1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/coredump.h> 32 #include <linux/export.h> 33 #include <linux/rmap.h> /* anon_vma_prepare */ 34 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 35 #include <linux/swap.h> /* try_to_free_swap */ 36 #include <linux/ptrace.h> /* user_enable_single_step */ 37 #include <linux/kdebug.h> /* notifier mechanism */ 38 #include "../../mm/internal.h" /* munlock_vma_page */ 39 #include <linux/percpu-rwsem.h> 40 #include <linux/task_work.h> 41 #include <linux/shmem_fs.h> 42 43 #include <linux/uprobes.h> 44 45 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 46 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 47 48 static struct rb_root uprobes_tree = RB_ROOT; 49 /* 50 * allows us to skip the uprobe_mmap if there are no uprobe events active 51 * at this time. Probably a fine grained per inode count is better? 52 */ 53 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 54 55 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 56 57 #define UPROBES_HASH_SZ 13 58 /* serialize uprobe->pending_list */ 59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 60 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 61 62 static struct percpu_rw_semaphore dup_mmap_sem; 63 64 /* Have a copy of original instruction */ 65 #define UPROBE_COPY_INSN 0 66 67 struct uprobe { 68 struct rb_node rb_node; /* node in the rb tree */ 69 atomic_t ref; 70 struct rw_semaphore register_rwsem; 71 struct rw_semaphore consumer_rwsem; 72 struct list_head pending_list; 73 struct uprobe_consumer *consumers; 74 struct inode *inode; /* Also hold a ref to inode */ 75 loff_t offset; 76 loff_t ref_ctr_offset; 77 unsigned long flags; 78 79 /* 80 * The generic code assumes that it has two members of unknown type 81 * owned by the arch-specific code: 82 * 83 * insn - copy_insn() saves the original instruction here for 84 * arch_uprobe_analyze_insn(). 85 * 86 * ixol - potentially modified instruction to execute out of 87 * line, copied to xol_area by xol_get_insn_slot(). 88 */ 89 struct arch_uprobe arch; 90 }; 91 92 struct delayed_uprobe { 93 struct list_head list; 94 struct uprobe *uprobe; 95 struct mm_struct *mm; 96 }; 97 98 static DEFINE_MUTEX(delayed_uprobe_lock); 99 static LIST_HEAD(delayed_uprobe_list); 100 101 /* 102 * Execute out of line area: anonymous executable mapping installed 103 * by the probed task to execute the copy of the original instruction 104 * mangled by set_swbp(). 105 * 106 * On a breakpoint hit, thread contests for a slot. It frees the 107 * slot after singlestep. Currently a fixed number of slots are 108 * allocated. 109 */ 110 struct xol_area { 111 wait_queue_head_t wq; /* if all slots are busy */ 112 atomic_t slot_count; /* number of in-use slots */ 113 unsigned long *bitmap; /* 0 = free slot */ 114 115 struct vm_special_mapping xol_mapping; 116 struct page *pages[2]; 117 /* 118 * We keep the vma's vm_start rather than a pointer to the vma 119 * itself. The probed process or a naughty kernel module could make 120 * the vma go away, and we must handle that reasonably gracefully. 121 */ 122 unsigned long vaddr; /* Page(s) of instruction slots */ 123 }; 124 125 /* 126 * valid_vma: Verify if the specified vma is an executable vma 127 * Relax restrictions while unregistering: vm_flags might have 128 * changed after breakpoint was inserted. 129 * - is_register: indicates if we are in register context. 130 * - Return 1 if the specified virtual address is in an 131 * executable vma. 132 */ 133 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 134 { 135 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 136 137 if (is_register) 138 flags |= VM_WRITE; 139 140 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 141 } 142 143 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 144 { 145 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 146 } 147 148 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 149 { 150 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 151 } 152 153 /** 154 * __replace_page - replace page in vma by new page. 155 * based on replace_page in mm/ksm.c 156 * 157 * @vma: vma that holds the pte pointing to page 158 * @addr: address the old @page is mapped at 159 * @page: the cowed page we are replacing by kpage 160 * @kpage: the modified page we replace page by 161 * 162 * Returns 0 on success, -EFAULT on failure. 163 */ 164 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 165 struct page *old_page, struct page *new_page) 166 { 167 struct mm_struct *mm = vma->vm_mm; 168 struct page_vma_mapped_walk pvmw = { 169 .page = old_page, 170 .vma = vma, 171 .address = addr, 172 }; 173 int err; 174 /* For mmu_notifiers */ 175 const unsigned long mmun_start = addr; 176 const unsigned long mmun_end = addr + PAGE_SIZE; 177 struct mem_cgroup *memcg; 178 179 VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page); 180 181 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg, 182 false); 183 if (err) 184 return err; 185 186 /* For try_to_free_swap() and munlock_vma_page() below */ 187 lock_page(old_page); 188 189 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 190 err = -EAGAIN; 191 if (!page_vma_mapped_walk(&pvmw)) { 192 mem_cgroup_cancel_charge(new_page, memcg, false); 193 goto unlock; 194 } 195 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 196 197 get_page(new_page); 198 page_add_new_anon_rmap(new_page, vma, addr, false); 199 mem_cgroup_commit_charge(new_page, memcg, false, false); 200 lru_cache_add_active_or_unevictable(new_page, vma); 201 202 if (!PageAnon(old_page)) { 203 dec_mm_counter(mm, mm_counter_file(old_page)); 204 inc_mm_counter(mm, MM_ANONPAGES); 205 } 206 207 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 208 ptep_clear_flush_notify(vma, addr, pvmw.pte); 209 set_pte_at_notify(mm, addr, pvmw.pte, 210 mk_pte(new_page, vma->vm_page_prot)); 211 212 page_remove_rmap(old_page, false); 213 if (!page_mapped(old_page)) 214 try_to_free_swap(old_page); 215 page_vma_mapped_walk_done(&pvmw); 216 217 if (vma->vm_flags & VM_LOCKED) 218 munlock_vma_page(old_page); 219 put_page(old_page); 220 221 err = 0; 222 unlock: 223 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 224 unlock_page(old_page); 225 return err; 226 } 227 228 /** 229 * is_swbp_insn - check if instruction is breakpoint instruction. 230 * @insn: instruction to be checked. 231 * Default implementation of is_swbp_insn 232 * Returns true if @insn is a breakpoint instruction. 233 */ 234 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 235 { 236 return *insn == UPROBE_SWBP_INSN; 237 } 238 239 /** 240 * is_trap_insn - check if instruction is breakpoint instruction. 241 * @insn: instruction to be checked. 242 * Default implementation of is_trap_insn 243 * Returns true if @insn is a breakpoint instruction. 244 * 245 * This function is needed for the case where an architecture has multiple 246 * trap instructions (like powerpc). 247 */ 248 bool __weak is_trap_insn(uprobe_opcode_t *insn) 249 { 250 return is_swbp_insn(insn); 251 } 252 253 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 254 { 255 void *kaddr = kmap_atomic(page); 256 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 257 kunmap_atomic(kaddr); 258 } 259 260 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 261 { 262 void *kaddr = kmap_atomic(page); 263 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 264 kunmap_atomic(kaddr); 265 } 266 267 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 268 { 269 uprobe_opcode_t old_opcode; 270 bool is_swbp; 271 272 /* 273 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 274 * We do not check if it is any other 'trap variant' which could 275 * be conditional trap instruction such as the one powerpc supports. 