1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/export.h> 31 #include <linux/rmap.h> /* anon_vma_prepare */ 32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 33 #include <linux/swap.h> /* try_to_free_swap */ 34 #include <linux/ptrace.h> /* user_enable_single_step */ 35 #include <linux/kdebug.h> /* notifier mechanism */ 36 #include "../../mm/internal.h" /* munlock_vma_page */ 37 #include <linux/percpu-rwsem.h> 38 #include <linux/task_work.h> 39 #include <linux/shmem_fs.h> 40 41 #include <linux/uprobes.h> 42 43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 45 46 static struct rb_root uprobes_tree = RB_ROOT; 47 /* 48 * allows us to skip the uprobe_mmap if there are no uprobe events active 49 * at this time. Probably a fine grained per inode count is better? 50 */ 51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 52 53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 54 55 #define UPROBES_HASH_SZ 13 56 /* serialize uprobe->pending_list */ 57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 59 60 static struct percpu_rw_semaphore dup_mmap_sem; 61 62 /* Have a copy of original instruction */ 63 #define UPROBE_COPY_INSN 0 64 65 struct uprobe { 66 struct rb_node rb_node; /* node in the rb tree */ 67 atomic_t ref; 68 struct rw_semaphore register_rwsem; 69 struct rw_semaphore consumer_rwsem; 70 struct list_head pending_list; 71 struct uprobe_consumer *consumers; 72 struct inode *inode; /* Also hold a ref to inode */ 73 loff_t offset; 74 unsigned long flags; 75 76 /* 77 * The generic code assumes that it has two members of unknown type 78 * owned by the arch-specific code: 79 * 80 * insn - copy_insn() saves the original instruction here for 81 * arch_uprobe_analyze_insn(). 82 * 83 * ixol - potentially modified instruction to execute out of 84 * line, copied to xol_area by xol_get_insn_slot(). 85 */ 86 struct arch_uprobe arch; 87 }; 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @page: the cowed page we are replacing by kpage 148 * @kpage: the modified page we replace page by 149 * 150 * Returns 0 on success, -EFAULT on failure. 151 */ 152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 153 struct page *page, struct page *kpage) 154 { 155 struct mm_struct *mm = vma->vm_mm; 156 spinlock_t *ptl; 157 pte_t *ptep; 158 int err; 159 /* For mmu_notifiers */ 160 const unsigned long mmun_start = addr; 161 const unsigned long mmun_end = addr + PAGE_SIZE; 162 struct mem_cgroup *memcg; 163 164 err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg, 165 false); 166 if (err) 167 return err; 168 169 /* For try_to_free_swap() and munlock_vma_page() below */ 170 lock_page(page); 171 172 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 173 err = -EAGAIN; 174 ptep = page_check_address(page, mm, addr, &ptl, 0); 175 if (!ptep) 176 goto unlock; 177 178 get_page(kpage); 179 page_add_new_anon_rmap(kpage, vma, addr, false); 180 mem_cgroup_commit_charge(kpage, memcg, false, false); 181 lru_cache_add_active_or_unevictable(kpage, vma); 182 183 if (!PageAnon(page)) { 184 dec_mm_counter(mm, mm_counter_file(page)); 185 inc_mm_counter(mm, MM_ANONPAGES); 186 } 187 188 flush_cache_page(vma, addr, pte_pfn(*ptep)); 189 ptep_clear_flush_notify(vma, addr, ptep); 190 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 191 192 page_remove_rmap(page, false); 193 if (!page_mapped(page)) 194 try_to_free_swap(page); 195 pte_unmap_unlock(ptep, ptl); 196 197 if (vma->vm_flags & VM_LOCKED) 198 munlock_vma_page(page); 199 put_page(page); 200 201 err = 0; 202 unlock: 203 mem_cgroup_cancel_charge(kpage, memcg, false); 204 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 205 unlock_page(page); 206 return err; 207 } 208 209 /** 210 * is_swbp_insn - check if instruction is breakpoint instruction. 211 * @insn: instruction to be checked. 212 * Default implementation of is_swbp_insn 213 * Returns true if @insn is a breakpoint instruction. 214 */ 215 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 216 { 217 return *insn == UPROBE_SWBP_INSN; 218 } 219 220 /** 221 * is_trap_insn - check if instruction is breakpoint instruction. 222 * @insn: instruction to be checked. 223 * Default implementation of is_trap_insn 224 * Returns true if @insn is a breakpoint instruction. 225 * 226 * This function is needed for the case where an architecture has multiple 227 * trap instructions (like powerpc). 228 */ 229 bool __weak is_trap_insn(uprobe_opcode_t *insn) 230 { 231 return is_swbp_insn(insn); 232 } 233 234 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 235 { 236 void *kaddr = kmap_atomic(page); 237 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 238 kunmap_atomic(kaddr); 239 } 240 241 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 242 { 243 void *kaddr = kmap_atomic(page); 244 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 245 kunmap_atomic(kaddr); 246 } 247 248 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 249 { 250 uprobe_opcode_t old_opcode; 251 bool is_swbp; 252 253 /* 254 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 255 * We do not check if it is any other 'trap variant' which could 256 * be conditional trap instruction such as the one powerpc supports. 257 * 258 * The logic is that we do not care if the underlying instruction 259 * is a trap variant; uprobes always wins over any other (gdb) 260 * breakpoint. 261 */ 262 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 263 is_swbp = is_swbp_insn(&old_opcode); 264 265 if (is_swbp_insn(new_opcode)) { 266 if (is_swbp) /* register: already installed? */ 267 return 0; 268 } else { 269 if (!is_swbp) /* unregister: was it changed by us? */ 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* 277 * NOTE: 278 * Expect the breakpoint instruction to be the smallest size instruction for 279 * the architecture. If an arch has variable length instruction and the 280 * breakpoint instruction is not of the smallest length instruction 281 * supported by that architecture then we need to modify is_trap_at_addr and 282 * uprobe_write_opcode accordingly. This would never be a problem for archs 283 * that have fixed length instructions. 284 * 285 * uprobe_write_opcode - write the opcode at a given virtual address. 286 * @mm: the probed process address space. 287 * @vaddr: the virtual address to store the opcode. 288 * @opcode: opcode to be written at @vaddr. 289 * 290 * Called with mm->mmap_sem held for write. 291 * Return 0 (success) or a negative errno. 