xref: /openbmc/linux/kernel/events/uprobes.c (revision 588b48ca)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>		/* anon_vma_prepare */
32 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33 #include <linux/swap.h>		/* try_to_free_swap */
34 #include <linux/ptrace.h>	/* user_enable_single_step */
35 #include <linux/kdebug.h>	/* notifier mechanism */
36 #include "../../mm/internal.h"	/* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40 
41 #include <linux/uprobes.h>
42 
43 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
45 
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
52 
53 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
54 
55 #define UPROBES_HASH_SZ	13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59 
60 static struct percpu_rw_semaphore dup_mmap_sem;
61 
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN	0
64 
65 struct uprobe {
66 	struct rb_node		rb_node;	/* node in the rb tree */
67 	atomic_t		ref;
68 	struct rw_semaphore	register_rwsem;
69 	struct rw_semaphore	consumer_rwsem;
70 	struct list_head	pending_list;
71 	struct uprobe_consumer	*consumers;
72 	struct inode		*inode;		/* Also hold a ref to inode */
73 	loff_t			offset;
74 	unsigned long		flags;
75 
76 	/*
77 	 * The generic code assumes that it has two members of unknown type
78 	 * owned by the arch-specific code:
79 	 *
80 	 * 	insn -	copy_insn() saves the original instruction here for
81 	 *		arch_uprobe_analyze_insn().
82 	 *
83 	 *	ixol -	potentially modified instruction to execute out of
84 	 *		line, copied to xol_area by xol_get_insn_slot().
85 	 */
86 	struct arch_uprobe	arch;
87 };
88 
89 struct return_instance {
90 	struct uprobe		*uprobe;
91 	unsigned long		func;
92 	unsigned long		orig_ret_vaddr; /* original return address */
93 	bool			chained;	/* true, if instance is nested */
94 
95 	struct return_instance	*next;		/* keep as stack */
96 };
97 
98 /*
99  * Execute out of line area: anonymous executable mapping installed
100  * by the probed task to execute the copy of the original instruction
101  * mangled by set_swbp().
102  *
103  * On a breakpoint hit, thread contests for a slot.  It frees the
104  * slot after singlestep. Currently a fixed number of slots are
105  * allocated.
106  */
107 struct xol_area {
108 	wait_queue_head_t 	wq;		/* if all slots are busy */
109 	atomic_t 		slot_count;	/* number of in-use slots */
110 	unsigned long 		*bitmap;	/* 0 = free slot */
111 	struct page 		*page;
112 
113 	/*
114 	 * We keep the vma's vm_start rather than a pointer to the vma
115 	 * itself.  The probed process or a naughty kernel module could make
116 	 * the vma go away, and we must handle that reasonably gracefully.
117 	 */
118 	unsigned long 		vaddr;		/* Page(s) of instruction slots */
119 };
120 
121 /*
122  * valid_vma: Verify if the specified vma is an executable vma
123  * Relax restrictions while unregistering: vm_flags might have
124  * changed after breakpoint was inserted.
125  *	- is_register: indicates if we are in register context.
126  *	- Return 1 if the specified virtual address is in an
127  *	  executable vma.
128  */
129 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
130 {
131 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
132 
133 	if (is_register)
134 		flags |= VM_WRITE;
135 
136 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
137 }
138 
139 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
140 {
141 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
142 }
143 
144 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
145 {
146 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
147 }
148 
149 /**
150  * __replace_page - replace page in vma by new page.
151  * based on replace_page in mm/ksm.c
152  *
153  * @vma:      vma that holds the pte pointing to page
154  * @addr:     address the old @page is mapped at
155  * @page:     the cowed page we are replacing by kpage
156  * @kpage:    the modified page we replace page by
157  *
158  * Returns 0 on success, -EFAULT on failure.
159  */
160 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
161 				struct page *page, struct page *kpage)
162 {
163 	struct mm_struct *mm = vma->vm_mm;
164 	spinlock_t *ptl;
165 	pte_t *ptep;
166 	int err;
167 	/* For mmu_notifiers */
168 	const unsigned long mmun_start = addr;
169 	const unsigned long mmun_end   = addr + PAGE_SIZE;
170 	struct mem_cgroup *memcg;
171 
172 	err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg);
173 	if (err)
174 		return err;
175 
176 	/* For try_to_free_swap() and munlock_vma_page() below */
177 	lock_page(page);
178 
179 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
180 	err = -EAGAIN;
181 	ptep = page_check_address(page, mm, addr, &ptl, 0);
182 	if (!ptep)
183 		goto unlock;
184 
185 	get_page(kpage);
186 	page_add_new_anon_rmap(kpage, vma, addr);
187 	mem_cgroup_commit_charge(kpage, memcg, false);
188 	lru_cache_add_active_or_unevictable(kpage, vma);
189 
190 	if (!PageAnon(page)) {
191 		dec_mm_counter(mm, MM_FILEPAGES);
192 		inc_mm_counter(mm, MM_ANONPAGES);
193 	}
194 
195 	flush_cache_page(vma, addr, pte_pfn(*ptep));
196 	ptep_clear_flush(vma, addr, ptep);
197 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
198 
199 	page_remove_rmap(page);
200 	if (!page_mapped(page))
201 		try_to_free_swap(page);
202 	pte_unmap_unlock(ptep, ptl);
203 
204 	if (vma->vm_flags & VM_LOCKED)
205 		munlock_vma_page(page);
206 	put_page(page);
207 
208 	err = 0;
209  unlock:
210 	mem_cgroup_cancel_charge(kpage, memcg);
211 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
212 	unlock_page(page);
213 	return err;
214 }
215 
216 /**
217  * is_swbp_insn - check if instruction is breakpoint instruction.
218  * @insn: instruction to be checked.
219  * Default implementation of is_swbp_insn
220  * Returns true if @insn is a breakpoint instruction.
221  */
222 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
223 {
224 	return *insn == UPROBE_SWBP_INSN;
225 }
226 
227 /**
228  * is_trap_insn - check if instruction is breakpoint instruction.
229  * @insn: instruction to be checked.
230  * Default implementation of is_trap_insn
231  * Returns true if @insn is a breakpoint instruction.
232  *
233  * This function is needed for the case where an architecture has multiple
234  * trap instructions (like powerpc).
235  */
236 bool __weak is_trap_insn(uprobe_opcode_t *insn)
237 {
238 	return is_swbp_insn(insn);
239 }
240 
241 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
242 {
243 	void *kaddr = kmap_atomic(page);
244 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
245 	kunmap_atomic(kaddr);
246 }
247 
248 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
249 {
250 	void *kaddr = kmap_atomic(page);
251 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
252 	kunmap_atomic(kaddr);
253 }
254 
255 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
256 {
257 	uprobe_opcode_t old_opcode;
258 	bool is_swbp;
259 
260 	/*
261 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
262 	 * We do not check if it is any other 'trap variant' which could
263 	 * be conditional trap instruction such as the one powerpc supports.
264 	 *
265 	 * The logic is that we do not care if the underlying instruction
266 	 * is a trap variant; uprobes always wins over any other (gdb)
267 	 * breakpoint.