276 * 277 * The logic is that we do not care if the underlying instruction 278 * is a trap variant; uprobes always wins over any other (gdb) 279 * breakpoint. 280 */ 281 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 282 is_swbp = is_swbp_insn(&old_opcode); 283 284 if (is_swbp_insn(new_opcode)) { 285 if (is_swbp) /* register: already installed? */ 286 return 0; 287 } else { 288 if (!is_swbp) /* unregister: was it changed by us? */ 289 return 0; 290 } 291 292 return 1; 293 } 294 295 static struct delayed_uprobe * 296 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 297 { 298 struct delayed_uprobe *du; 299 300 list_for_each_entry(du, &delayed_uprobe_list, list) 301 if (du->uprobe == uprobe && du->mm == mm) 302 return du; 303 return NULL; 304 } 305 306 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 307 { 308 struct delayed_uprobe *du; 309 310 if (delayed_uprobe_check(uprobe, mm)) 311 return 0; 312 313 du = kzalloc(sizeof(*du), GFP_KERNEL); 314 if (!du) 315 return -ENOMEM; 316 317 du->uprobe = uprobe; 318 du->mm = mm; 319 list_add(&du->list, &delayed_uprobe_list); 320 return 0; 321 } 322 323 static void delayed_uprobe_delete(struct delayed_uprobe *du) 324 { 325 if (WARN_ON(!du)) 326 return; 327 list_del(&du->list); 328 kfree(du); 329 } 330 331 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 332 { 333 struct list_head *pos, *q; 334 struct delayed_uprobe *du; 335 336 if (!uprobe && !mm) 337 return; 338 339 list_for_each_safe(pos, q, &delayed_uprobe_list) { 340 du = list_entry(pos, struct delayed_uprobe, list); 341 342 if (uprobe && du->uprobe != uprobe) 343 continue; 344 if (mm && du->mm != mm) 345 continue; 346 347 delayed_uprobe_delete(du); 348 } 349 } 350 351 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 352 struct vm_area_struct *vma) 353 { 354 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 355 356 return uprobe->ref_ctr_offset && 357 vma->vm_file && 358 file_inode(vma->vm_file) == uprobe->inode && 359 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 360 vma->vm_start <= vaddr && 361 vma->vm_end > vaddr; 362 } 363 364 static struct vm_area_struct * 365 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 366 { 367 struct vm_area_struct *tmp; 368 369 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next) 370 if (valid_ref_ctr_vma(uprobe, tmp)) 371 return tmp; 372 373 return NULL; 374 } 375 376 static int 377 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 378 { 379 void *kaddr; 380 struct page *page; 381 struct vm_area_struct *vma; 382 int ret; 383 short *ptr; 384 385 if (!vaddr || !d) 386 return -EINVAL; 387 388 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 389 FOLL_WRITE, &page, &vma, NULL); 390 if (unlikely(ret <= 0)) { 391 /* 392 * We are asking for 1 page. If get_user_pages_remote() fails, 393 * it may return 0, in that case we have to return error. 394 */ 395 return ret == 0 ? -EBUSY : ret; 396 } 397 398 kaddr = kmap_atomic(page); 399 ptr = kaddr + (vaddr & ~PAGE_MASK); 400 401 if (unlikely(*ptr + d < 0)) { 402 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 403 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 404 ret = -EINVAL; 405 goto out; 406 } 407 408 *ptr += d; 409 ret = 0; 410 out: 411 kunmap_atomic(kaddr); 412 put_page(page); 413 return ret; 414 } 415 416 static void update_ref_ctr_warn(struct uprobe *uprobe, 417 struct mm_struct *mm, short d) 418 { 419 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 420 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 421 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 422 (unsigned long long) uprobe->offset, 423 (unsigned long long) uprobe->ref_ctr_offset, mm); 424 } 425 426 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 427 short d) 428 { 429 struct vm_area_struct *rc_vma; 430 unsigned long rc_vaddr; 431 int ret = 0; 432 433 rc_vma = find_ref_ctr_vma(uprobe, mm); 434 435 if (rc_vma) { 436 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 437 ret = __update_ref_ctr(mm, rc_vaddr, d); 438 if (ret) 439 update_ref_ctr_warn(uprobe, mm, d); 440 441 if (d > 0) 442 return ret; 443 } 444 445 mutex_lock(&delayed_uprobe_lock); 446 if (d > 0) 447 ret = delayed_uprobe_add(uprobe, mm); 448 else 449 delayed_uprobe_remove(uprobe, mm); 450 mutex_unlock(&delayed_uprobe_lock); 451 452 return ret; 453 } 454 455 /* 456 * NOTE: 457 * Expect the breakpoint instruction to be the smallest size instruction for 458 * the architecture. If an arch has variable length instruction and the 459 * breakpoint instruction is not of the smallest length instruction 460 * supported by that architecture then we need to modify is_trap_at_addr and 461 * uprobe_write_opcode accordingly. This would never be a problem for archs 462 * that have fixed length instructions. 463 * 464 * uprobe_write_opcode - write the opcode at a given virtual address. 465 * @mm: the probed process address space. 466 * @vaddr: the virtual address to store the opcode. 467 * @opcode: opcode to be written at @vaddr. 468 * 469 * Called with mm->mmap_sem held for write. 470 * Return 0 (success) or a negative errno. 471 */ 472 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 473 unsigned long vaddr, uprobe_opcode_t opcode) 474 { 475 struct uprobe *uprobe; 476 struct page *old_page, *new_page; 477 struct vm_area_struct *vma; 478 int ret, is_register, ref_ctr_updated = 0; 479 480 is_register = is_swbp_insn(&opcode); 481 uprobe = container_of(auprobe, struct uprobe, arch); 482 483 retry: 484 /* Read the page with vaddr into memory */ 485 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 486 FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL); 487 if (ret <= 0) 488 return ret; 489 490 ret = verify_opcode(old_page, vaddr, &opcode); 491 if (ret <= 0) 492 goto put_old; 493 494 /* We are going to replace instruction, update ref_ctr. */ 495 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 496 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 497 if (ret) 498 goto put_old; 499 500 ref_ctr_updated = 1; 501 } 502 503 ret = anon_vma_prepare(vma); 504 if (ret) 505 goto put_old; 506 507 ret = -ENOMEM; 508 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 509 if (!new_page) 510 goto put_old; 511 512 __SetPageUptodate(new_page); 513 copy_highpage(new_page, old_page); 514 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 515 516 ret = __replace_page(vma, vaddr, old_page, new_page); 517 put_page(new_page); 518 put_old: 519 put_page(old_page); 520 521 if (unlikely(ret == -EAGAIN)) 522 goto retry; 523 524 /* Revert back reference counter if instruction update failed. */ 525 if (ret && is_register && ref_ctr_updated) 526 update_ref_ctr(uprobe, mm, -1); 527 528 return ret; 529 } 530 531 /** 532 * set_swbp - store breakpoint at a given address. 533 * @auprobe: arch specific probepoint information. 534 * @mm: the probed process address space. 535 * @vaddr: the virtual address to insert the opcode. 536 * 537 * For mm @mm, store the breakpoint instruction at @vaddr. 538 * Return 0 (success) or a negative errno. 539 */ 540 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 541 { 542 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 543 } 544 545 /** 546 * set_orig_insn - Restore the original instruction. 547 * @mm: the probed process address space. 548 * @auprobe: arch specific probepoint information. 549 * @vaddr: the virtual address to insert the opcode. 550 * 551 * For mm @mm, restore the original opcode (opcode) at @vaddr. 552 * Return 0 (success) or a negative errno. 