1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/export.h> 31 #include <linux/rmap.h> /* anon_vma_prepare */ 32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 33 #include <linux/swap.h> /* try_to_free_swap */ 34 #include <linux/ptrace.h> /* user_enable_single_step */ 35 #include <linux/kdebug.h> /* notifier mechanism */ 36 #include "../../mm/internal.h" /* munlock_vma_page */ 37 #include <linux/percpu-rwsem.h> 38 #include <linux/task_work.h> 39 #include <linux/shmem_fs.h> 40 41 #include <linux/uprobes.h> 42 43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 45 46 static struct rb_root uprobes_tree = RB_ROOT; 47 /* 48 * allows us to skip the uprobe_mmap if there are no uprobe events active 49 * at this time. Probably a fine grained per inode count is better? 50 */ 51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 52 53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 54 55 #define UPROBES_HASH_SZ 13 56 /* serialize uprobe->pending_list */ 57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 59 60 static struct percpu_rw_semaphore dup_mmap_sem; 61 62 /* Have a copy of original instruction */ 63 #define UPROBE_COPY_INSN 0 64 65 struct uprobe { 66 struct rb_node rb_node; /* node in the rb tree */ 67 atomic_t ref; 68 struct rw_semaphore register_rwsem; 69 struct rw_semaphore consumer_rwsem; 70 struct list_head pending_list; 71 struct uprobe_consumer *consumers; 72 struct inode *inode; /* Also hold a ref to inode */ 73 loff_t offset; 74 unsigned long flags; 75 76 /* 77 * The generic code assumes that it has two members of unknown type 78 * owned by the arch-specific code: 79 * 80 * insn - copy_insn() saves the original instruction here for 81 * arch_uprobe_analyze_insn(). 82 * 83 * ixol - potentially modified instruction to execute out of 84 * line, copied to xol_area by xol_get_insn_slot(). 85 */ 86 struct arch_uprobe arch; 87 }; 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @page: the cowed page we are replacing by kpage 148 * @kpage: the modified page we replace page by 149 * 150 * Returns 0 on success, -EFAULT on failure. 151 */ 152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 153 struct page *old_page, struct page *new_page) 154 { 155 struct mm_struct *mm = vma->vm_mm; 156 struct page_vma_mapped_walk pvmw = { 157 .page = old_page, 158 .vma = vma, 159 .address = addr, 160 }; 161 int err; 162 /* For mmu_notifiers */ 163 const unsigned long mmun_start = addr; 164 const unsigned long mmun_end = addr + PAGE_SIZE; 165 struct mem_cgroup *memcg; 166 167 VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page); 168 169 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg, 170 false); 171 if (err) 172 return err; 173 174 /* For try_to_free_swap() and munlock_vma_page() below */ 175 lock_page(old_page); 176 177 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 178 err = -EAGAIN; 179 if (!page_vma_mapped_walk(&pvmw)) { 180 mem_cgroup_cancel_charge(new_page, memcg, false); 181 goto unlock; 182 } 183 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 184 185 get_page(new_page); 186 page_add_new_anon_rmap(new_page, vma, addr, false); 187 mem_cgroup_commit_charge(new_page, memcg, false, false); 188 lru_cache_add_active_or_unevictable(new_page, vma); 189 190 if (!PageAnon(old_page)) { 191 dec_mm_counter(mm, mm_counter_file(old_page)); 192 inc_mm_counter(mm, MM_ANONPAGES); 193 } 194 195 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 196 ptep_clear_flush_notify(vma, addr, pvmw.pte); 197 set_pte_at_notify(mm, addr, pvmw.pte, 198 mk_pte(new_page, vma->vm_page_prot)); 199 200 page_remove_rmap(old_page, false); 201 if (!page_mapped(old_page)) 202 try_to_free_swap(old_page); 203 page_vma_mapped_walk_done(&pvmw); 204 205 if (vma->vm_flags & VM_LOCKED) 206 munlock_vma_page(old_page); 207 put_page(old_page); 208 209 err = 0; 210 unlock: 211 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 212 unlock_page(old_page); 213 return err; 214 } 215 216 /** 217 * is_swbp_insn - check if instruction is breakpoint instruction. 218 * @insn: instruction to be checked. 219 * Default implementation of is_swbp_insn 220 * Returns true if @insn is a breakpoint instruction. 221 */ 222 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 223 { 224 return *insn == UPROBE_SWBP_INSN; 225 } 226 227 /** 228 * is_trap_insn - check if instruction is breakpoint instruction. 229 * @insn: instruction to be checked. 230 * Default implementation of is_trap_insn 231 * Returns true if @insn is a breakpoint instruction. 232 * 233 * This function is needed for the case where an architecture has multiple 234 * trap instructions (like powerpc). 235 */ 236 bool __weak is_trap_insn(uprobe_opcode_t *insn) 237 { 238 return is_swbp_insn(insn); 239 } 240 241 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 242 { 243 void *kaddr = kmap_atomic(page); 244 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 245 kunmap_atomic(kaddr); 246 } 247 248 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 249 { 250 void *kaddr = kmap_atomic(page); 251 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 252 kunmap_atomic(kaddr); 253 } 254 255 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 256 { 257 uprobe_opcode_t old_opcode; 258 bool is_swbp; 259 260 /* 261 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 262 * We do not check if it is any other 'trap variant' which could 263 * be conditional trap instruction such as the one powerpc supports. 264 * 265 * The logic is that we do not care if the underlying instruction 266 * is a trap variant; uprobes always wins over any other (gdb) 267 * breakpoint. 268 */ 269 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 270 is_swbp = is_swbp_insn(&old_opcode); 271 272 if (is_swbp_insn(new_opcode)) { 273 if (is_swbp) /* register: already installed? */ 274 return 0; 275 } else { 276 if (!is_swbp) /* unregister: was it changed by us? */ 277 return 0; 278 } 279 280 return 1; 281 } 282 283 /* 284 * NOTE: 285 * Expect the breakpoint instruction to be the smallest size instruction for 286 * the architecture. If an arch has variable length instruction and the 287 * breakpoint instruction is not of the smallest length instruction 288 * supported by that architecture then we need to modify is_trap_at_addr and 289 * uprobe_write_opcode accordingly. This would never be a problem for archs 290 * that have fixed length instructions. 291 * 292 * uprobe_write_opcode - write the opcode at a given virtual address. 293 * @mm: the probed process address space. 294 * @vaddr: the virtual address to store the opcode. 295 * @opcode: opcode to be written at @vaddr. 