1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/rmap.h> /* anon_vma_prepare */ 31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 32 #include <linux/swap.h> /* try_to_free_swap */ 33 #include <linux/ptrace.h> /* user_enable_single_step */ 34 #include <linux/kdebug.h> /* notifier mechanism */ 35 #include "../../mm/internal.h" /* munlock_vma_page */ 36 37 #include <linux/uprobes.h> 38 39 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 40 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 41 42 static struct rb_root uprobes_tree = RB_ROOT; 43 44 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 45 46 #define UPROBES_HASH_SZ 13 47 48 /* 49 * We need separate register/unregister and mmap/munmap lock hashes because 50 * of mmap_sem nesting. 51 * 52 * uprobe_register() needs to install probes on (potentially) all processes 53 * and thus needs to acquire multiple mmap_sems (consequtively, not 54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem 55 * for the particular process doing the mmap. 56 * 57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem 58 * because of lock order against i_mmap_mutex. This means there's a hole in 59 * the register vma iteration where a mmap() can happen. 60 * 61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and 62 * install a probe where one is already installed. 63 */ 64 65 /* serialize (un)register */ 66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ]; 67 68 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 69 70 /* serialize uprobe->pending_list */ 71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 72 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 73 74 /* 75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe 76 * events active at this time. Probably a fine grained per inode count is 77 * better? 78 */ 79 static atomic_t uprobe_events = ATOMIC_INIT(0); 80 81 struct uprobe { 82 struct rb_node rb_node; /* node in the rb tree */ 83 atomic_t ref; 84 struct rw_semaphore consumer_rwsem; 85 struct list_head pending_list; 86 struct uprobe_consumer *consumers; 87 struct inode *inode; /* Also hold a ref to inode */ 88 loff_t offset; 89 int flags; 90 struct arch_uprobe arch; 91 }; 92 93 /* 94 * valid_vma: Verify if the specified vma is an executable vma 95 * Relax restrictions while unregistering: vm_flags might have 96 * changed after breakpoint was inserted. 97 * - is_register: indicates if we are in register context. 98 * - Return 1 if the specified virtual address is in an 99 * executable vma. 100 */ 101 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 102 { 103 if (!vma->vm_file) 104 return false; 105 106 if (!is_register) 107 return true; 108 109 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) 110 == (VM_READ|VM_EXEC)) 111 return true; 112 113 return false; 114 } 115 116 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 117 { 118 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 119 } 120 121 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 122 { 123 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 124 } 125 126 /** 127 * __replace_page - replace page in vma by new page. 128 * based on replace_page in mm/ksm.c 129 * 130 * @vma: vma that holds the pte pointing to page 131 * @addr: address the old @page is mapped at 132 * @page: the cowed page we are replacing by kpage 133 * @kpage: the modified page we replace page by 134 * 135 * Returns 0 on success, -EFAULT on failure. 136 */ 137 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 138 struct page *page, struct page *kpage) 139 { 140 struct mm_struct *mm = vma->vm_mm; 141 spinlock_t *ptl; 142 pte_t *ptep; 143 int err; 144 145 /* For try_to_free_swap() and munlock_vma_page() below */ 146 lock_page(page); 147 148 err = -EAGAIN; 149 ptep = page_check_address(page, mm, addr, &ptl, 0); 150 if (!ptep) 151 goto unlock; 152 153 get_page(kpage); 154 page_add_new_anon_rmap(kpage, vma, addr); 155 156 if (!PageAnon(page)) { 157 dec_mm_counter(mm, MM_FILEPAGES); 158 inc_mm_counter(mm, MM_ANONPAGES); 159 } 160 161 flush_cache_page(vma, addr, pte_pfn(*ptep)); 162 ptep_clear_flush(vma, addr, ptep); 163 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 164 165 page_remove_rmap(page); 166 if (!page_mapped(page)) 167 try_to_free_swap(page); 168 pte_unmap_unlock(ptep, ptl); 169 170 if (vma->vm_flags & VM_LOCKED) 171 munlock_vma_page(page); 172 put_page(page); 173 174 err = 0; 175 unlock: 176 unlock_page(page); 177 return err; 178 } 179 180 /** 181 * is_swbp_insn - check if instruction is breakpoint instruction. 182 * @insn: instruction to be checked. 183 * Default implementation of is_swbp_insn 184 * Returns true if @insn is a breakpoint instruction. 185 */ 186 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 187 { 188 return *insn == UPROBE_SWBP_INSN; 189 } 190 191 /* 192 * NOTE: 193 * Expect the breakpoint instruction to be the smallest size instruction for 194 * the architecture. If an arch has variable length instruction and the 195 * breakpoint instruction is not of the smallest length instruction 196 * supported by that architecture then we need to modify read_opcode / 197 * write_opcode accordingly. This would never be a problem for archs that 198 * have fixed length instructions. 199 */ 200 201 /* 202 * write_opcode - write the opcode at a given virtual address. 