553 */ 554 int __weak 555 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 556 { 557 return uprobe_write_opcode(auprobe, mm, vaddr, 558 *(uprobe_opcode_t *)&auprobe->insn); 559 } 560 561 static struct uprobe *get_uprobe(struct uprobe *uprobe) 562 { 563 atomic_inc(&uprobe->ref); 564 return uprobe; 565 } 566 567 static void put_uprobe(struct uprobe *uprobe) 568 { 569 if (atomic_dec_and_test(&uprobe->ref)) { 570 /* 571 * If application munmap(exec_vma) before uprobe_unregister() 572 * gets called, we don't get a chance to remove uprobe from 573 * delayed_uprobe_list from remove_breakpoint(). Do it here. 574 */ 575 delayed_uprobe_remove(uprobe, NULL); 576 kfree(uprobe); 577 } 578 } 579 580 static int match_uprobe(struct uprobe *l, struct uprobe *r) 581 { 582 if (l->inode < r->inode) 583 return -1; 584 585 if (l->inode > r->inode) 586 return 1; 587 588 if (l->offset < r->offset) 589 return -1; 590 591 if (l->offset > r->offset) 592 return 1; 593 594 return 0; 595 } 596 597 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 598 { 599 struct uprobe u = { .inode = inode, .offset = offset }; 600 struct rb_node *n = uprobes_tree.rb_node; 601 struct uprobe *uprobe; 602 int match; 603 604 while (n) { 605 uprobe = rb_entry(n, struct uprobe, rb_node); 606 match = match_uprobe(&u, uprobe); 607 if (!match) 608 return get_uprobe(uprobe); 609 610 if (match < 0) 611 n = n->rb_left; 612 else 613 n = n->rb_right; 614 } 615 return NULL; 616 } 617 618 /* 619 * Find a uprobe corresponding to a given inode:offset 620 * Acquires uprobes_treelock 621 */ 622 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 623 { 624 struct uprobe *uprobe; 625 626 spin_lock(&uprobes_treelock); 627 uprobe = __find_uprobe(inode, offset); 628 spin_unlock(&uprobes_treelock); 629 630 return uprobe; 631 } 632 633 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 634 { 635 struct rb_node **p = &uprobes_tree.rb_node; 636 struct rb_node *parent = NULL; 637 struct uprobe *u; 638 int match; 639 640 while (*p) { 641 parent = *p; 642 u = rb_entry(parent, struct uprobe, rb_node); 643 match = match_uprobe(uprobe, u); 644 if (!match) 645 return get_uprobe(u); 646 647 if (match < 0) 648 p = &parent->rb_left; 649 else 650 p = &parent->rb_right; 651 652 } 653 654 u = NULL; 655 rb_link_node(&uprobe->rb_node, parent, p); 656 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 657 /* get access + creation ref */ 658 atomic_set(&uprobe->ref, 2); 659 660 return u; 661 } 662 663 /* 664 * Acquire uprobes_treelock. 665 * Matching uprobe already exists in rbtree; 666 * increment (access refcount) and return the matching uprobe. 667 * 668 * No matching uprobe; insert the uprobe in rb_tree; 669 * get a double refcount (access + creation) and return NULL. 670 */ 671 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 672 { 673 struct uprobe *u; 674 675 spin_lock(&uprobes_treelock); 676 u = __insert_uprobe(uprobe); 677 spin_unlock(&uprobes_treelock); 678 679 return u; 680 } 681 682 static void 683 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 684 { 685 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 686 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 687 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 688 (unsigned long long) cur_uprobe->ref_ctr_offset, 689 (unsigned long long) uprobe->ref_ctr_offset); 690 } 691 692 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 693 loff_t ref_ctr_offset) 694 { 695 struct uprobe *uprobe, *cur_uprobe; 696 697 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 698 if (!uprobe) 699 return NULL; 700 701 uprobe->inode = inode; 702 uprobe->offset = offset; 703 uprobe->ref_ctr_offset = ref_ctr_offset; 704 init_rwsem(&uprobe->register_rwsem); 705 init_rwsem(&uprobe->consumer_rwsem); 706 707 /* add to uprobes_tree, sorted on inode:offset */ 708 cur_uprobe = insert_uprobe(uprobe); 709 /* a uprobe exists for this inode:offset combination */ 710 if (cur_uprobe) { 711 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 712 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 713 put_uprobe(cur_uprobe); 714 kfree(uprobe); 715 return ERR_PTR(-EINVAL); 716 } 717 kfree(uprobe); 718 uprobe = cur_uprobe; 719 } 720 721 return uprobe; 722 } 723 724 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 725 { 726 down_write(&uprobe->consumer_rwsem); 727 uc->next = uprobe->consumers; 728 uprobe->consumers = uc; 729 up_write(&uprobe->consumer_rwsem); 730 } 731 732 /* 733 * For uprobe @uprobe, delete the consumer @uc. 734 * Return true if the @uc is deleted successfully 735 * or return false. 736 */ 737 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 738 { 739 struct uprobe_consumer **con; 740 bool ret = false; 741 742 down_write(&uprobe->consumer_rwsem); 743 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 744 if (*con == uc) { 745 *con = uc->next; 746 ret = true; 747 break; 748 } 749 } 750 up_write(&uprobe->consumer_rwsem); 751 752 return ret; 753 } 754 755 static int __copy_insn(struct address_space *mapping, struct file *filp, 756 void *insn, int nbytes, loff_t offset) 757 { 758 struct page *page; 759 /* 760 * Ensure that the page that has the original instruction is populated 761 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 762 * see uprobe_register(). 763 */ 764 if (mapping->a_ops->readpage) 765 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 766 else 767 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 768 if (IS_ERR(page)) 769 return PTR_ERR(page); 770 771 copy_from_page(page, offset, insn, nbytes); 772 put_page(page); 773 774 return 0; 775 } 776 777 static int copy_insn(struct uprobe *uprobe, struct file *filp) 778 { 779 struct address_space *mapping = uprobe->inode->i_mapping; 780 loff_t offs = uprobe->offset; 781 void *insn = &uprobe->arch.insn; 782 int size = sizeof(uprobe->arch.insn); 783 int len, err = -EIO; 784 785 /* Copy only available bytes, -EIO if nothing was read */ 786 do { 787 if (offs >= i_size_read(uprobe->inode)) 788 break; 789 790 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 791 err = __copy_insn(mapping, filp, insn, len, offs); 792 if (err) 793 break; 794 795 insn += len; 796 offs += len; 797 size -= len; 798 } while (size); 799 800 return err; 801 } 802 803 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 804 struct mm_struct *mm, unsigned long vaddr) 805 { 806 int ret = 0; 807 808 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 809 return ret; 810 811 /* TODO: move this into _register, until then we abuse this sem. */ 812 down_write(&uprobe->consumer_rwsem); 813 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 814 goto out; 815 816 ret = copy_insn(uprobe, file); 817 if (ret) 818 goto out; 819 820 ret = -ENOTSUPP; 821 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 822 goto out; 823 824 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 825 if (ret) 826 goto out; 827 828 /* uprobe_write_opcode() assumes we don't cross page boundary */ 829 BUG_ON((uprobe->offset & ~PAGE_MASK) + 830 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 831 832 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 833 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 834 835 out: 836 up_write(&uprobe->consumer_rwsem); 837 838 return ret; 839 } 840 841 static inline bool consumer_filter(struct uprobe_consumer *uc, 842 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 843 { 844 return !uc->filter || uc->filter(uc, ctx, mm); 845 } 846 847 static bool filter_chain(struct uprobe *uprobe, 848 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 849 { 850 struct uprobe_consumer *uc; 851 bool ret = false; 852 853 down_read(&uprobe->consumer_rwsem); 854 for (uc = uprobe->consumers; uc; uc = uc->next) { 855 ret = consumer_filter(uc, ctx, mm); 856 if (ret) 857 break; 858 } 859 up_read(&uprobe->consumer_rwsem); 860 861 return ret; 862 } 863 864 static int 865 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 866 struct vm_area_struct *vma, unsigned long vaddr) 867 { 868 bool first_uprobe; 869 int ret; 870 871 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 872 if (ret) 873 return ret; 874 875 /* 876 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 877 * the task can hit this breakpoint right after __replace_page(). 