296 * 297 * Called with mm->mmap_sem held for write. 298 * Return 0 (success) or a negative errno. 299 */ 300 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, 301 uprobe_opcode_t opcode) 302 { 303 struct page *old_page, *new_page; 304 struct vm_area_struct *vma; 305 int ret; 306 307 retry: 308 /* Read the page with vaddr into memory */ 309 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 310 FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL); 311 if (ret <= 0) 312 return ret; 313 314 ret = verify_opcode(old_page, vaddr, &opcode); 315 if (ret <= 0) 316 goto put_old; 317 318 ret = anon_vma_prepare(vma); 319 if (ret) 320 goto put_old; 321 322 ret = -ENOMEM; 323 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 324 if (!new_page) 325 goto put_old; 326 327 __SetPageUptodate(new_page); 328 copy_highpage(new_page, old_page); 329 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 330 331 ret = __replace_page(vma, vaddr, old_page, new_page); 332 put_page(new_page); 333 put_old: 334 put_page(old_page); 335 336 if (unlikely(ret == -EAGAIN)) 337 goto retry; 338 return ret; 339 } 340 341 /** 342 * set_swbp - store breakpoint at a given address. 343 * @auprobe: arch specific probepoint information. 344 * @mm: the probed process address space. 345 * @vaddr: the virtual address to insert the opcode. 346 * 347 * For mm @mm, store the breakpoint instruction at @vaddr. 348 * Return 0 (success) or a negative errno. 349 */ 350 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 351 { 352 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN); 353 } 354 355 /** 356 * set_orig_insn - Restore the original instruction. 357 * @mm: the probed process address space. 358 * @auprobe: arch specific probepoint information. 359 * @vaddr: the virtual address to insert the opcode. 360 * 361 * For mm @mm, restore the original opcode (opcode) at @vaddr. 362 * Return 0 (success) or a negative errno. 363 */ 364 int __weak 365 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 366 { 367 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn); 368 } 369 370 static struct uprobe *get_uprobe(struct uprobe *uprobe) 371 { 372 atomic_inc(&uprobe->ref); 373 return uprobe; 374 } 375 376 static void put_uprobe(struct uprobe *uprobe) 377 { 378 if (atomic_dec_and_test(&uprobe->ref)) 379 kfree(uprobe); 380 } 381 382 static int match_uprobe(struct uprobe *l, struct uprobe *r) 383 { 384 if (l->inode < r->inode) 385 return -1; 386 387 if (l->inode > r->inode) 388 return 1; 389 390 if (l->offset < r->offset) 391 return -1; 392 393 if (l->offset > r->offset) 394 return 1; 395 396 return 0; 397 } 398 399 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 400 { 401 struct uprobe u = { .inode = inode, .offset = offset }; 402 struct rb_node *n = uprobes_tree.rb_node; 403 struct uprobe *uprobe; 404 int match; 405 406 while (n) { 407 uprobe = rb_entry(n, struct uprobe, rb_node); 408 match = match_uprobe(&u, uprobe); 409 if (!match) 410 return get_uprobe(uprobe); 411 412 if (match < 0) 413 n = n->rb_left; 414 else 415 n = n->rb_right; 416 } 417 return NULL; 418 } 419 420 /* 421 * Find a uprobe corresponding to a given inode:offset 422 * Acquires uprobes_treelock 423 */ 424 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 425 { 426 struct uprobe *uprobe; 427 428 spin_lock(&uprobes_treelock); 429 uprobe = __find_uprobe(inode, offset); 430 spin_unlock(&uprobes_treelock); 431 432 return uprobe; 433 } 434 435 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 436 { 437 struct rb_node **p = &uprobes_tree.rb_node; 438 struct rb_node *parent = NULL; 439 struct uprobe *u; 440 int match; 441 442 while (*p) { 443 parent = *p; 444 u = rb_entry(parent, struct uprobe, rb_node); 445 match = match_uprobe(uprobe, u); 446 if (!match) 447 return get_uprobe(u); 448 449 if (match < 0) 450 p = &parent->rb_left; 451 else 452 p = &parent->rb_right; 453 454 } 455 456 u = NULL; 457 rb_link_node(&uprobe->rb_node, parent, p); 458 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 459 /* get access + creation ref */ 460 atomic_set(&uprobe->ref, 2); 461 462 return u; 463 } 464 465 /* 466 * Acquire uprobes_treelock. 467 * Matching uprobe already exists in rbtree; 468 * increment (access refcount) and return the matching uprobe. 469 * 470 * No matching uprobe; insert the uprobe in rb_tree; 471 * get a double refcount (access + creation) and return NULL. 472 */ 473 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 474 { 475 struct uprobe *u; 476 477 spin_lock(&uprobes_treelock); 478 u = __insert_uprobe(uprobe); 479 spin_unlock(&uprobes_treelock); 480 481 return u; 482 } 483 484 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 485 { 486 struct uprobe *uprobe, *cur_uprobe; 487 488 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 489 if (!uprobe) 490 return NULL; 491 492 uprobe->inode = igrab(inode); 493 uprobe->offset = offset; 494 init_rwsem(&uprobe->register_rwsem); 495 init_rwsem(&uprobe->consumer_rwsem); 496 497 /* add to uprobes_tree, sorted on inode:offset */ 498 cur_uprobe = insert_uprobe(uprobe); 499 /* a uprobe exists for this inode:offset combination */ 500 if (cur_uprobe) { 501 kfree(uprobe); 502 uprobe = cur_uprobe; 503 iput(inode); 504 } 505 506 return uprobe; 507 } 508 509 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 510 { 511 down_write(&uprobe->consumer_rwsem); 512 uc->next = uprobe->consumers; 513 uprobe->consumers = uc; 514 up_write(&uprobe->consumer_rwsem); 515 } 516 517 /* 518 * For uprobe @uprobe, delete the consumer @uc. 519 * Return true if the @uc is deleted successfully 520 * or return false. 521 */ 522 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 523 { 524 struct uprobe_consumer **con; 525 bool ret = false; 526 527 down_write(&uprobe->consumer_rwsem); 528 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 529 if (*con == uc) { 530 *con = uc->next; 531 ret = true; 532 break; 533 } 534 } 535 up_write(&uprobe->consumer_rwsem); 536 537 return ret; 538 } 539 540 static int __copy_insn(struct address_space *mapping, struct file *filp, 541 void *insn, int nbytes, loff_t offset) 542 { 543 struct page *page; 544 /* 545 * Ensure that the page that has the original instruction is populated 546 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 547 * see uprobe_register(). 