1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* try_to_free_swap */ 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include "../../mm/internal.h" /* munlock_vma_page */ 26 #include <linux/percpu-rwsem.h> 27 #include <linux/task_work.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/khugepaged.h> 30 31 #include <linux/uprobes.h> 32 33 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 34 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 35 36 static struct rb_root uprobes_tree = RB_ROOT; 37 /* 38 * allows us to skip the uprobe_mmap if there are no uprobe events active 39 * at this time. Probably a fine grained per inode count is better? 40 */ 41 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 42 43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 44 45 #define UPROBES_HASH_SZ 13 46 /* serialize uprobe->pending_list */ 47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 48 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 49 50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 51 52 /* Have a copy of original instruction */ 53 #define UPROBE_COPY_INSN 0 54 55 struct uprobe { 56 struct rb_node rb_node; /* node in the rb tree */ 57 refcount_t ref; 58 struct rw_semaphore register_rwsem; 59 struct rw_semaphore consumer_rwsem; 60 struct list_head pending_list; 61 struct uprobe_consumer *consumers; 62 struct inode *inode; /* Also hold a ref to inode */ 63 loff_t offset; 64 loff_t ref_ctr_offset; 65 unsigned long flags; 66 67 /* 68 * The generic code assumes that it has two members of unknown type 69 * owned by the arch-specific code: 70 * 71 * insn - copy_insn() saves the original instruction here for 72 * arch_uprobe_analyze_insn(). 73 * 74 * ixol - potentially modified instruction to execute out of 75 * line, copied to xol_area by xol_get_insn_slot(). 76 */ 77 struct arch_uprobe arch; 78 }; 79 80 struct delayed_uprobe { 81 struct list_head list; 82 struct uprobe *uprobe; 83 struct mm_struct *mm; 84 }; 85 86 static DEFINE_MUTEX(delayed_uprobe_lock); 87 static LIST_HEAD(delayed_uprobe_list); 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @old_page: the page we are replacing by new_page 148 * @new_page: the modified page we replace page by 149 * 150 * If @new_page is NULL, only unmap @old_page. 151 * 152 * Returns 0 on success, negative error code otherwise. 153 */ 154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 155 struct page *old_page, struct page *new_page) 156 { 157 struct mm_struct *mm = vma->vm_mm; 158 struct page_vma_mapped_walk pvmw = { 159 .page = compound_head(old_page), 160 .vma = vma, 161 .address = addr, 162 }; 163 int err; 164 struct mmu_notifier_range range; 165 166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 167 addr + PAGE_SIZE); 168 169 if (new_page) { 170 err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL); 171 if (err) 172 return err; 173 } 174 175 /* For try_to_free_swap() and munlock_vma_page() below */ 176 lock_page(old_page); 177 178 mmu_notifier_invalidate_range_start(&range); 179 err = -EAGAIN; 180 if (!page_vma_mapped_walk(&pvmw)) 181 goto unlock; 182 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 183 184 if (new_page) { 185 get_page(new_page); 186 page_add_new_anon_rmap(new_page, vma, addr, false); 187 lru_cache_add_inactive_or_unevictable(new_page, vma); 188 } else 189 /* no new page, just dec_mm_counter for old_page */ 190 dec_mm_counter(mm, MM_ANONPAGES); 191 192 if (!PageAnon(old_page)) { 193 dec_mm_counter(mm, mm_counter_file(old_page)); 194 inc_mm_counter(mm, MM_ANONPAGES); 195 } 196 197 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 198 ptep_clear_flush_notify(vma, addr, pvmw.pte); 199 if (new_page) 200 set_pte_at_notify(mm, addr, pvmw.pte, 201 mk_pte(new_page, vma->vm_page_prot)); 202 203 page_remove_rmap(old_page, false); 204 if (!page_mapped(old_page)) 205 try_to_free_swap(old_page); 206 page_vma_mapped_walk_done(&pvmw); 207 208 if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page)) 209 munlock_vma_page(old_page); 210 put_page(old_page); 211 212 err = 0; 213 unlock: 214 mmu_notifier_invalidate_range_end(&range); 215 unlock_page(old_page); 216 return err; 217 } 218 219 /** 220 * is_swbp_insn - check if instruction is breakpoint instruction. 221 * @insn: instruction to be checked. 222 * Default implementation of is_swbp_insn 223 * Returns true if @insn is a breakpoint instruction. 224 */ 225 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 226 { 227 return *insn == UPROBE_SWBP_INSN; 228 } 229 230 /** 231 * is_trap_insn - check if instruction is breakpoint instruction. 232 * @insn: instruction to be checked. 233 * Default implementation of is_trap_insn 234 * Returns true if @insn is a breakpoint instruction. 235 * 236 * This function is needed for the case where an architecture has multiple 237 * trap instructions (like powerpc). 238 */ 239 bool __weak is_trap_insn(uprobe_opcode_t *insn) 240 { 241 return is_swbp_insn(insn); 242 } 243 244 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 245 { 246 void *kaddr = kmap_atomic(page); 247 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 248 kunmap_atomic(kaddr); 249 } 250 251 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 252 { 253 void *kaddr = kmap_atomic(page); 254 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 255 kunmap_atomic(kaddr); 256 } 257 258 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 259 { 260 uprobe_opcode_t old_opcode; 261 bool is_swbp; 262 263 /* 264 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 265 * We do not check if it is any other 'trap variant' which could 266 * be conditional trap instruction such as the one powerpc supports. 267 * 268 * The logic is that we do not care if the underlying instruction 269 * is a trap variant; uprobes always wins over any other (gdb) 270 * breakpoint. 271 */ 272 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 273 is_swbp = is_swbp_insn(&old_opcode); 274 275 if (is_swbp_insn(new_opcode)) { 276 if (is_swbp) /* register: already installed? */ 277 return 0; 278 } else { 279 if (!is_swbp) /* unregister: was it changed by us? */ 280 return 0; 281 } 282 283 return 1; 284 } 285 286 static struct delayed_uprobe * 287 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 288 { 289 struct delayed_uprobe *du; 290 291 list_for_each_entry(du, &delayed_uprobe_list, list) 292 if (du->uprobe == uprobe && du->mm == mm) 293 return du; 294 return NULL; 295 } 296 297 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 298 { 299 struct delayed_uprobe *du; 300 301 if (delayed_uprobe_check(uprobe, mm)) 302 return 0; 303 304 du = kzalloc(sizeof(*du), GFP_KERNEL); 305 if (!du) 306 return -ENOMEM; 307 308 du->uprobe = uprobe; 309 du->mm = mm; 310 list_add(&du->list, &delayed_uprobe_list); 311 return 0; 312 } 313 314 static void delayed_uprobe_delete(struct delayed_uprobe *du) 315 { 316 if (WARN_ON(!du)) 317 return; 318 list_del(&du->list); 319 kfree(du); 320 } 321 322 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 323 { 324 struct list_head *pos, *q; 325 struct delayed_uprobe *du; 326 327 if (!uprobe && !mm) 328 return; 329 330 list_for_each_safe(pos, q, &delayed_uprobe_list) { 331 du = list_entry(pos, struct delayed_uprobe, list); 332 333 if (uprobe && du->uprobe != uprobe) 334 continue; 335 if (mm && du->mm != mm) 336 continue; 337 338 delayed_uprobe_delete(du); 339 } 340 } 341 342 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 343 struct vm_area_struct *vma) 344 { 345 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 346 347 return uprobe->ref_ctr_offset && 348 vma->vm_file && 349 file_inode(vma->vm_file) == uprobe->inode && 350 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 351 vma->vm_start <= vaddr && 352 vma->vm_end > vaddr; 353 } 354 355 static struct vm_area_struct * 356 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 357 { 358 struct vm_area_struct *tmp; 359 360 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next) 361 if (valid_ref_ctr_vma(uprobe, tmp)) 362 return tmp; 363 364 return NULL; 365 } 366 367 static int 368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 369 { 370 void *kaddr; 371 struct page *page; 372 struct vm_area_struct *vma; 373 int ret; 374 short *ptr; 375 376 if (!vaddr || !d) 377 return -EINVAL; 378 379 ret = get_user_pages_remote(mm, vaddr, 1, 380 FOLL_WRITE, &page, &vma, NULL); 381 if (unlikely(ret <= 0)) { 382 /* 383 * We are asking for 1 page. If get_user_pages_remote() fails, 384 * it may return 0, in that case we have to return error. 