xref: /openbmc/linux/kernel/events/uprobes.c (revision 249592bf)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* try_to_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include "../../mm/internal.h"	/* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30 
31 #include <linux/uprobes.h>
32 
33 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
35 
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
42 
43 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
44 
45 #define UPROBES_HASH_SZ	13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49 
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51 
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN	0
54 
55 struct uprobe {
56 	struct rb_node		rb_node;	/* node in the rb tree */
57 	refcount_t		ref;
58 	struct rw_semaphore	register_rwsem;
59 	struct rw_semaphore	consumer_rwsem;
60 	struct list_head	pending_list;
61 	struct uprobe_consumer	*consumers;
62 	struct inode		*inode;		/* Also hold a ref to inode */
63 	loff_t			offset;
64 	loff_t			ref_ctr_offset;
65 	unsigned long		flags;
66 
67 	/*
68 	 * The generic code assumes that it has two members of unknown type
69 	 * owned by the arch-specific code:
70 	 *
71 	 * 	insn -	copy_insn() saves the original instruction here for
72 	 *		arch_uprobe_analyze_insn().
73 	 *
74 	 *	ixol -	potentially modified instruction to execute out of
75 	 *		line, copied to xol_area by xol_get_insn_slot().
76 	 */
77 	struct arch_uprobe	arch;
78 };
79 
80 struct delayed_uprobe {
81 	struct list_head list;
82 	struct uprobe *uprobe;
83 	struct mm_struct *mm;
84 };
85 
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 				struct page *old_page, struct page *new_page)
156 {
157 	struct mm_struct *mm = vma->vm_mm;
158 	struct page_vma_mapped_walk pvmw = {
159 		.page = compound_head(old_page),
160 		.vma = vma,
161 		.address = addr,
162 	};
163 	int err;
164 	struct mmu_notifier_range range;
165 
166 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167 				addr + PAGE_SIZE);
168 
169 	if (new_page) {
170 		err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
171 		if (err)
172 			return err;
173 	}
174 
175 	/* For try_to_free_swap() and munlock_vma_page() below */
176 	lock_page(old_page);
177 
178 	mmu_notifier_invalidate_range_start(&range);
179 	err = -EAGAIN;
180 	if (!page_vma_mapped_walk(&pvmw))
181 		goto unlock;
182 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183 
184 	if (new_page) {
185 		get_page(new_page);
186 		page_add_new_anon_rmap(new_page, vma, addr, false);
187 		lru_cache_add_inactive_or_unevictable(new_page, vma);
188 	} else
189 		/* no new page, just dec_mm_counter for old_page */
190 		dec_mm_counter(mm, MM_ANONPAGES);
191 
192 	if (!PageAnon(old_page)) {
193 		dec_mm_counter(mm, mm_counter_file(old_page));
194 		inc_mm_counter(mm, MM_ANONPAGES);
195 	}
196 
197 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
199 	if (new_page)
200 		set_pte_at_notify(mm, addr, pvmw.pte,
201 				  mk_pte(new_page, vma->vm_page_prot));
202 
203 	page_remove_rmap(old_page, false);
204 	if (!page_mapped(old_page))
205 		try_to_free_swap(old_page);
206 	page_vma_mapped_walk_done(&pvmw);
207 
208 	if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page))
209 		munlock_vma_page(old_page);
210 	put_page(old_page);
211 
212 	err = 0;
213  unlock:
214 	mmu_notifier_invalidate_range_end(&range);
215 	unlock_page(old_page);
216 	return err;
217 }
218 
219 /**
220  * is_swbp_insn - check if instruction is breakpoint instruction.
221  * @insn: instruction to be checked.
222  * Default implementation of is_swbp_insn
223  * Returns true if @insn is a breakpoint instruction.
224  */
225 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
226 {
227 	return *insn == UPROBE_SWBP_INSN;
228 }
229 
230 /**
231  * is_trap_insn - check if instruction is breakpoint instruction.
232  * @insn: instruction to be checked.
233  * Default implementation of is_trap_insn
234  * Returns true if @insn is a breakpoint instruction.
235  *
236  * This function is needed for the case where an architecture has multiple
237  * trap instructions (like powerpc).
238  */
239 bool __weak is_trap_insn(uprobe_opcode_t *insn)
240 {
241 	return is_swbp_insn(insn);
242 }
243 
244 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
245 {
246 	void *kaddr = kmap_atomic(page);
247 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
248 	kunmap_atomic(kaddr);
249 }
250 
251 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
252 {
253 	void *kaddr = kmap_atomic(page);
254 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
255 	kunmap_atomic(kaddr);
256 }
257 
258 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
259 {
260 	uprobe_opcode_t old_opcode;
261 	bool is_swbp;
262 
263 	/*
264 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
265 	 * We do not check if it is any other 'trap variant' which could
266 	 * be conditional trap instruction such as the one powerpc supports.
267 	 *
268 	 * The logic is that we do not care if the underlying instruction
269 	 * is a trap variant; uprobes always wins over any other (gdb)
270 	 * breakpoint.
