xref: /openbmc/linux/kernel/events/uprobes.c (revision 45fe9262)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* try_to_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include "../../mm/internal.h"	/* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30 
31 #include <linux/uprobes.h>
32 
33 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
35 
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
42 
43 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
44 
45 #define UPROBES_HASH_SZ	13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49 
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51 
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN	0
54 
55 struct uprobe {
56 	struct rb_node		rb_node;	/* node in the rb tree */
57 	refcount_t		ref;
58 	struct rw_semaphore	register_rwsem;
59 	struct rw_semaphore	consumer_rwsem;
60 	struct list_head	pending_list;
61 	struct uprobe_consumer	*consumers;
62 	struct inode		*inode;		/* Also hold a ref to inode */
63 	loff_t			offset;
64 	loff_t			ref_ctr_offset;
65 	unsigned long		flags;
66 
67 	/*
68 	 * The generic code assumes that it has two members of unknown type
69 	 * owned by the arch-specific code:
70 	 *
71 	 * 	insn -	copy_insn() saves the original instruction here for
72 	 *		arch_uprobe_analyze_insn().
73 	 *
74 	 *	ixol -	potentially modified instruction to execute out of
75 	 *		line, copied to xol_area by xol_get_insn_slot().
76 	 */
77 	struct arch_uprobe	arch;
78 };
79 
80 struct delayed_uprobe {
81 	struct list_head list;
82 	struct uprobe *uprobe;
83 	struct mm_struct *mm;
84 };
85 
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 				struct page *old_page, struct page *new_page)
156 {
157 	struct mm_struct *mm = vma->vm_mm;
158 	struct page_vma_mapped_walk pvmw = {
159 		.page = compound_head(old_page),
160 		.vma = vma,
161 		.address = addr,
162 	};
163 	int err;
164 	struct mmu_notifier_range range;
165 
166 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167 				addr + PAGE_SIZE);
168 
169 	if (new_page) {
170 		err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
171 		if (err)
172 			return err;
173 	}
174 
175 	/* For try_to_free_swap() and munlock_vma_page() below */
176 	lock_page(old_page);
177 
178 	mmu_notifier_invalidate_range_start(&range);
179 	err = -EAGAIN;
180 	if (!page_vma_mapped_walk(&pvmw))
181 		goto unlock;
182 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183 
184 	if (new_page) {
185 		get_page(new_page);
186 		page_add_new_anon_rmap(new_page, vma, addr, false);
187 		lru_cache_add_inactive_or_unevictable(new_page, vma);
188 	} else
189 		/* no new page, just dec_mm_counter for old_page */
190 		dec_mm_counter(mm, MM_ANONPAGES);
191 
192 	if (!PageAnon(old_page)) {
193 		dec_mm_counter(mm, mm_counter_file(old_page));
194 		inc_mm_counter(mm, MM_ANONPAGES);
195 	}
196 
197 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
199 	if (new_page)
200 		set_pte_at_notify(mm, addr, pvmw.pte,
201 				  mk_pte(new_page, vma->vm_page_prot));
202 
203 	page_remove_rmap(old_page, false);
204 	if (!page_mapped(old_page))
205 		try_to_free_swap(old_page);
206 	page_vma_mapped_walk_done(&pvmw);
207 
208 	if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page))
209 		munlock_vma_page(old_page);
210 	put_page(old_page);
211 
212 	err = 0;
213  unlock:
214 	mmu_notifier_invalidate_range_end(&range);
215 	unlock_page(old_page);
216 	return err;
217 }
218 
219 /**
220  * is_swbp_insn - check if instruction is breakpoint instruction.
221  * @insn: instruction to be checked.
222  * Default implementation of is_swbp_insn
223  * Returns true if @insn is a breakpoint instruction.
224  */
225 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
226 {
227 	return *insn == UPROBE_SWBP_INSN;
228 }
229 
230 /**
231  * is_trap_insn - check if instruction is breakpoint instruction.
232  * @insn: instruction to be checked.
233  * Default implementation of is_trap_insn
234  * Returns true if @insn is a breakpoint instruction.
235  *
236  * This function is needed for the case where an architecture has multiple
237  * trap instructions (like powerpc).
238  */
239 bool __weak is_trap_insn(uprobe_opcode_t *insn)
240 {
241 	return is_swbp_insn(insn);
242 }
243 
244 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
245 {
246 	void *kaddr = kmap_atomic(page);
247 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
248 	kunmap_atomic(kaddr);
249 }
250 
251 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
252 {
253 	void *kaddr = kmap_atomic(page);
254 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
255 	kunmap_atomic(kaddr);
256 }
257 
258 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
259 {
260 	uprobe_opcode_t old_opcode;
261 	bool is_swbp;
262 
263 	/*
264 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
265 	 * We do not check if it is any other 'trap variant' which could
266 	 * be conditional trap instruction such as the one powerpc supports.
267 	 *
268 	 * The logic is that we do not care if the underlying instruction
269 	 * is a trap variant; uprobes always wins over any other (gdb)
270 	 * breakpoint.
271 	 */
272 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
273 	is_swbp = is_swbp_insn(&old_opcode);
274 
275 	if (is_swbp_insn(new_opcode)) {
276 		if (is_swbp)		/* register: already installed? */
277 			return 0;
278 	} else {
279 		if (!is_swbp)		/* unregister: was it changed by us? */
280 			return 0;
281 	}
282 
283 	return 1;
284 }
285 
286 static struct delayed_uprobe *
287 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
288 {
289 	struct delayed_uprobe *du;
290 
291 	list_for_each_entry(du, &delayed_uprobe_list, list)
292 		if (du->uprobe == uprobe && du->mm == mm)
293 			return du;
294 	return NULL;
295 }
296 
297 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
298 {
299 	struct delayed_uprobe *du;
300 
301 	if (delayed_uprobe_check(uprobe, mm))
302 		return 0;
303 
304 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
305 	if (!du)
306 		return -ENOMEM;
307 
308 	du->uprobe = uprobe;
309 	du->mm = mm;
310 	list_add(&du->list, &delayed_uprobe_list);
311 	return 0;
312 }
313 
314 static void delayed_uprobe_delete(struct delayed_uprobe *du)
315 {
316 	if (WARN_ON(!du))
317 		return;
318 	list_del(&du->list);
319 	kfree(du);
320 }
321 
322 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
323 {
324 	struct list_head *pos, *q;
325 	struct delayed_uprobe *du;
326 
327 	if (!uprobe && !mm)
328 		return;
329 
330 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
331 		du = list_entry(pos, struct delayed_uprobe, list);
332 
333 		if (uprobe && du->uprobe != uprobe)
334 			continue;
335 		if (mm && du->mm != mm)
336 			continue;
337 
338 		delayed_uprobe_delete(du);
339 	}
340 }
341 
342 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
343 			      struct vm_area_struct *vma)
344 {
345 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
346 
347 	return uprobe->ref_ctr_offset &&
348 		vma->vm_file &&
349 		file_inode(vma->vm_file) == uprobe->inode &&
350 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
351 		vma->vm_start <= vaddr &&
352 		vma->vm_end > vaddr;
353 }
354 
355 static struct vm_area_struct *
356 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
357 {
358 	struct vm_area_struct *tmp;
359 
360 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
361 		if (valid_ref_ctr_vma(uprobe, tmp))
362 			return tmp;
363 
364 	return NULL;
365 }
366 
367 static int
368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
369 {
370 	void *kaddr;
371 	struct page *page;
372 	struct vm_area_struct *vma;
373 	int ret;
374 	short *ptr;
375 
376 	if (!vaddr || !d)
377 		return -EINVAL;
378 
379 	ret = get_user_pages_remote(mm, vaddr, 1,
380 			FOLL_WRITE, &page, &vma, NULL);
381 	if (unlikely(ret <= 0)) {
382 		/*
383 		 * We are asking for 1 page. If get_user_pages_remote() fails,
384 		 * it may return 0, in that case we have to return error.