385 */ 386 return ret == 0 ? -EBUSY : ret; 387 } 388 389 kaddr = kmap_atomic(page); 390 ptr = kaddr + (vaddr & ~PAGE_MASK); 391 392 if (unlikely(*ptr + d < 0)) { 393 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 394 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 395 ret = -EINVAL; 396 goto out; 397 } 398 399 *ptr += d; 400 ret = 0; 401 out: 402 kunmap_atomic(kaddr); 403 put_page(page); 404 return ret; 405 } 406 407 static void update_ref_ctr_warn(struct uprobe *uprobe, 408 struct mm_struct *mm, short d) 409 { 410 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 411 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 412 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 413 (unsigned long long) uprobe->offset, 414 (unsigned long long) uprobe->ref_ctr_offset, mm); 415 } 416 417 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 418 short d) 419 { 420 struct vm_area_struct *rc_vma; 421 unsigned long rc_vaddr; 422 int ret = 0; 423 424 rc_vma = find_ref_ctr_vma(uprobe, mm); 425 426 if (rc_vma) { 427 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 428 ret = __update_ref_ctr(mm, rc_vaddr, d); 429 if (ret) 430 update_ref_ctr_warn(uprobe, mm, d); 431 432 if (d > 0) 433 return ret; 434 } 435 436 mutex_lock(&delayed_uprobe_lock); 437 if (d > 0) 438 ret = delayed_uprobe_add(uprobe, mm); 439 else 440 delayed_uprobe_remove(uprobe, mm); 441 mutex_unlock(&delayed_uprobe_lock); 442 443 return ret; 444 } 445 446 /* 447 * NOTE: 448 * Expect the breakpoint instruction to be the smallest size instruction for 449 * the architecture. If an arch has variable length instruction and the 450 * breakpoint instruction is not of the smallest length instruction 451 * supported by that architecture then we need to modify is_trap_at_addr and 452 * uprobe_write_opcode accordingly. This would never be a problem for archs 453 * that have fixed length instructions. 454 * 455 * uprobe_write_opcode - write the opcode at a given virtual address. 456 * @mm: the probed process address space. 457 * @vaddr: the virtual address to store the opcode. 458 * @opcode: opcode to be written at @vaddr. 459 * 460 * Called with mm->mmap_lock held for write. 461 * Return 0 (success) or a negative errno. 462 */ 463 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 464 unsigned long vaddr, uprobe_opcode_t opcode) 465 { 466 struct uprobe *uprobe; 467 struct page *old_page, *new_page; 468 struct vm_area_struct *vma; 469 int ret, is_register, ref_ctr_updated = 0; 470 bool orig_page_huge = false; 471 unsigned int gup_flags = FOLL_FORCE; 472 473 is_register = is_swbp_insn(&opcode); 474 uprobe = container_of(auprobe, struct uprobe, arch); 475 476 retry: 477 if (is_register) 478 gup_flags |= FOLL_SPLIT_PMD; 479 /* Read the page with vaddr into memory */ 480 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, 481 &old_page, &vma, NULL); 482 if (ret <= 0) 483 return ret; 484 485 ret = verify_opcode(old_page, vaddr, &opcode); 486 if (ret <= 0) 487 goto put_old; 488 489 if (WARN(!is_register && PageCompound(old_page), 490 "uprobe unregister should never work on compound page\n")) { 491 ret = -EINVAL; 492 goto put_old; 493 } 494 495 /* We are going to replace instruction, update ref_ctr. */ 496 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 497 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 498 if (ret) 499 goto put_old; 500 501 ref_ctr_updated = 1; 502 } 503 504 ret = 0; 505 if (!is_register && !PageAnon(old_page)) 506 goto put_old; 507 508 ret = anon_vma_prepare(vma); 509 if (ret) 510 goto put_old; 511 512 ret = -ENOMEM; 513 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 514 if (!new_page) 515 goto put_old; 516 517 __SetPageUptodate(new_page); 518 copy_highpage(new_page, old_page); 519 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 520 521 if (!is_register) { 522 struct page *orig_page; 523 pgoff_t index; 524 525 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 526 527 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 528 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 529 index); 530 531 if (orig_page) { 532 if (PageUptodate(orig_page) && 533 pages_identical(new_page, orig_page)) { 534 /* let go new_page */ 535 put_page(new_page); 536 new_page = NULL; 537 538 if (PageCompound(orig_page)) 539 orig_page_huge = true; 540 } 541 put_page(orig_page); 542 } 543 } 544 545 ret = __replace_page(vma, vaddr, old_page, new_page); 546 if (new_page) 547 put_page(new_page); 548 put_old: 549 put_page(old_page); 550 551 if (unlikely(ret == -EAGAIN)) 552 goto retry; 553 554 /* Revert back reference counter if instruction update failed. */ 555 if (ret && is_register && ref_ctr_updated) 556 update_ref_ctr(uprobe, mm, -1); 557 558 /* try collapse pmd for compound page */ 559 if (!ret && orig_page_huge) 560 collapse_pte_mapped_thp(mm, vaddr); 561 562 return ret; 563 } 564 565 /** 566 * set_swbp - store breakpoint at a given address. 567 * @auprobe: arch specific probepoint information. 568 * @mm: the probed process address space. 569 * @vaddr: the virtual address to insert the opcode. 570 * 571 * For mm @mm, store the breakpoint instruction at @vaddr. 572 * Return 0 (success) or a negative errno. 573 */ 574 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 575 { 576 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 577 } 578 579 /** 580 * set_orig_insn - Restore the original instruction. 581 * @mm: the probed process address space. 582 * @auprobe: arch specific probepoint information. 583 * @vaddr: the virtual address to insert the opcode. 584 * 585 * For mm @mm, restore the original opcode (opcode) at @vaddr. 586 * Return 0 (success) or a negative errno. 587 */ 588 int __weak 589 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 590 { 591 return uprobe_write_opcode(auprobe, mm, vaddr, 592 *(uprobe_opcode_t *)&auprobe->insn); 593 } 594 595 static struct uprobe *get_uprobe(struct uprobe *uprobe) 596 { 597 refcount_inc(&uprobe->ref); 598 return uprobe; 599 } 600 601 static void put_uprobe(struct uprobe *uprobe) 602 { 603 if (refcount_dec_and_test(&uprobe->ref)) { 604 /* 605 * If application munmap(exec_vma) before uprobe_unregister() 606 * gets called, we don't get a chance to remove uprobe from 607 * delayed_uprobe_list from remove_breakpoint(). Do it here. 608 */ 609 mutex_lock(&delayed_uprobe_lock); 610 delayed_uprobe_remove(uprobe, NULL); 611 mutex_unlock(&delayed_uprobe_lock); 612 kfree(uprobe); 613 } 614 } 615 616 static __always_inline 617 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 618 const struct uprobe *r) 619 { 620 if (l_inode < r->inode) 621 return -1; 622 623 if (l_inode > r->inode) 624 return 1; 625 626 if (l_offset < r->offset) 627 return -1; 628 629 if (l_offset > r->offset) 630 return 1; 631 632 return 0; 633 } 634 635 #define __node_2_uprobe(node) \ 636 rb_entry((node), struct uprobe, rb_node) 637 638 struct __uprobe_key { 639 struct inode *inode; 640 