1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/coredump.h> 32 #include <linux/export.h> 33 #include <linux/rmap.h> /* anon_vma_prepare */ 34 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 35 #include <linux/swap.h> /* try_to_free_swap */ 36 #include <linux/ptrace.h> /* user_enable_single_step */ 37 #include <linux/kdebug.h> /* notifier mechanism */ 38 #include "../../mm/internal.h" /* munlock_vma_page */ 39 #include <linux/percpu-rwsem.h> 40 #include <linux/task_work.h> 41 #include <linux/shmem_fs.h> 42 43 #include <linux/uprobes.h> 44 45 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 46 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 47 48 static struct rb_root uprobes_tree = RB_ROOT; 49 /* 50 * allows us to skip the uprobe_mmap if there are no uprobe events active 51 * at this time. Probably a fine grained per inode count is better? 52 */ 53 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 54 55 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 56 57 #define UPROBES_HASH_SZ 13 58 /* serialize uprobe->pending_list */ 59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 60 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 61 62 static struct percpu_rw_semaphore dup_mmap_sem; 63 64 /* Have a copy of original instruction */ 65 #define UPROBE_COPY_INSN 0 66 67 struct uprobe { 68 struct rb_node rb_node; /* node in the rb tree */ 69 atomic_t ref; 70 struct rw_semaphore register_rwsem; 71 struct rw_semaphore consumer_rwsem; 72 struct list_head pending_list; 73 struct uprobe_consumer *consumers; 74 struct inode *inode; /* Also hold a ref to inode */ 75 loff_t offset; 76 unsigned long flags; 77 78 /* 79 * The generic code assumes that it has two members of unknown type 80 * owned by the arch-specific code: 81 * 82 * insn - copy_insn() saves the original instruction here for 83 * arch_uprobe_analyze_insn(). 84 * 85 * ixol - potentially modified instruction to execute out of 86 * line, copied to xol_area by xol_get_insn_slot(). 87 */ 88 struct arch_uprobe arch; 89 }; 90 91 /* 92 * Execute out of line area: anonymous executable mapping installed 93 * by the probed task to execute the copy of the original instruction 94 * mangled by set_swbp(). 95 * 96 * On a breakpoint hit, thread contests for a slot. It frees the 97 * slot after singlestep. Currently a fixed number of slots are 98 * allocated. 99 */ 100 struct xol_area { 101 wait_queue_head_t wq; /* if all slots are busy */ 102 atomic_t slot_count; /* number of in-use slots */ 103 unsigned long *bitmap; /* 0 = free slot */ 104 105 struct vm_special_mapping xol_mapping; 106 struct page *pages[2]; 107 /* 108 * We keep the vma's vm_start rather than a pointer to the vma 109 * itself. The probed process or a naughty kernel module could make 110 * the vma go away, and we must handle that reasonably gracefully. 111 */ 112 unsigned long vaddr; /* Page(s) of instruction slots */ 113 }; 114 115 /* 116 * valid_vma: Verify if the specified vma is an executable vma 117 * Relax restrictions while unregistering: vm_flags might have 118 * changed after breakpoint was inserted. 119 * - is_register: indicates if we are in register context. 120 * - Return 1 if the specified virtual address is in an 121 * executable vma. 122 */ 123 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 124 { 125 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 126 127 if (is_register) 128 flags |= VM_WRITE; 129 130 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 131 } 132 133 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 134 { 135 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 136 } 137 138 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 139 { 140 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 141 } 142 143 /** 144 * __replace_page - replace page in vma by new page. 145 * based on replace_page in mm/ksm.c 146 * 147 * @vma: vma that holds the pte pointing to page 148 * @addr: address the old @page is mapped at 149 * @page: the cowed page we are replacing by kpage 150 * @kpage: the modified page we replace page by 151 * 152 * Returns 0 on success, -EFAULT on failure. 153 */ 154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 155 struct page *old_page, struct page *new_page) 156 { 157 struct mm_struct *mm = vma->vm_mm; 158 struct page_vma_mapped_walk pvmw = { 159 .page = old_page, 160 .vma = vma, 161 .address = addr, 162 }; 163 int err; 164 /* For mmu_notifiers */ 165 const unsigned long mmun_start = addr; 166 const unsigned long mmun_end = addr + PAGE_SIZE; 167 struct mem_cgroup *memcg; 168 169 VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page); 170 171 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg, 172 false); 173 if (err) 174 return err; 175 176 /* For try_to_free_swap() and munlock_vma_page() below */ 177 lock_page(old_page); 178 179 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 180 err = -EAGAIN; 181 if (!page_vma_mapped_walk(&pvmw)) { 182 mem_cgroup_cancel_charge(new_page, memcg, false); 183 goto unlock; 184 } 185 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 186 187 get_page(new_page); 188 page_add_new_anon_rmap(new_page, vma, addr, false); 189 mem_cgroup_commit_charge(new_page, memcg, false, false); 190 lru_cache_add_active_or_unevictable(new_page, vma); 191 192 if (!PageAnon(old_page)) { 193 dec_mm_counter(mm, mm_counter_file(old_page)); 194 inc_mm_counter(mm, MM_ANONPAGES); 195 } 196 197 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 198 ptep_clear_flush_notify(vma, addr, pvmw.pte); 199 set_pte_at_notify(mm, addr, pvmw.pte, 200 mk_pte(new_page, vma->vm_page_prot)); 201 202 page_remove_rmap(old_page, false); 203 if (!page_mapped(old_page)) 204 try_to_free_swap(old_page); 205 page_vma_mapped_walk_done(&pvmw); 206 207 if (vma->vm_flags & VM_LOCKED) 208 munlock_vma_page(old_page); 209 put_page(old_page); 210 211 err = 0; 212 unlock: 213 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 214 unlock_page(old_page); 215 return err; 216 } 217 218 /** 219 * is_swbp_insn - check if instruction is breakpoint instruction. 220 * @insn: instruction to be checked. 221 * Default implementation of is_swbp_insn 222 * Returns true if @insn is a breakpoint instruction. 223 */ 224 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 225 { 226 return *insn == UPROBE_SWBP_INSN; 227 } 228 229 /** 230 * is_trap_insn - check if instruction is breakpoint instruction. 231 * @insn: instruction to be checked. 232 * Default implementation of is_trap_insn 233 * Returns true if @insn is a breakpoint instruction. 234 * 235 * This function is needed for the case where an architecture has multiple 236 * trap instructions (like powerpc). 