292 */ 293 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, 294 uprobe_opcode_t opcode) 295 { 296 struct page *old_page, *new_page; 297 struct vm_area_struct *vma; 298 int ret; 299 300 retry: 301 /* Read the page with vaddr into memory */ 302 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma); 303 if (ret <= 0) 304 return ret; 305 306 ret = verify_opcode(old_page, vaddr, &opcode); 307 if (ret <= 0) 308 goto put_old; 309 310 ret = anon_vma_prepare(vma); 311 if (ret) 312 goto put_old; 313 314 ret = -ENOMEM; 315 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 316 if (!new_page) 317 goto put_old; 318 319 __SetPageUptodate(new_page); 320 copy_highpage(new_page, old_page); 321 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 322 323 ret = __replace_page(vma, vaddr, old_page, new_page); 324 put_page(new_page); 325 put_old: 326 put_page(old_page); 327 328 if (unlikely(ret == -EAGAIN)) 329 goto retry; 330 return ret; 331 } 332 333 /** 334 * set_swbp - store breakpoint at a given address. 335 * @auprobe: arch specific probepoint information. 336 * @mm: the probed process address space. 337 * @vaddr: the virtual address to insert the opcode. 338 * 339 * For mm @mm, store the breakpoint instruction at @vaddr. 340 * Return 0 (success) or a negative errno. 341 */ 342 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 343 { 344 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN); 345 } 346 347 /** 348 * set_orig_insn - Restore the original instruction. 349 * @mm: the probed process address space. 350 * @auprobe: arch specific probepoint information. 351 * @vaddr: the virtual address to insert the opcode. 352 * 353 * For mm @mm, restore the original opcode (opcode) at @vaddr. 354 * Return 0 (success) or a negative errno. 355 */ 356 int __weak 357 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 358 { 359 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn); 360 } 361 362 static struct uprobe *get_uprobe(struct uprobe *uprobe) 363 { 364 atomic_inc(&uprobe->ref); 365 return uprobe; 366 } 367 368 static void put_uprobe(struct uprobe *uprobe) 369 { 370 if (atomic_dec_and_test(&uprobe->ref)) 371 kfree(uprobe); 372 } 373 374 static int match_uprobe(struct uprobe *l, struct uprobe *r) 375 { 376 if (l->inode < r->inode) 377 return -1; 378 379 if (l->inode > r->inode) 380 return 1; 381 382 if (l->offset < r->offset) 383 return -1; 384 385 if (l->offset > r->offset) 386 return 1; 387 388 return 0; 389 } 390 391 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 392 { 393 struct uprobe u = { .inode = inode, .offset = offset }; 394 struct rb_node *n = uprobes_tree.rb_node; 395 struct uprobe *uprobe; 396 int match; 397 398 while (n) { 399 uprobe = rb_entry(n, struct uprobe, rb_node); 400 match = match_uprobe(&u, uprobe); 401 if (!match) 402 return get_uprobe(uprobe); 403 404 if (match < 0) 405 n = n->rb_left; 406 else 407 n = n->rb_right; 408 } 409 return NULL; 410 } 411 412 /* 413 * Find a uprobe corresponding to a given inode:offset 414 * Acquires uprobes_treelock 415 */ 416 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 417 { 418 struct uprobe *uprobe; 419 420 spin_lock(&uprobes_treelock); 421 uprobe = __find_uprobe(inode, offset); 422 spin_unlock(&uprobes_treelock); 423 424 return uprobe; 425 } 426 427 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 428 { 429 struct rb_node **p = &uprobes_tree.rb_node; 430 struct rb_node *parent = NULL; 431 struct uprobe *u; 432 int match; 433 434 while (*p) { 435 parent = *p; 436 u = rb_entry(parent, struct uprobe, rb_node); 437 match = match_uprobe(uprobe, u); 438 if (!match) 439 return get_uprobe(u); 440 441 if (match < 0) 442 p = &parent->rb_left; 443 else 444 p = &parent->rb_right; 445 446 } 447 448 u = NULL; 449 rb_link_node(&uprobe->rb_node, parent, p); 450 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 451 /* get access + creation ref */ 452 atomic_set(&uprobe->ref, 2); 453 454 return u; 455 } 456 457 /* 458 * Acquire uprobes_treelock. 459 * Matching uprobe already exists in rbtree; 460 * increment (access refcount) and return the matching uprobe. 461 * 462 * No matching uprobe; insert the uprobe in rb_tree; 463 * get a double refcount (access + creation) and return NULL. 464 */ 465 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 466 { 467 struct uprobe *u; 468 469 spin_lock(&uprobes_treelock); 470 u = __insert_uprobe(uprobe); 471 spin_unlock(&uprobes_treelock); 472 473 return u; 474 } 475 476 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 477 { 478 struct uprobe *uprobe, *cur_uprobe; 479 480 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 481 if (!uprobe) 482 return NULL; 483 484 uprobe->inode = igrab(inode); 485 uprobe->offset = offset; 486 init_rwsem(&uprobe->register_rwsem); 487 init_rwsem(&uprobe->consumer_rwsem); 488 489 /* add to uprobes_tree, sorted on inode:offset */ 490 cur_uprobe = insert_uprobe(uprobe); 491 /* a uprobe exists for this inode:offset combination */ 492 if (cur_uprobe) { 493 kfree(uprobe); 494 uprobe = cur_uprobe; 495 iput(inode); 496 } 497 498 return uprobe; 499 } 500 501 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 502 { 503 down_write(&uprobe->consumer_rwsem); 504 uc->next = uprobe->consumers; 505 uprobe->consumers = uc; 506 up_write(&uprobe->consumer_rwsem); 507 } 508 509 /* 510 * For uprobe @uprobe, delete the consumer @uc. 511 * Return true if the @uc is deleted successfully 512 * or return false. 513 */ 514 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 515 { 516 struct uprobe_consumer **con; 517 bool ret = false; 518 519 down_write(&uprobe->consumer_rwsem); 520 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 521 if (*con == uc) { 522 *con = uc->next; 523 ret = true; 524 break; 525 } 526 } 527 up_write(&uprobe->consumer_rwsem); 528 529 return ret; 530 } 531 532 static int __copy_insn(struct address_space *mapping, struct file *filp, 533 void *insn, int nbytes, loff_t offset) 534 { 535 struct page *page; 536 /* 537 * Ensure that the page that has the original instruction is populated 538 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 539 * see uprobe_register(). 