loff_t offset; 641 }; 642 643 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 644 { 645 const struct __uprobe_key *a = key; 646 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 647 } 648 649 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 650 { 651 struct uprobe *u = __node_2_uprobe(a); 652 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 653 } 654 655 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 656 { 657 struct __uprobe_key key = { 658 .inode = inode, 659 .offset = offset, 660 }; 661 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key); 662 663 if (node) 664 return get_uprobe(__node_2_uprobe(node)); 665 666 return NULL; 667 } 668 669 /* 670 * Find a uprobe corresponding to a given inode:offset 671 * Acquires uprobes_treelock 672 */ 673 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 674 { 675 struct uprobe *uprobe; 676 677 spin_lock(&uprobes_treelock); 678 uprobe = __find_uprobe(inode, offset); 679 spin_unlock(&uprobes_treelock); 680 681 return uprobe; 682 } 683 684 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 685 { 686 struct rb_node *node; 687 688 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 689 if (node) 690 return get_uprobe(__node_2_uprobe(node)); 691 692 /* get access + creation ref */ 693 refcount_set(&uprobe->ref, 2); 694 return NULL; 695 } 696 697 /* 698 * Acquire uprobes_treelock. 699 * Matching uprobe already exists in rbtree; 700 * increment (access refcount) and return the matching uprobe. 701 * 702 * No matching uprobe; insert the uprobe in rb_tree; 703 * get a double refcount (access + creation) and return NULL. 704 */ 705 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 706 { 707 struct uprobe *u; 708 709 spin_lock(&uprobes_treelock); 710 u = __insert_uprobe(uprobe); 711 spin_unlock(&uprobes_treelock); 712 713 return u; 714 } 715 716 static void 717 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 718 { 719 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 720 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 721 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 722 (unsigned long long) cur_uprobe->ref_ctr_offset, 723 (unsigned long long) uprobe->ref_ctr_offset); 724 } 725 726 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 727 loff_t ref_ctr_offset) 728 { 729 struct uprobe *uprobe, *cur_uprobe; 730 731 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 732 if (!uprobe) 733 return NULL; 734 735 uprobe->inode = inode; 736 uprobe->offset = offset; 737 uprobe->ref_ctr_offset = ref_ctr_offset; 738 init_rwsem(&uprobe->register_rwsem); 739 init_rwsem(&uprobe->consumer_rwsem); 740 741 /* add to uprobes_tree, sorted on inode:offset */ 742 cur_uprobe = insert_uprobe(uprobe); 743 /* a uprobe exists for this inode:offset combination */ 744 if (cur_uprobe) { 745 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 746 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 747 put_uprobe(cur_uprobe); 748 kfree(uprobe); 749 return ERR_PTR(-EINVAL); 750 } 751 kfree(uprobe); 752 uprobe = cur_uprobe; 753 } 754 755 return uprobe; 756 } 757 758 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 759 { 760 down_write(&uprobe->consumer_rwsem); 761 uc->next = uprobe->consumers; 762 uprobe->consumers = uc; 763 up_write(&uprobe->consumer_rwsem); 764 } 765 766 /* 767 * For uprobe @uprobe, delete the consumer @uc. 768 * Return true if the @uc is deleted successfully 769 * or return false. 770 */ 771 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 772 { 773 struct uprobe_consumer **con; 774 bool ret = false; 775 776 down_write(&uprobe->consumer_rwsem); 777 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 778 if (*con == uc) { 779 *con = uc->next; 780 ret = true; 781 break; 782 } 783 } 784 up_write(&uprobe->consumer_rwsem); 785 786 return ret; 787 } 788 789 static int __copy_insn(struct address_space *mapping, struct file *filp, 790 void *insn, int nbytes, loff_t offset) 791 { 792 struct page *page; 793 /* 794 * Ensure that the page that has the original instruction is populated 795 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 796 * see uprobe_register(). 797 */ 798 if (mapping->a_ops->readpage) 799 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 800 else 801 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 802 if (IS_ERR(page)) 803 return PTR_ERR(page); 804 805 copy_from_page(page, offset, insn, nbytes); 806 put_page(page); 807 808 return 0; 809 } 810 811 static int copy_insn(struct uprobe *uprobe, struct file *filp) 812 { 813 struct address_space *mapping = uprobe->inode->i_mapping; 814 loff_t offs = uprobe->offset; 815 void *insn = &uprobe->arch.insn; 816 int size = sizeof(uprobe->arch.insn); 817 int len, err = -EIO; 818 819 /* Copy only available bytes, -EIO if nothing was read */ 820 do { 821 if (offs >= i_size_read(uprobe->inode)) 822 break; 823 824 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 825 err = __copy_insn(mapping, filp, insn, len, offs); 826 if (err) 827 break; 828 829 insn += len; 830 offs += len; 831 size -= len; 832 } while (size); 833 834 return err; 835 } 836 837 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 838 struct mm_struct *mm, unsigned long vaddr) 839 { 840 int ret = 0; 841 842 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 843 return ret; 844 845 /* TODO: move this into _register, until then we abuse this sem. */ 846 down_write(&uprobe->consumer_rwsem); 847 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 848 goto out; 849 850 ret = copy_insn(uprobe, file); 851 if (ret) 852 goto out; 853 854 ret = -ENOTSUPP; 855 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 856 goto out; 857 858 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 859 if (ret) 860 goto out; 861 862 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 863 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 864 865 out: 866 up_write(&uprobe->consumer_rwsem); 867 868 return ret; 869 } 870 871 static inline bool consumer_filter(struct uprobe_consumer *uc, 872 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 873 { 874 return !uc->filter || uc->filter(uc, ctx, mm); 875 } 876 877 static bool filter_chain(struct uprobe *uprobe, 878 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 879 { 880 struct uprobe_consumer *uc; 881 bool ret = false; 882 883 down_read(&uprobe->consumer_rwsem); 884 for (uc = uprobe->consumers; uc; uc = uc->next) { 885 ret = consumer_filter(uc, ctx, mm); 886 if (ret) 887 break; 888 } 889 up_read(&uprobe->consumer_rwsem); 890 891 return ret; 892 } 893 894 static int 895 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 896 struct vm_area_struct *vma, unsigned long vaddr) 897 { 898 bool first_uprobe; 899 int ret; 900 901 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 902 if (ret) 903 return ret; 904 905 /* 906 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 907 * the task can hit this breakpoint right after __replace_page(). 908 */ 909 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 910 if (first_uprobe) 911 set_bit(MMF_HAS_UPROBES, &mm->flags); 912 913 ret = set_swbp(&uprobe->arch, mm, vaddr); 914 if (!ret) 915 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 916 else if (first_uprobe) 917 clear_bit(MMF_HAS_UPROBES, &mm->flags); 918 919 return ret; 920 } 921 922 static int 923 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 924 { 925 set_bit(MMF_RECALC_UPROBES, &mm->flags); 926 return set_orig_insn(&uprobe->arch, mm, vaddr); 927 } 928 929 static inline bool uprobe_is_active(struct uprobe *uprobe) 930 { 931 return !RB_EMPTY_NODE(&uprobe->rb_node); 932 } 933 /* 934 * There could be threads that have already hit the breakpoint. They 935 * will recheck the current insn and restart if find_uprobe() fails. 