878 */ 879 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 880 if (first_uprobe) 881 set_bit(MMF_HAS_UPROBES, &mm->flags); 882 883 ret = set_swbp(&uprobe->arch, mm, vaddr); 884 if (!ret) 885 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 886 else if (first_uprobe) 887 clear_bit(MMF_HAS_UPROBES, &mm->flags); 888 889 return ret; 890 } 891 892 static int 893 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 894 { 895 set_bit(MMF_RECALC_UPROBES, &mm->flags); 896 return set_orig_insn(&uprobe->arch, mm, vaddr); 897 } 898 899 static inline bool uprobe_is_active(struct uprobe *uprobe) 900 { 901 return !RB_EMPTY_NODE(&uprobe->rb_node); 902 } 903 /* 904 * There could be threads that have already hit the breakpoint. They 905 * will recheck the current insn and restart if find_uprobe() fails. 906 * See find_active_uprobe(). 907 */ 908 static void delete_uprobe(struct uprobe *uprobe) 909 { 910 if (WARN_ON(!uprobe_is_active(uprobe))) 911 return; 912 913 spin_lock(&uprobes_treelock); 914 rb_erase(&uprobe->rb_node, &uprobes_tree); 915 spin_unlock(&uprobes_treelock); 916 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 917 put_uprobe(uprobe); 918 } 919 920 struct map_info { 921 struct map_info *next; 922 struct mm_struct *mm; 923 unsigned long vaddr; 924 }; 925 926 static inline struct map_info *free_map_info(struct map_info *info) 927 { 928 struct map_info *next = info->next; 929 kfree(info); 930 return next; 931 } 932 933 static struct map_info * 934 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 935 { 936 unsigned long pgoff = offset >> PAGE_SHIFT; 937 struct vm_area_struct *vma; 938 struct map_info *curr = NULL; 939 struct map_info *prev = NULL; 940 struct map_info *info; 941 int more = 0; 942 943 again: 944 i_mmap_lock_read(mapping); 945 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 946 if (!valid_vma(vma, is_register)) 947 continue; 948 949 if (!prev && !more) { 950 /* 951 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 952 * reclaim. This is optimistic, no harm done if it fails. 953 */ 954 prev = kmalloc(sizeof(struct map_info), 955 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 956 if (prev) 957 prev->next = NULL; 958 } 959 if (!prev) { 960 more++; 961 continue; 962 } 963 964 if (!mmget_not_zero(vma->vm_mm)) 965 continue; 966 967 info = prev; 968 prev = prev->next; 969 info->next = curr; 970 curr = info; 971 972 info->mm = vma->vm_mm; 973 info->vaddr = offset_to_vaddr(vma, offset); 974 } 975 i_mmap_unlock_read(mapping); 976 977 if (!more) 978 goto out; 979 980 prev = curr; 981 while (curr) { 982 mmput(curr->mm); 983 curr = curr->next; 984 } 985 986 do { 987 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 988 if (!info) { 989 curr = ERR_PTR(-ENOMEM); 990 goto out; 991 } 992 info->next = prev; 993 prev = info; 994 } while (--more); 995 996 goto again; 997 out: 998 while (prev) 999 prev = free_map_info(prev); 1000 return curr; 1001 } 1002 1003 static int 1004 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1005 { 1006 bool is_register = !!new; 1007 struct map_info *info; 1008 int err = 0; 1009 1010 percpu_down_write(&dup_mmap_sem); 1011 info = build_map_info(uprobe->inode->i_mapping, 1012 uprobe->offset, is_register); 1013 if (IS_ERR(info)) { 1014 err = PTR_ERR(info); 1015 goto out; 1016 } 1017 1018 while (info) { 1019 struct mm_struct *mm = info->mm; 1020 struct vm_area_struct *vma; 1021 1022 if (err && is_register) 1023 goto free; 1024 1025 down_write(&mm->mmap_sem); 1026 vma = find_vma(mm, info->vaddr); 1027 if (!vma || !valid_vma(vma, is_register) || 1028 file_inode(vma->vm_file) != uprobe->inode) 1029 goto unlock; 1030 1031 if (vma->vm_start > info->vaddr || 1032 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1033 goto unlock; 1034 1035 if (is_register) { 1036 /* consult only the "caller", new consumer. */ 1037 if (consumer_filter(new, 1038 UPROBE_FILTER_REGISTER, mm)) 1039 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1040 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1041 if (!filter_chain(uprobe, 1042 UPROBE_FILTER_UNREGISTER, mm)) 1043 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1044 } 1045 1046 unlock: 1047 up_write(&mm->mmap_sem); 1048 free: 1049 mmput(mm); 1050 info = free_map_info(info); 1051 } 1052 out: 1053 percpu_up_write(&dup_mmap_sem); 1054 return err; 1055 } 1056 1057 static void 1058 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1059 { 1060 int err; 1061 1062 if (WARN_ON(!consumer_del(uprobe, uc))) 1063 return; 1064 1065 err = register_for_each_vma(uprobe, NULL); 1066 /* TODO : cant unregister? schedule a worker thread */ 1067 if (!uprobe->consumers && !err) 1068 delete_uprobe(uprobe); 1069 } 1070 1071 /* 1072 * uprobe_unregister - unregister an already registered probe. 1073 * @inode: the file in which the probe has to be removed. 1074 * @offset: offset from the start of the file. 1075 * @uc: identify which probe if multiple probes are colocated. 1076 */ 1077 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1078 { 1079 struct uprobe *uprobe; 1080 1081 uprobe = find_uprobe(inode, offset); 1082 if (WARN_ON(!uprobe)) 1083 return; 1084 1085 down_write(&uprobe->register_rwsem); 1086 __uprobe_unregister(uprobe, uc); 1087 up_write(&uprobe->register_rwsem); 1088 put_uprobe(uprobe); 1089 } 1090 EXPORT_SYMBOL_GPL(uprobe_unregister); 1091 1092 /* 1093 * __uprobe_register - register a probe 1094 * @inode: the file in which the probe has to be placed. 1095 * @offset: offset from the start of the file. 1096 * @uc: information on howto handle the probe.. 1097 * 1098 * Apart from the access refcount, __uprobe_register() takes a creation 1099 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1100 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1101 * tuple). Creation refcount stops uprobe_unregister from freeing the 1102 * @uprobe even before the register operation is complete. Creation 1103 * refcount is released when the last @uc for the @uprobe 1104 * unregisters. Caller of __uprobe_register() is required to keep @inode 1105 * (and the containing mount) referenced. 1106 * 1107 * Return errno if it cannot successully install probes 1108 * else return 0 (success) 1109 */ 1110 static int __uprobe_register(struct inode *inode, loff_t offset, 1111 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1112 { 1113 struct uprobe *uprobe; 1114 int ret; 1115 1116 /* Uprobe must have at least one set consumer */ 1117 if (!uc->handler && !uc->ret_handler) 1118 return -EINVAL; 1119 1120 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1121 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 1122 return -EIO; 1123 /* Racy, just to catch the obvious mistakes */ 1124 if (offset > i_size_read(inode)) 1125 return -EINVAL; 1126 1127 retry: 1128 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1129 if (!uprobe) 1130 return -ENOMEM; 1131 if (IS_ERR(uprobe)) 1132 return PTR_ERR(uprobe); 1133 1134 /* 1135 * We can race with uprobe_unregister()->delete_uprobe(). 1136 * Check uprobe_is_active() and retry if it is false. 1137 */ 1138 down_write(&uprobe->register_rwsem); 1139 ret = -EAGAIN; 1140 if (likely(uprobe_is_active(uprobe))) { 1141 consumer_add(uprobe, uc); 1142 ret = register_for_each_vma(uprobe, uc); 1143 if (ret) 1144 __uprobe_unregister(uprobe, uc); 1145 } 1146 up_write(&uprobe->register_rwsem); 1147 put_uprobe(uprobe); 1148 1149 if (unlikely(ret == -EAGAIN)) 1150 goto retry; 1151 return ret; 1152 } 1153 1154 int uprobe_register(struct inode *inode, loff_t offset, 1155 struct uprobe_consumer *uc) 1156 { 1157 return __uprobe_register(inode, offset, 0, uc); 1158 } 1159 EXPORT_SYMBOL_GPL(uprobe_register); 1160 1161 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1162 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1163 { 1164 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1165 } 1166 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1167 1168 /* 1169 * uprobe_apply - unregister an already registered probe. 