xref: /openbmc/linux/kernel/events/uprobes.c (revision 95e9fd10)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>		/* anon_vma_prepare */
31 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
32 #include <linux/swap.h>		/* try_to_free_swap */
33 #include <linux/ptrace.h>	/* user_enable_single_step */
34 #include <linux/kdebug.h>	/* notifier mechanism */
35 #include "../../mm/internal.h"	/* munlock_vma_page */
36 
37 #include <linux/uprobes.h>
38 
39 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
41 
42 static struct rb_root uprobes_tree = RB_ROOT;
43 
44 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
45 
46 #define UPROBES_HASH_SZ	13
47 
48 /*
49  * We need separate register/unregister and mmap/munmap lock hashes because
50  * of mmap_sem nesting.
51  *
52  * uprobe_register() needs to install probes on (potentially) all processes
53  * and thus needs to acquire multiple mmap_sems (consequtively, not
54  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55  * for the particular process doing the mmap.
56  *
57  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58  * because of lock order against i_mmap_mutex. This means there's a hole in
59  * the register vma iteration where a mmap() can happen.
60  *
61  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62  * install a probe where one is already installed.
63  */
64 
65 /* serialize (un)register */
66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 
68 #define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 
70 /* serialize uprobe->pending_list */
71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73 
74 /*
75  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76  * events active at this time.  Probably a fine grained per inode count is
77  * better?
78  */
79 static atomic_t uprobe_events = ATOMIC_INIT(0);
80 
81 struct uprobe {
82 	struct rb_node		rb_node;	/* node in the rb tree */
83 	atomic_t		ref;
84 	struct rw_semaphore	consumer_rwsem;
85 	struct list_head	pending_list;
86 	struct uprobe_consumer	*consumers;
87 	struct inode		*inode;		/* Also hold a ref to inode */
88 	loff_t			offset;
89 	int			flags;
90 	struct arch_uprobe	arch;
91 };
92 
93 /*
94  * valid_vma: Verify if the specified vma is an executable vma
95  * Relax restrictions while unregistering: vm_flags might have
96  * changed after breakpoint was inserted.
97  *	- is_register: indicates if we are in register context.
98  *	- Return 1 if the specified virtual address is in an
99  *	  executable vma.
100  */
101 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102 {
103 	if (!vma->vm_file)
104 		return false;
105 
106 	if (!is_register)
107 		return true;
108 
109 	if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
110 				== (VM_READ|VM_EXEC))
111 		return true;
112 
113 	return false;
114 }
115 
116 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
117 {
118 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
119 }
120 
121 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
122 {
123 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
124 }
125 
126 /**
127  * __replace_page - replace page in vma by new page.
128  * based on replace_page in mm/ksm.c
129  *
130  * @vma:      vma that holds the pte pointing to page
131  * @addr:     address the old @page is mapped at
132  * @page:     the cowed page we are replacing by kpage
133  * @kpage:    the modified page we replace page by
134  *
135  * Returns 0 on success, -EFAULT on failure.
136  */
137 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
138 				struct page *page, struct page *kpage)
139 {
140 	struct mm_struct *mm = vma->vm_mm;
141 	spinlock_t *ptl;
142 	pte_t *ptep;
143 	int err;
144 
145 	/* For try_to_free_swap() and munlock_vma_page() below */
146 	lock_page(page);
147 
148 	err = -EAGAIN;
149 	ptep = page_check_address(page, mm, addr, &ptl, 0);
150 	if (!ptep)
151 		goto unlock;
152 
153 	get_page(kpage);
154 	page_add_new_anon_rmap(kpage, vma, addr);
155 
156 	if (!PageAnon(page)) {
157 		dec_mm_counter(mm, MM_FILEPAGES);
158 		inc_mm_counter(mm, MM_ANONPAGES);
159 	}
160 
161 	flush_cache_page(vma, addr, pte_pfn(*ptep));
162 	ptep_clear_flush(vma, addr, ptep);
163 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
164 
165 	page_remove_rmap(page);
166 	if (!page_mapped(page))
167 		try_to_free_swap(page);
168 	pte_unmap_unlock(ptep, ptl);
169 
170 	if (vma->vm_flags & VM_LOCKED)
171 		munlock_vma_page(page);
172 	put_page(page);
173 
174 	err = 0;
175  unlock:
176 	unlock_page(page);
177 	return err;
178 }
179 
180 /**
181  * is_swbp_insn - check if instruction is breakpoint instruction.
182  * @insn: instruction to be checked.
183  * Default implementation of is_swbp_insn
184  * Returns true if @insn is a breakpoint instruction.
185  */
186 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
187 {
188 	return *insn == UPROBE_SWBP_INSN;
189 }
190 
191 /*
192  * NOTE:
193  * Expect the breakpoint instruction to be the smallest size instruction for
194  * the architecture. If an arch has variable length instruction and the
195  * breakpoint instruction is not of the smallest length instruction
196  * supported by that architecture then we need to modify read_opcode /
197  * write_opcode accordingly. This would never be a problem for archs that
198  * have fixed length instructions.
199  */
200 
201 /*
202  * write_opcode - write the opcode at a given virtual address.
203  * @auprobe: arch breakpointing information.
204  * @mm: the probed process address space.
205  * @vaddr: the virtual address to store the opcode.
206  * @opcode: opcode to be written at @vaddr.
207  *
208  * Called with mm->mmap_sem held (for read and with a reference to
209  * mm).
210  *
211  * For mm @mm, write the opcode at @vaddr.
212  * Return 0 (success) or a negative errno.