271 	 */
272 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
273 	is_swbp = is_swbp_insn(&old_opcode);
274 
275 	if (is_swbp_insn(new_opcode)) {
276 		if (is_swbp)		/* register: already installed? */
277 			return 0;
278 	} else {
279 		if (!is_swbp)		/* unregister: was it changed by us? */
280 			return 0;
281 	}
282 
283 	return 1;
284 }
285 
286 static struct delayed_uprobe *
287 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
288 {
289 	struct delayed_uprobe *du;
290 
291 	list_for_each_entry(du, &delayed_uprobe_list, list)
292 		if (du->uprobe == uprobe && du->mm == mm)
293 			return du;
294 	return NULL;
295 }
296 
297 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
298 {
299 	struct delayed_uprobe *du;
300 
301 	if (delayed_uprobe_check(uprobe, mm))
302 		return 0;
303 
304 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
305 	if (!du)
306 		return -ENOMEM;
307 
308 	du->uprobe = uprobe;
309 	du->mm = mm;
310 	list_add(&du->list, &delayed_uprobe_list);
311 	return 0;
312 }
313 
314 static void delayed_uprobe_delete(struct delayed_uprobe *du)
315 {
316 	if (WARN_ON(!du))
317 		return;
318 	list_del(&du->list);
319 	kfree(du);
320 }
321 
322 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
323 {
324 	struct list_head *pos, *q;
325 	struct delayed_uprobe *du;
326 
327 	if (!uprobe && !mm)
328 		return;
329 
330 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
331 		du = list_entry(pos, struct delayed_uprobe, list);
332 
333 		if (uprobe && du->uprobe != uprobe)
334 			continue;
335 		if (mm && du->mm != mm)
336 			continue;
337 
338 		delayed_uprobe_delete(du);
339 	}
340 }
341 
342 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
343 			      struct vm_area_struct *vma)
344 {
345 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
346 
347 	return uprobe->ref_ctr_offset &&
348 		vma->vm_file &&
349 		file_inode(vma->vm_file) == uprobe->inode &&
350 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
351 		vma->vm_start <= vaddr &&
352 		vma->vm_end > vaddr;
353 }
354 
355 static struct vm_area_struct *
356 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
357 {
358 	struct vm_area_struct *tmp;
359 
360 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
361 		if (valid_ref_ctr_vma(uprobe, tmp))
362 			return tmp;
363 
364 	return NULL;
365 }
366 
367 static int
368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
369 {
370 	void *kaddr;
371 	struct page *page;
372 	struct vm_area_struct *vma;
373 	int ret;
374 	short *ptr;
375 
376 	if (!vaddr || !d)
377 		return -EINVAL;
378 
379 	ret = get_user_pages_remote(mm, vaddr, 1,
380 			FOLL_WRITE, &page, &vma, NULL);
381 	if (unlikely(ret <= 0)) {
382 		/*
383 		 * We are asking for 1 page. If get_user_pages_remote() fails,
384 		 * it may return 0, in that case we have to return error.
385 		 */
386 		return ret == 0 ? -EBUSY : ret;
387 	}
388 
389 	kaddr = kmap_atomic(page);
390 	ptr = kaddr + (vaddr & ~PAGE_MASK);
391 
392 	if (unlikely(*ptr + d < 0)) {
393 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
394 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
395 		ret = -EINVAL;
396 		goto out;
397 	}
398 
399 	*ptr += d;
400 	ret = 0;
401 out:
402 	kunmap_atomic(kaddr);
403 	put_page(page);
404 	return ret;
405 }
406 
407 static void update_ref_ctr_warn(struct uprobe *uprobe,
408 				struct mm_struct *mm, short d)
409 {
410 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
411 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
412 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
413 		(unsigned long long) uprobe->offset,
414 		(unsigned long long) uprobe->ref_ctr_offset, mm);
415 }
416 
417 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
418 			  short d)
419 {
420 	struct vm_area_struct *rc_vma;
421 	unsigned long rc_vaddr;
422 	int ret = 0;
423 
424 	rc_vma = find_ref_ctr_vma(uprobe, mm);
425 
426 	if (rc_vma) {
427 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
428 		ret = __update_ref_ctr(mm, rc_vaddr, d);
429 		if (ret)
430 			update_ref_ctr_warn(uprobe, mm, d);
431 
432 		if (d > 0)
433 			return ret;
434 	}
435 
436 	mutex_lock(&delayed_uprobe_lock);
437 	if (d > 0)
438 		ret = delayed_uprobe_add(uprobe, mm);
439 	else
440 		delayed_uprobe_remove(uprobe, mm);
441 	mutex_unlock(&delayed_uprobe_lock);
442 
443 	return ret;
444 }
445 
446 /*
447  * NOTE:
448  * Expect the breakpoint instruction to be the smallest size instruction for
449  * the architecture. If an arch has variable length instruction and the
450  * breakpoint instruction is not of the smallest length instruction
451  * supported by that architecture then we need to modify is_trap_at_addr and
452  * uprobe_write_opcode accordingly. This would never be a problem for archs
453  * that have fixed length instructions.
454  *
455  * uprobe_write_opcode - write the opcode at a given virtual address.
456  * @mm: the probed process address space.
457  * @vaddr: the virtual address to store the opcode.
458  * @opcode: opcode to be written at @vaddr.
459  *
460  * Called with mm->mmap_lock held for write.
461  * Return 0 (success) or a negative errno.
462  */
463 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
464 			unsigned long vaddr, uprobe_opcode_t opcode)
465 {
466 	struct uprobe *uprobe;
467 	struct page *old_page, *new_page;
468 	struct vm_area_struct *vma;
469 	int ret, is_register, ref_ctr_updated = 0;
470 	bool orig_page_huge = false;
471 	unsigned int gup_flags = FOLL_FORCE;
472 
473 	is_register = is_swbp_insn(&opcode);
474 	uprobe = container_of(auprobe, struct uprobe, arch);
475 
476 retry:
477 	if (is_register)
478 		gup_flags |= FOLL_SPLIT_PMD;
479 	/* Read the page with vaddr into memory */
480 	ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
481 				    &old_page, &vma, NULL);
482 	if (ret <= 0)
483 		return ret;
484 
485 	ret = verify_opcode(old_page, vaddr, &opcode);
486 	if (ret <= 0)
487 		goto put_old;
488 
489 	if (WARN(!is_register && PageCompound(old_page),
490 		 "uprobe unregister should never work on compound page\n")) {
491 		ret = -EINVAL;
492 		goto put_old;
493 	}
494 
495 	/* We are going to replace instruction, update ref_ctr. */
496 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
497 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
498 		if (ret)
499 			goto put_old;
500 
501 		ref_ctr_updated = 1;
502 	}
503 
504 	ret = 0;
505 	if (!is_register && !PageAnon(old_page))
506 		goto put_old;
507 
508 	ret = anon_vma_prepare(vma);
509 	if (ret)
510 		goto put_old;
511 
512 	ret = -ENOMEM;
513 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
514 	if (!new_page)
515 		goto put_old;
516 
517 	__SetPageUptodate(new_page);
518 	copy_highpage(new_page, old_page);
519 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
520 
521 	if (!is_register) {
522 		struct page *orig_page;
523 		pgoff_t index;
524 
525 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
526 
527 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
528 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
529 					  index);
530 
531 		if (orig_page) {
532 			if (PageUptodate(orig_page) &&
533 			    pages_identical(new_page, orig_page)) {
534 				/* let go new_page */
535 				put_page(new_page);
536 				new_page = NULL;
537 
538 				if (PageCompound(orig_page))
539 					orig_page_huge = true;
540 			}
541 			put_page(orig_page);
542 		}
543 	}
544 
545 	ret = __replace_page(vma, vaddr, old_page, new_page);
546 	if (new_page)
547 		put_page(new_page);
548 put_old:
549 	put_page(old_page);
550 
551 	if (unlikely(ret == -EAGAIN))
552 		goto retry;
553 
554 	/* Revert back reference counter if instruction update failed. */
555 	if (ret && is_register && ref_ctr_updated)
556 		update_ref_ctr(uprobe, mm, -1);
557 
558 	/* try collapse pmd for compound page */
559 	if (!ret && orig_page_huge)
560 		collapse_pte_mapped_thp(mm, vaddr);
561 
562 	return ret;
563 }
564 
565 /**
566  * set_swbp - store breakpoint at a given address.