1170 * @inode: the file in which the probe has to be removed. 1171 * @offset: offset from the start of the file. 1172 * @uc: consumer which wants to add more or remove some breakpoints 1173 * @add: add or remove the breakpoints 1174 */ 1175 int uprobe_apply(struct inode *inode, loff_t offset, 1176 struct uprobe_consumer *uc, bool add) 1177 { 1178 struct uprobe *uprobe; 1179 struct uprobe_consumer *con; 1180 int ret = -ENOENT; 1181 1182 uprobe = find_uprobe(inode, offset); 1183 if (WARN_ON(!uprobe)) 1184 return ret; 1185 1186 down_write(&uprobe->register_rwsem); 1187 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1188 ; 1189 if (con) 1190 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1191 up_write(&uprobe->register_rwsem); 1192 put_uprobe(uprobe); 1193 1194 return ret; 1195 } 1196 1197 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1198 { 1199 struct vm_area_struct *vma; 1200 int err = 0; 1201 1202 down_read(&mm->mmap_sem); 1203 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1204 unsigned long vaddr; 1205 loff_t offset; 1206 1207 if (!valid_vma(vma, false) || 1208 file_inode(vma->vm_file) != uprobe->inode) 1209 continue; 1210 1211 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1212 if (uprobe->offset < offset || 1213 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1214 continue; 1215 1216 vaddr = offset_to_vaddr(vma, uprobe->offset); 1217 err |= remove_breakpoint(uprobe, mm, vaddr); 1218 } 1219 up_read(&mm->mmap_sem); 1220 1221 return err; 1222 } 1223 1224 static struct rb_node * 1225 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1226 { 1227 struct rb_node *n = uprobes_tree.rb_node; 1228 1229 while (n) { 1230 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1231 1232 if (inode < u->inode) { 1233 n = n->rb_left; 1234 } else if (inode > u->inode) { 1235 n = n->rb_right; 1236 } else { 1237 if (max < u->offset) 1238 n = n->rb_left; 1239 else if (min > u->offset) 1240 n = n->rb_right; 1241 else 1242 break; 1243 } 1244 } 1245 1246 return n; 1247 } 1248 1249 /* 1250 * For a given range in vma, build a list of probes that need to be inserted. 1251 */ 1252 static void build_probe_list(struct inode *inode, 1253 struct vm_area_struct *vma, 1254 unsigned long start, unsigned long end, 1255 struct list_head *head) 1256 { 1257 loff_t min, max; 1258 struct rb_node *n, *t; 1259 struct uprobe *u; 1260 1261 INIT_LIST_HEAD(head); 1262 min = vaddr_to_offset(vma, start); 1263 max = min + (end - start) - 1; 1264 1265 spin_lock(&uprobes_treelock); 1266 n = find_node_in_range(inode, min, max); 1267 if (n) { 1268 for (t = n; t; t = rb_prev(t)) { 1269 u = rb_entry(t, struct uprobe, rb_node); 1270 if (u->inode != inode || u->offset < min) 1271 break; 1272 list_add(&u->pending_list, head); 1273 get_uprobe(u); 1274 } 1275 for (t = n; (t = rb_next(t)); ) { 1276 u = rb_entry(t, struct uprobe, rb_node); 1277 if (u->inode != inode || u->offset > max) 1278 break; 1279 list_add(&u->pending_list, head); 1280 get_uprobe(u); 1281 } 1282 } 1283 spin_unlock(&uprobes_treelock); 1284 } 1285 1286 /* @vma contains reference counter, not the probed instruction. */ 1287 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1288 { 1289 struct list_head *pos, *q; 1290 struct delayed_uprobe *du; 1291 unsigned long vaddr; 1292 int ret = 0, err = 0; 1293 1294 mutex_lock(&delayed_uprobe_lock); 1295 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1296 du = list_entry(pos, struct delayed_uprobe, list); 1297 1298 if (du->mm != vma->vm_mm || 1299 !valid_ref_ctr_vma(du->uprobe, vma)) 1300 continue; 1301 1302 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1303 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1304 if (ret) { 1305 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1306 if (!err) 1307 err = ret; 1308 } 1309 delayed_uprobe_delete(du); 1310 } 1311 mutex_unlock(&delayed_uprobe_lock); 1312 return err; 1313 } 1314 1315 /* 1316 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1317 * 1318 * Currently we ignore all errors and always return 0, the callers 1319 * can't handle the failure anyway. 1320 */ 1321 int uprobe_mmap(struct vm_area_struct *vma) 1322 { 1323 struct list_head tmp_list; 1324 struct uprobe *uprobe, *u; 1325 struct inode *inode; 1326 1327 if (no_uprobe_events()) 1328 return 0; 1329 1330 if (vma->vm_file && 1331 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1332 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1333 delayed_ref_ctr_inc(vma); 1334 1335 if (!valid_vma(vma, true)) 1336 return 0; 1337 1338 inode = file_inode(vma->vm_file); 1339 if (!inode) 1340 return 0; 1341 1342 mutex_lock(uprobes_mmap_hash(inode)); 1343 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1344 /* 1345 * We can race with uprobe_unregister(), this uprobe can be already 1346 * removed. But in this case filter_chain() must return false, all 1347 * consumers have gone away. 1348 */ 1349 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1350 if (!fatal_signal_pending(current) && 1351 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1352 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1353 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1354 } 1355 put_uprobe(uprobe); 1356 } 1357 mutex_unlock(uprobes_mmap_hash(inode)); 1358 1359 return 0; 1360 } 1361 1362 static bool 1363 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1364 { 1365 loff_t min, max; 1366 struct inode *inode; 1367 struct rb_node *n; 1368 1369 inode = file_inode(vma->vm_file); 1370 1371 min = vaddr_to_offset(vma, start); 1372 max = min + (end - start) - 1; 1373 1374 spin_lock(&uprobes_treelock); 1375 n = find_node_in_range(inode, min, max); 1376 spin_unlock(&uprobes_treelock); 1377 1378 return !!n; 1379 } 1380 1381 /* 1382 * Called in context of a munmap of a vma. 1383 */ 1384 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1385 { 1386 if (no_uprobe_events() || !valid_vma(vma, false)) 1387 return; 1388 1389 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1390 return; 1391 1392 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1393 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1394 return; 1395 1396 if (vma_has_uprobes(vma, start, end)) 1397 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1398 } 1399 1400 /* Slot allocation for XOL */ 1401 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1402 { 1403 struct vm_area_struct *vma; 1404 int ret; 1405 1406 if (down_write_killable(&mm->mmap_sem)) 1407 return -EINTR; 1408 1409 if (mm->uprobes_state.xol_area) { 1410 ret = -EALREADY; 1411 goto fail; 1412 } 1413 1414 if (!area->vaddr) { 1415 /* Try to map as high as possible, this is only a hint. */ 1416 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1417 PAGE_SIZE, 0, 0); 1418 if (area->vaddr & ~PAGE_MASK) { 1419 ret = area->vaddr; 1420 goto fail; 1421 } 1422 } 1423 1424 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1425 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1426 &area->xol_mapping); 1427 if (IS_ERR(vma)) { 1428 ret = PTR_ERR(vma); 1429 goto fail; 1430 } 1431 1432 ret = 0; 1433 /* pairs with get_xol_area() */ 1434 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1435 fail: 1436 up_write(&mm->mmap_sem); 1437 1438 return ret; 1439 } 1440 1441 static struct xol_area *__create_xol_area(unsigned long vaddr) 1442 { 1443 struct mm_struct *mm = current->mm; 1444 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1445 struct xol_area *area; 1446 1447 area = kmalloc(sizeof(*area), GFP_KERNEL); 1448 if (unlikely(!area)) 1449 goto out; 1450 1451 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1452 GFP_KERNEL); 1453 if (!area->bitmap) 1454 goto free_area; 1455 1456 area->xol_mapping.name = "[uprobes]"; 1457 area->xol_mapping.fault = NULL; 1458 area->xol_mapping.pages = area->pages; 1459 area->pages[0] = alloc_page(GFP_HIGHUSER); 1460 if (!area->pages[0]) 1461 goto free_bitmap; 1462 area->pages[1] = NULL; 1463 1464 area->vaddr = vaddr; 1465 init_waitqueue_head(&area->wq); 1466 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1467 set_bit(0, area->bitmap); 1468 atomic_set(&area->slot_count, 1); 1469 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1470 1471 if (!xol_add_vma(mm, area)) 1472 return area; 1473 1474 __free_page(area->pages[0]); 1475 free_bitmap: 1476 kfree(area->bitmap); 1477 free_area: 1478 kfree(area); 1479 out: 1480 return NULL; 1481 } 1482 1483 /* 1484 * get_xol_area - Allocate process's xol_area if necessary. 