1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* try_to_free_swap */ 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include "../../mm/internal.h" /* munlock_vma_page */ 26 #include <linux/percpu-rwsem.h> 27 #include <linux/task_work.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/khugepaged.h> 30 31 #include <linux/uprobes.h> 32 33 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 34 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 35 36 static struct rb_root uprobes_tree = RB_ROOT; 37 /* 38 * allows us to skip the uprobe_mmap if there are no uprobe events active 39 * at this time. Probably a fine grained per inode count is better? 40 */ 41 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 42 43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 44 45 #define UPROBES_HASH_SZ 13 46 /* serialize uprobe->pending_list */ 47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 48 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 49 50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 51 52 /* Have a copy of original instruction */ 53 #define UPROBE_COPY_INSN 0 54 55 struct uprobe { 56 struct rb_node rb_node; /* node in the rb tree */ 57 refcount_t ref; 58 struct rw_semaphore register_rwsem; 59 struct rw_semaphore consumer_rwsem; 60 struct list_head pending_list; 61 struct uprobe_consumer *consumers; 62 struct inode *inode; /* Also hold a ref to inode */ 63 loff_t offset; 64 loff_t ref_ctr_offset; 65 unsigned long flags; 66 67 /* 68 * The generic code assumes that it has two members of unknown type 69 * owned by the arch-specific code: 70 * 71 * insn - copy_insn() saves the original instruction here for 72 * arch_uprobe_analyze_insn(). 73 * 74 * ixol - potentially modified instruction to execute out of 75 * line, copied to xol_area by xol_get_insn_slot(). 76 */ 77 struct arch_uprobe arch; 78 }; 79 80 struct delayed_uprobe { 81 struct list_head list; 82 struct uprobe *uprobe; 83 struct mm_struct *mm; 84 }; 85 86 static DEFINE_MUTEX(delayed_uprobe_lock); 87 static LIST_HEAD(delayed_uprobe_list); 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @old_page: the page we are replacing by new_page 148 * @new_page: the modified page we replace page by 149 * 150 * If @new_page is NULL, only unmap @old_page. 151 * 152 * Returns 0 on success, negative error code otherwise. 153 */ 154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 155 struct page *old_page, struct page *new_page) 156 { 157 struct mm_struct *mm = vma->vm_mm; 158 struct page_vma_mapped_walk pvmw = { 159 .page = compound_head(old_page), 160 .vma = vma, 161 .address = addr, 162 }; 163 int err; 164 struct mmu_notifier_range range; 165 struct mem_cgroup *memcg; 166 167 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 168 addr + PAGE_SIZE); 169 170 if (new_page) { 171 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, 172 &memcg, false); 173 if (err) 174 return err; 175 } 176 177 /* For try_to_free_swap() and munlock_vma_page() below */ 178 lock_page(old_page); 179 180 mmu_notifier_invalidate_range_start(&range); 181 err = -EAGAIN; 182 if (!page_vma_mapped_walk(&pvmw)) { 183 if (new_page) 184 mem_cgroup_cancel_charge(new_page, memcg, false); 185 goto unlock; 186 } 187 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 188 189 if (new_page) { 190 get_page(new_page); 191 page_add_new_anon_rmap(new_page, vma, addr, false); 192 mem_cgroup_commit_charge(new_page, memcg, false, false); 193 lru_cache_add_active_or_unevictable(new_page, vma); 194 } else 195 /* no new page, just dec_mm_counter for old_page */ 196 dec_mm_counter(mm, MM_ANONPAGES); 197 198 if (!PageAnon(old_page)) { 199 dec_mm_counter(mm, mm_counter_file(old_page)); 200 inc_mm_counter(mm, MM_ANONPAGES); 201 } 202 203 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 204 ptep_clear_flush_notify(vma, addr, pvmw.pte); 205 if (new_page) 206 set_pte_at_notify(mm, addr, pvmw.pte, 207 mk_pte(new_page, vma->vm_page_prot)); 208 209 page_remove_rmap(old_page, false); 210 if (!page_mapped(old_page)) 211 try_to_free_swap(old_page); 212 page_vma_mapped_walk_done(&pvmw); 213 214 if (vma->vm_flags & VM_LOCKED) 215 munlock_vma_page(old_page); 216 put_page(old_page); 217 218 err = 0; 219 unlock: 220 mmu_notifier_invalidate_range_end(&range); 221 unlock_page(old_page); 222 return err; 223 } 224 225 /** 226 * is_swbp_insn - check if instruction is breakpoint instruction. 227 * @insn: instruction to be checked. 228 * Default implementation of is_swbp_insn 229 * Returns true if @insn is a breakpoint instruction. 230 */ 231 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 232 { 233 return *insn == UPROBE_SWBP_INSN; 234 } 235 236 /** 237 * is_trap_insn - check if instruction is breakpoint instruction. 238 * @insn: instruction to be checked. 239 * Default implementation of is_trap_insn 240 * Returns true if @insn is a breakpoint instruction. 241 * 242 * This function is needed for the case where an architecture has multiple 243 * trap instructions (like powerpc). 244 */ 245 bool __weak is_trap_insn(uprobe_opcode_t *insn) 246 { 247 return is_swbp_insn(insn); 248 } 249 250 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 251 { 252 void *kaddr = kmap_atomic(page); 253 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 254 kunmap_atomic(kaddr); 255 } 256 257 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 258 { 259 void *kaddr = kmap_atomic(page); 260 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 261 kunmap_atomic(kaddr); 262 } 263 264 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 265 { 266 uprobe_opcode_t old_opcode; 267 bool is_swbp; 268 269 /* 270 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 271 * We do not check if it is any other 'trap variant' which could 272 * be conditional trap instruction such as the one powerpc supports. 273 * 274 * The logic is that we do not care if the underlying instruction 275 * is a trap variant; uprobes always wins over any other (gdb) 276 * breakpoint. 277 */ 278 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 279 is_swbp = is_swbp_insn(&old_opcode); 280 281 if (is_swbp_insn(new_opcode)) { 282 if (is_swbp) /* register: already installed? */ 283 return 0; 284 } else { 285 if (!is_swbp) /* unregister: was it changed by us? */ 286 return 0; 287 } 288 289 return 1; 290 } 291 292 static struct delayed_uprobe * 293 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 294 { 295 struct delayed_uprobe *du; 296 297 list_for_each_entry(du, &delayed_uprobe_list, list) 298 if (du->uprobe == uprobe && du->mm == mm) 299 return du; 300 return NULL; 301 } 302 303 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 304 { 305 struct delayed_uprobe *du; 306 307 if (delayed_uprobe_check(uprobe, mm)) 308 return 0; 309 310 du = kzalloc(sizeof(*du), GFP_KERNEL); 311 if (!du) 312 return -ENOMEM; 313 314 du->uprobe = uprobe; 315 du->mm = mm; 316 list_add(&du->list, &delayed_uprobe_list); 317 return 0; 318 } 319 320 static void delayed_uprobe_delete(struct delayed_uprobe *du) 321 { 322 if (WARN_ON(!du)) 323 return; 324 list_del(&du->list); 325 kfree(du); 326 } 327 328 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 329 { 330 struct list_head *pos, *q; 331 struct delayed_uprobe *du; 332 333 if (!uprobe && !mm) 334 return; 335 336 list_for_each_safe(pos, q, &delayed_uprobe_list) { 337 du = list_entry(pos, struct delayed_uprobe, list); 338 339 if (uprobe && du->uprobe != uprobe) 340 continue; 341 if (mm && du->mm != mm) 342 continue; 343 344 delayed_uprobe_delete(du); 345 } 346 } 347 348 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 349 struct vm_area_struct *vma) 350 { 351 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 352 353 return uprobe->ref_ctr_offset && 354 vma->vm_file && 355 file_inode(vma->vm_file) == uprobe->inode && 356 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 357 vma->vm_start <= vaddr && 358 vma->vm_end > vaddr; 359 } 360 361 static struct vm_area_struct * 362 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 363 { 364 struct vm_area_struct *tmp; 365 366 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next) 367 if (valid_ref_ctr_vma(uprobe, tmp)) 368 return tmp; 369 370 return NULL; 371 } 372 373 static int 374 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 375 { 376 void *kaddr; 377 struct page *page; 378 struct vm_area_struct *vma; 379 int ret; 380 short *ptr; 381 382 if (!vaddr || !d) 383 return -EINVAL; 384 385 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 386 FOLL_WRITE, &page, &vma, NULL); 387 if (unlikely(ret <= 0)) { 388 /* 389 * We are asking for 1 page. If get_user_pages_remote() fails, 390 * it may return 0, in that case we have to return error. 