540 */ 541 if (mapping->a_ops->readpage) 542 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 543 else 544 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 545 if (IS_ERR(page)) 546 return PTR_ERR(page); 547 548 copy_from_page(page, offset, insn, nbytes); 549 put_page(page); 550 551 return 0; 552 } 553 554 static int copy_insn(struct uprobe *uprobe, struct file *filp) 555 { 556 struct address_space *mapping = uprobe->inode->i_mapping; 557 loff_t offs = uprobe->offset; 558 void *insn = &uprobe->arch.insn; 559 int size = sizeof(uprobe->arch.insn); 560 int len, err = -EIO; 561 562 /* Copy only available bytes, -EIO if nothing was read */ 563 do { 564 if (offs >= i_size_read(uprobe->inode)) 565 break; 566 567 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 568 err = __copy_insn(mapping, filp, insn, len, offs); 569 if (err) 570 break; 571 572 insn += len; 573 offs += len; 574 size -= len; 575 } while (size); 576 577 return err; 578 } 579 580 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 581 struct mm_struct *mm, unsigned long vaddr) 582 { 583 int ret = 0; 584 585 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 586 return ret; 587 588 /* TODO: move this into _register, until then we abuse this sem. */ 589 down_write(&uprobe->consumer_rwsem); 590 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 591 goto out; 592 593 ret = copy_insn(uprobe, file); 594 if (ret) 595 goto out; 596 597 ret = -ENOTSUPP; 598 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 599 goto out; 600 601 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 602 if (ret) 603 goto out; 604 605 /* uprobe_write_opcode() assumes we don't cross page boundary */ 606 BUG_ON((uprobe->offset & ~PAGE_MASK) + 607 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 608 609 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 610 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 611 612 out: 613 up_write(&uprobe->consumer_rwsem); 614 615 return ret; 616 } 617 618 static inline bool consumer_filter(struct uprobe_consumer *uc, 619 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 620 { 621 return !uc->filter || uc->filter(uc, ctx, mm); 622 } 623 624 static bool filter_chain(struct uprobe *uprobe, 625 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 626 { 627 struct uprobe_consumer *uc; 628 bool ret = false; 629 630 down_read(&uprobe->consumer_rwsem); 631 for (uc = uprobe->consumers; uc; uc = uc->next) { 632 ret = consumer_filter(uc, ctx, mm); 633 if (ret) 634 break; 635 } 636 up_read(&uprobe->consumer_rwsem); 637 638 return ret; 639 } 640 641 static int 642 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 643 struct vm_area_struct *vma, unsigned long vaddr) 644 { 645 bool first_uprobe; 646 int ret; 647 648 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 649 if (ret) 650 return ret; 651 652 /* 653 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 654 * the task can hit this breakpoint right after __replace_page(). 655 */ 656 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 657 if (first_uprobe) 658 set_bit(MMF_HAS_UPROBES, &mm->flags); 659 660 ret = set_swbp(&uprobe->arch, mm, vaddr); 661 if (!ret) 662 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 663 else if (first_uprobe) 664 clear_bit(MMF_HAS_UPROBES, &mm->flags); 665 666 return ret; 667 } 668 669 static int 670 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 671 { 672 set_bit(MMF_RECALC_UPROBES, &mm->flags); 673 return set_orig_insn(&uprobe->arch, mm, vaddr); 674 } 675 676 static inline bool uprobe_is_active(struct uprobe *uprobe) 677 { 678 return !RB_EMPTY_NODE(&uprobe->rb_node); 679 } 680 /* 681 * There could be threads that have already hit the breakpoint. They 682 * will recheck the current insn and restart if find_uprobe() fails. 683 * See find_active_uprobe(). 684 */ 685 static void delete_uprobe(struct uprobe *uprobe) 686 { 687 if (WARN_ON(!uprobe_is_active(uprobe))) 688 return; 689 690 spin_lock(&uprobes_treelock); 691 rb_erase(&uprobe->rb_node, &uprobes_tree); 692 spin_unlock(&uprobes_treelock); 693 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 694 iput(uprobe->inode); 695 put_uprobe(uprobe); 696 } 697 698 struct map_info { 699 struct map_info *next; 700 struct mm_struct *mm; 701 unsigned long vaddr; 702 }; 703 704 static inline struct map_info *free_map_info(struct map_info *info) 705 { 706 struct map_info *next = info->next; 707 kfree(info); 708 return next; 709 } 710 711 static struct map_info * 712 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 713 { 714 unsigned long pgoff = offset >> PAGE_SHIFT; 715 struct vm_area_struct *vma; 716 struct map_info *curr = NULL; 717 struct map_info *prev = NULL; 718 struct map_info *info; 719 int more = 0; 720 721 again: 722 i_mmap_lock_read(mapping); 723 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 724 if (!valid_vma(vma, is_register)) 725 continue; 726 727 if (!prev && !more) { 728 /* 729 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 730 * reclaim. This is optimistic, no harm done if it fails. 731 */ 732 prev = kmalloc(sizeof(struct map_info), 733 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 734 if (prev) 735 prev->next = NULL; 736 } 737 if (!prev) { 738 more++; 739 continue; 740 } 741 742 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 743 continue; 744 745 info = prev; 746 prev = prev->next; 747 info->next = curr; 748 curr = info; 749 750 info->mm = vma->vm_mm; 751 info->vaddr = offset_to_vaddr(vma, offset); 752 } 753 i_mmap_unlock_read(mapping); 754 755 if (!more) 756 goto out; 757 758 prev = curr; 759 while (curr) { 760 mmput(curr->mm); 761 curr = curr->next; 762 } 763 764 do { 765 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 766 if (!info) { 767 curr = ERR_PTR(-ENOMEM); 768 goto out; 769 } 770 info->next = prev; 771 prev = info; 772 } while (--more); 773 774 goto again; 775 out: 776 while (prev) 777 prev = free_map_info(prev); 778 return curr; 779 } 780 781 static int 782 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 783 { 784 bool is_register = !!new; 785 struct map_info *info; 786 int err = 0; 787 788 percpu_down_write(&dup_mmap_sem); 789 info = build_map_info(uprobe->inode->i_mapping, 790 uprobe->offset, is_register); 791 if (IS_ERR(info)) { 792 err = PTR_ERR(info); 793 goto out; 794 } 795 796 while (info) { 797 struct mm_struct *mm = info->mm; 798 struct vm_area_struct *vma; 799 800 if (err && is_register) 801 goto free; 802 803 down_write(&mm->mmap_sem); 804 vma = find_vma(mm, info->vaddr); 805 if (!vma || !valid_vma(vma, is_register) || 806 file_inode(vma->vm_file) != uprobe->inode) 807 goto unlock; 808 809 if (vma->vm_start > info->vaddr || 810 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 811 goto unlock; 812 813 if (is_register) { 814 /* consult only the "caller", new consumer. */ 815 if (consumer_filter(new, 816 UPROBE_FILTER_REGISTER, mm)) 817 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 818 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 819 if (!filter_chain(uprobe, 820 UPROBE_FILTER_UNREGISTER, mm)) 821 err |= remove_breakpoint(uprobe, mm, info->vaddr); 822 } 823 824 unlock: 825 up_write(&mm->mmap_sem); 826 free: 827 mmput(mm); 828 info = free_map_info(info); 829 } 830 out: 831 percpu_up_write(&dup_mmap_sem); 832 return err; 833 } 834 835 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc) 836 { 837 consumer_add(uprobe, uc); 838 return register_for_each_vma(uprobe, uc); 839 } 840 841 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 842 { 843 int err; 844 845 if (WARN_ON(!consumer_del(uprobe, uc))) 846 return; 847 848 err = register_for_each_vma(uprobe, NULL); 849 /* TODO : cant unregister? schedule a worker thread */ 850 if (!uprobe->consumers && !err) 851 delete_uprobe(uprobe); 852 } 853 854 /* 855 * uprobe_register - register a probe 856 * @inode: the file in which the probe has to be placed. 