237 */ 238 bool __weak is_trap_insn(uprobe_opcode_t *insn) 239 { 240 return is_swbp_insn(insn); 241 } 242 243 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 244 { 245 void *kaddr = kmap_atomic(page); 246 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 247 kunmap_atomic(kaddr); 248 } 249 250 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 251 { 252 void *kaddr = kmap_atomic(page); 253 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 254 kunmap_atomic(kaddr); 255 } 256 257 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 258 { 259 uprobe_opcode_t old_opcode; 260 bool is_swbp; 261 262 /* 263 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 264 * We do not check if it is any other 'trap variant' which could 265 * be conditional trap instruction such as the one powerpc supports. 266 * 267 * The logic is that we do not care if the underlying instruction 268 * is a trap variant; uprobes always wins over any other (gdb) 269 * breakpoint. 270 */ 271 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 272 is_swbp = is_swbp_insn(&old_opcode); 273 274 if (is_swbp_insn(new_opcode)) { 275 if (is_swbp) /* register: already installed? */ 276 return 0; 277 } else { 278 if (!is_swbp) /* unregister: was it changed by us? */ 279 return 0; 280 } 281 282 return 1; 283 } 284 285 /* 286 * NOTE: 287 * Expect the breakpoint instruction to be the smallest size instruction for 288 * the architecture. If an arch has variable length instruction and the 289 * breakpoint instruction is not of the smallest length instruction 290 * supported by that architecture then we need to modify is_trap_at_addr and 291 * uprobe_write_opcode accordingly. This would never be a problem for archs 292 * that have fixed length instructions. 293 * 294 * uprobe_write_opcode - write the opcode at a given virtual address. 295 * @mm: the probed process address space. 296 * @vaddr: the virtual address to store the opcode. 297 * @opcode: opcode to be written at @vaddr. 298 * 299 * Called with mm->mmap_sem held for write. 300 * Return 0 (success) or a negative errno. 301 */ 302 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, 303 uprobe_opcode_t opcode) 304 { 305 struct page *old_page, *new_page; 306 struct vm_area_struct *vma; 307 int ret; 308 309 retry: 310 /* Read the page with vaddr into memory */ 311 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 312 FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL); 313 if (ret <= 0) 314 return ret; 315 316 ret = verify_opcode(old_page, vaddr, &opcode); 317 if (ret <= 0) 318 goto put_old; 319 320 ret = anon_vma_prepare(vma); 321 if (ret) 322 goto put_old; 323 324 ret = -ENOMEM; 325 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 326 if (!new_page) 327 goto put_old; 328 329 __SetPageUptodate(new_page); 330 copy_highpage(new_page, old_page); 331 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 332 333 ret = __replace_page(vma, vaddr, old_page, new_page); 334 put_page(new_page); 335 put_old: 336 put_page(old_page); 337 338 if (unlikely(ret == -EAGAIN)) 339 goto retry; 340 return ret; 341 } 342 343 /** 344 * set_swbp - store breakpoint at a given address. 345 * @auprobe: arch specific probepoint information. 346 * @mm: the probed process address space. 347 * @vaddr: the virtual address to insert the opcode. 348 * 349 * For mm @mm, store the breakpoint instruction at @vaddr. 350 * Return 0 (success) or a negative errno. 351 */ 352 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 353 { 354 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN); 355 } 356 357 /** 358 * set_orig_insn - Restore the original instruction. 359 * @mm: the probed process address space. 360 * @auprobe: arch specific probepoint information. 361 * @vaddr: the virtual address to insert the opcode. 362 * 363 * For mm @mm, restore the original opcode (opcode) at @vaddr. 364 * Return 0 (success) or a negative errno. 365 */ 366 int __weak 367 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 368 { 369 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn); 370 } 371 372 static struct uprobe *get_uprobe(struct uprobe *uprobe) 373 { 374 atomic_inc(&uprobe->ref); 375 return uprobe; 376 } 377 378 static void put_uprobe(struct uprobe *uprobe) 379 { 380 if (atomic_dec_and_test(&uprobe->ref)) 381 kfree(uprobe); 382 } 383 384 static int match_uprobe(struct uprobe *l, struct uprobe *r) 385 { 386 if (l->inode < r->inode) 387 return -1; 388 389 if (l->inode > r->inode) 390 return 1; 391 392 if (l->offset < r->offset) 393 return -1; 394 395 if (l->offset > r->offset) 396 return 1; 397 398 return 0; 399 } 400 401 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 402 { 403 struct uprobe u = { .inode = inode, .offset = offset }; 404 struct rb_node *n = uprobes_tree.rb_node; 405 struct uprobe *uprobe; 406 int match; 407 408 while (n) { 409 uprobe = rb_entry(n, struct uprobe, rb_node); 410 match = match_uprobe(&u, uprobe); 411 if (!match) 412 return get_uprobe(uprobe); 413 414 if (match < 0) 415 n = n->rb_left; 416 else 417 n = n->rb_right; 418 } 419 return NULL; 420 } 421 422 /* 423 * Find a uprobe corresponding to a given inode:offset 424 * Acquires uprobes_treelock 425 */ 426 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 427 { 428 struct uprobe *uprobe; 429 430 spin_lock(&uprobes_treelock); 431 uprobe = __find_uprobe(inode, offset); 432 spin_unlock(&uprobes_treelock); 433 434 return uprobe; 435 } 436 437 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 438 { 439 struct rb_node **p = &uprobes_tree.rb_node; 440 struct rb_node *parent = NULL; 441 struct uprobe *u; 442 int match; 443 444 while (*p) { 445 parent = *p; 446 u = rb_entry(parent, struct uprobe, rb_node); 447 match = match_uprobe(uprobe, u); 448 if (!match) 449 return get_uprobe(u); 450 451 if (match < 0) 452 p = &parent->rb_left; 453 else 454 p = &parent->rb_right; 455 456 } 457 458 u = NULL; 459 rb_link_node(&uprobe->rb_node, parent, p); 460 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 461 /* get access + creation ref */ 462 atomic_set(&uprobe->ref, 2); 463 464 return u; 465 } 466 467 /* 468 * Acquire uprobes_treelock. 469 * Matching uprobe already exists in rbtree; 470 * increment (access refcount) and return the matching uprobe. 471 * 472 * No matching uprobe; insert the uprobe in rb_tree; 473 * get a double refcount (access + creation) and return NULL. 474 */ 475 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 476 { 477 struct uprobe *u; 478 479 spin_lock(&uprobes_treelock); 480 u = __insert_uprobe(uprobe); 481 spin_unlock(&uprobes_treelock); 482 483 return u; 484 } 485 486 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 487 { 488 struct uprobe *uprobe, *cur_uprobe; 489 490 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 491 if (!uprobe) 492 return NULL; 493 494 uprobe->inode = igrab(inode); 495 uprobe->offset = offset; 496 init_rwsem(&uprobe->register_rwsem); 497 init_rwsem(&uprobe->consumer_rwsem); 498 499 /* add to uprobes_tree, sorted on inode:offset */ 500 cur_uprobe = insert_uprobe(uprobe); 501 /* a uprobe exists for this inode:offset combination */ 502 if (cur_uprobe) { 503 kfree(uprobe); 504 uprobe = cur_uprobe; 505 iput(inode); 506 } 507 508 return uprobe; 509 } 510 511 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 512 { 513 down_write(&uprobe->consumer_rwsem); 514 uc->next = uprobe->consumers; 515 uprobe->consumers = uc; 516 up_write(&uprobe->consumer_rwsem); 517 } 518 519 /* 520 * For uprobe @uprobe, delete the consumer @uc. 521 * Return true if the @uc is deleted successfully 522 * or return false. 