268 	 */
269 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
270 	is_swbp = is_swbp_insn(&old_opcode);
271 
272 	if (is_swbp_insn(new_opcode)) {
273 		if (is_swbp)		/* register: already installed? */
274 			return 0;
275 	} else {
276 		if (!is_swbp)		/* unregister: was it changed by us? */
277 			return 0;
278 	}
279 
280 	return 1;
281 }
282 
283 /*
284  * NOTE:
285  * Expect the breakpoint instruction to be the smallest size instruction for
286  * the architecture. If an arch has variable length instruction and the
287  * breakpoint instruction is not of the smallest length instruction
288  * supported by that architecture then we need to modify is_trap_at_addr and
289  * uprobe_write_opcode accordingly. This would never be a problem for archs
290  * that have fixed length instructions.
291  *
292  * uprobe_write_opcode - write the opcode at a given virtual address.
293  * @mm: the probed process address space.
294  * @vaddr: the virtual address to store the opcode.
295  * @opcode: opcode to be written at @vaddr.
296  *
297  * Called with mm->mmap_sem held for write.
298  * Return 0 (success) or a negative errno.
299  */
300 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
301 			uprobe_opcode_t opcode)
302 {
303 	struct page *old_page, *new_page;
304 	struct vm_area_struct *vma;
305 	int ret;
306 
307 retry:
308 	/* Read the page with vaddr into memory */
309 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
310 	if (ret <= 0)
311 		return ret;
312 
313 	ret = verify_opcode(old_page, vaddr, &opcode);
314 	if (ret <= 0)
315 		goto put_old;
316 
317 	ret = anon_vma_prepare(vma);
318 	if (ret)
319 		goto put_old;
320 
321 	ret = -ENOMEM;
322 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
323 	if (!new_page)
324 		goto put_old;
325 
326 	__SetPageUptodate(new_page);
327 	copy_highpage(new_page, old_page);
328 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
329 
330 	ret = __replace_page(vma, vaddr, old_page, new_page);
331 	page_cache_release(new_page);
332 put_old:
333 	put_page(old_page);
334 
335 	if (unlikely(ret == -EAGAIN))
336 		goto retry;
337 	return ret;
338 }
339 
340 /**
341  * set_swbp - store breakpoint at a given address.
342  * @auprobe: arch specific probepoint information.
343  * @mm: the probed process address space.
344  * @vaddr: the virtual address to insert the opcode.
345  *
346  * For mm @mm, store the breakpoint instruction at @vaddr.
347  * Return 0 (success) or a negative errno.
348  */
349 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
350 {
351 	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
352 }
353 
354 /**
355  * set_orig_insn - Restore the original instruction.
356  * @mm: the probed process address space.
357  * @auprobe: arch specific probepoint information.
358  * @vaddr: the virtual address to insert the opcode.
359  *
360  * For mm @mm, restore the original opcode (opcode) at @vaddr.
361  * Return 0 (success) or a negative errno.
362  */
363 int __weak
364 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
365 {
366 	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
367 }
368 
369 static int match_uprobe(struct uprobe *l, struct uprobe *r)
370 {
371 	if (l->inode < r->inode)
372 		return -1;
373 
374 	if (l->inode > r->inode)
375 		return 1;
376 
377 	if (l->offset < r->offset)
378 		return -1;
379 
380 	if (l->offset > r->offset)
381 		return 1;
382 
383 	return 0;
384 }
385 
386 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
387 {
388 	struct uprobe u = { .inode = inode, .offset = offset };
389 	struct rb_node *n = uprobes_tree.rb_node;
390 	struct uprobe *uprobe;
391 	int match;
392 
393 	while (n) {
394 		uprobe = rb_entry(n, struct uprobe, rb_node);
395 		match = match_uprobe(&u, uprobe);
396 		if (!match) {
397 			atomic_inc(&uprobe->ref);
398 			return uprobe;
399 		}
400 
401 		if (match < 0)
402 			n = n->rb_left;
403 		else
404 			n = n->rb_right;
405 	}
406 	return NULL;
407 }
408 
409 /*
410  * Find a uprobe corresponding to a given inode:offset
411  * Acquires uprobes_treelock
412  */
413 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
414 {
415 	struct uprobe *uprobe;
416 
417 	spin_lock(&uprobes_treelock);
418 	uprobe = __find_uprobe(inode, offset);
419 	spin_unlock(&uprobes_treelock);
420 
421 	return uprobe;
422 }
423 
424 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
425 {
426 	struct rb_node **p = &uprobes_tree.rb_node;
427 	struct rb_node *parent = NULL;
428 	struct uprobe *u;
429 	int match;
430 
431 	while (*p) {
432 		parent = *p;
433 		u = rb_entry(parent, struct uprobe, rb_node);
434 		match = match_uprobe(uprobe, u);
435 		if (!match) {
436 			atomic_inc(&u->ref);
437 			return u;
438 		}
439 
440 		if (match < 0)
441 			p = &parent->rb_left;
442 		else
443 			p = &parent->rb_right;
444 
445 	}
446 
447 	u = NULL;
448 	rb_link_node(&uprobe->rb_node, parent, p);
449 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
450 	/* get access + creation ref */
451 	atomic_set(&uprobe->ref, 2);
452 
453 	return u;
454 }
455 
456 /*
457  * Acquire uprobes_treelock.
458  * Matching uprobe already exists in rbtree;
459  *	increment (access refcount) and return the matching uprobe.
460  *
461  * No matching uprobe; insert the uprobe in rb_tree;
462  *	get a double refcount (access + creation) and return NULL.
463  */
464 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
465 {
466 	struct uprobe *u;
467 
468 	spin_lock(&uprobes_treelock);
469 	u = __insert_uprobe(uprobe);
470 	spin_unlock(&uprobes_treelock);
471 
472 	return u;
473 }
474 
475 static void put_uprobe(struct uprobe *uprobe)
476 {
477 	if (atomic_dec_and_test(&uprobe->ref))
478 		kfree(uprobe);
479 }
480 
481 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
482 {
483 	struct uprobe *uprobe, *cur_uprobe;
484 
485 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
486 	if (!uprobe)
487 		return NULL;
488 
489 	uprobe->inode = igrab(inode);
490 	uprobe->offset = offset;
491 	init_rwsem(&uprobe->register_rwsem);
492 	init_rwsem(&uprobe->consumer_rwsem);
493 
494 	/* add to uprobes_tree, sorted on inode:offset */
495 	cur_uprobe = insert_uprobe(uprobe);
496 	/* a uprobe exists for this inode:offset combination */
497 	if (cur_uprobe) {
498 		kfree(uprobe);
499 		uprobe = cur_uprobe;
500 		iput(inode);
501 	}
502 
503 	return uprobe;
504 }
505 
506 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
507 {
508 	down_write(&uprobe->consumer_rwsem);
509 	uc->next = uprobe->consumers;
510 	uprobe->consumers = uc;
511 	up_write(&uprobe->consumer_rwsem);
512 }
513 
514 /*
515  * For uprobe @uprobe, delete the consumer @uc.