857 * @offset: offset from the start of the file. 858 * @uc: information on howto handle the probe.. 859 * 860 * Apart from the access refcount, uprobe_register() takes a creation 861 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 862 * inserted into the rbtree (i.e first consumer for a @inode:@offset 863 * tuple). Creation refcount stops uprobe_unregister from freeing the 864 * @uprobe even before the register operation is complete. Creation 865 * refcount is released when the last @uc for the @uprobe 866 * unregisters. 867 * 868 * Return errno if it cannot successully install probes 869 * else return 0 (success) 870 */ 871 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 872 { 873 struct uprobe *uprobe; 874 int ret; 875 876 /* Uprobe must have at least one set consumer */ 877 if (!uc->handler && !uc->ret_handler) 878 return -EINVAL; 879 880 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 881 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 882 return -EIO; 883 /* Racy, just to catch the obvious mistakes */ 884 if (offset > i_size_read(inode)) 885 return -EINVAL; 886 887 retry: 888 uprobe = alloc_uprobe(inode, offset); 889 if (!uprobe) 890 return -ENOMEM; 891 /* 892 * We can race with uprobe_unregister()->delete_uprobe(). 893 * Check uprobe_is_active() and retry if it is false. 894 */ 895 down_write(&uprobe->register_rwsem); 896 ret = -EAGAIN; 897 if (likely(uprobe_is_active(uprobe))) { 898 ret = __uprobe_register(uprobe, uc); 899 if (ret) 900 __uprobe_unregister(uprobe, uc); 901 } 902 up_write(&uprobe->register_rwsem); 903 put_uprobe(uprobe); 904 905 if (unlikely(ret == -EAGAIN)) 906 goto retry; 907 return ret; 908 } 909 EXPORT_SYMBOL_GPL(uprobe_register); 910 911 /* 912 * uprobe_apply - unregister a already registered probe. 913 * @inode: the file in which the probe has to be removed. 914 * @offset: offset from the start of the file. 915 * @uc: consumer which wants to add more or remove some breakpoints 916 * @add: add or remove the breakpoints 917 */ 918 int uprobe_apply(struct inode *inode, loff_t offset, 919 struct uprobe_consumer *uc, bool add) 920 { 921 struct uprobe *uprobe; 922 struct uprobe_consumer *con; 923 int ret = -ENOENT; 924 925 uprobe = find_uprobe(inode, offset); 926 if (WARN_ON(!uprobe)) 927 return ret; 928 929 down_write(&uprobe->register_rwsem); 930 for (con = uprobe->consumers; con && con != uc ; con = con->next) 931 ; 932 if (con) 933 ret = register_for_each_vma(uprobe, add ? uc : NULL); 934 up_write(&uprobe->register_rwsem); 935 put_uprobe(uprobe); 936 937 return ret; 938 } 939 940 /* 941 * uprobe_unregister - unregister a already registered probe. 942 * @inode: the file in which the probe has to be removed. 943 * @offset: offset from the start of the file. 944 * @uc: identify which probe if multiple probes are colocated. 945 */ 946 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 947 { 948 struct uprobe *uprobe; 949 950 uprobe = find_uprobe(inode, offset); 951 if (WARN_ON(!uprobe)) 952 return; 953 954 down_write(&uprobe->register_rwsem); 955 __uprobe_unregister(uprobe, uc); 956 up_write(&uprobe->register_rwsem); 957 put_uprobe(uprobe); 958 } 959 EXPORT_SYMBOL_GPL(uprobe_unregister); 960 961 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 962 { 963 struct vm_area_struct *vma; 964 int err = 0; 965 966 down_read(&mm->mmap_sem); 967 for (vma = mm->mmap; vma; vma = vma->vm_next) { 968 unsigned long vaddr; 969 loff_t offset; 970 971 if (!valid_vma(vma, false) || 972 file_inode(vma->vm_file) != uprobe->inode) 973 continue; 974 975 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 976 if (uprobe->offset < offset || 977 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 978 continue; 979 980 vaddr = offset_to_vaddr(vma, uprobe->offset); 981 err |= remove_breakpoint(uprobe, mm, vaddr); 982 } 983 up_read(&mm->mmap_sem); 984 985 return err; 986 } 987 988 static struct rb_node * 989 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 990 { 991 struct rb_node *n = uprobes_tree.rb_node; 992 993 while (n) { 994 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 995 996 if (inode < u->inode) { 997 n = n->rb_left; 998 } else if (inode > u->inode) { 999 n = n->rb_right; 1000 } else { 1001 if (max < u->offset) 1002 n = n->rb_left; 1003 else if (min > u->offset) 1004 n = n->rb_right; 1005 else 1006 break; 1007 } 1008 } 1009 1010 return n; 1011 } 1012 1013 /* 1014 * For a given range in vma, build a list of probes that need to be inserted. 1015 */ 1016 static void build_probe_list(struct inode *inode, 1017 struct vm_area_struct *vma, 1018 unsigned long start, unsigned long end, 1019 struct list_head *head) 1020 { 1021 loff_t min, max; 1022 struct rb_node *n, *t; 1023 struct uprobe *u; 1024 1025 INIT_LIST_HEAD(head); 1026 min = vaddr_to_offset(vma, start); 1027 max = min + (end - start) - 1; 1028 1029 spin_lock(&uprobes_treelock); 1030 n = find_node_in_range(inode, min, max); 1031 if (n) { 1032 for (t = n; t; t = rb_prev(t)) { 1033 u = rb_entry(t, struct uprobe, rb_node); 1034 if (u->inode != inode || u->offset < min) 1035 break; 1036 list_add(&u->pending_list, head); 1037 get_uprobe(u); 1038 } 1039 for (t = n; (t = rb_next(t)); ) { 1040 u = rb_entry(t, struct uprobe, rb_node); 1041 if (u->inode != inode || u->offset > max) 1042 break; 1043 list_add(&u->pending_list, head); 1044 get_uprobe(u); 1045 } 1046 } 1047 spin_unlock(&uprobes_treelock); 1048 } 1049 1050 /* 1051 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1052 * 1053 * Currently we ignore all errors and always return 0, the callers 1054 * can't handle the failure anyway. 