xref: /openbmc/linux/kernel/events/uprobes.c (revision 339031bafe6b281cf2dcb8364217288b9fdab555)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* try_to_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include "../../mm/internal.h"	/* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30 
31 #include <linux/uprobes.h>
32 
33 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
35 
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
42 
43 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
44 
45 #define UPROBES_HASH_SZ	13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49 
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51 
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN	0
54 
55 struct uprobe {
56 	struct rb_node		rb_node;	/* node in the rb tree */
57 	refcount_t		ref;
58 	struct rw_semaphore	register_rwsem;
59 	struct rw_semaphore	consumer_rwsem;
60 	struct list_head	pending_list;
61 	struct uprobe_consumer	*consumers;
62 	struct inode		*inode;		/* Also hold a ref to inode */
63 	loff_t			offset;
64 	loff_t			ref_ctr_offset;
65 	unsigned long		flags;
66 
67 	/*
68 	 * The generic code assumes that it has two members of unknown type
69 	 * owned by the arch-specific code:
70 	 *
71 	 * 	insn -	copy_insn() saves the original instruction here for
72 	 *		arch_uprobe_analyze_insn().
73 	 *
74 	 *	ixol -	potentially modified instruction to execute out of
75 	 *		line, copied to xol_area by xol_get_insn_slot().
76 	 */
77 	struct arch_uprobe	arch;
78 };
79 
80 struct delayed_uprobe {
81 	struct list_head list;
82 	struct uprobe *uprobe;
83 	struct mm_struct *mm;
84 };
85 
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 				struct page *old_page, struct page *new_page)
156 {
157 	struct mm_struct *mm = vma->vm_mm;
158 	struct page_vma_mapped_walk pvmw = {
159 		.page = compound_head(old_page),
160 		.vma = vma,
161 		.address = addr,
162 	};
163 	int err;
164 	struct mmu_notifier_range range;
165 
166 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167 				addr + PAGE_SIZE);
168 
169 	if (new_page) {
170 		err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
171 		if (err)
172 			return err;
173 	}
174 
175 	/* For try_to_free_swap() and munlock_vma_page() below */
176 	lock_page(old_page);
177 
178 	mmu_notifier_invalidate_range_start(&range);
179 	err = -EAGAIN;
180 	if (!page_vma_mapped_walk(&pvmw))
181 		goto unlock;
182 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183 
184 	if (new_page) {
185 		get_page(new_page);
186 		page_add_new_anon_rmap(new_page, vma, addr, false);
187 		lru_cache_add_inactive_or_unevictable(new_page, vma);
188 	} else
189 		/* no new page, just dec_mm_counter for old_page */
190 		dec_mm_counter(mm, MM_ANONPAGES);
191 
192 	if (!PageAnon(old_page)) {
193 		dec_mm_counter(mm, mm_counter_file(old_page));
194 		inc_mm_counter(mm, MM_ANONPAGES);
195 	}
196 
197 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
199 	if (new_page)
200 		set_pte_at_notify(mm, addr, pvmw.pte,
201 				  mk_pte(new_page, vma->vm_page_prot));
202 
203 	page_remove_rmap(old_page, false);
204 	if (!page_mapped(old_page))
205 		try_to_free_swap(old_page);
206 	page_vma_mapped_walk_done(&pvmw);
207 
208 	if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page))
209 		munlock_vma_page(old_page);
210 	put_page(old_page);
211 
212 	err = 0;
213  unlock:
214 	mmu_notifier_invalidate_range_end(&range);
215 	unlock_page(old_page);
216 	return err;
217 }
218 
219 /**
220  * is_swbp_insn - check if instruction is breakpoint instruction.
221  * @insn: instruction to be checked.
222  * Default implementation of is_swbp_insn
223  * Returns true if @insn is a breakpoint instruction.
224  */
225 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
226 {
227 	return *insn == UPROBE_SWBP_INSN;
228 }
229 
230 /**
231  * is_trap_insn - check if instruction is breakpoint instruction.
232  * @insn: instruction to be checked.
233  * Default implementation of is_trap_insn
234  * Returns true if @insn is a breakpoint instruction.
235  *
236  * This function is needed for the case where an architecture has multiple
237  * trap instructions (like powerpc).
238  */
239 bool __weak is_trap_insn(uprobe_opcode_t *insn)
240 {
241 	return is_swbp_insn(insn);
242 }
243 
244 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
245 {
246 	void *kaddr = kmap_atomic(page);
247 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
248 	kunmap_atomic(kaddr);
249 }
250 
251 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
252 {
253 	void *kaddr = kmap_atomic(page);
254 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
255 	kunmap_atomic(kaddr);
256 }
257 
258 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
259 {
260 	uprobe_opcode_t old_opcode;
261 	bool is_swbp;
262 
263 	/*
264 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
265 	 * We do not check if it is any other 'trap variant' which could
266 	 * be conditional trap instruction such as the one powerpc supports.
267 	 *
268 	 * The logic is that we do not care if the underlying instruction
269 	 * is a trap variant; uprobes always wins over any other (gdb)
270 	 * breakpoint.
271 	 */
272 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
273 	is_swbp = is_swbp_insn(&old_opcode);
274 
275 	if (is_swbp_insn(new_opcode)) {
276 		if (is_swbp)		/* register: already installed? */
277 			return 0;
278 	} else {
279 		if (!is_swbp)		/* unregister: was it changed by us? */
280 			return 0;
281 	}
282 
283 	return 1;
284 }
285 
286 static struct delayed_uprobe *
287 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
288 {
289 	struct delayed_uprobe *du;
290 
291 	list_for_each_entry(du, &delayed_uprobe_list, list)
292 		if (du->uprobe == uprobe && du->mm == mm)
293 			return du;
294 	return NULL;
295 }
296 
297 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
298 {
299 	struct delayed_uprobe *du;
300 
301 	if (delayed_uprobe_check(uprobe, mm))
302 		return 0;
303 
304 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
305 	if (!du)
306 		return -ENOMEM;
307 
308 	du->uprobe = uprobe;
309 	du->mm = mm;
310 	list_add(&du->list, &delayed_uprobe_list);
311 	return 0;
312 }
313 
314 static void delayed_uprobe_delete(struct delayed_uprobe *du)
315 {
316 	if (WARN_ON(!du))
317 		return;
318 	list_del(&du->list);
319 	kfree(du);
320 }
321 
322 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
323 {
324 	struct list_head *pos, *q;
325 	struct delayed_uprobe *du;
326 
327 	if (!uprobe && !mm)
328 		return;
329 
330 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
331 		du = list_entry(pos, struct delayed_uprobe, list);
332 
333 		if (uprobe && du->uprobe != uprobe)
334 			continue;
335 		if (mm && du->mm != mm)
336 			continue;
337 
338 		delayed_uprobe_delete(du);
339 	}
340 }
341 
342 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
343 			      struct vm_area_struct *vma)
344 {
345 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
346 
347 	return uprobe->ref_ctr_offset &&
348 		vma->vm_file &&
349 		file_inode(vma->vm_file) == uprobe->inode &&
350 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
351 		vma->vm_start <= vaddr &&
352 		vma->vm_end > vaddr;
353 }
354 
355 static struct vm_area_struct *
356 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
357 {
358 	struct vm_area_struct *tmp;
359 
360 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
361 		if (valid_ref_ctr_vma(uprobe, tmp))
362 			return tmp;
363 
364 	return NULL;
365 }
366 
367 static int
368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
369 {
370 	void *kaddr;
371 	struct page *page;
372 	struct vm_area_struct *vma;
373 	int ret;
374 	short *ptr;
375 
376 	if (!vaddr || !d)
377 		return -EINVAL;
378 
379 	ret = get_user_pages_remote(mm, vaddr, 1,
380 			FOLL_WRITE, &page, &vma, NULL);
381 	if (unlikely(ret <= 0)) {
382 		/*
383 		 * We are asking for 1 page. If get_user_pages_remote() fails,
384 		 * it may return 0, in that case we have to return error.