203 * @auprobe: arch breakpointing information. 204 * @mm: the probed process address space. 205 * @vaddr: the virtual address to store the opcode. 206 * @opcode: opcode to be written at @vaddr. 207 * 208 * Called with mm->mmap_sem held (for read and with a reference to 209 * mm). 210 * 211 * For mm @mm, write the opcode at @vaddr. 212 * Return 0 (success) or a negative errno. 213 */ 214 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 215 unsigned long vaddr, uprobe_opcode_t opcode) 216 { 217 struct page *old_page, *new_page; 218 void *vaddr_old, *vaddr_new; 219 struct vm_area_struct *vma; 220 int ret; 221 222 retry: 223 /* Read the page with vaddr into memory */ 224 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma); 225 if (ret <= 0) 226 return ret; 227 228 ret = -ENOMEM; 229 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 230 if (!new_page) 231 goto put_old; 232 233 __SetPageUptodate(new_page); 234 235 /* copy the page now that we've got it stable */ 236 vaddr_old = kmap_atomic(old_page); 237 vaddr_new = kmap_atomic(new_page); 238 239 memcpy(vaddr_new, vaddr_old, PAGE_SIZE); 240 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE); 241 242 kunmap_atomic(vaddr_new); 243 kunmap_atomic(vaddr_old); 244 245 ret = anon_vma_prepare(vma); 246 if (ret) 247 goto put_new; 248 249 ret = __replace_page(vma, vaddr, old_page, new_page); 250 251 put_new: 252 page_cache_release(new_page); 253 put_old: 254 put_page(old_page); 255 256 if (unlikely(ret == -EAGAIN)) 257 goto retry; 258 return ret; 259 } 260 261 /** 262 * read_opcode - read the opcode at a given virtual address. 263 * @mm: the probed process address space. 264 * @vaddr: the virtual address to read the opcode. 265 * @opcode: location to store the read opcode. 266 * 267 * Called with mm->mmap_sem held (for read and with a reference to 268 * mm. 269 * 270 * For mm @mm, read the opcode at @vaddr and store it in @opcode. 271 * Return 0 (success) or a negative errno. 272 */ 273 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode) 274 { 275 struct page *page; 276 void *vaddr_new; 277 int ret; 278 279 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 280 if (ret <= 0) 281 return ret; 282 283 lock_page(page); 284 vaddr_new = kmap_atomic(page); 285 vaddr &= ~PAGE_MASK; 286 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE); 287 kunmap_atomic(vaddr_new); 288 unlock_page(page); 289 290 put_page(page); 291 292 return 0; 293 } 294 295 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr) 296 { 297 uprobe_opcode_t opcode; 298 int result; 299 300 if (current->mm == mm) { 301 pagefault_disable(); 302 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, 303 sizeof(opcode)); 304 pagefault_enable(); 305 306 if (likely(result == 0)) 307 goto out; 308 } 309 310 result = read_opcode(mm, vaddr, &opcode); 311 if (result) 312 return result; 313 out: 314 if (is_swbp_insn(&opcode)) 315 return 1; 316 317 return 0; 318 } 319 320 /** 321 * set_swbp - store breakpoint at a given address. 322 * @auprobe: arch specific probepoint information. 323 * @mm: the probed process address space. 324 * @vaddr: the virtual address to insert the opcode. 325 * 326 * For mm @mm, store the breakpoint instruction at @vaddr. 327 * Return 0 (success) or a negative errno. 328 */ 329 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 330 { 331 int result; 332 /* 333 * See the comment near uprobes_hash(). 334 */ 335 result = is_swbp_at_addr(mm, vaddr); 336 if (result == 1) 337 return -EEXIST; 338 339 if (result) 340 return result; 341 342 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 343 } 344 345 /** 346 * set_orig_insn - Restore the original instruction. 347 * @mm: the probed process address space. 348 * @auprobe: arch specific probepoint information. 349 * @vaddr: the virtual address to insert the opcode. 350 * @verify: if true, verify existance of breakpoint instruction. 351 * 352 * For mm @mm, restore the original opcode (opcode) at @vaddr. 353 * Return 0 (success) or a negative errno. 354 */ 355 int __weak 356 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify) 357 { 358 if (verify) { 359 int result; 360 361 result = is_swbp_at_addr(mm, vaddr); 362 if (!result) 363 return -EINVAL; 364 365 if (result != 1) 366 return result; 367 } 368 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn); 369 } 370 371 static int match_uprobe(struct uprobe *l, struct uprobe *r) 372 { 373 if (l->inode < r->inode) 374 return -1; 375 376 if (l->inode > r->inode) 377 return 1; 378 379 if (l->offset < r->offset) 380 return -1; 381 382 if (l->offset > r->offset) 383 return 1; 384 385 return 0; 386 } 387 388 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 389 { 390 struct uprobe u = { .inode = inode, .offset = offset }; 391 struct rb_node *n = uprobes_tree.rb_node; 392 struct uprobe *uprobe; 393 int match; 394 395 while (n) { 396 uprobe = rb_entry(n, struct uprobe, rb_node); 397 match = match_uprobe(&u, uprobe); 398 if (!match) { 399 atomic_inc(&uprobe->ref); 400 return uprobe; 401 } 402 403 if (match < 0) 404 n = n->rb_left; 405 else 406 n = n->rb_right; 407 } 408 return NULL; 409 } 410 411 /* 412 * Find a uprobe corresponding to a given inode:offset 413 * Acquires uprobes_treelock 414 */ 415 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 416 { 417 struct uprobe *uprobe; 418 unsigned long flags; 419 420 