1055 */ 1056 int uprobe_mmap(struct vm_area_struct *vma) 1057 { 1058 struct list_head tmp_list; 1059 struct uprobe *uprobe, *u; 1060 struct inode *inode; 1061 1062 if (no_uprobe_events() || !valid_vma(vma, true)) 1063 return 0; 1064 1065 inode = file_inode(vma->vm_file); 1066 if (!inode) 1067 return 0; 1068 1069 mutex_lock(uprobes_mmap_hash(inode)); 1070 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1071 /* 1072 * We can race with uprobe_unregister(), this uprobe can be already 1073 * removed. But in this case filter_chain() must return false, all 1074 * consumers have gone away. 1075 */ 1076 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1077 if (!fatal_signal_pending(current) && 1078 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1079 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1080 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1081 } 1082 put_uprobe(uprobe); 1083 } 1084 mutex_unlock(uprobes_mmap_hash(inode)); 1085 1086 return 0; 1087 } 1088 1089 static bool 1090 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1091 { 1092 loff_t min, max; 1093 struct inode *inode; 1094 struct rb_node *n; 1095 1096 inode = file_inode(vma->vm_file); 1097 1098 min = vaddr_to_offset(vma, start); 1099 max = min + (end - start) - 1; 1100 1101 spin_lock(&uprobes_treelock); 1102 n = find_node_in_range(inode, min, max); 1103 spin_unlock(&uprobes_treelock); 1104 1105 return !!n; 1106 } 1107 1108 /* 1109 * Called in context of a munmap of a vma. 1110 */ 1111 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1112 { 1113 if (no_uprobe_events() || !valid_vma(vma, false)) 1114 return; 1115 1116 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1117 return; 1118 1119 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1120 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1121 return; 1122 1123 if (vma_has_uprobes(vma, start, end)) 1124 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1125 } 1126 1127 /* Slot allocation for XOL */ 1128 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1129 { 1130 struct vm_area_struct *vma; 1131 int ret; 1132 1133 if (down_write_killable(&mm->mmap_sem)) 1134 return -EINTR; 1135 1136 if (mm->uprobes_state.xol_area) { 1137 ret = -EALREADY; 1138 goto fail; 1139 } 1140 1141 if (!area->vaddr) { 1142 /* Try to map as high as possible, this is only a hint. */ 1143 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1144 PAGE_SIZE, 0, 0); 1145 if (area->vaddr & ~PAGE_MASK) { 1146 ret = area->vaddr; 1147 goto fail; 1148 } 1149 } 1150 1151 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1152 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1153 &area->xol_mapping); 1154 if (IS_ERR(vma)) { 1155 ret = PTR_ERR(vma); 1156 goto fail; 1157 } 1158 1159 ret = 0; 1160 smp_wmb(); /* pairs with get_xol_area() */ 1161 mm->uprobes_state.xol_area = area; 1162 fail: 1163 up_write(&mm->mmap_sem); 1164 1165 return ret; 1166 } 1167 1168 static struct xol_area *__create_xol_area(unsigned long vaddr) 1169 { 1170 struct mm_struct *mm = current->mm; 1171 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1172 struct xol_area *area; 1173 1174 area = kmalloc(sizeof(*area), GFP_KERNEL); 1175 if (unlikely(!area)) 1176 goto out; 1177 1178 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1179 if (!area->bitmap) 1180 goto free_area; 1181 1182 area->xol_mapping.name = "[uprobes]"; 1183 area->xol_mapping.fault = NULL; 1184 area->xol_mapping.pages = area->pages; 1185 area->pages[0] = alloc_page(GFP_HIGHUSER); 1186 if (!area->pages[0]) 1187 goto free_bitmap; 1188 area->pages[1] = NULL; 1189 1190 area->vaddr = vaddr; 1191 init_waitqueue_head(&area->wq); 1192 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1193 set_bit(0, area->bitmap); 1194 atomic_set(&area->slot_count, 1); 1195 copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1196 1197 if (!xol_add_vma(mm, area)) 1198 return area; 1199 1200 __free_page(area->pages[0]); 1201 free_bitmap: 1202 kfree(area->bitmap); 1203 free_area: 1204 kfree(area); 1205 out: 1206 return NULL; 1207 } 1208 1209 /* 1210 * get_xol_area - Allocate process's xol_area if necessary. 1211 * This area will be used for storing instructions for execution out of line. 1212 * 1213 * Returns the allocated area or NULL. 1214 */ 1215 static struct xol_area *get_xol_area(void) 1216 { 1217 struct mm_struct *mm = current->mm; 1218 struct xol_area *area; 1219 1220 if (!mm->uprobes_state.xol_area) 1221 __create_xol_area(0); 1222 1223 area = mm->uprobes_state.xol_area; 1224 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1225 return area; 1226 } 1227 1228 /* 1229 * uprobe_clear_state - Free the area allocated for slots. 1230 */ 1231 void uprobe_clear_state(struct mm_struct *mm) 1232 { 1233 struct xol_area *area = mm->uprobes_state.xol_area; 1234 1235 if (!area) 1236 return; 1237 1238 put_page(area->pages[0]); 1239 kfree(area->bitmap); 1240 kfree(area); 1241 } 1242 1243 void uprobe_start_dup_mmap(void) 1244 { 1245 percpu_down_read(&dup_mmap_sem); 1246 } 1247 1248 void uprobe_end_dup_mmap(void) 1249 { 1250 percpu_up_read(&dup_mmap_sem); 1251 } 1252 1253 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1254 { 1255 newmm->uprobes_state.xol_area = NULL; 1256 1257 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1258 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1259 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1260 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1261 } 1262 } 1263 1264 /* 1265 * - search for a free slot. 1266 */ 1267 static unsigned long xol_take_insn_slot(struct xol_area *area) 1268 { 1269 unsigned long slot_addr; 1270 int slot_nr; 1271 1272 do { 1273 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1274 if (slot_nr < UINSNS_PER_PAGE) { 1275 if (!test_and_set_bit(slot_nr, area->bitmap)) 1276 break; 1277 1278 slot_nr = UINSNS_PER_PAGE; 1279 continue; 1280 } 1281 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1282 } while (slot_nr >= UINSNS_PER_PAGE); 1283 1284 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1285 atomic_inc(&area->slot_count); 1286 1287 return slot_addr; 1288 } 1289 1290 /* 1291 * xol_get_insn_slot - allocate a slot for xol. 1292 * Returns the allocated slot address or 0. 1293 */ 1294 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1295 { 1296 struct xol_area *area; 1297 unsigned long xol_vaddr; 1298 1299 area = get_xol_area(); 1300 if (!area) 1301 return 0; 1302 1303 xol_vaddr = xol_take_insn_slot(area); 1304 if (unlikely(!xol_vaddr)) 1305 return 0; 1306 1307 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1308 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1309 1310 return xol_vaddr; 1311 } 1312 1313 /* 1314 * xol_free_insn_slot - If slot was earlier allocated by 1315 * @xol_get_insn_slot(), make the slot available for 1316 * subsequent requests. 