385 		 */
386 		return ret == 0 ? -EBUSY : ret;
387 	}
388 
389 	kaddr = kmap_atomic(page);
390 	ptr = kaddr + (vaddr & ~PAGE_MASK);
391 
392 	if (unlikely(*ptr + d < 0)) {
393 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
394 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
395 		ret = -EINVAL;
396 		goto out;
397 	}
398 
399 	*ptr += d;
400 	ret = 0;
401 out:
402 	kunmap_atomic(kaddr);
403 	put_page(page);
404 	return ret;
405 }
406 
407 static void update_ref_ctr_warn(struct uprobe *uprobe,
408 				struct mm_struct *mm, short d)
409 {
410 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
411 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
412 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
413 		(unsigned long long) uprobe->offset,
414 		(unsigned long long) uprobe->ref_ctr_offset, mm);
415 }
416 
417 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
418 			  short d)
419 {
420 	struct vm_area_struct *rc_vma;
421 	unsigned long rc_vaddr;
422 	int ret = 0;
423 
424 	rc_vma = find_ref_ctr_vma(uprobe, mm);
425 
426 	if (rc_vma) {
427 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
428 		ret = __update_ref_ctr(mm, rc_vaddr, d);
429 		if (ret)
430 			update_ref_ctr_warn(uprobe, mm, d);
431 
432 		if (d > 0)
433 			return ret;
434 	}
435 
436 	mutex_lock(&delayed_uprobe_lock);
437 	if (d > 0)
438 		ret = delayed_uprobe_add(uprobe, mm);
439 	else
440 		delayed_uprobe_remove(uprobe, mm);
441 	mutex_unlock(&delayed_uprobe_lock);
442 
443 	return ret;
444 }
445 
446 /*
447  * NOTE:
448  * Expect the breakpoint instruction to be the smallest size instruction for
449  * the architecture. If an arch has variable length instruction and the
450  * breakpoint instruction is not of the smallest length instruction
451  * supported by that architecture then we need to modify is_trap_at_addr and
452  * uprobe_write_opcode accordingly. This would never be a problem for archs
453  * that have fixed length instructions.
454  *
455  * uprobe_write_opcode - write the opcode at a given virtual address.
456  * @auprobe: arch specific probepoint information.
457  * @mm: the probed process address space.
458  * @vaddr: the virtual address to store the opcode.
459  * @opcode: opcode to be written at @vaddr.
460  *
461  * Called with mm->mmap_lock held for write.
462  * Return 0 (success) or a negative errno.
463  */
464 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
465 			unsigned long vaddr, uprobe_opcode_t opcode)
466 {
467 	struct uprobe *uprobe;
468 	struct page *old_page, *new_page;
469 	struct vm_area_struct *vma;
470 	int ret, is_register, ref_ctr_updated = 0;
471 	bool orig_page_huge = false;
472 	unsigned int gup_flags = FOLL_FORCE;
473 
474 	is_register = is_swbp_insn(&opcode);
475 	uprobe = container_of(auprobe, struct uprobe, arch);
476 
477 retry:
478 	if (is_register)
479 		gup_flags |= FOLL_SPLIT_PMD;
480 	/* Read the page with vaddr into memory */
481 	ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
482 				    &old_page, &vma, NULL);
483 	if (ret <= 0)
484 		return ret;
485 
486 	ret = verify_opcode(old_page, vaddr, &opcode);
487 	if (ret <= 0)
488 		goto put_old;
489 
490 	if (WARN(!is_register && PageCompound(old_page),
491 		 "uprobe unregister should never work on compound page\n")) {
492 		ret = -EINVAL;
493 		goto put_old;
494 	}
495 
496 	/* We are going to replace instruction, update ref_ctr. */
497 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
498 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
499 		if (ret)
500 			goto put_old;
501 
502 		ref_ctr_updated = 1;
503 	}
504 
505 	ret = 0;
506 	if (!is_register && !PageAnon(old_page))
507 		goto put_old;
508 
509 	ret = anon_vma_prepare(vma);
510 	if (ret)
511 		goto put_old;
512 
513 	ret = -ENOMEM;
514 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
515 	if (!new_page)
516 		goto put_old;
517 
518 	__SetPageUptodate(new_page);
519 	copy_highpage(new_page, old_page);
520 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
521 
522 	if (!is_register) {
523 		struct page *orig_page;
524 		pgoff_t index;
525 
526 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
527 
528 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
529 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
530 					  index);
531 
532 		if (orig_page) {
533 			if (PageUptodate(orig_page) &&
534 			    pages_identical(new_page, orig_page)) {
535 				/* let go new_page */
536 				put_page(new_page);
537 				new_page = NULL;
538 
539 				if (PageCompound(orig_page))
540 					orig_page_huge = true;
541 			}
542 			put_page(orig_page);
543 		}
544 	}
545 
546 	ret = __replace_page(vma, vaddr, old_page, new_page);
547 	if (new_page)
548 		put_page(new_page);
549 put_old:
550 	put_page(old_page);
551 
552 	if (unlikely(ret == -EAGAIN))
553 		goto retry;
554 
555 	/* Revert back reference counter if instruction update failed. */
556 	if (ret && is_register && ref_ctr_updated)
557 		update_ref_ctr(uprobe, mm, -1);
558 
559 	/* try collapse pmd for compound page */
560 	if (!ret && orig_page_huge)
561 		collapse_pte_mapped_thp(mm, vaddr);
562 
563 	return ret;
564 }
565 
566 /**
567  * set_swbp - store breakpoint at a given address.
568  * @auprobe: arch specific probepoint information.
569  * @mm: the probed process address space.
570  * @vaddr: the virtual address to insert the opcode.
571  *
572  * For mm @mm, store the breakpoint instruction at @vaddr.
573  * Return 0 (success) or a negative errno.
574  */
575 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
576 {
577 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
578 }
579 
580 /**
581  * set_orig_insn - Restore the original instruction.
582  * @mm: the probed process address space.
583  * @auprobe: arch specific probepoint information.
584  * @vaddr: the virtual address to insert the opcode.
585  *
586  * For mm @mm, restore the original opcode (opcode) at @vaddr.
587  * Return 0 (success) or a negative errno.
588  */
589 int __weak
590 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
591 {
592 	return uprobe_write_opcode(auprobe, mm, vaddr,
593 			*(uprobe_opcode_t *)&auprobe->insn);
594 }
595 
596 static struct uprobe *get_uprobe(struct uprobe *uprobe)
597 {
598 	refcount_inc(&uprobe->ref);
599 	return uprobe;
600 }
601 
602 static void put_uprobe(struct uprobe *uprobe)
603 {
604 	if (refcount_dec_and_test(&uprobe->ref)) {
605 		/*
606 		 * If application munmap(exec_vma) before uprobe_unregister()
607 		 * gets called, we don't get a chance to remove uprobe from
608 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
609 		 */
610 		mutex_lock(&delayed_uprobe_lock);
611 		delayed_uprobe_remove(uprobe, NULL);
612 		mutex_unlock(&delayed_uprobe_lock);
613 		kfree(uprobe);
614 	}
615 }
616 
617 static __always_inline
618 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
619 	       const struct uprobe *r)
620 {
621 	if (l_inode < r->inode)
622 		return -1;
623 
624 	if (l_inode > r->inode)
625 		return 1;
626 
627 	if (l_offset < r->offset)
628 		return -1;
629 
630 	if (l_offset > r->offset)
631 		return 1;
632 
633 	return 0;
634 }
635 
636 #define __node_2_uprobe(node) \
637 	rb_entry((node), struct uprobe, rb_node)
638 
639 struct __uprobe_key {
640 	struct inode *inode;
641 	loff_t offset;
642 };
643 
644 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
645 {
646 	const struct __uprobe_key *a = key;
647 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
648 }
649 
650 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
651 {
652 	struct uprobe *u = __node_2_uprobe(a);
653 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
654 }
655 
656 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
657 {
658 	struct __uprobe_key key = {
659 		.inode = inode,
660 		.offset = offset,
661 	};
662 	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
663 
664 	if (node)
665 		return get_uprobe(__node_2_uprobe(node));
666 
667 	return NULL;
668 }
669 
670 /*
671  * Find a uprobe corresponding to a given inode:offset
672  * Acquires uprobes_treelock
673  */
674 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
675 {
676 	struct uprobe *uprobe;
677 
678 	spin_lock(&uprobes_treelock);
679 	uprobe = __find_uprobe(inode, offset);
680 	spin_unlock(&uprobes_treelock);
681 
682 	return uprobe;
683 }
684 
685 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
686 {
687 	struct rb_node *node;
688 
689 	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
690 	if (node)
691 		return get_uprobe(__node_2_uprobe(node));
692 
693 	/* get access + creation ref */
694 	refcount_set(&uprobe->ref, 2);
695 	return NULL;
696 }
697 
698 /*
699  * Acquire uprobes_treelock.