936 * See find_active_uprobe(). 937 */ 938 static void delete_uprobe(struct uprobe *uprobe) 939 { 940 if (WARN_ON(!uprobe_is_active(uprobe))) 941 return; 942 943 spin_lock(&uprobes_treelock); 944 rb_erase(&uprobe->rb_node, &uprobes_tree); 945 spin_unlock(&uprobes_treelock); 946 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 947 put_uprobe(uprobe); 948 } 949 950 struct map_info { 951 struct map_info *next; 952 struct mm_struct *mm; 953 unsigned long vaddr; 954 }; 955 956 static inline struct map_info *free_map_info(struct map_info *info) 957 { 958 struct map_info *next = info->next; 959 kfree(info); 960 return next; 961 } 962 963 static struct map_info * 964 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 965 { 966 unsigned long pgoff = offset >> PAGE_SHIFT; 967 struct vm_area_struct *vma; 968 struct map_info *curr = NULL; 969 struct map_info *prev = NULL; 970 struct map_info *info; 971 int more = 0; 972 973 again: 974 i_mmap_lock_read(mapping); 975 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 976 if (!valid_vma(vma, is_register)) 977 continue; 978 979 if (!prev && !more) { 980 /* 981 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 982 * reclaim. This is optimistic, no harm done if it fails. 983 */ 984 prev = kmalloc(sizeof(struct map_info), 985 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 986 if (prev) 987 prev->next = NULL; 988 } 989 if (!prev) { 990 more++; 991 continue; 992 } 993 994 if (!mmget_not_zero(vma->vm_mm)) 995 continue; 996 997 info = prev; 998 prev = prev->next; 999 info->next = curr; 1000 curr = info; 1001 1002 info->mm = vma->vm_mm; 1003 info->vaddr = offset_to_vaddr(vma, offset); 1004 } 1005 i_mmap_unlock_read(mapping); 1006 1007 if (!more) 1008 goto out; 1009 1010 prev = curr; 1011 while (curr) { 1012 mmput(curr->mm); 1013 curr = curr->next; 1014 } 1015 1016 do { 1017 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1018 if (!info) { 1019 curr = ERR_PTR(-ENOMEM); 1020 goto out; 1021 } 1022 info->next = prev; 1023 prev = info; 1024 } while (--more); 1025 1026 goto again; 1027 out: 1028 while (prev) 1029 prev = free_map_info(prev); 1030 return curr; 1031 } 1032 1033 static int 1034 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1035 { 1036 bool is_register = !!new; 1037 struct map_info *info; 1038 int err = 0; 1039 1040 percpu_down_write(&dup_mmap_sem); 1041 info = build_map_info(uprobe->inode->i_mapping, 1042 uprobe->offset, is_register); 1043 if (IS_ERR(info)) { 1044 err = PTR_ERR(info); 1045 goto out; 1046 } 1047 1048 while (info) { 1049 struct mm_struct *mm = info->mm; 1050 struct vm_area_struct *vma; 1051 1052 if (err && is_register) 1053 goto free; 1054 1055 mmap_write_lock(mm); 1056 vma = find_vma(mm, info->vaddr); 1057 if (!vma || !valid_vma(vma, is_register) || 1058 file_inode(vma->vm_file) != uprobe->inode) 1059 goto unlock; 1060 1061 if (vma->vm_start > info->vaddr || 1062 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1063 goto unlock; 1064 1065 if (is_register) { 1066 /* consult only the "caller", new consumer. */ 1067 if (consumer_filter(new, 1068 UPROBE_FILTER_REGISTER, mm)) 1069 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1070 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1071 if (!filter_chain(uprobe, 1072 UPROBE_FILTER_UNREGISTER, mm)) 1073 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1074 } 1075 1076 unlock: 1077 mmap_write_unlock(mm); 1078 free: 1079 mmput(mm); 1080 info = free_map_info(info); 1081 } 1082 out: 1083 percpu_up_write(&dup_mmap_sem); 1084 return err; 1085 } 1086 1087 static void 1088 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1089 { 1090 int err; 1091 1092 if (WARN_ON(!consumer_del(uprobe, uc))) 1093 return; 1094 1095 err = register_for_each_vma(uprobe, NULL); 1096 /* TODO : cant unregister? schedule a worker thread */ 1097 if (!uprobe->consumers && !err) 1098 delete_uprobe(uprobe); 1099 } 1100 1101 /* 1102 * uprobe_unregister - unregister an already registered probe. 1103 * @inode: the file in which the probe has to be removed. 1104 * @offset: offset from the start of the file. 1105 * @uc: identify which probe if multiple probes are colocated. 1106 */ 1107 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1108 { 1109 struct uprobe *uprobe; 1110 1111 uprobe = find_uprobe(inode, offset); 1112 if (WARN_ON(!uprobe)) 1113 return; 1114 1115 down_write(&uprobe->register_rwsem); 1116 __uprobe_unregister(uprobe, uc); 1117 up_write(&uprobe->register_rwsem); 1118 put_uprobe(uprobe); 1119 } 1120 EXPORT_SYMBOL_GPL(uprobe_unregister); 1121 1122 /* 1123 * __uprobe_register - register a probe 1124 * @inode: the file in which the probe has to be placed. 1125 * @offset: offset from the start of the file. 1126 * @uc: information on howto handle the probe.. 1127 * 1128 * Apart from the access refcount, __uprobe_register() takes a creation 1129 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1130 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1131 * tuple). Creation refcount stops uprobe_unregister from freeing the 1132 * @uprobe even before the register operation is complete. Creation 1133 * refcount is released when the last @uc for the @uprobe 1134 * unregisters. Caller of __uprobe_register() is required to keep @inode 1135 * (and the containing mount) referenced. 1136 * 1137 * Return errno if it cannot successully install probes 1138 * else return 0 (success) 1139 */ 1140 static int __uprobe_register(struct inode *inode, loff_t offset, 1141 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1142 { 1143 struct uprobe *uprobe; 1144 int ret; 1145 1146 /* Uprobe must have at least one set consumer */ 1147 if (!uc->handler && !uc->ret_handler) 1148 return -EINVAL; 1149 1150 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1151 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 1152 return -EIO; 1153 /* Racy, just to catch the obvious mistakes */ 1154 if (offset > i_size_read(inode)) 1155 return -EINVAL; 1156 1157 /* 1158 * This ensures that copy_from_page(), copy_to_page() and 1159 * __update_ref_ctr() can't cross page boundary. 1160 */ 1161 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1162 return -EINVAL; 1163 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1164 return -EINVAL; 1165 1166 retry: 1167 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1168 if (!uprobe) 1169 return -ENOMEM; 1170 if (IS_ERR(uprobe)) 1171 return PTR_ERR(uprobe); 1172 1173 /* 1174 * We can race with uprobe_unregister()->delete_uprobe(). 1175 * Check uprobe_is_active() and retry if it is false. 1176 */ 1177 down_write(&uprobe->register_rwsem); 1178 ret = -EAGAIN; 1179 if (likely(uprobe_is_active(uprobe))) { 1180 consumer_add(uprobe, uc); 1181 ret = register_for_each_vma(uprobe, uc); 1182 if (ret) 1183 __uprobe_unregister(uprobe, uc); 1184 } 1185 up_write(&uprobe->register_rwsem); 1186 put_uprobe(uprobe); 1187 1188 if (unlikely(ret == -EAGAIN)) 1189 goto retry; 1190 return ret; 1191 } 1192 1193 int uprobe_register(struct inode *inode, loff_t offset, 1194 struct uprobe_consumer *uc) 1195 { 1196 return __uprobe_register(inode, offset, 0, uc); 1197 } 1198 EXPORT_SYMBOL_GPL(uprobe_register); 1199 1200 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1201 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1202 { 1203 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1204 } 1205 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1206 1207 /* 1208 * uprobe_apply - unregister an already registered probe. 1209 * @inode: the file in which the probe has to be removed. 