1485 * This area will be used for storing instructions for execution out of line. 1486 * 1487 * Returns the allocated area or NULL. 1488 */ 1489 static struct xol_area *get_xol_area(void) 1490 { 1491 struct mm_struct *mm = current->mm; 1492 struct xol_area *area; 1493 1494 if (!mm->uprobes_state.xol_area) 1495 __create_xol_area(0); 1496 1497 /* Pairs with xol_add_vma() smp_store_release() */ 1498 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1499 return area; 1500 } 1501 1502 /* 1503 * uprobe_clear_state - Free the area allocated for slots. 1504 */ 1505 void uprobe_clear_state(struct mm_struct *mm) 1506 { 1507 struct xol_area *area = mm->uprobes_state.xol_area; 1508 1509 mutex_lock(&delayed_uprobe_lock); 1510 delayed_uprobe_remove(NULL, mm); 1511 mutex_unlock(&delayed_uprobe_lock); 1512 1513 if (!area) 1514 return; 1515 1516 put_page(area->pages[0]); 1517 kfree(area->bitmap); 1518 kfree(area); 1519 } 1520 1521 void uprobe_start_dup_mmap(void) 1522 { 1523 percpu_down_read(&dup_mmap_sem); 1524 } 1525 1526 void uprobe_end_dup_mmap(void) 1527 { 1528 percpu_up_read(&dup_mmap_sem); 1529 } 1530 1531 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1532 { 1533 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1534 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1535 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1536 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1537 } 1538 } 1539 1540 /* 1541 * - search for a free slot. 1542 */ 1543 static unsigned long xol_take_insn_slot(struct xol_area *area) 1544 { 1545 unsigned long slot_addr; 1546 int slot_nr; 1547 1548 do { 1549 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1550 if (slot_nr < UINSNS_PER_PAGE) { 1551 if (!test_and_set_bit(slot_nr, area->bitmap)) 1552 break; 1553 1554 slot_nr = UINSNS_PER_PAGE; 1555 continue; 1556 } 1557 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1558 } while (slot_nr >= UINSNS_PER_PAGE); 1559 1560 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1561 atomic_inc(&area->slot_count); 1562 1563 return slot_addr; 1564 } 1565 1566 /* 1567 * xol_get_insn_slot - allocate a slot for xol. 1568 * Returns the allocated slot address or 0. 1569 */ 1570 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1571 { 1572 struct xol_area *area; 1573 unsigned long xol_vaddr; 1574 1575 area = get_xol_area(); 1576 if (!area) 1577 return 0; 1578 1579 xol_vaddr = xol_take_insn_slot(area); 1580 if (unlikely(!xol_vaddr)) 1581 return 0; 1582 1583 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1584 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1585 1586 return xol_vaddr; 1587 } 1588 1589 /* 1590 * xol_free_insn_slot - If slot was earlier allocated by 1591 * @xol_get_insn_slot(), make the slot available for 1592 * subsequent requests. 1593 */ 1594 static void xol_free_insn_slot(struct task_struct *tsk) 1595 { 1596 struct xol_area *area; 1597 unsigned long vma_end; 1598 unsigned long slot_addr; 1599 1600 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1601 return; 1602 1603 slot_addr = tsk->utask->xol_vaddr; 1604 if (unlikely(!slot_addr)) 1605 return; 1606 1607 area = tsk->mm->uprobes_state.xol_area; 1608 vma_end = area->vaddr + PAGE_SIZE; 1609 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1610 unsigned long offset; 1611 int slot_nr; 1612 1613 offset = slot_addr - area->vaddr; 1614 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1615 if (slot_nr >= UINSNS_PER_PAGE) 1616 return; 1617 1618 clear_bit(slot_nr, area->bitmap); 1619 atomic_dec(&area->slot_count); 1620 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1621 if (waitqueue_active(&area->wq)) 1622 wake_up(&area->wq); 1623 1624 tsk->utask->xol_vaddr = 0; 1625 } 1626 } 1627 1628 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1629 void *src, unsigned long len) 1630 { 1631 /* Initialize the slot */ 1632 copy_to_page(page, vaddr, src, len); 1633 1634 /* 1635 * We probably need flush_icache_user_range() but it needs vma. 1636 * This should work on most of architectures by default. If 1637 * architecture needs to do something different it can define 1638 * its own version of the function. 1639 */ 1640 flush_dcache_page(page); 1641 } 1642 1643 /** 1644 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1645 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1646 * instruction. 1647 * Return the address of the breakpoint instruction. 1648 */ 1649 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1650 { 1651 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1652 } 1653 1654 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1655 { 1656 struct uprobe_task *utask = current->utask; 1657 1658 if (unlikely(utask && utask->active_uprobe)) 1659 return utask->vaddr; 1660 1661 return instruction_pointer(regs); 1662 } 1663 1664 static struct return_instance *free_ret_instance(struct return_instance *ri) 1665 { 1666 struct return_instance *next = ri->next; 1667 put_uprobe(ri->uprobe); 1668 kfree(ri); 1669 return next; 1670 } 1671 1672 /* 1673 * Called with no locks held. 1674 * Called in context of an exiting or an exec-ing thread. 1675 */ 1676 void uprobe_free_utask(struct task_struct *t) 1677 { 1678 struct uprobe_task *utask = t->utask; 1679 struct return_instance *ri; 1680 1681 if (!utask) 1682 return; 1683 1684 if (utask->active_uprobe) 1685 put_uprobe(utask->active_uprobe); 1686 1687 ri = utask->return_instances; 1688 while (ri) 1689 ri = free_ret_instance(ri); 1690 1691 xol_free_insn_slot(t); 1692 kfree(utask); 1693 t->utask = NULL; 1694 } 1695 1696 /* 1697 * Allocate a uprobe_task object for the task if if necessary. 1698 * Called when the thread hits a breakpoint. 1699 * 1700 * Returns: 1701 * - pointer to new uprobe_task on success 1702 * - NULL otherwise 1703 */ 1704 static struct uprobe_task *get_utask(void) 1705 { 1706 if (!current->utask) 1707 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1708 return current->utask; 1709 } 1710 1711 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1712 { 1713 struct uprobe_task *n_utask; 1714 struct return_instance **p, *o, *n; 1715 1716 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1717 if (!n_utask) 1718 return -ENOMEM; 1719 t->utask = n_utask; 1720 1721 p = &n_utask->return_instances; 1722 for (o = o_utask->return_instances; o; o = o->next) { 1723 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1724 if (!n) 1725 return -ENOMEM; 1726 1727 *n = *o; 1728 get_uprobe(n->uprobe); 1729 n->next = NULL; 1730 1731 *p = n; 1732 p = &n->next; 1733 n_utask->depth++; 1734 } 1735 1736 return 0; 1737 } 1738 1739 static void uprobe_warn(struct task_struct *t, const char *msg) 1740 { 1741 pr_warn("uprobe: %s:%d failed to %s\n", 1742 current->comm, current->pid, msg); 1743 } 1744 1745 static void dup_xol_work(struct callback_head *work) 1746 { 1747 if (current->flags & PF_EXITING) 1748 return; 1749 1750 if (!