567  * @auprobe: arch specific probepoint information.
568  * @mm: the probed process address space.
569  * @vaddr: the virtual address to insert the opcode.
570  *
571  * For mm @mm, store the breakpoint instruction at @vaddr.
572  * Return 0 (success) or a negative errno.
573  */
574 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
575 {
576 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
577 }
578 
579 /**
580  * set_orig_insn - Restore the original instruction.
581  * @mm: the probed process address space.
582  * @auprobe: arch specific probepoint information.
583  * @vaddr: the virtual address to insert the opcode.
584  *
585  * For mm @mm, restore the original opcode (opcode) at @vaddr.
586  * Return 0 (success) or a negative errno.
587  */
588 int __weak
589 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
590 {
591 	return uprobe_write_opcode(auprobe, mm, vaddr,
592 			*(uprobe_opcode_t *)&auprobe->insn);
593 }
594 
595 static struct uprobe *get_uprobe(struct uprobe *uprobe)
596 {
597 	refcount_inc(&uprobe->ref);
598 	return uprobe;
599 }
600 
601 static void put_uprobe(struct uprobe *uprobe)
602 {
603 	if (refcount_dec_and_test(&uprobe->ref)) {
604 		/*
605 		 * If application munmap(exec_vma) before uprobe_unregister()
606 		 * gets called, we don't get a chance to remove uprobe from
607 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
608 		 */
609 		mutex_lock(&delayed_uprobe_lock);
610 		delayed_uprobe_remove(uprobe, NULL);
611 		mutex_unlock(&delayed_uprobe_lock);
612 		kfree(uprobe);
613 	}
614 }
615 
616 static __always_inline
617 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
618 	       const struct uprobe *r)
619 {
620 	if (l_inode < r->inode)
621 		return -1;
622 
623 	if (l_inode > r->inode)
624 		return 1;
625 
626 	if (l_offset < r->offset)
627 		return -1;
628 
629 	if (l_offset > r->offset)
630 		return 1;
631 
632 	return 0;
633 }
634 
635 #define __node_2_uprobe(node) \
636 	rb_entry((node), struct uprobe, rb_node)
637 
638 struct __uprobe_key {
639 	struct inode *inode;
640 	loff_t offset;
641 };
642 
643 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
644 {
645 	const struct __uprobe_key *a = key;
646 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
647 }
648 
649 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
650 {
651 	struct uprobe *u = __node_2_uprobe(a);
652 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
653 }
654 
655 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
656 {
657 	struct __uprobe_key key = {
658 		.inode = inode,
659 		.offset = offset,
660 	};
661 	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
662 
663 	if (node)
664 		return get_uprobe(__node_2_uprobe(node));
665 
666 	return NULL;
667 }
668 
669 /*
670  * Find a uprobe corresponding to a given inode:offset
671  * Acquires uprobes_treelock
672  */
673 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
674 {
675 	struct uprobe *uprobe;
676 
677 	spin_lock(&uprobes_treelock);
678 	uprobe = __find_uprobe(inode, offset);
679 	spin_unlock(&uprobes_treelock);
680 
681 	return uprobe;
682 }
683 
684 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
685 {
686 	struct rb_node *node;
687 
688 	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
689 	if (node)
690 		return get_uprobe(__node_2_uprobe(node));
691 
692 	/* get access + creation ref */
693 	refcount_set(&uprobe->ref, 2);
694 	return NULL;
695 }
696 
697 /*
698  * Acquire uprobes_treelock.
699  * Matching uprobe already exists in rbtree;
700  *	increment (access refcount) and return the matching uprobe.
701  *
702  * No matching uprobe; insert the uprobe in rb_tree;
703  *	get a double refcount (access + creation) and return NULL.
704  */
705 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
706 {
707 	struct uprobe *u;
708 
709 	spin_lock(&uprobes_treelock);
710 	u = __insert_uprobe(uprobe);
711 	spin_unlock(&uprobes_treelock);
712 
713 	return u;
714 }
715 
716 static void
717 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
718 {
719 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
720 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
721 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
722 		(unsigned long long) cur_uprobe->ref_ctr_offset,
723 		(unsigned long long) uprobe->ref_ctr_offset);
724 }
725 
726 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
727 				   loff_t ref_ctr_offset)
728 {
729 	struct uprobe *uprobe, *cur_uprobe;
730 
731 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
732 	if (!uprobe)
733 		return NULL;
734 
735 	uprobe->inode = inode;
736 	uprobe->offset = offset;
737 	uprobe->ref_ctr_offset = ref_ctr_offset;
738 	init_rwsem(&uprobe->register_rwsem);
739 	init_rwsem(&uprobe->consumer_rwsem);
740 
741 	/* add to uprobes_tree, sorted on inode:offset */
742 	cur_uprobe = insert_uprobe(uprobe);
743 	/* a uprobe exists for this inode:offset combination */
744 	if (cur_uprobe) {
745 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
746 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
747 			put_uprobe(cur_uprobe);
748 			kfree(uprobe);
749 			return ERR_PTR(-EINVAL);
750 		}
751 		kfree(uprobe);
752 		uprobe = cur_uprobe;
753 	}
754 
755 	return uprobe;
756 }
757 
758 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
759 {
760 	down_write(&uprobe->consumer_rwsem);
761 	uc->next = uprobe->consumers;
762 	uprobe->consumers = uc;
763 	up_write(&uprobe->consumer_rwsem);
764 }
765 
766 /*
767  * For uprobe @uprobe, delete the consumer @uc.