213  */
214 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
215 			unsigned long vaddr, uprobe_opcode_t opcode)
216 {
217 	struct page *old_page, *new_page;
218 	void *vaddr_old, *vaddr_new;
219 	struct vm_area_struct *vma;
220 	int ret;
221 
222 retry:
223 	/* Read the page with vaddr into memory */
224 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
225 	if (ret <= 0)
226 		return ret;
227 
228 	ret = -ENOMEM;
229 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
230 	if (!new_page)
231 		goto put_old;
232 
233 	__SetPageUptodate(new_page);
234 
235 	/* copy the page now that we've got it stable */
236 	vaddr_old = kmap_atomic(old_page);
237 	vaddr_new = kmap_atomic(new_page);
238 
239 	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
240 	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
241 
242 	kunmap_atomic(vaddr_new);
243 	kunmap_atomic(vaddr_old);
244 
245 	ret = anon_vma_prepare(vma);
246 	if (ret)
247 		goto put_new;
248 
249 	ret = __replace_page(vma, vaddr, old_page, new_page);
250 
251 put_new:
252 	page_cache_release(new_page);
253 put_old:
254 	put_page(old_page);
255 
256 	if (unlikely(ret == -EAGAIN))
257 		goto retry;
258 	return ret;
259 }
260 
261 /**
262  * read_opcode - read the opcode at a given virtual address.
263  * @mm: the probed process address space.
264  * @vaddr: the virtual address to read the opcode.
265  * @opcode: location to store the read opcode.
266  *
267  * Called with mm->mmap_sem held (for read and with a reference to
268  * mm.
269  *
270  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
271  * Return 0 (success) or a negative errno.
272  */
273 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
274 {
275 	struct page *page;
276 	void *vaddr_new;
277 	int ret;
278 
279 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
280 	if (ret <= 0)
281 		return ret;
282 
283 	lock_page(page);
284 	vaddr_new = kmap_atomic(page);
285 	vaddr &= ~PAGE_MASK;
286 	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
287 	kunmap_atomic(vaddr_new);
288 	unlock_page(page);
289 
290 	put_page(page);
291 
292 	return 0;
293 }
294 
295 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
296 {
297 	uprobe_opcode_t opcode;
298 	int result;
299 
300 	if (current->mm == mm) {
301 		pagefault_disable();
302 		result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
303 								sizeof(opcode));
304 		pagefault_enable();
305 
306 		if (likely(result == 0))
307 			goto out;
308 	}
309 
310 	result = read_opcode(mm, vaddr, &opcode);
311 	if (result)
312 		return result;
313 out:
314 	if (is_swbp_insn(&opcode))
315 		return 1;
316 
317 	return 0;
318 }
319 
320 /**
321  * set_swbp - store breakpoint at a given address.
322  * @auprobe: arch specific probepoint information.
323  * @mm: the probed process address space.
324  * @vaddr: the virtual address to insert the opcode.
325  *
326  * For mm @mm, store the breakpoint instruction at @vaddr.
327  * Return 0 (success) or a negative errno.
328  */
329 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
330 {
331 	int result;
332 	/*
333 	 * See the comment near uprobes_hash().
334 	 */
335 	result = is_swbp_at_addr(mm, vaddr);
336 	if (result == 1)
337 		return -EEXIST;
338 
339 	if (result)
340 		return result;
341 
342 	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
343 }
344 
345 /**
346  * set_orig_insn - Restore the original instruction.
347  * @mm: the probed process address space.
348  * @auprobe: arch specific probepoint information.
349  * @vaddr: the virtual address to insert the opcode.
350  * @verify: if true, verify existance of breakpoint instruction.
351  *
352  * For mm @mm, restore the original opcode (opcode) at @vaddr.
353  * Return 0 (success) or a negative errno.
354  */
355 int __weak
356 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
357 {
358 	if (verify) {
359 		int result;
360 
361 		result = is_swbp_at_addr(mm, vaddr);
362 		if (!result)
363 			return -EINVAL;
364 
365 		if (result != 1)
366 			return result;
367 	}
368 	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
369 }
370 
371 static int match_uprobe(struct uprobe *l, struct uprobe *r)
372 {
373 	if (l->inode < r->inode)
374 		return -1;
375 
376 	if (l->inode > r->inode)
377 		return 1;
378 
379 	if (l->offset < r->offset)
380 		return -1;
381 
382 	if (l->offset > r->offset)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
389 {
390 	struct uprobe u = { .inode = inode, .offset = offset };
391 	struct rb_node *n = uprobes_tree.rb_node;
392 	struct uprobe *uprobe;
393 	int match;
394 
395 	while (n) {
396 		uprobe = rb_entry(n, struct uprobe, rb_node);
397 		match = match_uprobe(&u, uprobe);
398 		if (!match) {
399 			atomic_inc(&uprobe->ref);
400 			return uprobe;
401 		}
402 
403 		if (match < 0)
404 			n = n->rb_left;
405 		else
406 			n = n->rb_right;
407 	}
408 	return NULL;
409 }
410 
411 /*
412  * Find a uprobe corresponding to a given inode:offset
413  * Acquires uprobes_treelock
414  */
415 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
416 {
417 	struct uprobe *uprobe;
418 	unsigned long flags;
419 
420 	spin_lock_irqsave(&uprobes_treelock, flags);
421 	uprobe = __find_uprobe(inode, offset);
422 	spin_unlock_irqrestore(&uprobes_treelock, flags);
423 
424 	return uprobe;
425 }
426 
427 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
428 {
429 	struct rb_node **p = &uprobes_tree.rb_node;
430 	struct rb_node *parent = NULL;
431 	struct uprobe *u;
432 	int match;
433 
434 	while (*p) {
435 		parent = *p;
436 		u = rb_entry(parent, struct uprobe, rb_node);
437 		match = match_uprobe(uprobe, u);
438 		if (!match) {
439 			atomic_inc(&u->ref);
440 			return u;
441 		}
442 
443 		if (match < 0)
444 			p = &parent->rb_left;
445 		else
446 			p = &parent->rb_right;
447 
448 	}
449 
450 	u = NULL;
451 	rb_link_node(&uprobe->rb_node, parent, p);
452 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
453 	/* get access + creation ref */
454 	atomic_set(&uprobe->ref, 2);
455 
456 	return u;
457 }
458 
459 /*
460  * Acquire uprobes_treelock.