548 */ 549 if (mapping->a_ops->readpage) 550 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 551 else 552 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 553 if (IS_ERR(page)) 554 return PTR_ERR(page); 555 556 copy_from_page(page, offset, insn, nbytes); 557 put_page(page); 558 559 return 0; 560 } 561 562 static int copy_insn(struct uprobe *uprobe, struct file *filp) 563 { 564 struct address_space *mapping = uprobe->inode->i_mapping; 565 loff_t offs = uprobe->offset; 566 void *insn = &uprobe->arch.insn; 567 int size = sizeof(uprobe->arch.insn); 568 int len, err = -EIO; 569 570 /* Copy only available bytes, -EIO if nothing was read */ 571 do { 572 if (offs >= i_size_read(uprobe->inode)) 573 break; 574 575 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 576 err = __copy_insn(mapping, filp, insn, len, offs); 577 if (err) 578 break; 579 580 insn += len; 581 offs += len; 582 size -= len; 583 } while (size); 584 585 return err; 586 } 587 588 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 589 struct mm_struct *mm, unsigned long vaddr) 590 { 591 int ret = 0; 592 593 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 594 return ret; 595 596 /* TODO: move this into _register, until then we abuse this sem. */ 597 down_write(&uprobe->consumer_rwsem); 598 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 599 goto out; 600 601 ret = copy_insn(uprobe, file); 602 if (ret) 603 goto out; 604 605 ret = -ENOTSUPP; 606 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 607 goto out; 608 609 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 610 if (ret) 611 goto out; 612 613 /* uprobe_write_opcode() assumes we don't cross page boundary */ 614 BUG_ON((uprobe->offset & ~PAGE_MASK) + 615 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 616 617 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 618 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 619 620 out: 621 up_write(&uprobe->consumer_rwsem); 622 623 return ret; 624 } 625 626 static inline bool consumer_filter(struct uprobe_consumer *uc, 627 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 628 { 629 return !uc->filter || uc->filter(uc, ctx, mm); 630 } 631 632 static bool filter_chain(struct uprobe *uprobe, 633 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 634 { 635 struct uprobe_consumer *uc; 636 bool ret = false; 637 638 down_read(&uprobe->consumer_rwsem); 639 for (uc = uprobe->consumers; uc; uc = uc->next) { 640 ret = consumer_filter(uc, ctx, mm); 641 if (ret) 642 break; 643 } 644 up_read(&uprobe->consumer_rwsem); 645 646 return ret; 647 } 648 649 static int 650 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 651 struct vm_area_struct *vma, unsigned long vaddr) 652 { 653 bool first_uprobe; 654 int ret; 655 656 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 657 if (ret) 658 return ret; 659 660 /* 661 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 662 * the task can hit this breakpoint right after __replace_page(). 663 */ 664 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 665 if (first_uprobe) 666 set_bit(MMF_HAS_UPROBES, &mm->flags); 667 668 ret = set_swbp(&uprobe->arch, mm, vaddr); 669 if (!ret) 670 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 671 else if (first_uprobe) 672 clear_bit(MMF_HAS_UPROBES, &mm->flags); 673 674 return ret; 675 } 676 677 static int 678 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 679 { 680 set_bit(MMF_RECALC_UPROBES, &mm->flags); 681 return set_orig_insn(&uprobe->arch, mm, vaddr); 682 } 683 684 static inline bool uprobe_is_active(struct uprobe *uprobe) 685 { 686 return !RB_EMPTY_NODE(&uprobe->rb_node); 687 } 688 /* 689 * There could be threads that have already hit the breakpoint. They 690 * will recheck the current insn and restart if find_uprobe() fails. 691 * See find_active_uprobe(). 692 */ 693 static void delete_uprobe(struct uprobe *uprobe) 694 { 695 if (WARN_ON(!uprobe_is_active(uprobe))) 696 return; 697 698 spin_lock(&uprobes_treelock); 699 rb_erase(&uprobe->rb_node, &uprobes_tree); 700 spin_unlock(&uprobes_treelock); 701 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 702 iput(uprobe->inode); 703 put_uprobe(uprobe); 704 } 705 706 struct map_info { 707 struct map_info *next; 708 struct mm_struct *mm; 709 unsigned long vaddr; 710 }; 711 712 static inline struct map_info *free_map_info(struct map_info *info) 713 { 714 struct map_info *next = info->next; 715 kfree(info); 716 return next; 717 } 718 719 static struct map_info * 720 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 721 { 722 unsigned long pgoff = offset >> PAGE_SHIFT; 723 struct vm_area_struct *vma; 724 struct map_info *curr = NULL; 725 struct map_info *prev = NULL; 726 struct map_info *info; 727 int more = 0; 728 729 again: 730 i_mmap_lock_read(mapping); 731 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 732 if (!valid_vma(vma, is_register)) 733 continue; 734 735 if (!prev && !more) { 736 /* 737 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 738 * reclaim. This is optimistic, no harm done if it fails. 739 */ 740 prev = kmalloc(sizeof(struct map_info), 741 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 742 if (prev) 743 prev->next = NULL; 744 } 745 if (!prev) { 746 more++; 747 continue; 748 } 749 750 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 751 continue; 752 753 info = prev; 754 prev = prev->next; 755 info->next = curr; 756 curr = info; 757 758 info->mm = vma->vm_mm; 759 info->vaddr = offset_to_vaddr(vma, offset); 760 } 761 i_mmap_unlock_read(mapping); 762 763 if (!more) 764 goto out; 765 766 prev = curr; 767 while (curr) { 768 mmput(curr->mm); 769 curr = curr->next; 770 } 771 772 do { 773 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 774 if (!info) { 775 curr = ERR_PTR(-ENOMEM); 776 goto out; 777 } 778 info->next = prev; 779 prev = info; 780 } while (--more); 781 782 goto again; 783 out: 784 while (prev) 785 prev = free_map_info(prev); 786 return curr; 787 } 788 789 static int 790 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 791 { 792 bool is_register = !!new; 793 struct map_info *info; 794 int err = 0; 795 796 percpu_down_write(&dup_mmap_sem); 797 info = build_map_info(uprobe->inode->i_mapping, 798 uprobe->offset, is_register); 799 if (IS_ERR(info)) { 800 err = PTR_ERR(info); 801 goto out; 802 } 803 804 while (info) { 805 struct mm_struct *mm = info->mm; 806 struct vm_area_struct *vma; 807 808 if (err && is_register) 809 goto free; 810 811 down_write(&mm->mmap_sem); 812 vma = find_vma(mm, info->vaddr); 813 if (!vma || !valid_vma(vma, is_register) || 814 file_inode(vma->vm_file) != uprobe->inode) 815 goto unlock; 816 817 if (vma->vm_start > info->vaddr || 818 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 819 goto unlock; 820 821 if (is_register) { 822 /* consult only the "caller", new consumer. */ 823 if (consumer_filter(new, 824 UPROBE_FILTER_REGISTER, mm)) 825 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 826 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 827 if (!filter_chain(uprobe, 828 UPROBE_FILTER_UNREGISTER, mm)) 829 err |= remove_breakpoint(uprobe, mm, info->vaddr); 830 } 831 832 unlock: 833 up_write(&mm->mmap_sem); 834 free: 835 mmput(mm); 836 info = free_map_info(info); 837 } 838 out: 839 percpu_up_write(&dup_mmap_sem); 840 return err; 841 } 842 843 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc) 844 { 845 consumer_add(uprobe, uc); 846 return register_for_each_vma(uprobe, uc); 847 } 848 849 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 850 { 851 int err; 852 853 if (WARN_ON(!consumer_del(uprobe, uc))) 854 return; 855 856 err = register_for_each_vma(uprobe, NULL); 857 /* TODO : cant unregister? schedule a worker thread */ 858 if (!uprobe->consumers && !err) 859 delete_uprobe(uprobe); 860 } 861 862 /* 863 * uprobe_register - register a probe 864 * @inode: the file in which the probe has to be placed. 