700  * Matching uprobe already exists in rbtree;
701  *	increment (access refcount) and return the matching uprobe.
702  *
703  * No matching uprobe; insert the uprobe in rb_tree;
704  *	get a double refcount (access + creation) and return NULL.
705  */
706 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
707 {
708 	struct uprobe *u;
709 
710 	spin_lock(&uprobes_treelock);
711 	u = __insert_uprobe(uprobe);
712 	spin_unlock(&uprobes_treelock);
713 
714 	return u;
715 }
716 
717 static void
718 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
719 {
720 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
721 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
722 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
723 		(unsigned long long) cur_uprobe->ref_ctr_offset,
724 		(unsigned long long) uprobe->ref_ctr_offset);
725 }
726 
727 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
728 				   loff_t ref_ctr_offset)
729 {
730 	struct uprobe *uprobe, *cur_uprobe;
731 
732 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
733 	if (!uprobe)
734 		return NULL;
735 
736 	uprobe->inode = inode;
737 	uprobe->offset = offset;
738 	uprobe->ref_ctr_offset = ref_ctr_offset;
739 	init_rwsem(&uprobe->register_rwsem);
740 	init_rwsem(&uprobe->consumer_rwsem);
741 
742 	/* add to uprobes_tree, sorted on inode:offset */
743 	cur_uprobe = insert_uprobe(uprobe);
744 	/* a uprobe exists for this inode:offset combination */
745 	if (cur_uprobe) {
746 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
747 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
748 			put_uprobe(cur_uprobe);
749 			kfree(uprobe);
750 			return ERR_PTR(-EINVAL);
751 		}
752 		kfree(uprobe);
753 		uprobe = cur_uprobe;
754 	}
755 
756 	return uprobe;
757 }
758 
759 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
760 {
761 	down_write(&uprobe->consumer_rwsem);
762 	uc->next = uprobe->consumers;
763 	uprobe->consumers = uc;
764 	up_write(&uprobe->consumer_rwsem);
765 }
766 
767 /*
768  * For uprobe @uprobe, delete the consumer @uc.
769  * Return true if the @uc is deleted successfully
770  * or return false.
771  */
772 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
773 {
774 	struct uprobe_consumer **con;
775 	bool ret = false;
776 
777 	down_write(&uprobe->consumer_rwsem);
778 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
779 		if (*con == uc) {
780 			*con = uc->next;
781 			ret = true;
782 			break;
783 		}
784 	}
785 	up_write(&uprobe->consumer_rwsem);
786 
787 	return ret;
788 }
789 
790 static int __copy_insn(struct address_space *mapping, struct file *filp,
791 			void *insn, int nbytes, loff_t offset)
792 {
793 	struct page *page;
794 	/*
795 	 * Ensure that the page that has the original instruction is populated
796 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
797 	 * see uprobe_register().
798 	 */
799 	if (mapping->a_ops->readpage)
800 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
801 	else
802 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
803 	if (IS_ERR(page))
804 		return PTR_ERR(page);
805 
806 	copy_from_page(page, offset, insn, nbytes);
807 	put_page(page);
808 
809 	return 0;
810 }
811 
812 static int copy_insn(struct uprobe *uprobe, struct file *filp)
813 {
814 	struct address_space *mapping = uprobe->inode->i_mapping;
815 	loff_t offs = uprobe->offset;
816 	void *insn = &uprobe->arch.insn;
817 	int size = sizeof(uprobe->arch.insn);
818 	int len, err = -EIO;
819 
820 	/* Copy only available bytes, -EIO if nothing was read */
821 	do {
822 		if (offs >= i_size_read(uprobe->inode))
823 			break;
824 
825 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
826 		err = __copy_insn(mapping, filp, insn, len, offs);
827 		if (err)
828 			break;
829 
830 		insn += len;
831 		offs += len;
832 		size -= len;
833 	} while (size);
834 
835 	return err;
836 }
837 
838 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
839 				struct mm_struct *mm, unsigned long vaddr)
840 {
841 	int ret = 0;
842 
843 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
844 		return ret;
845 
846 	/* TODO: move this into _register, until then we abuse this sem. */
847 	down_write(&uprobe->consumer_rwsem);
848 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
849 		goto out;
850 
851 	ret = copy_insn(uprobe, file);
852 	if (ret)
853 		goto out;
854 
855 	ret = -ENOTSUPP;
856 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
857 		goto out;
858 
859 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
860 	if (ret)
861 		goto out;
862 
863 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
864 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
865 
866  out:
867 	up_write(&uprobe->consumer_rwsem);
868 
869 	return ret;
870 }
871 
872 static inline bool consumer_filter(struct uprobe_consumer *uc,
873 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
874 {
875 	return !uc->filter || uc->filter(uc, ctx, mm);
876 }
877 
878 static bool filter_chain(struct uprobe *uprobe,
879 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
880 {
881 	struct uprobe_consumer *uc;
882 	bool ret = false;
883 
884 	down_read(&uprobe->consumer_rwsem);
885 	for (uc = uprobe->consumers; uc; uc = uc->next) {
886 		ret = consumer_filter(uc, ctx, mm);
887 		if (ret)
888 			break;
889 	}
890 	up_read(&uprobe->consumer_rwsem);
891 
892 	return ret;
893 }
894 
895 static int
896 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
897 			struct vm_area_struct *vma, unsigned long vaddr)
898 {
899 	bool first_uprobe;
900 	int ret;
901 
902 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
903 	if (ret)
904 		return ret;
905 
906 	/*
907 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
908 	 * the task can hit this breakpoint right after __replace_page().
909 	 */
910 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
911 	if (first_uprobe)
912 		set_bit(MMF_HAS_UPROBES, &mm->flags);
913 
914 	ret = set_swbp(&uprobe->arch, mm, vaddr);
915 	if (!ret)
916 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
917 	else if (first_uprobe)
918 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
919 
920 	return ret;
921 }
922 
923 static int
924 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
925 {
926 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
927 	return set_orig_insn(&uprobe->arch, mm, vaddr);
928 }
929 
930 static inline bool uprobe_is_active(struct uprobe *uprobe)
931 {
932 	return !RB_EMPTY_NODE(&uprobe->rb_node);
933 }
934 /*
935  * There could be threads that have already hit the breakpoint. They
936  * will recheck the current insn and restart if find_uprobe() fails.
937  * See find_active_uprobe().
938  */
939 static void delete_uprobe(struct uprobe *uprobe)
940 {
941 	if (WARN_ON(!uprobe_is_active(uprobe)))
942 		return;
943 
944 	spin_lock(&uprobes_treelock);
945 	rb_erase(&uprobe->rb_node, &uprobes_tree);
946 	spin_unlock(&uprobes_treelock);
947 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
948 	put_uprobe(uprobe);
949 }
950 
951 struct map_info {
952 	struct map_info *next;
953 	struct mm_struct *mm;
954 	unsigned long vaddr;
955 };
956 
957 static inline struct map_info *free_map_info(struct map_info *info)
958 {
959 	struct map_info *next = info->next;
960 	kfree(info);
961 	return next;
962 }
963 
964 static struct map_info *
965 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
966 {
967 	unsigned long pgoff = offset >> PAGE_SHIFT;
968 	struct vm_area_struct *vma;
969 	struct map_info *curr = NULL;
970 	struct map_info *prev = NULL;
971 	struct map_info *info;
972 	int more = 0;
973 
974  again:
975 	i_mmap_lock_read(mapping);
976 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
977 		if (!valid_vma(vma, is_register))
978 			continue;
979 
980 		if (!prev && !more) {
981 			/*
982 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
983 			 * reclaim. This is optimistic, no harm done if it fails.
