xref: /openbmc/linux/kernel/events/uprobes.c (revision 31af04cd)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/coredump.h>
32 #include <linux/export.h>
33 #include <linux/rmap.h>		/* anon_vma_prepare */
34 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
35 #include <linux/swap.h>		/* try_to_free_swap */
36 #include <linux/ptrace.h>	/* user_enable_single_step */
37 #include <linux/kdebug.h>	/* notifier mechanism */
38 #include "../../mm/internal.h"	/* munlock_vma_page */
39 #include <linux/percpu-rwsem.h>
40 #include <linux/task_work.h>
41 #include <linux/shmem_fs.h>
42 
43 #include <linux/uprobes.h>
44 
45 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
46 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
47 
48 static struct rb_root uprobes_tree = RB_ROOT;
49 /*
50  * allows us to skip the uprobe_mmap if there are no uprobe events active
51  * at this time.  Probably a fine grained per inode count is better?
52  */
53 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
54 
55 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
56 
57 #define UPROBES_HASH_SZ	13
58 /* serialize uprobe->pending_list */
59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
60 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
61 
62 static struct percpu_rw_semaphore dup_mmap_sem;
63 
64 /* Have a copy of original instruction */
65 #define UPROBE_COPY_INSN	0
66 
67 struct uprobe {
68 	struct rb_node		rb_node;	/* node in the rb tree */
69 	atomic_t		ref;
70 	struct rw_semaphore	register_rwsem;
71 	struct rw_semaphore	consumer_rwsem;
72 	struct list_head	pending_list;
73 	struct uprobe_consumer	*consumers;
74 	struct inode		*inode;		/* Also hold a ref to inode */
75 	loff_t			offset;
76 	loff_t			ref_ctr_offset;
77 	unsigned long		flags;
78 
79 	/*
80 	 * The generic code assumes that it has two members of unknown type
81 	 * owned by the arch-specific code:
82 	 *
83 	 * 	insn -	copy_insn() saves the original instruction here for
84 	 *		arch_uprobe_analyze_insn().
85 	 *
86 	 *	ixol -	potentially modified instruction to execute out of
87 	 *		line, copied to xol_area by xol_get_insn_slot().
88 	 */
89 	struct arch_uprobe	arch;
90 };
91 
92 struct delayed_uprobe {
93 	struct list_head list;
94 	struct uprobe *uprobe;
95 	struct mm_struct *mm;
96 };
97 
98 static DEFINE_MUTEX(delayed_uprobe_lock);
99 static LIST_HEAD(delayed_uprobe_list);
100 
101 /*
102  * Execute out of line area: anonymous executable mapping installed
103  * by the probed task to execute the copy of the original instruction
104  * mangled by set_swbp().
105  *
106  * On a breakpoint hit, thread contests for a slot.  It frees the
107  * slot after singlestep. Currently a fixed number of slots are
108  * allocated.
109  */
110 struct xol_area {
111 	wait_queue_head_t 		wq;		/* if all slots are busy */
112 	atomic_t 			slot_count;	/* number of in-use slots */
113 	unsigned long 			*bitmap;	/* 0 = free slot */
114 
115 	struct vm_special_mapping	xol_mapping;
116 	struct page 			*pages[2];
117 	/*
118 	 * We keep the vma's vm_start rather than a pointer to the vma
119 	 * itself.  The probed process or a naughty kernel module could make
120 	 * the vma go away, and we must handle that reasonably gracefully.
121 	 */
122 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
123 };
124 
125 /*
126  * valid_vma: Verify if the specified vma is an executable vma
127  * Relax restrictions while unregistering: vm_flags might have
128  * changed after breakpoint was inserted.
129  *	- is_register: indicates if we are in register context.
130  *	- Return 1 if the specified virtual address is in an
131  *	  executable vma.
132  */
133 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
134 {
135 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
136 
137 	if (is_register)
138 		flags |= VM_WRITE;
139 
140 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
141 }
142 
143 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
144 {
145 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
146 }
147 
148 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
149 {
150 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
151 }
152 
153 /**
154  * __replace_page - replace page in vma by new page.
155  * based on replace_page in mm/ksm.c
156  *
157  * @vma:      vma that holds the pte pointing to page
158  * @addr:     address the old @page is mapped at
159  * @page:     the cowed page we are replacing by kpage
160  * @kpage:    the modified page we replace page by
161  *
162  * Returns 0 on success, -EFAULT on failure.
163  */
164 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
165 				struct page *old_page, struct page *new_page)
166 {
167 	struct mm_struct *mm = vma->vm_mm;
168 	struct page_vma_mapped_walk pvmw = {
169 		.page = old_page,
170 		.vma = vma,
171 		.address = addr,
172 	};
173 	int err;
174 	struct mmu_notifier_range range;
175 	struct mem_cgroup *memcg;
176 
177 	mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
178 
179 	VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
180 
181 	err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
182 			false);
183 	if (err)
184 		return err;
185 
186 	/* For try_to_free_swap() and munlock_vma_page() below */
187 	lock_page(old_page);
188 
189 	mmu_notifier_invalidate_range_start(&range);
190 	err = -EAGAIN;
191 	if (!page_vma_mapped_walk(&pvmw)) {
192 		mem_cgroup_cancel_charge(new_page, memcg, false);
193 		goto unlock;
194 	}
195 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
196 
197 	get_page(new_page);
198 	page_add_new_anon_rmap(new_page, vma, addr, false);
199 	mem_cgroup_commit_charge(new_page, memcg, false, false);
200 	lru_cache_add_active_or_unevictable(new_page, vma);
201 
202 	if (!PageAnon(old_page)) {
203 		dec_mm_counter(mm, mm_counter_file(old_page));
204 		inc_mm_counter(mm, MM_ANONPAGES);
205 	}
206 
207 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
208 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
209 	set_pte_at_notify(mm, addr, pvmw.pte,
210 			mk_pte(new_page, vma->vm_page_prot));
211 
212 	page_remove_rmap(old_page, false);
213 	if (!page_mapped(old_page))
214 		try_to_free_swap(old_page);
215 	page_vma_mapped_walk_done(&pvmw);
216 
217 	if (vma->vm_flags & VM_LOCKED)
218 		munlock_vma_page(old_page);
219 	put_page(old_page);
220 
221 	err = 0;
222  unlock:
223 	mmu_notifier_invalidate_range_end(&range);
224 	unlock_page(old_page);
225 	return err;
226 }
227 
228 /**
229  * is_swbp_insn - check if instruction is breakpoint instruction.
230  * @insn: instruction to be checked.
231  * Default implementation of is_swbp_insn
232  * Returns true if @insn is a breakpoint instruction.
233  */
234 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
235 {
236 	return *insn == UPROBE_SWBP_INSN;
237 }
238 
239 /**
240  * is_trap_insn - check if instruction is breakpoint instruction.
241  * @insn: instruction to be checked.
242  * Default implementation of is_trap_insn
243  * Returns true if @insn is a breakpoint instruction.
244  *
245  * This function is needed for the case where an architecture has multiple
246  * trap instructions (like powerpc).
247  */
248 bool __weak is_trap_insn(uprobe_opcode_t *insn)
249 {
250 	return is_swbp_insn(insn);
251 }
252 
253 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
254 {
255 	void *kaddr = kmap_atomic(page);
256 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
257 	kunmap_atomic(kaddr);
258 }
259 
260 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
261 {
262 	void *kaddr = kmap_atomic(page);
263 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
264 	kunmap_atomic(kaddr);
265 }
266 
267 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
268 {
269 	uprobe_opcode_t old_opcode;
270 	bool is_swbp;
271 
272 	/*
273 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
274 	 * We do not check if it is any other 'trap variant' which could
275 	 * be conditional trap instruction such as the one powerpc supports.
276 	 *
277 	 * The logic is that we do not care if the underlying instruction
278 	 * is a trap variant; uprobes always wins over any other (gdb)
279 	 * breakpoint.