391 */ 392 return ret == 0 ? -EBUSY : ret; 393 } 394 395 kaddr = kmap_atomic(page); 396 ptr = kaddr + (vaddr & ~PAGE_MASK); 397 398 if (unlikely(*ptr + d < 0)) { 399 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 400 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 401 ret = -EINVAL; 402 goto out; 403 } 404 405 *ptr += d; 406 ret = 0; 407 out: 408 kunmap_atomic(kaddr); 409 put_page(page); 410 return ret; 411 } 412 413 static void update_ref_ctr_warn(struct uprobe *uprobe, 414 struct mm_struct *mm, short d) 415 { 416 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 417 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 418 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 419 (unsigned long long) uprobe->offset, 420 (unsigned long long) uprobe->ref_ctr_offset, mm); 421 } 422 423 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 424 short d) 425 { 426 struct vm_area_struct *rc_vma; 427 unsigned long rc_vaddr; 428 int ret = 0; 429 430 rc_vma = find_ref_ctr_vma(uprobe, mm); 431 432 if (rc_vma) { 433 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 434 ret = __update_ref_ctr(mm, rc_vaddr, d); 435 if (ret) 436 update_ref_ctr_warn(uprobe, mm, d); 437 438 if (d > 0) 439 return ret; 440 } 441 442 mutex_lock(&delayed_uprobe_lock); 443 if (d > 0) 444 ret = delayed_uprobe_add(uprobe, mm); 445 else 446 delayed_uprobe_remove(uprobe, mm); 447 mutex_unlock(&delayed_uprobe_lock); 448 449 return ret; 450 } 451 452 /* 453 * NOTE: 454 * Expect the breakpoint instruction to be the smallest size instruction for 455 * the architecture. If an arch has variable length instruction and the 456 * breakpoint instruction is not of the smallest length instruction 457 * supported by that architecture then we need to modify is_trap_at_addr and 458 * uprobe_write_opcode accordingly. This would never be a problem for archs 459 * that have fixed length instructions. 460 * 461 * uprobe_write_opcode - write the opcode at a given virtual address. 462 * @mm: the probed process address space. 463 * @vaddr: the virtual address to store the opcode. 464 * @opcode: opcode to be written at @vaddr. 465 * 466 * Called with mm->mmap_sem held for write. 467 * Return 0 (success) or a negative errno. 468 */ 469 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 470 unsigned long vaddr, uprobe_opcode_t opcode) 471 { 472 struct uprobe *uprobe; 473 struct page *old_page, *new_page; 474 struct vm_area_struct *vma; 475 int ret, is_register, ref_ctr_updated = 0; 476 bool orig_page_huge = false; 477 unsigned int gup_flags = FOLL_FORCE; 478 479 is_register = is_swbp_insn(&opcode); 480 uprobe = container_of(auprobe, struct uprobe, arch); 481 482 retry: 483 if (is_register) 484 gup_flags |= FOLL_SPLIT_PMD; 485 /* Read the page with vaddr into memory */ 486 ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags, 487 &old_page, &vma, NULL); 488 if (ret <= 0) 489 return ret; 490 491 ret = verify_opcode(old_page, vaddr, &opcode); 492 if (ret <= 0) 493 goto put_old; 494 495 if (WARN(!is_register && PageCompound(old_page), 496 "uprobe unregister should never work on compound page\n")) { 497 ret = -EINVAL; 498 goto put_old; 499 } 500 501 /* We are going to replace instruction, update ref_ctr. */ 502 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 503 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 504 if (ret) 505 goto put_old; 506 507 ref_ctr_updated = 1; 508 } 509 510 ret = 0; 511 if (!is_register && !PageAnon(old_page)) 512 goto put_old; 513 514 ret = anon_vma_prepare(vma); 515 if (ret) 516 goto put_old; 517 518 ret = -ENOMEM; 519 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 520 if (!new_page) 521 goto put_old; 522 523 __SetPageUptodate(new_page); 524 copy_highpage(new_page, old_page); 525 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 526 527 if (!is_register) { 528 struct page *orig_page; 529 pgoff_t index; 530 531 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 532 533 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 534 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 535 index); 536 537 if (orig_page) { 538 if (PageUptodate(orig_page) && 539 pages_identical(new_page, orig_page)) { 540 /* let go new_page */ 541 put_page(new_page); 542 new_page = NULL; 543 544 if (PageCompound(orig_page)) 545 orig_page_huge = true; 546 } 547 put_page(orig_page); 548 } 549 } 550 551 ret = __replace_page(vma, vaddr, old_page, new_page); 552 if (new_page) 553 put_page(new_page); 554 put_old: 555 put_page(old_page); 556 557 if (unlikely(ret == -EAGAIN)) 558 goto retry; 559 560 /* Revert back reference counter if instruction update failed. */ 561 if (ret && is_register && ref_ctr_updated) 562 update_ref_ctr(uprobe, mm, -1); 563 564 /* try collapse pmd for compound page */ 565 if (!ret && orig_page_huge) 566 collapse_pte_mapped_thp(mm, vaddr); 567 568 return ret; 569 } 570 571 /** 572 * set_swbp - store breakpoint at a given address. 573 * @auprobe: arch specific probepoint information. 574 * @mm: the probed process address space. 575 * @vaddr: the virtual address to insert the opcode. 576 * 577 * For mm @mm, store the breakpoint instruction at @vaddr. 578 * Return 0 (success) or a negative errno. 579 */ 580 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 581 { 582 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 583 } 584 585 /** 586 * set_orig_insn - Restore the original instruction. 587 * @mm: the probed process address space. 588 * @auprobe: arch specific probepoint information. 589 * @vaddr: the virtual address to insert the opcode. 590 * 591 * For mm @mm, restore the original opcode (opcode) at @vaddr. 592 * Return 0 (success) or a negative errno. 