516  * Return true if the @uc is deleted successfully
517  * or return false.
518  */
519 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
520 {
521 	struct uprobe_consumer **con;
522 	bool ret = false;
523 
524 	down_write(&uprobe->consumer_rwsem);
525 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
526 		if (*con == uc) {
527 			*con = uc->next;
528 			ret = true;
529 			break;
530 		}
531 	}
532 	up_write(&uprobe->consumer_rwsem);
533 
534 	return ret;
535 }
536 
537 static int __copy_insn(struct address_space *mapping, struct file *filp,
538 			void *insn, int nbytes, loff_t offset)
539 {
540 	struct page *page;
541 	/*
542 	 * Ensure that the page that has the original instruction is populated
543 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
544 	 * see uprobe_register().
545 	 */
546 	if (mapping->a_ops->readpage)
547 		page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
548 	else
549 		page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
550 	if (IS_ERR(page))
551 		return PTR_ERR(page);
552 
553 	copy_from_page(page, offset, insn, nbytes);
554 	page_cache_release(page);
555 
556 	return 0;
557 }
558 
559 static int copy_insn(struct uprobe *uprobe, struct file *filp)
560 {
561 	struct address_space *mapping = uprobe->inode->i_mapping;
562 	loff_t offs = uprobe->offset;
563 	void *insn = &uprobe->arch.insn;
564 	int size = sizeof(uprobe->arch.insn);
565 	int len, err = -EIO;
566 
567 	/* Copy only available bytes, -EIO if nothing was read */
568 	do {
569 		if (offs >= i_size_read(uprobe->inode))
570 			break;
571 
572 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
573 		err = __copy_insn(mapping, filp, insn, len, offs);
574 		if (err)
575 			break;
576 
577 		insn += len;
578 		offs += len;
579 		size -= len;
580 	} while (size);
581 
582 	return err;
583 }
584 
585 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
586 				struct mm_struct *mm, unsigned long vaddr)
587 {
588 	int ret = 0;
589 
590 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
591 		return ret;
592 
593 	/* TODO: move this into _register, until then we abuse this sem. */
594 	down_write(&uprobe->consumer_rwsem);
595 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
596 		goto out;
597 
598 	ret = copy_insn(uprobe, file);
599 	if (ret)
600 		goto out;
601 
602 	ret = -ENOTSUPP;
603 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
604 		goto out;
605 
606 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
607 	if (ret)
608 		goto out;
609 
610 	/* uprobe_write_opcode() assumes we don't cross page boundary */
611 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
612 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
613 
614 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
615 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
616 
617  out:
618 	up_write(&uprobe->consumer_rwsem);
619 
620 	return ret;
621 }
622 
623 static inline bool consumer_filter(struct uprobe_consumer *uc,
624 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
625 {
626 	return !uc->filter || uc->filter(uc, ctx, mm);
627 }
628 
629 static bool filter_chain(struct uprobe *uprobe,
630 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
631 {
632 	struct uprobe_consumer *uc;
633 	bool ret = false;
634 
635 	down_read(&uprobe->consumer_rwsem);
636 	for (uc = uprobe->consumers; uc; uc = uc->next) {
637 		ret = consumer_filter(uc, ctx, mm);
638 		if (ret)
639 			break;
640 	}
641 	up_read(&uprobe->consumer_rwsem);
642 
643 	return ret;
644 }
645 
646 static int
647 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
648 			struct vm_area_struct *vma, unsigned long vaddr)
649 {
650 	bool first_uprobe;
651 	int ret;
652 
653 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
654 	if (ret)
655 		return ret;
656 
657 	/*
658 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
659 	 * the task can hit this breakpoint right after __replace_page().
660 	 */
661 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
662 	if (first_uprobe)
663 		set_bit(MMF_HAS_UPROBES, &mm->flags);
664 
665 	ret = set_swbp(&uprobe->arch, mm, vaddr);
666 	if (!ret)
667 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
668 	else if (first_uprobe)
669 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
670 
671 	return ret;
672 }
673 
674 static int
675 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
676 {
677 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
678 	return set_orig_insn(&uprobe->arch, mm, vaddr);
679 }
680 
681 static inline bool uprobe_is_active(struct uprobe *uprobe)
682 {
683 	return !RB_EMPTY_NODE(&uprobe->rb_node);
684 }
685 /*
686  * There could be threads that have already hit the breakpoint. They
687  * will recheck the current insn and restart if find_uprobe() fails.
688  * See find_active_uprobe().
689  */
690 static void delete_uprobe(struct uprobe *uprobe)
691 {
692 	if (WARN_ON(!uprobe_is_active(uprobe)))
693 		return;
694 
695 	spin_lock(&uprobes_treelock);
696 	rb_erase(&uprobe->rb_node, &uprobes_tree);
697 	spin_unlock(&uprobes_treelock);
698 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
699 	iput(uprobe->inode);
700 	put_uprobe(uprobe);
701 }
702 
703 struct map_info {
704 	struct map_info *next;
705 	struct mm_struct *mm;
706 	unsigned long vaddr;
707 };
708 
709 static inline struct map_info *free_map_info(struct map_info *info)
710 {
711 	struct map_info *next = info->next;
712 	kfree(info);
713 	return next;
714 }
715 
716 static struct map_info *
717 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
718 {
719 	unsigned long pgoff = offset >> PAGE_SHIFT;
720 	struct vm_area_struct *vma;
721 	struct map_info *curr = NULL;
722 	struct map_info *prev = NULL;
723 	struct map_info *info;
724 	int more = 0;
725 
726  again:
727 	mutex_lock(&mapping->i_mmap_mutex);
728 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
729 		if (!valid_vma(vma, is_register))
730 			continue;
731 
732 		if (!prev && !more) {
733 			/*
734 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
735 			 * reclaim. This is optimistic, no harm done if it fails.
