobe); 1229 1230 return ret; 1231 } 1232 1233 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1234 { 1235 struct vm_area_struct *vma; 1236 int err = 0; 1237 1238 down_read(&mm->mmap_sem); 1239 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1240 unsigned long vaddr; 1241 loff_t offset; 1242 1243 if (!valid_vma(vma, false) || 1244 file_inode(vma->vm_file) != uprobe->inode) 1245 continue; 1246 1247 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1248 if (uprobe->offset < offset || 1249 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1250 continue; 1251 1252 vaddr = offset_to_vaddr(vma, uprobe->offset); 1253 err |= remove_breakpoint(uprobe, mm, vaddr); 1254 } 1255 up_read(&mm->mmap_sem); 1256 1257 return err; 1258 } 1259 1260 static struct rb_node * 1261 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1262 { 1263 struct rb_node *n = uprobes_tree.rb_node; 1264 1265 while (n) { 1266 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1267 1268 if (inode < u->inode) { 1269 n = n->rb_left; 1270 } else if (inode > u->inode) { 1271 n = n->rb_right; 1272 } else { 1273 if (max < u->offset) 1274 n = n->rb_left; 1275 else if (min > u->offset) 1276 n = n->rb_right; 1277 else 1278 break; 1279 } 1280 } 1281 1282 return n; 1283 } 1284 1285 /* 1286 * For a given range in vma, build a list of probes that need to be inserted. 1287 */ 1288 static void build_probe_list(struct inode *inode, 1289 struct vm_area_struct *vma, 1290 unsigned long start, unsigned long end, 1291 struct list_head *head) 1292 { 1293 loff_t min, max; 1294 struct rb_node *n, *t; 1295 struct uprobe *u; 1296 1297 INIT_LIST_HEAD(head); 1298 min = vaddr_to_offset(vma, start); 1299 max = min + (end - start) - 1; 1300 1301 spin_lock(&uprobes_treelock); 1302 n = find_node_in_range(inode, min, max); 1303 if (n) { 1304 for (t = n; t; t = rb_prev(t)) { 1305 u = rb_entry(t, struct uprobe, rb_node); 1306 if (u->inode != inode || u->offset < min) 1307 break; 1308 list_add(&u->pending_list, head); 1309 get_uprobe(u); 1310 } 1311 for (t = n; (t = rb_next(t)); ) { 1312 u = rb_entry(t, struct uprobe, rb_node); 1313 if (u->inode != inode || u->offset > max) 1314 break; 1315 list_add(&u->pending_list, head); 1316 get_uprobe(u); 1317 } 1318 } 1319 spin_unlock(&uprobes_treelock); 1320 } 1321 1322 /* @vma contains reference counter, not the probed instruction. */ 1323 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1324 { 1325 struct list_head *pos, *q; 1326 struct delayed_uprobe *du; 1327 unsigned long vaddr; 1328 int ret = 0, err = 0; 1329 1330 mutex_lock(&delayed_uprobe_lock); 1331 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1332 du = list_entry(pos, struct delayed_uprobe, list); 1333 1334 if (du->mm != vma->vm_mm || 1335 !valid_ref_ctr_vma(du->uprobe, vma)) 1336 continue; 1337 1338 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1339 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1340 if (ret) { 1341 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1342 if (!err) 1343 err = ret; 1344 } 1345 delayed_uprobe_delete(du); 1346 } 1347 mutex_unlock(&delayed_uprobe_lock); 1348 return err; 1349 } 1350 1351 /* 1352 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1353 * 1354 * Currently we ignore all errors and always return 0, the callers 1355 * can't handle the failure anyway. 