768  * Return true if the @uc is deleted successfully
769  * or return false.
770  */
771 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
772 {
773 	struct uprobe_consumer **con;
774 	bool ret = false;
775 
776 	down_write(&uprobe->consumer_rwsem);
777 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
778 		if (*con == uc) {
779 			*con = uc->next;
780 			ret = true;
781 			break;
782 		}
783 	}
784 	up_write(&uprobe->consumer_rwsem);
785 
786 	return ret;
787 }
788 
789 static int __copy_insn(struct address_space *mapping, struct file *filp,
790 			void *insn, int nbytes, loff_t offset)
791 {
792 	struct page *page;
793 	/*
794 	 * Ensure that the page that has the original instruction is populated
795 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
796 	 * see uprobe_register().
797 	 */
798 	if (mapping->a_ops->readpage)
799 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
800 	else
801 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
802 	if (IS_ERR(page))
803 		return PTR_ERR(page);
804 
805 	copy_from_page(page, offset, insn, nbytes);
806 	put_page(page);
807 
808 	return 0;
809 }
810 
811 static int copy_insn(struct uprobe *uprobe, struct file *filp)
812 {
813 	struct address_space *mapping = uprobe->inode->i_mapping;
814 	loff_t offs = uprobe->offset;
815 	void *insn = &uprobe->arch.insn;
816 	int size = sizeof(uprobe->arch.insn);
817 	int len, err = -EIO;
818 
819 	/* Copy only available bytes, -EIO if nothing was read */
820 	do {
821 		if (offs >= i_size_read(uprobe->inode))
822 			break;
823 
824 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
825 		err = __copy_insn(mapping, filp, insn, len, offs);
826 		if (err)
827 			break;
828 
829 		insn += len;
830 		offs += len;
831 		size -= len;
832 	} while (size);
833 
834 	return err;
835 }
836 
837 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
838 				struct mm_struct *mm, unsigned long vaddr)
839 {
840 	int ret = 0;
841 
842 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843 		return ret;
844 
845 	/* TODO: move this into _register, until then we abuse this sem. */
846 	down_write(&uprobe->consumer_rwsem);
847 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
848 		goto out;
849 
850 	ret = copy_insn(uprobe, file);
851 	if (ret)
852 		goto out;
853 
854 	ret = -ENOTSUPP;
855 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
856 		goto out;
857 
858 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
859 	if (ret)
860 		goto out;
861 
862 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
863 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
864 
865  out:
866 	up_write(&uprobe->consumer_rwsem);
867 
868 	return ret;
869 }
870 
871 static inline bool consumer_filter(struct uprobe_consumer *uc,
872 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
873 {
874 	return !uc->filter || uc->filter(uc, ctx, mm);
875 }
876 
877 static bool filter_chain(struct uprobe *uprobe,
878 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
879 {
880 	struct uprobe_consumer *uc;
881 	bool ret = false;
882 
883 	down_read(&uprobe->consumer_rwsem);
884 	for (uc = uprobe->consumers; uc; uc = uc->next) {
885 		ret = consumer_filter(uc, ctx, mm);
886 		if (ret)
887 			break;
888 	}
889 	up_read(&uprobe->consumer_rwsem);
890 
891 	return ret;
892 }
893 
894 static int
895 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
896 			struct vm_area_struct *vma, unsigned long vaddr)
897 {
898 	bool first_uprobe;
899 	int ret;
900 
901 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
902 	if (ret)
903 		return ret;
904 
905 	/*
906 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
907 	 * the task can hit this breakpoint right after __replace_page().
908 	 */
909 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
910 	if (first_uprobe)
911 		set_bit(MMF_HAS_UPROBES, &mm->flags);
912 
913 	ret = set_swbp(&uprobe->arch, mm, vaddr);
914 	if (!ret)
915 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
916 	else if (first_uprobe)
917 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
918 
919 	return ret;
920 }
921 
922 static int
923 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
924 {
925 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
926 	return set_orig_insn(&uprobe->arch, mm, vaddr);
927 }
928 
929 static inline bool uprobe_is_active(struct uprobe *uprobe)
930 {
931 	return !RB_EMPTY_NODE(&uprobe->rb_node);
932 }
933 /*
934  * There could be threads that have already hit the breakpoint. They
935  * will recheck the current insn and restart if find_uprobe() fails.
936  * See find_active_uprobe().
937  */
938 static void delete_uprobe(struct uprobe *uprobe)
939 {
940 	if (WARN_ON(!uprobe_is_active(uprobe)))
941 		return;
942 
943 	spin_lock(&uprobes_treelock);
944 	rb_erase(&uprobe->rb_node, &uprobes_tree);
945 	spin_unlock(&uprobes_treelock);
946 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
947 	put_uprobe(uprobe);
948 }
949 
950 struct map_info {
951 	struct map_info *next;
952 	struct mm_struct *mm;
953 	unsigned long vaddr;
954 };
955 
956 static inline struct map_info *free_map_info(struct map_info *info)
957 {
958 	struct map_info *next = info->next;
959 	kfree(info);
960 	return next;
961 }
962 
963 static struct map_info *
964 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
965 {
966 	unsigned long pgoff = offset >> PAGE_SHIFT;
967 	struct vm_area_struct *vma;
968 	struct map_info *curr = NULL;
969 	struct map_info *prev = NULL;
970 	struct map_info *info;
971 	int more = 0;
972 
973  again:
974 	i_mmap_lock_read(mapping);
975 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
976 		if (!valid_vma(vma, is_register))
977 			continue;
978 
979 		if (!prev && !more) {
980 			/*
981 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
982 			 * reclaim. This is optimistic, no harm done if it fails.