865 * @offset: offset from the start of the file. 866 * @uc: information on howto handle the probe.. 867 * 868 * Apart from the access refcount, uprobe_register() takes a creation 869 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 870 * inserted into the rbtree (i.e first consumer for a @inode:@offset 871 * tuple). Creation refcount stops uprobe_unregister from freeing the 872 * @uprobe even before the register operation is complete. Creation 873 * refcount is released when the last @uc for the @uprobe 874 * unregisters. 875 * 876 * Return errno if it cannot successully install probes 877 * else return 0 (success) 878 */ 879 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 880 { 881 struct uprobe *uprobe; 882 int ret; 883 884 /* Uprobe must have at least one set consumer */ 885 if (!uc->handler && !uc->ret_handler) 886 return -EINVAL; 887 888 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 889 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 890 return -EIO; 891 /* Racy, just to catch the obvious mistakes */ 892 if (offset > i_size_read(inode)) 893 return -EINVAL; 894 895 retry: 896 uprobe = alloc_uprobe(inode, offset); 897 if (!uprobe) 898 return -ENOMEM; 899 /* 900 * We can race with uprobe_unregister()->delete_uprobe(). 901 * Check uprobe_is_active() and retry if it is false. 902 */ 903 down_write(&uprobe->register_rwsem); 904 ret = -EAGAIN; 905 if (likely(uprobe_is_active(uprobe))) { 906 ret = __uprobe_register(uprobe, uc); 907 if (ret) 908 __uprobe_unregister(uprobe, uc); 909 } 910 up_write(&uprobe->register_rwsem); 911 put_uprobe(uprobe); 912 913 if (unlikely(ret == -EAGAIN)) 914 goto retry; 915 return ret; 916 } 917 EXPORT_SYMBOL_GPL(uprobe_register); 918 919 /* 920 * uprobe_apply - unregister a already registered probe. 921 * @inode: the file in which the probe has to be removed. 922 * @offset: offset from the start of the file. 923 * @uc: consumer which wants to add more or remove some breakpoints 924 * @add: add or remove the breakpoints 925 */ 926 int uprobe_apply(struct inode *inode, loff_t offset, 927 struct uprobe_consumer *uc, bool add) 928 { 929 struct uprobe *uprobe; 930 struct uprobe_consumer *con; 931 int ret = -ENOENT; 932 933 uprobe = find_uprobe(inode, offset); 934 if (WARN_ON(!uprobe)) 935 return ret; 936 937 down_write(&uprobe->register_rwsem); 938 for (con = uprobe->consumers; con && con != uc ; con = con->next) 939 ; 940 if (con) 941 ret = register_for_each_vma(uprobe, add ? uc : NULL); 942 up_write(&uprobe->register_rwsem); 943 put_uprobe(uprobe); 944 945 return ret; 946 } 947 948 /* 949 * uprobe_unregister - unregister a already registered probe. 950 * @inode: the file in which the probe has to be removed. 951 * @offset: offset from the start of the file. 952 * @uc: identify which probe if multiple probes are colocated. 953 */ 954 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 955 { 956 struct uprobe *uprobe; 957 958 uprobe = find_uprobe(inode, offset); 959 if (WARN_ON(!uprobe)) 960 return; 961 962 down_write(&uprobe->register_rwsem); 963 __uprobe_unregister(uprobe, uc); 964 up_write(&uprobe->register_rwsem); 965 put_uprobe(uprobe); 966 } 967 EXPORT_SYMBOL_GPL(uprobe_unregister); 968 969 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 970 { 971 struct vm_area_struct *vma; 972 int err = 0; 973 974 down_read(&mm->mmap_sem); 975 for (vma = mm->mmap; vma; vma = vma->vm_next) { 976 unsigned long vaddr; 977 loff_t offset; 978 979 if (!valid_vma(vma, false) || 980 file_inode(vma->vm_file) != uprobe->inode) 981 continue; 982 983 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 984 if (uprobe->offset < offset || 985 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 986 continue; 987 988 vaddr = offset_to_vaddr(vma, uprobe->offset); 989 err |= remove_breakpoint(uprobe, mm, vaddr); 990 } 991 up_read(&mm->mmap_sem); 992 993 return err; 994 } 995 996 static struct rb_node * 997 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 998 { 999 struct rb_node *n = uprobes_tree.rb_node; 1000 1001 while (n) { 1002 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1003 1004 if (inode < u->inode) { 1005 n = n->rb_left; 1006 } else if (inode > u->inode) { 1007 n = n->rb_right; 1008 } else { 1009 if (max < u->offset) 1010 n = n->rb_left; 1011 else if (min > u->offset) 1012 n = n->rb_right; 1013 else 1014 break; 1015 } 1016 } 1017 1018 return n; 1019 } 1020 1021 /* 1022 * For a given range in vma, build a list of probes that need to be inserted. 1023 */ 1024 static void build_probe_list(struct inode *inode, 1025 struct vm_area_struct *vma, 1026 unsigned long start, unsigned long end, 1027 struct list_head *head) 1028 { 1029 loff_t min, max; 1030 struct rb_node *n, *t; 1031 struct uprobe *u; 1032 1033 INIT_LIST_HEAD(head); 1034 min = vaddr_to_offset(vma, start); 1035 max = min + (end - start) - 1; 1036 1037 spin_lock(&uprobes_treelock); 1038 n = find_node_in_range(inode, min, max); 1039 if (n) { 1040 for (t = n; t; t = rb_prev(t)) { 1041 u = rb_entry(t, struct uprobe, rb_node); 1042 if (u->inode != inode || u->offset < min) 1043 break; 1044 list_add(&u->pending_list, head); 1045 get_uprobe(u); 1046 } 1047 for (t = n; (t = rb_next(t)); ) { 1048 u = rb_entry(t, struct uprobe, rb_node); 1049 if (u->inode != inode || u->offset > max) 1050 break; 1051 list_add(&u->pending_list, head); 1052 get_uprobe(u); 1053 } 1054 } 1055 spin_unlock(&uprobes_treelock); 1056 } 1057 1058 /* 1059 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1060 * 1061 * Currently we ignore all errors and always return 0, the callers 1062 * can't handle the failure anyway. 