523 */ 524 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 525 { 526 struct uprobe_consumer **con; 527 bool ret = false; 528 529 down_write(&uprobe->consumer_rwsem); 530 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 531 if (*con == uc) { 532 *con = uc->next; 533 ret = true; 534 break; 535 } 536 } 537 up_write(&uprobe->consumer_rwsem); 538 539 return ret; 540 } 541 542 static int __copy_insn(struct address_space *mapping, struct file *filp, 543 void *insn, int nbytes, loff_t offset) 544 { 545 struct page *page; 546 /* 547 * Ensure that the page that has the original instruction is populated 548 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 549 * see uprobe_register(). 550 */ 551 if (mapping->a_ops->readpage) 552 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 553 else 554 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 555 if (IS_ERR(page)) 556 return PTR_ERR(page); 557 558 copy_from_page(page, offset, insn, nbytes); 559 put_page(page); 560 561 return 0; 562 } 563 564 static int copy_insn(struct uprobe *uprobe, struct file *filp) 565 { 566 struct address_space *mapping = uprobe->inode->i_mapping; 567 loff_t offs = uprobe->offset; 568 void *insn = &uprobe->arch.insn; 569 int size = sizeof(uprobe->arch.insn); 570 int len, err = -EIO; 571 572 /* Copy only available bytes, -EIO if nothing was read */ 573 do { 574 if (offs >= i_size_read(uprobe->inode)) 575 break; 576 577 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 578 err = __copy_insn(mapping, filp, insn, len, offs); 579 if (err) 580 break; 581 582 insn += len; 583 offs += len; 584 size -= len; 585 } while (size); 586 587 return err; 588 } 589 590 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 591 struct mm_struct *mm, unsigned long vaddr) 592 { 593 int ret = 0; 594 595 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 596 return ret; 597 598 /* TODO: move this into _register, until then we abuse this sem. */ 599 down_write(&uprobe->consumer_rwsem); 600 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 601 goto out; 602 603 ret = copy_insn(uprobe, file); 604 if (ret) 605 goto out; 606 607 ret = -ENOTSUPP; 608 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 609 goto out; 610 611 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 612 if (ret) 613 goto out; 614 615 /* uprobe_write_opcode() assumes we don't cross page boundary */ 616 BUG_ON((uprobe->offset & ~PAGE_MASK) + 617 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 618 619 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 620 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 621 622 out: 623 up_write(&uprobe->consumer_rwsem); 624 625 return ret; 626 } 627 628 static inline bool consumer_filter(struct uprobe_consumer *uc, 629 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 630 { 631 return !uc->filter || uc->filter(uc, ctx, mm); 632 } 633 634 static bool filter_chain(struct uprobe *uprobe, 635 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 636 { 637 struct uprobe_consumer *uc; 638 bool ret = false; 639 640 down_read(&uprobe->consumer_rwsem); 641 for (uc = uprobe->consumers; uc; uc = uc->next) { 642 ret = consumer_filter(uc, ctx, mm); 643 if (ret) 644 break; 645 } 646 up_read(&uprobe->consumer_rwsem); 647 648 return ret; 649 } 650 651 static int 652 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 653 struct vm_area_struct *vma, unsigned long vaddr) 654 { 655 bool first_uprobe; 656 int ret; 657 658 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 659 if (ret) 660 return ret; 661 662 /* 663 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 664 * the task can hit this breakpoint right after __replace_page(). 665 */ 666 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 667 if (first_uprobe) 668 set_bit(MMF_HAS_UPROBES, &mm->flags); 669 670 ret = set_swbp(&uprobe->arch, mm, vaddr); 671 if (!ret) 672 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 673 else if (first_uprobe) 674 clear_bit(MMF_HAS_UPROBES, &mm->flags); 675 676 return ret; 677 } 678 679 static int 680 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 681 { 682 set_bit(MMF_RECALC_UPROBES, &mm->flags); 683 return set_orig_insn(&uprobe->arch, mm, vaddr); 684 } 685 686 static inline bool uprobe_is_active(struct uprobe *uprobe) 687 { 688 return !RB_EMPTY_NODE(&uprobe->rb_node); 689 } 690 /* 691 * There could be threads that have already hit the breakpoint. They 692 * will recheck the current insn and restart if find_uprobe() fails. 693 * See find_active_uprobe(). 694 */ 695 static void delete_uprobe(struct uprobe *uprobe) 696 { 697 if (WARN_ON(!uprobe_is_active(uprobe))) 698 return; 699 700 spin_lock(&uprobes_treelock); 701 rb_erase(&uprobe->rb_node, &uprobes_tree); 702 spin_unlock(&uprobes_treelock); 703 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 704 iput(uprobe->inode); 705 put_uprobe(uprobe); 706 } 707 708 struct map_info { 709 struct map_info *next; 710 struct mm_struct *mm; 711 unsigned long vaddr; 712 }; 713 714 static inline struct map_info *free_map_info(struct map_info *info) 715 { 716 struct map_info *next = info->next; 717 kfree(info); 718 return next; 719 } 720 721 static struct map_info * 722 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 723 { 724 unsigned long pgoff = offset >> PAGE_SHIFT; 725 struct vm_area_struct *vma; 726 struct map_info *curr = NULL; 727 struct map_info *prev = NULL; 728 struct map_info *info; 729 int more = 0; 730 731 again: 732 i_mmap_lock_read(mapping); 733 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 734 if (!valid_vma(vma, is_register)) 735 continue; 736 737 if (!prev && !more) { 738 /* 739 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 740 * reclaim. This is optimistic, no harm done if it fails. 