984 			 */
985 			prev = kmalloc(sizeof(struct map_info),
986 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
987 			if (prev)
988 				prev->next = NULL;
989 		}
990 		if (!prev) {
991 			more++;
992 			continue;
993 		}
994 
995 		if (!mmget_not_zero(vma->vm_mm))
996 			continue;
997 
998 		info = prev;
999 		prev = prev->next;
1000 		info->next = curr;
1001 		curr = info;
1002 
1003 		info->mm = vma->vm_mm;
1004 		info->vaddr = offset_to_vaddr(vma, offset);
1005 	}
1006 	i_mmap_unlock_read(mapping);
1007 
1008 	if (!more)
1009 		goto out;
1010 
1011 	prev = curr;
1012 	while (curr) {
1013 		mmput(curr->mm);
1014 		curr = curr->next;
1015 	}
1016 
1017 	do {
1018 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1019 		if (!info) {
1020 			curr = ERR_PTR(-ENOMEM);
1021 			goto out;
1022 		}
1023 		info->next = prev;
1024 		prev = info;
1025 	} while (--more);
1026 
1027 	goto again;
1028  out:
1029 	while (prev)
1030 		prev = free_map_info(prev);
1031 	return curr;
1032 }
1033 
1034 static int
1035 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1036 {
1037 	bool is_register = !!new;
1038 	struct map_info *info;
1039 	int err = 0;
1040 
1041 	percpu_down_write(&dup_mmap_sem);
1042 	info = build_map_info(uprobe->inode->i_mapping,
1043 					uprobe->offset, is_register);
1044 	if (IS_ERR(info)) {
1045 		err = PTR_ERR(info);
1046 		goto out;
1047 	}
1048 
1049 	while (info) {
1050 		struct mm_struct *mm = info->mm;
1051 		struct vm_area_struct *vma;
1052 
1053 		if (err && is_register)
1054 			goto free;
1055 
1056 		mmap_write_lock(mm);
1057 		vma = find_vma(mm, info->vaddr);
1058 		if (!vma || !valid_vma(vma, is_register) ||
1059 		    file_inode(vma->vm_file) != uprobe->inode)
1060 			goto unlock;
1061 
1062 		if (vma->vm_start > info->vaddr ||
1063 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1064 			goto unlock;
1065 
1066 		if (is_register) {
1067 			/* consult only the "caller", new consumer. */
1068 			if (consumer_filter(new,
1069 					UPROBE_FILTER_REGISTER, mm))
1070 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1071 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1072 			if (!filter_chain(uprobe,
1073 					UPROBE_FILTER_UNREGISTER, mm))
1074 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1075 		}
1076 
1077  unlock:
1078 		mmap_write_unlock(mm);
1079  free:
1080 		mmput(mm);
1081 		info = free_map_info(info);
1082 	}
1083  out:
1084 	percpu_up_write(&dup_mmap_sem);
1085 	return err;
1086 }
1087 
1088 static void
1089 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1090 {
1091 	int err;
1092 
1093 	if (WARN_ON(!consumer_del(uprobe, uc)))
1094 		return;
1095 
1096 	err = register_for_each_vma(uprobe, NULL);
1097 	/* TODO : cant unregister? schedule a worker thread */
1098 	if (!uprobe->consumers && !err)
1099 		delete_uprobe(uprobe);
1100 }
1101 
1102 /*
1103  * uprobe_unregister - unregister an already registered probe.
1104  * @inode: the file in which the probe has to be removed.
1105  * @offset: offset from the start of the file.
1106  * @uc: identify which probe if multiple probes are colocated.
1107  */
1108 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1109 {
1110 	struct uprobe *uprobe;
1111 
1112 	uprobe = find_uprobe(inode, offset);
1113 	if (WARN_ON(!uprobe))
1114 		return;
1115 
1116 	down_write(&uprobe->register_rwsem);
1117 	__uprobe_unregister(uprobe, uc);
1118 	up_write(&uprobe->register_rwsem);
1119 	put_uprobe(uprobe);
1120 }
1121 EXPORT_SYMBOL_GPL(uprobe_unregister);
1122 
1123 /*
1124  * __uprobe_register - register a probe
1125  * @inode: the file in which the probe has to be placed.
1126  * @offset: offset from the start of the file.
1127  * @uc: information on howto handle the probe..
1128  *
1129  * Apart from the access refcount, __uprobe_register() takes a creation
1130  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1131  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1132  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1133  * @uprobe even before the register operation is complete. Creation
1134  * refcount is released when the last @uc for the @uprobe
1135  * unregisters. Caller of __uprobe_register() is required to keep @inode
1136  * (and the containing mount) referenced.
1137  *
1138  * Return errno if it cannot successully install probes
1139  * else return 0 (success)
1140  */
1141 static int __uprobe_register(struct inode *inode, loff_t offset,
1142 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1143 {
1144 	struct uprobe *uprobe;
1145 	int ret;
1146 
1147 	/* Uprobe must have at least one set consumer */
1148 	if (!uc->handler && !uc->ret_handler)
1149 		return -EINVAL;
1150 
1151 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1152 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1153 		return -EIO;
1154 	/* Racy, just to catch the obvious mistakes */
1155 	if (offset > i_size_read(inode))
1156 		return -EINVAL;
1157 
1158 	/*
1159 	 * This ensures that copy_from_page(), copy_to_page() and
1160 	 * __update_ref_ctr() can't cross page boundary.
1161 	 */
1162 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1163 		return -EINVAL;
1164 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1165 		return -EINVAL;
1166 
1167  retry:
1168 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1169 	if (!uprobe)
1170 		return -ENOMEM;
1171 	if (IS_ERR(uprobe))
1172 		return PTR_ERR(uprobe);
1173 
1174 	/*
1175 	 * We can race with uprobe_unregister()->delete_uprobe().
1176 	 * Check uprobe_is_active() and retry if it is false.
1177 	 */
1178 	down_write(&uprobe->register_rwsem);
1179 	ret = -EAGAIN;
1180 	if (likely(uprobe_is_active(uprobe))) {
1181 		consumer_add(uprobe, uc);
1182 		ret = register_for_each_vma(uprobe, uc);
1183 		if (ret)
1184 			__uprobe_unregister(uprobe, uc);
1185 	}
1186 	up_write(&uprobe->register_rwsem);
1187 	put_uprobe(uprobe);
1188 
1189 	if (unlikely(ret == -EAGAIN))
1190 		goto retry;
1191 	return ret;
1192 }
1193 
1194 int uprobe_register(struct inode *inode, loff_t offset,
1195 		    struct uprobe_consumer *uc)
1196 {
1197 	return __uprobe_register(inode, offset, 0, uc);
1198 }
1199 EXPORT_SYMBOL_GPL(uprobe_register);
1200 
1201 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1202 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1203 {
1204 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1205 }
1206 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1207 
1208 /*
1209  * uprobe_apply - unregister an already registered probe.
1210  * @inode: the file in which the probe has to be removed.
1211  * @offset: offset from the start of the file.