__create_xol_area(current->utask->dup_xol_addr) && 1751 !fatal_signal_pending(current)) 1752 uprobe_warn(current, "dup xol area"); 1753 } 1754 1755 /* 1756 * Called in context of a new clone/fork from copy_process. 1757 */ 1758 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1759 { 1760 struct uprobe_task *utask = current->utask; 1761 struct mm_struct *mm = current->mm; 1762 struct xol_area *area; 1763 1764 t->utask = NULL; 1765 1766 if (!utask || !utask->return_instances) 1767 return; 1768 1769 if (mm == t->mm && !(flags & CLONE_VFORK)) 1770 return; 1771 1772 if (dup_utask(t, utask)) 1773 return uprobe_warn(t, "dup ret instances"); 1774 1775 /* The task can fork() after dup_xol_work() fails */ 1776 area = mm->uprobes_state.xol_area; 1777 if (!area) 1778 return uprobe_warn(t, "dup xol area"); 1779 1780 if (mm == t->mm) 1781 return; 1782 1783 t->utask->dup_xol_addr = area->vaddr; 1784 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1785 task_work_add(t, &t->utask->dup_xol_work, true); 1786 } 1787 1788 /* 1789 * Current area->vaddr notion assume the trampoline address is always 1790 * equal area->vaddr. 1791 * 1792 * Returns -1 in case the xol_area is not allocated. 1793 */ 1794 static unsigned long get_trampoline_vaddr(void) 1795 { 1796 struct xol_area *area; 1797 unsigned long trampoline_vaddr = -1; 1798 1799 /* Pairs with xol_add_vma() smp_store_release() */ 1800 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1801 if (area) 1802 trampoline_vaddr = area->vaddr; 1803 1804 return trampoline_vaddr; 1805 } 1806 1807 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1808 struct pt_regs *regs) 1809 { 1810 struct return_instance *ri = utask->return_instances; 1811 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1812 1813 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1814 ri = free_ret_instance(ri); 1815 utask->depth--; 1816 } 1817 utask->return_instances = ri; 1818 } 1819 1820 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1821 { 1822 struct return_instance *ri; 1823 struct uprobe_task *utask; 1824 unsigned long orig_ret_vaddr, trampoline_vaddr; 1825 bool chained; 1826 1827 if (!get_xol_area()) 1828 return; 1829 1830 utask = get_utask(); 1831 if (!utask) 1832 return; 1833 1834 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1835 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1836 " nestedness limit pid/tgid=%d/%d\n", 1837 current->pid, current->tgid); 1838 return; 1839 } 1840 1841 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1842 if (!ri) 1843 return; 1844 1845 trampoline_vaddr = get_trampoline_vaddr(); 1846 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1847 if (orig_ret_vaddr == -1) 1848 goto fail; 1849 1850 /* drop the entries invalidated by longjmp() */ 1851 chained = (orig_ret_vaddr == trampoline_vaddr); 1852 cleanup_return_instances(utask, chained, regs); 1853 1854 /* 1855 * We don't want to keep trampoline address in stack, rather keep the 1856 * original return address of first caller thru all the consequent 1857 * instances. This also makes breakpoint unwrapping easier. 1858 */ 1859 if (chained) { 1860 if (!utask->return_instances) { 1861 /* 1862 * This situation is not possible. Likely we have an 1863 * attack from user-space. 1864 */ 1865 uprobe_warn(current, "handle tail call"); 1866 goto fail; 1867 } 1868 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1869 } 1870 1871 ri->uprobe = get_uprobe(uprobe); 1872 ri->func = instruction_pointer(regs); 1873 ri->stack = user_stack_pointer(regs); 1874 ri->orig_ret_vaddr = orig_ret_vaddr; 1875 ri->chained = chained; 1876 1877 utask->depth++; 1878 ri->next = utask->return_instances; 1879 utask->return_instances = ri; 1880 1881 return; 1882 fail: 1883 kfree(ri); 1884 } 1885 1886 /* Prepare to single-step probed instruction out of line. */ 1887 static int 1888 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1889 { 1890 struct uprobe_task *utask; 1891 unsigned long xol_vaddr; 1892 int err; 1893 1894 utask = get_utask(); 1895 if (!utask) 1896 return -ENOMEM; 1897 1898 xol_vaddr = xol_get_insn_slot(uprobe); 1899 if (!xol_vaddr) 1900 return -ENOMEM; 1901 1902 utask->xol_vaddr = xol_vaddr; 1903 utask->vaddr = bp_vaddr; 1904 1905 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1906 if (unlikely(err)) { 1907 xol_free_insn_slot(current); 1908 return err; 1909 } 1910 1911 utask->active_uprobe = uprobe; 1912 utask->state = UTASK_SSTEP; 1913 return 0; 1914 } 1915 1916 /* 1917 * If we are singlestepping, then ensure this thread is not connected to 1918 * non-fatal signals until completion of singlestep. When xol insn itself 1919 * triggers the signal, restart the original insn even if the task is 1920 * already SIGKILL'ed (since coredump should report the correct ip). This 1921 * is even more important if the task has a handler for SIGSEGV/etc, The 1922 * _same_ instruction should be repeated again after return from the signal 1923 * handler, and SSTEP can never finish in this case. 1924 */ 1925 bool uprobe_deny_signal(void) 1926 { 1927 struct task_struct *t = current; 1928 struct uprobe_task *utask = t->utask; 1929 1930 if (likely(!utask || !utask->active_uprobe)) 1931 return false; 1932 1933 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1934 1935 if (signal_pending(t)) { 1936 spin_lock_irq(&t->sighand->siglock); 1937 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1938 spin_unlock_irq(&t->sighand->siglock); 1939 1940 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1941 utask->state = UTASK_SSTEP_TRAPPED; 1942 set_tsk_thread_flag(t, TIF_UPROBE); 1943 } 1944 } 1945 1946 return true; 1947 } 1948 1949 static void mmf_recalc_uprobes(struct mm_struct *mm) 1950 { 1951 struct vm_area_struct *vma; 1952 1953 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1954 if (!valid_vma(vma, false)) 1955 continue; 1956 /* 1957 * This is not strictly accurate, we can race with 1958 * uprobe_unregister() and see the already removed 1959 * uprobe if delete_uprobe() was not yet called. 1960 * Or this uprobe can be filtered out. 1961 */ 1962 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1963 return; 1964 } 1965 1966 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1967 } 1968 1969 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1970 { 1971 struct page *page; 1972 uprobe_opcode_t opcode; 1973 int result; 1974 1975 pagefault_disable(); 1976 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 1977 pagefault_enable(); 1978 1979 if (likely(result == 0)) 1980 goto out; 1981 1982 /* 1983 * The NULL 'tsk' here ensures that any faults that occur here 1984 * will not be accounted to the task. 'mm' *is* current->mm, 1985 * but we treat this as a 'remote' access since it is 1986 * essentially a kernel access to the memory. 