461  * Matching uprobe already exists in rbtree;
462  *	increment (access refcount) and return the matching uprobe.
463  *
464  * No matching uprobe; insert the uprobe in rb_tree;
465  *	get a double refcount (access + creation) and return NULL.
466  */
467 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
468 {
469 	unsigned long flags;
470 	struct uprobe *u;
471 
472 	spin_lock_irqsave(&uprobes_treelock, flags);
473 	u = __insert_uprobe(uprobe);
474 	spin_unlock_irqrestore(&uprobes_treelock, flags);
475 
476 	/* For now assume that the instruction need not be single-stepped */
477 	uprobe->flags |= UPROBE_SKIP_SSTEP;
478 
479 	return u;
480 }
481 
482 static void put_uprobe(struct uprobe *uprobe)
483 {
484 	if (atomic_dec_and_test(&uprobe->ref))
485 		kfree(uprobe);
486 }
487 
488 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
489 {
490 	struct uprobe *uprobe, *cur_uprobe;
491 
492 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
493 	if (!uprobe)
494 		return NULL;
495 
496 	uprobe->inode = igrab(inode);
497 	uprobe->offset = offset;
498 	init_rwsem(&uprobe->consumer_rwsem);
499 
500 	/* add to uprobes_tree, sorted on inode:offset */
501 	cur_uprobe = insert_uprobe(uprobe);
502 
503 	/* a uprobe exists for this inode:offset combination */
504 	if (cur_uprobe) {
505 		kfree(uprobe);
506 		uprobe = cur_uprobe;
507 		iput(inode);
508 	} else {
509 		atomic_inc(&uprobe_events);
510 	}
511 
512 	return uprobe;
513 }
514 
515 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
516 {
517 	struct uprobe_consumer *uc;
518 
519 	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
520 		return;
521 
522 	down_read(&uprobe->consumer_rwsem);
523 	for (uc = uprobe->consumers; uc; uc = uc->next) {
524 		if (!uc->filter || uc->filter(uc, current))
525 			uc->handler(uc, regs);
526 	}
527 	up_read(&uprobe->consumer_rwsem);
528 }
529 
530 /* Returns the previous consumer */
531 static struct uprobe_consumer *
532 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
533 {
534 	down_write(&uprobe->consumer_rwsem);
535 	uc->next = uprobe->consumers;
536 	uprobe->consumers = uc;
537 	up_write(&uprobe->consumer_rwsem);
538 
539 	return uc->next;
540 }
541 
542 /*
543  * For uprobe @uprobe, delete the consumer @uc.
544  * Return true if the @uc is deleted successfully
545  * or return false.
546  */
547 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
548 {
549 	struct uprobe_consumer **con;
550 	bool ret = false;
551 
552 	down_write(&uprobe->consumer_rwsem);
553 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
554 		if (*con == uc) {
555 			*con = uc->next;
556 			ret = true;
557 			break;
558 		}
559 	}
560 	up_write(&uprobe->consumer_rwsem);
561 
562 	return ret;
563 }
564 
565 static int
566 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
567 			unsigned long nbytes, loff_t offset)
568 {
569 	struct page *page;
570 	void *vaddr;
571 	unsigned long off;
572 	pgoff_t idx;
573 
574 	if (!filp)
575 		return -EINVAL;
576 
577 	if (!mapping->a_ops->readpage)
578 		return -EIO;
579 
580 	idx = offset >> PAGE_CACHE_SHIFT;
581 	off = offset & ~PAGE_MASK;
582 
583 	/*
584 	 * Ensure that the page that has the original instruction is
585 	 * populated and in page-cache.
586 	 */
587 	page = read_mapping_page(mapping, idx, filp);
588 	if (IS_ERR(page))
589 		return PTR_ERR(page);
590 
591 	vaddr = kmap_atomic(page);
592 	memcpy(insn, vaddr + off, nbytes);
593 	kunmap_atomic(vaddr);
594 	page_cache_release(page);
595 
596 	return 0;
597 }
598 
599 static int copy_insn(struct uprobe *uprobe, struct file *filp)
600 {
601 	struct address_space *mapping;
602 	unsigned long nbytes;
603 	int bytes;
604 
605 	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
606 	mapping = uprobe->inode->i_mapping;
607 
608 	/* Instruction at end of binary; copy only available bytes */
609 	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
610 		bytes = uprobe->inode->i_size - uprobe->offset;
611 	else
612 		bytes = MAX_UINSN_BYTES;
613 
614 	/* Instruction at the page-boundary; copy bytes in second page */
615 	if (nbytes < bytes) {
616 		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
617 				bytes - nbytes, uprobe->offset + nbytes);
618 		if (err)
619 			return err;
620 		bytes = nbytes;
621 	}
622 	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
623 }
624 
625 /*
626  * How mm->uprobes_state.count gets updated
627  * uprobe_mmap() increments the count if
628  * 	- it successfully adds a breakpoint.
629  * 	- it cannot add a breakpoint, but sees that there is a underlying
630  * 	  breakpoint (via a is_swbp_at_addr()).
631  *
632  * uprobe_munmap() decrements the count if
633  * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
634  * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
635  * 	  unless a uprobe_mmap kicks in, since the old vma would be
636  * 	  dropped just after uprobe_munmap.)
637  *
638  * uprobe_register increments the count if:
639  * 	- it successfully adds a breakpoint.
640  *
641  * uprobe_unregister decrements the count if:
642  * 	- it sees a underlying breakpoint and removes successfully.
643  * 	  (via is_swbp_at_addr)
644  * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
645  * 	  since there is no underlying breakpoint after the
646  * 	  breakpoint removal.)
