xref: /openbmc/linux/kernel/events/uprobes.c (revision 965f22bc)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/coredump.h>
32 #include <linux/export.h>
33 #include <linux/rmap.h>		/* anon_vma_prepare */
34 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
35 #include <linux/swap.h>		/* try_to_free_swap */
36 #include <linux/ptrace.h>	/* user_enable_single_step */
37 #include <linux/kdebug.h>	/* notifier mechanism */
38 #include "../../mm/internal.h"	/* munlock_vma_page */
39 #include <linux/percpu-rwsem.h>
40 #include <linux/task_work.h>
41 #include <linux/shmem_fs.h>
42 
43 #include <linux/uprobes.h>
44 
45 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
46 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
47 
48 static struct rb_root uprobes_tree = RB_ROOT;
49 /*
50  * allows us to skip the uprobe_mmap if there are no uprobe events active
51  * at this time.  Probably a fine grained per inode count is better?
52  */
53 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
54 
55 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
56 
57 #define UPROBES_HASH_SZ	13
58 /* serialize uprobe->pending_list */
59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
60 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
61 
62 static struct percpu_rw_semaphore dup_mmap_sem;
63 
64 /* Have a copy of original instruction */
65 #define UPROBE_COPY_INSN	0
66 
67 struct uprobe {
68 	struct rb_node		rb_node;	/* node in the rb tree */
69 	atomic_t		ref;
70 	struct rw_semaphore	register_rwsem;
71 	struct rw_semaphore	consumer_rwsem;
72 	struct list_head	pending_list;
73 	struct uprobe_consumer	*consumers;
74 	struct inode		*inode;		/* Also hold a ref to inode */
75 	loff_t			offset;
76 	unsigned long		flags;
77 
78 	/*
79 	 * The generic code assumes that it has two members of unknown type
80 	 * owned by the arch-specific code:
81 	 *
82 	 * 	insn -	copy_insn() saves the original instruction here for
83 	 *		arch_uprobe_analyze_insn().
84 	 *
85 	 *	ixol -	potentially modified instruction to execute out of
86 	 *		line, copied to xol_area by xol_get_insn_slot().
87 	 */
88 	struct arch_uprobe	arch;
89 };
90 
91 /*
92  * Execute out of line area: anonymous executable mapping installed
93  * by the probed task to execute the copy of the original instruction
94  * mangled by set_swbp().
95  *
96  * On a breakpoint hit, thread contests for a slot.  It frees the
97  * slot after singlestep. Currently a fixed number of slots are
98  * allocated.
99  */
100 struct xol_area {
101 	wait_queue_head_t 		wq;		/* if all slots are busy */
102 	atomic_t 			slot_count;	/* number of in-use slots */
103 	unsigned long 			*bitmap;	/* 0 = free slot */
104 
105 	struct vm_special_mapping	xol_mapping;
106 	struct page 			*pages[2];
107 	/*
108 	 * We keep the vma's vm_start rather than a pointer to the vma
109 	 * itself.  The probed process or a naughty kernel module could make
110 	 * the vma go away, and we must handle that reasonably gracefully.
111 	 */
112 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
113 };
114 
115 /*
116  * valid_vma: Verify if the specified vma is an executable vma
117  * Relax restrictions while unregistering: vm_flags might have
118  * changed after breakpoint was inserted.
119  *	- is_register: indicates if we are in register context.
120  *	- Return 1 if the specified virtual address is in an
121  *	  executable vma.
122  */
123 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
124 {
125 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
126 
127 	if (is_register)
128 		flags |= VM_WRITE;
129 
130 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
131 }
132 
133 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
134 {
135 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
136 }
137 
138 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
139 {
140 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
141 }
142 
143 /**
144  * __replace_page - replace page in vma by new page.
145  * based on replace_page in mm/ksm.c
146  *
147  * @vma:      vma that holds the pte pointing to page
148  * @addr:     address the old @page is mapped at
149  * @page:     the cowed page we are replacing by kpage
150  * @kpage:    the modified page we replace page by
151  *
152  * Returns 0 on success, -EFAULT on failure.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 				struct page *old_page, struct page *new_page)
156 {
157 	struct mm_struct *mm = vma->vm_mm;
158 	struct page_vma_mapped_walk pvmw = {
159 		.page = old_page,
160 		.vma = vma,
161 		.address = addr,
162 	};
163 	int err;
164 	/* For mmu_notifiers */
165 	const unsigned long mmun_start = addr;
166 	const unsigned long mmun_end   = addr + PAGE_SIZE;
167 	struct mem_cgroup *memcg;
168 
169 	VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
170 
171 	err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
172 			false);
173 	if (err)
174 		return err;
175 
176 	/* For try_to_free_swap() and munlock_vma_page() below */
177 	lock_page(old_page);
178 
179 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
180 	err = -EAGAIN;
181 	if (!page_vma_mapped_walk(&pvmw)) {
182 		mem_cgroup_cancel_charge(new_page, memcg, false);
183 		goto unlock;
184 	}
185 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
186 
187 	get_page(new_page);
188 	page_add_new_anon_rmap(new_page, vma, addr, false);
189 	mem_cgroup_commit_charge(new_page, memcg, false, false);
190 	lru_cache_add_active_or_unevictable(new_page, vma);
191 
192 	if (!PageAnon(old_page)) {
193 		dec_mm_counter(mm, mm_counter_file(old_page));
194 		inc_mm_counter(mm, MM_ANONPAGES);
195 	}
196 
197 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
199 	set_pte_at_notify(mm, addr, pvmw.pte,
200 			mk_pte(new_page, vma->vm_page_prot));
201 
202 	page_remove_rmap(old_page, false);
203 	if (!page_mapped(old_page))
204 		try_to_free_swap(old_page);
205 	page_vma_mapped_walk_done(&pvmw);
206 
207 	if (vma->vm_flags & VM_LOCKED)
208 		munlock_vma_page(old_page);
209 	put_page(old_page);
210 
211 	err = 0;
212  unlock:
213 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
214 	unlock_page(old_page);
215 	return err;
216 }
217 
218 /**
219  * is_swbp_insn - check if instruction is breakpoint instruction.
220  * @insn: instruction to be checked.
221  * Default implementation of is_swbp_insn
222  * Returns true if @insn is a breakpoint instruction.
223  */
224 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
225 {
226 	return *insn == UPROBE_SWBP_INSN;
227 }
228 
229 /**
230  * is_trap_insn - check if instruction is breakpoint instruction.
231  * @insn: instruction to be checked.
232  * Default implementation of is_trap_insn
233  * Returns true if @insn is a breakpoint instruction.
234  *
235  * This function is needed for the case where an architecture has multiple
236  * trap instructions (like powerpc).
237  */
238 bool __weak is_trap_insn(uprobe_opcode_t *insn)
239 {
240 	return is_swbp_insn(insn);
241 }
242 
243 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
244 {
245 	void *kaddr = kmap_atomic(page);
246 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
247 	kunmap_atomic(kaddr);
248 }
249 
250 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
251 {
252 	void *kaddr = kmap_atomic(page);
253 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
254 	kunmap_atomic(kaddr);
255 }
256 
257 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
258 {
259 	uprobe_opcode_t old_opcode;
260 	bool is_swbp;
261 
262 	/*
263 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
264 	 * We do not check if it is any other 'trap variant' which could
265 	 * be conditional trap instruction such as the one powerpc supports.