385 		 */
386 		return ret == 0 ? -EBUSY : ret;
387 	}
388 
389 	kaddr = kmap_atomic(page);
390 	ptr = kaddr + (vaddr & ~PAGE_MASK);
391 
392 	if (unlikely(*ptr + d < 0)) {
393 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
394 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
395 		ret = -EINVAL;
396 		goto out;
397 	}
398 
399 	*ptr += d;
400 	ret = 0;
401 out:
402 	kunmap_atomic(kaddr);
403 	put_page(page);
404 	return ret;
405 }
406 
407 static void update_ref_ctr_warn(struct uprobe *uprobe,
408 				struct mm_struct *mm, short d)
409 {
410 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
411 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
412 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
413 		(unsigned long long) uprobe->offset,
414 		(unsigned long long) uprobe->ref_ctr_offset, mm);
415 }
416 
417 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
418 			  short d)
419 {
420 	struct vm_area_struct *rc_vma;
421 	unsigned long rc_vaddr;
422 	int ret = 0;
423 
424 	rc_vma = find_ref_ctr_vma(uprobe, mm);
425 
426 	if (rc_vma) {
427 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
428 		ret = __update_ref_ctr(mm, rc_vaddr, d);
429 		if (ret)
430 			update_ref_ctr_warn(uprobe, mm, d);
431 
432 		if (d > 0)
433 			return ret;
434 	}
435 
436 	mutex_lock(&delayed_uprobe_lock);
437 	if (d > 0)
438 		ret = delayed_uprobe_add(uprobe, mm);
439 	else
440 		delayed_uprobe_remove(uprobe, mm);
441 	mutex_unlock(&delayed_uprobe_lock);
442 
443 	return ret;
444 }
445 
446 /*
447  * NOTE:
448  * Expect the breakpoint instruction to be the smallest size instruction for
449  * the architecture. If an arch has variable length instruction and the
450  * breakpoint instruction is not of the smallest length instruction
451  * supported by that architecture then we need to modify is_trap_at_addr and
452  * uprobe_write_opcode accordingly. This would never be a problem for archs
453  * that have fixed length instructions.
454  *
455  * uprobe_write_opcode - write the opcode at a given virtual address.
456  * @mm: the probed process address space.
457  * @vaddr: the virtual address to store the opcode.
458  * @opcode: opcode to be written at @vaddr.
459  *
460  * Called with mm->mmap_lock held for write.
461  * Return 0 (success) or a negative errno.
462  */
463 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
464 			unsigned long vaddr, uprobe_opcode_t opcode)
465 {
466 	struct uprobe *uprobe;
467 	struct page *old_page, *new_page;
468 	struct vm_area_struct *vma;
469 	int ret, is_register, ref_ctr_updated = 0;
470 	bool orig_page_huge = false;
471 	unsigned int gup_flags = FOLL_FORCE;
472 
473 	is_register = is_swbp_insn(&opcode);
474 	uprobe = container_of(auprobe, struct uprobe, arch);
475 
476 retry:
477 	if (is_register)
478 		gup_flags |= FOLL_SPLIT_PMD;
479 	/* Read the page with vaddr into memory */
480 	ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
481 				    &old_page, &vma, NULL);
482 	if (ret <= 0)
483 		return ret;
484 
485 	ret = verify_opcode(old_page, vaddr, &opcode);
486 	if (ret <= 0)
487 		goto put_old;
488 
489 	if (WARN(!is_register && PageCompound(old_page),
490 		 "uprobe unregister should never work on compound page\n")) {
491 		ret = -EINVAL;
492 		goto put_old;
493 	}
494 
495 	/* We are going to replace instruction, update ref_ctr. */
496 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
497 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
498 		if (ret)
499 			goto put_old;
500 
501 		ref_ctr_updated = 1;
502 	}
503 
504 	ret = 0;
505 	if (!is_register && !PageAnon(old_page))
506 		goto put_old;
507 
508 	ret = anon_vma_prepare(vma);
509 	if (ret)
510 		goto put_old;
511 
512 	ret = -ENOMEM;
513 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
514 	if (!new_page)
515 		goto put_old;
516 
517 	__SetPageUptodate(new_page);
518 	copy_highpage(new_page, old_page);
519 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
520 
521 	if (!is_register) {
522 		struct page *orig_page;
523 		pgoff_t index;
524 
525 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
526 
527 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
528 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
529 					  index);
530 
531 		if (orig_page) {
532 			if (PageUptodate(orig_page) &&
533 			    pages_identical(new_page, orig_page)) {
534 				/* let go new_page */
535 				put_page(new_page);
536 				new_page = NULL;
537 
538 				if (PageCompound(orig_page))
539 					orig_page_huge = true;
540 			}
541 			put_page(orig_page);
542 		}
543 	}
544 
545 	ret = __replace_page(vma, vaddr, old_page, new_page);
546 	if (new_page)
547 		put_page(new_page);
548 put_old:
549 	put_page(old_page);
550 
551 	if (unlikely(ret == -EAGAIN))
552 		goto retry;
553 
554 	/* Revert back reference counter if instruction update failed. */
555 	if (ret && is_register && ref_ctr_updated)
556 		update_ref_ctr(uprobe, mm, -1);
557 
558 	/* try collapse pmd for compound page */
559 	if (!ret && orig_page_huge)
560 		collapse_pte_mapped_thp(mm, vaddr);
561 
562 	return ret;
563 }
564 
565 /**
566  * set_swbp - store breakpoint at a given address.
567  * @auprobe: arch specific probepoint information.
568  * @mm: the probed process address space.
569  * @vaddr: the virtual address to insert the opcode.
570  *
571  * For mm @mm, store the breakpoint instruction at @vaddr.
572  * Return 0 (success) or a negative errno.
573  */
574 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
575 {
576 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
577 }
578 
579 /**
580  * set_orig_insn - Restore the original instruction.
581  * @mm: the probed process address space.
582  * @auprobe: arch specific probepoint information.
583  * @vaddr: the virtual address to insert the opcode.
584  *
585  * For mm @mm, restore the original opcode (opcode) at @vaddr.
586  * Return 0 (success) or a negative errno.
587  */
588 int __weak
589 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
590 {
591 	return uprobe_write_opcode(auprobe, mm, vaddr,
592 			*(uprobe_opcode_t *)&auprobe->insn);
593 }
594 
595 static struct uprobe *get_uprobe(struct uprobe *uprobe)
596 {
597 	refcount_inc(&uprobe->ref);
598 	return uprobe;
599 }
600 
601 static void put_uprobe(struct uprobe *uprobe)
602 {
603 	if (refcount_dec_and_test(&uprobe->ref)) {
604 		/*
605 		 * If application munmap(exec_vma) before uprobe_unregister()
606 		 * gets called, we don't get a chance to remove uprobe from
607 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
608 		 */
609 		mutex_lock(&delayed_uprobe_lock);
610 		delayed_uprobe_remove(uprobe, NULL);
611 		mutex_unlock(&delayed_uprobe_lock);
612 		kfree(uprobe);
613 	}
614 }
615 
616 static int match_uprobe(struct uprobe *l, struct uprobe *r)
617 {
618 	if (l->inode < r->inode)
619 		return -1;
620 
621 	if (l->inode > r->inode)
622 		return 1;
623 
624 	if (l->offset < r->offset)
625 		return -1;
626 
627 	if (l->offset > r->offset)
628 		return 1;
629 
630 	return 0;
631 }
632 
633 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
634 {
635 	struct uprobe u = { .inode = inode, .offset = offset };
636 	struct rb_node *n = uprobes_tree.rb_node;
637 	struct uprobe *uprobe;
638 	int match;
639 
640 	while (n) {
641 		uprobe = rb_entry(n, struct uprobe, rb_node);
642 		match = match_uprobe(&u, uprobe);
643 		if (!match)
644 			return get_uprobe(uprobe);
645 
646 		if (match < 0)
647 			n = n->rb_left;
648 		else
649 			n = n->rb_right;
650 	}
651 	return NULL;
652 }
653 
654 /*
655  * Find a uprobe corresponding to a given inode:offset
656  * Acquires uprobes_treelock
657  */
658 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
659 {
660 	struct uprobe *uprobe;
661 
662 	spin_lock(&uprobes_treelock);
663 	uprobe = __find_uprobe(inode, offset);
664 	spin_unlock(&uprobes_treelock);
665 
666 	return uprobe;
667 }
668 
669 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
670 {
671 	struct rb_node **p = &uprobes_tree.rb_node;
672 	struct rb_node *parent = NULL;
673 	struct uprobe *u;
674 	int match;
675 
676 	while (*p) {
677 		parent = *p;
678 		u = rb_entry(parent, struct uprobe, rb_node);
679 		match = match_uprobe(uprobe, u);
680 		if (!match)
681 			return get_uprobe(u);
682 
683 		if (match < 0)
684 			p = &parent->rb_left;
685 		else
686 			p = &parent->rb_right;
687 
688 	}
689 
690 	u = NULL;
691 	rb_link_node(&uprobe->rb_node, parent, p);
692 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
693 	/* get access + creation ref */
694 	refcount_set(&uprobe->ref, 2);
695 
696 	return u;
697 }
698 
699 /*
700  * Acquire uprobes_treelock.