647  */
648 static int
649 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
650 			struct vm_area_struct *vma, unsigned long vaddr)
651 {
652 	int ret;
653 
654 	/*
655 	 * If probe is being deleted, unregister thread could be done with
656 	 * the vma-rmap-walk through. Adding a probe now can be fatal since
657 	 * nobody will be able to cleanup. Also we could be from fork or
658 	 * mremap path, where the probe might have already been inserted.
659 	 * Hence behave as if probe already existed.
660 	 */
661 	if (!uprobe->consumers)
662 		return -EEXIST;
663 
664 	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
665 		ret = copy_insn(uprobe, vma->vm_file);
666 		if (ret)
667 			return ret;
668 
669 		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
670 			return -ENOTSUPP;
671 
672 		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
673 		if (ret)
674 			return ret;
675 
676 		/* write_opcode() assumes we don't cross page boundary */
677 		BUG_ON((uprobe->offset & ~PAGE_MASK) +
678 				UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
679 
680 		uprobe->flags |= UPROBE_COPY_INSN;
681 	}
682 
683 	/*
684 	 * Ideally, should be updating the probe count after the breakpoint
685 	 * has been successfully inserted. However a thread could hit the
686 	 * breakpoint we just inserted even before the probe count is
687 	 * incremented. If this is the first breakpoint placed, breakpoint
688 	 * notifier might ignore uprobes and pass the trap to the thread.
689 	 * Hence increment before and decrement on failure.
690 	 */
691 	atomic_inc(&mm->uprobes_state.count);
692 	ret = set_swbp(&uprobe->arch, mm, vaddr);
693 	if (ret)
694 		atomic_dec(&mm->uprobes_state.count);
695 
696 	return ret;
697 }
698 
699 static void
700 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
701 {
702 	if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
703 		atomic_dec(&mm->uprobes_state.count);
704 }
705 
706 /*
707  * There could be threads that have already hit the breakpoint. They
708  * will recheck the current insn and restart if find_uprobe() fails.
709  * See find_active_uprobe().
710  */
711 static void delete_uprobe(struct uprobe *uprobe)
712 {
713 	unsigned long flags;
714 
715 	spin_lock_irqsave(&uprobes_treelock, flags);
716 	rb_erase(&uprobe->rb_node, &uprobes_tree);
717 	spin_unlock_irqrestore(&uprobes_treelock, flags);
718 	iput(uprobe->inode);
719 	put_uprobe(uprobe);
720 	atomic_dec(&uprobe_events);
721 }
722 
723 struct map_info {
724 	struct map_info *next;
725 	struct mm_struct *mm;
726 	unsigned long vaddr;
727 };
728 
729 static inline struct map_info *free_map_info(struct map_info *info)
730 {
731 	struct map_info *next = info->next;
732 	kfree(info);
733 	return next;
734 }
735 
736 static struct map_info *
737 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
738 {
739 	unsigned long pgoff = offset >> PAGE_SHIFT;
740 	struct prio_tree_iter iter;
741 	struct vm_area_struct *vma;
742 	struct map_info *curr = NULL;
743 	struct map_info *prev = NULL;
744 	struct map_info *info;
745 	int more = 0;
746 
747  again:
748 	mutex_lock(&mapping->i_mmap_mutex);
749 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
750 		if (!valid_vma(vma, is_register))
751 			continue;
752 
753 		if (!prev && !more) {
754 			/*
755 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
756 			 * reclaim. This is optimistic, no harm done if it fails.
757 			 */
758 			prev = kmalloc(sizeof(struct map_info),
759 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
760 			if (prev)
761 				prev->next = NULL;
762 		}
763 		if (!prev) {
764 			more++;
765 			continue;
766 		}
767 
768 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
769 			continue;
770 
771 		info = prev;
772 		prev = prev->next;
773 		info->next = curr;
774 		curr = info;
775 
776 		info->mm = vma->vm_mm;
777 		info->vaddr = offset_to_vaddr(vma, offset);
778 	}
779 	mutex_unlock(&mapping->i_mmap_mutex);
780 
781 	if (!more)
782 		goto out;
783 
784 	prev = curr;
785 	while (curr) {
786 		mmput(curr->mm);
787 		curr = curr->next;
788 	}
789 
790 	do {
791 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
792 		if (!info) {
793 			curr = ERR_PTR(-ENOMEM);
794 			goto out;
795 		}
796 		info->next = prev;
797 		prev = info;
798 	} while (--more);
799 
800 	goto again;
801  out:
802 	while (prev)
803 		prev = free_map_info(prev);
804 	return curr;
805 }
806 
807 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
808 {
809 	struct map_info *info;
810 	int err = 0;
811 
812 	info = build_map_info(uprobe->inode->i_mapping,
813 					uprobe->offset, is_register);
814 	if (IS_ERR(info))
815 		return PTR_ERR(info);
816 
817 	while (info) {
818 		struct mm_struct *mm = info->mm;
819 		struct vm_area_struct *vma;
820 
821 		if (err)
822 			goto free;
823 
824 		down_write(&mm->mmap_sem);
825 		vma = find_vma(mm, info->vaddr);
826 		if (!vma || !valid_vma(vma, is_register) ||
827 		    vma->vm_file->f_mapping->host != uprobe->inode)
828 			goto unlock;
829 
830 		if (vma->vm_start > info->vaddr ||
831 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
832 			goto unlock;
833 
834 		if (is_register) {
835 			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
836 			/*
837 			 * We can race against uprobe_mmap(), see the
838 			 * comment near uprobe_hash().