266 	 *
267 	 * The logic is that we do not care if the underlying instruction
268 	 * is a trap variant; uprobes always wins over any other (gdb)
269 	 * breakpoint.
270 	 */
271 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
272 	is_swbp = is_swbp_insn(&old_opcode);
273 
274 	if (is_swbp_insn(new_opcode)) {
275 		if (is_swbp)		/* register: already installed? */
276 			return 0;
277 	} else {
278 		if (!is_swbp)		/* unregister: was it changed by us? */
279 			return 0;
280 	}
281 
282 	return 1;
283 }
284 
285 /*
286  * NOTE:
287  * Expect the breakpoint instruction to be the smallest size instruction for
288  * the architecture. If an arch has variable length instruction and the
289  * breakpoint instruction is not of the smallest length instruction
290  * supported by that architecture then we need to modify is_trap_at_addr and
291  * uprobe_write_opcode accordingly. This would never be a problem for archs
292  * that have fixed length instructions.
293  *
294  * uprobe_write_opcode - write the opcode at a given virtual address.
295  * @mm: the probed process address space.
296  * @vaddr: the virtual address to store the opcode.
297  * @opcode: opcode to be written at @vaddr.
298  *
299  * Called with mm->mmap_sem held for write.
300  * Return 0 (success) or a negative errno.
301  */
302 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
303 			unsigned long vaddr, uprobe_opcode_t opcode)
304 {
305 	struct page *old_page, *new_page;
306 	struct vm_area_struct *vma;
307 	int ret;
308 
309 retry:
310 	/* Read the page with vaddr into memory */
311 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
312 			FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
313 	if (ret <= 0)
314 		return ret;
315 
316 	ret = verify_opcode(old_page, vaddr, &opcode);
317 	if (ret <= 0)
318 		goto put_old;
319 
320 	ret = anon_vma_prepare(vma);
321 	if (ret)
322 		goto put_old;
323 
324 	ret = -ENOMEM;
325 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
326 	if (!new_page)
327 		goto put_old;
328 
329 	__SetPageUptodate(new_page);
330 	copy_highpage(new_page, old_page);
331 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
332 
333 	ret = __replace_page(vma, vaddr, old_page, new_page);
334 	put_page(new_page);
335 put_old:
336 	put_page(old_page);
337 
338 	if (unlikely(ret == -EAGAIN))
339 		goto retry;
340 	return ret;
341 }
342 
343 /**
344  * set_swbp - store breakpoint at a given address.
345  * @auprobe: arch specific probepoint information.
346  * @mm: the probed process address space.
347  * @vaddr: the virtual address to insert the opcode.
348  *
349  * For mm @mm, store the breakpoint instruction at @vaddr.
350  * Return 0 (success) or a negative errno.
351  */
352 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
353 {
354 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
355 }
356 
357 /**
358  * set_orig_insn - Restore the original instruction.
359  * @mm: the probed process address space.
360  * @auprobe: arch specific probepoint information.
361  * @vaddr: the virtual address to insert the opcode.
362  *
363  * For mm @mm, restore the original opcode (opcode) at @vaddr.
364  * Return 0 (success) or a negative errno.
365  */
366 int __weak
367 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
368 {
369 	return uprobe_write_opcode(auprobe, mm, vaddr,
370 			*(uprobe_opcode_t *)&auprobe->insn);
371 }
372 
373 static struct uprobe *get_uprobe(struct uprobe *uprobe)
374 {
375 	atomic_inc(&uprobe->ref);
376 	return uprobe;
377 }
378 
379 static void put_uprobe(struct uprobe *uprobe)
380 {
381 	if (atomic_dec_and_test(&uprobe->ref))
382 		kfree(uprobe);
383 }
384 
385 static int match_uprobe(struct uprobe *l, struct uprobe *r)
386 {
387 	if (l->inode < r->inode)
388 		return -1;
389 
390 	if (l->inode > r->inode)
391 		return 1;
392 
393 	if (l->offset < r->offset)
394 		return -1;
395 
396 	if (l->offset > r->offset)
397 		return 1;
398 
399 	return 0;
400 }
401 
402 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
403 {
404 	struct uprobe u = { .inode = inode, .offset = offset };
405 	struct rb_node *n = uprobes_tree.rb_node;
406 	struct uprobe *uprobe;
407 	int match;
408 
409 	while (n) {
410 		uprobe = rb_entry(n, struct uprobe, rb_node);
411 		match = match_uprobe(&u, uprobe);
412 		if (!match)
413 			return get_uprobe(uprobe);
414 
415 		if (match < 0)
416 			n = n->rb_left;
417 		else
418 			n = n->rb_right;
419 	}
420 	return NULL;
421 }
422 
423 /*
424  * Find a uprobe corresponding to a given inode:offset
425  * Acquires uprobes_treelock
426  */
427 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
428 {
429 	struct uprobe *uprobe;
430 
431 	spin_lock(&uprobes_treelock);
432 	uprobe = __find_uprobe(inode, offset);
433 	spin_unlock(&uprobes_treelock);
434 
435 	return uprobe;
436 }
437 
438 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
439 {
440 	struct rb_node **p = &uprobes_tree.rb_node;
441 	struct rb_node *parent = NULL;
442 	struct uprobe *u;
443 	int match;
444 
445 	while (*p) {
446 		parent = *p;
447 		u = rb_entry(parent, struct uprobe, rb_node);
448 		match = match_uprobe(uprobe, u);
449 		if (!match)
450 			return get_uprobe(u);
451 
452 		if (match < 0)
453 			p = &parent->rb_left;
454 		else
455 			p = &parent->rb_right;
456 
457 	}
458 
459 	u = NULL;
460 	rb_link_node(&uprobe->rb_node, parent, p);
461 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
462 	/* get access + creation ref */
463 	atomic_set(&uprobe->ref, 2);
464 
465 	return u;
466 }
467 
468 /*
469  * Acquire uprobes_treelock.
470  * Matching uprobe already exists in rbtree;
471  *	increment (access refcount) and return the matching uprobe.
472  *
473  * No matching uprobe; insert the uprobe in rb_tree;
474  *	get a double refcount (access + creation) and return NULL.
475  */
476 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
477 {
478 	struct uprobe *u;
479 
480 	spin_lock(&uprobes_treelock);
481 	u = __insert_uprobe(uprobe);
482 	spin_unlock(&uprobes_treelock);
483 
484 	return u;
485 }
486 
487 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
488 {
489 	struct uprobe *uprobe, *cur_uprobe;
490 
491 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
492 	if (!uprobe)
493 		return NULL;
494 
495 	uprobe->inode = inode;
496 	uprobe->offset = offset;
497 	init_rwsem(&uprobe->register_rwsem);
498 	init_rwsem(&uprobe->consumer_rwsem);
499 
500 	/* add to uprobes_tree, sorted on inode:offset */
501 	cur_uprobe = insert_uprobe(uprobe);
502 	/* a uprobe exists for this inode:offset combination */
503 	if (cur_uprobe) {
504 		kfree(uprobe);
505 		uprobe = cur_uprobe;
506 	}
507 
508 	return uprobe;
509 }
510 
511 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
512 {
513 	down_write(&uprobe->consumer_rwsem);
514 	uc->next = uprobe->consumers;
515 	uprobe->consumers = uc;
516 	up_write(&uprobe->consumer_rwsem);
517 }
518 
519 /*
520  * For uprobe @uprobe, delete the consumer @uc.