280 	 */
281 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
282 	is_swbp = is_swbp_insn(&old_opcode);
283 
284 	if (is_swbp_insn(new_opcode)) {
285 		if (is_swbp)		/* register: already installed? */
286 			return 0;
287 	} else {
288 		if (!is_swbp)		/* unregister: was it changed by us? */
289 			return 0;
290 	}
291 
292 	return 1;
293 }
294 
295 static struct delayed_uprobe *
296 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
297 {
298 	struct delayed_uprobe *du;
299 
300 	list_for_each_entry(du, &delayed_uprobe_list, list)
301 		if (du->uprobe == uprobe && du->mm == mm)
302 			return du;
303 	return NULL;
304 }
305 
306 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
307 {
308 	struct delayed_uprobe *du;
309 
310 	if (delayed_uprobe_check(uprobe, mm))
311 		return 0;
312 
313 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
314 	if (!du)
315 		return -ENOMEM;
316 
317 	du->uprobe = uprobe;
318 	du->mm = mm;
319 	list_add(&du->list, &delayed_uprobe_list);
320 	return 0;
321 }
322 
323 static void delayed_uprobe_delete(struct delayed_uprobe *du)
324 {
325 	if (WARN_ON(!du))
326 		return;
327 	list_del(&du->list);
328 	kfree(du);
329 }
330 
331 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
332 {
333 	struct list_head *pos, *q;
334 	struct delayed_uprobe *du;
335 
336 	if (!uprobe && !mm)
337 		return;
338 
339 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
340 		du = list_entry(pos, struct delayed_uprobe, list);
341 
342 		if (uprobe && du->uprobe != uprobe)
343 			continue;
344 		if (mm && du->mm != mm)
345 			continue;
346 
347 		delayed_uprobe_delete(du);
348 	}
349 }
350 
351 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
352 			      struct vm_area_struct *vma)
353 {
354 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
355 
356 	return uprobe->ref_ctr_offset &&
357 		vma->vm_file &&
358 		file_inode(vma->vm_file) == uprobe->inode &&
359 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
360 		vma->vm_start <= vaddr &&
361 		vma->vm_end > vaddr;
362 }
363 
364 static struct vm_area_struct *
365 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
366 {
367 	struct vm_area_struct *tmp;
368 
369 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
370 		if (valid_ref_ctr_vma(uprobe, tmp))
371 			return tmp;
372 
373 	return NULL;
374 }
375 
376 static int
377 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
378 {
379 	void *kaddr;
380 	struct page *page;
381 	struct vm_area_struct *vma;
382 	int ret;
383 	short *ptr;
384 
385 	if (!vaddr || !d)
386 		return -EINVAL;
387 
388 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
389 			FOLL_WRITE, &page, &vma, NULL);
390 	if (unlikely(ret <= 0)) {
391 		/*
392 		 * We are asking for 1 page. If get_user_pages_remote() fails,
393 		 * it may return 0, in that case we have to return error.
394 		 */
395 		return ret == 0 ? -EBUSY : ret;
396 	}
397 
398 	kaddr = kmap_atomic(page);
399 	ptr = kaddr + (vaddr & ~PAGE_MASK);
400 
401 	if (unlikely(*ptr + d < 0)) {
402 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
403 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
404 		ret = -EINVAL;
405 		goto out;
406 	}
407 
408 	*ptr += d;
409 	ret = 0;
410 out:
411 	kunmap_atomic(kaddr);
412 	put_page(page);
413 	return ret;
414 }
415 
416 static void update_ref_ctr_warn(struct uprobe *uprobe,
417 				struct mm_struct *mm, short d)
418 {
419 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
420 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
421 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
422 		(unsigned long long) uprobe->offset,
423 		(unsigned long long) uprobe->ref_ctr_offset, mm);
424 }
425 
426 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
427 			  short d)
428 {
429 	struct vm_area_struct *rc_vma;
430 	unsigned long rc_vaddr;
431 	int ret = 0;
432 
433 	rc_vma = find_ref_ctr_vma(uprobe, mm);
434 
435 	if (rc_vma) {
436 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
437 		ret = __update_ref_ctr(mm, rc_vaddr, d);
438 		if (ret)
439 			update_ref_ctr_warn(uprobe, mm, d);
440 
441 		if (d > 0)
442 			return ret;
443 	}
444 
445 	mutex_lock(&delayed_uprobe_lock);
446 	if (d > 0)
447 		ret = delayed_uprobe_add(uprobe, mm);
448 	else
449 		delayed_uprobe_remove(uprobe, mm);
450 	mutex_unlock(&delayed_uprobe_lock);
451 
452 	return ret;
453 }
454 
455 /*
456  * NOTE:
457  * Expect the breakpoint instruction to be the smallest size instruction for
458  * the architecture. If an arch has variable length instruction and the
459  * breakpoint instruction is not of the smallest length instruction
460  * supported by that architecture then we need to modify is_trap_at_addr and
461  * uprobe_write_opcode accordingly. This would never be a problem for archs
462  * that have fixed length instructions.
463  *
464  * uprobe_write_opcode - write the opcode at a given virtual address.
465  * @mm: the probed process address space.
466  * @vaddr: the virtual address to store the opcode.
467  * @opcode: opcode to be written at @vaddr.
468  *
469  * Called with mm->mmap_sem held for write.
470  * Return 0 (success) or a negative errno.
471  */
472 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
473 			unsigned long vaddr, uprobe_opcode_t opcode)
474 {
475 	struct uprobe *uprobe;
476 	struct page *old_page, *new_page;
477 	struct vm_area_struct *vma;
478 	int ret, is_register, ref_ctr_updated = 0;
479 
480 	is_register = is_swbp_insn(&opcode);
481 	uprobe = container_of(auprobe, struct uprobe, arch);
482 
483 retry:
484 	/* Read the page with vaddr into memory */
485 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
486 			FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
487 	if (ret <= 0)
488 		return ret;
489 
490 	ret = verify_opcode(old_page, vaddr, &opcode);
491 	if (ret <= 0)
492 		goto put_old;
493 
494 	/* We are going to replace instruction, update ref_ctr. */
495 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
496 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
497 		if (ret)
498 			goto put_old;
499 
500 		ref_ctr_updated = 1;
501 	}
502 
503 	ret = anon_vma_prepare(vma);
504 	if (ret)
505 		goto put_old;
506 
507 	ret = -ENOMEM;
508 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
509 	if (!new_page)
510 		goto put_old;
511 
512 	__SetPageUptodate(new_page);
513 	copy_highpage(new_page, old_page);
514 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
515 
516 	ret = __replace_page(vma, vaddr, old_page, new_page);
517 	put_page(new_page);
518 put_old:
519 	put_page(old_page);
520 
521 	if (unlikely(ret == -EAGAIN))
522 		goto retry;
523 
524 	/* Revert back reference counter if instruction update failed. */
525 	if (ret && is_register && ref_ctr_updated)
526 		update_ref_ctr(uprobe, mm, -1);
527 
528 	return ret;
529 }
530 
531 /**
532  * set_swbp - store breakpoint at a given address.
533  * @auprobe: arch specific probepoint information.
534  * @mm: the probed process address space.
535  * @vaddr: the virtual address to insert the opcode.
536  *
537  * For mm @mm, store the breakpoint instruction at @vaddr.
538  * Return 0 (success) or a negative errno.
539  */
540 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
541 {
542 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
543 }
544 
545 /**
546  * set_orig_insn - Restore the original instruction.
547  * @mm: the probed process address space.
548  * @auprobe: arch specific probepoint information.
549  * @vaddr: the virtual address to insert the opcode.
550  *
551  * For mm @mm, restore the original opcode (opcode) at @vaddr.
552  * Return 0 (success) or a negative errno.