839 			 */
840 			if (err == -EEXIST)
841 				err = 0;
842 		} else {
843 			remove_breakpoint(uprobe, mm, info->vaddr);
844 		}
845  unlock:
846 		up_write(&mm->mmap_sem);
847  free:
848 		mmput(mm);
849 		info = free_map_info(info);
850 	}
851 
852 	return err;
853 }
854 
855 static int __uprobe_register(struct uprobe *uprobe)
856 {
857 	return register_for_each_vma(uprobe, true);
858 }
859 
860 static void __uprobe_unregister(struct uprobe *uprobe)
861 {
862 	if (!register_for_each_vma(uprobe, false))
863 		delete_uprobe(uprobe);
864 
865 	/* TODO : cant unregister? schedule a worker thread */
866 }
867 
868 /*
869  * uprobe_register - register a probe
870  * @inode: the file in which the probe has to be placed.
871  * @offset: offset from the start of the file.
872  * @uc: information on howto handle the probe..
873  *
874  * Apart from the access refcount, uprobe_register() takes a creation
875  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
876  * inserted into the rbtree (i.e first consumer for a @inode:@offset
877  * tuple).  Creation refcount stops uprobe_unregister from freeing the
878  * @uprobe even before the register operation is complete. Creation
879  * refcount is released when the last @uc for the @uprobe
880  * unregisters.
881  *
882  * Return errno if it cannot successully install probes
883  * else return 0 (success)
884  */
885 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
886 {
887 	struct uprobe *uprobe;
888 	int ret;
889 
890 	if (!inode || !uc || uc->next)
891 		return -EINVAL;
892 
893 	if (offset > i_size_read(inode))
894 		return -EINVAL;
895 
896 	ret = 0;
897 	mutex_lock(uprobes_hash(inode));
898 	uprobe = alloc_uprobe(inode, offset);
899 
900 	if (uprobe && !consumer_add(uprobe, uc)) {
901 		ret = __uprobe_register(uprobe);
902 		if (ret) {
903 			uprobe->consumers = NULL;
904 			__uprobe_unregister(uprobe);
905 		} else {
906 			uprobe->flags |= UPROBE_RUN_HANDLER;
907 		}
908 	}
909 
910 	mutex_unlock(uprobes_hash(inode));
911 	put_uprobe(uprobe);
912 
913 	return ret;
914 }
915 
916 /*
917  * uprobe_unregister - unregister a already registered probe.
918  * @inode: the file in which the probe has to be removed.
919  * @offset: offset from the start of the file.
920  * @uc: identify which probe if multiple probes are colocated.
921  */
922 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
923 {
924 	struct uprobe *uprobe;
925 
926 	if (!inode || !uc)
927 		return;
928 
929 	uprobe = find_uprobe(inode, offset);
930 	if (!uprobe)
931 		return;
932 
933 	mutex_lock(uprobes_hash(inode));
934 
935 	if (consumer_del(uprobe, uc)) {
936 		if (!uprobe->consumers) {
937 			__uprobe_unregister(uprobe);
938 			uprobe->flags &= ~UPROBE_RUN_HANDLER;
939 		}
940 	}
941 
942 	mutex_unlock(uprobes_hash(inode));
943 	if (uprobe)
944 		put_uprobe(uprobe);
945 }
946 
947 static struct rb_node *
948 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
949 {
950 	struct rb_node *n = uprobes_tree.rb_node;
951 
952 	while (n) {
953 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
954 
955 		if (inode < u->inode) {
956 			n = n->rb_left;
957 		} else if (inode > u->inode) {
958 			n = n->rb_right;
959 		} else {
960 			if (max < u->offset)
961 				n = n->rb_left;
962 			else if (min > u->offset)
963 				n = n->rb_right;
964 			else
965 				break;
966 		}
967 	}
968 
969 	return n;
970 }
971 
972 /*
973  * For a given range in vma, build a list of probes that need to be inserted.
974  */
975 static void build_probe_list(struct inode *inode,
976 				struct vm_area_struct *vma,
977 				unsigned long start, unsigned long end,
978 				struct list_head *head)
979 {
980 	loff_t min, max;
981 	unsigned long flags;
982 	struct rb_node *n, *t;
983 	struct uprobe *u;
984 
985 	INIT_LIST_HEAD(head);
986 	min = vaddr_to_offset(vma, start);
987 	max = min + (end - start) - 1;
988 
989 	spin_lock_irqsave(&uprobes_treelock, flags);
990 	n = find_node_in_range(inode, min, max);
991 	if (n) {
992 		for (t = n; t; t = rb_prev(t)) {
993 			u = rb_entry(t, struct uprobe, rb_node);
994 			if (u->inode != inode || u->offset < min)
995 				break;
996 			list_add(&u->pending_list, head);
997 			atomic_inc(&u->ref);
998 		}
999 		for (t = n; (t = rb_next(t)); ) {
1000 			u = rb_entry(t, struct uprobe, rb_node);
1001 			if (u->inode != inode || u->offset > max)
1002 				break;
1003 			list_add(&u->pending_list, head);
1004 			atomic_inc(&u->ref);
1005 		}
1006 	}
1007 	spin_unlock_irqrestore(&uprobes_treelock, flags);
1008 }
1009 
1010 /*
1011  * Called from mmap_region.
1012  * called with mm->mmap_sem acquired.
1013  *
1014  * Return -ve no if we fail to insert probes and we cannot
1015  * bail-out.
1016  * Return 0 otherwise. i.e:
1017  *
1018  *	- successful insertion of probes
1019  *	- (or) no possible probes to be inserted.
1020  *	- (or) insertion of probes failed but we can bail-out.
1021  */
1022 int uprobe_mmap(struct vm_area_struct *vma)
1023 {
1024 	struct list_head tmp_list;
1025 	struct uprobe *uprobe, *u;
1026 	struct inode *inode;
1027 	int ret, count;
1028 
1029 	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1030 		return 0;
1031 
1032 	inode = vma->vm_file->f_mapping->host;
1033 	if (!inode)
1034 		return 0;
1035 
1036 	mutex_lock(uprobes_mmap_hash(inode));
1037 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1038 
1039 	ret = 0;
1040 	count = 0;
1041 
1042 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1043 		if (!ret) {
1044 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1045 
1046 			ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1047 			/*
1048 			 * We can race against uprobe_register(), see the
1049 			 * comment near uprobe_hash().