736 			 */
737 			prev = kmalloc(sizeof(struct map_info),
738 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
739 			if (prev)
740 				prev->next = NULL;
741 		}
742 		if (!prev) {
743 			more++;
744 			continue;
745 		}
746 
747 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
748 			continue;
749 
750 		info = prev;
751 		prev = prev->next;
752 		info->next = curr;
753 		curr = info;
754 
755 		info->mm = vma->vm_mm;
756 		info->vaddr = offset_to_vaddr(vma, offset);
757 	}
758 	mutex_unlock(&mapping->i_mmap_mutex);
759 
760 	if (!more)
761 		goto out;
762 
763 	prev = curr;
764 	while (curr) {
765 		mmput(curr->mm);
766 		curr = curr->next;
767 	}
768 
769 	do {
770 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
771 		if (!info) {
772 			curr = ERR_PTR(-ENOMEM);
773 			goto out;
774 		}
775 		info->next = prev;
776 		prev = info;
777 	} while (--more);
778 
779 	goto again;
780  out:
781 	while (prev)
782 		prev = free_map_info(prev);
783 	return curr;
784 }
785 
786 static int
787 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
788 {
789 	bool is_register = !!new;
790 	struct map_info *info;
791 	int err = 0;
792 
793 	percpu_down_write(&dup_mmap_sem);
794 	info = build_map_info(uprobe->inode->i_mapping,
795 					uprobe->offset, is_register);
796 	if (IS_ERR(info)) {
797 		err = PTR_ERR(info);
798 		goto out;
799 	}
800 
801 	while (info) {
802 		struct mm_struct *mm = info->mm;
803 		struct vm_area_struct *vma;
804 
805 		if (err && is_register)
806 			goto free;
807 
808 		down_write(&mm->mmap_sem);
809 		vma = find_vma(mm, info->vaddr);
810 		if (!vma || !valid_vma(vma, is_register) ||
811 		    file_inode(vma->vm_file) != uprobe->inode)
812 			goto unlock;
813 
814 		if (vma->vm_start > info->vaddr ||
815 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
816 			goto unlock;
817 
818 		if (is_register) {
819 			/* consult only the "caller", new consumer. */
820 			if (consumer_filter(new,
821 					UPROBE_FILTER_REGISTER, mm))
822 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
823 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
824 			if (!filter_chain(uprobe,
825 					UPROBE_FILTER_UNREGISTER, mm))
826 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
827 		}
828 
829  unlock:
830 		up_write(&mm->mmap_sem);
831  free:
832 		mmput(mm);
833 		info = free_map_info(info);
834 	}
835  out:
836 	percpu_up_write(&dup_mmap_sem);
837 	return err;
838 }
839 
840 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
841 {
842 	consumer_add(uprobe, uc);
843 	return register_for_each_vma(uprobe, uc);
844 }
845 
846 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
847 {
848 	int err;
849 
850 	if (WARN_ON(!consumer_del(uprobe, uc)))
851 		return;
852 
853 	err = register_for_each_vma(uprobe, NULL);
854 	/* TODO : cant unregister? schedule a worker thread */
855 	if (!uprobe->consumers && !err)
856 		delete_uprobe(uprobe);
857 }
858 
859 /*
860  * uprobe_register - register a probe
861  * @inode: the file in which the probe has to be placed.
862  * @offset: offset from the start of the file.
863  * @uc: information on howto handle the probe..
864  *
865  * Apart from the access refcount, uprobe_register() takes a creation
866  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
867  * inserted into the rbtree (i.e first consumer for a @inode:@offset
868  * tuple).  Creation refcount stops uprobe_unregister from freeing the
869  * @uprobe even before the register operation is complete. Creation
870  * refcount is released when the last @uc for the @uprobe
871  * unregisters.
872  *
873  * Return errno if it cannot successully install probes
874  * else return 0 (success)
875  */
876 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
877 {
878 	struct uprobe *uprobe;
879 	int ret;
880 
881 	/* Uprobe must have at least one set consumer */
882 	if (!uc->handler && !uc->ret_handler)
883 		return -EINVAL;
884 
885 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
886 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
887 		return -EIO;
888 	/* Racy, just to catch the obvious mistakes */
889 	if (offset > i_size_read(inode))
890 		return -EINVAL;
891 
892  retry:
893 	uprobe = alloc_uprobe(inode, offset);
894 	if (!uprobe)
895 		return -ENOMEM;
896 	/*
897 	 * We can race with uprobe_unregister()->delete_uprobe().
898 	 * Check uprobe_is_active() and retry if it is false.
899 	 */
900 	down_write(&uprobe->register_rwsem);
901 	ret = -EAGAIN;
902 	if (likely(uprobe_is_active(uprobe))) {
903 		ret = __uprobe_register(uprobe, uc);
904 		if (ret)
905 			__uprobe_unregister(uprobe, uc);
906 	}
907 	up_write(&uprobe->register_rwsem);
908 	put_uprobe(uprobe);
909 
910 	if (unlikely(ret == -EAGAIN))
911 		goto retry;
912 	return ret;
913 }
914 EXPORT_SYMBOL_GPL(uprobe_register);
915 
916 /*
917  * uprobe_apply - unregister a already registered probe.
918  * @inode: the file in which the probe has to be removed.
919  * @offset: offset from the start of the file.
920  * @uc: consumer which wants to add more or remove some breakpoints
921  * @add: add or remove the breakpoints
922  */
923 int uprobe_apply(struct inode *inode, loff_t offset,
924 			struct uprobe_consumer *uc, bool add)
925 {
926 	struct uprobe *uprobe;
927 	struct uprobe_consumer *con;
928 	int ret = -ENOENT;
929 
930 	uprobe = find_uprobe(inode, offset);
931 	if (WARN_ON(!uprobe))
932 		return ret;
933 
934 	down_write(&uprobe->register_rwsem);
935 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
936 		;
937 	if (con)
938 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
939 	up_write(&uprobe->register_rwsem);
940 	put_uprobe(uprobe);
941 
942 	return ret;
943 }
944 
945 /*
946  * uprobe_unregister - unregister a already registered probe.
947  * @inode: the file in which the probe has to be removed.
948  * @offset: offset from the start of the file.
949  * @uc: identify which probe if multiple probes are colocated.
950  */
951 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
952 {
953 	struct uprobe *uprobe;
954 
955 	uprobe = find_uprobe(inode, offset);
956 	if (WARN_ON(!uprobe))
957 		return;
958 
959 	down_write(&uprobe->register_rwsem);
960 	__uprobe_unregister(uprobe, uc);
961 	up_write(&uprobe->register_rwsem);
962 	put_uprobe(uprobe);
963 }
964 EXPORT_SYMBOL_GPL(uprobe_unregister);
965 
966 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
967 {
968 	struct vm_area_struct *vma;
969 	int err = 0;
970 
971 	down_read(&mm->mmap_sem);
972 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
973 		unsigned long vaddr;
974 		loff_t offset;
975 
976 		if (!valid_vma(vma, false) ||
977 		    file_inode(vma->vm_file) != uprobe->inode)
978 			continue;
979 
980 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
981 		if (uprobe->offset <  offset ||
982 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
983 			continue;
984 
985 		vaddr = offset_to_vaddr(vma, uprobe->offset);
986 		err |= remove_breakpoint(uprobe, mm, vaddr);
987 	}
988 	up_read(&mm->mmap_sem);
989 
990 	return err;
991 }
992 
993 static struct rb_node *
994 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
995 {
996 	struct rb_node *n = uprobes_tree.rb_node;
997 
998 	while (n) {
999 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1000 
1001 		if (inode < u->inode) {
1002 			n = n->rb_left;
1003 		} else if (inode > u->inode) {
1004 			n = n->rb_right;
1005 		} else {
1006 			if (max < u->offset)
1007 				n = n->rb_left;
1008 			else if (min > u->offset)
1009 				n = n->rb_right;
1010 			else
1011 				break;
1012 		}
1013 	}
1014 
1015 	return n;
1016 }
1017 
1018 /*
1019  * For a given range in vma, build a list of probes that need to be inserted.