1063 */ 1064 int uprobe_mmap(struct vm_area_struct *vma) 1065 { 1066 struct list_head tmp_list; 1067 struct uprobe *uprobe, *u; 1068 struct inode *inode; 1069 1070 if (no_uprobe_events() || !valid_vma(vma, true)) 1071 return 0; 1072 1073 inode = file_inode(vma->vm_file); 1074 if (!inode) 1075 return 0; 1076 1077 mutex_lock(uprobes_mmap_hash(inode)); 1078 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1079 /* 1080 * We can race with uprobe_unregister(), this uprobe can be already 1081 * removed. But in this case filter_chain() must return false, all 1082 * consumers have gone away. 1083 */ 1084 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1085 if (!fatal_signal_pending(current) && 1086 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1087 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1088 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1089 } 1090 put_uprobe(uprobe); 1091 } 1092 mutex_unlock(uprobes_mmap_hash(inode)); 1093 1094 return 0; 1095 } 1096 1097 static bool 1098 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1099 { 1100 loff_t min, max; 1101 struct inode *inode; 1102 struct rb_node *n; 1103 1104 inode = file_inode(vma->vm_file); 1105 1106 min = vaddr_to_offset(vma, start); 1107 max = min + (end - start) - 1; 1108 1109 spin_lock(&uprobes_treelock); 1110 n = find_node_in_range(inode, min, max); 1111 spin_unlock(&uprobes_treelock); 1112 1113 return !!n; 1114 } 1115 1116 /* 1117 * Called in context of a munmap of a vma. 1118 */ 1119 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1120 { 1121 if (no_uprobe_events() || !valid_vma(vma, false)) 1122 return; 1123 1124 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1125 return; 1126 1127 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1128 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1129 return; 1130 1131 if (vma_has_uprobes(vma, start, end)) 1132 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1133 } 1134 1135 /* Slot allocation for XOL */ 1136 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1137 { 1138 struct vm_area_struct *vma; 1139 int ret; 1140 1141 if (down_write_killable(&mm->mmap_sem)) 1142 return -EINTR; 1143 1144 if (mm->uprobes_state.xol_area) { 1145 ret = -EALREADY; 1146 goto fail; 1147 } 1148 1149 if (!area->vaddr) { 1150 /* Try to map as high as possible, this is only a hint. */ 1151 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1152 PAGE_SIZE, 0, 0); 1153 if (area->vaddr & ~PAGE_MASK) { 1154 ret = area->vaddr; 1155 goto fail; 1156 } 1157 } 1158 1159 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1160 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1161 &area->xol_mapping); 1162 if (IS_ERR(vma)) { 1163 ret = PTR_ERR(vma); 1164 goto fail; 1165 } 1166 1167 ret = 0; 1168 smp_wmb(); /* pairs with get_xol_area() */ 1169 mm->uprobes_state.xol_area = area; 1170 fail: 1171 up_write(&mm->mmap_sem); 1172 1173 return ret; 1174 } 1175 1176 static struct xol_area *__create_xol_area(unsigned long vaddr) 1177 { 1178 struct mm_struct *mm = current->mm; 1179 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1180 struct xol_area *area; 1181 1182 area = kmalloc(sizeof(*area), GFP_KERNEL); 1183 if (unlikely(!area)) 1184 goto out; 1185 1186 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1187 if (!area->bitmap) 1188 goto free_area; 1189 1190 area->xol_mapping.name = "[uprobes]"; 1191 area->xol_mapping.fault = NULL; 1192 area->xol_mapping.pages = area->pages; 1193 area->pages[0] = alloc_page(GFP_HIGHUSER); 1194 if (!area->pages[0]) 1195 goto free_bitmap; 1196 area->pages[1] = NULL; 1197 1198 area->vaddr = vaddr; 1199 init_waitqueue_head(&area->wq); 1200 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1201 set_bit(0, area->bitmap); 1202 atomic_set(&area->slot_count, 1); 1203 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1204 1205 if (!xol_add_vma(mm, area)) 1206 return area; 1207 1208 __free_page(area->pages[0]); 1209 free_bitmap: 1210 kfree(area->bitmap); 1211 free_area: 1212 kfree(area); 1213 out: 1214 return NULL; 1215 } 1216 1217 /* 1218 * get_xol_area - Allocate process's xol_area if necessary. 1219 * This area will be used for storing instructions for execution out of line. 1220 * 1221 * Returns the allocated area or NULL. 1222 */ 1223 static struct xol_area *get_xol_area(void) 1224 { 1225 struct mm_struct *mm = current->mm; 1226 struct xol_area *area; 1227 1228 if (!mm->uprobes_state.xol_area) 1229 __create_xol_area(0); 1230 1231 area = mm->uprobes_state.xol_area; 1232 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1233 return area; 1234 } 1235 1236 /* 1237 * uprobe_clear_state - Free the area allocated for slots. 1238 */ 1239 void uprobe_clear_state(struct mm_struct *mm) 1240 { 1241 struct xol_area *area = mm->uprobes_state.xol_area; 1242 1243 if (!area) 1244 return; 1245 1246 put_page(area->pages[0]); 1247 kfree(area->bitmap); 1248 kfree(area); 1249 } 1250 1251 void uprobe_start_dup_mmap(void) 1252 { 1253 percpu_down_read(&dup_mmap_sem); 1254 } 1255 1256 void uprobe_end_dup_mmap(void) 1257 { 1258 percpu_up_read(&dup_mmap_sem); 1259 } 1260 1261 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1262 { 1263 newmm->uprobes_state.xol_area = NULL; 1264 1265 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1266 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1267 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1268 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1269 } 1270 } 1271 1272 /* 1273 * - search for a free slot. 1274 */ 1275 static unsigned long xol_take_insn_slot(struct xol_area *area) 1276 { 1277 unsigned long slot_addr; 1278 int slot_nr; 1279 1280 do { 1281 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1282 if (slot_nr < UINSNS_PER_PAGE) { 1283 if (!test_and_set_bit(slot_nr, area->bitmap)) 1284 break; 1285 1286 slot_nr = UINSNS_PER_PAGE; 1287 continue; 1288 } 1289 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1290 } while (slot_nr >= UINSNS_PER_PAGE); 1291 1292 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1293 atomic_inc(&area->slot_count); 1294 1295 return slot_addr; 1296 } 1297 1298 /* 1299 * xol_get_insn_slot - allocate a slot for xol. 1300 * Returns the allocated slot address or 0. 1301 */ 1302 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1303 { 1304 struct xol_area *area; 1305 unsigned long xol_vaddr; 1306 1307 area = get_xol_area(); 1308 if (!area) 1309 return 0; 1310 1311 xol_vaddr = xol_take_insn_slot(area); 1312 if (unlikely(!xol_vaddr)) 1313 return 0; 1314 1315 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1316 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1317 1318 return xol_vaddr; 1319 } 1320 1321 /* 1322 * xol_free_insn_slot - If slot was earlier allocated by 1323 * @xol_get_insn_slot(), make the slot available for 1324 * subsequent requests. 