521  * Return true if the @uc is deleted successfully
522  * or return false.
523  */
524 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
525 {
526 	struct uprobe_consumer **con;
527 	bool ret = false;
528 
529 	down_write(&uprobe->consumer_rwsem);
530 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
531 		if (*con == uc) {
532 			*con = uc->next;
533 			ret = true;
534 			break;
535 		}
536 	}
537 	up_write(&uprobe->consumer_rwsem);
538 
539 	return ret;
540 }
541 
542 static int __copy_insn(struct address_space *mapping, struct file *filp,
543 			void *insn, int nbytes, loff_t offset)
544 {
545 	struct page *page;
546 	/*
547 	 * Ensure that the page that has the original instruction is populated
548 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
549 	 * see uprobe_register().
550 	 */
551 	if (mapping->a_ops->readpage)
552 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
553 	else
554 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
555 	if (IS_ERR(page))
556 		return PTR_ERR(page);
557 
558 	copy_from_page(page, offset, insn, nbytes);
559 	put_page(page);
560 
561 	return 0;
562 }
563 
564 static int copy_insn(struct uprobe *uprobe, struct file *filp)
565 {
566 	struct address_space *mapping = uprobe->inode->i_mapping;
567 	loff_t offs = uprobe->offset;
568 	void *insn = &uprobe->arch.insn;
569 	int size = sizeof(uprobe->arch.insn);
570 	int len, err = -EIO;
571 
572 	/* Copy only available bytes, -EIO if nothing was read */
573 	do {
574 		if (offs >= i_size_read(uprobe->inode))
575 			break;
576 
577 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
578 		err = __copy_insn(mapping, filp, insn, len, offs);
579 		if (err)
580 			break;
581 
582 		insn += len;
583 		offs += len;
584 		size -= len;
585 	} while (size);
586 
587 	return err;
588 }
589 
590 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
591 				struct mm_struct *mm, unsigned long vaddr)
592 {
593 	int ret = 0;
594 
595 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
596 		return ret;
597 
598 	/* TODO: move this into _register, until then we abuse this sem. */
599 	down_write(&uprobe->consumer_rwsem);
600 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
601 		goto out;
602 
603 	ret = copy_insn(uprobe, file);
604 	if (ret)
605 		goto out;
606 
607 	ret = -ENOTSUPP;
608 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
609 		goto out;
610 
611 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
612 	if (ret)
613 		goto out;
614 
615 	/* uprobe_write_opcode() assumes we don't cross page boundary */
616 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
617 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
618 
619 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
620 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
621 
622  out:
623 	up_write(&uprobe->consumer_rwsem);
624 
625 	return ret;
626 }
627 
628 static inline bool consumer_filter(struct uprobe_consumer *uc,
629 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
630 {
631 	return !uc->filter || uc->filter(uc, ctx, mm);
632 }
633 
634 static bool filter_chain(struct uprobe *uprobe,
635 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
636 {
637 	struct uprobe_consumer *uc;
638 	bool ret = false;
639 
640 	down_read(&uprobe->consumer_rwsem);
641 	for (uc = uprobe->consumers; uc; uc = uc->next) {
642 		ret = consumer_filter(uc, ctx, mm);
643 		if (ret)
644 			break;
645 	}
646 	up_read(&uprobe->consumer_rwsem);
647 
648 	return ret;
649 }
650 
651 static int
652 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
653 			struct vm_area_struct *vma, unsigned long vaddr)
654 {
655 	bool first_uprobe;
656 	int ret;
657 
658 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
659 	if (ret)
660 		return ret;
661 
662 	/*
663 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
664 	 * the task can hit this breakpoint right after __replace_page().
665 	 */
666 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
667 	if (first_uprobe)
668 		set_bit(MMF_HAS_UPROBES, &mm->flags);
669 
670 	ret = set_swbp(&uprobe->arch, mm, vaddr);
671 	if (!ret)
672 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
673 	else if (first_uprobe)
674 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
675 
676 	return ret;
677 }
678 
679 static int
680 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
681 {
682 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
683 	return set_orig_insn(&uprobe->arch, mm, vaddr);
684 }
685 
686 static inline bool uprobe_is_active(struct uprobe *uprobe)
687 {
688 	return !RB_EMPTY_NODE(&uprobe->rb_node);
689 }
690 /*
691  * There could be threads that have already hit the breakpoint. They
692  * will recheck the current insn and restart if find_uprobe() fails.
693  * See find_active_uprobe().
694  */
695 static void delete_uprobe(struct uprobe *uprobe)
696 {
697 	if (WARN_ON(!uprobe_is_active(uprobe)))
698 		return;
699 
700 	spin_lock(&uprobes_treelock);
701 	rb_erase(&uprobe->rb_node, &uprobes_tree);
702 	spin_unlock(&uprobes_treelock);
703 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
704 	put_uprobe(uprobe);
705 }
706 
707 struct map_info {
708 	struct map_info *next;
709 	struct mm_struct *mm;
710 	unsigned long vaddr;
711 };
712 
713 static inline struct map_info *free_map_info(struct map_info *info)
714 {
715 	struct map_info *next = info->next;
716 	kfree(info);
717 	return next;
718 }
719 
720 static struct map_info *
721 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
722 {
723 	unsigned long pgoff = offset >> PAGE_SHIFT;
724 	struct vm_area_struct *vma;
725 	struct map_info *curr = NULL;
726 	struct map_info *prev = NULL;
727 	struct map_info *info;
728 	int more = 0;
729 
730  again:
731 	i_mmap_lock_read(mapping);
732 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
733 		if (!valid_vma(vma, is_register))
734 			continue;
735 
736 		if (!prev && !more) {
737 			/*
738 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
739 			 * reclaim. This is optimistic, no harm done if it fails.