593 */ 594 int __weak 595 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 596 { 597 return uprobe_write_opcode(auprobe, mm, vaddr, 598 *(uprobe_opcode_t *)&auprobe->insn); 599 } 600 601 static struct uprobe *get_uprobe(struct uprobe *uprobe) 602 { 603 refcount_inc(&uprobe->ref); 604 return uprobe; 605 } 606 607 static void put_uprobe(struct uprobe *uprobe) 608 { 609 if (refcount_dec_and_test(&uprobe->ref)) { 610 /* 611 * If application munmap(exec_vma) before uprobe_unregister() 612 * gets called, we don't get a chance to remove uprobe from 613 * delayed_uprobe_list from remove_breakpoint(). Do it here. 614 */ 615 mutex_lock(&delayed_uprobe_lock); 616 delayed_uprobe_remove(uprobe, NULL); 617 mutex_unlock(&delayed_uprobe_lock); 618 kfree(uprobe); 619 } 620 } 621 622 static int match_uprobe(struct uprobe *l, struct uprobe *r) 623 { 624 if (l->inode < r->inode) 625 return -1; 626 627 if (l->inode > r->inode) 628 return 1; 629 630 if (l->offset < r->offset) 631 return -1; 632 633 if (l->offset > r->offset) 634 return 1; 635 636 return 0; 637 } 638 639 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 640 { 641 struct uprobe u = { .inode = inode, .offset = offset }; 642 struct rb_node *n = uprobes_tree.rb_node; 643 struct uprobe *uprobe; 644 int match; 645 646 while (n) { 647 uprobe = rb_entry(n, struct uprobe, rb_node); 648 match = match_uprobe(&u, uprobe); 649 if (!match) 650 return get_uprobe(uprobe); 651 652 if (match < 0) 653 n = n->rb_left; 654 else 655 n = n->rb_right; 656 } 657 return NULL; 658 } 659 660 /* 661 * Find a uprobe corresponding to a given inode:offset 662 * Acquires uprobes_treelock 663 */ 664 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 665 { 666 struct uprobe *uprobe; 667 668 spin_lock(&uprobes_treelock); 669 uprobe = __find_uprobe(inode, offset); 670 spin_unlock(&uprobes_treelock); 671 672 return uprobe; 673 } 674 675 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 676 { 677 struct rb_node **p = &uprobes_tree.rb_node; 678 struct rb_node *parent = NULL; 679 struct uprobe *u; 680 int match; 681 682 while (*p) { 683 parent = *p; 684 u = rb_entry(parent, struct uprobe, rb_node); 685 match = match_uprobe(uprobe, u); 686 if (!match) 687 return get_uprobe(u); 688 689 if (match < 0) 690 p = &parent->rb_left; 691 else 692 p = &parent->rb_right; 693 694 } 695 696 u = NULL; 697 rb_link_node(&uprobe->rb_node, parent, p); 698 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 699 /* get access + creation ref */ 700 refcount_set(&uprobe->ref, 2); 701 702 return u; 703 } 704 705 /* 706 * Acquire uprobes_treelock. 707 * Matching uprobe already exists in rbtree; 708 * increment (access refcount) and return the matching uprobe. 709 * 710 * No matching uprobe; insert the uprobe in rb_tree; 711 * get a double refcount (access + creation) and return NULL. 712 */ 713 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 714 { 715 struct uprobe *u; 716 717 spin_lock(&uprobes_treelock); 718 u = __insert_uprobe(uprobe); 719 spin_unlock(&uprobes_treelock); 720 721 return u; 722 } 723 724 static void 725 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 726 { 727 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 728 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 729 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 730 (unsigned long long) cur_uprobe->ref_ctr_offset, 731 (unsigned long long) uprobe->ref_ctr_offset); 732 } 733 734 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 735 loff_t ref_ctr_offset) 736 { 737 struct uprobe *uprobe, *cur_uprobe; 738 739 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 740 if (!uprobe) 741 return NULL; 742 743 uprobe->inode = inode; 744 uprobe->offset = offset; 745 uprobe->ref_ctr_offset = ref_ctr_offset; 746 init_rwsem(&uprobe->register_rwsem); 747 init_rwsem(&uprobe->consumer_rwsem); 748 749 /* add to uprobes_tree, sorted on inode:offset */ 750 cur_uprobe = insert_uprobe(uprobe); 751 /* a uprobe exists for this inode:offset combination */ 752 if (cur_uprobe) { 753 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 754 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 755 put_uprobe(cur_uprobe); 756 kfree(uprobe); 757 return ERR_PTR(-EINVAL); 758 } 759 kfree(uprobe); 760 uprobe = cur_uprobe; 761 } 762 763 return uprobe; 764 } 765 766 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 767 { 768 down_write(&uprobe->consumer_rwsem); 769 uc->next = uprobe->consumers; 770 uprobe->consumers = uc; 771 up_write(&uprobe->consumer_rwsem); 772 } 773 774 /* 775 * For uprobe @uprobe, delete the consumer @uc. 776 * Return true if the @uc is deleted successfully 777 * or return false. 778 */ 779 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 780 { 781 struct uprobe_consumer **con; 782 bool ret = false; 783 784 down_write(&uprobe->consumer_rwsem); 785 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 786 if (*con == uc) { 787 *con = uc->next; 788 ret = true; 789 break; 790 } 791 } 792 up_write(&uprobe->consumer_rwsem); 793 794 return ret; 795 } 796 797 static int __copy_insn(struct address_space *mapping, struct file *filp, 798 void *insn, int nbytes, loff_t offset) 799 { 800 struct page *page; 801 /* 802 * Ensure that the page that has the original instruction is populated 803 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 804 * see uprobe_register(). 805 */ 806 if (mapping->a_ops->readpage) 807 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 808 else 809 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 810 if (IS_ERR(page)) 811 return PTR_ERR(page); 812 813 copy_from_page(page, offset, insn, nbytes); 814 put_page(page); 815 816 return 0; 817 } 818 819 static int copy_insn(struct uprobe *uprobe, struct file *filp) 820 { 821 struct address_space *mapping = uprobe->inode->i_mapping; 822 loff_t offs = uprobe->offset; 823 void *insn = &uprobe->arch.insn; 824 int size = sizeof(uprobe->arch.insn); 825 int len, err = -EIO; 826 827 /* Copy only available bytes, -EIO if nothing was read */ 828 do { 829 if (offs >= i_size_read(uprobe->inode)) 830 break; 831 832 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 833 err = __copy_insn(mapping, filp, insn, len, offs); 834 if (err) 835 break; 836 837 insn += len; 838 offs += len; 839 size -= len; 840 } while (size); 841 842 return err; 843 } 844 845 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 846 struct mm_struct *mm, unsigned long vaddr) 847 { 848 int ret = 0; 849 850 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 851 return ret; 852 853 /* TODO: move this into _register, until then we abuse this sem. */ 854 down_write(&uprobe->consumer_rwsem); 855 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 856 goto out; 857 858 ret = copy_insn(uprobe, file); 859 if (ret) 860 goto out; 861 862 ret = -ENOTSUPP; 863 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 864 goto out; 865 866 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 867 if (ret) 868 goto out; 869 870 /* uprobe_write_opcode() assumes we don't cross page boundary */ 871 BUG_ON((uprobe->offset & ~PAGE_MASK) + 872 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 873 874 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 875 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 876 877 out: 878 up_write(&uprobe->consumer_rwsem); 879 880 return ret; 881 } 882 883 static inline bool consumer_filter(struct uprobe_consumer *uc, 884 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 885 { 886 return !uc->filter || uc->filter(uc, ctx, mm); 887 } 888 889 static bool filter_chain(struct uprobe *uprobe, 890 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 891 { 892 struct uprobe_consumer *uc; 893 bool ret = false; 894 895 down_read(&uprobe->consumer_rwsem); 896 for (uc = uprobe->consumers; uc; uc = uc->next) { 897 ret = consumer_filter(uc, ctx, mm); 898 if (ret) 899 break; 900 } 901 up_read(&uprobe->consumer_rwsem); 902 903 return ret; 904 } 905 906 static int 907 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 908 struct vm_area_struct *vma, unsigned long vaddr) 909 { 910 bool first_uprobe; 911 int ret; 912 913 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 914 if (ret) 915 return ret; 916 917 /* 918 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 919 * the task can hit this breakpoint right after __replace_page(). 920 */ 921 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 922 if (first_uprobe) 923 set_bit(MMF_HAS_UPROBES, &mm->flags); 924 925 ret = set_swbp(&uprobe->arch, mm, vaddr); 926 if (!ret) 927 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 928 else if (first_uprobe) 929 clear_bit(MMF_HAS_UPROBES, &mm->flags); 930 931 return ret; 932 } 933 934 static int 935 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 936 { 937 set_bit(MMF_RECALC_UPROBES, &mm->flags); 938 return set_orig_insn(&uprobe->arch, mm, vaddr); 939 } 940 941 static inline bool uprobe_is_active(struct uprobe *uprobe) 942 { 943 return !RB_EMPTY_NODE(&uprobe->rb_node); 944 } 945 /* 946 * There could be threads that have already hit the breakpoint. They 947 * will recheck the current insn and restart if find_uprobe() fails. 