1987 */ 1988 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page, 1989 NULL, NULL); 1990 if (result < 0) 1991 return result; 1992 1993 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1994 put_page(page); 1995 out: 1996 /* This needs to return true for any variant of the trap insn */ 1997 return is_trap_insn(&opcode); 1998 } 1999 2000 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2001 { 2002 struct mm_struct *mm = current->mm; 2003 struct uprobe *uprobe = NULL; 2004 struct vm_area_struct *vma; 2005 2006 down_read(&mm->mmap_sem); 2007 vma = find_vma(mm, bp_vaddr); 2008 if (vma && vma->vm_start <= bp_vaddr) { 2009 if (valid_vma(vma, false)) { 2010 struct inode *inode = file_inode(vma->vm_file); 2011 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2012 2013 uprobe = find_uprobe(inode, offset); 2014 } 2015 2016 if (!uprobe) 2017 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2018 } else { 2019 *is_swbp = -EFAULT; 2020 } 2021 2022 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2023 mmf_recalc_uprobes(mm); 2024 up_read(&mm->mmap_sem); 2025 2026 return uprobe; 2027 } 2028 2029 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2030 { 2031 struct uprobe_consumer *uc; 2032 int remove = UPROBE_HANDLER_REMOVE; 2033 bool need_prep = false; /* prepare return uprobe, when needed */ 2034 2035 down_read(&uprobe->register_rwsem); 2036 for (uc = uprobe->consumers; uc; uc = uc->next) { 2037 int rc = 0; 2038 2039 if (uc->handler) { 2040 rc = uc->handler(uc, regs); 2041 WARN(rc & ~UPROBE_HANDLER_MASK, 2042 "bad rc=0x%x from %pf()\n", rc, uc->handler); 2043 } 2044 2045 if (uc->ret_handler) 2046 need_prep = true; 2047 2048 remove &= rc; 2049 } 2050 2051 if (need_prep && !remove) 2052 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2053 2054 if (remove && uprobe->consumers) { 2055 WARN_ON(!uprobe_is_active(uprobe)); 2056 unapply_uprobe(uprobe, current->mm); 2057 } 2058 up_read(&uprobe->register_rwsem); 2059 } 2060 2061 static void 2062 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2063 { 2064 struct uprobe *uprobe = ri->uprobe; 2065 struct uprobe_consumer *uc; 2066 2067 down_read(&uprobe->register_rwsem); 2068 for (uc = uprobe->consumers; uc; uc = uc->next) { 2069 if (uc->ret_handler) 2070 uc->ret_handler(uc, ri->func, regs); 2071 } 2072 up_read(&uprobe->register_rwsem); 2073 } 2074 2075 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2076 { 2077 bool chained; 2078 2079 do { 2080 chained = ri->chained; 2081 ri = ri->next; /* can't be NULL if chained */ 2082 } while (chained); 2083 2084 return ri; 2085 } 2086 2087 static void handle_trampoline(struct pt_regs *regs) 2088 { 2089 struct uprobe_task *utask; 2090 struct return_instance *ri, *next; 2091 bool valid; 2092 2093 utask = current->utask; 2094 if (!utask) 2095 goto sigill; 2096 2097 ri = utask->return_instances; 2098 if (!ri) 2099 goto sigill; 2100 2101 do { 2102 /* 2103 * We should throw out the frames invalidated by longjmp(). 2104 * If this chain is valid, then the next one should be alive 2105 * or NULL; the latter case means that nobody but ri->func 2106 * could hit this trampoline on return. TODO: sigaltstack(). 2107 */ 2108 next = find_next_ret_chain(ri); 2109 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2110 2111 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2112 do { 2113 if (valid) 2114 handle_uretprobe_chain(ri, regs); 2115 ri = free_ret_instance(ri); 2116 utask->depth--; 2117 } while (ri != next); 2118 } while (!valid); 2119 2120 utask->return_instances = ri; 2121 return; 2122 2123 sigill: 2124 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2125 force_sig(SIGILL, current); 2126 2127 } 2128 2129 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2130 { 2131 return false; 2132 } 2133 2134 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2135 struct pt_regs *regs) 2136 { 2137 return true; 2138 } 2139 2140 /* 2141 * Run handler and ask thread to singlestep. 2142 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2143 */ 2144 static void handle_swbp(struct pt_regs *regs) 2145 { 2146 struct uprobe *uprobe; 2147 unsigned long bp_vaddr; 2148 int uninitialized_var(is_swbp); 2149 2150 bp_vaddr = uprobe_get_swbp_addr(regs); 2151 if (bp_vaddr == get_trampoline_vaddr()) 2152 return handle_trampoline(regs); 2153 2154 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2155 if (!uprobe) { 2156 if (is_swbp > 0) { 2157 /* No matching uprobe; signal SIGTRAP. */ 2158 send_sig(SIGTRAP, current, 0); 2159 } else { 2160 /* 2161 * Either we raced with uprobe_unregister() or we can't 2162 * access this memory. The latter is only possible if 2163 * another thread plays with our ->mm. In both cases 2164 * we can simply restart. If this vma was unmapped we 2165 * can pretend this insn was not executed yet and get 2166 * the (correct) SIGSEGV after restart. 2167 */ 2168 instruction_pointer_set(regs, bp_vaddr); 2169 } 2170 return; 2171 } 2172 2173 /* change it in advance for ->handler() and restart */ 2174 instruction_pointer_set(regs, bp_vaddr); 2175 2176 /* 2177 * TODO: move copy_insn/etc into _register and remove this hack. 2178 * After we hit the bp, _unregister + _register can install the 2179 * new and not-yet-analyzed uprobe at the same address, restart. 2180 */ 2181 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 2182 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2183 goto out; 2184 2185 /* Tracing handlers use ->utask to communicate with fetch methods */ 2186 if (!get_utask()) 2187 goto out; 2188 2189 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2190 goto out; 2191 2192 handler_chain(uprobe, regs); 2193 2194 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2195 goto out; 2196 2197 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2198 return; 2199 2200 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2201 out: 2202 put_uprobe(uprobe); 2203 } 2204 2205 /* 2206 * Perform required fix-ups and disable singlestep. 2207 * Allow pending signals to take effect. 2208 */ 2209 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2210 { 2211 struct uprobe *uprobe; 2212 int err = 0; 2213 2214 uprobe = utask->active_uprobe; 2215 if (utask->state == UTASK_SSTEP_ACK) 2216 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2217 else if (utask->state == UTASK_SSTEP_TRAPPED) 2218 arch_uprobe_abort_xol(&uprobe->arch, regs); 2219 else 2220 WARN_ON_ONCE(1); 2221 2222 put_uprobe(uprobe); 2223 utask->active_uprobe = NULL; 2224 utask->state = UTASK_RUNNING; 2225 xol_free_insn_slot(current); 2226 2227 spin_lock_irq(¤t->sighand->siglock); 2228 recalc_sigpending(); /* see uprobe_deny_signal() */ 2229 spin_unlock_irq(¤t->sighand->siglock); 2230 2231 if (unlikely(err)) { 2232 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2233 force_sig(SIGILL, current); 2234 } 2235 } 2236 2237 /* 2238 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2239 * allows the thread to return from interrupt. After that handle_swbp() 2240 * sets utask->active_uprobe. 2241 * 2242 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2243 * and allows the thread to return from interrupt. 2244 * 2245 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2246 * uprobe_notify_resume(). 2247 */ 2248 void uprobe_notify_resume(struct pt_regs *regs) 2249 { 2250 struct uprobe_task *utask; 2251 2252 clear_thread_flag(TIF_UPROBE); 2253 2254 utask = current->utask; 2255 if (utask && utask->active_uprobe) 2256 handle_singlestep(utask, regs); 2257 else 2258 handle_swbp(regs); 2259 } 2260 2261 /* 2262 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2263 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2264 */ 2265 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2266 { 2267 if (!current->mm) 2268 return 0; 2269 2270 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2271 (!current->utask || !current->utask->return_instances)) 2272 return 0; 2273 2274 set_thread_flag(TIF_UPROBE); 2275 return 1; 2276 } 2277 2278 /* 2279 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2280 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2281 */ 2282 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2283 { 2284 struct uprobe_task *utask = current->utask; 2285 2286 if (!current->mm || !utask || !utask->active_uprobe) 2287 /* task is currently not uprobed */ 2288 return 0; 2289 2290 utask->state = UTASK_SSTEP_ACK; 2291 set_thread_flag(TIF_UPROBE); 2292 return 1; 2293 } 2294 2295 static struct notifier_block uprobe_exception_nb = { 2296 .notifier_call = arch_uprobe_exception_notify, 2297 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2298 }; 2299 2300 static int __init init_uprobes(void) 2301 { 2302 int i; 2303 2304 for (i = 0; i < UPROBES_HASH_SZ; i++) 2305 mutex_init(&uprobes_mmap_mutex[i]); 2306 2307 if (percpu_init_rwsem(&dup_mmap_sem)) 2308 return -ENOMEM; 2309 2310 return register_die_notifier(&uprobe_exception_nb); 2311 } 2312 __initcall(init_uprobes); 2313