1317 */ 1318 static void xol_free_insn_slot(struct task_struct *tsk) 1319 { 1320 struct xol_area *area; 1321 unsigned long vma_end; 1322 unsigned long slot_addr; 1323 1324 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1325 return; 1326 1327 slot_addr = tsk->utask->xol_vaddr; 1328 if (unlikely(!slot_addr)) 1329 return; 1330 1331 area = tsk->mm->uprobes_state.xol_area; 1332 vma_end = area->vaddr + PAGE_SIZE; 1333 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1334 unsigned long offset; 1335 int slot_nr; 1336 1337 offset = slot_addr - area->vaddr; 1338 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1339 if (slot_nr >= UINSNS_PER_PAGE) 1340 return; 1341 1342 clear_bit(slot_nr, area->bitmap); 1343 atomic_dec(&area->slot_count); 1344 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1345 if (waitqueue_active(&area->wq)) 1346 wake_up(&area->wq); 1347 1348 tsk->utask->xol_vaddr = 0; 1349 } 1350 } 1351 1352 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1353 void *src, unsigned long len) 1354 { 1355 /* Initialize the slot */ 1356 copy_to_page(page, vaddr, src, len); 1357 1358 /* 1359 * We probably need flush_icache_user_range() but it needs vma. 1360 * This should work on most of architectures by default. If 1361 * architecture needs to do something different it can define 1362 * its own version of the function. 1363 */ 1364 flush_dcache_page(page); 1365 } 1366 1367 /** 1368 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1369 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1370 * instruction. 1371 * Return the address of the breakpoint instruction. 1372 */ 1373 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1374 { 1375 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1376 } 1377 1378 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1379 { 1380 struct uprobe_task *utask = current->utask; 1381 1382 if (unlikely(utask && utask->active_uprobe)) 1383 return utask->vaddr; 1384 1385 return instruction_pointer(regs); 1386 } 1387 1388 static struct return_instance *free_ret_instance(struct return_instance *ri) 1389 { 1390 struct return_instance *next = ri->next; 1391 put_uprobe(ri->uprobe); 1392 kfree(ri); 1393 return next; 1394 } 1395 1396 /* 1397 * Called with no locks held. 1398 * Called in context of a exiting or a exec-ing thread. 1399 */ 1400 void uprobe_free_utask(struct task_struct *t) 1401 { 1402 struct uprobe_task *utask = t->utask; 1403 struct return_instance *ri; 1404 1405 if (!utask) 1406 return; 1407 1408 if (utask->active_uprobe) 1409 put_uprobe(utask->active_uprobe); 1410 1411 ri = utask->return_instances; 1412 while (ri) 1413 ri = free_ret_instance(ri); 1414 1415 xol_free_insn_slot(t); 1416 kfree(utask); 1417 t->utask = NULL; 1418 } 1419 1420 /* 1421 * Allocate a uprobe_task object for the task if if necessary. 1422 * Called when the thread hits a breakpoint. 1423 * 1424 * Returns: 1425 * - pointer to new uprobe_task on success 1426 * - NULL otherwise 1427 */ 1428 static struct uprobe_task *get_utask(void) 1429 { 1430 if (!current->utask) 1431 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1432 return current->utask; 1433 } 1434 1435 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1436 { 1437 struct uprobe_task *n_utask; 1438 struct return_instance **p, *o, *n; 1439 1440 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1441 if (!n_utask) 1442 return -ENOMEM; 1443 t->utask = n_utask; 1444 1445 p = &n_utask->return_instances; 1446 for (o = o_utask->return_instances; o; o = o->next) { 1447 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1448 if (!n) 1449 return -ENOMEM; 1450 1451 *n = *o; 1452 get_uprobe(n->uprobe); 1453 n->next = NULL; 1454 1455 *p = n; 1456 p = &n->next; 1457 n_utask->depth++; 1458 } 1459 1460 return 0; 1461 } 1462 1463 static void uprobe_warn(struct task_struct *t, const char *msg) 1464 { 1465 pr_warn("uprobe: %s:%d failed to %s\n", 1466 current->comm, current->pid, msg); 1467 } 1468 1469 static void dup_xol_work(struct callback_head *work) 1470 { 1471 if (current->flags & PF_EXITING) 1472 return; 1473 1474 if (!__create_xol_area(current->utask->dup_xol_addr) && 1475 !fatal_signal_pending(current)) 1476 uprobe_warn(current, "dup xol area"); 1477 } 1478 1479 /* 1480 * Called in context of a new clone/fork from copy_process. 1481 */ 1482 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1483 { 1484 struct uprobe_task *utask = current->utask; 1485 struct mm_struct *mm = current->mm; 1486 struct xol_area *area; 1487 1488 t->utask = NULL; 1489 1490 if (!utask || !utask->return_instances) 1491 return; 1492 1493 if (mm == t->mm && !(flags & CLONE_VFORK)) 1494 return; 1495 1496 if (dup_utask(t, utask)) 1497 return uprobe_warn(t, "dup ret instances"); 1498 1499 /* The task can fork() after dup_xol_work() fails */ 1500 area = mm->uprobes_state.xol_area; 1501 if (!area) 1502 return uprobe_warn(t, "dup xol area"); 1503 1504 if (mm == t->mm) 1505 return; 1506 1507 t->utask->dup_xol_addr = area->vaddr; 1508 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1509 task_work_add(t, &t->utask->dup_xol_work, true); 1510 } 1511 1512 /* 1513 * Current area->vaddr notion assume the trampoline address is always 1514 * equal area->vaddr. 1515 * 1516 * Returns -1 in case the xol_area is not allocated. 1517 */ 1518 static unsigned long get_trampoline_vaddr(void) 1519 { 1520 struct xol_area *area; 1521 unsigned long trampoline_vaddr = -1; 1522 1523 area = current->mm->uprobes_state.xol_area; 1524 smp_read_barrier_depends(); 1525 if (area) 1526 trampoline_vaddr = area->vaddr; 1527 1528 return trampoline_vaddr; 1529 } 1530 1531 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1532 struct pt_regs *regs) 1533 { 1534 struct return_instance *ri = utask->return_instances; 1535 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1536 1537 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1538 ri = free_ret_instance(ri); 1539 utask->depth--; 1540 } 1541 utask->return_instances = ri; 1542 } 1543 1544 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1545 { 1546 struct return_instance *ri; 1547 struct uprobe_task *utask; 1548 unsigned long orig_ret_vaddr, trampoline_vaddr; 1549 bool chained; 1550 1551 if (!get_xol_area()) 1552 return; 1553 1554 utask = get_utask(); 1555 if (!utask) 1556 return; 1557 1558 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1559 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1560 " nestedness limit pid/tgid=%d/%d\n", 1561 current->pid, current->tgid); 1562 return; 1563 } 1564 1565 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1566 if (!ri) 1567 return; 1568 1569 trampoline_vaddr = get_trampoline_vaddr(); 1570 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1571 if (orig_ret_vaddr == -1) 1572 goto fail; 1573 1574 /* drop the entries invalidated by longjmp() */ 1575 chained = (orig_ret_vaddr == trampoline_vaddr); 1576 cleanup_return_instances(utask, chained, regs); 1577 1578 /* 1579 * We don't want to keep trampoline address in stack, rather keep the 1580 * original return address of first caller thru all the consequent 1581 * instances. This also makes breakpoint unwrapping easier. 