1210 * @offset: offset from the start of the file. 1211 * @uc: consumer which wants to add more or remove some breakpoints 1212 * @add: add or remove the breakpoints 1213 */ 1214 int uprobe_apply(struct inode *inode, loff_t offset, 1215 struct uprobe_consumer *uc, bool add) 1216 { 1217 struct uprobe *uprobe; 1218 struct uprobe_consumer *con; 1219 int ret = -ENOENT; 1220 1221 uprobe = find_uprobe(inode, offset); 1222 if (WARN_ON(!uprobe)) 1223 return ret; 1224 1225 down_write(&uprobe->register_rwsem); 1226 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1227 ; 1228 if (con) 1229 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1230 up_write(&uprobe->register_rwsem); 1231 put_uprobe(uprobe); 1232 1233 return ret; 1234 } 1235 1236 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1237 { 1238 struct vm_area_struct *vma; 1239 int err = 0; 1240 1241 mmap_read_lock(mm); 1242 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1243 unsigned long vaddr; 1244 loff_t offset; 1245 1246 if (!valid_vma(vma, false) || 1247 file_inode(vma->vm_file) != uprobe->inode) 1248 continue; 1249 1250 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1251 if (uprobe->offset < offset || 1252 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1253 continue; 1254 1255 vaddr = offset_to_vaddr(vma, uprobe->offset); 1256 err |= remove_breakpoint(uprobe, mm, vaddr); 1257 } 1258 mmap_read_unlock(mm); 1259 1260 return err; 1261 } 1262 1263 static struct rb_node * 1264 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1265 { 1266 struct rb_node *n = uprobes_tree.rb_node; 1267 1268 while (n) { 1269 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1270 1271 if (inode < u->inode) { 1272 n = n->rb_left; 1273 } else if (inode > u->inode) { 1274 n = n->rb_right; 1275 } else { 1276 if (max < u->offset) 1277 n = n->rb_left; 1278 else if (min > u->offset) 1279 n = n->rb_right; 1280 else 1281 break; 1282 } 1283 } 1284 1285 return n; 1286 } 1287 1288 /* 1289 * For a given range in vma, build a list of probes that need to be inserted. 1290 */ 1291 static void build_probe_list(struct inode *inode, 1292 struct vm_area_struct *vma, 1293 unsigned long start, unsigned long end, 1294 struct list_head *head) 1295 { 1296 loff_t min, max; 1297 struct rb_node *n, *t; 1298 struct uprobe *u; 1299 1300 INIT_LIST_HEAD(head); 1301 min = vaddr_to_offset(vma, start); 1302 max = min + (end - start) - 1; 1303 1304 spin_lock(&uprobes_treelock); 1305 n = find_node_in_range(inode, min, max); 1306 if (n) { 1307 for (t = n; t; t = rb_prev(t)) { 1308 u = rb_entry(t, struct uprobe, rb_node); 1309 if (u->inode != inode || u->offset < min) 1310 break; 1311 list_add(&u->pending_list, head); 1312 get_uprobe(u); 1313 } 1314 for (t = n; (t = rb_next(t)); ) { 1315 u = rb_entry(t, struct uprobe, rb_node); 1316 if (u->inode != inode || u->offset > max) 1317 break; 1318 list_add(&u->pending_list, head); 1319 get_uprobe(u); 1320 } 1321 } 1322 spin_unlock(&uprobes_treelock); 1323 } 1324 1325 /* @vma contains reference counter, not the probed instruction. */ 1326 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1327 { 1328 struct list_head *pos, *q; 1329 struct delayed_uprobe *du; 1330 unsigned long vaddr; 1331 int ret = 0, err = 0; 1332 1333 mutex_lock(&delayed_uprobe_lock); 1334 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1335 du = list_entry(pos, struct delayed_uprobe, list); 1336 1337 if (du->mm != vma->vm_mm || 1338 !valid_ref_ctr_vma(du->uprobe, vma)) 1339 continue; 1340 1341 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1342 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1343 if (ret) { 1344 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1345 if (!err) 1346 err = ret; 1347 } 1348 delayed_uprobe_delete(du); 1349 } 1350 mutex_unlock(&delayed_uprobe_lock); 1351 return err; 1352 } 1353 1354 /* 1355 * Called from mmap_region/vma_adjust with mm->mmap_lock acquired. 1356 * 1357 * Currently we ignore all errors and always return 0, the callers 1358 * can't handle the failure anyway. 1359 */ 1360 int uprobe_mmap(struct vm_area_struct *vma) 1361 { 1362 struct list_head tmp_list; 1363 struct uprobe *uprobe, *u; 1364 struct inode *inode; 1365 1366 if (no_uprobe_events()) 1367 return 0; 1368 1369 if (vma->vm_file && 1370 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1371 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1372 delayed_ref_ctr_inc(vma); 1373 1374 if (!valid_vma(vma, true)) 1375 return 0; 1376 1377 inode = file_inode(vma->vm_file); 1378 if (!inode) 1379 return 0; 1380 1381 mutex_lock(uprobes_mmap_hash(inode)); 1382 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1383 /* 1384 * We can race with uprobe_unregister(), this uprobe can be already 1385 * removed. But in this case filter_chain() must return false, all 1386 * consumers have gone away. 1387 */ 1388 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1389 if (!fatal_signal_pending(current) && 1390 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1391 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1392 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1393 } 1394 put_uprobe(uprobe); 1395 } 1396 mutex_unlock(uprobes_mmap_hash(inode)); 1397 1398 return 0; 1399 } 1400 1401 static bool 1402 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1403 { 1404 loff_t min, max; 1405 struct inode *inode; 1406 struct rb_node *n; 1407 1408 inode = file_inode(vma->vm_file); 1409 1410 min = vaddr_to_offset(vma, start); 1411 max = min + (end - start) - 1; 1412 1413 spin_lock(&uprobes_treelock); 1414 n = find_node_in_range(inode, min, max); 1415 spin_unlock(&uprobes_treelock); 1416 1417 return !!n; 1418 } 1419 1420 /* 1421 * Called in context of a munmap of a vma. 1422 */ 1423 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1424 { 1425 if (no_uprobe_events() || !valid_vma(vma, false)) 1426 return; 1427 1428 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1429 return; 1430 1431 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1432 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1433 return; 1434 1435 if (vma_has_uprobes(vma, start, end)) 1436 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1437 } 1438 1439 /* Slot allocation for XOL */ 1440 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1441 { 1442 struct vm_area_struct *vma; 1443 int ret; 1444 1445 if (mmap_write_lock_killable(mm)) 1446 return -EINTR; 1447 1448 if (mm->uprobes_state.xol_area) { 1449 ret = -EALREADY; 1450 goto fail; 1451 } 1452 1453 if (!area->vaddr) { 1454 /* Try to map as high as possible, this is only a hint. */ 1455 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1456 PAGE_SIZE, 0, 0); 1457 if (IS_ERR_VALUE(area->vaddr)) { 1458 ret = area->vaddr; 1459 goto fail; 1460 } 1461 } 1462 1463 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1464 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1465 &area->xol_mapping); 1466 if (IS_ERR(vma)) { 1467 ret = PTR_ERR(vma); 1468 goto fail; 1469 } 1470 1471 ret = 0; 1472 /* pairs with get_xol_area() */ 1473 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1474 fail: 1475 mmap_write_unlock(mm); 1476 1477 return ret; 1478 } 1479 1480 static struct xol_area *__create_xol_area(unsigned long vaddr) 1481 { 1482 struct mm_struct *mm = current->mm; 1483 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1484 struct xol_area *area; 1485 1486 area = kmalloc(sizeof(*area), GFP_KERNEL); 1487 if (unlikely(!area)) 1488 goto out; 1489 1490 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1491 GFP_KERNEL); 1492 if (!area->bitmap) 1493 goto free_area; 1494 1495 area->xol_mapping.name = "[uprobes]"; 1496 area->xol_mapping.fault = NULL; 1497 area->xol_mapping.pages = area->pages; 1498 area->pages[0] = alloc_page(GFP_HIGHUSER); 1499 if (!area->pages[0]) 1500 goto free_bitmap; 1501 area->pages[1] = NULL; 1502 1503 area->vaddr = vaddr; 1504 init_waitqueue_head(&area->wq); 1505 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1506 set_bit(0, area->bitmap); 1507 atomic_set(&area->slot_count, 1); 1508 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1509 1510 if (!xol_add_vma(mm, area)) 1511 return area; 1512 1513 __free_page(area->pages[0]); 1514 free_bitmap: 1515 kfree(area->bitmap); 1516 free_area: 1517 kfree(area); 1518 out: 1519 return NULL; 1520 } 1521 1522 /* 1523 * get_xol_area - Allocate process's xol_area if necessary. 