spin_lock_irqsave(&uprobes_treelock, flags); 421 uprobe = __find_uprobe(inode, offset); 422 spin_unlock_irqrestore(&uprobes_treelock, flags); 423 424 return uprobe; 425 } 426 427 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 428 { 429 struct rb_node **p = &uprobes_tree.rb_node; 430 struct rb_node *parent = NULL; 431 struct uprobe *u; 432 int match; 433 434 while (*p) { 435 parent = *p; 436 u = rb_entry(parent, struct uprobe, rb_node); 437 match = match_uprobe(uprobe, u); 438 if (!match) { 439 atomic_inc(&u->ref); 440 return u; 441 } 442 443 if (match < 0) 444 p = &parent->rb_left; 445 else 446 p = &parent->rb_right; 447 448 } 449 450 u = NULL; 451 rb_link_node(&uprobe->rb_node, parent, p); 452 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 453 /* get access + creation ref */ 454 atomic_set(&uprobe->ref, 2); 455 456 return u; 457 } 458 459 /* 460 * Acquire uprobes_treelock. 461 * Matching uprobe already exists in rbtree; 462 * increment (access refcount) and return the matching uprobe. 463 * 464 * No matching uprobe; insert the uprobe in rb_tree; 465 * get a double refcount (access + creation) and return NULL. 466 */ 467 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 468 { 469 unsigned long flags; 470 struct uprobe *u; 471 472 spin_lock_irqsave(&uprobes_treelock, flags); 473 u = __insert_uprobe(uprobe); 474 spin_unlock_irqrestore(&uprobes_treelock, flags); 475 476 /* For now assume that the instruction need not be single-stepped */ 477 uprobe->flags |= UPROBE_SKIP_SSTEP; 478 479 return u; 480 } 481 482 static void put_uprobe(struct uprobe *uprobe) 483 { 484 if (atomic_dec_and_test(&uprobe->ref)) 485 kfree(uprobe); 486 } 487 488 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 489 { 490 struct uprobe *uprobe, *cur_uprobe; 491 492 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 493 if (!uprobe) 494 return NULL; 495 496 uprobe->inode = igrab(inode); 497 uprobe->offset = offset; 498 init_rwsem(&uprobe->consumer_rwsem); 499 500 /* add to uprobes_tree, sorted on inode:offset */ 501 cur_uprobe = insert_uprobe(uprobe); 502 503 /* a uprobe exists for this inode:offset combination */ 504 if (cur_uprobe) { 505 kfree(uprobe); 506 uprobe = cur_uprobe; 507 iput(inode); 508 } else { 509 atomic_inc(&uprobe_events); 510 } 511 512 return uprobe; 513 } 514 515 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 516 { 517 struct uprobe_consumer *uc; 518 519 if (!(uprobe->flags & UPROBE_RUN_HANDLER)) 520 return; 521 522 down_read(&uprobe->consumer_rwsem); 523 for (uc = uprobe->consumers; uc; uc = uc->next) { 524 if (!uc->filter || uc->filter(uc, current)) 525 uc->handler(uc, regs); 526 } 527 up_read(&uprobe->consumer_rwsem); 528 } 529 530 /* Returns the previous consumer */ 531 static struct uprobe_consumer * 532 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 533 { 534 down_write(&uprobe->consumer_rwsem); 535 uc->next = uprobe->consumers; 536 uprobe->consumers = uc; 537 up_write(&uprobe->consumer_rwsem); 538 539 return uc->next; 540 } 541 542 /* 543 * For uprobe @uprobe, delete the consumer @uc. 544 * Return true if the @uc is deleted successfully 545 * or return false. 546 */ 547 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 548 { 549 struct uprobe_consumer **con; 550 bool ret = false; 551 552 down_write(&uprobe->consumer_rwsem); 553 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 554 if (*con == uc) { 555 *con = uc->next; 556 ret = true; 557 break; 558 } 559 } 560 up_write(&uprobe->consumer_rwsem); 561 562 return ret; 563 } 564 565 static int 566 __copy_insn(struct address_space *mapping, struct file *filp, char *insn, 567 unsigned long nbytes, loff_t offset) 568 { 569 struct page *page; 570 void *vaddr; 571 unsigned long off; 572 pgoff_t idx; 573 574 if (!filp) 575 return -EINVAL; 576 577 if (!mapping->a_ops->readpage) 578 return -EIO; 579 580 idx = offset >> PAGE_CACHE_SHIFT; 581 off = offset & ~PAGE_MASK; 582 583 /* 584 * Ensure that the page that has the original instruction is 585 * populated and in page-cache. 586 */ 587 page = read_mapping_page(mapping, idx, filp); 588 if (IS_ERR(page)) 589 return PTR_ERR(page); 590 591 vaddr = kmap_atomic(page); 592 memcpy(insn, vaddr + off, nbytes); 593 kunmap_atomic(vaddr); 594 page_cache_release(page); 595 596 return 0; 597 } 598 599 static int copy_insn(struct uprobe *uprobe, struct file *filp) 600 { 601 struct address_space *mapping; 602 unsigned long nbytes; 603 int bytes; 604 605 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK); 606 mapping = uprobe->inode->i_mapping; 607 608 /* Instruction at end of binary; copy only available bytes */ 609 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size) 610 bytes = uprobe->inode->i_size - uprobe->offset; 611 else 612 bytes = MAX_UINSN_BYTES; 613 614 /* Instruction at the page-boundary; copy bytes in second page */ 615 if (nbytes < bytes) { 616 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes, 617 bytes - nbytes, uprobe->offset + nbytes); 618 if (err) 619 return err; 620 bytes = nbytes; 621 } 622 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset); 623 } 624 625 /* 626 * How mm->uprobes_state.count gets updated 627 * uprobe_mmap() increments the count if 628 * - it successfully adds a breakpoint. 629 * - it cannot add a breakpoint, but sees that there is a underlying 630 * breakpoint (via a is_swbp_at_addr()). 