948 * See find_active_uprobe(). 949 */ 950 static void delete_uprobe(struct uprobe *uprobe) 951 { 952 if (WARN_ON(!uprobe_is_active(uprobe))) 953 return; 954 955 spin_lock(&uprobes_treelock); 956 rb_erase(&uprobe->rb_node, &uprobes_tree); 957 spin_unlock(&uprobes_treelock); 958 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 959 put_uprobe(uprobe); 960 } 961 962 struct map_info { 963 struct map_info *next; 964 struct mm_struct *mm; 965 unsigned long vaddr; 966 }; 967 968 static inline struct map_info *free_map_info(struct map_info *info) 969 { 970 struct map_info *next = info->next; 971 kfree(info); 972 return next; 973 } 974 975 static struct map_info * 976 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 977 { 978 unsigned long pgoff = offset >> PAGE_SHIFT; 979 struct vm_area_struct *vma; 980 struct map_info *curr = NULL; 981 struct map_info *prev = NULL; 982 struct map_info *info; 983 int more = 0; 984 985 again: 986 i_mmap_lock_read(mapping); 987 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 988 if (!valid_vma(vma, is_register)) 989 continue; 990 991 if (!prev && !more) { 992 /* 993 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 994 * reclaim. This is optimistic, no harm done if it fails. 995 */ 996 prev = kmalloc(sizeof(struct map_info), 997 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 998 if (prev) 999 prev->next = NULL; 1000 } 1001 if (!prev) { 1002 more++; 1003 continue; 1004 } 1005 1006 if (!mmget_not_zero(vma->vm_mm)) 1007 continue; 1008 1009 info = prev; 1010 prev = prev->next; 1011 info->next = curr; 1012 curr = info; 1013 1014 info->mm = vma->vm_mm; 1015 info->vaddr = offset_to_vaddr(vma, offset); 1016 } 1017 i_mmap_unlock_read(mapping); 1018 1019 if (!more) 1020 goto out; 1021 1022 prev = curr; 1023 while (curr) { 1024 mmput(curr->mm); 1025 curr = curr->next; 1026 } 1027 1028 do { 1029 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1030 if (!info) { 1031 curr = ERR_PTR(-ENOMEM); 1032 goto out; 1033 } 1034 info->next = prev; 1035 prev = info; 1036 } while (--more); 1037 1038 goto again; 1039 out: 1040 while (prev) 1041 prev = free_map_info(prev); 1042 return curr; 1043 } 1044 1045 static int 1046 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1047 { 1048 bool is_register = !!new; 1049 struct map_info *info; 1050 int err = 0; 1051 1052 percpu_down_write(&dup_mmap_sem); 1053 info = build_map_info(uprobe->inode->i_mapping, 1054 uprobe->offset, is_register); 1055 if (IS_ERR(info)) { 1056 err = PTR_ERR(info); 1057 goto out; 1058 } 1059 1060 while (info) { 1061 struct mm_struct *mm = info->mm; 1062 struct vm_area_struct *vma; 1063 1064 if (err && is_register) 1065 goto free; 1066 1067 down_write(&mm->mmap_sem); 1068 vma = find_vma(mm, info->vaddr); 1069 if (!vma || !valid_vma(vma, is_register) || 1070 file_inode(vma->vm_file) != uprobe->inode) 1071 goto unlock; 1072 1073 if (vma->vm_start > info->vaddr || 1074 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1075 goto unlock; 1076 1077 if (is_register) { 1078 /* consult only the "caller", new consumer. */ 1079 if (consumer_filter(new, 1080 UPROBE_FILTER_REGISTER, mm)) 1081 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1082 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1083 if (!filter_chain(uprobe, 1084 UPROBE_FILTER_UNREGISTER, mm)) 1085 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1086 } 1087 1088 unlock: 1089 up_write(&mm->mmap_sem); 1090 free: 1091 mmput(mm); 1092 info = free_map_info(info); 1093 } 1094 out: 1095 percpu_up_write(&dup_mmap_sem); 1096 return err; 1097 } 1098 1099 static void 1100 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1101 { 1102 int err; 1103 1104 if (WARN_ON(!consumer_del(uprobe, uc))) 1105 return; 1106 1107 err = register_for_each_vma(uprobe, NULL); 1108 /* TODO : cant unregister? schedule a worker thread */ 1109 if (!uprobe->consumers && !err) 1110 delete_uprobe(uprobe); 1111 } 1112 1113 /* 1114 * uprobe_unregister - unregister an already registered probe. 1115 * @inode: the file in which the probe has to be removed. 1116 * @offset: offset from the start of the file. 1117 * @uc: identify which probe if multiple probes are colocated. 1118 */ 1119 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1120 { 1121 struct uprobe *uprobe; 1122 1123 uprobe = find_uprobe(inode, offset); 1124 if (WARN_ON(!uprobe)) 1125 return; 1126 1127 down_write(&uprobe->register_rwsem); 1128 __uprobe_unregister(uprobe, uc); 1129 up_write(&uprobe->register_rwsem); 1130 put_uprobe(uprobe); 1131 } 1132 EXPORT_SYMBOL_GPL(uprobe_unregister); 1133 1134 /* 1135 * __uprobe_register - register a probe 1136 * @inode: the file in which the probe has to be placed. 1137 * @offset: offset from the start of the file. 1138 * @uc: information on howto handle the probe.. 1139 * 1140 * Apart from the access refcount, __uprobe_register() takes a creation 1141 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1142 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1143 * tuple). Creation refcount stops uprobe_unregister from freeing the 1144 * @uprobe even before the register operation is complete. Creation 1145 * refcount is released when the last @uc for the @uprobe 1146 * unregisters. Caller of __uprobe_register() is required to keep @inode 1147 * (and the containing mount) referenced. 1148 * 1149 * Return errno if it cannot successully install probes 1150 * else return 0 (success) 1151 */ 1152 static int __uprobe_register(struct inode *inode, loff_t offset, 1153 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1154 { 1155 struct uprobe *uprobe; 1156 int ret; 1157 1158 /* Uprobe must have at least one set consumer */ 1159 if (!uc->handler && !uc->ret_handler) 1160 return -EINVAL; 1161 1162 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1163 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 1164 return -EIO; 1165 /* Racy, just to catch the obvious mistakes */ 1166 if (offset > i_size_read(inode)) 1167 return -EINVAL; 1168 1169 retry: 1170 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1171 if (!uprobe) 1172 return -ENOMEM; 1173 if (IS_ERR(uprobe)) 1174 return PTR_ERR(uprobe); 1175 1176 /* 1177 * We can race with uprobe_unregister()->delete_uprobe(). 1178 * Check uprobe_is_active() and retry if it is false. 1179 */ 1180 down_write(&uprobe->register_rwsem); 1181 ret = -EAGAIN; 1182 if (likely(uprobe_is_active(uprobe))) { 1183 consumer_add(uprobe, uc); 1184 ret = register_for_each_vma(uprobe, uc); 1185 if (ret) 1186 __uprobe_unregister(uprobe, uc); 1187 } 1188 up_write(&uprobe->register_rwsem); 1189 put_uprobe(uprobe); 1190 1191 if (unlikely(ret == -EAGAIN)) 1192 goto retry; 1193 return ret; 1194 } 1195 1196 int uprobe_register(struct inode *inode, loff_t offset, 1197 struct uprobe_consumer *uc) 1198 { 1199 return __uprobe_register(inode, offset, 0, uc); 1200 } 1201 EXPORT_SYMBOL_GPL(uprobe_register); 1202 1203 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1204 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1205 { 1206 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1207 } 1208 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1209 1210 /* 1211 * uprobe_apply - unregister an already registered probe. 1212 * @inode: the file in which the probe has to be removed. 