983 			 */
984 			prev = kmalloc(sizeof(struct map_info),
985 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
986 			if (prev)
987 				prev->next = NULL;
988 		}
989 		if (!prev) {
990 			more++;
991 			continue;
992 		}
993 
994 		if (!mmget_not_zero(vma->vm_mm))
995 			continue;
996 
997 		info = prev;
998 		prev = prev->next;
999 		info->next = curr;
1000 		curr = info;
1001 
1002 		info->mm = vma->vm_mm;
1003 		info->vaddr = offset_to_vaddr(vma, offset);
1004 	}
1005 	i_mmap_unlock_read(mapping);
1006 
1007 	if (!more)
1008 		goto out;
1009 
1010 	prev = curr;
1011 	while (curr) {
1012 		mmput(curr->mm);
1013 		curr = curr->next;
1014 	}
1015 
1016 	do {
1017 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1018 		if (!info) {
1019 			curr = ERR_PTR(-ENOMEM);
1020 			goto out;
1021 		}
1022 		info->next = prev;
1023 		prev = info;
1024 	} while (--more);
1025 
1026 	goto again;
1027  out:
1028 	while (prev)
1029 		prev = free_map_info(prev);
1030 	return curr;
1031 }
1032 
1033 static int
1034 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1035 {
1036 	bool is_register = !!new;
1037 	struct map_info *info;
1038 	int err = 0;
1039 
1040 	percpu_down_write(&dup_mmap_sem);
1041 	info = build_map_info(uprobe->inode->i_mapping,
1042 					uprobe->offset, is_register);
1043 	if (IS_ERR(info)) {
1044 		err = PTR_ERR(info);
1045 		goto out;
1046 	}
1047 
1048 	while (info) {
1049 		struct mm_struct *mm = info->mm;
1050 		struct vm_area_struct *vma;
1051 
1052 		if (err && is_register)
1053 			goto free;
1054 
1055 		mmap_write_lock(mm);
1056 		vma = find_vma(mm, info->vaddr);
1057 		if (!vma || !valid_vma(vma, is_register) ||
1058 		    file_inode(vma->vm_file) != uprobe->inode)
1059 			goto unlock;
1060 
1061 		if (vma->vm_start > info->vaddr ||
1062 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1063 			goto unlock;
1064 
1065 		if (is_register) {
1066 			/* consult only the "caller", new consumer. */
1067 			if (consumer_filter(new,
1068 					UPROBE_FILTER_REGISTER, mm))
1069 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1070 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1071 			if (!filter_chain(uprobe,
1072 					UPROBE_FILTER_UNREGISTER, mm))
1073 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1074 		}
1075 
1076  unlock:
1077 		mmap_write_unlock(mm);
1078  free:
1079 		mmput(mm);
1080 		info = free_map_info(info);
1081 	}
1082  out:
1083 	percpu_up_write(&dup_mmap_sem);
1084 	return err;
1085 }
1086 
1087 static void
1088 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1089 {
1090 	int err;
1091 
1092 	if (WARN_ON(!consumer_del(uprobe, uc)))
1093 		return;
1094 
1095 	err = register_for_each_vma(uprobe, NULL);
1096 	/* TODO : cant unregister? schedule a worker thread */
1097 	if (!uprobe->consumers && !err)
1098 		delete_uprobe(uprobe);
1099 }
1100 
1101 /*
1102  * uprobe_unregister - unregister an already registered probe.
1103  * @inode: the file in which the probe has to be removed.
1104  * @offset: offset from the start of the file.
1105  * @uc: identify which probe if multiple probes are colocated.
1106  */
1107 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1108 {
1109 	struct uprobe *uprobe;
1110 
1111 	uprobe = find_uprobe(inode, offset);
1112 	if (WARN_ON(!uprobe))
1113 		return;
1114 
1115 	down_write(&uprobe->register_rwsem);
1116 	__uprobe_unregister(uprobe, uc);
1117 	up_write(&uprobe->register_rwsem);
1118 	put_uprobe(uprobe);
1119 }
1120 EXPORT_SYMBOL_GPL(uprobe_unregister);
1121 
1122 /*
1123  * __uprobe_register - register a probe
1124  * @inode: the file in which the probe has to be placed.
1125  * @offset: offset from the start of the file.
1126  * @uc: information on howto handle the probe..
1127  *
1128  * Apart from the access refcount, __uprobe_register() takes a creation
1129  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1130  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1131  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1132  * @uprobe even before the register operation is complete. Creation
1133  * refcount is released when the last @uc for the @uprobe
1134  * unregisters. Caller of __uprobe_register() is required to keep @inode
1135  * (and the containing mount) referenced.
1136  *
1137  * Return errno if it cannot successully install probes
1138  * else return 0 (success)
1139  */
1140 static int __uprobe_register(struct inode *inode, loff_t offset,
1141 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1142 {
1143 	struct uprobe *uprobe;
1144 	int ret;
1145 
1146 	/* Uprobe must have at least one set consumer */
1147 	if (!uc->handler && !uc->ret_handler)
1148 		return -EINVAL;
1149 
1150 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1151 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1152 		return -EIO;
1153 	/* Racy, just to catch the obvious mistakes */
1154 	if (offset > i_size_read(inode))
1155 		return -EINVAL;
1156 
1157 	/*
1158 	 * This ensures that copy_from_page(), copy_to_page() and
1159 	 * __update_ref_ctr() can't cross page boundary.
1160 	 */
1161 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1162 		return -EINVAL;
1163 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1164 		return -EINVAL;
1165 
1166  retry:
1167 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1168 	if (!uprobe)
1169 		return -ENOMEM;
1170 	if (IS_ERR(uprobe))
1171 		return PTR_ERR(uprobe);
1172 
1173 	/*
1174 	 * We can race with uprobe_unregister()->delete_uprobe().
1175 	 * Check uprobe_is_active() and retry if it is false.