1020  */
1021 static void build_probe_list(struct inode *inode,
1022 				struct vm_area_struct *vma,
1023 				unsigned long start, unsigned long end,
1024 				struct list_head *head)
1025 {
1026 	loff_t min, max;
1027 	struct rb_node *n, *t;
1028 	struct uprobe *u;
1029 
1030 	INIT_LIST_HEAD(head);
1031 	min = vaddr_to_offset(vma, start);
1032 	max = min + (end - start) - 1;
1033 
1034 	spin_lock(&uprobes_treelock);
1035 	n = find_node_in_range(inode, min, max);
1036 	if (n) {
1037 		for (t = n; t; t = rb_prev(t)) {
1038 			u = rb_entry(t, struct uprobe, rb_node);
1039 			if (u->inode != inode || u->offset < min)
1040 				break;
1041 			list_add(&u->pending_list, head);
1042 			atomic_inc(&u->ref);
1043 		}
1044 		for (t = n; (t = rb_next(t)); ) {
1045 			u = rb_entry(t, struct uprobe, rb_node);
1046 			if (u->inode != inode || u->offset > max)
1047 				break;
1048 			list_add(&u->pending_list, head);
1049 			atomic_inc(&u->ref);
1050 		}
1051 	}
1052 	spin_unlock(&uprobes_treelock);
1053 }
1054 
1055 /*
1056  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1057  *
1058  * Currently we ignore all errors and always return 0, the callers
1059  * can't handle the failure anyway.
1060  */
1061 int uprobe_mmap(struct vm_area_struct *vma)
1062 {
1063 	struct list_head tmp_list;
1064 	struct uprobe *uprobe, *u;
1065 	struct inode *inode;
1066 
1067 	if (no_uprobe_events() || !valid_vma(vma, true))
1068 		return 0;
1069 
1070 	inode = file_inode(vma->vm_file);
1071 	if (!inode)
1072 		return 0;
1073 
1074 	mutex_lock(uprobes_mmap_hash(inode));
1075 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1076 	/*
1077 	 * We can race with uprobe_unregister(), this uprobe can be already
1078 	 * removed. But in this case filter_chain() must return false, all
1079 	 * consumers have gone away.
1080 	 */
1081 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1082 		if (!fatal_signal_pending(current) &&
1083 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1084 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1085 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1086 		}
1087 		put_uprobe(uprobe);
1088 	}
1089 	mutex_unlock(uprobes_mmap_hash(inode));
1090 
1091 	return 0;
1092 }
1093 
1094 static bool
1095 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1096 {
1097 	loff_t min, max;
1098 	struct inode *inode;
1099 	struct rb_node *n;
1100 
1101 	inode = file_inode(vma->vm_file);
1102 
1103 	min = vaddr_to_offset(vma, start);
1104 	max = min + (end - start) - 1;
1105 
1106 	spin_lock(&uprobes_treelock);
1107 	n = find_node_in_range(inode, min, max);
1108 	spin_unlock(&uprobes_treelock);
1109 
1110 	return !!n;
1111 }
1112 
1113 /*
1114  * Called in context of a munmap of a vma.
1115  */
1116 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1117 {
1118 	if (no_uprobe_events() || !valid_vma(vma, false))
1119 		return;
1120 
1121 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1122 		return;
1123 
1124 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1125 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1126 		return;
1127 
1128 	if (vma_has_uprobes(vma, start, end))
1129 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1130 }
1131 
1132 /* Slot allocation for XOL */
1133 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1134 {
1135 	int ret = -EALREADY;
1136 
1137 	down_write(&mm->mmap_sem);
1138 	if (mm->uprobes_state.xol_area)
1139 		goto fail;
1140 
1141 	if (!area->vaddr) {
1142 		/* Try to map as high as possible, this is only a hint. */
1143 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1144 						PAGE_SIZE, 0, 0);
1145 		if (area->vaddr & ~PAGE_MASK) {
1146 			ret = area->vaddr;
1147 			goto fail;
1148 		}
1149 	}
1150 
1151 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1152 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1153 	if (ret)
1154 		goto fail;
1155 
1156 	smp_wmb();	/* pairs with get_xol_area() */
1157 	mm->uprobes_state.xol_area = area;
1158  fail:
1159 	up_write(&mm->mmap_sem);
1160 
1161 	return ret;
1162 }
1163 
1164 static struct xol_area *__create_xol_area(unsigned long vaddr)
1165 {
1166 	struct mm_struct *mm = current->mm;
1167 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1168 	struct xol_area *area;
1169 
1170 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1171 	if (unlikely(!area))
1172 		goto out;
1173 
1174 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1175 	if (!area->bitmap)
1176 		goto free_area;
1177 
1178 	area->page = alloc_page(GFP_HIGHUSER);
1179 	if (!area->page)
1180 		goto free_bitmap;
1181 
1182 	area->vaddr = vaddr;
1183 	init_waitqueue_head(&area->wq);
1184 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1185 	set_bit(0, area->bitmap);
1186 	atomic_set(&area->slot_count, 1);
1187 	copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1188 
1189 	if (!xol_add_vma(mm, area))
1190 		return area;
1191 
1192 	__free_page(area->page);
1193  free_bitmap:
1194 	kfree(area->bitmap);
1195  free_area:
1196 	kfree(area);
1197  out:
1198 	return NULL;
1199 }
1200 
1201 /*
1202  * get_xol_area - Allocate process's xol_area if necessary.
1203  * This area will be used for storing instructions for execution out of line.
1204  *
1205  * Returns the allocated area or NULL.
1206  */
1207 static struct xol_area *get_xol_area(void)
1208 {
1209 	struct mm_struct *mm = current->mm;
1210 	struct xol_area *area;
1211 
1212 	if (!mm->uprobes_state.xol_area)
1213 		__create_xol_area(0);
1214 
1215 	area = mm->uprobes_state.xol_area;
1216 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1217 	return area;
1218 }
1219 
1220 /*
1221  * uprobe_clear_state - Free the area allocated for slots.
1222  */
1223 void uprobe_clear_state(struct mm_struct *mm)
1224 {
1225 	struct xol_area *area = mm->uprobes_state.xol_area;
1226 
1227 	if (!area)
1228 		return;
1229 
1230 	put_page(area->page);
1231 	kfree(area->bitmap);
1232 	kfree(area);
1233 }
1234 
1235 void uprobe_start_dup_mmap(void)
1236 {
1237 	percpu_down_read(&dup_mmap_sem);
1238 }
1239 
1240 void uprobe_end_dup_mmap(void)
1241 {
1242 	percpu_up_read(&dup_mmap_sem);
1243 }
1244 
1245 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1246 {
1247 	newmm->uprobes_state.xol_area = NULL;
1248 
1249 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1250 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1251 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1252 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1253 	}
1254 }
1255 
1256 /*
1257  *  - search for a free slot.
1258  */
1259 static unsigned long xol_take_insn_slot(struct xol_area *area)
1260 {
1261 	unsigned long slot_addr;
1262 	int slot_nr;
1263 
1264 	do {
1265 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1266 		if (slot_nr < UINSNS_PER_PAGE) {
1267 			if (!test_and_set_bit(slot_nr, area->bitmap))
1268 				break;
1269 
1270 			slot_nr = UINSNS_PER_PAGE;
1271 			continue;
1272 		}
1273 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1274 	} while (slot_nr >= UINSNS_PER_PAGE);
1275 
1276 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1277 	atomic_inc(&area->slot_count);
1278 
1279 	return slot_addr;
1280 }
1281 
1282 /*
1283  * xol_get_insn_slot - allocate a slot for xol.