1050 			 */
1051 			if (ret == -EEXIST) {
1052 				ret = 0;
1053 
1054 				if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1055 					continue;
1056 
1057 				/*
1058 				 * Unable to insert a breakpoint, but
1059 				 * breakpoint lies underneath. Increment the
1060 				 * probe count.
1061 				 */
1062 				atomic_inc(&vma->vm_mm->uprobes_state.count);
1063 			}
1064 
1065 			if (!ret)
1066 				count++;
1067 		}
1068 		put_uprobe(uprobe);
1069 	}
1070 
1071 	mutex_unlock(uprobes_mmap_hash(inode));
1072 
1073 	if (ret)
1074 		atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1075 
1076 	return ret;
1077 }
1078 
1079 /*
1080  * Called in context of a munmap of a vma.
1081  */
1082 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1083 {
1084 	struct list_head tmp_list;
1085 	struct uprobe *uprobe, *u;
1086 	struct inode *inode;
1087 
1088 	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1089 		return;
1090 
1091 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1092 		return;
1093 
1094 	if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1095 		return;
1096 
1097 	inode = vma->vm_file->f_mapping->host;
1098 	if (!inode)
1099 		return;
1100 
1101 	mutex_lock(uprobes_mmap_hash(inode));
1102 	build_probe_list(inode, vma, start, end, &tmp_list);
1103 
1104 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1105 		unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1106 		/*
1107 		 * An unregister could have removed the probe before
1108 		 * unmap. So check before we decrement the count.
1109 		 */
1110 		if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1111 			atomic_dec(&vma->vm_mm->uprobes_state.count);
1112 		put_uprobe(uprobe);
1113 	}
1114 	mutex_unlock(uprobes_mmap_hash(inode));
1115 }
1116 
1117 /* Slot allocation for XOL */
1118 static int xol_add_vma(struct xol_area *area)
1119 {
1120 	struct mm_struct *mm;
1121 	int ret;
1122 
1123 	area->page = alloc_page(GFP_HIGHUSER);
1124 	if (!area->page)
1125 		return -ENOMEM;
1126 
1127 	ret = -EALREADY;
1128 	mm = current->mm;
1129 
1130 	down_write(&mm->mmap_sem);
1131 	if (mm->uprobes_state.xol_area)
1132 		goto fail;
1133 
1134 	ret = -ENOMEM;
1135 
1136 	/* Try to map as high as possible, this is only a hint. */
1137 	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1138 	if (area->vaddr & ~PAGE_MASK) {
1139 		ret = area->vaddr;
1140 		goto fail;
1141 	}
1142 
1143 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1144 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1145 	if (ret)
1146 		goto fail;
1147 
1148 	smp_wmb();	/* pairs with get_xol_area() */
1149 	mm->uprobes_state.xol_area = area;
1150 	ret = 0;
1151 
1152 fail:
1153 	up_write(&mm->mmap_sem);
1154 	if (ret)
1155 		__free_page(area->page);
1156 
1157 	return ret;
1158 }
1159 
1160 static struct xol_area *get_xol_area(struct mm_struct *mm)
1161 {
1162 	struct xol_area *area;
1163 
1164 	area = mm->uprobes_state.xol_area;
1165 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1166 
1167 	return area;
1168 }
1169 
1170 /*
1171  * xol_alloc_area - Allocate process's xol_area.
1172  * This area will be used for storing instructions for execution out of
1173  * line.
1174  *
1175  * Returns the allocated area or NULL.
1176  */
1177 static struct xol_area *xol_alloc_area(void)
1178 {
1179 	struct xol_area *area;
1180 
1181 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1182 	if (unlikely(!area))
1183 		return NULL;
1184 
1185 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1186 
1187 	if (!area->bitmap)
1188 		goto fail;
1189 
1190 	init_waitqueue_head(&area->wq);
1191 	if (!xol_add_vma(area))
1192 		return area;
1193 
1194 fail:
1195 	kfree(area->bitmap);
1196 	kfree(area);
1197 
1198 	return get_xol_area(current->mm);
1199 }
1200 
1201 /*
1202  * uprobe_clear_state - Free the area allocated for slots.
1203  */
1204 void uprobe_clear_state(struct mm_struct *mm)
1205 {
1206 	struct xol_area *area = mm->uprobes_state.xol_area;
1207 
1208 	if (!area)
1209 		return;
1210 
1211 	put_page(area->page);
1212 	kfree(area->bitmap);
1213 	kfree(area);
1214 }
1215 
1216 /*
1217  * uprobe_reset_state - Free the area allocated for slots.
1218  */
1219 void uprobe_reset_state(struct mm_struct *mm)
1220 {
1221 	mm->uprobes_state.xol_area = NULL;
1222 	atomic_set(&mm->uprobes_state.count, 0);
1223 }
1224 
1225 /*
1226  *  - search for a free slot.
1227  */
1228 static unsigned long xol_take_insn_slot(struct xol_area *area)
1229 {
1230 	unsigned long slot_addr;
1231 	int slot_nr;
1232 
1233 	do {
1234 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1235 		if (slot_nr < UINSNS_PER_PAGE) {
1236 			if (!test_and_set_bit(slot_nr, area->bitmap))
1237 				break;
1238 
1239 			slot_nr = UINSNS_PER_PAGE;
1240 			continue;
1241 		}
1242 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1243 	} while (slot_nr >= UINSNS_PER_PAGE);
1244 
1245 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1246 	atomic_inc(&area->slot_count);
1247 
1248 	return slot_addr;
1249 }
1250 
1251 /*
1252  * xol_get_insn_slot - If was not allocated a slot, then
1253  * allocate a slot.