553  */
554 int __weak
555 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
556 {
557 	return uprobe_write_opcode(auprobe, mm, vaddr,
558 			*(uprobe_opcode_t *)&auprobe->insn);
559 }
560 
561 static struct uprobe *get_uprobe(struct uprobe *uprobe)
562 {
563 	atomic_inc(&uprobe->ref);
564 	return uprobe;
565 }
566 
567 static void put_uprobe(struct uprobe *uprobe)
568 {
569 	if (atomic_dec_and_test(&uprobe->ref)) {
570 		/*
571 		 * If application munmap(exec_vma) before uprobe_unregister()
572 		 * gets called, we don't get a chance to remove uprobe from
573 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
574 		 */
575 		mutex_lock(&delayed_uprobe_lock);
576 		delayed_uprobe_remove(uprobe, NULL);
577 		mutex_unlock(&delayed_uprobe_lock);
578 		kfree(uprobe);
579 	}
580 }
581 
582 static int match_uprobe(struct uprobe *l, struct uprobe *r)
583 {
584 	if (l->inode < r->inode)
585 		return -1;
586 
587 	if (l->inode > r->inode)
588 		return 1;
589 
590 	if (l->offset < r->offset)
591 		return -1;
592 
593 	if (l->offset > r->offset)
594 		return 1;
595 
596 	return 0;
597 }
598 
599 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
600 {
601 	struct uprobe u = { .inode = inode, .offset = offset };
602 	struct rb_node *n = uprobes_tree.rb_node;
603 	struct uprobe *uprobe;
604 	int match;
605 
606 	while (n) {
607 		uprobe = rb_entry(n, struct uprobe, rb_node);
608 		match = match_uprobe(&u, uprobe);
609 		if (!match)
610 			return get_uprobe(uprobe);
611 
612 		if (match < 0)
613 			n = n->rb_left;
614 		else
615 			n = n->rb_right;
616 	}
617 	return NULL;
618 }
619 
620 /*
621  * Find a uprobe corresponding to a given inode:offset
622  * Acquires uprobes_treelock
623  */
624 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
625 {
626 	struct uprobe *uprobe;
627 
628 	spin_lock(&uprobes_treelock);
629 	uprobe = __find_uprobe(inode, offset);
630 	spin_unlock(&uprobes_treelock);
631 
632 	return uprobe;
633 }
634 
635 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
636 {
637 	struct rb_node **p = &uprobes_tree.rb_node;
638 	struct rb_node *parent = NULL;
639 	struct uprobe *u;
640 	int match;
641 
642 	while (*p) {
643 		parent = *p;
644 		u = rb_entry(parent, struct uprobe, rb_node);
645 		match = match_uprobe(uprobe, u);
646 		if (!match)
647 			return get_uprobe(u);
648 
649 		if (match < 0)
650 			p = &parent->rb_left;
651 		else
652 			p = &parent->rb_right;
653 
654 	}
655 
656 	u = NULL;
657 	rb_link_node(&uprobe->rb_node, parent, p);
658 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
659 	/* get access + creation ref */
660 	atomic_set(&uprobe->ref, 2);
661 
662 	return u;
663 }
664 
665 /*
666  * Acquire uprobes_treelock.
667  * Matching uprobe already exists in rbtree;
668  *	increment (access refcount) and return the matching uprobe.
669  *
670  * No matching uprobe; insert the uprobe in rb_tree;
671  *	get a double refcount (access + creation) and return NULL.
672  */
673 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
674 {
675 	struct uprobe *u;
676 
677 	spin_lock(&uprobes_treelock);
678 	u = __insert_uprobe(uprobe);
679 	spin_unlock(&uprobes_treelock);
680 
681 	return u;
682 }
683 
684 static void
685 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
686 {
687 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
688 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
689 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
690 		(unsigned long long) cur_uprobe->ref_ctr_offset,
691 		(unsigned long long) uprobe->ref_ctr_offset);
692 }
693 
694 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
695 				   loff_t ref_ctr_offset)
696 {
697 	struct uprobe *uprobe, *cur_uprobe;
698 
699 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
700 	if (!uprobe)
701 		return NULL;
702 
703 	uprobe->inode = inode;
704 	uprobe->offset = offset;
705 	uprobe->ref_ctr_offset = ref_ctr_offset;
706 	init_rwsem(&uprobe->register_rwsem);
707 	init_rwsem(&uprobe->consumer_rwsem);
708 
709 	/* add to uprobes_tree, sorted on inode:offset */
710 	cur_uprobe = insert_uprobe(uprobe);
711 	/* a uprobe exists for this inode:offset combination */
712 	if (cur_uprobe) {
713 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
714 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
715 			put_uprobe(cur_uprobe);
716 			kfree(uprobe);
717 			return ERR_PTR(-EINVAL);
718 		}
719 		kfree(uprobe);
720 		uprobe = cur_uprobe;
721 	}
722 
723 	return uprobe;
724 }
725 
726 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
727 {
728 	down_write(&uprobe->consumer_rwsem);
729 	uc->next = uprobe->consumers;
730 	uprobe->consumers = uc;
731 	up_write(&uprobe->consumer_rwsem);
732 }
733 
734 /*
735  * For uprobe @uprobe, delete the consumer @uc.
736  * Return true if the @uc is deleted successfully
737  * or return false.
738  */
739 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
740 {
741 	struct uprobe_consumer **con;
742 	bool ret = false;
743 
744 	down_write(&uprobe->consumer_rwsem);
745 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
746 		if (*con == uc) {
747 			*con = uc->next;
748 			ret = true;
749 			break;
750 		}
751 	}
752 	up_write(&uprobe->consumer_rwsem);
753 
754 	return ret;
755 }
756 
757 static int __copy_insn(struct address_space *mapping, struct file *filp,
758 			void *insn, int nbytes, loff_t offset)
759 {
760 	struct page *page;
761 	/*
762 	 * Ensure that the page that has the original instruction is populated
763 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
764 	 * see uprobe_register().
765 	 */
766 	if (mapping->a_ops->readpage)
767 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
768 	else
769 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
770 	if (IS_ERR(page))
771 		return PTR_ERR(page);
772 
773 	copy_from_page(page, offset, insn, nbytes);
774 	put_page(page);
775 
776 	return 0;
777 }
778 
779 static int copy_insn(struct uprobe *uprobe, struct file *filp)
780 {
781 	struct address_space *mapping = uprobe->inode->i_mapping;
782 	loff_t offs = uprobe->offset;
783 	void *insn = &uprobe->arch.insn;
784 	int size = sizeof(uprobe->arch.insn);
785 	int len, err = -EIO;
786 
787 	/* Copy only available bytes, -EIO if nothing was read */
788 	do {
789 		if (offs >= i_size_read(uprobe->inode))
790 			break;
791 
792 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
793 		err = __copy_insn(mapping, filp, insn, len, offs);
794 		if (err)
795 			break;
796 
797 		insn += len;
798 		offs += len;
799 		size -= len;
800 	} while (size);
801 
802 	return err;
803 }
804 
805 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
806 				struct mm_struct *mm, unsigned long vaddr)
807 {
808 	int ret = 0;
809 
810 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
811 		return ret;
812 
813 	/* TODO: move this into _register, until then we abuse this sem. */
814 	down_write(&uprobe->consumer_rwsem);
815 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
816 		goto out;
817 
818 	ret = copy_insn(uprobe, file);
819 	if (ret)
820 		goto out;
821 
822 	ret = -ENOTSUPP;
823 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
824 		goto out;
825 
826 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
827 	if (ret)
828 		goto out;
829 
830 	/* uprobe_write_opcode() assumes we don't cross page boundary */
831 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
832 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
833 
834 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
835 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
836 
837  out:
838 	up_write(&uprobe->consumer_rwsem);
839 
840 	return ret;
841 }
842 
843 static inline bool consumer_filter(struct uprobe_consumer *uc,
844 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
845 {
846 	return !uc->filter || uc->filter(uc, ctx, mm);
847 }
848 
849 static bool filter_chain(struct uprobe *uprobe,
850 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
851 {
852 	struct uprobe_consumer *uc;
853 	bool ret = false;
854 
855 	down_read(&uprobe->consumer_rwsem);
856 	for (uc = uprobe->consumers; uc; uc = uc->next) {
857 		ret = consumer_filter(uc, ctx, mm);
858 		if (ret)
859 			break;
860 	}
861 	up_read(&uprobe->consumer_rwsem);
862 
863 	return ret;
864 }
865 
866 static int
867 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
868 			struct vm_area_struct *vma, unsigned long vaddr)
869 {
870 	bool first_uprobe;
871 	int ret;
872 
873 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
874 	if (ret)
875 		return ret;
876 
877 	/*
878 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
879 	 * the task can hit this breakpoint right after __replace_page().
880 	 */
881 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
882 	if (first_uprobe)
883 		set_bit(MMF_HAS_UPROBES, &mm->flags);
884 
885 	ret = set_swbp(&uprobe->arch, mm, vaddr);
886 	if (!ret)
887 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
888 	else if (first_uprobe)
889 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
890 
891 	return ret;
892 }
893 
894 static int
895 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
896 {
897 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
898 	return set_orig_insn(&uprobe->arch, mm, vaddr);
899 }
900 
901 static inline bool uprobe_is_active(struct uprobe *uprobe)
902 {
903 	return !RB_EMPTY_NODE(&uprobe->rb_node);
904 }
905 /*
906  * There could be threads that have already hit the breakpoint. They
907  * will recheck the current insn and restart if find_uprobe() fails.