701  * Matching uprobe already exists in rbtree;
702  *	increment (access refcount) and return the matching uprobe.
703  *
704  * No matching uprobe; insert the uprobe in rb_tree;
705  *	get a double refcount (access + creation) and return NULL.
706  */
707 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
708 {
709 	struct uprobe *u;
710 
711 	spin_lock(&uprobes_treelock);
712 	u = __insert_uprobe(uprobe);
713 	spin_unlock(&uprobes_treelock);
714 
715 	return u;
716 }
717 
718 static void
719 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
720 {
721 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
722 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
723 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
724 		(unsigned long long) cur_uprobe->ref_ctr_offset,
725 		(unsigned long long) uprobe->ref_ctr_offset);
726 }
727 
728 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
729 				   loff_t ref_ctr_offset)
730 {
731 	struct uprobe *uprobe, *cur_uprobe;
732 
733 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
734 	if (!uprobe)
735 		return NULL;
736 
737 	uprobe->inode = inode;
738 	uprobe->offset = offset;
739 	uprobe->ref_ctr_offset = ref_ctr_offset;
740 	init_rwsem(&uprobe->register_rwsem);
741 	init_rwsem(&uprobe->consumer_rwsem);
742 
743 	/* add to uprobes_tree, sorted on inode:offset */
744 	cur_uprobe = insert_uprobe(uprobe);
745 	/* a uprobe exists for this inode:offset combination */
746 	if (cur_uprobe) {
747 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
748 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
749 			put_uprobe(cur_uprobe);
750 			kfree(uprobe);
751 			return ERR_PTR(-EINVAL);
752 		}
753 		kfree(uprobe);
754 		uprobe = cur_uprobe;
755 	}
756 
757 	return uprobe;
758 }
759 
760 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
761 {
762 	down_write(&uprobe->consumer_rwsem);
763 	uc->next = uprobe->consumers;
764 	uprobe->consumers = uc;
765 	up_write(&uprobe->consumer_rwsem);
766 }
767 
768 /*
769  * For uprobe @uprobe, delete the consumer @uc.
770  * Return true if the @uc is deleted successfully
771  * or return false.
772  */
773 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
774 {
775 	struct uprobe_consumer **con;
776 	bool ret = false;
777 
778 	down_write(&uprobe->consumer_rwsem);
779 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
780 		if (*con == uc) {
781 			*con = uc->next;
782 			ret = true;
783 			break;
784 		}
785 	}
786 	up_write(&uprobe->consumer_rwsem);
787 
788 	return ret;
789 }
790 
791 static int __copy_insn(struct address_space *mapping, struct file *filp,
792 			void *insn, int nbytes, loff_t offset)
793 {
794 	struct page *page;
795 	/*
796 	 * Ensure that the page that has the original instruction is populated
797 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
798 	 * see uprobe_register().
799 	 */
800 	if (mapping->a_ops->readpage)
801 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
802 	else
803 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
804 	if (IS_ERR(page))
805 		return PTR_ERR(page);
806 
807 	copy_from_page(page, offset, insn, nbytes);
808 	put_page(page);
809 
810 	return 0;
811 }
812 
813 static int copy_insn(struct uprobe *uprobe, struct file *filp)
814 {
815 	struct address_space *mapping = uprobe->inode->i_mapping;
816 	loff_t offs = uprobe->offset;
817 	void *insn = &uprobe->arch.insn;
818 	int size = sizeof(uprobe->arch.insn);
819 	int len, err = -EIO;
820 
821 	/* Copy only available bytes, -EIO if nothing was read */
822 	do {
823 		if (offs >= i_size_read(uprobe->inode))
824 			break;
825 
826 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
827 		err = __copy_insn(mapping, filp, insn, len, offs);
828 		if (err)
829 			break;
830 
831 		insn += len;
832 		offs += len;
833 		size -= len;
834 	} while (size);
835 
836 	return err;
837 }
838 
839 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
840 				struct mm_struct *mm, unsigned long vaddr)
841 {
842 	int ret = 0;
843 
844 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
845 		return ret;
846 
847 	/* TODO: move this into _register, until then we abuse this sem. */
848 	down_write(&uprobe->consumer_rwsem);
849 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
850 		goto out;
851 
852 	ret = copy_insn(uprobe, file);
853 	if (ret)
854 		goto out;
855 
856 	ret = -ENOTSUPP;
857 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
858 		goto out;
859 
860 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
861 	if (ret)
862 		goto out;
863 
864 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
865 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
866 
867  out:
868 	up_write(&uprobe->consumer_rwsem);
869 
870 	return ret;
871 }
872 
873 static inline bool consumer_filter(struct uprobe_consumer *uc,
874 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
875 {
876 	return !uc->filter || uc->filter(uc, ctx, mm);
877 }
878 
879 static bool filter_chain(struct uprobe *uprobe,
880 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
881 {
882 	struct uprobe_consumer *uc;
883 	bool ret = false;
884 
885 	down_read(&uprobe->consumer_rwsem);
886 	for (uc = uprobe->consumers; uc; uc = uc->next) {
887 		ret = consumer_filter(uc, ctx, mm);
888 		if (ret)
889 			break;
890 	}
891 	up_read(&uprobe->consumer_rwsem);
892 
893 	return ret;
894 }
895 
896 static int
897 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
898 			struct vm_area_struct *vma, unsigned long vaddr)
899 {
900 	bool first_uprobe;
901 	int ret;
902 
903 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
904 	if (ret)
905 		return ret;
906 
907 	/*
908 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
909 	 * the task can hit this breakpoint right after __replace_page().
910 	 */
911 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
912 	if (first_uprobe)
913 		set_bit(MMF_HAS_UPROBES, &mm->flags);
914 
915 	ret = set_swbp(&uprobe->arch, mm, vaddr);
916 	if (!ret)
917 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
918 	else if (first_uprobe)
919 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
920 
921 	return ret;
922 }
923 
924 static int
925 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
926 {
927 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
928 	return set_orig_insn(&uprobe->arch, mm, vaddr);
929 }
930 
931 static inline bool uprobe_is_active(struct uprobe *uprobe)
932 {
933 	return !RB_EMPTY_NODE(&uprobe->rb_node);
934 }
935 /*
936  * There could be threads that have already hit the breakpoint. They
937  * will recheck the current insn and restart if find_uprobe() fails.
938  * See find_active_uprobe().
939  */
940 static void delete_uprobe(struct uprobe *uprobe)
941 {
942 	if (WARN_ON(!uprobe_is_active(uprobe)))
943 		return;
944 
945 	spin_lock(&uprobes_treelock);
946 	rb_erase(&uprobe->rb_node, &uprobes_tree);
947 	spin_unlock(&uprobes_treelock);
948 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
949 	put_uprobe(uprobe);
950 }
951 
952 struct map_info {
953 	struct map_info *next;
954 	struct mm_struct *mm;
955 	unsigned long vaddr;
956 };
957 
958 static inline struct map_info *free_map_info(struct map_info *info)
959 {
960 	struct map_info *next = info->next;
961 	kfree(info);
962 	return next;
963 }
964 
965 static struct map_info *
966 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
967 {
968 	unsigned long pgoff = offset >> PAGE_SHIFT;
969 	struct vm_area_struct *vma;
970 	struct map_info *curr = NULL;
971 	struct map_info *prev = NULL;
972 	struct map_info *info;
973 	int more = 0;
974 
975  again:
976 	i_mmap_lock_read(mapping);
977 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
978 		if (!valid_vma(vma, is_register))
979 			continue;
980 
981 		if (!prev && !more) {
982 			/*
983 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
984 			 * reclaim. This is optimistic, no harm done if it fails.