740 			 */
741 			prev = kmalloc(sizeof(struct map_info),
742 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
743 			if (prev)
744 				prev->next = NULL;
745 		}
746 		if (!prev) {
747 			more++;
748 			continue;
749 		}
750 
751 		if (!mmget_not_zero(vma->vm_mm))
752 			continue;
753 
754 		info = prev;
755 		prev = prev->next;
756 		info->next = curr;
757 		curr = info;
758 
759 		info->mm = vma->vm_mm;
760 		info->vaddr = offset_to_vaddr(vma, offset);
761 	}
762 	i_mmap_unlock_read(mapping);
763 
764 	if (!more)
765 		goto out;
766 
767 	prev = curr;
768 	while (curr) {
769 		mmput(curr->mm);
770 		curr = curr->next;
771 	}
772 
773 	do {
774 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
775 		if (!info) {
776 			curr = ERR_PTR(-ENOMEM);
777 			goto out;
778 		}
779 		info->next = prev;
780 		prev = info;
781 	} while (--more);
782 
783 	goto again;
784  out:
785 	while (prev)
786 		prev = free_map_info(prev);
787 	return curr;
788 }
789 
790 static int
791 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
792 {
793 	bool is_register = !!new;
794 	struct map_info *info;
795 	int err = 0;
796 
797 	percpu_down_write(&dup_mmap_sem);
798 	info = build_map_info(uprobe->inode->i_mapping,
799 					uprobe->offset, is_register);
800 	if (IS_ERR(info)) {
801 		err = PTR_ERR(info);
802 		goto out;
803 	}
804 
805 	while (info) {
806 		struct mm_struct *mm = info->mm;
807 		struct vm_area_struct *vma;
808 
809 		if (err && is_register)
810 			goto free;
811 
812 		down_write(&mm->mmap_sem);
813 		vma = find_vma(mm, info->vaddr);
814 		if (!vma || !valid_vma(vma, is_register) ||
815 		    file_inode(vma->vm_file) != uprobe->inode)
816 			goto unlock;
817 
818 		if (vma->vm_start > info->vaddr ||
819 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
820 			goto unlock;
821 
822 		if (is_register) {
823 			/* consult only the "caller", new consumer. */
824 			if (consumer_filter(new,
825 					UPROBE_FILTER_REGISTER, mm))
826 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
827 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
828 			if (!filter_chain(uprobe,
829 					UPROBE_FILTER_UNREGISTER, mm))
830 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
831 		}
832 
833  unlock:
834 		up_write(&mm->mmap_sem);
835  free:
836 		mmput(mm);
837 		info = free_map_info(info);
838 	}
839  out:
840 	percpu_up_write(&dup_mmap_sem);
841 	return err;
842 }
843 
844 static void
845 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
846 {
847 	int err;
848 
849 	if (WARN_ON(!consumer_del(uprobe, uc)))
850 		return;
851 
852 	err = register_for_each_vma(uprobe, NULL);
853 	/* TODO : cant unregister? schedule a worker thread */
854 	if (!uprobe->consumers && !err)
855 		delete_uprobe(uprobe);
856 }
857 
858 /*
859  * uprobe_unregister - unregister an already registered probe.
860  * @inode: the file in which the probe has to be removed.
861  * @offset: offset from the start of the file.
862  * @uc: identify which probe if multiple probes are colocated.
863  */
864 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
865 {
866 	struct uprobe *uprobe;
867 
868 	uprobe = find_uprobe(inode, offset);
869 	if (WARN_ON(!uprobe))
870 		return;
871 
872 	down_write(&uprobe->register_rwsem);
873 	__uprobe_unregister(uprobe, uc);
874 	up_write(&uprobe->register_rwsem);
875 	put_uprobe(uprobe);
876 }
877 EXPORT_SYMBOL_GPL(uprobe_unregister);
878 
879 /*
880  * __uprobe_register - register a probe
881  * @inode: the file in which the probe has to be placed.
882  * @offset: offset from the start of the file.
883  * @uc: information on howto handle the probe..
884  *
885  * Apart from the access refcount, __uprobe_register() takes a creation
886  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
887  * inserted into the rbtree (i.e first consumer for a @inode:@offset
888  * tuple).  Creation refcount stops uprobe_unregister from freeing the
889  * @uprobe even before the register operation is complete. Creation
890  * refcount is released when the last @uc for the @uprobe
891  * unregisters. Caller of __uprobe_register() is required to keep @inode
892  * (and the containing mount) referenced.
893  *
894  * Return errno if it cannot successully install probes
895  * else return 0 (success)
896  */
897 static int __uprobe_register(struct inode *inode, loff_t offset,
898 			     struct uprobe_consumer *uc)
899 {
900 	struct uprobe *uprobe;
901 	int ret;
902 
903 	/* Uprobe must have at least one set consumer */
904 	if (!uc->handler && !uc->ret_handler)
905 		return -EINVAL;
906 
907 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
908 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
909 		return -EIO;
910 	/* Racy, just to catch the obvious mistakes */
911 	if (offset > i_size_read(inode))
912 		return -EINVAL;
913 
914  retry:
915 	uprobe = alloc_uprobe(inode, offset);
916 	if (!uprobe)
917 		return -ENOMEM;
918 	/*
919 	 * We can race with uprobe_unregister()->delete_uprobe().
920 	 * Check uprobe_is_active() and retry if it is false.
921 	 */
922 	down_write(&uprobe->register_rwsem);
923 	ret = -EAGAIN;
924 	if (likely(uprobe_is_active(uprobe))) {
925 		consumer_add(uprobe, uc);
926 		ret = register_for_each_vma(uprobe, uc);
927 		if (ret)
928 			__uprobe_unregister(uprobe, uc);
929 	}
930 	up_write(&uprobe->register_rwsem);
931 	put_uprobe(uprobe);
932 
933 	if (unlikely(ret == -EAGAIN))
934 		goto retry;
935 	return ret;
936 }
937 
938 int uprobe_register(struct inode *inode, loff_t offset,
939 		    struct uprobe_consumer *uc)
940 {
941 	return __uprobe_register(inode, offset, uc);
942 }
943 EXPORT_SYMBOL_GPL(uprobe_register);
944 
945 /*
946  * uprobe_apply - unregister an already registered probe.
947  * @inode: the file in which the probe has to be removed.
948  * @offset: offset from the start of the file.
949  * @uc: consumer which wants to add more or remove some breakpoints
950  * @add: add or remove the breakpoints
951  */
952 int uprobe_apply(struct inode *inode, loff_t offset,
953 			struct uprobe_consumer *uc, bool add)
954 {
955 	struct uprobe *uprobe;
956 	struct uprobe_consumer *con;
957 	int ret = -ENOENT;
958 
959 	uprobe = find_uprobe(inode, offset);
960 	if (WARN_ON(!uprobe))
961 		return ret;
962 
963 	down_write(&uprobe->register_rwsem);
964 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
965 		;
966 	if (con)
967 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
968 	up_write(&uprobe->register_rwsem);
969 	put_uprobe(uprobe);
970 
971 	return ret;
972 }
973 
974 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
975 {
976 	struct vm_area_struct *vma;
977 	int err = 0;
978 
979 	down_read(&mm->mmap_sem);
980 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
981 		unsigned long vaddr;
982 		loff_t offset;
983 
984 		if (!valid_vma(vma, false) ||
985 		    file_inode(vma->vm_file) != uprobe->inode)
986 			continue;
987 
988 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
989 		if (uprobe->offset <  offset ||
990 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
991 			continue;
992 
993 		vaddr = offset_to_vaddr(vma, uprobe->offset);
994 		err |= remove_breakpoint(uprobe, mm, vaddr);
995 	}
996 	up_read(&mm->mmap_sem);
997 
998 	return err;
999 }
1000 
1001 static struct rb_node *
1002 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1003 {
1004 	struct rb_node *n = uprobes_tree.rb_node;
1005 
1006 	while (n) {
1007 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1008 
1009 		if (inode < u->inode) {
1010 			n = n->rb_left;
1011 		} else if (inode > u->inode) {
1012 			n = n->rb_right;
1013 		} else {
1014 			if (max < u->offset)
1015 				n = n->rb_left;
1016 			else if (min > u->offset)
1017 				n = n->rb_right;
1018 			else
1019 				break;
1020 		}
1021 	}
1022 
1023 	return n;
1024 }
1025 
1026 /*
1027  * For a given range in vma, build a list of probes that need to be inserted.