1284  * Returns the allocated slot address or 0.
1285  */
1286 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1287 {
1288 	struct xol_area *area;
1289 	unsigned long xol_vaddr;
1290 
1291 	area = get_xol_area();
1292 	if (!area)
1293 		return 0;
1294 
1295 	xol_vaddr = xol_take_insn_slot(area);
1296 	if (unlikely(!xol_vaddr))
1297 		return 0;
1298 
1299 	arch_uprobe_copy_ixol(area->page, xol_vaddr,
1300 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1301 
1302 	return xol_vaddr;
1303 }
1304 
1305 /*
1306  * xol_free_insn_slot - If slot was earlier allocated by
1307  * @xol_get_insn_slot(), make the slot available for
1308  * subsequent requests.
1309  */
1310 static void xol_free_insn_slot(struct task_struct *tsk)
1311 {
1312 	struct xol_area *area;
1313 	unsigned long vma_end;
1314 	unsigned long slot_addr;
1315 
1316 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1317 		return;
1318 
1319 	slot_addr = tsk->utask->xol_vaddr;
1320 	if (unlikely(!slot_addr))
1321 		return;
1322 
1323 	area = tsk->mm->uprobes_state.xol_area;
1324 	vma_end = area->vaddr + PAGE_SIZE;
1325 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1326 		unsigned long offset;
1327 		int slot_nr;
1328 
1329 		offset = slot_addr - area->vaddr;
1330 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1331 		if (slot_nr >= UINSNS_PER_PAGE)
1332 			return;
1333 
1334 		clear_bit(slot_nr, area->bitmap);
1335 		atomic_dec(&area->slot_count);
1336 		if (waitqueue_active(&area->wq))
1337 			wake_up(&area->wq);
1338 
1339 		tsk->utask->xol_vaddr = 0;
1340 	}
1341 }
1342 
1343 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1344 				  void *src, unsigned long len)
1345 {
1346 	/* Initialize the slot */
1347 	copy_to_page(page, vaddr, src, len);
1348 
1349 	/*
1350 	 * We probably need flush_icache_user_range() but it needs vma.
1351 	 * This should work on most of architectures by default. If
1352 	 * architecture needs to do something different it can define
1353 	 * its own version of the function.
1354 	 */
1355 	flush_dcache_page(page);
1356 }
1357 
1358 /**
1359  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1360  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1361  * instruction.
1362  * Return the address of the breakpoint instruction.
1363  */
1364 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1365 {
1366 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1367 }
1368 
1369 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1370 {
1371 	struct uprobe_task *utask = current->utask;
1372 
1373 	if (unlikely(utask && utask->active_uprobe))
1374 		return utask->vaddr;
1375 
1376 	return instruction_pointer(regs);
1377 }
1378 
1379 /*
1380  * Called with no locks held.
1381  * Called in context of a exiting or a exec-ing thread.
1382  */
1383 void uprobe_free_utask(struct task_struct *t)
1384 {
1385 	struct uprobe_task *utask = t->utask;
1386 	struct return_instance *ri, *tmp;
1387 
1388 	if (!utask)
1389 		return;
1390 
1391 	if (utask->active_uprobe)
1392 		put_uprobe(utask->active_uprobe);
1393 
1394 	ri = utask->return_instances;
1395 	while (ri) {
1396 		tmp = ri;
1397 		ri = ri->next;
1398 
1399 		put_uprobe(tmp->uprobe);
1400 		kfree(tmp);
1401 	}
1402 
1403 	xol_free_insn_slot(t);
1404 	kfree(utask);
1405 	t->utask = NULL;
1406 }
1407 
1408 /*
1409  * Allocate a uprobe_task object for the task if if necessary.
1410  * Called when the thread hits a breakpoint.
1411  *
1412  * Returns:
1413  * - pointer to new uprobe_task on success
1414  * - NULL otherwise
1415  */
1416 static struct uprobe_task *get_utask(void)
1417 {
1418 	if (!current->utask)
1419 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1420 	return current->utask;
1421 }
1422 
1423 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1424 {
1425 	struct uprobe_task *n_utask;
1426 	struct return_instance **p, *o, *n;
1427 
1428 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1429 	if (!n_utask)
1430 		return -ENOMEM;
1431 	t->utask = n_utask;
1432 
1433 	p = &n_utask->return_instances;
1434 	for (o = o_utask->return_instances; o; o = o->next) {
1435 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1436 		if (!n)
1437 			return -ENOMEM;
1438 
1439 		*n = *o;
1440 		atomic_inc(&n->uprobe->ref);
1441 		n->next = NULL;
1442 
1443 		*p = n;
1444 		p = &n->next;
1445 		n_utask->depth++;
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static void uprobe_warn(struct task_struct *t, const char *msg)
1452 {
1453 	pr_warn("uprobe: %s:%d failed to %s\n",
1454 			current->comm, current->pid, msg);
1455 }
1456 
1457 static void dup_xol_work(struct callback_head *work)
1458 {
1459 	if (current->flags & PF_EXITING)
1460 		return;
1461 
1462 	if (!__create_xol_area(current->utask->dup_xol_addr))
1463 		uprobe_warn(current, "dup xol area");
1464 }
1465 
1466 /*
1467  * Called in context of a new clone/fork from copy_process.
1468  */
1469 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1470 {
1471 	struct uprobe_task *utask = current->utask;
1472 	struct mm_struct *mm = current->mm;
1473 	struct xol_area *area;
1474 
1475 	t->utask = NULL;
1476 
1477 	if (!utask || !utask->return_instances)
1478 		return;
1479 
1480 	if (mm == t->mm && !(flags & CLONE_VFORK))
1481 		return;
1482 
1483 	if (dup_utask(t, utask))
1484 		return uprobe_warn(t, "dup ret instances");
1485 
1486 	/* The task can fork() after dup_xol_work() fails */
1487 	area = mm->uprobes_state.xol_area;
1488 	if (!area)
1489 		return uprobe_warn(t, "dup xol area");
1490 
1491 	if (mm == t->mm)
1492 		return;
1493 
1494 	t->utask->dup_xol_addr = area->vaddr;
1495 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1496 	task_work_add(t, &t->utask->dup_xol_work, true);
1497 }
1498 
1499 /*
1500  * Current area->vaddr notion assume the trampoline address is always
1501  * equal area->vaddr.
1502  *
1503  * Returns -1 in case the xol_area is not allocated.