985 			 */
986 			prev = kmalloc(sizeof(struct map_info),
987 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
988 			if (prev)
989 				prev->next = NULL;
990 		}
991 		if (!prev) {
992 			more++;
993 			continue;
994 		}
995 
996 		if (!mmget_not_zero(vma->vm_mm))
997 			continue;
998 
999 		info = prev;
1000 		prev = prev->next;
1001 		info->next = curr;
1002 		curr = info;
1003 
1004 		info->mm = vma->vm_mm;
1005 		info->vaddr = offset_to_vaddr(vma, offset);
1006 	}
1007 	i_mmap_unlock_read(mapping);
1008 
1009 	if (!more)
1010 		goto out;
1011 
1012 	prev = curr;
1013 	while (curr) {
1014 		mmput(curr->mm);
1015 		curr = curr->next;
1016 	}
1017 
1018 	do {
1019 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1020 		if (!info) {
1021 			curr = ERR_PTR(-ENOMEM);
1022 			goto out;
1023 		}
1024 		info->next = prev;
1025 		prev = info;
1026 	} while (--more);
1027 
1028 	goto again;
1029  out:
1030 	while (prev)
1031 		prev = free_map_info(prev);
1032 	return curr;
1033 }
1034 
1035 static int
1036 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1037 {
1038 	bool is_register = !!new;
1039 	struct map_info *info;
1040 	int err = 0;
1041 
1042 	percpu_down_write(&dup_mmap_sem);
1043 	info = build_map_info(uprobe->inode->i_mapping,
1044 					uprobe->offset, is_register);
1045 	if (IS_ERR(info)) {
1046 		err = PTR_ERR(info);
1047 		goto out;
1048 	}
1049 
1050 	while (info) {
1051 		struct mm_struct *mm = info->mm;
1052 		struct vm_area_struct *vma;
1053 
1054 		if (err && is_register)
1055 			goto free;
1056 
1057 		mmap_write_lock(mm);
1058 		vma = find_vma(mm, info->vaddr);
1059 		if (!vma || !valid_vma(vma, is_register) ||
1060 		    file_inode(vma->vm_file) != uprobe->inode)
1061 			goto unlock;
1062 
1063 		if (vma->vm_start > info->vaddr ||
1064 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1065 			goto unlock;
1066 
1067 		if (is_register) {
1068 			/* consult only the "caller", new consumer. */
1069 			if (consumer_filter(new,
1070 					UPROBE_FILTER_REGISTER, mm))
1071 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1072 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1073 			if (!filter_chain(uprobe,
1074 					UPROBE_FILTER_UNREGISTER, mm))
1075 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1076 		}
1077 
1078  unlock:
1079 		mmap_write_unlock(mm);
1080  free:
1081 		mmput(mm);
1082 		info = free_map_info(info);
1083 	}
1084  out:
1085 	percpu_up_write(&dup_mmap_sem);
1086 	return err;
1087 }
1088 
1089 static void
1090 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1091 {
1092 	int err;
1093 
1094 	if (WARN_ON(!consumer_del(uprobe, uc)))
1095 		return;
1096 
1097 	err = register_for_each_vma(uprobe, NULL);
1098 	/* TODO : cant unregister? schedule a worker thread */
1099 	if (!uprobe->consumers && !err)
1100 		delete_uprobe(uprobe);
1101 }
1102 
1103 /*
1104  * uprobe_unregister - unregister an already registered probe.
1105  * @inode: the file in which the probe has to be removed.
1106  * @offset: offset from the start of the file.
1107  * @uc: identify which probe if multiple probes are colocated.
1108  */
1109 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1110 {
1111 	struct uprobe *uprobe;
1112 
1113 	uprobe = find_uprobe(inode, offset);
1114 	if (WARN_ON(!uprobe))
1115 		return;
1116 
1117 	down_write(&uprobe->register_rwsem);
1118 	__uprobe_unregister(uprobe, uc);
1119 	up_write(&uprobe->register_rwsem);
1120 	put_uprobe(uprobe);
1121 }
1122 EXPORT_SYMBOL_GPL(uprobe_unregister);
1123 
1124 /*
1125  * __uprobe_register - register a probe
1126  * @inode: the file in which the probe has to be placed.
1127  * @offset: offset from the start of the file.
1128  * @uc: information on howto handle the probe..
1129  *
1130  * Apart from the access refcount, __uprobe_register() takes a creation
1131  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1132  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1133  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1134  * @uprobe even before the register operation is complete. Creation
1135  * refcount is released when the last @uc for the @uprobe
1136  * unregisters. Caller of __uprobe_register() is required to keep @inode
1137  * (and the containing mount) referenced.
1138  *
1139  * Return errno if it cannot successully install probes
1140  * else return 0 (success)
1141  */
1142 static int __uprobe_register(struct inode *inode, loff_t offset,
1143 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1144 {
1145 	struct uprobe *uprobe;
1146 	int ret;
1147 
1148 	/* Uprobe must have at least one set consumer */
1149 	if (!uc->handler && !uc->ret_handler)
1150 		return -EINVAL;
1151 
1152 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1153 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1154 		return -EIO;
1155 	/* Racy, just to catch the obvious mistakes */
1156 	if (offset > i_size_read(inode))
1157 		return -EINVAL;
1158 
1159 	/*
1160 	 * This ensures that copy_from_page(), copy_to_page() and
1161 	 * __update_ref_ctr() can't cross page boundary.
1162 	 */
1163 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1164 		return -EINVAL;
1165 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1166 		return -EINVAL;
1167 
1168  retry:
1169 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1170 	if (!uprobe)
1171 		return -ENOMEM;
1172 	if (IS_ERR(uprobe))
1173 		return PTR_ERR(uprobe);
1174 
1175 	/*
1176 	 * We can race with uprobe_unregister()->delete_uprobe().
1177 	 * Check uprobe_is_active() and retry if it is false.
1178 	 */
1179 	down_write(&uprobe->register_rwsem);
1180 	ret = -EAGAIN;
1181 	if (likely(uprobe_is_active(uprobe))) {
1182 		consumer_add(uprobe, uc);
1183 		ret = register_for_each_vma(uprobe, uc);
1184 		if (ret)
1185 			__uprobe_unregister(uprobe, uc);
1186 	}
1187 	up_write(&uprobe->register_rwsem);
1188 	put_uprobe(uprobe);
1189 
1190 	if (unlikely(ret == -EAGAIN))
1191 		goto retry;
1192 	return ret;
1193 }
1194 
1195 int uprobe_register(struct inode *inode, loff_t offset,
1196 		    struct uprobe_consumer *uc)
1197 {
1198 	return __uprobe_register(inode, offset, 0, uc);
1199 }
1200 EXPORT_SYMBOL_GPL(uprobe_register);
1201 
1202 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1203 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1204 {
1205 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1206 }
1207 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1208 
1209 /*
1210  * uprobe_apply - unregister an already registered probe.
1211  * @inode: the file in which the probe has to be removed.
1212  * @offset: offset from the start of the file.