1028  */
1029 static void build_probe_list(struct inode *inode,
1030 				struct vm_area_struct *vma,
1031 				unsigned long start, unsigned long end,
1032 				struct list_head *head)
1033 {
1034 	loff_t min, max;
1035 	struct rb_node *n, *t;
1036 	struct uprobe *u;
1037 
1038 	INIT_LIST_HEAD(head);
1039 	min = vaddr_to_offset(vma, start);
1040 	max = min + (end - start) - 1;
1041 
1042 	spin_lock(&uprobes_treelock);
1043 	n = find_node_in_range(inode, min, max);
1044 	if (n) {
1045 		for (t = n; t; t = rb_prev(t)) {
1046 			u = rb_entry(t, struct uprobe, rb_node);
1047 			if (u->inode != inode || u->offset < min)
1048 				break;
1049 			list_add(&u->pending_list, head);
1050 			get_uprobe(u);
1051 		}
1052 		for (t = n; (t = rb_next(t)); ) {
1053 			u = rb_entry(t, struct uprobe, rb_node);
1054 			if (u->inode != inode || u->offset > max)
1055 				break;
1056 			list_add(&u->pending_list, head);
1057 			get_uprobe(u);
1058 		}
1059 	}
1060 	spin_unlock(&uprobes_treelock);
1061 }
1062 
1063 /*
1064  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1065  *
1066  * Currently we ignore all errors and always return 0, the callers
1067  * can't handle the failure anyway.
1068  */
1069 int uprobe_mmap(struct vm_area_struct *vma)
1070 {
1071 	struct list_head tmp_list;
1072 	struct uprobe *uprobe, *u;
1073 	struct inode *inode;
1074 
1075 	if (no_uprobe_events() || !valid_vma(vma, true))
1076 		return 0;
1077 
1078 	inode = file_inode(vma->vm_file);
1079 	if (!inode)
1080 		return 0;
1081 
1082 	mutex_lock(uprobes_mmap_hash(inode));
1083 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1084 	/*
1085 	 * We can race with uprobe_unregister(), this uprobe can be already
1086 	 * removed. But in this case filter_chain() must return false, all
1087 	 * consumers have gone away.
1088 	 */
1089 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1090 		if (!fatal_signal_pending(current) &&
1091 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1092 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1093 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1094 		}
1095 		put_uprobe(uprobe);
1096 	}
1097 	mutex_unlock(uprobes_mmap_hash(inode));
1098 
1099 	return 0;
1100 }
1101 
1102 static bool
1103 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1104 {
1105 	loff_t min, max;
1106 	struct inode *inode;
1107 	struct rb_node *n;
1108 
1109 	inode = file_inode(vma->vm_file);
1110 
1111 	min = vaddr_to_offset(vma, start);
1112 	max = min + (end - start) - 1;
1113 
1114 	spin_lock(&uprobes_treelock);
1115 	n = find_node_in_range(inode, min, max);
1116 	spin_unlock(&uprobes_treelock);
1117 
1118 	return !!n;
1119 }
1120 
1121 /*
1122  * Called in context of a munmap of a vma.
1123  */
1124 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1125 {
1126 	if (no_uprobe_events() || !valid_vma(vma, false))
1127 		return;
1128 
1129 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1130 		return;
1131 
1132 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1133 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1134 		return;
1135 
1136 	if (vma_has_uprobes(vma, start, end))
1137 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1138 }
1139 
1140 /* Slot allocation for XOL */
1141 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1142 {
1143 	struct vm_area_struct *vma;
1144 	int ret;
1145 
1146 	if (down_write_killable(&mm->mmap_sem))
1147 		return -EINTR;
1148 
1149 	if (mm->uprobes_state.xol_area) {
1150 		ret = -EALREADY;
1151 		goto fail;
1152 	}
1153 
1154 	if (!area->vaddr) {
1155 		/* Try to map as high as possible, this is only a hint. */
1156 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1157 						PAGE_SIZE, 0, 0);
1158 		if (area->vaddr & ~PAGE_MASK) {
1159 			ret = area->vaddr;
1160 			goto fail;
1161 		}
1162 	}
1163 
1164 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1165 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1166 				&area->xol_mapping);
1167 	if (IS_ERR(vma)) {
1168 		ret = PTR_ERR(vma);
1169 		goto fail;
1170 	}
1171 
1172 	ret = 0;
1173 	/* pairs with get_xol_area() */
1174 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1175  fail:
1176 	up_write(&mm->mmap_sem);
1177 
1178 	return ret;
1179 }
1180 
1181 static struct xol_area *__create_xol_area(unsigned long vaddr)
1182 {
1183 	struct mm_struct *mm = current->mm;
1184 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1185 	struct xol_area *area;
1186 
1187 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1188 	if (unlikely(!area))
1189 		goto out;
1190 
1191 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1192 			       GFP_KERNEL);
1193 	if (!area->bitmap)
1194 		goto free_area;
1195 
1196 	area->xol_mapping.name = "[uprobes]";
1197 	area->xol_mapping.fault = NULL;
1198 	area->xol_mapping.pages = area->pages;
1199 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1200 	if (!area->pages[0])
1201 		goto free_bitmap;
1202 	area->pages[1] = NULL;
1203 
1204 	area->vaddr = vaddr;
1205 	init_waitqueue_head(&area->wq);
1206 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1207 	set_bit(0, area->bitmap);
1208 	atomic_set(&area->slot_count, 1);
1209 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1210 
1211 	if (!xol_add_vma(mm, area))
1212 		return area;
1213 
1214 	__free_page(area->pages[0]);
1215  free_bitmap:
1216 	kfree(area->bitmap);
1217  free_area:
1218 	kfree(area);
1219  out:
1220 	return NULL;
1221 }
1222 
1223 /*
1224  * get_xol_area - Allocate process's xol_area if necessary.
1225  * This area will be used for storing instructions for execution out of line.
1226  *
1227  * Returns the allocated area or NULL.
1228  */
1229 static struct xol_area *get_xol_area(void)
1230 {
1231 	struct mm_struct *mm = current->mm;
1232 	struct xol_area *area;
1233 
1234 	if (!mm->uprobes_state.xol_area)
1235 		__create_xol_area(0);
1236 
1237 	/* Pairs with xol_add_vma() smp_store_release() */
1238 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1239 	return area;
1240 }
1241 
1242 /*
1243  * uprobe_clear_state - Free the area allocated for slots.
1244  */
1245 void uprobe_clear_state(struct mm_struct *mm)
1246 {
1247 	struct xol_area *area = mm->uprobes_state.xol_area;
1248 
1249 	if (!area)
1250 		return;
1251 
1252 	put_page(area->pages[0]);
1253 	kfree(area->bitmap);
1254 	kfree(area);
1255 }
1256 
1257 void uprobe_start_dup_mmap(void)
1258 {
1259 	percpu_down_read(&dup_mmap_sem);
1260 }
1261 
1262 void uprobe_end_dup_mmap(void)
1263 {
1264 	percpu_up_read(&dup_mmap_sem);
1265 }
1266 
1267 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1268 {
1269 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1270 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1271 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1272 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1273 	}
1274 }
1275 
1276 /*
1277  *  - search for a free slot.
1278  */
1279 static unsigned long xol_take_insn_slot(struct xol_area *area)
1280 {
1281 	unsigned long slot_addr;
1282 	int slot_nr;
1283 
1284 	do {
1285 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1286 		if (slot_nr < UINSNS_PER_PAGE) {
1287 			if (!test_and_set_bit(slot_nr, area->bitmap))
1288 				break;
1289 
1290 			slot_nr = UINSNS_PER_PAGE;
1291 			continue;
1292 		}
1293 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1294 	} while (slot_nr >= UINSNS_PER_PAGE);
1295 
1296 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1297 	atomic_inc(&area->slot_count);
1298 
1299 	return slot_addr;
1300 }
1301 
1302 /*
1303  * xol_get_insn_slot - allocate a slot for xol.