1356 */ 1357 int uprobe_mmap(struct vm_area_struct *vma) 1358 { 1359 struct list_head tmp_list; 1360 struct uprobe *uprobe, *u; 1361 struct inode *inode; 1362 1363 if (no_uprobe_events()) 1364 return 0; 1365 1366 if (vma->vm_file && 1367 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1368 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1369 delayed_ref_ctr_inc(vma); 1370 1371 if (!valid_vma(vma, true)) 1372 return 0; 1373 1374 inode = file_inode(vma->vm_file); 1375 if (!inode) 1376 return 0; 1377 1378 mutex_lock(uprobes_mmap_hash(inode)); 1379 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1380 /* 1381 * We can race with uprobe_unregister(), this uprobe can be already 1382 * removed. But in this case filter_chain() must return false, all 1383 * consumers have gone away. 1384 */ 1385 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1386 if (!fatal_signal_pending(current) && 1387 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1388 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1389 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1390 } 1391 put_uprobe(uprobe); 1392 } 1393 mutex_unlock(uprobes_mmap_hash(inode)); 1394 1395 return 0; 1396 } 1397 1398 static bool 1399 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1400 { 1401 loff_t min, max; 1402 struct inode *inode; 1403 struct rb_node *n; 1404 1405 inode = file_inode(vma->vm_file); 1406 1407 min = vaddr_to_offset(vma, start); 1408 max = min + (end - start) - 1; 1409 1410 spin_lock(&uprobes_treelock); 1411 n = find_node_in_range(inode, min, max); 1412 spin_unlock(&uprobes_treelock); 1413 1414 return !!n; 1415 } 1416 1417 /* 1418 * Called in context of a munmap of a vma. 1419 */ 1420 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1421 { 1422 if (no_uprobe_events() || !valid_vma(vma, false)) 1423 return; 1424 1425 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1426 return; 1427 1428 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1429 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1430 return; 1431 1432 if (vma_has_uprobes(vma, start, end)) 1433 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1434 } 1435 1436 /* Slot allocation for XOL */ 1437 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1438 { 1439 struct vm_area_struct *vma; 1440 int ret; 1441 1442 if (down_write_killable(&mm->mmap_sem)) 1443 return -EINTR; 1444 1445 if (mm->uprobes_state.xol_area) { 1446 ret = -EALREADY; 1447 goto fail; 1448 } 1449 1450 if (!area->vaddr) { 1451 /* Try to map as high as possible, this is only a hint. */ 1452 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1453 PAGE_SIZE, 0, 0); 1454 if (IS_ERR_VALUE(area->vaddr)) { 1455 ret = area->vaddr; 1456 goto fail; 1457 } 1458 } 1459 1460 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1461 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1462 &area->xol_mapping); 1463 if (IS_ERR(vma)) { 1464 ret = PTR_ERR(vma); 1465 goto fail; 1466 } 1467 1468 ret = 0; 1469 /* pairs with get_xol_area() */ 1470 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1471 fail: 1472 up_write(&mm->mmap_sem); 1473 1474 return ret; 1475 } 1476 1477 static struct xol_area *__create_xol_area(unsigned long vaddr) 1478 { 1479 struct mm_struct *mm = current->mm; 1480 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1481 struct xol_area *area; 1482 1483 area = kmalloc(sizeof(*area), GFP_KERNEL); 1484 if (unlikely(!area)) 1485 goto out; 1486 1487 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1488 GFP_KERNEL); 1489 if (!area->bitmap) 1490 goto free_area; 1491 1492 area->xol_mapping.name = "[uprobes]"; 1493 area->xol_mapping.fault = NULL; 1494 area->xol_mapping.pages = area->pages; 1495 area->pages[0] = alloc_page(GFP_HIGHUSER); 1496 if (!area->pages[0]) 1497 goto free_bitmap; 1498 area->pages[1] = NULL; 1499 1500 area->vaddr = vaddr; 1501 init_waitqueue_head(&area->wq); 1502 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1503 set_bit(0, area->bitmap); 1504 atomic_set(&area->slot_count, 1); 1505 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1506 1507 if (!xol_add_vma(mm, area)) 1508 return area; 1509 1510 __free_page(area->pages[0]); 1511 free_bitmap: 1512 kfree(area->bitmap); 1513 free_area: 1514 kfree(area); 1515 out: 1516 return NULL; 1517 } 1518 1519 /* 1520 * get_xol_area - Allocate process's xol_area if necessary. 