908  * See find_active_uprobe().
909  */
910 static void delete_uprobe(struct uprobe *uprobe)
911 {
912 	if (WARN_ON(!uprobe_is_active(uprobe)))
913 		return;
914 
915 	spin_lock(&uprobes_treelock);
916 	rb_erase(&uprobe->rb_node, &uprobes_tree);
917 	spin_unlock(&uprobes_treelock);
918 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
919 	put_uprobe(uprobe);
920 }
921 
922 struct map_info {
923 	struct map_info *next;
924 	struct mm_struct *mm;
925 	unsigned long vaddr;
926 };
927 
928 static inline struct map_info *free_map_info(struct map_info *info)
929 {
930 	struct map_info *next = info->next;
931 	kfree(info);
932 	return next;
933 }
934 
935 static struct map_info *
936 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
937 {
938 	unsigned long pgoff = offset >> PAGE_SHIFT;
939 	struct vm_area_struct *vma;
940 	struct map_info *curr = NULL;
941 	struct map_info *prev = NULL;
942 	struct map_info *info;
943 	int more = 0;
944 
945  again:
946 	i_mmap_lock_read(mapping);
947 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
948 		if (!valid_vma(vma, is_register))
949 			continue;
950 
951 		if (!prev && !more) {
952 			/*
953 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
954 			 * reclaim. This is optimistic, no harm done if it fails.
955 			 */
956 			prev = kmalloc(sizeof(struct map_info),
957 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
958 			if (prev)
959 				prev->next = NULL;
960 		}
961 		if (!prev) {
962 			more++;
963 			continue;
964 		}
965 
966 		if (!mmget_not_zero(vma->vm_mm))
967 			continue;
968 
969 		info = prev;
970 		prev = prev->next;
971 		info->next = curr;
972 		curr = info;
973 
974 		info->mm = vma->vm_mm;
975 		info->vaddr = offset_to_vaddr(vma, offset);
976 	}
977 	i_mmap_unlock_read(mapping);
978 
979 	if (!more)
980 		goto out;
981 
982 	prev = curr;
983 	while (curr) {
984 		mmput(curr->mm);
985 		curr = curr->next;
986 	}
987 
988 	do {
989 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
990 		if (!info) {
991 			curr = ERR_PTR(-ENOMEM);
992 			goto out;
993 		}
994 		info->next = prev;
995 		prev = info;
996 	} while (--more);
997 
998 	goto again;
999  out:
1000 	while (prev)
1001 		prev = free_map_info(prev);
1002 	return curr;
1003 }
1004 
1005 static int
1006 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1007 {
1008 	bool is_register = !!new;
1009 	struct map_info *info;
1010 	int err = 0;
1011 
1012 	percpu_down_write(&dup_mmap_sem);
1013 	info = build_map_info(uprobe->inode->i_mapping,
1014 					uprobe->offset, is_register);
1015 	if (IS_ERR(info)) {
1016 		err = PTR_ERR(info);
1017 		goto out;
1018 	}
1019 
1020 	while (info) {
1021 		struct mm_struct *mm = info->mm;
1022 		struct vm_area_struct *vma;
1023 
1024 		if (err && is_register)
1025 			goto free;
1026 
1027 		down_write(&mm->mmap_sem);
1028 		vma = find_vma(mm, info->vaddr);
1029 		if (!vma || !valid_vma(vma, is_register) ||
1030 		    file_inode(vma->vm_file) != uprobe->inode)
1031 			goto unlock;
1032 
1033 		if (vma->vm_start > info->vaddr ||
1034 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1035 			goto unlock;
1036 
1037 		if (is_register) {
1038 			/* consult only the "caller", new consumer. */
1039 			if (consumer_filter(new,
1040 					UPROBE_FILTER_REGISTER, mm))
1041 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1042 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1043 			if (!filter_chain(uprobe,
1044 					UPROBE_FILTER_UNREGISTER, mm))
1045 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1046 		}
1047 
1048  unlock:
1049 		up_write(&mm->mmap_sem);
1050  free:
1051 		mmput(mm);
1052 		info = free_map_info(info);
1053 	}
1054  out:
1055 	percpu_up_write(&dup_mmap_sem);
1056 	return err;
1057 }
1058 
1059 static void
1060 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1061 {
1062 	int err;
1063 
1064 	if (WARN_ON(!consumer_del(uprobe, uc)))
1065 		return;
1066 
1067 	err = register_for_each_vma(uprobe, NULL);
1068 	/* TODO : cant unregister? schedule a worker thread */
1069 	if (!uprobe->consumers && !err)
1070 		delete_uprobe(uprobe);
1071 }
1072 
1073 /*
1074  * uprobe_unregister - unregister an already registered probe.
1075  * @inode: the file in which the probe has to be removed.
1076  * @offset: offset from the start of the file.
1077  * @uc: identify which probe if multiple probes are colocated.
1078  */
1079 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1080 {
1081 	struct uprobe *uprobe;
1082 
1083 	uprobe = find_uprobe(inode, offset);
1084 	if (WARN_ON(!uprobe))
1085 		return;
1086 
1087 	down_write(&uprobe->register_rwsem);
1088 	__uprobe_unregister(uprobe, uc);
1089 	up_write(&uprobe->register_rwsem);
1090 	put_uprobe(uprobe);
1091 }
1092 EXPORT_SYMBOL_GPL(uprobe_unregister);
1093 
1094 /*
1095  * __uprobe_register - register a probe
1096  * @inode: the file in which the probe has to be placed.
1097  * @offset: offset from the start of the file.
1098  * @uc: information on howto handle the probe..
1099  *
1100  * Apart from the access refcount, __uprobe_register() takes a creation
1101  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1102  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1103  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1104  * @uprobe even before the register operation is complete. Creation
1105  * refcount is released when the last @uc for the @uprobe
1106  * unregisters. Caller of __uprobe_register() is required to keep @inode
1107  * (and the containing mount) referenced.
1108  *
1109  * Return errno if it cannot successully install probes
1110  * else return 0 (success)
1111  */
1112 static int __uprobe_register(struct inode *inode, loff_t offset,
1113 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1114 {
1115 	struct uprobe *uprobe;
1116 	int ret;
1117 
1118 	/* Uprobe must have at least one set consumer */
1119 	if (!uc->handler && !uc->ret_handler)
1120 		return -EINVAL;
1121 
1122 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1123 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1124 		return -EIO;
1125 	/* Racy, just to catch the obvious mistakes */
1126 	if (offset > i_size_read(inode))
1127 		return -EINVAL;
1128 
1129  retry:
1130 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1131 	if (!uprobe)
1132 		return -ENOMEM;
1133 	if (IS_ERR(uprobe))
1134 		return PTR_ERR(uprobe);
1135 
1136 	/*
1137 	 * We can race with uprobe_unregister()->delete_uprobe().
1138 	 * Check uprobe_is_active() and retry if it is false.
1139 	 */
1140 	down_write(&uprobe->register_rwsem);
1141 	ret = -EAGAIN;
1142 	if (likely(uprobe_is_active(uprobe))) {
1143 		consumer_add(uprobe, uc);
1144 		ret = register_for_each_vma(uprobe, uc);
1145 		if (ret)
1146 			__uprobe_unregister(uprobe, uc);
1147 	}
1148 	up_write(&uprobe->register_rwsem);
1149 	put_uprobe(uprobe);
1150 
1151 	if (unlikely(ret == -EAGAIN))
1152 		goto retry;
1153 	return ret;
1154 }
1155 
1156 int uprobe_register(struct inode *inode, loff_t offset,
1157 		    struct uprobe_consumer *uc)
1158 {
1159 	return __uprobe_register(inode, offset, 0, uc);
1160 }
1161 EXPORT_SYMBOL_GPL(uprobe_register);
1162 
1163 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1164 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1165 {
1166 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1167 }
1168 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1169 
1170 /*
1171  * uprobe_apply - unregister an already registered probe.
1172  * @inode: the file in which the probe has to be removed.