1213  * @uc: consumer which wants to add more or remove some breakpoints
1214  * @add: add or remove the breakpoints
1215  */
1216 int uprobe_apply(struct inode *inode, loff_t offset,
1217 			struct uprobe_consumer *uc, bool add)
1218 {
1219 	struct uprobe *uprobe;
1220 	struct uprobe_consumer *con;
1221 	int ret = -ENOENT;
1222 
1223 	uprobe = find_uprobe(inode, offset);
1224 	if (WARN_ON(!uprobe))
1225 		return ret;
1226 
1227 	down_write(&uprobe->register_rwsem);
1228 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1229 		;
1230 	if (con)
1231 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1232 	up_write(&uprobe->register_rwsem);
1233 	put_uprobe(uprobe);
1234 
1235 	return ret;
1236 }
1237 
1238 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1239 {
1240 	struct vm_area_struct *vma;
1241 	int err = 0;
1242 
1243 	mmap_read_lock(mm);
1244 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1245 		unsigned long vaddr;
1246 		loff_t offset;
1247 
1248 		if (!valid_vma(vma, false) ||
1249 		    file_inode(vma->vm_file) != uprobe->inode)
1250 			continue;
1251 
1252 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1253 		if (uprobe->offset <  offset ||
1254 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1255 			continue;
1256 
1257 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1258 		err |= remove_breakpoint(uprobe, mm, vaddr);
1259 	}
1260 	mmap_read_unlock(mm);
1261 
1262 	return err;
1263 }
1264 
1265 static struct rb_node *
1266 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1267 {
1268 	struct rb_node *n = uprobes_tree.rb_node;
1269 
1270 	while (n) {
1271 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1272 
1273 		if (inode < u->inode) {
1274 			n = n->rb_left;
1275 		} else if (inode > u->inode) {
1276 			n = n->rb_right;
1277 		} else {
1278 			if (max < u->offset)
1279 				n = n->rb_left;
1280 			else if (min > u->offset)
1281 				n = n->rb_right;
1282 			else
1283 				break;
1284 		}
1285 	}
1286 
1287 	return n;
1288 }
1289 
1290 /*
1291  * For a given range in vma, build a list of probes that need to be inserted.
1292  */
1293 static void build_probe_list(struct inode *inode,
1294 				struct vm_area_struct *vma,
1295 				unsigned long start, unsigned long end,
1296 				struct list_head *head)
1297 {
1298 	loff_t min, max;
1299 	struct rb_node *n, *t;
1300 	struct uprobe *u;
1301 
1302 	INIT_LIST_HEAD(head);
1303 	min = vaddr_to_offset(vma, start);
1304 	max = min + (end - start) - 1;
1305 
1306 	spin_lock(&uprobes_treelock);
1307 	n = find_node_in_range(inode, min, max);
1308 	if (n) {
1309 		for (t = n; t; t = rb_prev(t)) {
1310 			u = rb_entry(t, struct uprobe, rb_node);
1311 			if (u->inode != inode || u->offset < min)
1312 				break;
1313 			list_add(&u->pending_list, head);
1314 			get_uprobe(u);
1315 		}
1316 		for (t = n; (t = rb_next(t)); ) {
1317 			u = rb_entry(t, struct uprobe, rb_node);
1318 			if (u->inode != inode || u->offset > max)
1319 				break;
1320 			list_add(&u->pending_list, head);
1321 			get_uprobe(u);
1322 		}
1323 	}
1324 	spin_unlock(&uprobes_treelock);
1325 }
1326 
1327 /* @vma contains reference counter, not the probed instruction. */
1328 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1329 {
1330 	struct list_head *pos, *q;
1331 	struct delayed_uprobe *du;
1332 	unsigned long vaddr;
1333 	int ret = 0, err = 0;
1334 
1335 	mutex_lock(&delayed_uprobe_lock);
1336 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1337 		du = list_entry(pos, struct delayed_uprobe, list);
1338 
1339 		if (du->mm != vma->vm_mm ||
1340 		    !valid_ref_ctr_vma(du->uprobe, vma))
1341 			continue;
1342 
1343 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1344 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1345 		if (ret) {
1346 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1347 			if (!err)
1348 				err = ret;
1349 		}
1350 		delayed_uprobe_delete(du);
1351 	}
1352 	mutex_unlock(&delayed_uprobe_lock);
1353 	return err;
1354 }
1355 
1356 /*
1357  * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1358  *
1359  * Currently we ignore all errors and always return 0, the callers
1360  * can't handle the failure anyway.
1361  */
1362 int uprobe_mmap(struct vm_area_struct *vma)
1363 {
1364 	struct list_head tmp_list;
1365 	struct uprobe *uprobe, *u;
1366 	struct inode *inode;
1367 
1368 	if (no_uprobe_events())
1369 		return 0;
1370 
1371 	if (vma->vm_file &&
1372 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1373 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1374 		delayed_ref_ctr_inc(vma);
1375 
1376 	if (!valid_vma(vma, true))
1377 		return 0;
1378 
1379 	inode = file_inode(vma->vm_file);
1380 	if (!inode)
1381 		return 0;
1382 
1383 	mutex_lock(uprobes_mmap_hash(inode));
1384 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1385 	/*
1386 	 * We can race with uprobe_unregister(), this uprobe can be already
1387 	 * removed. But in this case filter_chain() must return false, all
1388 	 * consumers have gone away.
1389 	 */
1390 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1391 		if (!fatal_signal_pending(current) &&
1392 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1393 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1394 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1395 		}
1396 		put_uprobe(uprobe);
1397 	}
1398 	mutex_unlock(uprobes_mmap_hash(inode));
1399 
1400 	return 0;
1401 }
1402 
1403 static bool
1404 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1405 {
1406 	loff_t min, max;
1407 	struct inode *inode;
1408 	struct rb_node *n;
1409 
1410 	inode = file_inode(vma->vm_file);
1411 
1412 	min = vaddr_to_offset(vma, start);
1413 	max = min + (end - start) - 1;
1414 
1415 	spin_lock(&uprobes_treelock);
1416 	n = find_node_in_range(inode, min, max);
1417 	spin_unlock(&uprobes_treelock);
1418 
1419 	return !!n;
1420 }
1421 
1422 /*
1423  * Called in context of a munmap of a vma.
1424  */
1425 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1426 {
1427 	if (no_uprobe_events() || !valid_vma(vma, false))
1428 		return;
1429 
1430 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1431 		return;
1432 
1433 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1434 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1435 		return;
1436 
1437 	if (vma_has_uprobes(vma, start, end))
1438 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1439 }
1440 
1441 /* Slot allocation for XOL */
1442 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1443 {
1444 	struct vm_area_struct *vma;
1445 	int ret;
1446 
1447 	if (mmap_write_lock_killable(mm))
1448 		return -EINTR;
1449 
1450 	if (mm->uprobes_state.xol_area) {
1451 		ret = -EALREADY;
1452 		goto fail;
1453 	}
1454 
1455 	if (!area->vaddr) {
1456 		/* Try to map as high as possible, this is only a hint. */
1457 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1458 						PAGE_SIZE, 0, 0);
1459 		if (IS_ERR_VALUE(area->vaddr)) {
1460 			ret = area->vaddr;
1461 			goto fail;
1462 		}
1463 	}
1464 
1465 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1466 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1467 				&area->xol_mapping);
1468 	if (IS_ERR(vma)) {
1469 		ret = PTR_ERR(vma);
1470 		goto fail;
1471 	}
1472 
1473 	ret = 0;
1474 	/* pairs with get_xol_area() */
1475 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1476  fail:
1477 	mmap_write_unlock(mm);
1478 
1479 	return ret;
1480 }
1481 
1482 static struct xol_area *__create_xol_area(unsigned long vaddr)
1483 {
1484 	struct mm_struct *mm = current->mm;
1485 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1486 	struct xol_area *area;
1487 
1488 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1489 	if (unlikely(!area))
1490 		goto out;
1491 
1492 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1493 			       GFP_KERNEL);
1494 	if (!area->bitmap)
1495 		goto free_area;
1496 
1497 	area->xol_mapping.name = "[uprobes]";
1498 	area->xol_mapping.fault = NULL;
1499 	area->xol_mapping.pages = area->pages;
1500 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1501 	if (!area->pages[0])
1502 		goto free_bitmap;
1503 	area->pages[1] = NULL;
1504 
1505 	area->vaddr = vaddr;
1506 	init_waitqueue_head(&area->wq);
1507 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1508 	set_bit(0, area->bitmap);
1509 	atomic_set(&area->slot_count, 1);
1510 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1511 
1512 	if (!xol_add_vma(mm, area))
1513 		return area;
1514 
1515 	__free_page(area->pages[0]);
1516  free_bitmap:
1517 	kfree(area->bitmap);
1518  free_area:
1519 	kfree(area);
1520  out:
1521 	return NULL;
1522 }
1523 
1524 /*
1525  * get_xol_area - Allocate process's xol_area if necessary.