1521 * This area will be used for storing instructions for execution out of line. 1522 * 1523 * Returns the allocated area or NULL. 1524 */ 1525 static struct xol_area *get_xol_area(void) 1526 { 1527 struct mm_struct *mm = current->mm; 1528 struct xol_area *area; 1529 1530 if (!mm->uprobes_state.xol_area) 1531 __create_xol_area(0); 1532 1533 /* Pairs with xol_add_vma() smp_store_release() */ 1534 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1535 return area; 1536 } 1537 1538 /* 1539 * uprobe_clear_state - Free the area allocated for slots. 1540 */ 1541 void uprobe_clear_state(struct mm_struct *mm) 1542 { 1543 struct xol_area *area = mm->uprobes_state.xol_area; 1544 1545 mutex_lock(&delayed_uprobe_lock); 1546 delayed_uprobe_remove(NULL, mm); 1547 mutex_unlock(&delayed_uprobe_lock); 1548 1549 if (!area) 1550 return; 1551 1552 put_page(area->pages[0]); 1553 kfree(area->bitmap); 1554 kfree(area); 1555 } 1556 1557 void uprobe_start_dup_mmap(void) 1558 { 1559 percpu_down_read(&dup_mmap_sem); 1560 } 1561 1562 void uprobe_end_dup_mmap(void) 1563 { 1564 percpu_up_read(&dup_mmap_sem); 1565 } 1566 1567 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1568 { 1569 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1570 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1571 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1572 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1573 } 1574 } 1575 1576 /* 1577 * - search for a free slot. 1578 */ 1579 static unsigned long xol_take_insn_slot(struct xol_area *area) 1580 { 1581 unsigned long slot_addr; 1582 int slot_nr; 1583 1584 do { 1585 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1586 if (slot_nr < UINSNS_PER_PAGE) { 1587 if (!test_and_set_bit(slot_nr, area->bitmap)) 1588 break; 1589 1590 slot_nr = UINSNS_PER_PAGE; 1591 continue; 1592 } 1593 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1594 } while (slot_nr >= UINSNS_PER_PAGE); 1595 1596 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1597 atomic_inc(&area->slot_count); 1598 1599 return slot_addr; 1600 } 1601 1602 /* 1603 * xol_get_insn_slot - allocate a slot for xol. 1604 * Returns the allocated slot address or 0. 1605 */ 1606 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1607 { 1608 struct xol_area *area; 1609 unsigned long xol_vaddr; 1610 1611 area = get_xol_area(); 1612 if (!area) 1613 return 0; 1614 1615 xol_vaddr = xol_take_insn_slot(area); 1616 if (unlikely(!xol_vaddr)) 1617 return 0; 1618 1619 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1620 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1621 1622 return xol_vaddr; 1623 } 1624 1625 /* 1626 * xol_free_insn_slot - If slot was earlier allocated by 1627 * @xol_get_insn_slot(), make the slot available for 1628 * subsequent requests. 1629 */ 1630 static void xol_free_insn_slot(struct task_struct *tsk) 1631 { 1632 struct xol_area *area; 1633 unsigned long vma_end; 1634 unsigned long slot_addr; 1635 1636 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1637 return; 1638 1639 slot_addr = tsk->utask->xol_vaddr; 1640 if (unlikely(!slot_addr)) 1641 return; 1642 1643 area = tsk->mm->uprobes_state.xol_area; 1644 vma_end = area->vaddr + PAGE_SIZE; 1645 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1646 unsigned long offset; 1647 int slot_nr; 1648 1649 offset = slot_addr - area->vaddr; 1650 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1651 if (slot_nr >= UINSNS_PER_PAGE) 1652 return; 1653 1654 clear_bit(slot_nr, area->bitmap); 1655 atomic_dec(&area->slot_count); 1656 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1657 if (waitqueue_active(&area->wq)) 1658 wake_up(&area->wq); 1659 1660 tsk->utask->xol_vaddr = 0; 1661 } 1662 } 1663 1664 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1665 void *src, unsigned long len) 1666 { 1667 /* Initialize the slot */ 1668 copy_to_page(page, vaddr, src, len); 1669 1670 /* 1671 * We probably need flush_icache_user_range() but it needs vma. 1672 * This should work on most of architectures by default. If 1673 * architecture needs to do something different it can define 1674 * its own version of the function. 