741 */ 742 prev = kmalloc(sizeof(struct map_info), 743 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 744 if (prev) 745 prev->next = NULL; 746 } 747 if (!prev) { 748 more++; 749 continue; 750 } 751 752 if (!mmget_not_zero(vma->vm_mm)) 753 continue; 754 755 info = prev; 756 prev = prev->next; 757 info->next = curr; 758 curr = info; 759 760 info->mm = vma->vm_mm; 761 info->vaddr = offset_to_vaddr(vma, offset); 762 } 763 i_mmap_unlock_read(mapping); 764 765 if (!more) 766 goto out; 767 768 prev = curr; 769 while (curr) { 770 mmput(curr->mm); 771 curr = curr->next; 772 } 773 774 do { 775 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 776 if (!info) { 777 curr = ERR_PTR(-ENOMEM); 778 goto out; 779 } 780 info->next = prev; 781 prev = info; 782 } while (--more); 783 784 goto again; 785 out: 786 while (prev) 787 prev = free_map_info(prev); 788 return curr; 789 } 790 791 static int 792 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 793 { 794 bool is_register = !!new; 795 struct map_info *info; 796 int err = 0; 797 798 percpu_down_write(&dup_mmap_sem); 799 info = build_map_info(uprobe->inode->i_mapping, 800 uprobe->offset, is_register); 801 if (IS_ERR(info)) { 802 err = PTR_ERR(info); 803 goto out; 804 } 805 806 while (info) { 807 struct mm_struct *mm = info->mm; 808 struct vm_area_struct *vma; 809 810 if (err && is_register) 811 goto free; 812 813 down_write(&mm->mmap_sem); 814 vma = find_vma(mm, info->vaddr); 815 if (!vma || !valid_vma(vma, is_register) || 816 file_inode(vma->vm_file) != uprobe->inode) 817 goto unlock; 818 819 if (vma->vm_start > info->vaddr || 820 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 821 goto unlock; 822 823 if (is_register) { 824 /* consult only the "caller", new consumer. */ 825 if (consumer_filter(new, 826 UPROBE_FILTER_REGISTER, mm)) 827 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 828 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 829 if (!filter_chain(uprobe, 830 UPROBE_FILTER_UNREGISTER, mm)) 831 err |= remove_breakpoint(uprobe, mm, info->vaddr); 832 } 833 834 unlock: 835 up_write(&mm->mmap_sem); 836 free: 837 mmput(mm); 838 info = free_map_info(info); 839 } 840 out: 841 percpu_up_write(&dup_mmap_sem); 842 return err; 843 } 844 845 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc) 846 { 847 consumer_add(uprobe, uc); 848 return register_for_each_vma(uprobe, uc); 849 } 850 851 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 852 { 853 int err; 854 855 if (WARN_ON(!consumer_del(uprobe, uc))) 856 return; 857 858 err = register_for_each_vma(uprobe, NULL); 859 /* TODO : cant unregister? schedule a worker thread */ 860 if (!uprobe->consumers && !err) 861 delete_uprobe(uprobe); 862 } 863 864 /* 865 * uprobe_register - register a probe 866 * @inode: the file in which the probe has to be placed. 867 * @offset: offset from the start of the file. 868 * @uc: information on howto handle the probe.. 869 * 870 * Apart from the access refcount, uprobe_register() takes a creation 871 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 872 * inserted into the rbtree (i.e first consumer for a @inode:@offset 873 * tuple). Creation refcount stops uprobe_unregister from freeing the 874 * @uprobe even before the register operation is complete. Creation 875 * refcount is released when the last @uc for the @uprobe 876 * unregisters. 877 * 878 * Return errno if it cannot successully install probes 879 * else return 0 (success) 880 */ 881 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 882 { 883 struct uprobe *uprobe; 884 int ret; 885 886 /* Uprobe must have at least one set consumer */ 887 if (!uc->handler && !uc->ret_handler) 888 return -EINVAL; 889 890 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 891 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 892 return -EIO; 893 /* Racy, just to catch the obvious mistakes */ 894 if (offset > i_size_read(inode)) 895 return -EINVAL; 896 897 retry: 898 uprobe = alloc_uprobe(inode, offset); 899 if (!uprobe) 900 return -ENOMEM; 901 /* 902 * We can race with uprobe_unregister()->delete_uprobe(). 903 * Check uprobe_is_active() and retry if it is false. 904 */ 905 down_write(&uprobe->register_rwsem); 906 ret = -EAGAIN; 907 if (likely(uprobe_is_active(uprobe))) { 908 ret = __uprobe_register(uprobe, uc); 909 if (ret) 910 __uprobe_unregister(uprobe, uc); 911 } 912 up_write(&uprobe->register_rwsem); 913 put_uprobe(uprobe); 914 915 if (unlikely(ret == -EAGAIN)) 916 goto retry; 917 return ret; 918 } 919 EXPORT_SYMBOL_GPL(uprobe_register); 920 921 /* 922 * uprobe_apply - unregister a already registered probe. 923 * @inode: the file in which the probe has to be removed. 924 * @offset: offset from the start of the file. 925 * @uc: consumer which wants to add more or remove some breakpoints 926 * @add: add or remove the breakpoints 927 */ 928 int uprobe_apply(struct inode *inode, loff_t offset, 929 struct uprobe_consumer *uc, bool add) 930 { 931 struct uprobe *uprobe; 932 struct uprobe_consumer *con; 933 int ret = -ENOENT; 934 935 uprobe = find_uprobe(inode, offset); 936 if (WARN_ON(!uprobe)) 937 return ret; 938 939 down_write(&uprobe->register_rwsem); 940 for (con = uprobe->consumers; con && con != uc ; con = con->next) 941 ; 942 if (con) 943 ret = register_for_each_vma(uprobe, add ? uc : NULL); 944 up_write(&uprobe->register_rwsem); 945 put_uprobe(uprobe); 946 947 return ret; 948 } 949 950 /* 951 * uprobe_unregister - unregister a already registered probe. 952 * @inode: the file in which the probe has to be removed. 953 * @offset: offset from the start of the file. 954 * @uc: identify which probe if multiple probes are colocated. 955 */ 956 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 957 { 958 struct uprobe *uprobe; 959 960 uprobe = find_uprobe(inode, offset); 961 if (WARN_ON(!uprobe)) 962 return; 963 964 down_write(&uprobe->register_rwsem); 965 __uprobe_unregister(uprobe, uc); 966 up_write(&uprobe->register_rwsem); 967 put_uprobe(uprobe); 968 } 969 EXPORT_SYMBOL_GPL(uprobe_unregister); 970 971 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 972 { 973 struct vm_area_struct *vma; 974 int err = 0; 975 976 down_read(&mm->mmap_sem); 977 for (vma = mm->mmap; vma; vma = vma->vm_next) { 978 unsigned long vaddr; 979 loff_t offset; 980 981 if (!valid_vma(vma, false) || 982 file_inode(vma->vm_file) != uprobe->inode) 983 continue; 984 985 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 986 if (uprobe->offset < offset || 987 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 988 continue; 989 990 vaddr = offset_to_vaddr(vma, uprobe->offset); 991 err |= remove_breakpoint(uprobe, mm, vaddr); 992 } 993 up_read(&mm->mmap_sem); 994 995 return err; 996 } 997 998 static struct rb_node * 999 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1000 { 1001 struct rb_node *n = uprobes_tree.rb_node; 1002 1003 while (n) { 1004 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1005 1006 if (inode < u->inode) { 1007 n = n->rb_left; 1008 } else if (inode > u->inode) { 1009 n = n->rb_right; 1010 } else { 1011 if (max < u->offset) 1012 n = n->rb_left; 1013 else if (min > u->offset) 1014 n = n->rb_right; 1015 else 1016 break; 1017 } 1018 } 1019 1020 return n; 1021 } 1022 1023 /* 1024 * For a given range in vma, build a list of probes that need to be inserted. 