1254  * Returns the allocated slot address or 0.
1255  */
1256 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1257 {
1258 	struct xol_area *area;
1259 	unsigned long offset;
1260 	void *vaddr;
1261 
1262 	area = get_xol_area(current->mm);
1263 	if (!area) {
1264 		area = xol_alloc_area();
1265 		if (!area)
1266 			return 0;
1267 	}
1268 	current->utask->xol_vaddr = xol_take_insn_slot(area);
1269 
1270 	/*
1271 	 * Initialize the slot if xol_vaddr points to valid
1272 	 * instruction slot.
1273 	 */
1274 	if (unlikely(!current->utask->xol_vaddr))
1275 		return 0;
1276 
1277 	current->utask->vaddr = slot_addr;
1278 	offset = current->utask->xol_vaddr & ~PAGE_MASK;
1279 	vaddr = kmap_atomic(area->page);
1280 	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1281 	kunmap_atomic(vaddr);
1282 
1283 	return current->utask->xol_vaddr;
1284 }
1285 
1286 /*
1287  * xol_free_insn_slot - If slot was earlier allocated by
1288  * @xol_get_insn_slot(), make the slot available for
1289  * subsequent requests.
1290  */
1291 static void xol_free_insn_slot(struct task_struct *tsk)
1292 {
1293 	struct xol_area *area;
1294 	unsigned long vma_end;
1295 	unsigned long slot_addr;
1296 
1297 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1298 		return;
1299 
1300 	slot_addr = tsk->utask->xol_vaddr;
1301 
1302 	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1303 		return;
1304 
1305 	area = tsk->mm->uprobes_state.xol_area;
1306 	vma_end = area->vaddr + PAGE_SIZE;
1307 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1308 		unsigned long offset;
1309 		int slot_nr;
1310 
1311 		offset = slot_addr - area->vaddr;
1312 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1313 		if (slot_nr >= UINSNS_PER_PAGE)
1314 			return;
1315 
1316 		clear_bit(slot_nr, area->bitmap);
1317 		atomic_dec(&area->slot_count);
1318 		if (waitqueue_active(&area->wq))
1319 			wake_up(&area->wq);
1320 
1321 		tsk->utask->xol_vaddr = 0;
1322 	}
1323 }
1324 
1325 /**
1326  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1327  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1328  * instruction.
1329  * Return the address of the breakpoint instruction.
1330  */
1331 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1332 {
1333 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1334 }
1335 
1336 /*
1337  * Called with no locks held.
1338  * Called in context of a exiting or a exec-ing thread.
1339  */
1340 void uprobe_free_utask(struct task_struct *t)
1341 {
1342 	struct uprobe_task *utask = t->utask;
1343 
1344 	if (!utask)
1345 		return;
1346 
1347 	if (utask->active_uprobe)
1348 		put_uprobe(utask->active_uprobe);
1349 
1350 	xol_free_insn_slot(t);
1351 	kfree(utask);
1352 	t->utask = NULL;
1353 }
1354 
1355 /*
1356  * Called in context of a new clone/fork from copy_process.
1357  */
1358 void uprobe_copy_process(struct task_struct *t)
1359 {
1360 	t->utask = NULL;
1361 }
1362 
1363 /*
1364  * Allocate a uprobe_task object for the task.
1365  * Called when the thread hits a breakpoint for the first time.
1366  *
1367  * Returns:
1368  * - pointer to new uprobe_task on success
1369  * - NULL otherwise
1370  */
1371 static struct uprobe_task *add_utask(void)
1372 {
1373 	struct uprobe_task *utask;
1374 
1375 	utask = kzalloc(sizeof *utask, GFP_KERNEL);
1376 	if (unlikely(!utask))
1377 		return NULL;
1378 
1379 	current->utask = utask;
1380 	return utask;
1381 }
1382 
1383 /* Prepare to single-step probed instruction out of line. */
1384 static int
1385 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1386 {
1387 	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1388 		return 0;
1389 
1390 	return -EFAULT;
1391 }
1392 
1393 /*
1394  * If we are singlestepping, then ensure this thread is not connected to
1395  * non-fatal signals until completion of singlestep.  When xol insn itself
1396  * triggers the signal,  restart the original insn even if the task is
1397  * already SIGKILL'ed (since coredump should report the correct ip).  This
1398  * is even more important if the task has a handler for SIGSEGV/etc, The
1399  * _same_ instruction should be repeated again after return from the signal
1400  * handler, and SSTEP can never finish in this case.
1401  */
1402 bool uprobe_deny_signal(void)
1403 {
1404 	struct task_struct *t = current;
1405 	struct uprobe_task *utask = t->utask;
1406 
1407 	if (likely(!utask || !utask->active_uprobe))
1408 		return false;
1409 
1410 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1411 
1412 	if (signal_pending(t)) {
1413 		spin_lock_irq(&t->sighand->siglock);
1414 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1415 		spin_unlock_irq(&t->sighand->siglock);
1416 
1417 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1418 			utask->state = UTASK_SSTEP_TRAPPED;
1419 			set_tsk_thread_flag(t, TIF_UPROBE);
1420 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1421 		}
1422 	}
1423 
1424 	return true;
1425 }
1426 
1427 /*
1428  * Avoid singlestepping the original instruction if the original instruction
1429  * is a NOP or can be emulated.