1675 */ 1676 flush_dcache_page(page); 1677 } 1678 1679 /** 1680 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1681 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1682 * instruction. 1683 * Return the address of the breakpoint instruction. 1684 */ 1685 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1686 { 1687 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1688 } 1689 1690 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1691 { 1692 struct uprobe_task *utask = current->utask; 1693 1694 if (unlikely(utask && utask->active_uprobe)) 1695 return utask->vaddr; 1696 1697 return instruction_pointer(regs); 1698 } 1699 1700 static struct return_instance *free_ret_instance(struct return_instance *ri) 1701 { 1702 struct return_instance *next = ri->next; 1703 put_uprobe(ri->uprobe); 1704 kfree(ri); 1705 return next; 1706 } 1707 1708 /* 1709 * Called with no locks held. 1710 * Called in context of an exiting or an exec-ing thread. 1711 */ 1712 void uprobe_free_utask(struct task_struct *t) 1713 { 1714 struct uprobe_task *utask = t->utask; 1715 struct return_instance *ri; 1716 1717 if (!utask) 1718 return; 1719 1720 if (utask->active_uprobe) 1721 put_uprobe(utask->active_uprobe); 1722 1723 ri = utask->return_instances; 1724 while (ri) 1725 ri = free_ret_instance(ri); 1726 1727 xol_free_insn_slot(t); 1728 kfree(utask); 1729 t->utask = NULL; 1730 } 1731 1732 /* 1733 * Allocate a uprobe_task object for the task if if necessary. 1734 * Called when the thread hits a breakpoint. 1735 * 1736 * Returns: 1737 * - pointer to new uprobe_task on success 1738 * - NULL otherwise 1739 */ 1740 static struct uprobe_task *get_utask(void) 1741 { 1742 if (!current->utask) 1743 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1744 return current->utask; 1745 } 1746 1747 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1748 { 1749 struct uprobe_task *n_utask; 1750 struct return_instance **p, *o, *n; 1751 1752 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1753 if (!n_utask) 1754 return -ENOMEM; 1755 t->utask = n_utask; 1756 1757 p = &n_utask->return_instances; 1758 for (o = o_utask->return_instances; o; o = o->next) { 1759 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1760 if (!n) 1761 return -ENOMEM; 1762 1763 *n = *o; 1764 get_uprobe(n->uprobe); 1765 n->next = NULL; 1766 1767 *p = n; 1768 p = &n->next; 1769 n_utask->depth++; 1770 } 1771 1772 return 0; 1773 } 1774 1775 static void uprobe_warn(struct task_struct *t, const char *msg) 1776 { 1777 pr_warn("uprobe: %s:%d failed to %s\n", 1778 current->comm, current->pid, msg); 1779 } 1780 1781 static void dup_xol_work(struct callback_head *work) 1782 { 1783 if (current->flags & PF_EXITING) 1784 return; 1785 1786 if (!__create_xol_area(current->utask->dup_xol_addr) && 1787 !fatal_signal_pending(current)) 1788 uprobe_warn(current, "dup xol area"); 1789 } 1790 1791 /* 1792 * Called in context of a new clone/fork from copy_process. 1793 */ 1794 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1795 { 1796 struct uprobe_task *utask = current->utask; 1797 struct mm_struct *mm = current->mm; 1798 struct xol_area *area; 1799 1800 t->utask = NULL; 1801 1802 if (!utask || !utask->return_instances) 1803 return; 1804 1805 if (mm == t->mm && !