631 * 632 * uprobe_munmap() decrements the count if 633 * - it sees a underlying breakpoint, (via is_swbp_at_addr) 634 * (Subsequent uprobe_unregister wouldnt find the breakpoint 635 * unless a uprobe_mmap kicks in, since the old vma would be 636 * dropped just after uprobe_munmap.) 637 * 638 * uprobe_register increments the count if: 639 * - it successfully adds a breakpoint. 640 * 641 * uprobe_unregister decrements the count if: 642 * - it sees a underlying breakpoint and removes successfully. 643 * (via is_swbp_at_addr) 644 * (Subsequent uprobe_munmap wouldnt find the breakpoint 645 * since there is no underlying breakpoint after the 646 * breakpoint removal.) 647 */ 648 static int 649 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 650 struct vm_area_struct *vma, unsigned long vaddr) 651 { 652 int ret; 653 654 /* 655 * If probe is being deleted, unregister thread could be done with 656 * the vma-rmap-walk through. Adding a probe now can be fatal since 657 * nobody will be able to cleanup. Also we could be from fork or 658 * mremap path, where the probe might have already been inserted. 659 * Hence behave as if probe already existed. 660 */ 661 if (!uprobe->consumers) 662 return -EEXIST; 663 664 if (!(uprobe->flags & UPROBE_COPY_INSN)) { 665 ret = copy_insn(uprobe, vma->vm_file); 666 if (ret) 667 return ret; 668 669 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn)) 670 return -ENOTSUPP; 671 672 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 673 if (ret) 674 return ret; 675 676 /* write_opcode() assumes we don't cross page boundary */ 677 BUG_ON((uprobe->offset & ~PAGE_MASK) + 678 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 679 680 uprobe->flags |= UPROBE_COPY_INSN; 681 } 682 683 /* 684 * Ideally, should be updating the probe count after the breakpoint 685 * has been successfully inserted. However a thread could hit the 686 * breakpoint we just inserted even before the probe count is 687 * incremented. If this is the first breakpoint placed, breakpoint 688 * notifier might ignore uprobes and pass the trap to the thread. 689 * Hence increment before and decrement on failure. 690 */ 691 atomic_inc(&mm->uprobes_state.count); 692 ret = set_swbp(&uprobe->arch, mm, vaddr); 693 if (ret) 694 atomic_dec(&mm->uprobes_state.count); 695 696 return ret; 697 } 698 699 static void 700 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 701 { 702 if (!set_orig_insn(&uprobe->arch, mm, vaddr, true)) 703 atomic_dec(&mm->uprobes_state.count); 704 } 705 706 /* 707 * There could be threads that have already hit the breakpoint. They 708 * will recheck the current insn and restart if find_uprobe() fails. 709 * See find_active_uprobe(). 710 */ 711 static void delete_uprobe(struct uprobe *uprobe) 712 { 713 unsigned long flags; 714 715 spin_lock_irqsave(&uprobes_treelock, flags); 716 rb_erase(&uprobe->rb_node, &uprobes_tree); 717 spin_unlock_irqrestore(&uprobes_treelock, flags); 718 iput(uprobe->inode); 719 put_uprobe(uprobe); 720 atomic_dec(&uprobe_events); 721 } 722 723 struct map_info { 724 struct map_info *next; 725 struct mm_struct *mm; 726 unsigned long vaddr; 727 }; 728 729 static inline struct map_info *free_map_info(struct map_info *info) 730 { 731 struct map_info *next = info->next; 732 kfree(info); 733 return next; 734 } 735 736 static struct map_info * 737 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 738 { 739 unsigned long pgoff = offset >> PAGE_SHIFT; 740 struct prio_tree_iter iter; 741 struct vm_area_struct *vma; 742 struct map_info *curr = NULL; 743 struct map_info *prev = NULL; 744 struct map_info *info; 745 int more = 0; 746 747 again: 748 mutex_lock(&mapping->i_mmap_mutex); 749 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 750 if (!valid_vma(vma, is_register)) 751 continue; 752 753 if (!prev && !more) { 754 /* 755 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through 756 * reclaim. This is optimistic, no harm done if it fails. 757 */ 758 prev = kmalloc(sizeof(struct map_info), 759 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 760 if (prev) 761 prev->next = NULL; 762 } 763 if (!prev) { 764 more++; 765 continue; 766 } 767 768 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 769 continue; 770 771 info = prev; 772 prev = prev->next; 773 info->next = curr; 774 curr = info; 775 776 info->mm = vma->vm_mm; 777 info->vaddr = offset_to_vaddr(vma, offset); 778 } 779 mutex_unlock(&mapping->i_mmap_mutex); 780 781 if (!more) 782 goto out; 783 784 prev = curr; 785 while (curr) { 786 mmput(curr->mm); 787 curr = curr->next; 788 } 789 790 do { 791 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 792 if (!info) { 793 curr = ERR_PTR(-ENOMEM); 794 goto out; 795 } 796 info->next = prev; 797 prev = info; 798 } while (--more); 799 800 goto again; 801 out: 802 while (prev) 803 prev = free_map_info(prev); 804 return curr; 805 } 806 807 static int register_for_each_vma(struct uprobe *uprobe, bool is_register) 808 { 809 struct map_info *info; 810 int err = 0; 811 812 info = build_map_info(uprobe->inode->i_mapping, 813 uprobe->offset, is_register); 814 if (IS_ERR(info)) 815 return PTR_ERR(info); 816 817 while (info) { 818 struct mm_struct *mm = info->mm; 819 struct vm_area_struct *vma; 820 821 if (err) 822 goto free; 823 824 down_write(&mm->mmap_sem); 825 vma = find_vma(mm, info->vaddr); 826 if (!vma || !valid_vma(vma, is_register) || 827 vma->vm_file->f_mapping->host != uprobe->inode) 828 goto unlock; 829 830 if (vma->vm_start > info->vaddr || 831 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 832 goto unlock; 833 834 if (is_register) { 835 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 836 /* 837 * We can race against uprobe_mmap(), see the 838 * comment near uprobe_hash(). 