1430  */
1431 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1432 {
1433 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1434 		return true;
1435 
1436 	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1437 	return false;
1438 }
1439 
1440 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1441 {
1442 	struct mm_struct *mm = current->mm;
1443 	struct uprobe *uprobe = NULL;
1444 	struct vm_area_struct *vma;
1445 
1446 	down_read(&mm->mmap_sem);
1447 	vma = find_vma(mm, bp_vaddr);
1448 	if (vma && vma->vm_start <= bp_vaddr) {
1449 		if (valid_vma(vma, false)) {
1450 			struct inode *inode = vma->vm_file->f_mapping->host;
1451 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1452 
1453 			uprobe = find_uprobe(inode, offset);
1454 		}
1455 
1456 		if (!uprobe)
1457 			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1458 	} else {
1459 		*is_swbp = -EFAULT;
1460 	}
1461 	up_read(&mm->mmap_sem);
1462 
1463 	return uprobe;
1464 }
1465 
1466 /*
1467  * Run handler and ask thread to singlestep.
1468  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1469  */
1470 static void handle_swbp(struct pt_regs *regs)
1471 {
1472 	struct uprobe_task *utask;
1473 	struct uprobe *uprobe;
1474 	unsigned long bp_vaddr;
1475 	int uninitialized_var(is_swbp);
1476 
1477 	bp_vaddr = uprobe_get_swbp_addr(regs);
1478 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1479 
1480 	if (!uprobe) {
1481 		if (is_swbp > 0) {
1482 			/* No matching uprobe; signal SIGTRAP. */
1483 			send_sig(SIGTRAP, current, 0);
1484 		} else {
1485 			/*
1486 			 * Either we raced with uprobe_unregister() or we can't
1487 			 * access this memory. The latter is only possible if
1488 			 * another thread plays with our ->mm. In both cases
1489 			 * we can simply restart. If this vma was unmapped we
1490 			 * can pretend this insn was not executed yet and get
1491 			 * the (correct) SIGSEGV after restart.
1492 			 */
1493 			instruction_pointer_set(regs, bp_vaddr);
1494 		}
1495 		return;
1496 	}
1497 
1498 	utask = current->utask;
1499 	if (!utask) {
1500 		utask = add_utask();
1501 		/* Cannot allocate; re-execute the instruction. */
1502 		if (!utask)
1503 			goto cleanup_ret;
1504 	}
1505 	utask->active_uprobe = uprobe;
1506 	handler_chain(uprobe, regs);
1507 	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1508 		goto cleanup_ret;
1509 
1510 	utask->state = UTASK_SSTEP;
1511 	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1512 		user_enable_single_step(current);
1513 		return;
1514 	}
1515 
1516 cleanup_ret:
1517 	if (utask) {
1518 		utask->active_uprobe = NULL;
1519 		utask->state = UTASK_RUNNING;
1520 	}
1521 	if (uprobe) {
1522 		if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1523 
1524 			/*
1525 			 * cannot singlestep; cannot skip instruction;
1526 			 * re-execute the instruction.
1527 			 */
1528 			instruction_pointer_set(regs, bp_vaddr);
1529 
1530 		put_uprobe(uprobe);
1531 	}
1532 }
1533 
1534 /*
1535  * Perform required fix-ups and disable singlestep.
1536  * Allow pending signals to take effect.
1537  */
1538 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1539 {
1540 	struct uprobe *uprobe;
1541 
1542 	uprobe = utask->active_uprobe;
1543 	if (utask->state == UTASK_SSTEP_ACK)
1544 		arch_uprobe_post_xol(&uprobe->arch, regs);
1545 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1546 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1547 	else
1548 		WARN_ON_ONCE(1);
1549 
1550 	put_uprobe(uprobe);
1551 	utask->active_uprobe = NULL;
1552 	utask->state = UTASK_RUNNING;
1553 	user_disable_single_step(current);
1554 	xol_free_insn_slot(current);
1555 
1556 	spin_lock_irq(&current->sighand->siglock);
1557 	recalc_sigpending(); /* see uprobe_deny_signal() */
1558 	spin_unlock_irq(&current->sighand->siglock);
1559 }
1560 
1561 /*
1562  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1563  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1564  * allows the thread to return from interrupt.
1565  *
1566  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1567  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1568  * interrupt.
1569  *
1570  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1571  * uprobe_notify_resume().
1572  */
1573 void uprobe_notify_resume(struct pt_regs *regs)
1574 {
1575 	struct uprobe_task *utask;
1576 
1577 	utask = current->utask;
1578 	if (!utask || utask->state == UTASK_BP_HIT)
1579 		handle_swbp(regs);
1580 	else
1581 		handle_singlestep(utask, regs);
1582 }
1583 
1584 /*
1585  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1586  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1587  */
1588 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1589 {
1590 	struct uprobe_task *utask;
1591 
1592 	if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1593 		/* task is currently not uprobed */
1594 		return 0;
1595 
1596 	utask = current->utask;
1597 	if (utask)
1598 		utask->state = UTASK_BP_HIT;
1599 
1600 	set_thread_flag(TIF_UPROBE);
1601 
1602 	return 1;
1603 }
1604 
1605 /*
1606  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1607  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1608  */
1609 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1610 {
1611 	struct uprobe_task *utask = current->utask;
1612 
1613 	if (!current->mm || !utask || !utask->active_uprobe)
1614 		/* task is currently not uprobed */
1615 		return 0;
1616 
1617 	utask->state = UTASK_SSTEP_ACK;
1618 	set_thread_flag(TIF_UPROBE);
1619 	return 1;
1620 }
1621 
1622 static struct notifier_block uprobe_exception_nb = {
1623 	.notifier_call		= arch_uprobe_exception_notify,
1624 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1625 };
1626 
1627 static int __init init_uprobes(void)
1628 {
1629 	int i;
1630 
1631 	for (i = 0; i < UPROBES_HASH_SZ; i++) {
1632 		mutex_init(&uprobes_mutex[i]);
1633 		mutex_init(&uprobes_mmap_mutex[i]);
1634 	}
1635 
1636 	return register_die_notifier(&uprobe_exception_nb);
1637 }
1638 module_init(init_uprobes);
1639 
1640 static void __exit exit_uprobes(void)
1641 {
1642 }
1643 module_exit(exit_uprobes);
1644