1524 * This area will be used for storing instructions for execution out of line. 1525 * 1526 * Returns the allocated area or NULL. 1527 */ 1528 static struct xol_area *get_xol_area(void) 1529 { 1530 struct mm_struct *mm = current->mm; 1531 struct xol_area *area; 1532 1533 if (!mm->uprobes_state.xol_area) 1534 __create_xol_area(0); 1535 1536 /* Pairs with xol_add_vma() smp_store_release() */ 1537 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1538 return area; 1539 } 1540 1541 /* 1542 * uprobe_clear_state - Free the area allocated for slots. 1543 */ 1544 void uprobe_clear_state(struct mm_struct *mm) 1545 { 1546 struct xol_area *area = mm->uprobes_state.xol_area; 1547 1548 mutex_lock(&delayed_uprobe_lock); 1549 delayed_uprobe_remove(NULL, mm); 1550 mutex_unlock(&delayed_uprobe_lock); 1551 1552 if (!area) 1553 return; 1554 1555 put_page(area->pages[0]); 1556 kfree(area->bitmap); 1557 kfree(area); 1558 } 1559 1560 void uprobe_start_dup_mmap(void) 1561 { 1562 percpu_down_read(&dup_mmap_sem); 1563 } 1564 1565 void uprobe_end_dup_mmap(void) 1566 { 1567 percpu_up_read(&dup_mmap_sem); 1568 } 1569 1570 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1571 { 1572 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1573 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1574 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1575 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1576 } 1577 } 1578 1579 /* 1580 * - search for a free slot. 1581 */ 1582 static unsigned long xol_take_insn_slot(struct xol_area *area) 1583 { 1584 unsigned long slot_addr; 1585 int slot_nr; 1586 1587 do { 1588 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1589 if (slot_nr < UINSNS_PER_PAGE) { 1590 if (!test_and_set_bit(slot_nr, area->bitmap)) 1591 break; 1592 1593 slot_nr = UINSNS_PER_PAGE; 1594 continue; 1595 } 1596 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1597 } while (slot_nr >= UINSNS_PER_PAGE); 1598 1599 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1600 atomic_inc(&area->slot_count); 1601 1602 return slot_addr; 1603 } 1604 1605 /* 1606 * xol_get_insn_slot - allocate a slot for xol. 1607 * Returns the allocated slot address or 0. 1608 */ 1609 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1610 { 1611 struct xol_area *area; 1612 unsigned long xol_vaddr; 1613 1614 area = get_xol_area(); 1615 if (!area) 1616 return 0; 1617 1618 xol_vaddr = xol_take_insn_slot(area); 1619 if (unlikely(!xol_vaddr)) 1620 return 0; 1621 1622 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1623 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1624 1625 return xol_vaddr; 1626 } 1627 1628 /* 1629 * xol_free_insn_slot - If slot was earlier allocated by 1630 * @xol_get_insn_slot(), make the slot available for 1631 * subsequent requests. 1632 */ 1633 static void xol_free_insn_slot(struct task_struct *tsk) 1634 { 1635 struct xol_area *area; 1636 unsigned long vma_end; 1637 unsigned long slot_addr; 1638 1639 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1640 return; 1641 1642 slot_addr = tsk->utask->xol_vaddr; 1643 if (unlikely(!slot_addr)) 1644 return; 1645 1646 area = tsk->mm->uprobes_state.xol_area; 1647 vma_end = area->vaddr + PAGE_SIZE; 1648 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1649 unsigned long offset; 1650 int slot_nr; 1651 1652 offset = slot_addr - area->vaddr; 1653 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1654 if (slot_nr >= UINSNS_PER_PAGE) 1655 return; 1656 1657 clear_bit(slot_nr, area->bitmap); 1658 atomic_dec(&area->slot_count); 1659 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1660 if (waitqueue_active(&area->wq)) 1661 wake_up(&area->wq); 1662 1663 tsk->utask->xol_vaddr = 0; 1664 } 1665 } 1666 1667 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1668 void *src, unsigned long len) 1669 { 1670 /* Initialize the slot */ 1671 copy_to_page(page, vaddr, src, len); 1672 1673 /* 1674 * We probably need flush_icache_user_page() but it needs vma. 1675 * This should work on most of architectures by default. If 1676 * architecture needs to do something different it can define 1677 * its own version of the function. 1678 */ 1679 flush_dcache_page(page); 1680 } 1681 1682 /** 1683 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1684 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1685 * instruction. 1686 * Return the address of the breakpoint instruction. 1687 */ 1688 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1689 { 1690 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1691 } 1692 1693 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1694 { 1695 struct uprobe_task *utask = current->utask; 1696 1697 if (unlikely(utask && utask->active_uprobe)) 1698 return utask->vaddr; 1699 1700 return instruction_pointer(regs); 1701 } 1702 1703 static struct return_instance *free_ret_instance(struct return_instance *ri) 1704 { 1705 struct return_instance *next = ri->next; 1706 put_uprobe(ri->uprobe); 1707 kfree(ri); 1708 return next; 1709 } 1710 1711 /* 1712 * Called with no locks held. 1713 * Called in context of an exiting or an exec-ing thread. 1714 */ 1715 void uprobe_free_utask(struct task_struct *t) 1716 { 1717 struct uprobe_task *utask = t->utask; 1718 struct return_instance *ri; 1719 1720 if (!utask) 1721 return; 1722 1723 if (utask->active_uprobe) 1724 put_uprobe(utask->active_uprobe); 1725 1726 ri = utask->return_instances; 1727 while (ri) 1728 ri = free_ret_instance(ri); 1729 1730 xol_free_insn_slot(t); 1731 kfree(utask); 1732 t->utask = NULL; 1733 } 1734 1735 /* 1736 * Allocate a uprobe_task object for the task if necessary. 1737 * Called when the thread hits a breakpoint. 1738 * 1739 * Returns: 1740 * - pointer to new uprobe_task on success 1741 * - NULL otherwise 1742 */ 1743 static struct uprobe_task *get_utask(void) 1744 { 1745 if (!current->utask) 1746 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1747 return current->utask; 1748 } 1749 1750 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1751 { 1752 struct uprobe_task *n_utask; 1753 struct return_instance **p, *o, *n; 1754 1755 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1756 if (!n_utask) 1757 return -ENOMEM; 1758 t->utask = n_utask; 1759 1760 p = &n_utask->return_instances; 1761 for (o = o_utask->return_instances; o; o = o->next) { 1762 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1763 if (!n) 1764 return -ENOMEM; 1765 1766 *n = *o; 1767 get_uprobe(n->uprobe); 1768 n->next = NULL; 1769 1770 *p = n; 1771 p = &n->next; 1772 n_utask->depth++; 1773 } 1774 1775 return 0; 1776 } 1777 1778 static void uprobe_warn(struct task_struct *t, const char *msg) 1779 { 1780 pr_warn("uprobe: %s:%d failed to %s\n", 1781 current->comm, current->pid, msg); 1782 } 1783 1784 static void dup_xol_work(struct callback_head *work) 1785 { 1786 if (current->flags & PF_EXITING) 1787 return; 1788 1789 if (!__create_xol_area(current->utask->dup_xol_addr) && 1790 !fatal_signal_pending(current)) 1791 uprobe_warn(current, "dup xol area"); 1792 } 1793 1794 /* 1795 * Called in context of a new clone/fork from copy_process. 