1212  * @uc: consumer which wants to add more or remove some breakpoints
1213  * @add: add or remove the breakpoints
1214  */
1215 int uprobe_apply(struct inode *inode, loff_t offset,
1216 			struct uprobe_consumer *uc, bool add)
1217 {
1218 	struct uprobe *uprobe;
1219 	struct uprobe_consumer *con;
1220 	int ret = -ENOENT;
1221 
1222 	uprobe = find_uprobe(inode, offset);
1223 	if (WARN_ON(!uprobe))
1224 		return ret;
1225 
1226 	down_write(&uprobe->register_rwsem);
1227 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1228 		;
1229 	if (con)
1230 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1231 	up_write(&uprobe->register_rwsem);
1232 	put_uprobe(uprobe);
1233 
1234 	return ret;
1235 }
1236 
1237 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1238 {
1239 	struct vm_area_struct *vma;
1240 	int err = 0;
1241 
1242 	mmap_read_lock(mm);
1243 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1244 		unsigned long vaddr;
1245 		loff_t offset;
1246 
1247 		if (!valid_vma(vma, false) ||
1248 		    file_inode(vma->vm_file) != uprobe->inode)
1249 			continue;
1250 
1251 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1252 		if (uprobe->offset <  offset ||
1253 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1254 			continue;
1255 
1256 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1257 		err |= remove_breakpoint(uprobe, mm, vaddr);
1258 	}
1259 	mmap_read_unlock(mm);
1260 
1261 	return err;
1262 }
1263 
1264 static struct rb_node *
1265 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1266 {
1267 	struct rb_node *n = uprobes_tree.rb_node;
1268 
1269 	while (n) {
1270 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1271 
1272 		if (inode < u->inode) {
1273 			n = n->rb_left;
1274 		} else if (inode > u->inode) {
1275 			n = n->rb_right;
1276 		} else {
1277 			if (max < u->offset)
1278 				n = n->rb_left;
1279 			else if (min > u->offset)
1280 				n = n->rb_right;
1281 			else
1282 				break;
1283 		}
1284 	}
1285 
1286 	return n;
1287 }
1288 
1289 /*
1290  * For a given range in vma, build a list of probes that need to be inserted.
1291  */
1292 static void build_probe_list(struct inode *inode,
1293 				struct vm_area_struct *vma,
1294 				unsigned long start, unsigned long end,
1295 				struct list_head *head)
1296 {
1297 	loff_t min, max;
1298 	struct rb_node *n, *t;
1299 	struct uprobe *u;
1300 
1301 	INIT_LIST_HEAD(head);
1302 	min = vaddr_to_offset(vma, start);
1303 	max = min + (end - start) - 1;
1304 
1305 	spin_lock(&uprobes_treelock);
1306 	n = find_node_in_range(inode, min, max);
1307 	if (n) {
1308 		for (t = n; t; t = rb_prev(t)) {
1309 			u = rb_entry(t, struct uprobe, rb_node);
1310 			if (u->inode != inode || u->offset < min)
1311 				break;
1312 			list_add(&u->pending_list, head);
1313 			get_uprobe(u);
1314 		}
1315 		for (t = n; (t = rb_next(t)); ) {
1316 			u = rb_entry(t, struct uprobe, rb_node);
1317 			if (u->inode != inode || u->offset > max)
1318 				break;
1319 			list_add(&u->pending_list, head);
1320 			get_uprobe(u);
1321 		}
1322 	}
1323 	spin_unlock(&uprobes_treelock);
1324 }
1325 
1326 /* @vma contains reference counter, not the probed instruction. */
1327 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1328 {
1329 	struct list_head *pos, *q;
1330 	struct delayed_uprobe *du;
1331 	unsigned long vaddr;
1332 	int ret = 0, err = 0;
1333 
1334 	mutex_lock(&delayed_uprobe_lock);
1335 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1336 		du = list_entry(pos, struct delayed_uprobe, list);
1337 
1338 		if (du->mm != vma->vm_mm ||
1339 		    !valid_ref_ctr_vma(du->uprobe, vma))
1340 			continue;
1341 
1342 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1343 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1344 		if (ret) {
1345 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1346 			if (!err)
1347 				err = ret;
1348 		}
1349 		delayed_uprobe_delete(du);
1350 	}
1351 	mutex_unlock(&delayed_uprobe_lock);
1352 	return err;
1353 }
1354 
1355 /*
1356  * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1357  *
1358  * Currently we ignore all errors and always return 0, the callers
1359  * can't handle the failure anyway.
1360  */
1361 int uprobe_mmap(struct vm_area_struct *vma)
1362 {
1363 	struct list_head tmp_list;
1364 	struct uprobe *uprobe, *u;
1365 	struct inode *inode;
1366 
1367 	if (no_uprobe_events())
1368 		return 0;
1369 
1370 	if (vma->vm_file &&
1371 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1372 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1373 		delayed_ref_ctr_inc(vma);
1374 
1375 	if (!valid_vma(vma, true))
1376 		return 0;
1377 
1378 	inode = file_inode(vma->vm_file);
1379 	if (!inode)
1380 		return 0;
1381 
1382 	mutex_lock(uprobes_mmap_hash(inode));
1383 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1384 	/*
1385 	 * We can race with uprobe_unregister(), this uprobe can be already
1386 	 * removed. But in this case filter_chain() must return false, all
1387 	 * consumers have gone away.
1388 	 */
1389 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1390 		if (!fatal_signal_pending(current) &&
1391 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1392 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1393 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1394 		}
1395 		put_uprobe(uprobe);
1396 	}
1397 	mutex_unlock(uprobes_mmap_hash(inode));
1398 
1399 	return 0;
1400 }
1401 
1402 static bool
1403 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1404 {
1405 	loff_t min, max;
1406 	struct inode *inode;
1407 	struct rb_node *n;
1408 
1409 	inode = file_inode(vma->vm_file);
1410 
1411 	min = vaddr_to_offset(vma, start);
1412 	max = min + (end - start) - 1;
1413 
1414 	spin_lock(&uprobes_treelock);
1415 	n = find_node_in_range(inode, min, max);
1416 	spin_unlock(&uprobes_treelock);
1417 
1418 	return !!n;
1419 }
1420 
1421 /*
1422  * Called in context of a munmap of a vma.
1423  */
1424 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1425 {
1426 	if (no_uprobe_events() || !valid_vma(vma, false))
1427 		return;
1428 
1429 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1430 		return;
1431 
1432 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1433 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1434 		return;
1435 
1436 	if (vma_has_uprobes(vma, start, end))
1437 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1438 }
1439 
1440 /* Slot allocation for XOL */
1441 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1442 {
1443 	struct vm_area_struct *vma;
1444 	int ret;
1445 
1446 	if (mmap_write_lock_killable(mm))
1447 		return -EINTR;
1448 
1449 	if (mm->uprobes_state.xol_area) {
1450 		ret = -EALREADY;
1451 		goto fail;
1452 	}
1453 
1454 	if (!area->vaddr) {
1455 		/* Try to map as high as possible, this is only a hint. */
1456 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1457 						PAGE_SIZE, 0, 0);
1458 		if (IS_ERR_VALUE(area->vaddr)) {
1459 			ret = area->vaddr;
1460 			goto fail;
1461 		}
1462 	}
1463 
1464 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1465 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1466 				&area->xol_mapping);
1467 	if (IS_ERR(vma)) {
1468 		ret = PTR_ERR(vma);
1469 		goto fail;
1470 	}
1471 
1472 	ret = 0;
1473 	/* pairs with get_xol_area() */
1474 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1475  fail:
1476 	mmap_write_unlock(mm);
1477 
1478 	return ret;
1479 }
1480 
1481 static struct xol_area *__create_xol_area(unsigned long vaddr)
1482 {
1483 	struct mm_struct *mm = current->mm;
1484 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1485 	struct xol_area *area;
1486 
1487 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1488 	if (unlikely(!area))
1489 		goto out;
1490 
1491 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1492 			       GFP_KERNEL);
1493 	if (!area->bitmap)
1494 		goto free_area;
1495 
1496 	area->xol_mapping.name = "[uprobes]";
1497 	area->xol_mapping.fault = NULL;
1498 	area->xol_mapping.pages = area->pages;
1499 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1500 	if (!area->pages[0])
1501 		goto free_bitmap;
1502 	area->pages[1] = NULL;
1503 
1504 	area->vaddr = vaddr;
1505 	init_waitqueue_head(&area->wq);
1506 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1507 	set_bit(0, area->bitmap);
1508 	atomic_set(&area->slot_count, 1);
1509 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1510 
1511 	if (!xol_add_vma(mm, area))
1512 		return area;
1513 
1514 	__free_page(area->pages[0]);
1515  free_bitmap:
1516 	kfree(area->bitmap);
1517  free_area:
1518 	kfree(area);
1519  out:
1520 	return NULL;
1521 }
1522 
1523 /*
1524  * get_xol_area - Allocate process's xol_area if necessary.