1173  * @offset: offset from the start of the file.
1174  * @uc: consumer which wants to add more or remove some breakpoints
1175  * @add: add or remove the breakpoints
1176  */
1177 int uprobe_apply(struct inode *inode, loff_t offset,
1178 			struct uprobe_consumer *uc, bool add)
1179 {
1180 	struct uprobe *uprobe;
1181 	struct uprobe_consumer *con;
1182 	int ret = -ENOENT;
1183 
1184 	uprobe = find_uprobe(inode, offset);
1185 	if (WARN_ON(!uprobe))
1186 		return ret;
1187 
1188 	down_write(&uprobe->register_rwsem);
1189 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1190 		;
1191 	if (con)
1192 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1193 	up_write(&uprobe->register_rwsem);
1194 	put_uprobe(uprobe);
1195 
1196 	return ret;
1197 }
1198 
1199 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1200 {
1201 	struct vm_area_struct *vma;
1202 	int err = 0;
1203 
1204 	down_read(&mm->mmap_sem);
1205 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1206 		unsigned long vaddr;
1207 		loff_t offset;
1208 
1209 		if (!valid_vma(vma, false) ||
1210 		    file_inode(vma->vm_file) != uprobe->inode)
1211 			continue;
1212 
1213 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1214 		if (uprobe->offset <  offset ||
1215 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1216 			continue;
1217 
1218 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1219 		err |= remove_breakpoint(uprobe, mm, vaddr);
1220 	}
1221 	up_read(&mm->mmap_sem);
1222 
1223 	return err;
1224 }
1225 
1226 static struct rb_node *
1227 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1228 {
1229 	struct rb_node *n = uprobes_tree.rb_node;
1230 
1231 	while (n) {
1232 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1233 
1234 		if (inode < u->inode) {
1235 			n = n->rb_left;
1236 		} else if (inode > u->inode) {
1237 			n = n->rb_right;
1238 		} else {
1239 			if (max < u->offset)
1240 				n = n->rb_left;
1241 			else if (min > u->offset)
1242 				n = n->rb_right;
1243 			else
1244 				break;
1245 		}
1246 	}
1247 
1248 	return n;
1249 }
1250 
1251 /*
1252  * For a given range in vma, build a list of probes that need to be inserted.
1253  */
1254 static void build_probe_list(struct inode *inode,
1255 				struct vm_area_struct *vma,
1256 				unsigned long start, unsigned long end,
1257 				struct list_head *head)
1258 {
1259 	loff_t min, max;
1260 	struct rb_node *n, *t;
1261 	struct uprobe *u;
1262 
1263 	INIT_LIST_HEAD(head);
1264 	min = vaddr_to_offset(vma, start);
1265 	max = min + (end - start) - 1;
1266 
1267 	spin_lock(&uprobes_treelock);
1268 	n = find_node_in_range(inode, min, max);
1269 	if (n) {
1270 		for (t = n; t; t = rb_prev(t)) {
1271 			u = rb_entry(t, struct uprobe, rb_node);
1272 			if (u->inode != inode || u->offset < min)
1273 				break;
1274 			list_add(&u->pending_list, head);
1275 			get_uprobe(u);
1276 		}
1277 		for (t = n; (t = rb_next(t)); ) {
1278 			u = rb_entry(t, struct uprobe, rb_node);
1279 			if (u->inode != inode || u->offset > max)
1280 				break;
1281 			list_add(&u->pending_list, head);
1282 			get_uprobe(u);
1283 		}
1284 	}
1285 	spin_unlock(&uprobes_treelock);
1286 }
1287 
1288 /* @vma contains reference counter, not the probed instruction. */
1289 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1290 {
1291 	struct list_head *pos, *q;
1292 	struct delayed_uprobe *du;
1293 	unsigned long vaddr;
1294 	int ret = 0, err = 0;
1295 
1296 	mutex_lock(&delayed_uprobe_lock);
1297 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1298 		du = list_entry(pos, struct delayed_uprobe, list);
1299 
1300 		if (du->mm != vma->vm_mm ||
1301 		    !valid_ref_ctr_vma(du->uprobe, vma))
1302 			continue;
1303 
1304 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1305 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1306 		if (ret) {
1307 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1308 			if (!err)
1309 				err = ret;
1310 		}
1311 		delayed_uprobe_delete(du);
1312 	}
1313 	mutex_unlock(&delayed_uprobe_lock);
1314 	return err;
1315 }
1316 
1317 /*
1318  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1319  *
1320  * Currently we ignore all errors and always return 0, the callers
1321  * can't handle the failure anyway.
1322  */
1323 int uprobe_mmap(struct vm_area_struct *vma)
1324 {
1325 	struct list_head tmp_list;
1326 	struct uprobe *uprobe, *u;
1327 	struct inode *inode;
1328 
1329 	if (no_uprobe_events())
1330 		return 0;
1331 
1332 	if (vma->vm_file &&
1333 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1334 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1335 		delayed_ref_ctr_inc(vma);
1336 
1337 	if (!valid_vma(vma, true))
1338 		return 0;
1339 
1340 	inode = file_inode(vma->vm_file);
1341 	if (!inode)
1342 		return 0;
1343 
1344 	mutex_lock(uprobes_mmap_hash(inode));
1345 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1346 	/*
1347 	 * We can race with uprobe_unregister(), this uprobe can be already
1348 	 * removed. But in this case filter_chain() must return false, all
1349 	 * consumers have gone away.
1350 	 */
1351 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1352 		if (!fatal_signal_pending(current) &&
1353 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1354 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1355 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1356 		}
1357 		put_uprobe(uprobe);
1358 	}
1359 	mutex_unlock(uprobes_mmap_hash(inode));
1360 
1361 	return 0;
1362 }
1363 
1364 static bool
1365 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1366 {
1367 	loff_t min, max;
1368 	struct inode *inode;
1369 	struct rb_node *n;
1370 
1371 	inode = file_inode(vma->vm_file);
1372 
1373 	min = vaddr_to_offset(vma, start);
1374 	max = min + (end - start) - 1;
1375 
1376 	spin_lock(&uprobes_treelock);
1377 	n = find_node_in_range(inode, min, max);
1378 	spin_unlock(&uprobes_treelock);
1379 
1380 	return !!n;
1381 }
1382 
1383 /*
1384  * Called in context of a munmap of a vma.
1385  */
1386 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1387 {
1388 	if (no_uprobe_events() || !valid_vma(vma, false))
1389 		return;
1390 
1391 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1392 		return;
1393 
1394 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1395 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1396 		return;
1397 
1398 	if (vma_has_uprobes(vma, start, end))
1399 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1400 }
1401 
1402 /* Slot allocation for XOL */
1403 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1404 {
1405 	struct vm_area_struct *vma;
1406 	int ret;
1407 
1408 	if (down_write_killable(&mm->mmap_sem))
1409 		return -EINTR;
1410 
1411 	if (mm->uprobes_state.xol_area) {
1412 		ret = -EALREADY;
1413 		goto fail;
1414 	}
1415 
1416 	if (!area->vaddr) {
1417 		/* Try to map as high as possible, this is only a hint. */
1418 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1419 						PAGE_SIZE, 0, 0);
1420 		if (area->vaddr & ~PAGE_MASK) {
1421 			ret = area->vaddr;
1422 			goto fail;
1423 		}
1424 	}
1425 
1426 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1427 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1428 				&area->xol_mapping);
1429 	if (IS_ERR(vma)) {
1430 		ret = PTR_ERR(vma);
1431 		goto fail;
1432 	}
1433 
1434 	ret = 0;
1435 	/* pairs with get_xol_area() */
1436 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1437  fail:
1438 	up_write(&mm->mmap_sem);
1439 
1440 	return ret;
1441 }
1442 
1443 static struct xol_area *__create_xol_area(unsigned long vaddr)
1444 {
1445 	struct mm_struct *mm = current->mm;
1446 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1447 	struct xol_area *area;
1448 
1449 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1450 	if (unlikely(!area))
1451 		goto out;
1452 
1453 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1454 			       GFP_KERNEL);
1455 	if (!area->bitmap)
1456 		goto free_area;
1457 
1458 	area->xol_mapping.name = "[uprobes]";
1459 	area->xol_mapping.fault = NULL;
1460 	area->xol_mapping.pages = area->pages;
1461 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1462 	if (!area->pages[0])
1463 		goto free_bitmap;
1464 	area->pages[1] = NULL;
1465 
1466 	area->vaddr = vaddr;
1467 	init_waitqueue_head(&area->wq);
1468 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1469 	set_bit(0, area->bitmap);
1470 	atomic_set(&area->slot_count, 1);
1471 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1472 
1473 	if (!xol_add_vma(mm, area))
1474 		return area;
1475 
1476 	__free_page(area->pages[0]);
1477  free_bitmap:
1478 	kfree(area->bitmap);
1479  free_area:
1480 	kfree(area);
1481  out:
1482 	return NULL;
1483 }
1484 
1485 /*
1486  * get_xol_area - Allocate process's xol_area if necessary.