1213 * @offset: offset from the start of the file. 1214 * @uc: consumer which wants to add more or remove some breakpoints 1215 * @add: add or remove the breakpoints 1216 */ 1217 int uprobe_apply(struct inode *inode, loff_t offset, 1218 struct uprobe_consumer *uc, bool add) 1219 { 1220 struct uprobe *uprobe; 1221 struct uprobe_consumer *con; 1222 int ret = -ENOENT; 1223 1224 uprobe = find_uprobe(inode, offset); 1225 if (WARN_ON(!uprobe)) 1226 return ret; 1227 1228 down_write(&uprobe->register_rwsem); 1229 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1230 ; 1231 if (con) 1232 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1233 up_write(&uprobe->register_rwsem); 1234 put_uprobe(uprobe); 1235 1236 return ret; 1237 } 1238 1239 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1240 { 1241 struct vm_area_struct *vma; 1242 int err = 0; 1243 1244 down_read(&mm->mmap_sem); 1245 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1246 unsigned long vaddr; 1247 loff_t offset; 1248 1249 if (!valid_vma(vma, false) || 1250 file_inode(vma->vm_file) != uprobe->inode) 1251 continue; 1252 1253 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1254 if (uprobe->offset < offset || 1255 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1256 continue; 1257 1258 vaddr = offset_to_vaddr(vma, uprobe->offset); 1259 err |= remove_breakpoint(uprobe, mm, vaddr); 1260 } 1261 up_read(&mm->mmap_sem); 1262 1263 return err; 1264 } 1265 1266 static struct rb_node * 1267 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1268 { 1269 struct rb_node *n = uprobes_tree.rb_node; 1270 1271 while (n) { 1272 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1273 1274 if (inode < u->inode) { 1275 n = n->rb_left; 1276 } else if (inode > u->inode) { 1277 n = n->rb_right; 1278 } else { 1279 if (max < u->offset) 1280 n = n->rb_left; 1281 else if (min > u->offset) 1282 n = n->rb_right; 1283 else 1284 break; 1285 } 1286 } 1287 1288 return n; 1289 } 1290 1291 /* 1292 * For a given range in vma, build a list of probes that need to be inserted. 1293 */ 1294 static void build_probe_list(struct inode *inode, 1295 struct vm_area_struct *vma, 1296 unsigned long start, unsigned long end, 1297 struct list_head *head) 1298 { 1299 loff_t min, max; 1300 struct rb_node *n, *t; 1301 struct uprobe *u; 1302 1303 INIT_LIST_HEAD(head); 1304 min = vaddr_to_offset(vma, start); 1305 max = min + (end - start) - 1; 1306 1307 spin_lock(&uprobes_treelock); 1308 n = find_node_in_range(inode, min, max); 1309 if (n) { 1310 for (t = n; t; t = rb_prev(t)) { 1311 u = rb_entry(t, struct uprobe, rb_node); 1312 if (u->inode != inode || u->offset < min) 1313 break; 1314 list_add(&u->pending_list, head); 1315 get_uprobe(u); 1316 } 1317 for (t = n; (t = rb_next(t)); ) { 1318 u = rb_entry(t, struct uprobe, rb_node); 1319 if (u->inode != inode || u->offset > max) 1320 break; 1321 list_add(&u->pending_list, head); 1322 get_uprobe(u); 1323 } 1324 } 1325 spin_unlock(&uprobes_treelock); 1326 } 1327 1328 /* @vma contains reference counter, not the probed instruction. */ 1329 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1330 { 1331 struct list_head *pos, *q; 1332 struct delayed_uprobe *du; 1333 unsigned long vaddr; 1334 int ret = 0, err = 0; 1335 1336 mutex_lock(&delayed_uprobe_lock); 1337 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1338 du = list_entry(pos, struct delayed_uprobe, list); 1339 1340 if (du->mm != vma->vm_mm || 1341 !valid_ref_ctr_vma(du->uprobe, vma)) 1342 continue; 1343 1344 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1345 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1346 if (ret) { 1347 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1348 if (!err) 1349 err = ret; 1350 } 1351 delayed_uprobe_delete(du); 1352 } 1353 mutex_unlock(&delayed_uprobe_lock); 1354 return err; 1355 } 1356 1357 /* 1358 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1359 * 1360 * Currently we ignore all errors and always return 0, the callers 1361 * can't handle the failure anyway. 1362 */ 1363 int uprobe_mmap(struct vm_area_struct *vma) 1364 { 1365 struct list_head tmp_list; 1366 struct uprobe *uprobe, *u; 1367 struct inode *inode; 1368 1369 if (no_uprobe_events()) 1370 return 0; 1371 1372 if (vma->vm_file && 1373 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1374 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1375 delayed_ref_ctr_inc(vma); 1376 1377 if (!valid_vma(vma, true)) 1378 return 0; 1379 1380 inode = file_inode(vma->vm_file); 1381 if (!inode) 1382 return 0; 1383 1384 mutex_lock(uprobes_mmap_hash(inode)); 1385 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1386 /* 1387 * We can race with uprobe_unregister(), this uprobe can be already 1388 * removed. But in this case filter_chain() must return false, all 1389 * consumers have gone away. 1390 */ 1391 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1392 if (!fatal_signal_pending(current) && 1393 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1394 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1395 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1396 } 1397 put_uprobe(uprobe); 1398 } 1399 mutex_unlock(uprobes_mmap_hash(inode)); 1400 1401 return 0; 1402 } 1403 1404 static bool 1405 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1406 { 1407 loff_t min, max; 1408 struct inode *inode; 1409 struct rb_node *n; 1410 1411 inode = file_inode(vma->vm_file); 1412 1413 min = vaddr_to_offset(vma, start); 1414 max = min + (end - start) - 1; 1415 1416 spin_lock(&uprobes_treelock); 1417 n = find_node_in_range(inode, min, max); 1418 spin_unlock(&uprobes_treelock); 1419 1420 return !!n; 1421 } 1422 1423 /* 1424 * Called in context of a munmap of a vma. 1425 */ 1426 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1427 { 1428 if (no_uprobe_events() || !valid_vma(vma, false)) 1429 return; 1430 1431 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1432 return; 1433 1434 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1435 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1436 return; 1437 1438 if (vma_has_uprobes(vma, start, end)) 1439 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1440 } 1441 1442 /* Slot allocation for XOL */ 1443 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1444 { 1445 struct vm_area_struct *vma; 1446 int ret; 1447 1448 if (down_write_killable(&mm->mmap_sem)) 1449 return -EINTR; 1450 1451 if (mm->uprobes_state.xol_area) { 1452 ret = -EALREADY; 1453 goto fail; 1454 } 1455 1456 if (!area->vaddr) { 1457 /* Try to map as high as possible, this is only a hint. */ 1458 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1459 PAGE_SIZE, 0, 0); 1460 if (IS_ERR_VALUE(area->vaddr)) { 1461 ret = area->vaddr; 1462 goto fail; 1463 } 1464 } 1465 1466 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1467 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1468 &area->xol_mapping); 1469 if (IS_ERR(vma)) { 1470 ret = PTR_ERR(vma); 1471 goto fail; 1472 } 1473 1474 ret = 0; 1475 /* pairs with get_xol_area() */ 1476 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1477 fail: 1478 up_write(&mm->mmap_sem); 1479 1480 return ret; 1481 } 1482 1483 static struct xol_area *__create_xol_area(unsigned long vaddr) 1484 { 1485 struct mm_struct *mm = current->mm; 1486 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1487 struct xol_area *area; 1488 1489 area = kmalloc(sizeof(*area), GFP_KERNEL); 1490 if (unlikely(!area)) 1491 goto out; 1492 1493 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1494 GFP_KERNEL); 1495 if (!area->bitmap) 1496 goto free_area; 1497 1498 area->xol_mapping.name = "[uprobes]"; 1499 area->xol_mapping.fault = NULL; 1500 area->xol_mapping.pages = area->pages; 1501 area->pages[0] = alloc_page(GFP_HIGHUSER); 1502 if (!area->pages[0]) 1503 goto free_bitmap; 1504 area->pages[1] = NULL; 1505 1506 area->vaddr = vaddr; 1507 init_waitqueue_head(&area->wq); 1508 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1509 set_bit(0, area->bitmap); 1510 atomic_set(&area->slot_count, 1); 1511 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1512 1513 if (!xol_add_vma(mm, area)) 1514 return area; 1515 1516 __free_page(area->pages[0]); 1517 free_bitmap: 1518 kfree(area->bitmap); 1519 free_area: 1520 kfree(area); 1521 out: 1522 return NULL; 1523 } 1524 1525 /* 1526 * get_xol_area - Allocate process's xol_area if necessary. 