(flags & CLONE_VFORK)) 1806 return; 1807 1808 if (dup_utask(t, utask)) 1809 return uprobe_warn(t, "dup ret instances"); 1810 1811 /* The task can fork() after dup_xol_work() fails */ 1812 area = mm->uprobes_state.xol_area; 1813 if (!area) 1814 return uprobe_warn(t, "dup xol area"); 1815 1816 if (mm == t->mm) 1817 return; 1818 1819 t->utask->dup_xol_addr = area->vaddr; 1820 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1821 task_work_add(t, &t->utask->dup_xol_work, true); 1822 } 1823 1824 /* 1825 * Current area->vaddr notion assume the trampoline address is always 1826 * equal area->vaddr. 1827 * 1828 * Returns -1 in case the xol_area is not allocated. 1829 */ 1830 static unsigned long get_trampoline_vaddr(void) 1831 { 1832 struct xol_area *area; 1833 unsigned long trampoline_vaddr = -1; 1834 1835 /* Pairs with xol_add_vma() smp_store_release() */ 1836 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1837 if (area) 1838 trampoline_vaddr = area->vaddr; 1839 1840 return trampoline_vaddr; 1841 } 1842 1843 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1844 struct pt_regs *regs) 1845 { 1846 struct return_instance *ri = utask->return_instances; 1847 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1848 1849 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1850 ri = free_ret_instance(ri); 1851 utask->depth--; 1852 } 1853 utask->return_instances = ri; 1854 } 1855 1856 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1857 { 1858 struct return_instance *ri; 1859 struct uprobe_task *utask; 1860 unsigned long orig_ret_vaddr, trampoline_vaddr; 1861 bool chained; 1862 1863 if (!get_xol_area()) 1864 return; 1865 1866 utask = get_utask(); 1867 if (!utask) 1868 return; 1869 1870 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1871 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1872 " nestedness limit pid/tgid=%d/%d\n", 1873 current->pid, current->tgid); 1874 return; 1875 } 1876 1877 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1878 if (!ri) 1879 return; 1880 1881 trampoline_vaddr = get_trampoline_vaddr(); 1882 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1883 if (orig_ret_vaddr == -1) 1884 goto fail; 1885 1886 /* drop the entries invalidated by longjmp() */ 1887 chained = (orig_ret_vaddr == trampoline_vaddr); 1888 cleanup_return_instances(utask, chained, regs); 1889 1890 /* 1891 * We don't want to keep trampoline address in stack, rather keep the 1892 * original return address of first caller thru all the consequent 1893 * instances. This also makes breakpoint unwrapping easier. 1894 */ 1895 if (chained) { 1896 if (!utask->return_instances) { 1897 /* 1898 * This situation is not possible. Likely we have an 1899 * attack from user-space. 1900 */ 1901 uprobe_warn(current, "handle tail call"); 1902 goto fail; 1903 } 1904 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1905 } 1906 1907 ri->uprobe = get_uprobe(uprobe); 1908 ri->func = instruction_pointer(regs); 1909 ri->stack = user_stack_pointer(regs); 1910 ri->orig_ret_vaddr = orig_ret_vaddr; 1911 ri->chained = chained; 1912 1913 utask->depth++; 1914 ri->next = utask->return_instances; 1915 utask->return_instances = ri; 1916 1917 return; 1918 fail: 1919 kfree(ri); 1920 } 1921 1922 /* Prepare to single-step probed instruction out of line. */ 1923 static int 1924 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1925 { 1926 struct uprobe_task *utask; 1927 unsigned long xol_vaddr; 1928 int err; 1929 1930 utask = get_utask(); 1931 if (!utask) 1932 return -ENOMEM; 1933 1934 xol_vaddr = xol_get_insn_slot(uprobe); 1935 if (!xol_vaddr) 1936 return -ENOMEM; 1937 1938 utask->xol_vaddr = xol_vaddr; 1939 utask->vaddr = bp_vaddr; 1940 1941 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1942 if (unlikely(err)) { 1943 xol_free_insn_slot(current); 1944 return err; 1945 } 1946 1947 utask->active_uprobe = uprobe; 1948 