1525  * This area will be used for storing instructions for execution out of line.
1526  *
1527  * Returns the allocated area or NULL.
1528  */
1529 static struct xol_area *get_xol_area(void)
1530 {
1531 	struct mm_struct *mm = current->mm;
1532 	struct xol_area *area;
1533 
1534 	if (!mm->uprobes_state.xol_area)
1535 		__create_xol_area(0);
1536 
1537 	/* Pairs with xol_add_vma() smp_store_release() */
1538 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1539 	return area;
1540 }
1541 
1542 /*
1543  * uprobe_clear_state - Free the area allocated for slots.
1544  */
1545 void uprobe_clear_state(struct mm_struct *mm)
1546 {
1547 	struct xol_area *area = mm->uprobes_state.xol_area;
1548 
1549 	mutex_lock(&delayed_uprobe_lock);
1550 	delayed_uprobe_remove(NULL, mm);
1551 	mutex_unlock(&delayed_uprobe_lock);
1552 
1553 	if (!area)
1554 		return;
1555 
1556 	put_page(area->pages[0]);
1557 	kfree(area->bitmap);
1558 	kfree(area);
1559 }
1560 
1561 void uprobe_start_dup_mmap(void)
1562 {
1563 	percpu_down_read(&dup_mmap_sem);
1564 }
1565 
1566 void uprobe_end_dup_mmap(void)
1567 {
1568 	percpu_up_read(&dup_mmap_sem);
1569 }
1570 
1571 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1572 {
1573 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1574 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1575 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1576 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1577 	}
1578 }
1579 
1580 /*
1581  *  - search for a free slot.
1582  */
1583 static unsigned long xol_take_insn_slot(struct xol_area *area)
1584 {
1585 	unsigned long slot_addr;
1586 	int slot_nr;
1587 
1588 	do {
1589 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1590 		if (slot_nr < UINSNS_PER_PAGE) {
1591 			if (!test_and_set_bit(slot_nr, area->bitmap))
1592 				break;
1593 
1594 			slot_nr = UINSNS_PER_PAGE;
1595 			continue;
1596 		}
1597 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1598 	} while (slot_nr >= UINSNS_PER_PAGE);
1599 
1600 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1601 	atomic_inc(&area->slot_count);
1602 
1603 	return slot_addr;
1604 }
1605 
1606 /*
1607  * xol_get_insn_slot - allocate a slot for xol.
1608  * Returns the allocated slot address or 0.
1609  */
1610 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1611 {
1612 	struct xol_area *area;
1613 	unsigned long xol_vaddr;
1614 
1615 	area = get_xol_area();
1616 	if (!area)
1617 		return 0;
1618 
1619 	xol_vaddr = xol_take_insn_slot(area);
1620 	if (unlikely(!xol_vaddr))
1621 		return 0;
1622 
1623 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1624 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1625 
1626 	return xol_vaddr;
1627 }
1628 
1629 /*
1630  * xol_free_insn_slot - If slot was earlier allocated by
1631  * @xol_get_insn_slot(), make the slot available for
1632  * subsequent requests.
1633  */
1634 static void xol_free_insn_slot(struct task_struct *tsk)
1635 {
1636 	struct xol_area *area;
1637 	unsigned long vma_end;
1638 	unsigned long slot_addr;
1639 
1640 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1641 		return;
1642 
1643 	slot_addr = tsk->utask->xol_vaddr;
1644 	if (unlikely(!slot_addr))
1645 		return;
1646 
1647 	area = tsk->mm->uprobes_state.xol_area;
1648 	vma_end = area->vaddr + PAGE_SIZE;
1649 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1650 		unsigned long offset;
1651 		int slot_nr;
1652 
1653 		offset = slot_addr - area->vaddr;
1654 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1655 		if (slot_nr >= UINSNS_PER_PAGE)
1656 			return;
1657 
1658 		clear_bit(slot_nr, area->bitmap);
1659 		atomic_dec(&area->slot_count);
1660 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1661 		if (waitqueue_active(&area->wq))
1662 			wake_up(&area->wq);
1663 
1664 		tsk->utask->xol_vaddr = 0;
1665 	}
1666 }
1667 
1668 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1669 				  void *src, unsigned long len)
1670 {
1671 	/* Initialize the slot */
1672 	copy_to_page(page, vaddr, src, len);
1673 
1674 	/*
1675 	 * We probably need flush_icache_user_page() but it needs vma.
1676 	 * This should work on most of architectures by default. If
1677 	 * architecture needs to do something different it can define
1678 	 * its own version of the function.
1679 	 */
1680 	flush_dcache_page(page);
1681 }
1682 
1683 /**
1684  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1685  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1686  * instruction.
1687  * Return the address of the breakpoint instruction.
1688  */
1689 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1690 {
1691 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1692 }
1693 
1694 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1695 {
1696 	struct uprobe_task *utask = current->utask;
1697 
1698 	if (unlikely(utask && utask->active_uprobe))
1699 		return utask->vaddr;
1700 
1701 	return instruction_pointer(regs);
1702 }
1703 
1704 static struct return_instance *free_ret_instance(struct return_instance *ri)
1705 {
1706 	struct return_instance *next = ri->next;
1707 	put_uprobe(ri->uprobe);
1708 	kfree(ri);
1709 	return next;
1710 }
1711 
1712 /*
1713  * Called with no locks held.
1714  * Called in context of an exiting or an exec-ing thread.
1715  */
1716 void uprobe_free_utask(struct task_struct *t)
1717 {
1718 	struct uprobe_task *utask = t->utask;
1719 	struct return_instance *ri;
1720 
1721 	if (!utask)
1722 		return;
1723 
1724 	if (utask->active_uprobe)
1725 		put_uprobe(utask->active_uprobe);
1726 
1727 	ri = utask->return_instances;
1728 	while (ri)
1729 		ri = free_ret_instance(ri);
1730 
1731 	xol_free_insn_slot(t);
1732 	kfree(utask);
1733 	t->utask = NULL;
1734 }
1735 
1736 /*
1737  * Allocate a uprobe_task object for the task if necessary.
1738  * Called when the thread hits a breakpoint.
1739  *
1740  * Returns:
1741  * - pointer to new uprobe_task on success
1742  * - NULL otherwise
1743  */
1744 static struct uprobe_task *get_utask(void)
1745 {
1746 	if (!current->utask)
1747 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1748 	return current->utask;
1749 }
1750 
1751 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1752 {
1753 	struct uprobe_task *n_utask;
1754 	struct return_instance **p, *o, *n;
1755 
1756 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1757 	if (!n_utask)
1758 		return -ENOMEM;
1759 	t->utask = n_utask;
1760 
1761 	p = &n_utask->return_instances;
1762 	for (o = o_utask->return_instances; o; o = o->next) {
1763 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1764 		if (!n)
1765 			return -ENOMEM;
1766 
1767 		*n = *o;
1768 		get_uprobe(n->uprobe);
1769 		n->next = NULL;
1770 
1771 		*p = n;
1772 		p = &n->next;
1773 		n_utask->depth++;
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 static void uprobe_warn(struct task_struct *t, const char *msg)
1780 {
1781 	pr_warn("uprobe: %s:%d failed to %s\n",
1782 			current->comm, current->pid, msg);
1783 }
1784 
1785 static void dup_xol_work(struct callback_head *work)
1786 {
1787 	if (current->flags & PF_EXITING)
1788 		return;
1789 
1790 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1791 			!fatal_signal_pending(current))
1792 		uprobe_warn(current, "dup xol area");
1793 }
1794 
1795 /*
1796  * Called in context of a new clone/fork from copy_process.