1527 * This area will be used for storing instructions for execution out of line. 1528 * 1529 * Returns the allocated area or NULL. 1530 */ 1531 static struct xol_area *get_xol_area(void) 1532 { 1533 struct mm_struct *mm = current->mm; 1534 struct xol_area *area; 1535 1536 if (!mm->uprobes_state.xol_area) 1537 __create_xol_area(0); 1538 1539 /* Pairs with xol_add_vma() smp_store_release() */ 1540 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1541 return area; 1542 } 1543 1544 /* 1545 * uprobe_clear_state - Free the area allocated for slots. 1546 */ 1547 void uprobe_clear_state(struct mm_struct *mm) 1548 { 1549 struct xol_area *area = mm->uprobes_state.xol_area; 1550 1551 mutex_lock(&delayed_uprobe_lock); 1552 delayed_uprobe_remove(NULL, mm); 1553 mutex_unlock(&delayed_uprobe_lock); 1554 1555 if (!area) 1556 return; 1557 1558 put_page(area->pages[0]); 1559 kfree(area->bitmap); 1560 kfree(area); 1561 } 1562 1563 void uprobe_start_dup_mmap(void) 1564 { 1565 percpu_down_read(&dup_mmap_sem); 1566 } 1567 1568 void uprobe_end_dup_mmap(void) 1569 { 1570 percpu_up_read(&dup_mmap_sem); 1571 } 1572 1573 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1574 { 1575 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1576 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1577 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1578 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1579 } 1580 } 1581 1582 /* 1583 * - search for a free slot. 1584 */ 1585 static unsigned long xol_take_insn_slot(struct xol_area *area) 1586 { 1587 unsigned long slot_addr; 1588 int slot_nr; 1589 1590 do { 1591 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1592 if (slot_nr < UINSNS_PER_PAGE) { 1593 if (!test_and_set_bit(slot_nr, area->bitmap)) 1594 break; 1595 1596 slot_nr = UINSNS_PER_PAGE; 1597 continue; 1598 } 1599 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1600 } while (slot_nr >= UINSNS_PER_PAGE); 1601 1602 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1603 atomic_inc(&area->slot_count); 1604 1605 return slot_addr; 1606 } 1607 1608 /* 1609 * xol_get_insn_slot - allocate a slot for xol. 1610 * Returns the allocated slot address or 0. 1611 */ 1612 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1613 { 1614 struct xol_area *area; 1615 unsigned long xol_vaddr; 1616 1617 area = get_xol_area(); 1618 if (!area) 1619 return 0; 1620 1621 xol_vaddr = xol_take_insn_slot(area); 1622 if (unlikely(!xol_vaddr)) 1623 return 0; 1624 1625 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1626 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1627 1628 return xol_vaddr; 1629 } 1630 1631 /* 1632 * xol_free_insn_slot - If slot was earlier allocated by 1633 * @xol_get_insn_slot(), make the slot available for 1634 * subsequent requests. 1635 */ 1636 static void xol_free_insn_slot(struct task_struct *tsk) 1637 { 1638 struct xol_area *area; 1639 unsigned long vma_end; 1640 unsigned long slot_addr; 1641 1642 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1643 return; 1644 1645 slot_addr = tsk->utask->xol_vaddr; 1646 if (unlikely(!slot_addr)) 1647 return; 1648 1649 area = tsk->mm->uprobes_state.xol_area; 1650 vma_end = area->vaddr + PAGE_SIZE; 1651 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1652 unsigned long offset; 1653 int slot_nr; 1654 1655 offset = slot_addr - area->vaddr; 1656 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1657 if (slot_nr >= UINSNS_PER_PAGE) 1658 return; 1659 1660 clear_bit(slot_nr, area->bitmap); 1661 atomic_dec(&area->slot_count); 1662 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1663 if (waitqueue_active(&area->wq)) 1664 wake_up(&area->wq); 1665 1666 tsk->utask->xol_vaddr = 0; 1667 } 1668 } 1669 1670 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1671 void *src, unsigned long len) 1672 { 1673 /* Initialize the slot */ 1674 copy_to_page(page, vaddr, src, len); 1675 1676 /* 1677 * We probably need flush_icache_user_range() but it needs vma. 1678 * This should work on most of architectures by default. If 1679 * architecture needs to do something different it can define 1680 * its own version of the function. 1681 */ 1682 flush_dcache_page(page); 1683 } 1684 1685 /** 1686 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1687 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1688 * instruction. 1689 * Return the address of the breakpoint instruction. 1690 */ 1691 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1692 { 1693 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1694 } 1695 1696 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1697 { 1698 struct uprobe_task *utask = current->utask; 1699 1700 if (unlikely(utask && utask->active_uprobe)) 1701 return utask->vaddr; 1702 1703 return instruction_pointer(regs); 1704 } 1705 1706 static struct return_instance *free_ret_instance(struct return_instance *ri) 1707 { 1708 struct return_instance *next = ri->next; 1709 put_uprobe(ri->uprobe); 1710 kfree(ri); 1711 return next; 1712 } 1713 1714 /* 1715 * Called with no locks held. 1716 * Called in context of an exiting or an exec-ing thread. 1717 */ 1718 void uprobe_free_utask(struct task_struct *t) 1719 { 1720 struct uprobe_task *utask = t->utask; 1721 struct return_instance *ri; 1722 1723 if (!utask) 1724 return; 1725 1726 if (utask->active_uprobe) 1727 put_uprobe(utask->active_uprobe); 1728 1729 ri = utask->return_instances; 1730 while (ri) 1731 ri = free_ret_instance(ri); 1732 1733 xol_free_insn_slot(t); 1734 kfree(utask); 1735 t->utask = NULL; 1736 } 1737 1738 /* 1739 * Allocate a uprobe_task object for the task if if necessary. 1740 * Called when the thread hits a breakpoint. 1741 * 1742 * Returns: 1743 * - pointer to new uprobe_task on success 1744 * - NULL otherwise 1745 */ 1746 static struct uprobe_task *get_utask(void) 1747 { 1748 if (!current->utask) 1749 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1750 return current->utask; 1751 } 1752 1753 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1754 { 1755 struct uprobe_task *n_utask; 1756 struct return_instance **p, *o, *n; 1757 1758 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1759 if (!n_utask) 1760 return -ENOMEM; 1761 t->utask = n_utask; 1762 1763 p = &n_utask->return_instances; 1764 for (o = o_utask->return_instances; o; o = o->next) { 1765 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1766 if (!n) 1767 return -ENOMEM; 1768 1769 *n = *o; 1770 get_uprobe(n->uprobe); 1771 n->next = NULL; 1772 1773 *p = n; 1774 p = &n->next; 1775 n_utask->depth++; 1776 } 1777 1778 return 0; 1779 } 1780 1781 static void uprobe_warn(struct task_struct *t, const char *msg) 1782 { 1783 pr_warn("uprobe: %s:%d failed to %s\n", 1784 current->comm, current->pid, msg); 1785 } 1786 1787 static void dup_xol_work(struct callback_head *work) 1788 { 1789 if (current->flags & PF_EXITING) 1790 return; 1791 1792 if (!__create_xol_area(current->utask->dup_xol_addr) && 1793 !fatal_signal_pending(current)) 1794 uprobe_warn(current, "dup xol area"); 1795 } 1796 1797 /* 1798 * Called in context of a new clone/fork from copy_process. 