utask->state = UTASK_SSTEP; 1949 return 0; 1950 } 1951 1952 /* 1953 * If we are singlestepping, then ensure this thread is not connected to 1954 * non-fatal signals until completion of singlestep. When xol insn itself 1955 * triggers the signal, restart the original insn even if the task is 1956 * already SIGKILL'ed (since coredump should report the correct ip). This 1957 * is even more important if the task has a handler for SIGSEGV/etc, The 1958 * _same_ instruction should be repeated again after return from the signal 1959 * handler, and SSTEP can never finish in this case. 1960 */ 1961 bool uprobe_deny_signal(void) 1962 { 1963 struct task_struct *t = current; 1964 struct uprobe_task *utask = t->utask; 1965 1966 if (likely(!utask || !utask->active_uprobe)) 1967 return false; 1968 1969 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1970 1971 if (signal_pending(t)) { 1972 spin_lock_irq(&t->sighand->siglock); 1973 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1974 spin_unlock_irq(&t->sighand->siglock); 1975 1976 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1977 utask->state = UTASK_SSTEP_TRAPPED; 1978 set_tsk_thread_flag(t, TIF_UPROBE); 1979 } 1980 } 1981 1982 return true; 1983 } 1984 1985 static void mmf_recalc_uprobes(struct mm_struct *mm) 1986 { 1987 struct vm_area_struct *vma; 1988 1989 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1990 if (!valid_vma(vma, false)) 1991 continue; 1992 /* 1993 * This is not strictly accurate, we can race with 1994 * uprobe_unregister() and see the already removed 1995 * uprobe if delete_uprobe() was not yet called. 1996 * Or this uprobe can be filtered out. 1997 */ 1998 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1999 return; 2000 } 2001 2002 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2003 } 2004 2005 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2006 { 2007 struct page *page; 2008 uprobe_opcode_t opcode; 2009 int result; 2010 2011 pagefault_disable(); 2012 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2013 pagefault_enable(); 2014 2015 if (likely(result == 0)) 2016 goto out; 2017 2018 /* 2019 * The NULL 'tsk' here ensures that any faults that occur here 2020 * will not be accounted to the task. 'mm' *is* current->mm, 2021 * but we treat this as a 'remote' access since it is 2022 * essentially a kernel access to the memory. 2023 */ 2024 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page, 2025 NULL, NULL); 2026 if (result < 0) 2027 return result; 2028 2029 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2030 put_page(page); 2031 out: 2032 /* This needs to return true for any variant of the trap insn */ 2033 return is_trap_insn(&opcode); 2034 } 2035 2036 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2037 { 2038 struct mm_struct *mm = current->mm; 2039 struct uprobe *uprobe = NULL; 2040 struct vm_area_struct *vma; 2041 2042 down_read(&mm->mmap_sem); 2043 vma = find_vma(mm, bp_vaddr); 2044 if (vma && vma->vm_start <= bp_vaddr) { 2045 if (valid_vma(vma, false)) { 2046 struct inode *inode = file_inode(vma->vm_file); 2047 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2048 2049 uprobe = find_uprobe(inode, offset); 2050 } 2051 2052 if (!uprobe) 2053 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2054 } else { 2055 *is_swbp = -EFAULT; 2056 } 2057 2058 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2059 mmf_recalc_uprobes(mm); 2060 up_read(&mm->mmap_sem); 2061 2062 return uprobe; 2063 } 2064 2065 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2066 { 2067 struct uprobe_consumer *uc; 2068 int remove = UPROBE_HANDLER_REMOVE; 2069 bool need_prep = false; /* prepare return uprobe, when needed */ 2070 2071 down_read(&uprobe->register_rwsem); 2072 for (uc = uprobe->consumers; uc; uc = uc->next) { 