1797  */
1798 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1799 {
1800 	struct uprobe_task *utask = current->utask;
1801 	struct mm_struct *mm = current->mm;
1802 	struct xol_area *area;
1803 
1804 	t->utask = NULL;
1805 
1806 	if (!utask || !utask->return_instances)
1807 		return;
1808 
1809 	if (mm == t->mm && !(flags & CLONE_VFORK))
1810 		return;
1811 
1812 	if (dup_utask(t, utask))
1813 		return uprobe_warn(t, "dup ret instances");
1814 
1815 	/* The task can fork() after dup_xol_work() fails */
1816 	area = mm->uprobes_state.xol_area;
1817 	if (!area)
1818 		return uprobe_warn(t, "dup xol area");
1819 
1820 	if (mm == t->mm)
1821 		return;
1822 
1823 	t->utask->dup_xol_addr = area->vaddr;
1824 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1825 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1826 }
1827 
1828 /*
1829  * Current area->vaddr notion assume the trampoline address is always
1830  * equal area->vaddr.
1831  *
1832  * Returns -1 in case the xol_area is not allocated.
1833  */
1834 static unsigned long get_trampoline_vaddr(void)
1835 {
1836 	struct xol_area *area;
1837 	unsigned long trampoline_vaddr = -1;
1838 
1839 	/* Pairs with xol_add_vma() smp_store_release() */
1840 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1841 	if (area)
1842 		trampoline_vaddr = area->vaddr;
1843 
1844 	return trampoline_vaddr;
1845 }
1846 
1847 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1848 					struct pt_regs *regs)
1849 {
1850 	struct return_instance *ri = utask->return_instances;
1851 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1852 
1853 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1854 		ri = free_ret_instance(ri);
1855 		utask->depth--;
1856 	}
1857 	utask->return_instances = ri;
1858 }
1859 
1860 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1861 {
1862 	struct return_instance *ri;
1863 	struct uprobe_task *utask;
1864 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1865 	bool chained;
1866 
1867 	if (!get_xol_area())
1868 		return;
1869 
1870 	utask = get_utask();
1871 	if (!utask)
1872 		return;
1873 
1874 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1875 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1876 				" nestedness limit pid/tgid=%d/%d\n",
1877 				current->pid, current->tgid);
1878 		return;
1879 	}
1880 
1881 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1882 	if (!ri)
1883 		return;
1884 
1885 	trampoline_vaddr = get_trampoline_vaddr();
1886 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1887 	if (orig_ret_vaddr == -1)
1888 		goto fail;
1889 
1890 	/* drop the entries invalidated by longjmp() */
1891 	chained = (orig_ret_vaddr == trampoline_vaddr);
1892 	cleanup_return_instances(utask, chained, regs);
1893 
1894 	/*
1895 	 * We don't want to keep trampoline address in stack, rather keep the
1896 	 * original return address of first caller thru all the consequent
1897 	 * instances. This also makes breakpoint unwrapping easier.
1898 	 */
1899 	if (chained) {
1900 		if (!utask->return_instances) {
1901 			/*
1902 			 * This situation is not possible. Likely we have an
1903 			 * attack from user-space.
1904 			 */
1905 			uprobe_warn(current, "handle tail call");
1906 			goto fail;
1907 		}
1908 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1909 	}
1910 
1911 	ri->uprobe = get_uprobe(uprobe);
1912 	ri->func = instruction_pointer(regs);
1913 	ri->stack = user_stack_pointer(regs);
1914 	ri->orig_ret_vaddr = orig_ret_vaddr;
1915 	ri->chained = chained;
1916 
1917 	utask->depth++;
1918 	ri->next = utask->return_instances;
1919 	utask->return_instances = ri;
1920 
1921 	return;
1922  fail:
1923 	kfree(ri);
1924 }
1925 
1926 /* Prepare to single-step probed instruction out of line. */
1927 static int
1928 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1929 {
1930 	struct uprobe_task *utask;
1931 	unsigned long xol_vaddr;
1932 	int err;
1933 
1934 	utask = get_utask();
1935 	if (!utask)
1936 		return -ENOMEM;
1937 
1938 	xol_vaddr = xol_get_insn_slot(uprobe);
1939 	if (!xol_vaddr)
1940 		return -ENOMEM;
1941 
1942 	utask->xol_vaddr = xol_vaddr;
1943 	utask->vaddr = bp_vaddr;
1944 
1945 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1946 	if (unlikely(err)) {
1947 		xol_free_insn_slot(current);
1948 		return err;
1949 	}
1950 
1951 	utask->active_uprobe = uprobe;
1952 	utask->state = UTASK_SSTEP;
1953 	return 0;
1954 }
1955 
1956 /*
1957  * If we are singlestepping, then ensure this thread is not connected to
1958  * non-fatal signals until completion of singlestep.  When xol insn itself
1959  * triggers the signal,  restart the original insn even if the task is
1960  * already SIGKILL'ed (since coredump should report the correct ip).  This
1961  * is even more important if the task has a handler for SIGSEGV/etc, The
1962  * _same_ instruction should be repeated again after return from the signal
1963  * handler, and SSTEP can never finish in this case.
1964  */
1965 bool uprobe_deny_signal(void)
1966 {
1967 	struct task_struct *t = current;
1968 	struct uprobe_task *utask = t->utask;
1969 
1970 	if (likely(!utask || !utask->active_uprobe))
1971 		return false;
1972 
1973 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1974 
1975 	if (task_sigpending(t)) {
1976 		spin_lock_irq(&t->sighand->siglock);
1977 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1978 		spin_unlock_irq(&t->sighand->siglock);
1979 
1980 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1981 			utask->state = UTASK_SSTEP_TRAPPED;
1982 			set_tsk_thread_flag(t, TIF_UPROBE);
1983 		}
1984 	}
1985 
1986 	return true;
1987 }
1988 
1989 static void mmf_recalc_uprobes(struct mm_struct *mm)
1990 {
1991 	struct vm_area_struct *vma;
1992 
1993 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1994 		if (!valid_vma(vma, false))
1995 			continue;
1996 		/*
1997 		 * This is not strictly accurate, we can race with
1998 		 * uprobe_unregister() and see the already removed
1999 		 * uprobe if delete_uprobe() was not yet called.
2000 		 * Or this uprobe can be filtered out.
2001 		 */
2002 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2003 			return;
2004 	}
2005 
2006 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2007 }
2008 
2009 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2010 {
2011 	struct page *page;
2012 	uprobe_opcode_t opcode;
2013 	int result;
2014 
2015 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2016 		return -EINVAL;
2017 
2018 	pagefault_disable();
2019 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2020 	pagefault_enable();
2021 
2022 	if (likely(result == 0))
2023 		goto out;
2024 
2025 	/*
2026 	 * The NULL 'tsk' here ensures that any faults that occur here
2027 	 * will not be accounted to the task.  'mm' *is* current->mm,
2028 	 * but we treat this as a 'remote' access since it is
2029 	 * essentially a kernel access to the memory.