1504  */
1505 static unsigned long get_trampoline_vaddr(void)
1506 {
1507 	struct xol_area *area;
1508 	unsigned long trampoline_vaddr = -1;
1509 
1510 	area = current->mm->uprobes_state.xol_area;
1511 	smp_read_barrier_depends();
1512 	if (area)
1513 		trampoline_vaddr = area->vaddr;
1514 
1515 	return trampoline_vaddr;
1516 }
1517 
1518 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1519 {
1520 	struct return_instance *ri;
1521 	struct uprobe_task *utask;
1522 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1523 	bool chained = false;
1524 
1525 	if (!get_xol_area())
1526 		return;
1527 
1528 	utask = get_utask();
1529 	if (!utask)
1530 		return;
1531 
1532 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1533 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1534 				" nestedness limit pid/tgid=%d/%d\n",
1535 				current->pid, current->tgid);
1536 		return;
1537 	}
1538 
1539 	ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1540 	if (!ri)
1541 		goto fail;
1542 
1543 	trampoline_vaddr = get_trampoline_vaddr();
1544 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1545 	if (orig_ret_vaddr == -1)
1546 		goto fail;
1547 
1548 	/*
1549 	 * We don't want to keep trampoline address in stack, rather keep the
1550 	 * original return address of first caller thru all the consequent
1551 	 * instances. This also makes breakpoint unwrapping easier.
1552 	 */
1553 	if (orig_ret_vaddr == trampoline_vaddr) {
1554 		if (!utask->return_instances) {
1555 			/*
1556 			 * This situation is not possible. Likely we have an
1557 			 * attack from user-space.
1558 			 */
1559 			pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1560 						current->pid, current->tgid);
1561 			goto fail;
1562 		}
1563 
1564 		chained = true;
1565 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1566 	}
1567 
1568 	atomic_inc(&uprobe->ref);
1569 	ri->uprobe = uprobe;
1570 	ri->func = instruction_pointer(regs);
1571 	ri->orig_ret_vaddr = orig_ret_vaddr;
1572 	ri->chained = chained;
1573 
1574 	utask->depth++;
1575 
1576 	/* add instance to the stack */
1577 	ri->next = utask->return_instances;
1578 	utask->return_instances = ri;
1579 
1580 	return;
1581 
1582  fail:
1583 	kfree(ri);
1584 }
1585 
1586 /* Prepare to single-step probed instruction out of line. */
1587 static int
1588 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1589 {
1590 	struct uprobe_task *utask;
1591 	unsigned long xol_vaddr;
1592 	int err;
1593 
1594 	utask = get_utask();
1595 	if (!utask)
1596 		return -ENOMEM;
1597 
1598 	xol_vaddr = xol_get_insn_slot(uprobe);
1599 	if (!xol_vaddr)
1600 		return -ENOMEM;
1601 
1602 	utask->xol_vaddr = xol_vaddr;
1603 	utask->vaddr = bp_vaddr;
1604 
1605 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1606 	if (unlikely(err)) {
1607 		xol_free_insn_slot(current);
1608 		return err;
1609 	}
1610 
1611 	utask->active_uprobe = uprobe;
1612 	utask->state = UTASK_SSTEP;
1613 	return 0;
1614 }
1615 
1616 /*
1617  * If we are singlestepping, then ensure this thread is not connected to
1618  * non-fatal signals until completion of singlestep.  When xol insn itself
1619  * triggers the signal,  restart the original insn even if the task is
1620  * already SIGKILL'ed (since coredump should report the correct ip).  This
1621  * is even more important if the task has a handler for SIGSEGV/etc, The
1622  * _same_ instruction should be repeated again after return from the signal
1623  * handler, and SSTEP can never finish in this case.
1624  */
1625 bool uprobe_deny_signal(void)
1626 {
1627 	struct task_struct *t = current;
1628 	struct uprobe_task *utask = t->utask;
1629 
1630 	if (likely(!utask || !utask->active_uprobe))
1631 		return false;
1632 
1633 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1634 
1635 	if (signal_pending(t)) {
1636 		spin_lock_irq(&t->sighand->siglock);
1637 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1638 		spin_unlock_irq(&t->sighand->siglock);
1639 
1640 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1641 			utask->state = UTASK_SSTEP_TRAPPED;
1642 			set_tsk_thread_flag(t, TIF_UPROBE);
1643 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1644 		}
1645 	}
1646 
1647 	return true;
1648 }
1649 
1650 static void mmf_recalc_uprobes(struct mm_struct *mm)
1651 {
1652 	struct vm_area_struct *vma;
1653 
1654 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1655 		if (!valid_vma(vma, false))
1656 			continue;
1657 		/*
1658 		 * This is not strictly accurate, we can race with
1659 		 * uprobe_unregister() and see the already removed
1660 		 * uprobe if delete_uprobe() was not yet called.
1661 		 * Or this uprobe can be filtered out.
1662 		 */
1663 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1664 			return;
1665 	}
1666 
1667 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1668 }
1669 
1670 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1671 {
1672 	struct page *page;
1673 	uprobe_opcode_t opcode;
1674 	int result;
1675 
1676 	pagefault_disable();
1677 	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1678 							sizeof(opcode));
1679 	pagefault_enable();
1680 
1681 	if (likely(result == 0))
1682 		goto out;
1683 
1684 	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1685 	if (result < 0)
1686 		return result;
1687 
1688 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1689 	put_page(page);
1690  out:
1691 	/* This needs to return true for any variant of the trap insn */
1692 	return is_trap_insn(&opcode);
1693 }
1694 
1695 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1696 {
1697 	struct mm_struct *mm = current->mm;
1698 	struct uprobe *uprobe = NULL;
1699 	struct vm_area_struct *vma;
1700 
1701 	down_read(&mm->mmap_sem);
1702 	vma = find_vma(mm, bp_vaddr);
1703 	if (vma && vma->vm_start <= bp_vaddr) {
1704 		if (valid_vma(vma, false)) {
1705 			struct inode *inode = file_inode(vma->vm_file);
1706 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1707 
1708 			uprobe = find_uprobe(inode, offset);
1709 		}
1710 
1711 		if (!uprobe)
1712 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1713 	} else {
1714 		*is_swbp = -EFAULT;
1715 	}
1716 
1717 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1718 		mmf_recalc_uprobes(mm);
1719 	up_read(&mm->mmap_sem);
1720 
1721 	return uprobe;
1722 }
1723 
1724 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1725 {
1726 	struct uprobe_consumer *uc;
1727 	int remove = UPROBE_HANDLER_REMOVE;
1728 	bool need_prep = false; /* prepare return uprobe, when needed */
1729 
1730 	down_read(&uprobe->register_rwsem);
1731 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1732 		int rc = 0;
1733 
1734 		if (uc->handler) {
1735 			rc = uc->handler(uc, regs);
1736 			WARN(rc & ~UPROBE_HANDLER_MASK,
1737 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1738 		}
1739 
1740 		if (uc->ret_handler)
1741 			need_prep = true;
1742 
1743 		remove &= rc;
1744 	}
1745 
1746 	if (need_prep && !remove)
1747 		prepare_uretprobe(uprobe, regs); /* put bp at return */
1748 
1749 	if (remove && uprobe->consumers) {
1750 		WARN_ON(!uprobe_is_active(uprobe));
1751 		unapply_uprobe(uprobe, current->mm);
1752 	}
1753 	up_read(&uprobe->register_rwsem);
1754 }
1755 
1756 static void
1757 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1758 {
1759 	struct uprobe *uprobe = ri->uprobe;
1760 	struct uprobe_consumer *uc;
1761 
1762 	down_read(&uprobe->register_rwsem);
1763 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1764 		if (uc->ret_handler)
1765 			uc->ret_handler(uc, ri->func, regs);
1766 	}
1767 	up_read(&uprobe->register_rwsem);
1768 }
1769 
1770 static bool handle_trampoline(struct pt_regs *regs)
1771 {
1772 	struct uprobe_task *utask;
1773 	struct return_instance *ri, *tmp;
1774 	bool chained;
1775 
1776 	utask = current->utask;
1777 	if (!utask)
1778 		return false;
1779 
1780 	ri = utask->return_instances;
1781 	if (!ri)
1782 		return false;
1783 
1784 	/*
1785 	 * TODO: we should throw out return_instance's invalidated by
1786 	 * longjmp(), currently we assume that the probed function always
1787 	 * returns.