1582 */ 1583 if (chained) { 1584 if (!utask->return_instances) { 1585 /* 1586 * This situation is not possible. Likely we have an 1587 * attack from user-space. 1588 */ 1589 uprobe_warn(current, "handle tail call"); 1590 goto fail; 1591 } 1592 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1593 } 1594 1595 ri->uprobe = get_uprobe(uprobe); 1596 ri->func = instruction_pointer(regs); 1597 ri->stack = user_stack_pointer(regs); 1598 ri->orig_ret_vaddr = orig_ret_vaddr; 1599 ri->chained = chained; 1600 1601 utask->depth++; 1602 ri->next = utask->return_instances; 1603 utask->return_instances = ri; 1604 1605 return; 1606 fail: 1607 kfree(ri); 1608 } 1609 1610 /* Prepare to single-step probed instruction out of line. */ 1611 static int 1612 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1613 { 1614 struct uprobe_task *utask; 1615 unsigned long xol_vaddr; 1616 int err; 1617 1618 utask = get_utask(); 1619 if (!utask) 1620 return -ENOMEM; 1621 1622 xol_vaddr = xol_get_insn_slot(uprobe); 1623 if (!xol_vaddr) 1624 return -ENOMEM; 1625 1626 utask->xol_vaddr = xol_vaddr; 1627 utask->vaddr = bp_vaddr; 1628 1629 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1630 if (unlikely(err)) { 1631 xol_free_insn_slot(current); 1632 return err; 1633 } 1634 1635 utask->active_uprobe = uprobe; 1636 utask->state = UTASK_SSTEP; 1637 return 0; 1638 } 1639 1640 /* 1641 * If we are singlestepping, then ensure this thread is not connected to 1642 * non-fatal signals until completion of singlestep. When xol insn itself 1643 * triggers the signal, restart the original insn even if the task is 1644 * already SIGKILL'ed (since coredump should report the correct ip). This 1645 * is even more important if the task has a handler for SIGSEGV/etc, The 1646 * _same_ instruction should be repeated again after return from the signal 1647 * handler, and SSTEP can never finish in this case. 1648 */ 1649 bool uprobe_deny_signal(void) 1650 { 1651 struct task_struct *t = current; 1652 struct uprobe_task *utask = t->utask; 1653 1654 if (likely(!utask || !utask->active_uprobe)) 1655 return false; 1656 1657 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1658 1659 if (signal_pending(t)) { 1660 spin_lock_irq(&t->sighand->siglock); 1661 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1662 spin_unlock_irq(&t->sighand->siglock); 1663 1664 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1665 utask->state = UTASK_SSTEP_TRAPPED; 1666 set_tsk_thread_flag(t, TIF_UPROBE); 1667 } 1668 } 1669 1670 return true; 1671 } 1672 1673 static void mmf_recalc_uprobes(struct mm_struct *mm) 1674 { 1675 struct vm_area_struct *vma; 1676 1677 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1678 if (!valid_vma(vma, false)) 1679 continue; 1680 /* 1681 * This is not strictly accurate, we can race with 1682 * uprobe_unregister() and see the already removed 1683 * uprobe if delete_uprobe() was not yet called. 1684 * Or this uprobe can be filtered out. 1685 */ 1686 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1687 return; 1688 } 1689 1690 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1691 } 1692 1693 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1694 { 1695 struct page *page; 1696 uprobe_opcode_t opcode; 1697 int result; 1698 1699 pagefault_disable(); 1700 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 1701 pagefault_enable(); 1702 1703 if (likely(result == 0)) 1704 goto out; 1705 1706 /* 1707 * The NULL 'tsk' here ensures that any faults that occur here 1708 * will not be accounted to the task. 'mm' *is* current->mm, 1709 * but we treat this as a 'remote' access since it is 1710 * essentially a kernel access to the memory. 1711 */ 1712 result = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 1713 if (result < 0) 1714 return result; 1715 1716 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1717 put_page(page); 1718 out: 1719 /* This needs to return true for any variant of the trap insn */ 1720 return is_trap_insn(&opcode); 1721 } 1722 1723 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1724 { 1725 struct mm_struct *mm = current->mm; 1726 struct uprobe *uprobe = NULL; 1727 struct vm_area_struct *vma; 1728 1729 down_read(&mm->mmap_sem); 1730 vma = find_vma(mm, bp_vaddr); 1731 if (vma && vma->vm_start <= bp_vaddr) { 1732 if (valid_vma(vma, false)) { 1733 struct inode *inode = file_inode(vma->vm_file); 1734 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1735 1736 uprobe = find_uprobe(inode, offset); 1737 } 1738 1739 if (!uprobe) 1740 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 1741 } else { 1742 *is_swbp = -EFAULT; 1743 } 1744 1745 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1746 mmf_recalc_uprobes(mm); 1747 up_read(&mm->mmap_sem); 1748 1749 return uprobe; 1750 } 1751 1752 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1753 { 1754 struct uprobe_consumer *uc; 1755 int remove = UPROBE_HANDLER_REMOVE; 1756 bool need_prep = false; /* prepare return uprobe, when needed */ 1757 1758 down_read(&uprobe->register_rwsem); 1759 for (uc = uprobe->consumers; uc; uc = uc->next) { 1760 int rc = 0; 1761 1762 if (uc->handler) { 1763 rc = uc->handler(uc, regs); 1764 WARN(rc & ~UPROBE_HANDLER_MASK, 1765 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1766 } 1767 1768 if (uc->ret_handler) 1769 need_prep = true; 1770 1771 remove &= rc; 1772 } 1773 1774 if (need_prep && !remove) 1775 prepare_uretprobe(uprobe, regs); /* put bp at return */ 1776 1777 if (remove && uprobe->consumers) { 1778 WARN_ON(!uprobe_is_active(uprobe)); 1779 unapply_uprobe(uprobe, current->mm); 1780 } 1781 up_read(&uprobe->register_rwsem); 1782 } 1783 1784 static void 1785 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 1786 { 1787 struct uprobe *uprobe = ri->uprobe; 1788 struct uprobe_consumer *uc; 1789 1790 down_read(&uprobe->register_rwsem); 1791 for (uc = uprobe->consumers; uc; uc = uc->next) { 1792 if (uc->ret_handler) 1793 uc->ret_handler(uc, ri->func, regs); 1794 } 1795 up_read(&uprobe->register_rwsem); 1796 } 1797 1798 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 1799 { 1800 bool chained; 1801 1802 do { 1803 chained = ri->chained; 1804 ri = ri->next; /* can't be NULL if chained */ 1805 } while (chained); 1806 1807 return ri; 1808 } 1809 1810 static void handle_trampoline(struct pt_regs *regs) 1811 { 1812 struct uprobe_task *utask; 1813 struct return_instance *ri, *next; 1814 bool valid; 1815 1816 utask = current->utask; 1817 if (!utask) 1818 goto sigill; 1819 1820 ri = utask->return_instances; 1821 if (!ri) 1822 goto sigill; 1823 1824 do { 1825 /* 1826 * We should throw out the frames invalidated by longjmp(). 