839 */ 840 if (err == -EEXIST) 841 err = 0; 842 } else { 843 remove_breakpoint(uprobe, mm, info->vaddr); 844 } 845 unlock: 846 up_write(&mm->mmap_sem); 847 free: 848 mmput(mm); 849 info = free_map_info(info); 850 } 851 852 return err; 853 } 854 855 static int __uprobe_register(struct uprobe *uprobe) 856 { 857 return register_for_each_vma(uprobe, true); 858 } 859 860 static void __uprobe_unregister(struct uprobe *uprobe) 861 { 862 if (!register_for_each_vma(uprobe, false)) 863 delete_uprobe(uprobe); 864 865 /* TODO : cant unregister? schedule a worker thread */ 866 } 867 868 /* 869 * uprobe_register - register a probe 870 * @inode: the file in which the probe has to be placed. 871 * @offset: offset from the start of the file. 872 * @uc: information on howto handle the probe.. 873 * 874 * Apart from the access refcount, uprobe_register() takes a creation 875 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 876 * inserted into the rbtree (i.e first consumer for a @inode:@offset 877 * tuple). Creation refcount stops uprobe_unregister from freeing the 878 * @uprobe even before the register operation is complete. Creation 879 * refcount is released when the last @uc for the @uprobe 880 * unregisters. 881 * 882 * Return errno if it cannot successully install probes 883 * else return 0 (success) 884 */ 885 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 886 { 887 struct uprobe *uprobe; 888 int ret; 889 890 if (!inode || !uc || uc->next) 891 return -EINVAL; 892 893 if (offset > i_size_read(inode)) 894 return -EINVAL; 895 896 ret = 0; 897 mutex_lock(uprobes_hash(inode)); 898 uprobe = alloc_uprobe(inode, offset); 899 900 if (uprobe && !consumer_add(uprobe, uc)) { 901 ret = __uprobe_register(uprobe); 902 if (ret) { 903 uprobe->consumers = NULL; 904 __uprobe_unregister(uprobe); 905 } else { 906 uprobe->flags |= UPROBE_RUN_HANDLER; 907 } 908 } 909 910 mutex_unlock(uprobes_hash(inode)); 911 put_uprobe(uprobe); 912 913 return ret; 914 } 915 916 /* 917 * uprobe_unregister - unregister a already registered probe. 918 * @inode: the file in which the probe has to be removed. 919 * @offset: offset from the start of the file. 920 * @uc: identify which probe if multiple probes are colocated. 921 */ 922 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 923 { 924 struct uprobe *uprobe; 925 926 if (!inode || !uc) 927 return; 928 929 uprobe = find_uprobe(inode, offset); 930 if (!uprobe) 931 return; 932 933 mutex_lock(uprobes_hash(inode)); 934 935 if (consumer_del(uprobe, uc)) { 936 if (!uprobe->consumers) { 937 __uprobe_unregister(uprobe); 938 uprobe->flags &= ~UPROBE_RUN_HANDLER; 939 } 940 } 941 942 mutex_unlock(uprobes_hash(inode)); 943 if (uprobe) 944 put_uprobe(uprobe); 945 } 946 947 static struct rb_node * 948 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 949 { 950 struct rb_node *n = uprobes_tree.rb_node; 951 952 while (n) { 953 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 954 955 if (inode < u->inode) { 956 n = n->rb_left; 957 } else if (inode > u->inode) { 958 n = n->rb_right; 959 } else { 960 if (max < u->offset) 961 n = n->rb_left; 962 else if (min > u->offset) 963 n = n->rb_right; 964 else 965 break; 966 } 967 } 968 969 return n; 970 } 971 972 /* 973 * For a given range in vma, build a list of probes that need to be inserted. 974 */ 975 static void build_probe_list(struct inode *inode, 976 struct vm_area_struct *vma, 977 unsigned long start, unsigned long end, 978 struct list_head *head) 979 { 980 loff_t min, max; 981 unsigned long flags; 982 struct rb_node *n, *t; 983 struct uprobe *u; 984 985 INIT_LIST_HEAD(head); 986 min = vaddr_to_offset(vma, start); 987 max = min + (end - start) - 1; 988 989 spin_lock_irqsave(&uprobes_treelock, flags); 990 n = find_node_in_range(inode, min, max); 991 if (n) { 992 for (t = n; t; t = rb_prev(t)) { 993 u = rb_entry(t, struct uprobe, rb_node); 994 if (u->inode != inode || u->offset < min) 995 break; 996 list_add(&u->pending_list, head); 997 atomic_inc(&u->ref); 998 } 999 for (t = n; (t = rb_next(t)); ) { 1000 u = rb_entry(t, struct uprobe, rb_node); 1001 if (u->inode != inode || u->offset > max) 1002 break; 1003 list_add(&u->pending_list, head); 1004 atomic_inc(&u->ref); 1005 } 1006 } 1007 spin_unlock_irqrestore(&uprobes_treelock, flags); 1008 } 1009 1010 /* 1011 * Called from mmap_region. 1012 * called with mm->mmap_sem acquired. 1013 * 1014 * Return -ve no if we fail to insert probes and we cannot 1015 * bail-out. 1016 * Return 0 otherwise. i.e: 1017 * 1018 * - successful insertion of probes 1019 * - (or) no possible probes to be inserted. 