1788 	 */
1789 	instruction_pointer_set(regs, ri->orig_ret_vaddr);
1790 
1791 	for (;;) {
1792 		handle_uretprobe_chain(ri, regs);
1793 
1794 		chained = ri->chained;
1795 		put_uprobe(ri->uprobe);
1796 
1797 		tmp = ri;
1798 		ri = ri->next;
1799 		kfree(tmp);
1800 		utask->depth--;
1801 
1802 		if (!chained)
1803 			break;
1804 		BUG_ON(!ri);
1805 	}
1806 
1807 	utask->return_instances = ri;
1808 
1809 	return true;
1810 }
1811 
1812 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1813 {
1814 	return false;
1815 }
1816 
1817 /*
1818  * Run handler and ask thread to singlestep.
1819  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1820  */
1821 static void handle_swbp(struct pt_regs *regs)
1822 {
1823 	struct uprobe *uprobe;
1824 	unsigned long bp_vaddr;
1825 	int uninitialized_var(is_swbp);
1826 
1827 	bp_vaddr = uprobe_get_swbp_addr(regs);
1828 	if (bp_vaddr == get_trampoline_vaddr()) {
1829 		if (handle_trampoline(regs))
1830 			return;
1831 
1832 		pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1833 						current->pid, current->tgid);
1834 	}
1835 
1836 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1837 	if (!uprobe) {
1838 		if (is_swbp > 0) {
1839 			/* No matching uprobe; signal SIGTRAP. */
1840 			send_sig(SIGTRAP, current, 0);
1841 		} else {
1842 			/*
1843 			 * Either we raced with uprobe_unregister() or we can't
1844 			 * access this memory. The latter is only possible if
1845 			 * another thread plays with our ->mm. In both cases
1846 			 * we can simply restart. If this vma was unmapped we
1847 			 * can pretend this insn was not executed yet and get
1848 			 * the (correct) SIGSEGV after restart.
1849 			 */
1850 			instruction_pointer_set(regs, bp_vaddr);
1851 		}
1852 		return;
1853 	}
1854 
1855 	/* change it in advance for ->handler() and restart */
1856 	instruction_pointer_set(regs, bp_vaddr);
1857 
1858 	/*
1859 	 * TODO: move copy_insn/etc into _register and remove this hack.
1860 	 * After we hit the bp, _unregister + _register can install the
1861 	 * new and not-yet-analyzed uprobe at the same address, restart.
1862 	 */
1863 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1864 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1865 		goto out;
1866 
1867 	/* Tracing handlers use ->utask to communicate with fetch methods */
1868 	if (!get_utask())
1869 		goto out;
1870 
1871 	if (arch_uprobe_ignore(&uprobe->arch, regs))
1872 		goto out;
1873 
1874 	handler_chain(uprobe, regs);
1875 
1876 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1877 		goto out;
1878 
1879 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1880 		return;
1881 
1882 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1883 out:
1884 	put_uprobe(uprobe);
1885 }
1886 
1887 /*
1888  * Perform required fix-ups and disable singlestep.
1889  * Allow pending signals to take effect.
1890  */
1891 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1892 {
1893 	struct uprobe *uprobe;
1894 	int err = 0;
1895 
1896 	uprobe = utask->active_uprobe;
1897 	if (utask->state == UTASK_SSTEP_ACK)
1898 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1899 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1900 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1901 	else
1902 		WARN_ON_ONCE(1);
1903 
1904 	put_uprobe(uprobe);
1905 	utask->active_uprobe = NULL;
1906 	utask->state = UTASK_RUNNING;
1907 	xol_free_insn_slot(current);
1908 
1909 	spin_lock_irq(&current->sighand->siglock);
1910 	recalc_sigpending(); /* see uprobe_deny_signal() */
1911 	spin_unlock_irq(&current->sighand->siglock);
1912 
1913 	if (unlikely(err)) {
1914 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1915 		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1916 	}
1917 }
1918 
1919 /*
1920  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1921  * allows the thread to return from interrupt. After that handle_swbp()
1922  * sets utask->active_uprobe.
1923  *
1924  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1925  * and allows the thread to return from interrupt.
1926  *
1927  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1928  * uprobe_notify_resume().
1929  */
1930 void uprobe_notify_resume(struct pt_regs *regs)
1931 {
1932 	struct uprobe_task *utask;
1933 
1934 	clear_thread_flag(TIF_UPROBE);
1935 
1936 	utask = current->utask;
1937 	if (utask && utask->active_uprobe)
1938 		handle_singlestep(utask, regs);
1939 	else
1940 		handle_swbp(regs);
1941 }
1942 
1943 /*
1944  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1945  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1946  */
1947 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1948 {
1949 	if (!current->mm)
1950 		return 0;
1951 
1952 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1953 	    (!current->utask || !current->utask->return_instances))
1954 		return 0;
1955 
1956 	set_thread_flag(TIF_UPROBE);
1957 	return 1;
1958 }
1959 
1960 /*
1961  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1962  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1963  */
1964 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1965 {
1966 	struct uprobe_task *utask = current->utask;
1967 
1968 	if (!current->mm || !utask || !utask->active_uprobe)
1969 		/* task is currently not uprobed */
1970 		return 0;
1971 
1972 	utask->state = UTASK_SSTEP_ACK;
1973 	set_thread_flag(TIF_UPROBE);
1974 	return 1;
1975 }
1976 
1977 static struct notifier_block uprobe_exception_nb = {
1978 	.notifier_call		= arch_uprobe_exception_notify,
1979 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1980 };
1981 
1982 static int __init init_uprobes(void)
1983 {
1984 	int i;
1985 
1986 	for (i = 0; i < UPROBES_HASH_SZ; i++)
1987 		mutex_init(&uprobes_mmap_mutex[i]);
1988 
1989 	if (percpu_init_rwsem(&dup_mmap_sem))
1990 		return -ENOMEM;
1991 
1992 	return register_die_notifier(&uprobe_exception_nb);
1993 }
1994 __initcall(init_uprobes);
1995