1025 */ 1026 static void build_probe_list(struct inode *inode, 1027 struct vm_area_struct *vma, 1028 unsigned long start, unsigned long end, 1029 struct list_head *head) 1030 { 1031 loff_t min, max; 1032 struct rb_node *n, *t; 1033 struct uprobe *u; 1034 1035 INIT_LIST_HEAD(head); 1036 min = vaddr_to_offset(vma, start); 1037 max = min + (end - start) - 1; 1038 1039 spin_lock(&uprobes_treelock); 1040 n = find_node_in_range(inode, min, max); 1041 if (n) { 1042 for (t = n; t; t = rb_prev(t)) { 1043 u = rb_entry(t, struct uprobe, rb_node); 1044 if (u->inode != inode || u->offset < min) 1045 break; 1046 list_add(&u->pending_list, head); 1047 get_uprobe(u); 1048 } 1049 for (t = n; (t = rb_next(t)); ) { 1050 u = rb_entry(t, struct uprobe, rb_node); 1051 if (u->inode != inode || u->offset > max) 1052 break; 1053 list_add(&u->pending_list, head); 1054 get_uprobe(u); 1055 } 1056 } 1057 spin_unlock(&uprobes_treelock); 1058 } 1059 1060 /* 1061 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1062 * 1063 * Currently we ignore all errors and always return 0, the callers 1064 * can't handle the failure anyway. 1065 */ 1066 int uprobe_mmap(struct vm_area_struct *vma) 1067 { 1068 struct list_head tmp_list; 1069 struct uprobe *uprobe, *u; 1070 struct inode *inode; 1071 1072 if (no_uprobe_events() || !valid_vma(vma, true)) 1073 return 0; 1074 1075 inode = file_inode(vma->vm_file); 1076 if (!inode) 1077 return 0; 1078 1079 mutex_lock(uprobes_mmap_hash(inode)); 1080 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1081 /* 1082 * We can race with uprobe_unregister(), this uprobe can be already 1083 * removed. But in this case filter_chain() must return false, all 1084 * consumers have gone away. 1085 */ 1086 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1087 if (!fatal_signal_pending(current) && 1088 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1089 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1090 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1091 } 1092 put_uprobe(uprobe); 1093 } 1094 mutex_unlock(uprobes_mmap_hash(inode)); 1095 1096 return 0; 1097 } 1098 1099 static bool 1100 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1101 { 1102 loff_t min, max; 1103 struct inode *inode; 1104 struct rb_node *n; 1105 1106 inode = file_inode(vma->vm_file); 1107 1108 min = vaddr_to_offset(vma, start); 1109 max = min + (end - start) - 1; 1110 1111 spin_lock(&uprobes_treelock); 1112 n = find_node_in_range(inode, min, max); 1113 spin_unlock(&uprobes_treelock); 1114 1115 return !!n; 1116 } 1117 1118 /* 1119 * Called in context of a munmap of a vma. 1120 */ 1121 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1122 { 1123 if (no_uprobe_events() || !valid_vma(vma, false)) 1124 return; 1125 1126 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1127 return; 1128 1129 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1130 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1131 return; 1132 1133 if (vma_has_uprobes(vma, start, end)) 1134 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1135 } 1136 1137 /* Slot allocation for XOL */ 1138 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1139 { 1140 struct vm_area_struct *vma; 1141 int ret; 1142 1143 if (down_write_killable(&mm->mmap_sem)) 1144 return -EINTR; 1145 1146 if (mm->uprobes_state.xol_area) { 1147 ret = -EALREADY; 1148 goto fail; 1149 } 1150 1151 if (!area->vaddr) { 1152 /* Try to map as high as possible, this is only a hint. */ 1153 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1154 PAGE_SIZE, 0, 0); 1155 if (area->vaddr & ~PAGE_MASK) { 1156 ret = area->vaddr; 1157 goto fail; 1158 } 1159 } 1160 1161 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1162 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1163 &area->xol_mapping); 1164 if (IS_ERR(vma)) { 1165 ret = PTR_ERR(vma); 1166 goto fail; 1167 } 1168 1169 ret = 0; 1170 smp_wmb(); /* pairs with get_xol_area() */ 1171 mm->uprobes_state.xol_area = area; 1172 fail: 1173 up_write(&mm->mmap_sem); 1174 1175 return ret; 1176 } 1177 1178 static struct xol_area *__create_xol_area(unsigned long vaddr) 1179 { 1180 struct mm_struct *mm = current->mm; 1181 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1182 struct xol_area *area; 1183 1184 area = kmalloc(sizeof(*area), GFP_KERNEL); 1185 if (unlikely(!area)) 1186 goto out; 1187 1188 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1189 if (!area->bitmap) 1190 goto free_area; 1191 1192 area->xol_mapping.name = "[uprobes]"; 1193 area->xol_mapping.fault = NULL; 1194 area->xol_mapping.pages = area->pages; 1195 area->pages[0] = alloc_page(GFP_HIGHUSER); 1196 if (!area->pages[0]) 1197 goto free_bitmap; 1198 area->pages[1] = NULL; 1199 1200 area->vaddr = vaddr; 1201 init_waitqueue_head(&area->wq); 1202 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1203 set_bit(0, area->bitmap); 1204 atomic_set(&area->slot_count, 1); 1205 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1206 1207 if (!xol_add_vma(mm, area)) 1208 return area; 1209 1210 __free_page(area->pages[0]); 1211 free_bitmap: 1212 kfree(area->bitmap); 1213 free_area: 1214 kfree(area); 1215 out: 1216 return NULL; 1217 } 1218 1219 /* 1220 * get_xol_area - Allocate process's xol_area if necessary. 1221 * This area will be used for storing instructions for execution out of line. 1222 * 1223 * Returns the allocated area or NULL. 1224 */ 1225 static struct xol_area *get_xol_area(void) 1226 { 1227 struct mm_struct *mm = current->mm; 1228 struct xol_area *area; 1229 1230 if (!mm->uprobes_state.xol_area) 1231 __create_xol_area(0); 1232 1233 area = mm->uprobes_state.xol_area; 1234 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1235 return area; 1236 } 1237 1238 /* 1239 * uprobe_clear_state - Free the area allocated for slots. 1240 */ 1241 void uprobe_clear_state(struct mm_struct *mm) 1242 { 1243 struct xol_area *area = mm->uprobes_state.xol_area; 1244 1245 if (!area) 1246 return; 1247 1248 put_page(area->pages[0]); 1249 kfree(area->bitmap); 1250 kfree(area); 1251 } 1252 1253 void uprobe_start_dup_mmap(void) 1254 { 1255 percpu_down_read(&dup_mmap_sem); 1256 } 1257 1258 void uprobe_end_dup_mmap(void) 1259 { 1260 percpu_up_read(&dup_mmap_sem); 1261 } 1262 1263 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1264 { 1265 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1266 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1267 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1268 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1269 } 1270 } 1271 1272 /* 1273 * - search for a free slot. 1274 */ 1275 static unsigned long xol_take_insn_slot(struct xol_area *area) 1276 { 1277 unsigned long slot_addr; 1278 int slot_nr; 1279 1280 do { 1281 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1282 if (slot_nr < UINSNS_PER_PAGE) { 1283 if (!test_and_set_bit(slot_nr, area->bitmap)) 1284 break; 1285 1286 slot_nr = UINSNS_PER_PAGE; 1287 continue; 1288 } 1289 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1290 } while (slot_nr >= UINSNS_PER_PAGE); 1291 1292 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1293 atomic_inc(&area->slot_count); 1294 1295 return slot_addr; 1296 } 1297 1298 /* 1299 * xol_get_insn_slot - allocate a slot for xol. 1300 * Returns the allocated slot address or 0. 