1796 */ 1797 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1798 { 1799 struct uprobe_task *utask = current->utask; 1800 struct mm_struct *mm = current->mm; 1801 struct xol_area *area; 1802 1803 t->utask = NULL; 1804 1805 if (!utask || !utask->return_instances) 1806 return; 1807 1808 if (mm == t->mm && !(flags & CLONE_VFORK)) 1809 return; 1810 1811 if (dup_utask(t, utask)) 1812 return uprobe_warn(t, "dup ret instances"); 1813 1814 /* The task can fork() after dup_xol_work() fails */ 1815 area = mm->uprobes_state.xol_area; 1816 if (!area) 1817 return uprobe_warn(t, "dup xol area"); 1818 1819 if (mm == t->mm) 1820 return; 1821 1822 t->utask->dup_xol_addr = area->vaddr; 1823 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1824 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 1825 } 1826 1827 /* 1828 * Current area->vaddr notion assume the trampoline address is always 1829 * equal area->vaddr. 1830 * 1831 * Returns -1 in case the xol_area is not allocated. 1832 */ 1833 static unsigned long get_trampoline_vaddr(void) 1834 { 1835 struct xol_area *area; 1836 unsigned long trampoline_vaddr = -1; 1837 1838 /* Pairs with xol_add_vma() smp_store_release() */ 1839 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1840 if (area) 1841 trampoline_vaddr = area->vaddr; 1842 1843 return trampoline_vaddr; 1844 } 1845 1846 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1847 struct pt_regs *regs) 1848 { 1849 struct return_instance *ri = utask->return_instances; 1850 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1851 1852 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1853 ri = free_ret_instance(ri); 1854 utask->depth--; 1855 } 1856 utask->return_instances = ri; 1857 } 1858 1859 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1860 { 1861 struct return_instance *ri; 1862 struct uprobe_task *utask; 1863 unsigned long orig_ret_vaddr, trampoline_vaddr; 1864 bool chained; 1865 1866 if (!get_xol_area()) 1867 return; 1868 1869 utask = get_utask(); 1870 if (!utask) 1871 return; 1872 1873 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1874 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1875 " nestedness limit pid/tgid=%d/%d\n", 1876 current->pid, current->tgid); 1877 return; 1878 } 1879 1880 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1881 if (!ri) 1882 return; 1883 1884 trampoline_vaddr = get_trampoline_vaddr(); 1885 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1886 if (orig_ret_vaddr == -1) 1887 goto fail; 1888 1889 /* drop the entries invalidated by longjmp() */ 1890 chained = (orig_ret_vaddr == trampoline_vaddr); 1891 cleanup_return_instances(utask, chained, regs); 1892 1893 /* 1894 * We don't want to keep trampoline address in stack, rather keep the 1895 * original return address of first caller thru all the consequent 1896 * instances. This also makes breakpoint unwrapping easier. 1897 */ 1898 if (chained) { 1899 if (!utask->return_instances) { 1900 /* 1901 * This situation is not possible. Likely we have an 1902 * attack from user-space. 1903 */ 1904 uprobe_warn(current, "handle tail call"); 1905 goto fail; 1906 } 1907 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1908 } 1909 1910 ri->uprobe = get_uprobe(uprobe); 1911 ri->func = instruction_pointer(regs); 1912 ri->stack = user_stack_pointer(regs); 1913 ri->orig_ret_vaddr = orig_ret_vaddr; 1914 ri->chained = chained; 1915 1916 utask->depth++; 1917 ri->next = utask->return_instances; 1918 utask->return_instances = ri; 1919 1920 return; 1921 fail: 1922 kfree(ri); 1923 } 1924 1925 /* Prepare to single-step probed instruction out of line. */ 1926 static int 1927 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1928 { 1929 struct uprobe_task *utask; 1930 unsigned long xol_vaddr; 1931 int err; 1932 1933 utask = get_utask(); 1934 if (!utask) 1935 return -ENOMEM; 1936 1937 xol_vaddr = xol_get_insn_slot(uprobe); 1938 if (!xol_vaddr) 1939 return -ENOMEM; 1940 1941 utask->xol_vaddr = xol_vaddr; 1942 utask->vaddr = bp_vaddr; 1943 1944 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1945 if (unlikely(err)) { 1946 xol_free_insn_slot(current); 1947 return err; 1948 } 1949 1950 utask->active_uprobe = uprobe; 1951 utask->state = UTASK_SSTEP; 1952 return 0; 1953 } 1954 1955 /* 1956 * If we are singlestepping, then ensure this thread is not connected to 1957 * non-fatal signals until completion of singlestep. When xol insn itself 1958 * triggers the signal, restart the original insn even if the task is 1959 * already SIGKILL'ed (since coredump should report the correct ip). This 1960 * is even more important if the task has a handler for SIGSEGV/etc, The 1961 * _same_ instruction should be repeated again after return from the signal 1962 * handler, and SSTEP can never finish in this case. 1963 */ 1964 bool uprobe_deny_signal(void) 1965 { 1966 struct task_struct *t = current; 1967 struct uprobe_task *utask = t->utask; 1968 1969 if (likely(!utask || !utask->active_uprobe)) 1970 return false; 1971 1972 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1973 1974 if (task_sigpending(t)) { 1975 spin_lock_irq(&t->sighand->siglock); 1976 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1977 spin_unlock_irq(&t->sighand->siglock); 1978 1979 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1980 utask->state = UTASK_SSTEP_TRAPPED; 1981 set_tsk_thread_flag(t, TIF_UPROBE); 1982 } 1983 } 1984 1985 return true; 1986 } 1987 1988 static void mmf_recalc_uprobes(struct mm_struct *mm) 1989 { 1990 struct vm_area_struct *vma; 1991 1992 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1993 if (!valid_vma(vma, false)) 1994 continue; 1995 /* 1996 * This is not strictly accurate, we can race with 1997 * uprobe_unregister() and see the already removed 1998 * uprobe if delete_uprobe() was not yet called. 1999 * Or this uprobe can be filtered out. 2000 */ 2001 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2002 return; 2003 } 2004 2005 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2006 } 2007 2008 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2009 { 2010 struct page *page; 2011 uprobe_opcode_t opcode; 2012 int result; 2013 2014 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2015 return -EINVAL; 2016 2017 pagefault_disable(); 2018 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2019 pagefault_enable(); 2020 2021 if (likely(result == 0)) 2022 goto out; 2023 2024 /* 2025 * The NULL 'tsk' here ensures that any faults that occur here 2026 * will not be accounted to the task. 'mm' *is* current->mm, 2027 * but we treat this as a 'remote' access since it is 2028 * essentially a kernel access to the memory. 2029 */ 2030 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, 2031 NULL, NULL); 2032 if (result < 0) 2033 return result; 2034 2035 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2036 put_page(page); 2037 out: 2038 /* This needs to return true for any variant of the trap insn */ 2039 return is_trap_insn(&opcode); 2040 } 2041 2042 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2043 { 2044 struct mm_struct *mm = current->mm; 2045 struct uprobe *uprobe = NULL; 2046 struct vm_area_struct *vma; 2047 2048 mmap_read_lock(mm); 2049 vma = find_vma(mm, bp_vaddr); 2050 if (vma && vma->vm_start <= bp_vaddr) { 2051 if (valid_vma(vma, false)) { 2052 struct inode *inode = file_inode(vma->vm_file); 2053 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2054 2055 uprobe = find_uprobe(inode, offset); 2056 } 2057 2058 if (!uprobe) 2059 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2060 } else { 2061 *is_swbp = -EFAULT; 2062 } 2063 2064 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2065 mmf_recalc_uprobes(mm); 2066 mmap_read_unlock(mm); 2067 2068 return uprobe; 2069 } 2070 2071 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2072 { 2073 struct uprobe_consumer *uc; 2074 int remove = UPROBE_HANDLER_REMOVE; 