1176 	 */
1177 	down_write(&uprobe->register_rwsem);
1178 	ret = -EAGAIN;
1179 	if (likely(uprobe_is_active(uprobe))) {
1180 		consumer_add(uprobe, uc);
1181 		ret = register_for_each_vma(uprobe, uc);
1182 		if (ret)
1183 			__uprobe_unregister(uprobe, uc);
1184 	}
1185 	up_write(&uprobe->register_rwsem);
1186 	put_uprobe(uprobe);
1187 
1188 	if (unlikely(ret == -EAGAIN))
1189 		goto retry;
1190 	return ret;
1191 }
1192 
1193 int uprobe_register(struct inode *inode, loff_t offset,
1194 		    struct uprobe_consumer *uc)
1195 {
1196 	return __uprobe_register(inode, offset, 0, uc);
1197 }
1198 EXPORT_SYMBOL_GPL(uprobe_register);
1199 
1200 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1201 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1202 {
1203 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1204 }
1205 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1206 
1207 /*
1208  * uprobe_apply - unregister an already registered probe.
1209  * @inode: the file in which the probe has to be removed.
1210  * @offset: offset from the start of the file.
1211  * @uc: consumer which wants to add more or remove some breakpoints
1212  * @add: add or remove the breakpoints
1213  */
1214 int uprobe_apply(struct inode *inode, loff_t offset,
1215 			struct uprobe_consumer *uc, bool add)
1216 {
1217 	struct uprobe *uprobe;
1218 	struct uprobe_consumer *con;
1219 	int ret = -ENOENT;
1220 
1221 	uprobe = find_uprobe(inode, offset);
1222 	if (WARN_ON(!uprobe))
1223 		return ret;
1224 
1225 	down_write(&uprobe->register_rwsem);
1226 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1227 		;
1228 	if (con)
1229 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1230 	up_write(&uprobe->register_rwsem);
1231 	put_uprobe(uprobe);
1232 
1233 	return ret;
1234 }
1235 
1236 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1237 {
1238 	struct vm_area_struct *vma;
1239 	int err = 0;
1240 
1241 	mmap_read_lock(mm);
1242 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1243 		unsigned long vaddr;
1244 		loff_t offset;
1245 
1246 		if (!valid_vma(vma, false) ||
1247 		    file_inode(vma->vm_file) != uprobe->inode)
1248 			continue;
1249 
1250 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1251 		if (uprobe->offset <  offset ||
1252 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1253 			continue;
1254 
1255 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1256 		err |= remove_breakpoint(uprobe, mm, vaddr);
1257 	}
1258 	mmap_read_unlock(mm);
1259 
1260 	return err;
1261 }
1262 
1263 static struct rb_node *
1264 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1265 {
1266 	struct rb_node *n = uprobes_tree.rb_node;
1267 
1268 	while (n) {
1269 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1270 
1271 		if (inode < u->inode) {
1272 			n = n->rb_left;
1273 		} else if (inode > u->inode) {
1274 			n = n->rb_right;
1275 		} else {
1276 			if (max < u->offset)
1277 				n = n->rb_left;
1278 			else if (min > u->offset)
1279 				n = n->rb_right;
1280 			else
1281 				break;
1282 		}
1283 	}
1284 
1285 	return n;
1286 }
1287 
1288 /*
1289  * For a given range in vma, build a list of probes that need to be inserted.
1290  */
1291 static void build_probe_list(struct inode *inode,
1292 				struct vm_area_struct *vma,
1293 				unsigned long start, unsigned long end,
1294 				struct list_head *head)
1295 {
1296 	loff_t min, max;
1297 	struct rb_node *n, *t;
1298 	struct uprobe *u;
1299 
1300 	INIT_LIST_HEAD(head);
1301 	min = vaddr_to_offset(vma, start);
1302 	max = min + (end - start) - 1;
1303 
1304 	spin_lock(&uprobes_treelock);
1305 	n = find_node_in_range(inode, min, max);
1306 	if (n) {
1307 		for (t = n; t; t = rb_prev(t)) {
1308 			u = rb_entry(t, struct uprobe, rb_node);
1309 			if (u->inode != inode || u->offset < min)
1310 				break;
1311 			list_add(&u->pending_list, head);
1312 			get_uprobe(u);
1313 		}
1314 		for (t = n; (t = rb_next(t)); ) {
1315 			u = rb_entry(t, struct uprobe, rb_node);
1316 			if (u->inode != inode || u->offset > max)
1317 				break;
1318 			list_add(&u->pending_list, head);
1319 			get_uprobe(u);
1320 		}
1321 	}
1322 	spin_unlock(&uprobes_treelock);
1323 }
1324 
1325 /* @vma contains reference counter, not the probed instruction. */
1326 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1327 {
1328 	struct list_head *pos, *q;
1329 	struct delayed_uprobe *du;
1330 	unsigned long vaddr;
1331 	int ret = 0, err = 0;
1332 
1333 	mutex_lock(&delayed_uprobe_lock);
1334 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1335 		du = list_entry(pos, struct delayed_uprobe, list);
1336 
1337 		if (du->mm != vma->vm_mm ||
1338 		    !valid_ref_ctr_vma(du->uprobe, vma))
1339 			continue;
1340 
1341 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1342 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1343 		if (ret) {
1344 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1345 			if (!err)
1346 				err = ret;
1347 		}
1348 		delayed_uprobe_delete(du);
1349 	}
1350 	mutex_unlock(&delayed_uprobe_lock);
1351 	return err;
1352 }
1353 
1354 /*
1355  * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1356  *
1357  * Currently we ignore all errors and always return 0, the callers
1358  * can't handle the failure anyway.
1359  */
1360 int uprobe_mmap(struct vm_area_struct *vma)
1361 {
1362 	struct list_head tmp_list;
1363 	struct uprobe *uprobe, *u;
1364 	struct inode *inode;
1365 
1366 	if (no_uprobe_events())
1367 		return 0;
1368 
1369 	if (vma->vm_file &&
1370 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1371 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1372 		delayed_ref_ctr_inc(vma);
1373 
1374 	if (!valid_vma(vma, true))
1375 		return 0;
1376 
1377 	inode = file_inode(vma->vm_file);
1378 	if (!inode)
1379 		return 0;
1380 
1381 	mutex_lock(uprobes_mmap_hash(inode));
1382 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1383 	/*
1384 	 * We can race with uprobe_unregister(), this uprobe can be already
1385 	 * removed. But in this case filter_chain() must return false, all
1386 	 * consumers have gone away.