1526  * This area will be used for storing instructions for execution out of line.
1527  *
1528  * Returns the allocated area or NULL.
1529  */
1530 static struct xol_area *get_xol_area(void)
1531 {
1532 	struct mm_struct *mm = current->mm;
1533 	struct xol_area *area;
1534 
1535 	if (!mm->uprobes_state.xol_area)
1536 		__create_xol_area(0);
1537 
1538 	/* Pairs with xol_add_vma() smp_store_release() */
1539 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1540 	return area;
1541 }
1542 
1543 /*
1544  * uprobe_clear_state - Free the area allocated for slots.
1545  */
1546 void uprobe_clear_state(struct mm_struct *mm)
1547 {
1548 	struct xol_area *area = mm->uprobes_state.xol_area;
1549 
1550 	mutex_lock(&delayed_uprobe_lock);
1551 	delayed_uprobe_remove(NULL, mm);
1552 	mutex_unlock(&delayed_uprobe_lock);
1553 
1554 	if (!area)
1555 		return;
1556 
1557 	put_page(area->pages[0]);
1558 	kfree(area->bitmap);
1559 	kfree(area);
1560 }
1561 
1562 void uprobe_start_dup_mmap(void)
1563 {
1564 	percpu_down_read(&dup_mmap_sem);
1565 }
1566 
1567 void uprobe_end_dup_mmap(void)
1568 {
1569 	percpu_up_read(&dup_mmap_sem);
1570 }
1571 
1572 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1573 {
1574 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1575 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1576 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1577 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1578 	}
1579 }
1580 
1581 /*
1582  *  - search for a free slot.
1583  */
1584 static unsigned long xol_take_insn_slot(struct xol_area *area)
1585 {
1586 	unsigned long slot_addr;
1587 	int slot_nr;
1588 
1589 	do {
1590 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1591 		if (slot_nr < UINSNS_PER_PAGE) {
1592 			if (!test_and_set_bit(slot_nr, area->bitmap))
1593 				break;
1594 
1595 			slot_nr = UINSNS_PER_PAGE;
1596 			continue;
1597 		}
1598 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1599 	} while (slot_nr >= UINSNS_PER_PAGE);
1600 
1601 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1602 	atomic_inc(&area->slot_count);
1603 
1604 	return slot_addr;
1605 }
1606 
1607 /*
1608  * xol_get_insn_slot - allocate a slot for xol.
1609  * Returns the allocated slot address or 0.
1610  */
1611 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1612 {
1613 	struct xol_area *area;
1614 	unsigned long xol_vaddr;
1615 
1616 	area = get_xol_area();
1617 	if (!area)
1618 		return 0;
1619 
1620 	xol_vaddr = xol_take_insn_slot(area);
1621 	if (unlikely(!xol_vaddr))
1622 		return 0;
1623 
1624 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1625 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1626 
1627 	return xol_vaddr;
1628 }
1629 
1630 /*
1631  * xol_free_insn_slot - If slot was earlier allocated by
1632  * @xol_get_insn_slot(), make the slot available for
1633  * subsequent requests.
1634  */
1635 static void xol_free_insn_slot(struct task_struct *tsk)
1636 {
1637 	struct xol_area *area;
1638 	unsigned long vma_end;
1639 	unsigned long slot_addr;
1640 
1641 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1642 		return;
1643 
1644 	slot_addr = tsk->utask->xol_vaddr;
1645 	if (unlikely(!slot_addr))
1646 		return;
1647 
1648 	area = tsk->mm->uprobes_state.xol_area;
1649 	vma_end = area->vaddr + PAGE_SIZE;
1650 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1651 		unsigned long offset;
1652 		int slot_nr;
1653 
1654 		offset = slot_addr - area->vaddr;
1655 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1656 		if (slot_nr >= UINSNS_PER_PAGE)
1657 			return;
1658 
1659 		clear_bit(slot_nr, area->bitmap);
1660 		atomic_dec(&area->slot_count);
1661 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1662 		if (waitqueue_active(&area->wq))
1663 			wake_up(&area->wq);
1664 
1665 		tsk->utask->xol_vaddr = 0;
1666 	}
1667 }
1668 
1669 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1670 				  void *src, unsigned long len)
1671 {
1672 	/* Initialize the slot */
1673 	copy_to_page(page, vaddr, src, len);
1674 
1675 	/*
1676 	 * We probably need flush_icache_user_page() but it needs vma.
1677 	 * This should work on most of architectures by default. If
1678 	 * architecture needs to do something different it can define
1679 	 * its own version of the function.
1680 	 */
1681 	flush_dcache_page(page);
1682 }
1683 
1684 /**
1685  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1686  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1687  * instruction.
1688  * Return the address of the breakpoint instruction.
1689  */
1690 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1691 {
1692 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1693 }
1694 
1695 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1696 {
1697 	struct uprobe_task *utask = current->utask;
1698 
1699 	if (unlikely(utask && utask->active_uprobe))
1700 		return utask->vaddr;
1701 
1702 	return instruction_pointer(regs);
1703 }
1704 
1705 static struct return_instance *free_ret_instance(struct return_instance *ri)
1706 {
1707 	struct return_instance *next = ri->next;
1708 	put_uprobe(ri->uprobe);
1709 	kfree(ri);
1710 	return next;
1711 }
1712 
1713 /*
1714  * Called with no locks held.
1715  * Called in context of an exiting or an exec-ing thread.
1716  */
1717 void uprobe_free_utask(struct task_struct *t)
1718 {
1719 	struct uprobe_task *utask = t->utask;
1720 	struct return_instance *ri;
1721 
1722 	if (!utask)
1723 		return;
1724 
1725 	if (utask->active_uprobe)
1726 		put_uprobe(utask->active_uprobe);
1727 
1728 	ri = utask->return_instances;
1729 	while (ri)
1730 		ri = free_ret_instance(ri);
1731 
1732 	xol_free_insn_slot(t);
1733 	kfree(utask);
1734 	t->utask = NULL;
1735 }
1736 
1737 /*
1738  * Allocate a uprobe_task object for the task if if necessary.
1739  * Called when the thread hits a breakpoint.
1740  *
1741  * Returns:
1742  * - pointer to new uprobe_task on success
1743  * - NULL otherwise
1744  */
1745 static struct uprobe_task *get_utask(void)
1746 {
1747 	if (!current->utask)
1748 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1749 	return current->utask;
1750 }
1751 
1752 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1753 {
1754 	struct uprobe_task *n_utask;
1755 	struct return_instance **p, *o, *n;
1756 
1757 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1758 	if (!n_utask)
1759 		return -ENOMEM;
1760 	t->utask = n_utask;
1761 
1762 	p = &n_utask->return_instances;
1763 	for (o = o_utask->return_instances; o; o = o->next) {
1764 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1765 		if (!n)
1766 			return -ENOMEM;
1767 
1768 		*n = *o;
1769 		get_uprobe(n->uprobe);
1770 		n->next = NULL;
1771 
1772 		*p = n;
1773 		p = &n->next;
1774 		n_utask->depth++;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static void uprobe_warn(struct task_struct *t, const char *msg)
1781 {
1782 	pr_warn("uprobe: %s:%d failed to %s\n",
1783 			current->comm, current->pid, msg);
1784 }
1785 
1786 static void dup_xol_work(struct callback_head *work)
1787 {
1788 	if (current->flags & PF_EXITING)
1789 		return;
1790 
1791 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1792 			!fatal_signal_pending(current))
1793 		uprobe_warn(current, "dup xol area");
1794 }
1795 
1796 /*
1797  * Called in context of a new clone/fork from copy_process.