1020 * - (or) insertion of probes failed but we can bail-out. 1021 */ 1022 int uprobe_mmap(struct vm_area_struct *vma) 1023 { 1024 struct list_head tmp_list; 1025 struct uprobe *uprobe, *u; 1026 struct inode *inode; 1027 int ret, count; 1028 1029 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true)) 1030 return 0; 1031 1032 inode = vma->vm_file->f_mapping->host; 1033 if (!inode) 1034 return 0; 1035 1036 mutex_lock(uprobes_mmap_hash(inode)); 1037 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1038 1039 ret = 0; 1040 count = 0; 1041 1042 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1043 if (!ret) { 1044 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1045 1046 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1047 /* 1048 * We can race against uprobe_register(), see the 1049 * comment near uprobe_hash(). 1050 */ 1051 if (ret == -EEXIST) { 1052 ret = 0; 1053 1054 if (!is_swbp_at_addr(vma->vm_mm, vaddr)) 1055 continue; 1056 1057 /* 1058 * Unable to insert a breakpoint, but 1059 * breakpoint lies underneath. Increment the 1060 * probe count. 1061 */ 1062 atomic_inc(&vma->vm_mm->uprobes_state.count); 1063 } 1064 1065 if (!ret) 1066 count++; 1067 } 1068 put_uprobe(uprobe); 1069 } 1070 1071 mutex_unlock(uprobes_mmap_hash(inode)); 1072 1073 if (ret) 1074 atomic_sub(count, &vma->vm_mm->uprobes_state.count); 1075 1076 return ret; 1077 } 1078 1079 /* 1080 * Called in context of a munmap of a vma. 1081 */ 1082 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1083 { 1084 struct list_head tmp_list; 1085 struct uprobe *uprobe, *u; 1086 struct inode *inode; 1087 1088 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false)) 1089 return; 1090 1091 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1092 return; 1093 1094 if (!atomic_read(&vma->vm_mm->uprobes_state.count)) 1095 return; 1096 1097 inode = vma->vm_file->f_mapping->host; 1098 if (!inode) 1099 return; 1100 1101 mutex_lock(uprobes_mmap_hash(inode)); 1102 build_probe_list(inode, vma, start, end, &tmp_list); 1103 1104 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1105 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1106 /* 1107 * An unregister could have removed the probe before 1108 * unmap. So check before we decrement the count. 1109 */ 1110 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1) 1111 atomic_dec(&vma->vm_mm->uprobes_state.count); 1112 put_uprobe(uprobe); 1113 } 1114 mutex_unlock(uprobes_mmap_hash(inode)); 1115 } 1116 1117 /* Slot allocation for XOL */ 1118 static int xol_add_vma(struct xol_area *area) 1119 { 1120 struct mm_struct *mm; 1121 int ret; 1122 1123 area->page = alloc_page(GFP_HIGHUSER); 1124 if (!area->page) 1125 return -ENOMEM; 1126 1127 ret = -EALREADY; 1128 mm = current->mm; 1129 1130 down_write(&mm->mmap_sem); 1131 if (mm->uprobes_state.xol_area) 1132 goto fail; 1133 1134 ret = -ENOMEM; 1135 1136 /* Try to map as high as possible, this is only a hint. */ 1137 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0); 1138 if (area->vaddr & ~PAGE_MASK) { 1139 ret = area->vaddr; 1140 goto fail; 1141 } 1142 1143 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1144 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); 1145 if (ret) 1146 goto fail; 1147 1148 smp_wmb(); /* pairs with get_xol_area() */ 1149 mm->uprobes_state.xol_area = area; 1150 ret = 0; 1151 1152 fail: 1153 up_write(&mm->mmap_sem); 1154 if (ret) 1155 __free_page(area->page); 1156 1157 return ret; 1158 } 1159 1160 static struct xol_area *get_xol_area(struct mm_struct *mm) 1161 { 1162 struct xol_area *area; 1163 1164 area = mm->uprobes_state.xol_area; 1165 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1166 1167 return area; 1168 } 1169 1170 /* 1171 * xol_alloc_area - Allocate process's xol_area. 1172 * This area will be used for storing instructions for execution out of 1173 * line. 1174 * 1175 * Returns the allocated area or NULL. 1176 */ 1177 static struct xol_area *xol_alloc_area(void) 1178 { 1179 struct xol_area *area; 1180 1181 area = kzalloc(sizeof(*area), GFP_KERNEL); 1182 if (unlikely(!area)) 1183 return NULL; 1184 1185 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1186 1187 if (!area->bitmap) 1188 goto fail; 1189 1190 init_waitqueue_head(&area->wq); 1191 if (!xol_add_vma(area)) 1192 return area; 1193 1194 fail: 1195 kfree(area->bitmap); 1196 kfree(area); 1197 1198 return get_xol_area(current->mm); 1199 } 1200 1201 /* 1202 * uprobe_clear_state - Free the area allocated for slots. 1203 */ 1204 void uprobe_clear_state(struct mm_struct *mm) 1205 { 1206 struct xol_area *area = mm->uprobes_state.xol_area; 1207 1208 if (!area) 1209 return; 1210 1211 put_page(area->page); 1212 kfree(area->bitmap); 1213 kfree(area); 1214 } 1215 1216 /* 1217 * uprobe_reset_state - Free the area allocated for slots. 1218 */ 1219 void uprobe_reset_state(struct mm_struct *mm) 1220 { 1221 mm->uprobes_state.xol_area = NULL; 1222 atomic_set(&mm->uprobes_state.count, 0); 1223 } 1224 1225 /* 1226 * - search for a free slot. 1227 */ 1228 static unsigned long xol_take_insn_slot(struct xol_area *area) 1229 { 1230 unsigned long slot_addr; 1231 int slot_nr; 1232 1233 do { 1234 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1235 if (slot_nr < UINSNS_PER_PAGE) { 1236 if (!test_and_set_bit(slot_nr, area->bitmap)) 1237 break; 1238 1239 slot_nr = UINSNS_PER_PAGE; 1240 continue; 1241 } 1242 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1243 } while (slot_nr >= UINSNS_PER_PAGE); 1244 1245 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1246 atomic_inc(&area->slot_count); 1247 1248 return slot_addr; 1249 } 1250 1251 /* 1252 * xol_get_insn_slot - If was not allocated a slot, then 1253 * allocate a slot. 1254 * Returns the allocated slot address or 0. 