1487  * This area will be used for storing instructions for execution out of line.
1488  *
1489  * Returns the allocated area or NULL.
1490  */
1491 static struct xol_area *get_xol_area(void)
1492 {
1493 	struct mm_struct *mm = current->mm;
1494 	struct xol_area *area;
1495 
1496 	if (!mm->uprobes_state.xol_area)
1497 		__create_xol_area(0);
1498 
1499 	/* Pairs with xol_add_vma() smp_store_release() */
1500 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1501 	return area;
1502 }
1503 
1504 /*
1505  * uprobe_clear_state - Free the area allocated for slots.
1506  */
1507 void uprobe_clear_state(struct mm_struct *mm)
1508 {
1509 	struct xol_area *area = mm->uprobes_state.xol_area;
1510 
1511 	mutex_lock(&delayed_uprobe_lock);
1512 	delayed_uprobe_remove(NULL, mm);
1513 	mutex_unlock(&delayed_uprobe_lock);
1514 
1515 	if (!area)
1516 		return;
1517 
1518 	put_page(area->pages[0]);
1519 	kfree(area->bitmap);
1520 	kfree(area);
1521 }
1522 
1523 void uprobe_start_dup_mmap(void)
1524 {
1525 	percpu_down_read(&dup_mmap_sem);
1526 }
1527 
1528 void uprobe_end_dup_mmap(void)
1529 {
1530 	percpu_up_read(&dup_mmap_sem);
1531 }
1532 
1533 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1534 {
1535 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1536 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1537 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1538 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1539 	}
1540 }
1541 
1542 /*
1543  *  - search for a free slot.
1544  */
1545 static unsigned long xol_take_insn_slot(struct xol_area *area)
1546 {
1547 	unsigned long slot_addr;
1548 	int slot_nr;
1549 
1550 	do {
1551 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1552 		if (slot_nr < UINSNS_PER_PAGE) {
1553 			if (!test_and_set_bit(slot_nr, area->bitmap))
1554 				break;
1555 
1556 			slot_nr = UINSNS_PER_PAGE;
1557 			continue;
1558 		}
1559 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1560 	} while (slot_nr >= UINSNS_PER_PAGE);
1561 
1562 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1563 	atomic_inc(&area->slot_count);
1564 
1565 	return slot_addr;
1566 }
1567 
1568 /*
1569  * xol_get_insn_slot - allocate a slot for xol.
1570  * Returns the allocated slot address or 0.
1571  */
1572 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1573 {
1574 	struct xol_area *area;
1575 	unsigned long xol_vaddr;
1576 
1577 	area = get_xol_area();
1578 	if (!area)
1579 		return 0;
1580 
1581 	xol_vaddr = xol_take_insn_slot(area);
1582 	if (unlikely(!xol_vaddr))
1583 		return 0;
1584 
1585 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1586 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1587 
1588 	return xol_vaddr;
1589 }
1590 
1591 /*
1592  * xol_free_insn_slot - If slot was earlier allocated by
1593  * @xol_get_insn_slot(), make the slot available for
1594  * subsequent requests.
1595  */
1596 static void xol_free_insn_slot(struct task_struct *tsk)
1597 {
1598 	struct xol_area *area;
1599 	unsigned long vma_end;
1600 	unsigned long slot_addr;
1601 
1602 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1603 		return;
1604 
1605 	slot_addr = tsk->utask->xol_vaddr;
1606 	if (unlikely(!slot_addr))
1607 		return;
1608 
1609 	area = tsk->mm->uprobes_state.xol_area;
1610 	vma_end = area->vaddr + PAGE_SIZE;
1611 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1612 		unsigned long offset;
1613 		int slot_nr;
1614 
1615 		offset = slot_addr - area->vaddr;
1616 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1617 		if (slot_nr >= UINSNS_PER_PAGE)
1618 			return;
1619 
1620 		clear_bit(slot_nr, area->bitmap);
1621 		atomic_dec(&area->slot_count);
1622 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1623 		if (waitqueue_active(&area->wq))
1624 			wake_up(&area->wq);
1625 
1626 		tsk->utask->xol_vaddr = 0;
1627 	}
1628 }
1629 
1630 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1631 				  void *src, unsigned long len)
1632 {
1633 	/* Initialize the slot */
1634 	copy_to_page(page, vaddr, src, len);
1635 
1636 	/*
1637 	 * We probably need flush_icache_user_range() but it needs vma.
1638 	 * This should work on most of architectures by default. If
1639 	 * architecture needs to do something different it can define
1640 	 * its own version of the function.
1641 	 */
1642 	flush_dcache_page(page);
1643 }
1644 
1645 /**
1646  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1647  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1648  * instruction.
1649  * Return the address of the breakpoint instruction.
1650  */
1651 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1652 {
1653 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1654 }
1655 
1656 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1657 {
1658 	struct uprobe_task *utask = current->utask;
1659 
1660 	if (unlikely(utask && utask->active_uprobe))
1661 		return utask->vaddr;
1662 
1663 	return instruction_pointer(regs);
1664 }
1665 
1666 static struct return_instance *free_ret_instance(struct return_instance *ri)
1667 {
1668 	struct return_instance *next = ri->next;
1669 	put_uprobe(ri->uprobe);
1670 	kfree(ri);
1671 	return next;
1672 }
1673 
1674 /*
1675  * Called with no locks held.
1676  * Called in context of an exiting or an exec-ing thread.
1677  */
1678 void uprobe_free_utask(struct task_struct *t)
1679 {
1680 	struct uprobe_task *utask = t->utask;
1681 	struct return_instance *ri;
1682 
1683 	if (!utask)
1684 		return;
1685 
1686 	if (utask->active_uprobe)
1687 		put_uprobe(utask->active_uprobe);
1688 
1689 	ri = utask->return_instances;
1690 	while (ri)
1691 		ri = free_ret_instance(ri);
1692 
1693 	xol_free_insn_slot(t);
1694 	kfree(utask);
1695 	t->utask = NULL;
1696 }
1697 
1698 /*
1699  * Allocate a uprobe_task object for the task if if necessary.
1700  * Called when the thread hits a breakpoint.
1701  *
1702  * Returns:
1703  * - pointer to new uprobe_task on success
1704  * - NULL otherwise
1705  */
1706 static struct uprobe_task *get_utask(void)
1707 {
1708 	if (!current->utask)
1709 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1710 	return current->utask;
1711 }
1712 
1713 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1714 {
1715 	struct uprobe_task *n_utask;
1716 	struct return_instance **p, *o, *n;
1717 
1718 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1719 	if (!n_utask)
1720 		return -ENOMEM;
1721 	t->utask = n_utask;
1722 
1723 	p = &n_utask->return_instances;
1724 	for (o = o_utask->return_instances; o; o = o->next) {
1725 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1726 		if (!n)
1727 			return -ENOMEM;
1728 
1729 		*n = *o;
1730 		get_uprobe(n->uprobe);
1731 		n->next = NULL;
1732 
1733 		*p = n;
1734 		p = &n->next;
1735 		n_utask->depth++;
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 static void uprobe_warn(struct task_struct *t, const char *msg)
1742 {
1743 	pr_warn("uprobe: %s:%d failed to %s\n",
1744 			current->comm, current->pid, msg);
1745 }
1746 
1747 static void dup_xol_work(struct callback_head *work)
1748 {
1749 	if (current->flags & PF_EXITING)
1750 		return;
1751 
1752 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1753 			!fatal_signal_pending(current))
1754 		uprobe_warn(current, "dup xol area");
1755 }
1756 
1757 /*
1758  * Called in context of a new clone/fork from copy_process.