1325 */ 1326 static void xol_free_insn_slot(struct task_struct *tsk) 1327 { 1328 struct xol_area *area; 1329 unsigned long vma_end; 1330 unsigned long slot_addr; 1331 1332 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1333 return; 1334 1335 slot_addr = tsk->utask->xol_vaddr; 1336 if (unlikely(!slot_addr)) 1337 return; 1338 1339 area = tsk->mm->uprobes_state.xol_area; 1340 vma_end = area->vaddr + PAGE_SIZE; 1341 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1342 unsigned long offset; 1343 int slot_nr; 1344 1345 offset = slot_addr - area->vaddr; 1346 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1347 if (slot_nr >= UINSNS_PER_PAGE) 1348 return; 1349 1350 clear_bit(slot_nr, area->bitmap); 1351 atomic_dec(&area->slot_count); 1352 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1353 if (waitqueue_active(&area->wq)) 1354 wake_up(&area->wq); 1355 1356 tsk->utask->xol_vaddr = 0; 1357 } 1358 } 1359 1360 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1361 void *src, unsigned long len) 1362 { 1363 /* Initialize the slot */ 1364 copy_to_page(page, vaddr, src, len); 1365 1366 /* 1367 * We probably need flush_icache_user_range() but it needs vma. 1368 * This should work on most of architectures by default. If 1369 * architecture needs to do something different it can define 1370 * its own version of the function. 1371 */ 1372 flush_dcache_page(page); 1373 } 1374 1375 /** 1376 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1377 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1378 * instruction. 1379 * Return the address of the breakpoint instruction. 1380 */ 1381 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1382 { 1383 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1384 } 1385 1386 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1387 { 1388 struct uprobe_task *utask = current->utask; 1389 1390 if (unlikely(utask && utask->active_uprobe)) 1391 return utask->vaddr; 1392 1393 return instruction_pointer(regs); 1394 } 1395 1396 static struct return_instance *free_ret_instance(struct return_instance *ri) 1397 { 1398 struct return_instance *next = ri->next; 1399 put_uprobe(ri->uprobe); 1400 kfree(ri); 1401 return next; 1402 } 1403 1404 /* 1405 * Called with no locks held. 1406 * Called in context of a exiting or a exec-ing thread. 1407 */ 1408 void uprobe_free_utask(struct task_struct *t) 1409 { 1410 struct uprobe_task *utask = t->utask; 1411 struct return_instance *ri; 1412 1413 if (!utask) 1414 return; 1415 1416 if (utask->active_uprobe) 1417 put_uprobe(utask->active_uprobe); 1418 1419 ri = utask->return_instances; 1420 while (ri) 1421 ri = free_ret_instance(ri); 1422 1423 xol_free_insn_slot(t); 1424 kfree(utask); 1425 t->utask = NULL; 1426 } 1427 1428 /* 1429 * Allocate a uprobe_task object for the task if if necessary. 1430 * Called when the thread hits a breakpoint. 1431 * 1432 * Returns: 1433 * - pointer to new uprobe_task on success 1434 * - NULL otherwise 1435 */ 1436 static struct uprobe_task *get_utask(void) 1437 { 1438 if (!current->utask) 1439 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1440 return current->utask; 1441 } 1442 1443 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1444 { 1445 struct uprobe_task *n_utask; 1446 struct return_instance **p, *o, *n; 1447 1448 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1449 if (!n_utask) 1450 return -ENOMEM; 1451 t->utask = n_utask; 1452 1453 p = &n_utask->return_instances; 1454 for (o = o_utask->return_instances; o; o = o->next) { 1455 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1456 if (!n) 1457 return -ENOMEM; 1458 1459 *n = *o; 1460 get_uprobe(n->uprobe); 1461 n->next = NULL; 1462 1463 *p = n; 1464 p = &n->next; 1465 n_utask->depth++; 1466 } 1467 1468 return 0; 1469 } 1470 1471 static void uprobe_warn(struct task_struct *t, const char *msg) 1472 { 1473 pr_warn("uprobe: %s:%d failed to %s\n", 1474 current->comm, current->pid, msg); 1475 } 1476 1477 static void dup_xol_work(struct callback_head *work) 1478 { 1479 if (current->flags & PF_EXITING) 1480 return; 1481 1482 if (!__create_xol_area(current->utask->dup_xol_addr) && 1483 !fatal_signal_pending(current)) 1484 uprobe_warn(current, "dup xol area"); 1485 } 1486 1487 /* 1488 * Called in context of a new clone/fork from copy_process. 1489 */ 1490 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1491 { 1492 struct uprobe_task *utask = current->utask; 1493 struct mm_struct *mm = current->mm; 1494 struct xol_area *area; 1495 1496 t->utask = NULL; 1497 1498 if (!utask || !utask->return_instances) 1499 return; 1500 1501 if (mm == t->mm && !(flags & CLONE_VFORK)) 1502 return; 1503 1504 if (dup_utask(t, utask)) 1505 return uprobe_warn(t, "dup ret instances"); 1506 1507 /* The task can fork() after dup_xol_work() fails */ 1508 area = mm->uprobes_state.xol_area; 1509 if (!area) 1510 return uprobe_warn(t, "dup xol area"); 1511 1512 if (mm == t->mm) 1513 return; 1514 1515 t->utask->dup_xol_addr = area->vaddr; 1516 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1517 task_work_add(t, &t->utask->dup_xol_work, true); 1518 } 1519 1520 /* 1521 * Current area->vaddr notion assume the trampoline address is always 1522 * equal area->vaddr. 1523 * 1524 * Returns -1 in case the xol_area is not allocated. 1525 */ 1526 static unsigned long get_trampoline_vaddr(void) 1527 { 1528 struct xol_area *area; 1529 unsigned long trampoline_vaddr = -1; 1530 1531 area = current->mm->uprobes_state.xol_area; 1532 smp_read_barrier_depends(); 1533 if (area) 1534 trampoline_vaddr = area->vaddr; 1535 1536 return trampoline_vaddr; 1537 } 1538 1539 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1540 struct pt_regs *regs) 1541 { 1542 struct return_instance *ri = utask->return_instances; 1543 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1544 1545 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1546 ri = free_ret_instance(ri); 1547 utask->depth--; 1548 } 1549 utask->return_instances = ri; 1550 } 1551 1552 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1553 { 1554 struct return_instance *ri; 1555 struct uprobe_task *utask; 1556 unsigned long orig_ret_vaddr, trampoline_vaddr; 1557 bool chained; 1558 1559 if (!get_xol_area()) 1560 return; 1561 1562 utask = get_utask(); 1563 if (!utask) 1564 return; 1565 1566 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1567 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1568 " nestedness limit pid/tgid=%d/%d\n", 1569 current->pid, current->tgid); 1570 return; 1571 } 1572 1573 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1574 if (!ri) 1575 return; 1576 1577 trampoline_vaddr = get_trampoline_vaddr(); 1578 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1579 if (orig_ret_vaddr == -1) 1580 goto fail; 1581 1582 /* drop the entries invalidated by longjmp() */ 1583 chained = (orig_ret_vaddr == trampoline_vaddr); 1584 cleanup_return_instances(utask, chained, regs); 1585 1586 /* 1587 * We don't want to keep trampoline address in stack, rather keep the 1588 * original return address of first caller thru all the consequent 1589 * instances. This also makes breakpoint unwrapping easier. 