2075 bool need_prep = false; /* prepare return uprobe, when needed */ 2076 2077 down_read(&uprobe->register_rwsem); 2078 for (uc = uprobe->consumers; uc; uc = uc->next) { 2079 int rc = 0; 2080 2081 if (uc->handler) { 2082 rc = uc->handler(uc, regs); 2083 WARN(rc & ~UPROBE_HANDLER_MASK, 2084 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2085 } 2086 2087 if (uc->ret_handler) 2088 need_prep = true; 2089 2090 remove &= rc; 2091 } 2092 2093 if (need_prep && !remove) 2094 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2095 2096 if (remove && uprobe->consumers) { 2097 WARN_ON(!uprobe_is_active(uprobe)); 2098 unapply_uprobe(uprobe, current->mm); 2099 } 2100 up_read(&uprobe->register_rwsem); 2101 } 2102 2103 static void 2104 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2105 { 2106 struct uprobe *uprobe = ri->uprobe; 2107 struct uprobe_consumer *uc; 2108 2109 down_read(&uprobe->register_rwsem); 2110 for (uc = uprobe->consumers; uc; uc = uc->next) { 2111 if (uc->ret_handler) 2112 uc->ret_handler(uc, ri->func, regs); 2113 } 2114 up_read(&uprobe->register_rwsem); 2115 } 2116 2117 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2118 { 2119 bool chained; 2120 2121 do { 2122 chained = ri->chained; 2123 ri = ri->next; /* can't be NULL if chained */ 2124 } while (chained); 2125 2126 return ri; 2127 } 2128 2129 static void handle_trampoline(struct pt_regs *regs) 2130 { 2131 struct uprobe_task *utask; 2132 struct return_instance *ri, *next; 2133 bool valid; 2134 2135 utask = current->utask; 2136 if (!utask) 2137 goto sigill; 2138 2139 ri = utask->return_instances; 2140 if (!ri) 2141 goto sigill; 2142 2143 do { 2144 /* 2145 * We should throw out the frames invalidated by longjmp(). 2146 * If this chain is valid, then the next one should be alive 2147 * or NULL; the latter case means that nobody but ri->func 2148 * could hit this trampoline on return. TODO: sigaltstack(). 2149 */ 2150 next = find_next_ret_chain(ri); 2151 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2152 2153 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2154 do { 2155 if (valid) 2156 handle_uretprobe_chain(ri, regs); 2157 ri = free_ret_instance(ri); 2158 utask->depth--; 2159 } while (ri != next); 2160 } while (!valid); 2161 2162 utask->return_instances = ri; 2163 return; 2164 2165 sigill: 2166 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2167 force_sig(SIGILL); 2168 2169 } 2170 2171 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2172 { 2173 return false; 2174 } 2175 2176 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2177 struct pt_regs *regs) 2178 { 2179 return true; 2180 } 2181 2182 /* 2183 * Run handler and ask thread to singlestep. 2184 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2185 */ 2186 static void handle_swbp(struct pt_regs *regs) 2187 { 2188 struct uprobe *uprobe; 2189 unsigned long bp_vaddr; 2190 int is_swbp; 2191 2192 bp_vaddr = uprobe_get_swbp_addr(regs); 2193 if (bp_vaddr == get_trampoline_vaddr()) 2194 return handle_trampoline(regs); 2195 2196 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2197 if (!uprobe) { 2198 if (is_swbp > 0) { 2199 /* No matching uprobe; signal SIGTRAP. */ 2200 force_sig(SIGTRAP); 2201 } else { 2202 /* 2203 * Either we raced with uprobe_unregister() or we can't 2204 * access this memory. The latter is only possible if 2205 * another thread plays with our ->mm. In both cases 2206 * we can simply restart. If this vma was unmapped we 2207 * can pretend this insn was not executed yet and get 2208 * the (correct) SIGSEGV after restart. 2209 */ 2210 instruction_pointer_set(regs, bp_vaddr); 2211 } 2212 return; 2213 } 2214 2215 /* change it in advance for ->handler() and restart */ 2216 instruction_pointer_set(regs, bp_vaddr); 2217 2218 /* 2219 * TODO: move copy_insn/etc into _register and remove this hack. 2220 * After we hit the bp, _unregister + _register can install the 2221 * new and not-yet-analyzed uprobe at the same address, restart. 2222 */ 2223 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2224 goto out; 2225 2226 /* 2227 * Pairs with the smp_wmb() in prepare_uprobe(). 2228 * 2229 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2230 * we must also see the stores to &uprobe->arch performed by the 2231 * prepare_uprobe() call. 2232 */ 2233 smp_rmb(); 2234 2235 /* Tracing handlers use ->utask to communicate with fetch methods */ 2236 if (!get_utask()) 2237 goto out; 2238 2239 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2240 goto out; 2241 2242 handler_chain(uprobe, regs); 2243 2244 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2245 goto out; 2246 2247 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2248 return; 2249 2250 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2251 out: 2252 put_uprobe(uprobe); 2253 } 2254 2255 /* 2256 * Perform required fix-ups and disable singlestep. 2257 * Allow pending signals to take effect. 2258 */ 2259 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2260 { 2261 struct uprobe *uprobe; 2262 int err = 0; 2263 2264 uprobe = utask->active_uprobe; 2265 if (utask->state == UTASK_SSTEP_ACK) 2266 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2267 else if (utask->state == UTASK_SSTEP_TRAPPED) 2268 arch_uprobe_abort_xol(&uprobe->arch, regs); 2269 else 2270 WARN_ON_ONCE(1); 2271 2272 put_uprobe(uprobe); 2273 utask->active_uprobe = NULL; 2274 utask->state = UTASK_RUNNING; 2275 xol_free_insn_slot(current); 2276 2277 spin_lock_irq(¤t->sighand->siglock); 2278 recalc_sigpending(); /* see uprobe_deny_signal() */ 2279 spin_unlock_irq(¤t->sighand->siglock); 2280 2281 if (unlikely(err)) { 2282 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2283 force_sig(SIGILL); 2284 } 2285 } 2286 2287 /* 2288 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2289 * allows the thread to return from interrupt. After that handle_swbp() 2290 * sets utask->active_uprobe. 2291 * 2292 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2293 * and allows the thread to return from interrupt. 2294 * 2295 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2296 * uprobe_notify_resume(). 2297 */ 2298 void uprobe_notify_resume(struct pt_regs *regs) 2299 { 2300 struct uprobe_task *utask; 2301 2302 clear_thread_flag(TIF_UPROBE); 2303 2304 utask = current->utask; 2305 if (utask && utask->active_uprobe) 2306 handle_singlestep(utask, regs); 2307 else 2308 handle_swbp(regs); 2309 } 2310 2311 /* 2312 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2313 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2314 */ 2315 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2316 { 2317 if (!current->mm) 2318 return 0; 2319 2320 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2321 (!current->utask || !current->utask->return_instances)) 2322 return 0; 2323 2324 set_thread_flag(TIF_UPROBE); 2325 return 1; 2326 } 2327 2328 /* 2329 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2330 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2331 */ 2332 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2333 { 2334 struct uprobe_task *utask = current->utask; 2335 2336 if (!current->mm || !utask || !utask->active_uprobe) 2337 /* task is currently not uprobed */ 2338 return 0; 2339 2340 utask->state = UTASK_SSTEP_ACK; 2341 set_thread_flag(TIF_UPROBE); 2342 return 1; 2343 } 2344 2345 static struct notifier_block uprobe_exception_nb = { 2346 .notifier_call = arch_uprobe_exception_notify, 2347 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2348 }; 2349 2350 void __init uprobes_init(void) 2351 { 2352 int i; 2353 2354 for (i = 0; i < UPROBES_HASH_SZ; i++) 2355 mutex_init(&uprobes_mmap_mutex[i]); 2356 2357 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2358 } 2359