1304  * Returns the allocated slot address or 0.
1305  */
1306 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1307 {
1308 	struct xol_area *area;
1309 	unsigned long xol_vaddr;
1310 
1311 	area = get_xol_area();
1312 	if (!area)
1313 		return 0;
1314 
1315 	xol_vaddr = xol_take_insn_slot(area);
1316 	if (unlikely(!xol_vaddr))
1317 		return 0;
1318 
1319 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1320 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1321 
1322 	return xol_vaddr;
1323 }
1324 
1325 /*
1326  * xol_free_insn_slot - If slot was earlier allocated by
1327  * @xol_get_insn_slot(), make the slot available for
1328  * subsequent requests.
1329  */
1330 static void xol_free_insn_slot(struct task_struct *tsk)
1331 {
1332 	struct xol_area *area;
1333 	unsigned long vma_end;
1334 	unsigned long slot_addr;
1335 
1336 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1337 		return;
1338 
1339 	slot_addr = tsk->utask->xol_vaddr;
1340 	if (unlikely(!slot_addr))
1341 		return;
1342 
1343 	area = tsk->mm->uprobes_state.xol_area;
1344 	vma_end = area->vaddr + PAGE_SIZE;
1345 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1346 		unsigned long offset;
1347 		int slot_nr;
1348 
1349 		offset = slot_addr - area->vaddr;
1350 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1351 		if (slot_nr >= UINSNS_PER_PAGE)
1352 			return;
1353 
1354 		clear_bit(slot_nr, area->bitmap);
1355 		atomic_dec(&area->slot_count);
1356 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1357 		if (waitqueue_active(&area->wq))
1358 			wake_up(&area->wq);
1359 
1360 		tsk->utask->xol_vaddr = 0;
1361 	}
1362 }
1363 
1364 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1365 				  void *src, unsigned long len)
1366 {
1367 	/* Initialize the slot */
1368 	copy_to_page(page, vaddr, src, len);
1369 
1370 	/*
1371 	 * We probably need flush_icache_user_range() but it needs vma.
1372 	 * This should work on most of architectures by default. If
1373 	 * architecture needs to do something different it can define
1374 	 * its own version of the function.
1375 	 */
1376 	flush_dcache_page(page);
1377 }
1378 
1379 /**
1380  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1381  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1382  * instruction.
1383  * Return the address of the breakpoint instruction.
1384  */
1385 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1386 {
1387 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1388 }
1389 
1390 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1391 {
1392 	struct uprobe_task *utask = current->utask;
1393 
1394 	if (unlikely(utask && utask->active_uprobe))
1395 		return utask->vaddr;
1396 
1397 	return instruction_pointer(regs);
1398 }
1399 
1400 static struct return_instance *free_ret_instance(struct return_instance *ri)
1401 {
1402 	struct return_instance *next = ri->next;
1403 	put_uprobe(ri->uprobe);
1404 	kfree(ri);
1405 	return next;
1406 }
1407 
1408 /*
1409  * Called with no locks held.
1410  * Called in context of an exiting or an exec-ing thread.
1411  */
1412 void uprobe_free_utask(struct task_struct *t)
1413 {
1414 	struct uprobe_task *utask = t->utask;
1415 	struct return_instance *ri;
1416 
1417 	if (!utask)
1418 		return;
1419 
1420 	if (utask->active_uprobe)
1421 		put_uprobe(utask->active_uprobe);
1422 
1423 	ri = utask->return_instances;
1424 	while (ri)
1425 		ri = free_ret_instance(ri);
1426 
1427 	xol_free_insn_slot(t);
1428 	kfree(utask);
1429 	t->utask = NULL;
1430 }
1431 
1432 /*
1433  * Allocate a uprobe_task object for the task if if necessary.
1434  * Called when the thread hits a breakpoint.
1435  *
1436  * Returns:
1437  * - pointer to new uprobe_task on success
1438  * - NULL otherwise
1439  */
1440 static struct uprobe_task *get_utask(void)
1441 {
1442 	if (!current->utask)
1443 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1444 	return current->utask;
1445 }
1446 
1447 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1448 {
1449 	struct uprobe_task *n_utask;
1450 	struct return_instance **p, *o, *n;
1451 
1452 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1453 	if (!n_utask)
1454 		return -ENOMEM;
1455 	t->utask = n_utask;
1456 
1457 	p = &n_utask->return_instances;
1458 	for (o = o_utask->return_instances; o; o = o->next) {
1459 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1460 		if (!n)
1461 			return -ENOMEM;
1462 
1463 		*n = *o;
1464 		get_uprobe(n->uprobe);
1465 		n->next = NULL;
1466 
1467 		*p = n;
1468 		p = &n->next;
1469 		n_utask->depth++;
1470 	}
1471 
1472 	return 0;
1473 }
1474 
1475 static void uprobe_warn(struct task_struct *t, const char *msg)
1476 {
1477 	pr_warn("uprobe: %s:%d failed to %s\n",
1478 			current->comm, current->pid, msg);
1479 }
1480 
1481 static void dup_xol_work(struct callback_head *work)
1482 {
1483 	if (current->flags & PF_EXITING)
1484 		return;
1485 
1486 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1487 			!fatal_signal_pending(current))
1488 		uprobe_warn(current, "dup xol area");
1489 }
1490 
1491 /*
1492  * Called in context of a new clone/fork from copy_process.
1493  */
1494 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1495 {
1496 	struct uprobe_task *utask = current->utask;
1497 	struct mm_struct *mm = current->mm;
1498 	struct xol_area *area;
1499 
1500 	t->utask = NULL;
1501 
1502 	if (!utask || !utask->return_instances)
1503 		return;
1504 
1505 	if (mm == t->mm && !(flags & CLONE_VFORK))
1506 		return;
1507 
1508 	if (dup_utask(t, utask))
1509 		return uprobe_warn(t, "dup ret instances");
1510 
1511 	/* The task can fork() after dup_xol_work() fails */
1512 	area = mm->uprobes_state.xol_area;
1513 	if (!area)
1514 		return uprobe_warn(t, "dup xol area");
1515 
1516 	if (mm == t->mm)
1517 		return;
1518 
1519 	t->utask->dup_xol_addr = area->vaddr;
1520 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1521 	task_work_add(t, &t->utask->dup_xol_work, true);
1522 }
1523 
1524 /*
1525  * Current area->vaddr notion assume the trampoline address is always
1526  * equal area->vaddr.
1527  *
1528  * Returns -1 in case the xol_area is not allocated.