1590 */ 1591 if (chained) { 1592 if (!utask->return_instances) { 1593 /* 1594 * This situation is not possible. Likely we have an 1595 * attack from user-space. 1596 */ 1597 uprobe_warn(current, "handle tail call"); 1598 goto fail; 1599 } 1600 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1601 } 1602 1603 ri->uprobe = get_uprobe(uprobe); 1604 ri->func = instruction_pointer(regs); 1605 ri->stack = user_stack_pointer(regs); 1606 ri->orig_ret_vaddr = orig_ret_vaddr; 1607 ri->chained = chained; 1608 1609 utask->depth++; 1610 ri->next = utask->return_instances; 1611 utask->return_instances = ri; 1612 1613 return; 1614 fail: 1615 kfree(ri); 1616 } 1617 1618 /* Prepare to single-step probed instruction out of line. */ 1619 static int 1620 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1621 { 1622 struct uprobe_task *utask; 1623 unsigned long xol_vaddr; 1624 int err; 1625 1626 utask = get_utask(); 1627 if (!utask) 1628 return -ENOMEM; 1629 1630 xol_vaddr = xol_get_insn_slot(uprobe); 1631 if (!xol_vaddr) 1632 return -ENOMEM; 1633 1634 utask->xol_vaddr = xol_vaddr; 1635 utask->vaddr = bp_vaddr; 1636 1637 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1638 if (unlikely(err)) { 1639 xol_free_insn_slot(current); 1640 return err; 1641 } 1642 1643 utask->active_uprobe = uprobe; 1644 utask->state = UTASK_SSTEP; 1645 return 0; 1646 } 1647 1648 /* 1649 * If we are singlestepping, then ensure this thread is not connected to 1650 * non-fatal signals until completion of singlestep. When xol insn itself 1651 * triggers the signal, restart the original insn even if the task is 1652 * already SIGKILL'ed (since coredump should report the correct ip). This 1653 * is even more important if the task has a handler for SIGSEGV/etc, The 1654 * _same_ instruction should be repeated again after return from the signal 1655 * handler, and SSTEP can never finish in this case. 1656 */ 1657 bool uprobe_deny_signal(void) 1658 { 1659 struct task_struct *t = current; 1660 struct uprobe_task *utask = t->utask; 1661 1662 if (likely(!utask || !utask->active_uprobe)) 1663 return false; 1664 1665 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1666 1667 if (signal_pending(t)) { 1668 spin_lock_irq(&t->sighand->siglock); 1669 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1670 spin_unlock_irq(&t->sighand->siglock); 1671 1672 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1673 utask->state = UTASK_SSTEP_TRAPPED; 1674 set_tsk_thread_flag(t, TIF_UPROBE); 1675 } 1676 } 1677 1678 return true; 1679 } 1680 1681 static void mmf_recalc_uprobes(struct mm_struct *mm) 1682 { 1683 struct vm_area_struct *vma; 1684 1685 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1686 if (!valid_vma(vma, false)) 1687 continue; 1688 /* 1689 * This is not strictly accurate, we can race with 1690 * uprobe_unregister() and see the already removed 1691 * uprobe if delete_uprobe() was not yet called. 1692 * Or this uprobe can be filtered out. 1693 */ 1694 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1695 return; 1696 } 1697 1698 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1699 } 1700 1701 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1702 { 1703 struct page *page; 1704 uprobe_opcode_t opcode; 1705 int result; 1706 1707 pagefault_disable(); 1708 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 1709 pagefault_enable(); 1710 1711 if (likely(result == 0)) 1712 goto out; 1713 1714 /* 1715 * The NULL 'tsk' here ensures that any faults that occur here 1716 * will not be accounted to the task. 'mm' *is* current->mm, 1717 * but we treat this as a 'remote' access since it is 1718 * essentially a kernel access to the memory. 1719 */ 1720 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page, 1721 NULL, NULL); 1722 if (result < 0) 1723 return result; 1724 1725 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1726 put_page(page); 1727 out: 1728 /* This needs to return true for any variant of the trap insn */ 1729 return is_trap_insn(&opcode); 1730 } 1731 1732 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1733 { 1734 struct mm_struct *mm = current->mm; 1735 struct uprobe *uprobe = NULL; 1736 struct vm_area_struct *vma; 1737 1738 down_read(&mm->mmap_sem); 1739 vma = find_vma(mm, bp_vaddr); 1740 if (vma && vma->vm_start <= bp_vaddr) { 1741 if (valid_vma(vma, false)) { 1742 struct inode *inode = file_inode(vma->vm_file); 1743 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1744 1745 uprobe = find_uprobe(inode, offset); 1746 } 1747 1748 if (!uprobe) 1749 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 1750 } else { 1751 *is_swbp = -EFAULT; 1752 } 1753 1754 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1755 mmf_recalc_uprobes(mm); 1756 up_read(&mm->mmap_sem); 1757 1758 return uprobe; 1759 } 1760 1761 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1762 { 1763 struct uprobe_consumer *uc; 1764 int remove = UPROBE_HANDLER_REMOVE; 1765 bool need_prep = false; /* prepare return uprobe, when needed */ 1766 1767 down_read(&uprobe->register_rwsem); 1768 for (uc = uprobe->consumers; uc; uc = uc->next) { 1769 int rc = 0; 1770 1771 if (uc->handler) { 1772 rc = uc->handler(uc, regs); 1773 WARN(rc & ~UPROBE_HANDLER_MASK, 1774 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1775 } 1776 1777 if (uc->ret_handler) 1778 need_prep = true; 1779 1780 remove &= rc; 1781 } 1782 1783 if (need_prep && !remove) 1784 prepare_uretprobe(uprobe, regs); /* put bp at return */ 1785 1786 if (remove && uprobe->consumers) { 1787 WARN_ON(!uprobe_is_active(uprobe)); 1788 unapply_uprobe(uprobe, current->mm); 1789 } 1790 up_read(&uprobe->register_rwsem); 1791 } 1792 1793 static void 1794 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 1795 { 1796 struct uprobe *uprobe = ri->uprobe; 1797 struct uprobe_consumer *uc; 1798 1799 down_read(&uprobe->register_rwsem); 1800 for (uc = uprobe->consumers; uc; uc = uc->next) { 1801 if (uc->ret_handler) 1802 uc->ret_handler(uc, ri->func, regs); 1803 } 1804 up_read(&uprobe->register_rwsem); 1805 } 1806 1807 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 1808 { 1809 bool chained; 1810 1811 do { 1812 chained = ri->chained; 1813 ri = ri->next; /* can't be NULL if chained */ 1814 } while (chained); 1815 1816 return ri; 1817 } 1818 1819 static void handle_trampoline(struct pt_regs *regs) 1820 { 1821 struct uprobe_task *utask; 1822 struct return_instance *ri, *next; 1823 bool valid; 1824 1825 utask = current->utask; 1826 if (!utask) 1827 goto sigill; 1828 1829 ri = utask->return_instances; 1830 if (!ri) 1831 goto sigill; 1832 1833 do { 1834 /* 1835 * We should throw out the frames invalidated by longjmp(). 