1799 */ 1800 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1801 { 1802 struct uprobe_task *utask = current->utask; 1803 struct mm_struct *mm = current->mm; 1804 struct xol_area *area; 1805 1806 t->utask = NULL; 1807 1808 if (!utask || !utask->return_instances) 1809 return; 1810 1811 if (mm == t->mm && !(flags & CLONE_VFORK)) 1812 return; 1813 1814 if (dup_utask(t, utask)) 1815 return uprobe_warn(t, "dup ret instances"); 1816 1817 /* The task can fork() after dup_xol_work() fails */ 1818 area = mm->uprobes_state.xol_area; 1819 if (!area) 1820 return uprobe_warn(t, "dup xol area"); 1821 1822 if (mm == t->mm) 1823 return; 1824 1825 t->utask->dup_xol_addr = area->vaddr; 1826 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1827 task_work_add(t, &t->utask->dup_xol_work, true); 1828 } 1829 1830 /* 1831 * Current area->vaddr notion assume the trampoline address is always 1832 * equal area->vaddr. 1833 * 1834 * Returns -1 in case the xol_area is not allocated. 1835 */ 1836 static unsigned long get_trampoline_vaddr(void) 1837 { 1838 struct xol_area *area; 1839 unsigned long trampoline_vaddr = -1; 1840 1841 /* Pairs with xol_add_vma() smp_store_release() */ 1842 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1843 if (area) 1844 trampoline_vaddr = area->vaddr; 1845 1846 return trampoline_vaddr; 1847 } 1848 1849 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1850 struct pt_regs *regs) 1851 { 1852 struct return_instance *ri = utask->return_instances; 1853 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1854 1855 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1856 ri = free_ret_instance(ri); 1857 utask->depth--; 1858 } 1859 utask->return_instances = ri; 1860 } 1861 1862 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1863 { 1864 struct return_instance *ri; 1865 struct uprobe_task *utask; 1866 unsigned long orig_ret_vaddr, trampoline_vaddr; 1867 bool chained; 1868 1869 if (!get_xol_area()) 1870 return; 1871 1872 utask = get_utask(); 1873 if (!utask) 1874 return; 1875 1876 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1877 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1878 " nestedness limit pid/tgid=%d/%d\n", 1879 current->pid, current->tgid); 1880 return; 1881 } 1882 1883 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1884 if (!ri) 1885 return; 1886 1887 trampoline_vaddr = get_trampoline_vaddr(); 1888 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1889 if (orig_ret_vaddr == -1) 1890 goto fail; 1891 1892 /* drop the entries invalidated by longjmp() */ 1893 chained = (orig_ret_vaddr == trampoline_vaddr); 1894 cleanup_return_instances(utask, chained, regs); 1895 1896 /* 1897 * We don't want to keep trampoline address in stack, rather keep the 1898 * original return address of first caller thru all the consequent 1899 * instances. This also makes breakpoint unwrapping easier. 1900 */ 1901 if (chained) { 1902 if (!utask->return_instances) { 1903 /* 1904 * This situation is not possible. Likely we have an 1905 * attack from user-space. 1906 */ 1907 uprobe_warn(current, "handle tail call"); 1908 goto fail; 1909 } 1910 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1911 } 1912 1913 ri->uprobe = get_uprobe(uprobe); 1914 ri->func = instruction_pointer(regs); 1915 ri->stack = user_stack_pointer(regs); 1916 ri->orig_ret_vaddr = orig_ret_vaddr; 1917 ri->chained = chained; 1918 1919 utask->depth++; 1920 ri->next = utask->return_instances; 1921 utask->return_instances = ri; 1922 1923 return; 1924 fail: 1925 kfree(ri); 1926 } 1927 1928 /* Prepare to single-step probed instruction out of line. */ 1929 static int 1930 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1931 { 1932 struct uprobe_task *utask; 1933 unsigned long xol_vaddr; 1934 int err; 1935 1936 utask = get_utask(); 1937 if (!utask) 1938 return -ENOMEM; 1939 1940 xol_vaddr = xol_get_insn_slot(uprobe); 1941 if (!xol_vaddr) 1942 return -ENOMEM; 1943 1944 utask->xol_vaddr = xol_vaddr; 1945 utask->vaddr = bp_vaddr; 1946 1947 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1948 if (unlikely(err)) { 1949 xol_free_insn_slot(current); 1950 return err; 1951 } 1952 1953 utask->active_uprobe = uprobe; 1954 utask->state = UTASK_SSTEP; 1955 return 0; 1956 } 1957 1958 /* 1959 * If we are singlestepping, then ensure this thread is not connected to 1960 * non-fatal signals until completion of singlestep. When xol insn itself 1961 * triggers the signal, restart the original insn even if the task is 1962 * already SIGKILL'ed (since coredump should report the correct ip). This 1963 * is even more important if the task has a handler for SIGSEGV/etc, The 1964 * _same_ instruction should be repeated again after return from the signal 1965 * handler, and SSTEP can never finish in this case. 1966 */ 1967 bool uprobe_deny_signal(void) 1968 { 1969 struct task_struct *t = current; 1970 struct uprobe_task *utask = t->utask; 1971 1972 if (likely(!utask || !utask->active_uprobe)) 1973 return false; 1974 1975 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1976 1977 if (signal_pending(t)) { 1978 spin_lock_irq(&t->sighand->siglock); 1979 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1980 spin_unlock_irq(&t->sighand->siglock); 1981 1982 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1983 utask->state = UTASK_SSTEP_TRAPPED; 1984 set_tsk_thread_flag(t, TIF_UPROBE); 1985 } 1986 } 1987 1988 return true; 1989 } 1990 1991 static void mmf_recalc_uprobes(struct mm_struct *mm) 1992 { 1993 struct vm_area_struct *vma; 1994 1995 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1996 if (!valid_vma(vma, false)) 1997 continue; 1998 /* 1999 * This is not strictly accurate, we can race with 2000 * uprobe_unregister() and see the already removed 2001 * uprobe if delete_uprobe() was not yet called. 2002 * Or this uprobe can be filtered out. 2003 */ 2004 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2005 return; 2006 } 2007 2008 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2009 } 2010 2011 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2012 { 2013 struct page *page; 2014 uprobe_opcode_t opcode; 2015 int result; 2016 2017 pagefault_disable(); 2018 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2019 pagefault_enable(); 2020 2021 if (likely(result == 0)) 2022 goto out; 2023 2024 /* 2025 * The NULL 'tsk' here ensures that any faults that occur here 2026 * will not be accounted to the task. 'mm' *is* current->mm, 2027 * but we treat this as a 'remote' access since it is 2028 * essentially a kernel access to the memory. 2029 */ 2030 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page, 2031 NULL, NULL); 2032 if (result < 0) 2033 return result; 2034 2035 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2036 put_page(page); 2037 out: 2038 /* This needs to return true for any variant of the trap insn */ 2039 return is_trap_insn(&opcode); 2040 } 2041 2042 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2043 { 2044 struct mm_struct *mm = current->mm; 2045 struct uprobe *uprobe = NULL; 2046 struct vm_area_struct *vma; 2047 2048 down_read(&mm->mmap_sem); 2049 vma = find_vma(mm, bp_vaddr); 2050 if (vma && vma->vm_start <= bp_vaddr) { 2051 if (valid_vma(vma, false)) { 2052 struct inode *inode = file_inode(vma->vm_file); 2053 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2054 2055 uprobe = find_uprobe(inode, offset); 2056 } 2057 2058 if (!uprobe) 2059 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2060 } else { 2061 *is_swbp = -EFAULT; 2062 } 2063 2064 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2065 mmf_recalc_uprobes(mm); 2066 up_read(&mm->mmap_sem); 2067 2068 return uprobe; 2069 } 2070 2071 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2072 { 2073 struct uprobe_consumer *uc; 2074 int remove = UPROBE_HANDLER_REMOVE; 2075 bool need_prep = false; /* prepare return uprobe, when needed */ 2076 2077 down_read(&uprobe->register_rwsem); 2078 for (uc = uprobe->consumers; uc; uc = uc->next) { 2079 int rc = 0; 2080 2081 if (uc->handler) { 2082 rc = uc->handler(uc, regs); 2083 WARN(rc & ~UPROBE_HANDLER_MASK, 2084 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2085 } 2086 2087 if (uc->ret_handler) 2088 need_prep = true; 2089 2090 remove &= rc; 2091 } 2092 2093 if (need_prep && !remove) 2094 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2095 2096 if (remove && uprobe->consumers) { 2097 WARN_ON(!uprobe_is_active(uprobe)); 2098 unapply_uprobe(uprobe, current->mm); 2099 } 2100 up_read(&uprobe->register_rwsem); 2101 } 2102 2103 static void 2104 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2105 { 2106 struct uprobe *uprobe = ri->uprobe; 2107 struct uprobe_consumer *uc; 2108 2109 down_read(&uprobe->register_rwsem); 2110 for (uc = uprobe->consumers; uc; uc = uc->next) { 2111 if (uc->ret_handler) 2112 uc->ret_handler(uc, ri->func, regs); 2113 } 2114 up_read(&uprobe->register_rwsem); 2115 } 2116 2117 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2118 { 2119 bool chained; 2120 2121 do { 2122 chained = ri->chained; 2123 ri = ri->next; /* can't be NULL if chained */ 2124 } while (chained); 2125 2126 return ri; 2127 } 2128 2129 static void handle_trampoline(struct pt_regs *regs) 2130 { 2131 struct uprobe_task *utask; 2132 struct return_instance *ri, *next; 2133 bool valid; 2134 2135 utask = current->utask; 2136 if (!utask) 2137 goto sigill; 2138 2139 ri = utask->return_instances; 2140 if (!ri) 2141 goto sigill; 2142 2143 do { 2144 /* 2145 * We should throw out the frames invalidated by longjmp(). 2146 * If this chain is valid, then the next one should be alive 2147 * or NULL; the latter case means that nobody but ri->func 2148 * could hit this trampoline on return. TODO: sigaltstack(). 2149 */ 2150 next = find_next_ret_chain(ri); 2151 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2152 2153 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2154 do { 2155 if (valid) 2156 handle_uretprobe_chain(ri, regs); 2157 ri = free_ret_instance(ri); 2158 utask->depth--; 2159 } while (ri != next); 2160 } while (!valid); 2161 2162 utask->return_instances = ri; 2163 return; 2164 2165 sigill: 2166 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2167 force_sig(SIGILL); 2168 2169 } 2170 2171 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2172 { 2173 return false; 2174 } 2175 2176 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2177 struct pt_regs *regs) 2178 { 2179 return true; 2180 } 2181 2182 /* 2183 * Run handler and ask thread to singlestep. 2184 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2185 */ 2186 static void handle_swbp(struct pt_regs *regs) 2187 { 2188 struct uprobe *uprobe; 2189 unsigned long bp_vaddr; 2190 int uninitialized_var(is_swbp); 2191 2192 bp_vaddr = uprobe_get_swbp_addr(regs); 2193 if (bp_vaddr == get_trampoline_vaddr()) 2194 return handle_trampoline(regs); 2195 2196 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2197 if (!uprobe) { 2198 if (is_swbp > 0) { 2199 /* No matching uprobe; signal SIGTRAP. */ 2200 send_sig(SIGTRAP, current, 0); 2201 } else { 2202 /* 2203 * Either we raced with uprobe_unregister() or we can't 2204 * access this memory. The latter is only possible if 2205 * another thread plays with our ->mm. In both cases 2206 * we can simply restart. If this vma was unmapped we 2207 * can pretend this insn was not executed yet and get 2208 * the (correct) SIGSEGV after restart. 2209 */ 2210 instruction_pointer_set(regs, bp_vaddr); 2211 } 2212 return; 2213 } 2214 2215 /* change it in advance for ->handler() and restart */ 2216 instruction_pointer_set(regs, bp_vaddr); 2217 2218 /* 2219 * TODO: move copy_insn/etc into _register and remove this hack. 2220 * After we hit the bp, _unregister + _register can install the 2221 * new and not-yet-analyzed uprobe at the same address, restart. 2222 */ 2223 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2224 goto out; 2225 2226 /* 2227 * Pairs with the smp_wmb() in prepare_uprobe(). 2228 * 2229 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2230 * we must also see the stores to &uprobe->arch performed by the 2231 * prepare_uprobe() call. 2232 */ 2233 smp_rmb(); 2234 2235 /* Tracing handlers use ->utask to communicate with fetch methods */ 2236 if (!get_utask()) 2237 goto out; 2238 2239 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2240 goto out; 2241 2242 handler_chain(uprobe, regs); 2243 2244 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2245 goto out; 2246 2247 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2248 return; 2249 2250 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2251 out: 2252 put_uprobe(uprobe); 2253 } 2254 2255 /* 2256 * Perform required fix-ups and disable singlestep. 2257 * Allow pending signals to take effect. 2258 */ 2259 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2260 { 2261 struct uprobe *uprobe; 2262 int err = 0; 2263 2264 uprobe = utask->active_uprobe; 2265 if (utask->state == UTASK_SSTEP_ACK) 2266 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2267 else if (utask->state == UTASK_SSTEP_TRAPPED) 2268 arch_uprobe_abort_xol(&uprobe->arch, regs); 2269 else 2270 WARN_ON_ONCE(1); 2271 2272 put_uprobe(uprobe); 2273 utask->active_uprobe = NULL; 2274 utask->state = UTASK_RUNNING; 2275 xol_free_insn_slot(current); 2276 2277 spin_lock_irq(¤t->sighand->siglock); 2278 recalc_sigpending(); /* see uprobe_deny_signal() */ 2279 spin_unlock_irq(¤t->sighand->siglock); 2280 2281 if (unlikely(err)) { 2282 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2283 force_sig(SIGILL); 2284 } 2285 } 2286 2287 /* 2288 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2289 * allows the thread to return from interrupt. After that handle_swbp() 2290 * sets utask->active_uprobe. 2291 * 2292 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2293 * and allows the thread to return from interrupt. 2294 * 2295 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2296 * uprobe_notify_resume(). 2297 */ 2298 void uprobe_notify_resume(struct pt_regs *regs) 2299 { 2300 struct uprobe_task *utask; 2301 2302 clear_thread_flag(TIF_UPROBE); 2303 2304 utask = current->utask; 2305 if (utask && utask->active_uprobe) 2306 handle_singlestep(utask, regs); 2307 else 2308 handle_swbp(regs); 2309 } 2310 2311 /* 2312 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2313 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2314 */ 2315 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2316 { 2317 if (!current->mm) 2318 return 0; 2319 2320 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2321 (!current->utask || !current->utask->return_instances)) 2322 return 0; 2323 2324 set_thread_flag(TIF_UPROBE); 2325 return 1; 2326 } 2327 2328 /* 2329 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2330 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2331 */ 2332 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2333 { 2334 struct uprobe_task *utask = current->utask; 2335 2336 if (!current->mm || !utask || !utask->active_uprobe) 2337 /* task is currently not uprobed */ 2338 return 0; 2339 2340 utask->state = UTASK_SSTEP_ACK; 2341 set_thread_flag(TIF_UPROBE); 2342 return 1; 2343 } 2344 2345 static struct notifier_block uprobe_exception_nb = { 2346 .notifier_call = arch_uprobe_exception_notify, 2347 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2348 }; 2349 2350 void __init uprobes_init(void) 2351 { 2352 int i; 2353 2354 for (i = 0; i < UPROBES_HASH_SZ; i++) 2355 mutex_init(&uprobes_mmap_mutex[i]); 2356 2357 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2358 } 2359