2073 int rc = 0; 2074 2075 if (uc->handler) { 2076 rc = uc->handler(uc, regs); 2077 WARN(rc & ~UPROBE_HANDLER_MASK, 2078 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2079 } 2080 2081 if (uc->ret_handler) 2082 need_prep = true; 2083 2084 remove &= rc; 2085 } 2086 2087 if (need_prep && !remove) 2088 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2089 2090 if (remove && uprobe->consumers) { 2091 WARN_ON(!uprobe_is_active(uprobe)); 2092 unapply_uprobe(uprobe, current->mm); 2093 } 2094 up_read(&uprobe->register_rwsem); 2095 } 2096 2097 static void 2098 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2099 { 2100 struct uprobe *uprobe = ri->uprobe; 2101 struct uprobe_consumer *uc; 2102 2103 down_read(&uprobe->register_rwsem); 2104 for (uc = uprobe->consumers; uc; uc = uc->next) { 2105 if (uc->ret_handler) 2106 uc->ret_handler(uc, ri->func, regs); 2107 } 2108 up_read(&uprobe->register_rwsem); 2109 } 2110 2111 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2112 { 2113 bool chained; 2114 2115 do { 2116 chained = ri->chained; 2117 ri = ri->next; /* can't be NULL if chained */ 2118 } while (chained); 2119 2120 return ri; 2121 } 2122 2123 static void handle_trampoline(struct pt_regs *regs) 2124 { 2125 struct uprobe_task *utask; 2126 struct return_instance *ri, *next; 2127 bool valid; 2128 2129 utask = current->utask; 2130 if (!utask) 2131 goto sigill; 2132 2133 ri = utask->return_instances; 2134 if (!ri) 2135 goto sigill; 2136 2137 do { 2138 /* 2139 * We should throw out the frames invalidated by longjmp(). 2140 * If this chain is valid, then the next one should be alive 2141 * or NULL; the latter case means that nobody but ri->func 2142 * could hit this trampoline on return. TODO: sigaltstack(). 2143 */ 2144 next = find_next_ret_chain(ri); 2145 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2146 2147 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2148 do { 2149 if (valid) 2150 handle_uretprobe_chain(ri, regs); 2151 ri = free_ret_instance(ri); 2152 utask->depth--; 2153 } while (ri != next); 2154 } while (!valid); 2155 2156 utask->return_instances = ri; 2157 return; 2158 2159 sigill: 2160 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2161 force_sig(SIGILL); 2162 2163 } 2164 2165 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2166 { 2167 return false; 2168 } 2169 2170 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2171 struct pt_regs *regs) 2172 { 2173 return true; 2174 } 2175 2176 /* 2177 * Run handler and ask thread to singlestep. 2178 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2179 */ 2180 static void handle_swbp(struct pt_regs *regs) 2181 { 2182 struct uprobe *uprobe; 2183 unsigned long bp_vaddr; 2184 int uninitialized_var(is_swbp); 2185 2186 bp_vaddr = uprobe_get_swbp_addr(regs); 2187 if (bp_vaddr == get_trampoline_vaddr()) 2188 return handle_trampoline(regs); 2189 2190 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2191 if (!uprobe) { 2192 if (is_swbp > 0) { 2193 /* No matching uprobe; signal SIGTRAP. */ 2194 send_sig(SIGTRAP, current, 0); 2195 } else { 2196 /* 2197 * Either we raced with uprobe_unregister() or we can't 2198 * access this memory. The latter is only possible if 2199 * another thread plays with our ->mm. In both cases 2200 * we can simply restart. If this vma was unmapped we 2201 * can pretend this insn was not executed yet and get 2202 * the (correct) SIGSEGV after restart. 2203 */ 2204 instruction_pointer_set(regs, bp_vaddr); 2205 } 2206 return; 2207 } 2208 2209 /* change it in advance for ->handler() and restart */ 2210 instruction_pointer_set(regs, bp_vaddr); 2211 2212 /* 2213 * TODO: move copy_insn/etc into _register and remove this hack. 2214 * After we hit the bp, _unregister + _register can install the 2215 * new and not-yet-analyzed uprobe at the same address, restart. 