1798  */
1799 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1800 {
1801 	struct uprobe_task *utask = current->utask;
1802 	struct mm_struct *mm = current->mm;
1803 	struct xol_area *area;
1804 
1805 	t->utask = NULL;
1806 
1807 	if (!utask || !utask->return_instances)
1808 		return;
1809 
1810 	if (mm == t->mm && !(flags & CLONE_VFORK))
1811 		return;
1812 
1813 	if (dup_utask(t, utask))
1814 		return uprobe_warn(t, "dup ret instances");
1815 
1816 	/* The task can fork() after dup_xol_work() fails */
1817 	area = mm->uprobes_state.xol_area;
1818 	if (!area)
1819 		return uprobe_warn(t, "dup xol area");
1820 
1821 	if (mm == t->mm)
1822 		return;
1823 
1824 	t->utask->dup_xol_addr = area->vaddr;
1825 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1826 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1827 }
1828 
1829 /*
1830  * Current area->vaddr notion assume the trampoline address is always
1831  * equal area->vaddr.
1832  *
1833  * Returns -1 in case the xol_area is not allocated.
1834  */
1835 static unsigned long get_trampoline_vaddr(void)
1836 {
1837 	struct xol_area *area;
1838 	unsigned long trampoline_vaddr = -1;
1839 
1840 	/* Pairs with xol_add_vma() smp_store_release() */
1841 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1842 	if (area)
1843 		trampoline_vaddr = area->vaddr;
1844 
1845 	return trampoline_vaddr;
1846 }
1847 
1848 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1849 					struct pt_regs *regs)
1850 {
1851 	struct return_instance *ri = utask->return_instances;
1852 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1853 
1854 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1855 		ri = free_ret_instance(ri);
1856 		utask->depth--;
1857 	}
1858 	utask->return_instances = ri;
1859 }
1860 
1861 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1862 {
1863 	struct return_instance *ri;
1864 	struct uprobe_task *utask;
1865 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1866 	bool chained;
1867 
1868 	if (!get_xol_area())
1869 		return;
1870 
1871 	utask = get_utask();
1872 	if (!utask)
1873 		return;
1874 
1875 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1876 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1877 				" nestedness limit pid/tgid=%d/%d\n",
1878 				current->pid, current->tgid);
1879 		return;
1880 	}
1881 
1882 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1883 	if (!ri)
1884 		return;
1885 
1886 	trampoline_vaddr = get_trampoline_vaddr();
1887 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1888 	if (orig_ret_vaddr == -1)
1889 		goto fail;
1890 
1891 	/* drop the entries invalidated by longjmp() */
1892 	chained = (orig_ret_vaddr == trampoline_vaddr);
1893 	cleanup_return_instances(utask, chained, regs);
1894 
1895 	/*
1896 	 * We don't want to keep trampoline address in stack, rather keep the
1897 	 * original return address of first caller thru all the consequent
1898 	 * instances. This also makes breakpoint unwrapping easier.
1899 	 */
1900 	if (chained) {
1901 		if (!utask->return_instances) {
1902 			/*
1903 			 * This situation is not possible. Likely we have an
1904 			 * attack from user-space.
1905 			 */
1906 			uprobe_warn(current, "handle tail call");
1907 			goto fail;
1908 		}
1909 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1910 	}
1911 
1912 	ri->uprobe = get_uprobe(uprobe);
1913 	ri->func = instruction_pointer(regs);
1914 	ri->stack = user_stack_pointer(regs);
1915 	ri->orig_ret_vaddr = orig_ret_vaddr;
1916 	ri->chained = chained;
1917 
1918 	utask->depth++;
1919 	ri->next = utask->return_instances;
1920 	utask->return_instances = ri;
1921 
1922 	return;
1923  fail:
1924 	kfree(ri);
1925 }
1926 
1927 /* Prepare to single-step probed instruction out of line. */
1928 static int
1929 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1930 {
1931 	struct uprobe_task *utask;
1932 	unsigned long xol_vaddr;
1933 	int err;
1934 
1935 	utask = get_utask();
1936 	if (!utask)
1937 		return -ENOMEM;
1938 
1939 	xol_vaddr = xol_get_insn_slot(uprobe);
1940 	if (!xol_vaddr)
1941 		return -ENOMEM;
1942 
1943 	utask->xol_vaddr = xol_vaddr;
1944 	utask->vaddr = bp_vaddr;
1945 
1946 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1947 	if (unlikely(err)) {
1948 		xol_free_insn_slot(current);
1949 		return err;
1950 	}
1951 
1952 	utask->active_uprobe = uprobe;
1953 	utask->state = UTASK_SSTEP;
1954 	return 0;
1955 }
1956 
1957 /*
1958  * If we are singlestepping, then ensure this thread is not connected to
1959  * non-fatal signals until completion of singlestep.  When xol insn itself
1960  * triggers the signal,  restart the original insn even if the task is
1961  * already SIGKILL'ed (since coredump should report the correct ip).  This
1962  * is even more important if the task has a handler for SIGSEGV/etc, The
1963  * _same_ instruction should be repeated again after return from the signal
1964  * handler, and SSTEP can never finish in this case.
1965  */
1966 bool uprobe_deny_signal(void)
1967 {
1968 	struct task_struct *t = current;
1969 	struct uprobe_task *utask = t->utask;
1970 
1971 	if (likely(!utask || !utask->active_uprobe))
1972 		return false;
1973 
1974 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1975 
1976 	if (task_sigpending(t)) {
1977 		spin_lock_irq(&t->sighand->siglock);
1978 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1979 		spin_unlock_irq(&t->sighand->siglock);
1980 
1981 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1982 			utask->state = UTASK_SSTEP_TRAPPED;
1983 			set_tsk_thread_flag(t, TIF_UPROBE);
1984 		}
1985 	}
1986 
1987 	return true;
1988 }
1989 
1990 static void mmf_recalc_uprobes(struct mm_struct *mm)
1991 {
1992 	struct vm_area_struct *vma;
1993 
1994 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1995 		if (!valid_vma(vma, false))
1996 			continue;
1997 		/*
1998 		 * This is not strictly accurate, we can race with
1999 		 * uprobe_unregister() and see the already removed
2000 		 * uprobe if delete_uprobe() was not yet called.
2001 		 * Or this uprobe can be filtered out.
2002 		 */
2003 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2004 			return;
2005 	}
2006 
2007 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2008 }
2009 
2010 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2011 {
2012 	struct page *page;
2013 	uprobe_opcode_t opcode;
2014 	int result;
2015 
2016 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2017 		return -EINVAL;
2018 
2019 	pagefault_disable();
2020 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2021 	pagefault_enable();
2022 
2023 	if (likely(result == 0))
2024 		goto out;
2025 
2026 	/*
2027 	 * The NULL 'tsk' here ensures that any faults that occur here
2028 	 * will not be accounted to the task.  'mm' *is* current->mm,
2029 	 * but we treat this as a 'remote' access since it is
2030 	 * essentially a kernel access to the memory.