1387 	 */
1388 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1389 		if (!fatal_signal_pending(current) &&
1390 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1391 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1392 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1393 		}
1394 		put_uprobe(uprobe);
1395 	}
1396 	mutex_unlock(uprobes_mmap_hash(inode));
1397 
1398 	return 0;
1399 }
1400 
1401 static bool
1402 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1403 {
1404 	loff_t min, max;
1405 	struct inode *inode;
1406 	struct rb_node *n;
1407 
1408 	inode = file_inode(vma->vm_file);
1409 
1410 	min = vaddr_to_offset(vma, start);
1411 	max = min + (end - start) - 1;
1412 
1413 	spin_lock(&uprobes_treelock);
1414 	n = find_node_in_range(inode, min, max);
1415 	spin_unlock(&uprobes_treelock);
1416 
1417 	return !!n;
1418 }
1419 
1420 /*
1421  * Called in context of a munmap of a vma.
1422  */
1423 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1424 {
1425 	if (no_uprobe_events() || !valid_vma(vma, false))
1426 		return;
1427 
1428 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1429 		return;
1430 
1431 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1432 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1433 		return;
1434 
1435 	if (vma_has_uprobes(vma, start, end))
1436 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1437 }
1438 
1439 /* Slot allocation for XOL */
1440 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1441 {
1442 	struct vm_area_struct *vma;
1443 	int ret;
1444 
1445 	if (mmap_write_lock_killable(mm))
1446 		return -EINTR;
1447 
1448 	if (mm->uprobes_state.xol_area) {
1449 		ret = -EALREADY;
1450 		goto fail;
1451 	}
1452 
1453 	if (!area->vaddr) {
1454 		/* Try to map as high as possible, this is only a hint. */
1455 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1456 						PAGE_SIZE, 0, 0);
1457 		if (IS_ERR_VALUE(area->vaddr)) {
1458 			ret = area->vaddr;
1459 			goto fail;
1460 		}
1461 	}
1462 
1463 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1464 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1465 				&area->xol_mapping);
1466 	if (IS_ERR(vma)) {
1467 		ret = PTR_ERR(vma);
1468 		goto fail;
1469 	}
1470 
1471 	ret = 0;
1472 	/* pairs with get_xol_area() */
1473 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1474  fail:
1475 	mmap_write_unlock(mm);
1476 
1477 	return ret;
1478 }
1479 
1480 static struct xol_area *__create_xol_area(unsigned long vaddr)
1481 {
1482 	struct mm_struct *mm = current->mm;
1483 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1484 	struct xol_area *area;
1485 
1486 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1487 	if (unlikely(!area))
1488 		goto out;
1489 
1490 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1491 			       GFP_KERNEL);
1492 	if (!area->bitmap)
1493 		goto free_area;
1494 
1495 	area->xol_mapping.name = "[uprobes]";
1496 	area->xol_mapping.fault = NULL;
1497 	area->xol_mapping.pages = area->pages;
1498 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1499 	if (!area->pages[0])
1500 		goto free_bitmap;
1501 	area->pages[1] = NULL;
1502 
1503 	area->vaddr = vaddr;
1504 	init_waitqueue_head(&area->wq);
1505 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1506 	set_bit(0, area->bitmap);
1507 	atomic_set(&area->slot_count, 1);
1508 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1509 
1510 	if (!xol_add_vma(mm, area))
1511 		return area;
1512 
1513 	__free_page(area->pages[0]);
1514  free_bitmap:
1515 	kfree(area->bitmap);
1516  free_area:
1517 	kfree(area);
1518  out:
1519 	return NULL;
1520 }
1521 
1522 /*
1523  * get_xol_area - Allocate process's xol_area if necessary.
1524  * This area will be used for storing instructions for execution out of line.
1525  *
1526  * Returns the allocated area or NULL.
1527  */
1528 static struct xol_area *get_xol_area(void)
1529 {
1530 	struct mm_struct *mm = current->mm;
1531 	struct xol_area *area;
1532 
1533 	if (!mm->uprobes_state.xol_area)
1534 		__create_xol_area(0);
1535 
1536 	/* Pairs with xol_add_vma() smp_store_release() */
1537 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1538 	return area;
1539 }
1540 
1541 /*
1542  * uprobe_clear_state - Free the area allocated for slots.
1543  */
1544 void uprobe_clear_state(struct mm_struct *mm)
1545 {
1546 	struct xol_area *area = mm->uprobes_state.xol_area;
1547 
1548 	mutex_lock(&delayed_uprobe_lock);
1549 	delayed_uprobe_remove(NULL, mm);
1550 	mutex_unlock(&delayed_uprobe_lock);
1551 
1552 	if (!area)
1553 		return;
1554 
1555 	put_page(area->pages[0]);
1556 	kfree(area->bitmap);
1557 	kfree(area);
1558 }
1559 
1560 void uprobe_start_dup_mmap(void)
1561 {
1562 	percpu_down_read(&dup_mmap_sem);
1563 }
1564 
1565 void uprobe_end_dup_mmap(void)
1566 {
1567 	percpu_up_read(&dup_mmap_sem);
1568 }
1569 
1570 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1571 {
1572 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1573 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1574 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1575 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1576 	}
1577 }
1578 
1579 /*
1580  *  - search for a free slot.
1581  */
1582 static unsigned long xol_take_insn_slot(struct xol_area *area)
1583 {
1584 	unsigned long slot_addr;
1585 	int slot_nr;
1586 
1587 	do {
1588 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1589 		if (slot_nr < UINSNS_PER_PAGE) {
1590 			if (!test_and_set_bit(slot_nr, area->bitmap))
1591 				break;
1592 
1593 			slot_nr = UINSNS_PER_PAGE;
1594 			continue;
1595 		}
1596 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1597 	} while (slot_nr >= UINSNS_PER_PAGE);
1598 
1599 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1600 	atomic_inc(&area->slot_count);
1601 
1602 	return slot_addr;
1603 }
1604 
1605 /*
1606  * xol_get_insn_slot - allocate a slot for xol.
1607  * Returns the allocated slot address or 0.