2216 */ 2217 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2218 goto out; 2219 2220 /* 2221 * Pairs with the smp_wmb() in prepare_uprobe(). 2222 * 2223 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2224 * we must also see the stores to &uprobe->arch performed by the 2225 * prepare_uprobe() call. 2226 */ 2227 smp_rmb(); 2228 2229 /* Tracing handlers use ->utask to communicate with fetch methods */ 2230 if (!get_utask()) 2231 goto out; 2232 2233 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2234 goto out; 2235 2236 handler_chain(uprobe, regs); 2237 2238 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2239 goto out; 2240 2241 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2242 return; 2243 2244 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2245 out: 2246 put_uprobe(uprobe); 2247 } 2248 2249 /* 2250 * Perform required fix-ups and disable singlestep. 2251 * Allow pending signals to take effect. 2252 */ 2253 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2254 { 2255 struct uprobe *uprobe; 2256 int err = 0; 2257 2258 uprobe = utask->active_uprobe; 2259 if (utask->state == UTASK_SSTEP_ACK) 2260 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2261 else if (utask->state == UTASK_SSTEP_TRAPPED) 2262 arch_uprobe_abort_xol(&uprobe->arch, regs); 2263 else 2264 WARN_ON_ONCE(1); 2265 2266 put_uprobe(uprobe); 2267 utask->active_uprobe = NULL; 2268 utask->state = UTASK_RUNNING; 2269 xol_free_insn_slot(current); 2270 2271 spin_lock_irq(¤t->sighand->siglock); 2272 recalc_sigpending(); /* see uprobe_deny_signal() */ 2273 spin_unlock_irq(¤t->sighand->siglock); 2274 2275 if (unlikely(err)) { 2276 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2277 force_sig(SIGILL); 2278 } 2279 } 2280 2281 /* 2282 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2283 * allows the thread to return from interrupt. After that handle_swbp() 2284 * sets utask->active_uprobe. 2285 * 2286 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2287 * and allows the thread to return from interrupt. 2288 * 2289 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2290 * uprobe_notify_resume(). 2291 */ 2292 void uprobe_notify_resume(struct pt_regs *regs) 2293 { 2294 struct uprobe_task *utask; 2295 2296 clear_thread_flag(TIF_UPROBE); 2297 2298 utask = current->utask; 2299 if (utask && utask->active_uprobe) 2300 handle_singlestep(utask, regs); 2301 else 2302 handle_swbp(regs); 2303 } 2304 2305 /* 2306 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2307 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2308 */ 2309 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2310 { 2311 if (!current->mm) 2312 return 0; 2313 2314 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2315 (!current->utask || !current->utask->return_instances)) 2316 return 0; 2317 2318 set_thread_flag(TIF_UPROBE); 2319 return 1; 2320 } 2321 2322 /* 2323 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2324 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2325 */ 2326 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2327 { 2328 struct uprobe_task *utask = current->utask; 2329 2330 if (!current->mm || !utask || !utask->active_uprobe) 2331 /* task is currently not uprobed */ 2332 return 0; 2333 2334 utask->state = UTASK_SSTEP_ACK; 2335 set_thread_flag(TIF_UPROBE); 2336 return 1; 2337 } 2338 2339 static struct notifier_block uprobe_exception_nb = { 2340 .notifier_call = arch_uprobe_exception_notify, 2341 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2342 }; 2343 2344 void __init uprobes_init(void) 2345 { 2346 int i; 2347 2348 for (i = 0; i < UPROBES_HASH_SZ; i++) 2349 mutex_init(&uprobes_mmap_mutex[i]); 2350 2351 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2352 } 2353