1759  */
1760 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1761 {
1762 	struct uprobe_task *utask = current->utask;
1763 	struct mm_struct *mm = current->mm;
1764 	struct xol_area *area;
1765 
1766 	t->utask = NULL;
1767 
1768 	if (!utask || !utask->return_instances)
1769 		return;
1770 
1771 	if (mm == t->mm && !(flags & CLONE_VFORK))
1772 		return;
1773 
1774 	if (dup_utask(t, utask))
1775 		return uprobe_warn(t, "dup ret instances");
1776 
1777 	/* The task can fork() after dup_xol_work() fails */
1778 	area = mm->uprobes_state.xol_area;
1779 	if (!area)
1780 		return uprobe_warn(t, "dup xol area");
1781 
1782 	if (mm == t->mm)
1783 		return;
1784 
1785 	t->utask->dup_xol_addr = area->vaddr;
1786 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1787 	task_work_add(t, &t->utask->dup_xol_work, true);
1788 }
1789 
1790 /*
1791  * Current area->vaddr notion assume the trampoline address is always
1792  * equal area->vaddr.
1793  *
1794  * Returns -1 in case the xol_area is not allocated.
1795  */
1796 static unsigned long get_trampoline_vaddr(void)
1797 {
1798 	struct xol_area *area;
1799 	unsigned long trampoline_vaddr = -1;
1800 
1801 	/* Pairs with xol_add_vma() smp_store_release() */
1802 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1803 	if (area)
1804 		trampoline_vaddr = area->vaddr;
1805 
1806 	return trampoline_vaddr;
1807 }
1808 
1809 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1810 					struct pt_regs *regs)
1811 {
1812 	struct return_instance *ri = utask->return_instances;
1813 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1814 
1815 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1816 		ri = free_ret_instance(ri);
1817 		utask->depth--;
1818 	}
1819 	utask->return_instances = ri;
1820 }
1821 
1822 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1823 {
1824 	struct return_instance *ri;
1825 	struct uprobe_task *utask;
1826 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1827 	bool chained;
1828 
1829 	if (!get_xol_area())
1830 		return;
1831 
1832 	utask = get_utask();
1833 	if (!utask)
1834 		return;
1835 
1836 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1837 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1838 				" nestedness limit pid/tgid=%d/%d\n",
1839 				current->pid, current->tgid);
1840 		return;
1841 	}
1842 
1843 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1844 	if (!ri)
1845 		return;
1846 
1847 	trampoline_vaddr = get_trampoline_vaddr();
1848 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1849 	if (orig_ret_vaddr == -1)
1850 		goto fail;
1851 
1852 	/* drop the entries invalidated by longjmp() */
1853 	chained = (orig_ret_vaddr == trampoline_vaddr);
1854 	cleanup_return_instances(utask, chained, regs);
1855 
1856 	/*
1857 	 * We don't want to keep trampoline address in stack, rather keep the
1858 	 * original return address of first caller thru all the consequent
1859 	 * instances. This also makes breakpoint unwrapping easier.
1860 	 */
1861 	if (chained) {
1862 		if (!utask->return_instances) {
1863 			/*
1864 			 * This situation is not possible. Likely we have an
1865 			 * attack from user-space.
1866 			 */
1867 			uprobe_warn(current, "handle tail call");
1868 			goto fail;
1869 		}
1870 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1871 	}
1872 
1873 	ri->uprobe = get_uprobe(uprobe);
1874 	ri->func = instruction_pointer(regs);
1875 	ri->stack = user_stack_pointer(regs);
1876 	ri->orig_ret_vaddr = orig_ret_vaddr;
1877 	ri->chained = chained;
1878 
1879 	utask->depth++;
1880 	ri->next = utask->return_instances;
1881 	utask->return_instances = ri;
1882 
1883 	return;
1884  fail:
1885 	kfree(ri);
1886 }
1887 
1888 /* Prepare to single-step probed instruction out of line. */
1889 static int
1890 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1891 {
1892 	struct uprobe_task *utask;
1893 	unsigned long xol_vaddr;
1894 	int err;
1895 
1896 	utask = get_utask();
1897 	if (!utask)
1898 		return -ENOMEM;
1899 
1900 	xol_vaddr = xol_get_insn_slot(uprobe);
1901 	if (!xol_vaddr)
1902 		return -ENOMEM;
1903 
1904 	utask->xol_vaddr = xol_vaddr;
1905 	utask->vaddr = bp_vaddr;
1906 
1907 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1908 	if (unlikely(err)) {
1909 		xol_free_insn_slot(current);
1910 		return err;
1911 	}
1912 
1913 	utask->active_uprobe = uprobe;
1914 	utask->state = UTASK_SSTEP;
1915 	return 0;
1916 }
1917 
1918 /*
1919  * If we are singlestepping, then ensure this thread is not connected to
1920  * non-fatal signals until completion of singlestep.  When xol insn itself
1921  * triggers the signal,  restart the original insn even if the task is
1922  * already SIGKILL'ed (since coredump should report the correct ip).  This
1923  * is even more important if the task has a handler for SIGSEGV/etc, The
1924  * _same_ instruction should be repeated again after return from the signal
1925  * handler, and SSTEP can never finish in this case.
1926  */
1927 bool uprobe_deny_signal(void)
1928 {
1929 	struct task_struct *t = current;
1930 	struct uprobe_task *utask = t->utask;
1931 
1932 	if (likely(!utask || !utask->active_uprobe))
1933 		return false;
1934 
1935 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1936 
1937 	if (signal_pending(t)) {
1938 		spin_lock_irq(&t->sighand->siglock);
1939 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1940 		spin_unlock_irq(&t->sighand->siglock);
1941 
1942 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1943 			utask->state = UTASK_SSTEP_TRAPPED;
1944 			set_tsk_thread_flag(t, TIF_UPROBE);
1945 		}
1946 	}
1947 
1948 	return true;
1949 }
1950 
1951 static void mmf_recalc_uprobes(struct mm_struct *mm)
1952 {
1953 	struct vm_area_struct *vma;
1954 
1955 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1956 		if (!valid_vma(vma, false))
1957 			continue;
1958 		/*
1959 		 * This is not strictly accurate, we can race with
1960 		 * uprobe_unregister() and see the already removed
1961 		 * uprobe if delete_uprobe() was not yet called.
1962 		 * Or this uprobe can be filtered out.
1963 		 */
1964 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1965 			return;
1966 	}
1967 
1968 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1969 }
1970 
1971 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1972 {
1973 	struct page *page;
1974 	uprobe_opcode_t opcode;
1975 	int result;
1976 
1977 	pagefault_disable();
1978 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1979 	pagefault_enable();
1980 
1981 	if (likely(result == 0))
1982 		goto out;
1983 
1984 	/*
1985 	 * The NULL 'tsk' here ensures that any faults that occur here
1986 	 * will not be accounted to the task.  'mm' *is* current->mm,
1987 	 * but we treat this as a 'remote' access since it is
1988 	 * essentially a kernel access to the memory.