1301 */ 1302 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1303 { 1304 struct xol_area *area; 1305 unsigned long xol_vaddr; 1306 1307 area = get_xol_area(); 1308 if (!area) 1309 return 0; 1310 1311 xol_vaddr = xol_take_insn_slot(area); 1312 if (unlikely(!xol_vaddr)) 1313 return 0; 1314 1315 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1316 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1317 1318 return xol_vaddr; 1319 } 1320 1321 /* 1322 * xol_free_insn_slot - If slot was earlier allocated by 1323 * @xol_get_insn_slot(), make the slot available for 1324 * subsequent requests. 1325 */ 1326 static void xol_free_insn_slot(struct task_struct *tsk) 1327 { 1328 struct xol_area *area; 1329 unsigned long vma_end; 1330 unsigned long slot_addr; 1331 1332 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1333 return; 1334 1335 slot_addr = tsk->utask->xol_vaddr; 1336 if (unlikely(!slot_addr)) 1337 return; 1338 1339 area = tsk->mm->uprobes_state.xol_area; 1340 vma_end = area->vaddr + PAGE_SIZE; 1341 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1342 unsigned long offset; 1343 int slot_nr; 1344 1345 offset = slot_addr - area->vaddr; 1346 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1347 if (slot_nr >= UINSNS_PER_PAGE) 1348 return; 1349 1350 clear_bit(slot_nr, area->bitmap); 1351 atomic_dec(&area->slot_count); 1352 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1353 if (waitqueue_active(&area->wq)) 1354 wake_up(&area->wq); 1355 1356 tsk->utask->xol_vaddr = 0; 1357 } 1358 } 1359 1360 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1361 void *src, unsigned long len) 1362 { 1363 /* Initialize the slot */ 1364 copy_to_page(page, vaddr, src, len); 1365 1366 /* 1367 * We probably need flush_icache_user_range() but it needs vma. 1368 * This should work on most of architectures by default. If 1369 * architecture needs to do something different it can define 1370 * its own version of the function. 1371 */ 1372 flush_dcache_page(page); 1373 } 1374 1375 /** 1376 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1377 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1378 * instruction. 1379 * Return the address of the breakpoint instruction. 1380 */ 1381 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1382 { 1383 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1384 } 1385 1386 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1387 { 1388 struct uprobe_task *utask = current->utask; 1389 1390 if (unlikely(utask && utask->active_uprobe)) 1391 return utask->vaddr; 1392 1393 return instruction_pointer(regs); 1394 } 1395 1396 static struct return_instance *free_ret_instance(struct return_instance *ri) 1397 { 1398 struct return_instance *next = ri->next; 1399 put_uprobe(ri->uprobe); 1400 kfree(ri); 1401 return next; 1402 } 1403 1404 /* 1405 * Called with no locks held. 1406 * Called in context of a exiting or a exec-ing thread. 1407 */ 1408 void uprobe_free_utask(struct task_struct *t) 1409 { 1410 struct uprobe_task *utask = t->utask; 1411 struct return_instance *ri; 1412 1413 if (!utask) 1414 return; 1415 1416 if (utask->active_uprobe) 1417 put_uprobe(utask->active_uprobe); 1418 1419 ri = utask->return_instances; 1420 while (ri) 1421 ri = free_ret_instance(ri); 1422 1423 xol_free_insn_slot(t); 1424 kfree(utask); 1425 t->utask = NULL; 1426 } 1427 1428 /* 1429 * Allocate a uprobe_task object for the task if if necessary. 1430 * Called when the thread hits a breakpoint. 1431 * 1432 * Returns: 1433 * - pointer to new uprobe_task on success 1434 * - NULL otherwise 1435 */ 1436 static struct uprobe_task *get_utask(void) 1437 { 1438 if (!current->utask) 1439 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1440 return current->utask; 1441 } 1442 1443 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1444 { 1445 struct uprobe_task *n_utask; 1446 struct return_instance **p, *o, *n; 1447 1448 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1449 if (!n_utask) 1450 return -ENOMEM; 1451 t->utask = n_utask; 1452 1453 p = &n_utask->return_instances; 1454 for (o = o_utask->return_instances; o; o = o->next) { 1455 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1456 if (!n) 1457 return -ENOMEM; 1458 1459 *n = *o; 1460 get_uprobe(n->uprobe); 1461 n->next = NULL; 1462 1463 *p = n; 1464 p = &n->next; 1465 n_utask->depth++; 1466 } 1467 1468 return 0; 1469 } 1470 1471 static void uprobe_warn(struct task_struct *t, const char *msg) 1472 { 1473 pr_warn("uprobe: %s:%d failed to %s\n", 1474 current->comm, current->pid, msg); 1475 } 1476 1477 static void dup_xol_work(struct callback_head *work) 1478 { 1479 if (current->flags & PF_EXITING) 1480 return; 1481 1482 if (!__create_xol_area(current->utask->dup_xol_addr) && 1483 !fatal_signal_pending(current)) 1484 uprobe_warn(current, "dup xol area"); 1485 } 1486 1487 /* 1488 * Called in context of a new clone/fork from copy_process. 1489 */ 1490 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1491 { 1492 struct uprobe_task *utask = current->utask; 1493 struct mm_struct *mm = current->mm; 1494 struct xol_area *area; 1495 1496 t->utask = NULL; 1497 1498 if (!utask || !utask->return_instances) 1499 return; 1500 1501 if (mm == t->mm && !(flags & CLONE_VFORK)) 1502 return; 1503 1504 if (dup_utask(t, utask)) 1505 return uprobe_warn(t, "dup ret instances"); 1506 1507 /* The task can fork() after dup_xol_work() fails */ 1508 area = mm->uprobes_state.xol_area; 1509 if (!area) 1510 return uprobe_warn(t, "dup xol area"); 1511 1512 if (mm == t->mm) 1513 return; 1514 1515 t->utask->dup_xol_addr = area->vaddr; 1516 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1517 task_work_add(t, &t->utask->dup_xol_work, true); 1518 } 1519 1520 /* 1521 * Current area->vaddr notion assume the trampoline address is always 1522 * equal area->vaddr. 1523 * 1524 * Returns -1 in case the xol_area is not allocated. 