1255 */ 1256 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr) 1257 { 1258 struct xol_area *area; 1259 unsigned long offset; 1260 void *vaddr; 1261 1262 area = get_xol_area(current->mm); 1263 if (!area) { 1264 area = xol_alloc_area(); 1265 if (!area) 1266 return 0; 1267 } 1268 current->utask->xol_vaddr = xol_take_insn_slot(area); 1269 1270 /* 1271 * Initialize the slot if xol_vaddr points to valid 1272 * instruction slot. 1273 */ 1274 if (unlikely(!current->utask->xol_vaddr)) 1275 return 0; 1276 1277 current->utask->vaddr = slot_addr; 1278 offset = current->utask->xol_vaddr & ~PAGE_MASK; 1279 vaddr = kmap_atomic(area->page); 1280 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES); 1281 kunmap_atomic(vaddr); 1282 1283 return current->utask->xol_vaddr; 1284 } 1285 1286 /* 1287 * xol_free_insn_slot - If slot was earlier allocated by 1288 * @xol_get_insn_slot(), make the slot available for 1289 * subsequent requests. 1290 */ 1291 static void xol_free_insn_slot(struct task_struct *tsk) 1292 { 1293 struct xol_area *area; 1294 unsigned long vma_end; 1295 unsigned long slot_addr; 1296 1297 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1298 return; 1299 1300 slot_addr = tsk->utask->xol_vaddr; 1301 1302 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr))) 1303 return; 1304 1305 area = tsk->mm->uprobes_state.xol_area; 1306 vma_end = area->vaddr + PAGE_SIZE; 1307 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1308 unsigned long offset; 1309 int slot_nr; 1310 1311 offset = slot_addr - area->vaddr; 1312 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1313 if (slot_nr >= UINSNS_PER_PAGE) 1314 return; 1315 1316 clear_bit(slot_nr, area->bitmap); 1317 atomic_dec(&area->slot_count); 1318 if (waitqueue_active(&area->wq)) 1319 wake_up(&area->wq); 1320 1321 tsk->utask->xol_vaddr = 0; 1322 } 1323 } 1324 1325 /** 1326 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1327 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1328 * instruction. 1329 * Return the address of the breakpoint instruction. 1330 */ 1331 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1332 { 1333 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1334 } 1335 1336 /* 1337 * Called with no locks held. 1338 * Called in context of a exiting or a exec-ing thread. 1339 */ 1340 void uprobe_free_utask(struct task_struct *t) 1341 { 1342 struct uprobe_task *utask = t->utask; 1343 1344 if (!utask) 1345 return; 1346 1347 if (utask->active_uprobe) 1348 put_uprobe(utask->active_uprobe); 1349 1350 xol_free_insn_slot(t); 1351 kfree(utask); 1352 t->utask = NULL; 1353 } 1354 1355 /* 1356 * Called in context of a new clone/fork from copy_process. 1357 */ 1358 void uprobe_copy_process(struct task_struct *t) 1359 { 1360 t->utask = NULL; 1361 } 1362 1363 /* 1364 * Allocate a uprobe_task object for the task. 1365 * Called when the thread hits a breakpoint for the first time. 1366 * 1367 * Returns: 1368 * - pointer to new uprobe_task on success 1369 * - NULL otherwise 1370 */ 1371 static struct uprobe_task *add_utask(void) 1372 { 1373 struct uprobe_task *utask; 1374 1375 utask = kzalloc(sizeof *utask, GFP_KERNEL); 1376 if (unlikely(!utask)) 1377 return NULL; 1378 1379 current->utask = utask; 1380 return utask; 1381 } 1382 1383 /* Prepare to single-step probed instruction out of line. */ 1384 static int 1385 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr) 1386 { 1387 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs)) 1388 return 0; 1389 1390 return -EFAULT; 1391 } 1392 1393 /* 1394 * If we are singlestepping, then ensure this thread is not connected to 1395 * non-fatal signals until completion of singlestep. When xol insn itself 1396 * triggers the signal, restart the original insn even if the task is 1397 * already SIGKILL'ed (since coredump should report the correct ip). This 1398 * is even more important if the task has a handler for SIGSEGV/etc, The 1399 * _same_ instruction should be repeated again after return from the signal 1400 * handler, and SSTEP can never finish in this case. 1401 */ 1402 bool uprobe_deny_signal(void) 1403 { 1404 struct task_struct *t = current; 1405 struct uprobe_task *utask = t->utask; 1406 1407 if (likely(!utask || !utask->active_uprobe)) 1408 return false; 1409 1410 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1411 1412 if (signal_pending(t)) { 1413 spin_lock_irq(&t->sighand->siglock); 1414 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1415 spin_unlock_irq(&t->sighand->siglock); 1416 1417 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1418 utask->state = UTASK_SSTEP_TRAPPED; 1419 set_tsk_thread_flag(t, TIF_UPROBE); 1420 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1421 } 1422 } 1423 1424 return true; 1425 } 1426 1427 /* 1428 * Avoid singlestepping the original instruction if the original instruction 1429 * is a NOP or can be emulated. 