1989 	 */
1990 	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1991 			NULL, NULL);
1992 	if (result < 0)
1993 		return result;
1994 
1995 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1996 	put_page(page);
1997  out:
1998 	/* This needs to return true for any variant of the trap insn */
1999 	return is_trap_insn(&opcode);
2000 }
2001 
2002 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2003 {
2004 	struct mm_struct *mm = current->mm;
2005 	struct uprobe *uprobe = NULL;
2006 	struct vm_area_struct *vma;
2007 
2008 	down_read(&mm->mmap_sem);
2009 	vma = find_vma(mm, bp_vaddr);
2010 	if (vma && vma->vm_start <= bp_vaddr) {
2011 		if (valid_vma(vma, false)) {
2012 			struct inode *inode = file_inode(vma->vm_file);
2013 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2014 
2015 			uprobe = find_uprobe(inode, offset);
2016 		}
2017 
2018 		if (!uprobe)
2019 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2020 	} else {
2021 		*is_swbp = -EFAULT;
2022 	}
2023 
2024 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2025 		mmf_recalc_uprobes(mm);
2026 	up_read(&mm->mmap_sem);
2027 
2028 	return uprobe;
2029 }
2030 
2031 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2032 {
2033 	struct uprobe_consumer *uc;
2034 	int remove = UPROBE_HANDLER_REMOVE;
2035 	bool need_prep = false; /* prepare return uprobe, when needed */
2036 
2037 	down_read(&uprobe->register_rwsem);
2038 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2039 		int rc = 0;
2040 
2041 		if (uc->handler) {
2042 			rc = uc->handler(uc, regs);
2043 			WARN(rc & ~UPROBE_HANDLER_MASK,
2044 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
2045 		}
2046 
2047 		if (uc->ret_handler)
2048 			need_prep = true;
2049 
2050 		remove &= rc;
2051 	}
2052 
2053 	if (need_prep && !remove)
2054 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2055 
2056 	if (remove && uprobe->consumers) {
2057 		WARN_ON(!uprobe_is_active(uprobe));
2058 		unapply_uprobe(uprobe, current->mm);
2059 	}
2060 	up_read(&uprobe->register_rwsem);
2061 }
2062 
2063 static void
2064 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2065 {
2066 	struct uprobe *uprobe = ri->uprobe;
2067 	struct uprobe_consumer *uc;
2068 
2069 	down_read(&uprobe->register_rwsem);
2070 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2071 		if (uc->ret_handler)
2072 			uc->ret_handler(uc, ri->func, regs);
2073 	}
2074 	up_read(&uprobe->register_rwsem);
2075 }
2076 
2077 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2078 {
2079 	bool chained;
2080 
2081 	do {
2082 		chained = ri->chained;
2083 		ri = ri->next;	/* can't be NULL if chained */
2084 	} while (chained);
2085 
2086 	return ri;
2087 }
2088 
2089 static void handle_trampoline(struct pt_regs *regs)
2090 {
2091 	struct uprobe_task *utask;
2092 	struct return_instance *ri, *next;
2093 	bool valid;
2094 
2095 	utask = current->utask;
2096 	if (!utask)
2097 		goto sigill;
2098 
2099 	ri = utask->return_instances;
2100 	if (!ri)
2101 		goto sigill;
2102 
2103 	do {
2104 		/*
2105 		 * We should throw out the frames invalidated by longjmp().
2106 		 * If this chain is valid, then the next one should be alive
2107 		 * or NULL; the latter case means that nobody but ri->func
2108 		 * could hit this trampoline on return. TODO: sigaltstack().
2109 		 */
2110 		next = find_next_ret_chain(ri);
2111 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2112 
2113 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2114 		do {
2115 			if (valid)
2116 				handle_uretprobe_chain(ri, regs);
2117 			ri = free_ret_instance(ri);
2118 			utask->depth--;
2119 		} while (ri != next);
2120 	} while (!valid);
2121 
2122 	utask->return_instances = ri;
2123 	return;
2124 
2125  sigill:
2126 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2127 	force_sig(SIGILL, current);
2128 
2129 }
2130 
2131 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2132 {
2133 	return false;
2134 }
2135 
2136 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2137 					struct pt_regs *regs)
2138 {
2139 	return true;
2140 }
2141 
2142 /*
2143  * Run handler and ask thread to singlestep.
2144  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2145  */
2146 static void handle_swbp(struct pt_regs *regs)
2147 {
2148 	struct uprobe *uprobe;
2149 	unsigned long bp_vaddr;
2150 	int uninitialized_var(is_swbp);
2151 
2152 	bp_vaddr = uprobe_get_swbp_addr(regs);
2153 	if (bp_vaddr == get_trampoline_vaddr())
2154 		return handle_trampoline(regs);
2155 
2156 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2157 	if (!uprobe) {
2158 		if (is_swbp > 0) {
2159 			/* No matching uprobe; signal SIGTRAP. */
2160 			send_sig(SIGTRAP, current, 0);
2161 		} else {
2162 			/*
2163 			 * Either we raced with uprobe_unregister() or we can't
2164 			 * access this memory. The latter is only possible if
2165 			 * another thread plays with our ->mm. In both cases
2166 			 * we can simply restart. If this vma was unmapped we
2167 			 * can pretend this insn was not executed yet and get
2168 			 * the (correct) SIGSEGV after restart.
2169 			 */
2170 			instruction_pointer_set(regs, bp_vaddr);
2171 		}
2172 		return;
2173 	}
2174 
2175 	/* change it in advance for ->handler() and restart */
2176 	instruction_pointer_set(regs, bp_vaddr);
2177 
2178 	/*
2179 	 * TODO: move copy_insn/etc into _register and remove this hack.
2180 	 * After we hit the bp, _unregister + _register can install the
2181 	 * new and not-yet-analyzed uprobe at the same address, restart.
2182 	 */
2183 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2184 		goto out;
2185 
2186 	/*
2187 	 * Pairs with the smp_wmb() in prepare_uprobe().
2188 	 *
2189 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2190 	 * we must also see the stores to &uprobe->arch performed by the
2191 	 * prepare_uprobe() call.
2192 	 */
2193 	smp_rmb();
2194 
2195 	/* Tracing handlers use ->utask to communicate with fetch methods */
2196 	if (!get_utask())
2197 		goto out;
2198 
2199 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2200 		goto out;
2201 
2202 	handler_chain(uprobe, regs);
2203 
2204 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2205 		goto out;
2206 
2207 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2208 		return;
2209 
2210 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2211 out:
2212 	put_uprobe(uprobe);
2213 }
2214 
2215 /*
2216  * Perform required fix-ups and disable singlestep.
2217  * Allow pending signals to take effect.
2218  */
2219 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2220 {
2221 	struct uprobe *uprobe;
2222 	int err = 0;
2223 
2224 	uprobe = utask->active_uprobe;
2225 	if (utask->state == UTASK_SSTEP_ACK)
2226 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2227 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2228 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2229 	else
2230 		WARN_ON_ONCE(1);
2231 
2232 	put_uprobe(uprobe);
2233 	utask->active_uprobe = NULL;
2234 	utask->state = UTASK_RUNNING;
2235 	xol_free_insn_slot(current);
2236 
2237 	spin_lock_irq(&current->sighand->siglock);
2238 	recalc_sigpending(); /* see uprobe_deny_signal() */
2239 	spin_unlock_irq(&current->sighand->siglock);
2240 
2241 	if (unlikely(err)) {
2242 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2243 		force_sig(SIGILL, current);
2244 	}
2245 }
2246 
2247 /*
2248  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2249  * allows the thread to return from interrupt. After that handle_swbp()
2250  * sets utask->active_uprobe.
2251  *
2252  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2253  * and allows the thread to return from interrupt.
2254  *
2255  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2256  * uprobe_notify_resume().
2257  */
2258 void uprobe_notify_resume(struct pt_regs *regs)
2259 {
2260 	struct uprobe_task *utask;
2261 
2262 	clear_thread_flag(TIF_UPROBE);
2263 
2264 	utask = current->utask;
2265 	if (utask && utask->active_uprobe)
2266 		handle_singlestep(utask, regs);
2267 	else
2268 		handle_swbp(regs);
2269 }
2270 
2271 /*
2272  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2273  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2274  */
2275 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2276 {
2277 	if (!current->mm)
2278 		return 0;
2279 
2280 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2281 	    (!current->utask || !current->utask->return_instances))
2282 		return 0;
2283 
2284 	set_thread_flag(TIF_UPROBE);
2285 	return 1;
2286 }
2287 
2288 /*
2289  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2290  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2291  */
2292 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2293 {
2294 	struct uprobe_task *utask = current->utask;
2295 
2296 	if (!current->mm || !utask || !utask->active_uprobe)
2297 		/* task is currently not uprobed */
2298 		return 0;
2299 
2300 	utask->state = UTASK_SSTEP_ACK;
2301 	set_thread_flag(TIF_UPROBE);
2302 	return 1;
2303 }
2304 
2305 static struct notifier_block uprobe_exception_nb = {
2306 	.notifier_call		= arch_uprobe_exception_notify,
2307 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2308 };
2309 
2310 static int __init init_uprobes(void)
2311 {
2312 	int i;
2313 
2314 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2315 		mutex_init(&uprobes_mmap_mutex[i]);
2316 
2317 	if (percpu_init_rwsem(&dup_mmap_sem))
2318 		return -ENOMEM;
2319 
2320 	return register_die_notifier(&uprobe_exception_nb);
2321 }
2322 __initcall(init_uprobes);
2323