1525 */ 1526 static unsigned long get_trampoline_vaddr(void) 1527 { 1528 struct xol_area *area; 1529 unsigned long trampoline_vaddr = -1; 1530 1531 area = current->mm->uprobes_state.xol_area; 1532 smp_read_barrier_depends(); 1533 if (area) 1534 trampoline_vaddr = area->vaddr; 1535 1536 return trampoline_vaddr; 1537 } 1538 1539 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1540 struct pt_regs *regs) 1541 { 1542 struct return_instance *ri = utask->return_instances; 1543 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1544 1545 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1546 ri = free_ret_instance(ri); 1547 utask->depth--; 1548 } 1549 utask->return_instances = ri; 1550 } 1551 1552 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1553 { 1554 struct return_instance *ri; 1555 struct uprobe_task *utask; 1556 unsigned long orig_ret_vaddr, trampoline_vaddr; 1557 bool chained; 1558 1559 if (!get_xol_area()) 1560 return; 1561 1562 utask = get_utask(); 1563 if (!utask) 1564 return; 1565 1566 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1567 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1568 " nestedness limit pid/tgid=%d/%d\n", 1569 current->pid, current->tgid); 1570 return; 1571 } 1572 1573 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1574 if (!ri) 1575 return; 1576 1577 trampoline_vaddr = get_trampoline_vaddr(); 1578 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1579 if (orig_ret_vaddr == -1) 1580 goto fail; 1581 1582 /* drop the entries invalidated by longjmp() */ 1583 chained = (orig_ret_vaddr == trampoline_vaddr); 1584 cleanup_return_instances(utask, chained, regs); 1585 1586 /* 1587 * We don't want to keep trampoline address in stack, rather keep the 1588 * original return address of first caller thru all the consequent 1589 * instances. This also makes breakpoint unwrapping easier. 1590 */ 1591 if (chained) { 1592 if (!utask->return_instances) { 1593 /* 1594 * This situation is not possible. Likely we have an 1595 * attack from user-space. 1596 */ 1597 uprobe_warn(current, "handle tail call"); 1598 goto fail; 1599 } 1600 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1601 } 1602 1603 ri->uprobe = get_uprobe(uprobe); 1604 ri->func = instruction_pointer(regs); 1605 ri->stack = user_stack_pointer(regs); 1606 ri->orig_ret_vaddr = orig_ret_vaddr; 1607 ri->chained = chained; 1608 1609 utask->depth++; 1610 ri->next = utask->return_instances; 1611 utask->return_instances = ri; 1612 1613 return; 1614 fail: 1615 kfree(ri); 1616 } 1617 1618 /* Prepare to single-step probed instruction out of line. */ 1619 static int 1620 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1621 { 1622 struct uprobe_task *utask; 1623 unsigned long xol_vaddr; 1624 int err; 1625 1626 utask = get_utask(); 1627 if (!utask) 1628 return -ENOMEM; 1629 1630 xol_vaddr = xol_get_insn_slot(uprobe); 1631 if (!xol_vaddr) 1632 return -ENOMEM; 1633 1634 utask->xol_vaddr = xol_vaddr; 1635 utask->vaddr = bp_vaddr; 1636 1637 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1638 if (unlikely(err)) { 1639 xol_free_insn_slot(current); 1640 return err; 1641 } 1642 1643 utask->active_uprobe = uprobe; 1644 utask->state = UTASK_SSTEP; 1645 return 0; 1646 } 1647 1648 /* 1649 * If we are singlestepping, then ensure this thread is not connected to 1650 * non-fatal signals until completion of singlestep. When xol insn itself 1651 * triggers the signal, restart the original insn even if the task is 1652 * already SIGKILL'ed (since coredump should report the correct ip). This 1653 * is even more important if the task has a handler for SIGSEGV/etc, The 1654 * _same_ instruction should be repeated again after return from the signal 1655 * handler, and SSTEP can never finish in this case. 1656 */ 1657 bool uprobe_deny_signal(void) 1658 { 1659 struct task_struct *t = current; 1660 struct uprobe_task *utask = t->utask; 1661 1662 if (likely(!utask || !utask->active_uprobe)) 1663 return false; 1664 1665 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1666 1667 if (signal_pending(t)) { 1668 spin_lock_irq(&t->sighand->siglock); 1669 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1670 spin_unlock_irq(&t->sighand->siglock); 1671 1672 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1673 utask->state = UTASK_SSTEP_TRAPPED; 1674 set_tsk_thread_flag(t, TIF_UPROBE); 1675 } 1676 } 1677 1678 return true; 1679 } 1680 1681 static void mmf_recalc_uprobes(struct mm_struct *mm) 1682 { 1683 struct vm_area_struct *vma; 1684 1685 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1686 if (!valid_vma(vma, false)) 1687 continue; 1688 /* 1689 * This is not strictly accurate, we can race with 1690 * uprobe_unregister() and see the already removed 1691 * uprobe if delete_uprobe() was not yet called. 1692 * Or this uprobe can be filtered out. 1693 */ 1694 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1695 return; 1696 } 1697 1698 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1699 } 1700 1701 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1702 { 1703 struct page *page; 1704 uprobe_opcode_t opcode; 1705 int result; 1706 1707 pagefault_disable(); 1708 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 1709 pagefault_enable(); 1710 1711 if (likely(result == 0)) 1712 goto out; 1713 1714 /* 1715 * The NULL 'tsk' here ensures that any faults that occur here 1716 * will not be accounted to the task. 'mm' *is* current->mm, 1717 * but we treat this as a 'remote' access since it is 1718 * essentially a kernel access to the memory. 1719 */ 1720 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page, 1721 NULL, NULL); 1722 if (result < 0) 1723 return result; 1724 1725 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1726 put_page(page); 1727 out: 1728 /* This needs to return true for any variant of the trap insn */ 1729 return is_trap_insn(&opcode); 1730 } 1731 1732 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1733 { 1734 struct mm_struct *mm = current->mm; 1735 struct uprobe *uprobe = NULL; 1736 struct vm_area_struct *vma; 1737 1738 down_read(&mm->mmap_sem); 1739 vma = find_vma(mm, bp_vaddr); 1740 if (vma && vma->vm_start <= bp_vaddr) { 1741 if (valid_vma(vma, false)) { 1742 struct inode *inode = file_inode(vma->vm_file); 1743 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1744 1745 uprobe = find_uprobe(inode, offset); 1746 } 1747 1748 if (!uprobe) 1749 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 1750 } else { 1751 *is_swbp = -EFAULT; 1752 } 1753 1754 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1755 mmf_recalc_uprobes(mm); 1756 up_read(&mm->mmap_sem); 1757 1758 return uprobe; 1759 } 1760 1761 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1762 { 1763 struct uprobe_consumer *uc; 1764 int remove = UPROBE_HANDLER_REMOVE; 1765 bool need_prep = false; /* prepare return uprobe, when needed */ 1766 1767 down_read(&uprobe->register_rwsem); 1768 for (uc = uprobe->consumers; uc; uc = uc->next) { 1769 int rc = 0; 1770 1771 if (uc->handler) { 1772 rc = uc->handler(uc, regs); 1773 WARN(rc & ~UPROBE_HANDLER_MASK, 1774 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1775 } 1776 1777 if (uc->ret_handler) 1778 need_prep = true; 1779 1780 remove &= rc; 1781 } 1782 1783 if (need_prep && !remove) 1784 prepare_uretprobe(uprobe, regs); /* put bp at return */ 1785 1786 if (remove && uprobe->consumers) { 1787 WARN_ON(!uprobe_is_active(uprobe)); 1788 unapply_uprobe(uprobe, current->mm); 1789 } 1790 up_read(&uprobe->register_rwsem); 1791 } 1792 1793 static void 1794 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 1795 { 1796 struct uprobe *uprobe = ri->uprobe; 1797 struct uprobe_consumer *uc; 1798 1799 down_read(&uprobe->register_rwsem); 1800 for (uc = uprobe->consumers; uc; uc = uc->next) { 1801 if (uc->ret_handler) 1802 uc->ret_handler(uc, ri->func, regs); 1803 } 1804 up_read(&uprobe->register_rwsem); 1805 } 1806 1807 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 1808 { 1809 bool chained; 1810 1811 do { 1812 chained = ri->chained; 1813 ri = ri->next; /* can't be NULL if chained */ 1814 } while (chained); 1815 1816 return ri; 1817 } 1818 1819 static void handle_trampoline(struct pt_regs *regs) 1820 { 1821 struct uprobe_task *utask; 1822 struct return_instance *ri, *next; 1823 bool valid; 1824 1825 utask = current->utask; 1826 if (!utask) 1827 goto sigill; 1828 1829 ri = utask->return_instances; 1830 if (!ri) 1831 goto sigill; 1832 1833 do { 1834 /* 1835 * We should throw out the frames invalidated by longjmp(). 