1836 * If this chain is valid, then the next one should be alive 1837 * or NULL; the latter case means that nobody but ri->func 1838 * could hit this trampoline on return. TODO: sigaltstack(). 1839 */ 1840 next = find_next_ret_chain(ri); 1841 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 1842 1843 instruction_pointer_set(regs, ri->orig_ret_vaddr); 1844 do { 1845 if (valid) 1846 handle_uretprobe_chain(ri, regs); 1847 ri = free_ret_instance(ri); 1848 utask->depth--; 1849 } while (ri != next); 1850 } while (!valid); 1851 1852 utask->return_instances = ri; 1853 return; 1854 1855 sigill: 1856 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 1857 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1858 1859 } 1860 1861 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 1862 { 1863 return false; 1864 } 1865 1866 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 1867 struct pt_regs *regs) 1868 { 1869 return true; 1870 } 1871 1872 /* 1873 * Run handler and ask thread to singlestep. 1874 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1875 */ 1876 static void handle_swbp(struct pt_regs *regs) 1877 { 1878 struct uprobe *uprobe; 1879 unsigned long bp_vaddr; 1880 int uninitialized_var(is_swbp); 1881 1882 bp_vaddr = uprobe_get_swbp_addr(regs); 1883 if (bp_vaddr == get_trampoline_vaddr()) 1884 return handle_trampoline(regs); 1885 1886 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1887 if (!uprobe) { 1888 if (is_swbp > 0) { 1889 /* No matching uprobe; signal SIGTRAP. */ 1890 send_sig(SIGTRAP, current, 0); 1891 } else { 1892 /* 1893 * Either we raced with uprobe_unregister() or we can't 1894 * access this memory. The latter is only possible if 1895 * another thread plays with our ->mm. In both cases 1896 * we can simply restart. If this vma was unmapped we 1897 * can pretend this insn was not executed yet and get 1898 * the (correct) SIGSEGV after restart. 1899 */ 1900 instruction_pointer_set(regs, bp_vaddr); 1901 } 1902 return; 1903 } 1904 1905 /* change it in advance for ->handler() and restart */ 1906 instruction_pointer_set(regs, bp_vaddr); 1907 1908 /* 1909 * TODO: move copy_insn/etc into _register and remove this hack. 1910 * After we hit the bp, _unregister + _register can install the 1911 * new and not-yet-analyzed uprobe at the same address, restart. 1912 */ 1913 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1914 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1915 goto out; 1916 1917 /* Tracing handlers use ->utask to communicate with fetch methods */ 1918 if (!get_utask()) 1919 goto out; 1920 1921 if (arch_uprobe_ignore(&uprobe->arch, regs)) 1922 goto out; 1923 1924 handler_chain(uprobe, regs); 1925 1926 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1927 goto out; 1928 1929 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1930 return; 1931 1932 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 1933 out: 1934 put_uprobe(uprobe); 1935 } 1936 1937 /* 1938 * Perform required fix-ups and disable singlestep. 1939 * Allow pending signals to take effect. 1940 */ 1941 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1942 { 1943 struct uprobe *uprobe; 1944 int err = 0; 1945 1946 uprobe = utask->active_uprobe; 1947 if (utask->state == UTASK_SSTEP_ACK) 1948 err = arch_uprobe_post_xol(&uprobe->arch, regs); 1949 else if (utask->state == UTASK_SSTEP_TRAPPED) 1950 arch_uprobe_abort_xol(&uprobe->arch, regs); 1951 else 1952 WARN_ON_ONCE(1); 1953 1954 put_uprobe(uprobe); 1955 utask->active_uprobe = NULL; 1956 utask->state = UTASK_RUNNING; 1957 xol_free_insn_slot(current); 1958 1959 spin_lock_irq(¤t->sighand->siglock); 1960 recalc_sigpending(); /* see uprobe_deny_signal() */ 1961 spin_unlock_irq(¤t->sighand->siglock); 1962 1963 if (unlikely(err)) { 1964 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 1965 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1966 } 1967 } 1968 1969 /* 1970 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1971 * allows the thread to return from interrupt. After that handle_swbp() 1972 * sets utask->active_uprobe. 1973 * 1974 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1975 * and allows the thread to return from interrupt. 1976 * 1977 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1978 * uprobe_notify_resume(). 1979 */ 1980 void uprobe_notify_resume(struct pt_regs *regs) 1981 { 1982 struct uprobe_task *utask; 1983 1984 clear_thread_flag(TIF_UPROBE); 1985 1986 utask = current->utask; 1987 if (utask && utask->active_uprobe) 1988 handle_singlestep(utask, regs); 1989 else 1990 handle_swbp(regs); 1991 } 1992 1993 /* 1994 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1995 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1996 */ 1997 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1998 { 1999 if (!current->mm) 2000 return 0; 2001 2002 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2003 (!current->utask || !current->utask->return_instances)) 2004 return 0; 2005 2006 set_thread_flag(TIF_UPROBE); 2007 return 1; 2008 } 2009 2010 /* 2011 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2012 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2013 */ 2014 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2015 { 2016 struct uprobe_task *utask = current->utask; 2017 2018 if (!current->mm || !utask || !utask->active_uprobe) 2019 /* task is currently not uprobed */ 2020 return 0; 2021 2022 utask->state = UTASK_SSTEP_ACK; 2023 set_thread_flag(TIF_UPROBE); 2024 return 1; 2025 } 2026 2027 static struct notifier_block uprobe_exception_nb = { 2028 .notifier_call = arch_uprobe_exception_notify, 2029 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2030 }; 2031 2032 static int __init init_uprobes(void) 2033 { 2034 int i; 2035 2036 for (i = 0; i < UPROBES_HASH_SZ; i++) 2037 mutex_init(&uprobes_mmap_mutex[i]); 2038 2039 if (percpu_init_rwsem(&dup_mmap_sem)) 2040 return -ENOMEM; 2041 2042 return register_die_notifier(&uprobe_exception_nb); 2043 } 2044 __initcall(init_uprobes); 2045