1529  */
1530 static unsigned long get_trampoline_vaddr(void)
1531 {
1532 	struct xol_area *area;
1533 	unsigned long trampoline_vaddr = -1;
1534 
1535 	/* Pairs with xol_add_vma() smp_store_release() */
1536 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1537 	if (area)
1538 		trampoline_vaddr = area->vaddr;
1539 
1540 	return trampoline_vaddr;
1541 }
1542 
1543 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1544 					struct pt_regs *regs)
1545 {
1546 	struct return_instance *ri = utask->return_instances;
1547 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1548 
1549 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1550 		ri = free_ret_instance(ri);
1551 		utask->depth--;
1552 	}
1553 	utask->return_instances = ri;
1554 }
1555 
1556 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1557 {
1558 	struct return_instance *ri;
1559 	struct uprobe_task *utask;
1560 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1561 	bool chained;
1562 
1563 	if (!get_xol_area())
1564 		return;
1565 
1566 	utask = get_utask();
1567 	if (!utask)
1568 		return;
1569 
1570 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1571 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1572 				" nestedness limit pid/tgid=%d/%d\n",
1573 				current->pid, current->tgid);
1574 		return;
1575 	}
1576 
1577 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1578 	if (!ri)
1579 		return;
1580 
1581 	trampoline_vaddr = get_trampoline_vaddr();
1582 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1583 	if (orig_ret_vaddr == -1)
1584 		goto fail;
1585 
1586 	/* drop the entries invalidated by longjmp() */
1587 	chained = (orig_ret_vaddr == trampoline_vaddr);
1588 	cleanup_return_instances(utask, chained, regs);
1589 
1590 	/*
1591 	 * We don't want to keep trampoline address in stack, rather keep the
1592 	 * original return address of first caller thru all the consequent
1593 	 * instances. This also makes breakpoint unwrapping easier.
1594 	 */
1595 	if (chained) {
1596 		if (!utask->return_instances) {
1597 			/*
1598 			 * This situation is not possible. Likely we have an
1599 			 * attack from user-space.
1600 			 */
1601 			uprobe_warn(current, "handle tail call");
1602 			goto fail;
1603 		}
1604 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1605 	}
1606 
1607 	ri->uprobe = get_uprobe(uprobe);
1608 	ri->func = instruction_pointer(regs);
1609 	ri->stack = user_stack_pointer(regs);
1610 	ri->orig_ret_vaddr = orig_ret_vaddr;
1611 	ri->chained = chained;
1612 
1613 	utask->depth++;
1614 	ri->next = utask->return_instances;
1615 	utask->return_instances = ri;
1616 
1617 	return;
1618  fail:
1619 	kfree(ri);
1620 }
1621 
1622 /* Prepare to single-step probed instruction out of line. */
1623 static int
1624 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1625 {
1626 	struct uprobe_task *utask;
1627 	unsigned long xol_vaddr;
1628 	int err;
1629 
1630 	utask = get_utask();
1631 	if (!utask)
1632 		return -ENOMEM;
1633 
1634 	xol_vaddr = xol_get_insn_slot(uprobe);
1635 	if (!xol_vaddr)
1636 		return -ENOMEM;
1637 
1638 	utask->xol_vaddr = xol_vaddr;
1639 	utask->vaddr = bp_vaddr;
1640 
1641 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1642 	if (unlikely(err)) {
1643 		xol_free_insn_slot(current);
1644 		return err;
1645 	}
1646 
1647 	utask->active_uprobe = uprobe;
1648 	utask->state = UTASK_SSTEP;
1649 	return 0;
1650 }
1651 
1652 /*
1653  * If we are singlestepping, then ensure this thread is not connected to
1654  * non-fatal signals until completion of singlestep.  When xol insn itself
1655  * triggers the signal,  restart the original insn even if the task is
1656  * already SIGKILL'ed (since coredump should report the correct ip).  This
1657  * is even more important if the task has a handler for SIGSEGV/etc, The
1658  * _same_ instruction should be repeated again after return from the signal
1659  * handler, and SSTEP can never finish in this case.
1660  */
1661 bool uprobe_deny_signal(void)
1662 {
1663 	struct task_struct *t = current;
1664 	struct uprobe_task *utask = t->utask;
1665 
1666 	if (likely(!utask || !utask->active_uprobe))
1667 		return false;
1668 
1669 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1670 
1671 	if (signal_pending(t)) {
1672 		spin_lock_irq(&t->sighand->siglock);
1673 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1674 		spin_unlock_irq(&t->sighand->siglock);
1675 
1676 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1677 			utask->state = UTASK_SSTEP_TRAPPED;
1678 			set_tsk_thread_flag(t, TIF_UPROBE);
1679 		}
1680 	}
1681 
1682 	return true;
1683 }
1684 
1685 static void mmf_recalc_uprobes(struct mm_struct *mm)
1686 {
1687 	struct vm_area_struct *vma;
1688 
1689 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1690 		if (!valid_vma(vma, false))
1691 			continue;
1692 		/*
1693 		 * This is not strictly accurate, we can race with
1694 		 * uprobe_unregister() and see the already removed
1695 		 * uprobe if delete_uprobe() was not yet called.
1696 		 * Or this uprobe can be filtered out.
1697 		 */
1698 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1699 			return;
1700 	}
1701 
1702 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1703 }
1704 
1705 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1706 {
1707 	struct page *page;
1708 	uprobe_opcode_t opcode;
1709 	int result;
1710 
1711 	pagefault_disable();
1712 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1713 	pagefault_enable();
1714 
1715 	if (likely(result == 0))
1716 		goto out;
1717 
1718 	/*
1719 	 * The NULL 'tsk' here ensures that any faults that occur here
1720 	 * will not be accounted to the task.  'mm' *is* current->mm,
1721 	 * but we treat this as a 'remote' access since it is
1722 	 * essentially a kernel access to the memory.
1723 	 */
1724 	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1725 			NULL, NULL);
1726 	if (result < 0)
1727 		return result;
1728 
1729 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1730 	put_page(page);
1731  out:
1732 	/* This needs to return true for any variant of the trap insn */
1733 	return is_trap_insn(&opcode);
1734 }
1735 
1736 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1737 {
1738 	struct mm_struct *mm = current->mm;
1739 	struct uprobe *uprobe = NULL;
1740 	struct vm_area_struct *vma;
1741 
1742 	down_read(&mm->mmap_sem);
1743 	vma = find_vma(mm, bp_vaddr);
1744 	if (vma && vma->vm_start <= bp_vaddr) {
1745 		if (valid_vma(vma, false)) {
1746 			struct inode *inode = file_inode(vma->vm_file);
1747 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1748 
1749 			uprobe = find_uprobe(inode, offset);
1750 		}
1751 
1752 		if (!uprobe)
1753 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1754 	} else {
1755 		*is_swbp = -EFAULT;
1756 	}
1757 
1758 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1759 		mmf_recalc_uprobes(mm);
1760 	up_read(&mm->mmap_sem);
1761 
1762 	return uprobe;
1763 }
1764 
1765 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1766 {
1767 	struct uprobe_consumer *uc;
1768 	int remove = UPROBE_HANDLER_REMOVE;
1769 	bool need_prep = false; /* prepare return uprobe, when needed */
1770 
1771 	down_read(&uprobe->register_rwsem);
1772 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1773 		int rc = 0;
1774 
1775 		if (uc->handler) {
1776 			rc = uc->handler(uc, regs);
1777 			WARN(rc & ~UPROBE_HANDLER_MASK,
1778 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1779 		}
1780 
1781 		if (uc->ret_handler)
1782 			need_prep = true;
1783 
1784 		remove &= rc;
1785 	}
1786 
1787 	if (need_prep && !remove)
1788 		prepare_uretprobe(uprobe, regs); /* put bp at return */
1789 
1790 	if (remove && uprobe->consumers) {
1791 		WARN_ON(!uprobe_is_active(uprobe));
1792 		unapply_uprobe(uprobe, current->mm);
1793 	}
1794 	up_read(&uprobe->register_rwsem);
1795 }
1796 
1797 static void
1798 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1799 {
1800 	struct uprobe *uprobe = ri->uprobe;
1801 	struct uprobe_consumer *uc;
1802 
1803 	down_read(&uprobe->register_rwsem);
1804 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1805 		if (uc->ret_handler)
1806 			uc->ret_handler(uc, ri->func, regs);
1807 	}
1808 	up_read(&uprobe->register_rwsem);
1809 }
1810 
1811 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1812 {
1813 	bool chained;
1814 
1815 	do {
1816 		chained = ri->chained;
1817 		ri = ri->next;	/* can't be NULL if chained */
1818 	} while (chained);
1819 
1820 	return ri;
1821 }
1822 
1823 static void handle_trampoline(struct pt_regs *regs)
1824 {
1825 	struct uprobe_task *utask;
1826 	struct return_instance *ri, *next;
1827 	bool valid;
1828 
1829 	utask = current->utask;
1830 	if (!utask)
1831 		goto sigill;
1832 
1833 	ri = utask->return_instances;
1834 	if (!ri)
1835 		goto sigill;
1836 
1837 	do {
1838 		/*
1839 		 * We should throw out the frames invalidated by longjmp().