1827 * If this chain is valid, then the next one should be alive 1828 * or NULL; the latter case means that nobody but ri->func 1829 * could hit this trampoline on return. TODO: sigaltstack(). 1830 */ 1831 next = find_next_ret_chain(ri); 1832 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 1833 1834 instruction_pointer_set(regs, ri->orig_ret_vaddr); 1835 do { 1836 if (valid) 1837 handle_uretprobe_chain(ri, regs); 1838 ri = free_ret_instance(ri); 1839 utask->depth--; 1840 } while (ri != next); 1841 } while (!valid); 1842 1843 utask->return_instances = ri; 1844 return; 1845 1846 sigill: 1847 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 1848 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1849 1850 } 1851 1852 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 1853 { 1854 return false; 1855 } 1856 1857 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 1858 struct pt_regs *regs) 1859 { 1860 return true; 1861 } 1862 1863 /* 1864 * Run handler and ask thread to singlestep. 1865 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1866 */ 1867 static void handle_swbp(struct pt_regs *regs) 1868 { 1869 struct uprobe *uprobe; 1870 unsigned long bp_vaddr; 1871 int uninitialized_var(is_swbp); 1872 1873 bp_vaddr = uprobe_get_swbp_addr(regs); 1874 if (bp_vaddr == get_trampoline_vaddr()) 1875 return handle_trampoline(regs); 1876 1877 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1878 if (!uprobe) { 1879 if (is_swbp > 0) { 1880 /* No matching uprobe; signal SIGTRAP. */ 1881 send_sig(SIGTRAP, current, 0); 1882 } else { 1883 /* 1884 * Either we raced with uprobe_unregister() or we can't 1885 * access this memory. The latter is only possible if 1886 * another thread plays with our ->mm. In both cases 1887 * we can simply restart. If this vma was unmapped we 1888 * can pretend this insn was not executed yet and get 1889 * the (correct) SIGSEGV after restart. 1890 */ 1891 instruction_pointer_set(regs, bp_vaddr); 1892 } 1893 return; 1894 } 1895 1896 /* change it in advance for ->handler() and restart */ 1897 instruction_pointer_set(regs, bp_vaddr); 1898 1899 /* 1900 * TODO: move copy_insn/etc into _register and remove this hack. 1901 * After we hit the bp, _unregister + _register can install the 1902 * new and not-yet-analyzed uprobe at the same address, restart. 1903 */ 1904 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1905 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1906 goto out; 1907 1908 /* Tracing handlers use ->utask to communicate with fetch methods */ 1909 if (!get_utask()) 1910 goto out; 1911 1912 if (arch_uprobe_ignore(&uprobe->arch, regs)) 1913 goto out; 1914 1915 handler_chain(uprobe, regs); 1916 1917 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1918 goto out; 1919 1920 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1921 return; 1922 1923 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 1924 out: 1925 put_uprobe(uprobe); 1926 } 1927 1928 /* 1929 * Perform required fix-ups and disable singlestep. 1930 * Allow pending signals to take effect. 1931 */ 1932 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1933 { 1934 struct uprobe *uprobe; 1935 int err = 0; 1936 1937 uprobe = utask->active_uprobe; 1938 if (utask->state == UTASK_SSTEP_ACK) 1939 err = arch_uprobe_post_xol(&uprobe->arch, regs); 1940 else if (utask->state == UTASK_SSTEP_TRAPPED) 1941 arch_uprobe_abort_xol(&uprobe->arch, regs); 1942 else 1943 WARN_ON_ONCE(1); 1944 1945 put_uprobe(uprobe); 1946 utask->active_uprobe = NULL; 1947 utask->state = UTASK_RUNNING; 1948 xol_free_insn_slot(current); 1949 1950 spin_lock_irq(¤t->sighand->siglock); 1951 recalc_sigpending(); /* see uprobe_deny_signal() */ 1952 spin_unlock_irq(¤t->sighand->siglock); 1953 1954 if (unlikely(err)) { 1955 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 1956 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1957 } 1958 } 1959 1960 /* 1961 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1962 * allows the thread to return from interrupt. After that handle_swbp() 1963 * sets utask->active_uprobe. 1964 * 1965 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1966 * and allows the thread to return from interrupt. 1967 * 1968 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1969 * uprobe_notify_resume(). 1970 */ 1971 void uprobe_notify_resume(struct pt_regs *regs) 1972 { 1973 struct uprobe_task *utask; 1974 1975 clear_thread_flag(TIF_UPROBE); 1976 1977 utask = current->utask; 1978 if (utask && utask->active_uprobe) 1979 handle_singlestep(utask, regs); 1980 else 1981 handle_swbp(regs); 1982 } 1983 1984 /* 1985 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1986 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1987 */ 1988 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1989 { 1990 if (!current->mm) 1991 return 0; 1992 1993 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 1994 (!current->utask || !current->utask->return_instances)) 1995 return 0; 1996 1997 set_thread_flag(TIF_UPROBE); 1998 return 1; 1999 } 2000 2001 /* 2002 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2003 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2004 */ 2005 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2006 { 2007 struct uprobe_task *utask = current->utask; 2008 2009 if (!current->mm || !utask || !utask->active_uprobe) 2010 /* task is currently not uprobed */ 2011 return 0; 2012 2013 utask->state = UTASK_SSTEP_ACK; 2014 set_thread_flag(TIF_UPROBE); 2015 return 1; 2016 } 2017 2018 static struct notifier_block uprobe_exception_nb = { 2019 .notifier_call = arch_uprobe_exception_notify, 2020 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2021 }; 2022 2023 static int __init init_uprobes(void) 2024 { 2025 int i; 2026 2027 for (i = 0; i < UPROBES_HASH_SZ; i++) 2028 mutex_init(&uprobes_mmap_mutex[i]); 2029 2030 if (percpu_init_rwsem(&dup_mmap_sem)) 2031 return -ENOMEM; 2032 2033 return register_die_notifier(&uprobe_exception_nb); 2034 } 2035 __initcall(init_uprobes); 2036