2030 	 */
2031 	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2032 			NULL, NULL);
2033 	if (result < 0)
2034 		return result;
2035 
2036 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2037 	put_page(page);
2038  out:
2039 	/* This needs to return true for any variant of the trap insn */
2040 	return is_trap_insn(&opcode);
2041 }
2042 
2043 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2044 {
2045 	struct mm_struct *mm = current->mm;
2046 	struct uprobe *uprobe = NULL;
2047 	struct vm_area_struct *vma;
2048 
2049 	mmap_read_lock(mm);
2050 	vma = vma_lookup(mm, bp_vaddr);
2051 	if (vma) {
2052 		if (valid_vma(vma, false)) {
2053 			struct inode *inode = file_inode(vma->vm_file);
2054 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2055 
2056 			uprobe = find_uprobe(inode, offset);
2057 		}
2058 
2059 		if (!uprobe)
2060 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2061 	} else {
2062 		*is_swbp = -EFAULT;
2063 	}
2064 
2065 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2066 		mmf_recalc_uprobes(mm);
2067 	mmap_read_unlock(mm);
2068 
2069 	return uprobe;
2070 }
2071 
2072 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2073 {
2074 	struct uprobe_consumer *uc;
2075 	int remove = UPROBE_HANDLER_REMOVE;
2076 	bool need_prep = false; /* prepare return uprobe, when needed */
2077 
2078 	down_read(&uprobe->register_rwsem);
2079 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2080 		int rc = 0;
2081 
2082 		if (uc->handler) {
2083 			rc = uc->handler(uc, regs);
2084 			WARN(rc & ~UPROBE_HANDLER_MASK,
2085 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2086 		}
2087 
2088 		if (uc->ret_handler)
2089 			need_prep = true;
2090 
2091 		remove &= rc;
2092 	}
2093 
2094 	if (need_prep && !remove)
2095 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2096 
2097 	if (remove && uprobe->consumers) {
2098 		WARN_ON(!uprobe_is_active(uprobe));
2099 		unapply_uprobe(uprobe, current->mm);
2100 	}
2101 	up_read(&uprobe->register_rwsem);
2102 }
2103 
2104 static void
2105 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2106 {
2107 	struct uprobe *uprobe = ri->uprobe;
2108 	struct uprobe_consumer *uc;
2109 
2110 	down_read(&uprobe->register_rwsem);
2111 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2112 		if (uc->ret_handler)
2113 			uc->ret_handler(uc, ri->func, regs);
2114 	}
2115 	up_read(&uprobe->register_rwsem);
2116 }
2117 
2118 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2119 {
2120 	bool chained;
2121 
2122 	do {
2123 		chained = ri->chained;
2124 		ri = ri->next;	/* can't be NULL if chained */
2125 	} while (chained);
2126 
2127 	return ri;
2128 }
2129 
2130 static void handle_trampoline(struct pt_regs *regs)
2131 {
2132 	struct uprobe_task *utask;
2133 	struct return_instance *ri, *next;
2134 	bool valid;
2135 
2136 	utask = current->utask;
2137 	if (!utask)
2138 		goto sigill;
2139 
2140 	ri = utask->return_instances;
2141 	if (!ri)
2142 		goto sigill;
2143 
2144 	do {
2145 		/*
2146 		 * We should throw out the frames invalidated by longjmp().
2147 		 * If this chain is valid, then the next one should be alive
2148 		 * or NULL; the latter case means that nobody but ri->func
2149 		 * could hit this trampoline on return. TODO: sigaltstack().
2150 		 */
2151 		next = find_next_ret_chain(ri);
2152 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2153 
2154 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2155 		do {
2156 			if (valid)
2157 				handle_uretprobe_chain(ri, regs);
2158 			ri = free_ret_instance(ri);
2159 			utask->depth--;
2160 		} while (ri != next);
2161 	} while (!valid);
2162 
2163 	utask->return_instances = ri;
2164 	return;
2165 
2166  sigill:
2167 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2168 	force_sig(SIGILL);
2169 
2170 }
2171 
2172 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2173 {
2174 	return false;
2175 }
2176 
2177 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2178 					struct pt_regs *regs)
2179 {
2180 	return true;
2181 }
2182 
2183 /*
2184  * Run handler and ask thread to singlestep.
2185  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2186  */
2187 static void handle_swbp(struct pt_regs *regs)
2188 {
2189 	struct uprobe *uprobe;
2190 	unsigned long bp_vaddr;
2191 	int is_swbp;
2192 
2193 	bp_vaddr = uprobe_get_swbp_addr(regs);
2194 	if (bp_vaddr == get_trampoline_vaddr())
2195 		return handle_trampoline(regs);
2196 
2197 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2198 	if (!uprobe) {
2199 		if (is_swbp > 0) {
2200 			/* No matching uprobe; signal SIGTRAP. */
2201 			force_sig(SIGTRAP);
2202 		} else {
2203 			/*
2204 			 * Either we raced with uprobe_unregister() or we can't
2205 			 * access this memory. The latter is only possible if
2206 			 * another thread plays with our ->mm. In both cases
2207 			 * we can simply restart. If this vma was unmapped we
2208 			 * can pretend this insn was not executed yet and get
2209 			 * the (correct) SIGSEGV after restart.
2210 			 */
2211 			instruction_pointer_set(regs, bp_vaddr);
2212 		}
2213 		return;
2214 	}
2215 
2216 	/* change it in advance for ->handler() and restart */
2217 	instruction_pointer_set(regs, bp_vaddr);
2218 
2219 	/*
2220 	 * TODO: move copy_insn/etc into _register and remove this hack.
2221 	 * After we hit the bp, _unregister + _register can install the
2222 	 * new and not-yet-analyzed uprobe at the same address, restart.
2223 	 */
2224 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2225 		goto out;
2226 
2227 	/*
2228 	 * Pairs with the smp_wmb() in prepare_uprobe().
2229 	 *
2230 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2231 	 * we must also see the stores to &uprobe->arch performed by the
2232 	 * prepare_uprobe() call.
2233 	 */
2234 	smp_rmb();
2235 
2236 	/* Tracing handlers use ->utask to communicate with fetch methods */
2237 	if (!get_utask())
2238 		goto out;
2239 
2240 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2241 		goto out;
2242 
2243 	handler_chain(uprobe, regs);
2244 
2245 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2246 		goto out;
2247 
2248 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2249 		return;
2250 
2251 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2252 out:
2253 	put_uprobe(uprobe);
2254 }
2255 
2256 /*
2257  * Perform required fix-ups and disable singlestep.
2258  * Allow pending signals to take effect.
2259  */
2260 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2261 {
2262 	struct uprobe *uprobe;
2263 	int err = 0;
2264 
2265 	uprobe = utask->active_uprobe;
2266 	if (utask->state == UTASK_SSTEP_ACK)
2267 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2268 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2269 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2270 	else
2271 		WARN_ON_ONCE(1);
2272 
2273 	put_uprobe(uprobe);
2274 	utask->active_uprobe = NULL;
2275 	utask->state = UTASK_RUNNING;
2276 	xol_free_insn_slot(current);
2277 
2278 	spin_lock_irq(&current->sighand->siglock);
2279 	recalc_sigpending(); /* see uprobe_deny_signal() */
2280 	spin_unlock_irq(&current->sighand->siglock);
2281 
2282 	if (unlikely(err)) {
2283 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2284 		force_sig(SIGILL);
2285 	}
2286 }
2287 
2288 /*
2289  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2290  * allows the thread to return from interrupt. After that handle_swbp()
2291  * sets utask->active_uprobe.
2292  *
2293  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2294  * and allows the thread to return from interrupt.
2295  *
2296  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2297  * uprobe_notify_resume().
2298  */
2299 void uprobe_notify_resume(struct pt_regs *regs)
2300 {
2301 	struct uprobe_task *utask;
2302 
2303 	clear_thread_flag(TIF_UPROBE);
2304 
2305 	utask = current->utask;
2306 	if (utask && utask->active_uprobe)
2307 		handle_singlestep(utask, regs);
2308 	else
2309 		handle_swbp(regs);
2310 }
2311 
2312 /*
2313  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2314  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2315  */
2316 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2317 {
2318 	if (!current->mm)
2319 		return 0;
2320 
2321 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2322 	    (!current->utask || !current->utask->return_instances))
2323 		return 0;
2324 
2325 	set_thread_flag(TIF_UPROBE);
2326 	return 1;
2327 }
2328 
2329 /*
2330  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2331  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2332  */
2333 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2334 {
2335 	struct uprobe_task *utask = current->utask;
2336 
2337 	if (!current->mm || !utask || !utask->active_uprobe)
2338 		/* task is currently not uprobed */
2339 		return 0;
2340 
2341 	utask->state = UTASK_SSTEP_ACK;
2342 	set_thread_flag(TIF_UPROBE);
2343 	return 1;
2344 }
2345 
2346 static struct notifier_block uprobe_exception_nb = {
2347 	.notifier_call		= arch_uprobe_exception_notify,
2348 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2349 };
2350 
2351 void __init uprobes_init(void)
2352 {
2353 	int i;
2354 
2355 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2356 		mutex_init(&uprobes_mmap_mutex[i]);
2357 
2358 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2359 }
2360