1840 		 * If this chain is valid, then the next one should be alive
1841 		 * or NULL; the latter case means that nobody but ri->func
1842 		 * could hit this trampoline on return. TODO: sigaltstack().
1843 		 */
1844 		next = find_next_ret_chain(ri);
1845 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1846 
1847 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
1848 		do {
1849 			if (valid)
1850 				handle_uretprobe_chain(ri, regs);
1851 			ri = free_ret_instance(ri);
1852 			utask->depth--;
1853 		} while (ri != next);
1854 	} while (!valid);
1855 
1856 	utask->return_instances = ri;
1857 	return;
1858 
1859  sigill:
1860 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1861 	force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1862 
1863 }
1864 
1865 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1866 {
1867 	return false;
1868 }
1869 
1870 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1871 					struct pt_regs *regs)
1872 {
1873 	return true;
1874 }
1875 
1876 /*
1877  * Run handler and ask thread to singlestep.
1878  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1879  */
1880 static void handle_swbp(struct pt_regs *regs)
1881 {
1882 	struct uprobe *uprobe;
1883 	unsigned long bp_vaddr;
1884 	int uninitialized_var(is_swbp);
1885 
1886 	bp_vaddr = uprobe_get_swbp_addr(regs);
1887 	if (bp_vaddr == get_trampoline_vaddr())
1888 		return handle_trampoline(regs);
1889 
1890 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1891 	if (!uprobe) {
1892 		if (is_swbp > 0) {
1893 			/* No matching uprobe; signal SIGTRAP. */
1894 			send_sig(SIGTRAP, current, 0);
1895 		} else {
1896 			/*
1897 			 * Either we raced with uprobe_unregister() or we can't
1898 			 * access this memory. The latter is only possible if
1899 			 * another thread plays with our ->mm. In both cases
1900 			 * we can simply restart. If this vma was unmapped we
1901 			 * can pretend this insn was not executed yet and get
1902 			 * the (correct) SIGSEGV after restart.
1903 			 */
1904 			instruction_pointer_set(regs, bp_vaddr);
1905 		}
1906 		return;
1907 	}
1908 
1909 	/* change it in advance for ->handler() and restart */
1910 	instruction_pointer_set(regs, bp_vaddr);
1911 
1912 	/*
1913 	 * TODO: move copy_insn/etc into _register and remove this hack.
1914 	 * After we hit the bp, _unregister + _register can install the
1915 	 * new and not-yet-analyzed uprobe at the same address, restart.
1916 	 */
1917 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1918 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1919 		goto out;
1920 
1921 	/* Tracing handlers use ->utask to communicate with fetch methods */
1922 	if (!get_utask())
1923 		goto out;
1924 
1925 	if (arch_uprobe_ignore(&uprobe->arch, regs))
1926 		goto out;
1927 
1928 	handler_chain(uprobe, regs);
1929 
1930 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1931 		goto out;
1932 
1933 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1934 		return;
1935 
1936 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1937 out:
1938 	put_uprobe(uprobe);
1939 }
1940 
1941 /*
1942  * Perform required fix-ups and disable singlestep.
1943  * Allow pending signals to take effect.
1944  */
1945 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1946 {
1947 	struct uprobe *uprobe;
1948 	int err = 0;
1949 
1950 	uprobe = utask->active_uprobe;
1951 	if (utask->state == UTASK_SSTEP_ACK)
1952 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1953 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1954 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1955 	else
1956 		WARN_ON_ONCE(1);
1957 
1958 	put_uprobe(uprobe);
1959 	utask->active_uprobe = NULL;
1960 	utask->state = UTASK_RUNNING;
1961 	xol_free_insn_slot(current);
1962 
1963 	spin_lock_irq(&current->sighand->siglock);
1964 	recalc_sigpending(); /* see uprobe_deny_signal() */
1965 	spin_unlock_irq(&current->sighand->siglock);
1966 
1967 	if (unlikely(err)) {
1968 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1969 		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1970 	}
1971 }
1972 
1973 /*
1974  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1975  * allows the thread to return from interrupt. After that handle_swbp()
1976  * sets utask->active_uprobe.
1977  *
1978  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1979  * and allows the thread to return from interrupt.
1980  *
1981  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1982  * uprobe_notify_resume().
1983  */
1984 void uprobe_notify_resume(struct pt_regs *regs)
1985 {
1986 	struct uprobe_task *utask;
1987 
1988 	clear_thread_flag(TIF_UPROBE);
1989 
1990 	utask = current->utask;
1991 	if (utask && utask->active_uprobe)
1992 		handle_singlestep(utask, regs);
1993 	else
1994 		handle_swbp(regs);
1995 }
1996 
1997 /*
1998  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1999  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2000  */
2001 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2002 {
2003 	if (!current->mm)
2004 		return 0;
2005 
2006 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2007 	    (!current->utask || !current->utask->return_instances))
2008 		return 0;
2009 
2010 	set_thread_flag(TIF_UPROBE);
2011 	return 1;
2012 }
2013 
2014 /*
2015  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2016  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2017  */
2018 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2019 {
2020 	struct uprobe_task *utask = current->utask;
2021 
2022 	if (!current->mm || !utask || !utask->active_uprobe)
2023 		/* task is currently not uprobed */
2024 		return 0;
2025 
2026 	utask->state = UTASK_SSTEP_ACK;
2027 	set_thread_flag(TIF_UPROBE);
2028 	return 1;
2029 }
2030 
2031 static struct notifier_block uprobe_exception_nb = {
2032 	.notifier_call		= arch_uprobe_exception_notify,
2033 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2034 };
2035 
2036 static int __init init_uprobes(void)
2037 {
2038 	int i;
2039 
2040 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2041 		mutex_init(&uprobes_mmap_mutex[i]);
2042 
2043 	if (percpu_init_rwsem(&dup_mmap_sem))
2044 		return -ENOMEM;
2045 
2046 	return register_die_notifier(&uprobe_exception_nb);
2047 }
2048 __initcall(init_uprobes);
2049