2031 	 */
2032 	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2033 			NULL, NULL);
2034 	if (result < 0)
2035 		return result;
2036 
2037 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2038 	put_page(page);
2039  out:
2040 	/* This needs to return true for any variant of the trap insn */
2041 	return is_trap_insn(&opcode);
2042 }
2043 
2044 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2045 {
2046 	struct mm_struct *mm = current->mm;
2047 	struct uprobe *uprobe = NULL;
2048 	struct vm_area_struct *vma;
2049 
2050 	mmap_read_lock(mm);
2051 	vma = find_vma(mm, bp_vaddr);
2052 	if (vma && vma->vm_start <= bp_vaddr) {
2053 		if (valid_vma(vma, false)) {
2054 			struct inode *inode = file_inode(vma->vm_file);
2055 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2056 
2057 			uprobe = find_uprobe(inode, offset);
2058 		}
2059 
2060 		if (!uprobe)
2061 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2062 	} else {
2063 		*is_swbp = -EFAULT;
2064 	}
2065 
2066 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2067 		mmf_recalc_uprobes(mm);
2068 	mmap_read_unlock(mm);
2069 
2070 	return uprobe;
2071 }
2072 
2073 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2074 {
2075 	struct uprobe_consumer *uc;
2076 	int remove = UPROBE_HANDLER_REMOVE;
2077 	bool need_prep = false; /* prepare return uprobe, when needed */
2078 
2079 	down_read(&uprobe->register_rwsem);
2080 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2081 		int rc = 0;
2082 
2083 		if (uc->handler) {
2084 			rc = uc->handler(uc, regs);
2085 			WARN(rc & ~UPROBE_HANDLER_MASK,
2086 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2087 		}
2088 
2089 		if (uc->ret_handler)
2090 			need_prep = true;
2091 
2092 		remove &= rc;
2093 	}
2094 
2095 	if (need_prep && !remove)
2096 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2097 
2098 	if (remove && uprobe->consumers) {
2099 		WARN_ON(!uprobe_is_active(uprobe));
2100 		unapply_uprobe(uprobe, current->mm);
2101 	}
2102 	up_read(&uprobe->register_rwsem);
2103 }
2104 
2105 static void
2106 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2107 {
2108 	struct uprobe *uprobe = ri->uprobe;
2109 	struct uprobe_consumer *uc;
2110 
2111 	down_read(&uprobe->register_rwsem);
2112 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2113 		if (uc->ret_handler)
2114 			uc->ret_handler(uc, ri->func, regs);
2115 	}
2116 	up_read(&uprobe->register_rwsem);
2117 }
2118 
2119 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2120 {
2121 	bool chained;
2122 
2123 	do {
2124 		chained = ri->chained;
2125 		ri = ri->next;	/* can't be NULL if chained */
2126 	} while (chained);
2127 
2128 	return ri;
2129 }
2130 
2131 static void handle_trampoline(struct pt_regs *regs)
2132 {
2133 	struct uprobe_task *utask;
2134 	struct return_instance *ri, *next;
2135 	bool valid;
2136 
2137 	utask = current->utask;
2138 	if (!utask)
2139 		goto sigill;
2140 
2141 	ri = utask->return_instances;
2142 	if (!ri)
2143 		goto sigill;
2144 
2145 	do {
2146 		/*
2147 		 * We should throw out the frames invalidated by longjmp().
2148 		 * If this chain is valid, then the next one should be alive
2149 		 * or NULL; the latter case means that nobody but ri->func
2150 		 * could hit this trampoline on return. TODO: sigaltstack().
2151 		 */
2152 		next = find_next_ret_chain(ri);
2153 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2154 
2155 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2156 		do {
2157 			if (valid)
2158 				handle_uretprobe_chain(ri, regs);
2159 			ri = free_ret_instance(ri);
2160 			utask->depth--;
2161 		} while (ri != next);
2162 	} while (!valid);
2163 
2164 	utask->return_instances = ri;
2165 	return;
2166 
2167  sigill:
2168 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2169 	force_sig(SIGILL);
2170 
2171 }
2172 
2173 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2174 {
2175 	return false;
2176 }
2177 
2178 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2179 					struct pt_regs *regs)
2180 {
2181 	return true;
2182 }
2183 
2184 /*
2185  * Run handler and ask thread to singlestep.
2186  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2187  */
2188 static void handle_swbp(struct pt_regs *regs)
2189 {
2190 	struct uprobe *uprobe;
2191 	unsigned long bp_vaddr;
2192 	int is_swbp;
2193 
2194 	bp_vaddr = uprobe_get_swbp_addr(regs);
2195 	if (bp_vaddr == get_trampoline_vaddr())
2196 		return handle_trampoline(regs);
2197 
2198 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2199 	if (!uprobe) {
2200 		if (is_swbp > 0) {
2201 			/* No matching uprobe; signal SIGTRAP. */
2202 			force_sig(SIGTRAP);
2203 		} else {
2204 			/*
2205 			 * Either we raced with uprobe_unregister() or we can't
2206 			 * access this memory. The latter is only possible if
2207 			 * another thread plays with our ->mm. In both cases
2208 			 * we can simply restart. If this vma was unmapped we
2209 			 * can pretend this insn was not executed yet and get
2210 			 * the (correct) SIGSEGV after restart.
2211 			 */
2212 			instruction_pointer_set(regs, bp_vaddr);
2213 		}
2214 		return;
2215 	}
2216 
2217 	/* change it in advance for ->handler() and restart */
2218 	instruction_pointer_set(regs, bp_vaddr);
2219 
2220 	/*
2221 	 * TODO: move copy_insn/etc into _register and remove this hack.
2222 	 * After we hit the bp, _unregister + _register can install the
2223 	 * new and not-yet-analyzed uprobe at the same address, restart.
2224 	 */
2225 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2226 		goto out;
2227 
2228 	/*
2229 	 * Pairs with the smp_wmb() in prepare_uprobe().
2230 	 *
2231 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2232 	 * we must also see the stores to &uprobe->arch performed by the
2233 	 * prepare_uprobe() call.
2234 	 */
2235 	smp_rmb();
2236 
2237 	/* Tracing handlers use ->utask to communicate with fetch methods */
2238 	if (!get_utask())
2239 		goto out;
2240 
2241 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2242 		goto out;
2243 
2244 	handler_chain(uprobe, regs);
2245 
2246 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2247 		goto out;
2248 
2249 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2250 		return;
2251 
2252 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2253 out:
2254 	put_uprobe(uprobe);
2255 }
2256 
2257 /*
2258  * Perform required fix-ups and disable singlestep.
2259  * Allow pending signals to take effect.
2260  */
2261 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2262 {
2263 	struct uprobe *uprobe;
2264 	int err = 0;
2265 
2266 	uprobe = utask->active_uprobe;
2267 	if (utask->state == UTASK_SSTEP_ACK)
2268 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2269 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2270 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2271 	else
2272 		WARN_ON_ONCE(1);
2273 
2274 	put_uprobe(uprobe);
2275 	utask->active_uprobe = NULL;
2276 	utask->state = UTASK_RUNNING;
2277 	xol_free_insn_slot(current);
2278 
2279 	spin_lock_irq(&current->sighand->siglock);
2280 	recalc_sigpending(); /* see uprobe_deny_signal() */
2281 	spin_unlock_irq(&current->sighand->siglock);
2282 
2283 	if (unlikely(err)) {
2284 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2285 		force_sig(SIGILL);
2286 	}
2287 }
2288 
2289 /*
2290  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2291  * allows the thread to return from interrupt. After that handle_swbp()
2292  * sets utask->active_uprobe.
2293  *
2294  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2295  * and allows the thread to return from interrupt.
2296  *
2297  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2298  * uprobe_notify_resume().
2299  */
2300 void uprobe_notify_resume(struct pt_regs *regs)
2301 {
2302 	struct uprobe_task *utask;
2303 
2304 	clear_thread_flag(TIF_UPROBE);
2305 
2306 	utask = current->utask;
2307 	if (utask && utask->active_uprobe)
2308 		handle_singlestep(utask, regs);
2309 	else
2310 		handle_swbp(regs);
2311 }
2312 
2313 /*
2314  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2315  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2316  */
2317 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2318 {
2319 	if (!current->mm)
2320 		return 0;
2321 
2322 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2323 	    (!current->utask || !current->utask->return_instances))
2324 		return 0;
2325 
2326 	set_thread_flag(TIF_UPROBE);
2327 	return 1;
2328 }
2329 
2330 /*
2331  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2332  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2333  */
2334 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2335 {
2336 	struct uprobe_task *utask = current->utask;
2337 
2338 	if (!current->mm || !utask || !utask->active_uprobe)
2339 		/* task is currently not uprobed */
2340 		return 0;
2341 
2342 	utask->state = UTASK_SSTEP_ACK;
2343 	set_thread_flag(TIF_UPROBE);
2344 	return 1;
2345 }
2346 
2347 static struct notifier_block uprobe_exception_nb = {
2348 	.notifier_call		= arch_uprobe_exception_notify,
2349 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2350 };
2351 
2352 void __init uprobes_init(void)
2353 {
2354 	int i;
2355 
2356 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2357 		mutex_init(&uprobes_mmap_mutex[i]);
2358 
2359 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2360 }
2361