1430 */ 1431 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs) 1432 { 1433 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1434 return true; 1435 1436 uprobe->flags &= ~UPROBE_SKIP_SSTEP; 1437 return false; 1438 } 1439 1440 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1441 { 1442 struct mm_struct *mm = current->mm; 1443 struct uprobe *uprobe = NULL; 1444 struct vm_area_struct *vma; 1445 1446 down_read(&mm->mmap_sem); 1447 vma = find_vma(mm, bp_vaddr); 1448 if (vma && vma->vm_start <= bp_vaddr) { 1449 if (valid_vma(vma, false)) { 1450 struct inode *inode = vma->vm_file->f_mapping->host; 1451 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1452 1453 uprobe = find_uprobe(inode, offset); 1454 } 1455 1456 if (!uprobe) 1457 *is_swbp = is_swbp_at_addr(mm, bp_vaddr); 1458 } else { 1459 *is_swbp = -EFAULT; 1460 } 1461 up_read(&mm->mmap_sem); 1462 1463 return uprobe; 1464 } 1465 1466 /* 1467 * Run handler and ask thread to singlestep. 1468 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1469 */ 1470 static void handle_swbp(struct pt_regs *regs) 1471 { 1472 struct uprobe_task *utask; 1473 struct uprobe *uprobe; 1474 unsigned long bp_vaddr; 1475 int uninitialized_var(is_swbp); 1476 1477 bp_vaddr = uprobe_get_swbp_addr(regs); 1478 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1479 1480 if (!uprobe) { 1481 if (is_swbp > 0) { 1482 /* No matching uprobe; signal SIGTRAP. */ 1483 send_sig(SIGTRAP, current, 0); 1484 } else { 1485 /* 1486 * Either we raced with uprobe_unregister() or we can't 1487 * access this memory. The latter is only possible if 1488 * another thread plays with our ->mm. In both cases 1489 * we can simply restart. If this vma was unmapped we 1490 * can pretend this insn was not executed yet and get 1491 * the (correct) SIGSEGV after restart. 1492 */ 1493 instruction_pointer_set(regs, bp_vaddr); 1494 } 1495 return; 1496 } 1497 1498 utask = current->utask; 1499 if (!utask) { 1500 utask = add_utask(); 1501 /* Cannot allocate; re-execute the instruction. */ 1502 if (!utask) 1503 goto cleanup_ret; 1504 } 1505 utask->active_uprobe = uprobe; 1506 handler_chain(uprobe, regs); 1507 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs)) 1508 goto cleanup_ret; 1509 1510 utask->state = UTASK_SSTEP; 1511 if (!pre_ssout(uprobe, regs, bp_vaddr)) { 1512 user_enable_single_step(current); 1513 return; 1514 } 1515 1516 cleanup_ret: 1517 if (utask) { 1518 utask->active_uprobe = NULL; 1519 utask->state = UTASK_RUNNING; 1520 } 1521 if (uprobe) { 1522 if (!(uprobe->flags & UPROBE_SKIP_SSTEP)) 1523 1524 /* 1525 * cannot singlestep; cannot skip instruction; 1526 * re-execute the instruction. 1527 */ 1528 instruction_pointer_set(regs, bp_vaddr); 1529 1530 put_uprobe(uprobe); 1531 } 1532 } 1533 1534 /* 1535 * Perform required fix-ups and disable singlestep. 1536 * Allow pending signals to take effect. 1537 */ 1538 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1539 { 1540 struct uprobe *uprobe; 1541 1542 uprobe = utask->active_uprobe; 1543 if (utask->state == UTASK_SSTEP_ACK) 1544 arch_uprobe_post_xol(&uprobe->arch, regs); 1545 else if (utask->state == UTASK_SSTEP_TRAPPED) 1546 arch_uprobe_abort_xol(&uprobe->arch, regs); 1547 else 1548 WARN_ON_ONCE(1); 1549 1550 put_uprobe(uprobe); 1551 utask->active_uprobe = NULL; 1552 utask->state = UTASK_RUNNING; 1553 user_disable_single_step(current); 1554 xol_free_insn_slot(current); 1555 1556 spin_lock_irq(¤t->sighand->siglock); 1557 recalc_sigpending(); /* see uprobe_deny_signal() */ 1558 spin_unlock_irq(¤t->sighand->siglock); 1559 } 1560 1561 /* 1562 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on 1563 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and 1564 * allows the thread to return from interrupt. 1565 * 1566 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and 1567 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from 1568 * interrupt. 1569 * 1570 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1571 * uprobe_notify_resume(). 1572 */ 1573 void uprobe_notify_resume(struct pt_regs *regs) 1574 { 1575 struct uprobe_task *utask; 1576 1577 utask = current->utask; 1578 if (!utask || utask->state == UTASK_BP_HIT) 1579 handle_swbp(regs); 1580 else 1581 handle_singlestep(utask, regs); 1582 } 1583 1584 /* 1585 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1586 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1587 */ 1588 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1589 { 1590 struct uprobe_task *utask; 1591 1592 if (!current->mm || !atomic_read(¤t->mm->uprobes_state.count)) 1593 /* task is currently not uprobed */ 1594 return 0; 1595 1596 utask = current->utask; 1597 if (utask) 1598 utask->state = UTASK_BP_HIT; 1599 1600 set_thread_flag(TIF_UPROBE); 1601 1602 return 1; 1603 } 1604 1605 /* 1606 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1607 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1608 */ 1609 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1610 { 1611 struct uprobe_task *utask = current->utask; 1612 1613 if (!current->mm || !utask || !utask->active_uprobe) 1614 /* task is currently not uprobed */ 1615 return 0; 1616 1617 utask->state = UTASK_SSTEP_ACK; 1618 set_thread_flag(TIF_UPROBE); 1619 return 1; 1620 } 1621 1622 static struct notifier_block uprobe_exception_nb = { 1623 .notifier_call = arch_uprobe_exception_notify, 1624 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 1625 }; 1626 1627 static int __init init_uprobes(void) 1628 { 1629 int i; 1630 1631 for (i = 0; i < UPROBES_HASH_SZ; i++) { 1632 mutex_init(&uprobes_mutex[i]); 1633 mutex_init(&uprobes_mmap_mutex[i]); 1634 } 1635 1636 return register_die_notifier(&uprobe_exception_nb); 1637 } 1638 module_init(init_uprobes); 1639 1640 static void __exit exit_uprobes(void) 1641 { 1642 } 1643 module_exit(exit_uprobes); 1644