1836 * If this chain is valid, then the next one should be alive 1837 * or NULL; the latter case means that nobody but ri->func 1838 * could hit this trampoline on return. TODO: sigaltstack(). 1839 */ 1840 next = find_next_ret_chain(ri); 1841 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 1842 1843 instruction_pointer_set(regs, ri->orig_ret_vaddr); 1844 do { 1845 if (valid) 1846 handle_uretprobe_chain(ri, regs); 1847 ri = free_ret_instance(ri); 1848 utask->depth--; 1849 } while (ri != next); 1850 } while (!valid); 1851 1852 utask->return_instances = ri; 1853 return; 1854 1855 sigill: 1856 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 1857 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1858 1859 } 1860 1861 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 1862 { 1863 return false; 1864 } 1865 1866 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 1867 struct pt_regs *regs) 1868 { 1869 return true; 1870 } 1871 1872 /* 1873 * Run handler and ask thread to singlestep. 1874 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1875 */ 1876 static void handle_swbp(struct pt_regs *regs) 1877 { 1878 struct uprobe *uprobe; 1879 unsigned long bp_vaddr; 1880 int uninitialized_var(is_swbp); 1881 1882 bp_vaddr = uprobe_get_swbp_addr(regs); 1883 if (bp_vaddr == get_trampoline_vaddr()) 1884 return handle_trampoline(regs); 1885 1886 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1887 if (!uprobe) { 1888 if (is_swbp > 0) { 1889 /* No matching uprobe; signal SIGTRAP. */ 1890 send_sig(SIGTRAP, current, 0); 1891 } else { 1892 /* 1893 * Either we raced with uprobe_unregister() or we can't 1894 * access this memory. The latter is only possible if 1895 * another thread plays with our ->mm. In both cases 1896 * we can simply restart. If this vma was unmapped we 1897 * can pretend this insn was not executed yet and get 1898 * the (correct) SIGSEGV after restart. 1899 */ 1900 instruction_pointer_set(regs, bp_vaddr); 1901 } 1902 return; 1903 } 1904 1905 /* change it in advance for ->handler() and restart */ 1906 instruction_pointer_set(regs, bp_vaddr); 1907 1908 /* 1909 * TODO: move copy_insn/etc into _register and remove this hack. 1910 * After we hit the bp, _unregister + _register can install the 1911 * new and not-yet-analyzed uprobe at the same address, restart. 1912 */ 1913 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1914 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1915 goto out; 1916 1917 /* Tracing handlers use ->utask to communicate with fetch methods */ 1918 if (!get_utask()) 1919 goto out; 1920 1921 if (arch_uprobe_ignore(&uprobe->arch, regs)) 1922 goto out; 1923 1924 handler_chain(uprobe, regs); 1925 1926 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1927 goto out; 1928 1929 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1930 return; 1931 1932 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 1933 out: 1934 put_uprobe(uprobe); 1935 } 1936 1937 /* 1938 * Perform required fix-ups and disable singlestep. 1939 * Allow pending signals to take effect. 1940 */ 1941 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1942 { 1943 struct uprobe *uprobe; 1944 int err = 0; 1945 1946 uprobe = utask->active_uprobe; 1947 if (utask->state == UTASK_SSTEP_ACK) 1948 err = arch_uprobe_post_xol(&uprobe->arch, regs); 1949 else if (utask->state == UTASK_SSTEP_TRAPPED) 1950 arch_uprobe_abort_xol(&uprobe->arch, regs); 1951 else 1952 WARN_ON_ONCE(1); 1953 1954 put_uprobe(uprobe); 1955 utask->active_uprobe = NULL; 1956 utask->state = UTASK_RUNNING; 1957 xol_free_insn_slot(current); 1958 1959 spin_lock_irq(¤t->sighand->siglock); 1960 recalc_sigpending(); /* see uprobe_deny_signal() */ 1961 spin_unlock_irq(¤t->sighand->siglock); 1962 1963 if (unlikely(err)) { 1964 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 1965 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1966 } 1967 } 1968 1969 /* 1970 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1971 * allows the thread to return from interrupt. After that handle_swbp() 1972 * sets utask->active_uprobe. 1973 * 1974 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1975 * and allows the thread to return from interrupt. 1976 * 1977 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1978 * uprobe_notify_resume(). 1979 */ 1980 void uprobe_notify_resume(struct pt_regs *regs) 1981 { 1982 struct uprobe_task *utask; 1983 1984 clear_thread_flag(TIF_UPROBE); 1985 1986 utask = current->utask; 1987 if (utask && utask->active_uprobe) 1988 handle_singlestep(utask, regs); 1989 else 1990 handle_swbp(regs); 1991 } 1992 1993 /* 1994 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1995 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1996 */ 1997 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1998 { 1999 if (!current->mm) 2000 return 0; 2001 2002 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2003 (!current->utask || !current->utask->return_instances)) 2004 return 0; 2005 2006 set_thread_flag(TIF_UPROBE); 2007 return 1; 2008 } 2009 2010 /* 2011 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2012 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2013 */ 2014 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2015 { 2016 struct uprobe_task *utask = current->utask; 2017 2018 if (!current->mm || !utask || !utask->active_uprobe) 2019 /* task is currently not uprobed */ 2020 return 0; 2021 2022 utask->state = UTASK_SSTEP_ACK; 2023 set_thread_flag(TIF_UPROBE); 2024 return 1; 2025 } 2026 2027 static struct notifier_block uprobe_exception_nb = { 2028 .notifier_call = arch_uprobe_exception_notify, 2029 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2030 }; 2031 2032 static int __init init_uprobes(void) 2033 { 2034 int i; 2035 2036 for (i = 0; i < UPROBES_HASH_SZ; i++) 2037 mutex_init(&uprobes_mmap_mutex[i]); 2038 2039 if (percpu_init_rwsem(&dup_mmap_sem)) 2040 return -ENOMEM; 2041 2042 return register_die_notifier(&uprobe_exception_nb); 2043 } 2044 __initcall(init_uprobes); 2045