1608  */
1609 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1610 {
1611 	struct xol_area *area;
1612 	unsigned long xol_vaddr;
1613 
1614 	area = get_xol_area();
1615 	if (!area)
1616 		return 0;
1617 
1618 	xol_vaddr = xol_take_insn_slot(area);
1619 	if (unlikely(!xol_vaddr))
1620 		return 0;
1621 
1622 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1623 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1624 
1625 	return xol_vaddr;
1626 }
1627 
1628 /*
1629  * xol_free_insn_slot - If slot was earlier allocated by
1630  * @xol_get_insn_slot(), make the slot available for
1631  * subsequent requests.
1632  */
1633 static void xol_free_insn_slot(struct task_struct *tsk)
1634 {
1635 	struct xol_area *area;
1636 	unsigned long vma_end;
1637 	unsigned long slot_addr;
1638 
1639 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1640 		return;
1641 
1642 	slot_addr = tsk->utask->xol_vaddr;
1643 	if (unlikely(!slot_addr))
1644 		return;
1645 
1646 	area = tsk->mm->uprobes_state.xol_area;
1647 	vma_end = area->vaddr + PAGE_SIZE;
1648 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1649 		unsigned long offset;
1650 		int slot_nr;
1651 
1652 		offset = slot_addr - area->vaddr;
1653 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1654 		if (slot_nr >= UINSNS_PER_PAGE)
1655 			return;
1656 
1657 		clear_bit(slot_nr, area->bitmap);
1658 		atomic_dec(&area->slot_count);
1659 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1660 		if (waitqueue_active(&area->wq))
1661 			wake_up(&area->wq);
1662 
1663 		tsk->utask->xol_vaddr = 0;
1664 	}
1665 }
1666 
1667 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1668 				  void *src, unsigned long len)
1669 {
1670 	/* Initialize the slot */
1671 	copy_to_page(page, vaddr, src, len);
1672 
1673 	/*
1674 	 * We probably need flush_icache_user_page() but it needs vma.
1675 	 * This should work on most of architectures by default. If
1676 	 * architecture needs to do something different it can define
1677 	 * its own version of the function.
1678 	 */
1679 	flush_dcache_page(page);
1680 }
1681 
1682 /**
1683  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1684  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1685  * instruction.
1686  * Return the address of the breakpoint instruction.
1687  */
1688 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1689 {
1690 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1691 }
1692 
1693 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1694 {
1695 	struct uprobe_task *utask = current->utask;
1696 
1697 	if (unlikely(utask && utask->active_uprobe))
1698 		return utask->vaddr;
1699 
1700 	return instruction_pointer(regs);
1701 }
1702 
1703 static struct return_instance *free_ret_instance(struct return_instance *ri)
1704 {
1705 	struct return_instance *next = ri->next;
1706 	put_uprobe(ri->uprobe);
1707 	kfree(ri);
1708 	return next;
1709 }
1710 
1711 /*
1712  * Called with no locks held.
1713  * Called in context of an exiting or an exec-ing thread.
1714  */
1715 void uprobe_free_utask(struct task_struct *t)
1716 {
1717 	struct uprobe_task *utask = t->utask;
1718 	struct return_instance *ri;
1719 
1720 	if (!utask)
1721 		return;
1722 
1723 	if (utask->active_uprobe)
1724 		put_uprobe(utask->active_uprobe);
1725 
1726 	ri = utask->return_instances;
1727 	while (ri)
1728 		ri = free_ret_instance(ri);
1729 
1730 	xol_free_insn_slot(t);
1731 	kfree(utask);
1732 	t->utask = NULL;
1733 }
1734 
1735 /*
1736  * Allocate a uprobe_task object for the task if necessary.
1737  * Called when the thread hits a breakpoint.
1738  *
1739  * Returns:
1740  * - pointer to new uprobe_task on success
1741  * - NULL otherwise
1742  */
1743 static struct uprobe_task *get_utask(void)
1744 {
1745 	if (!current->utask)
1746 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1747 	return current->utask;
1748 }
1749 
1750 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1751 {
1752 	struct uprobe_task *n_utask;
1753 	struct return_instance **p, *o, *n;
1754 
1755 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1756 	if (!n_utask)
1757 		return -ENOMEM;
1758 	t->utask = n_utask;
1759 
1760 	p = &n_utask->return_instances;
1761 	for (o = o_utask->return_instances; o; o = o->next) {
1762 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1763 		if (!n)
1764 			return -ENOMEM;
1765 
1766 		*n = *o;
1767 		get_uprobe(n->uprobe);
1768 		n->next = NULL;
1769 
1770 		*p = n;
1771 		p = &n->next;
1772 		n_utask->depth++;
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 static void uprobe_warn(struct task_struct *t, const char *msg)
1779 {
1780 	pr_warn("uprobe: %s:%d failed to %s\n",
1781 			current->comm, current->pid, msg);
1782 }
1783 
1784 static void dup_xol_work(struct callback_head *work)
1785 {
1786 	if (current->flags & PF_EXITING)
1787 		return;
1788 
1789 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1790 			!fatal_signal_pending(current))
1791 		uprobe_warn(current, "dup xol area");
1792 }
1793 
1794 /*
1795  * Called in context of a new clone/fork from copy_process.
1796  */
1797 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1798 {
1799 	struct uprobe_task *utask = current->utask;
1800 	struct mm_struct *mm = current->mm;
1801 	struct xol_area *area;
1802 
1803 	t->utask = NULL;
1804 
1805 	if (!utask || !utask->return_instances)
1806 		return;
1807 
1808 	if (mm == t->mm && !(flags & CLONE_VFORK))
1809 		return;
1810 
1811 	if (dup_utask(t, utask))
1812 		return uprobe_warn(t, "dup ret instances");
1813 
1814 	/* The task can fork() after dup_xol_work() fails */
1815 	area = mm->uprobes_state.xol_area;
1816 	if (!area)
1817 		return uprobe_warn(t, "dup xol area");
1818 
1819 	if (mm == t->mm)
1820 		return;
1821 
1822 	t->utask->dup_xol_addr = area->vaddr;
1823 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1824 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1825 }
1826 
1827 /*
1828  * Current area->vaddr notion assume the trampoline address is always
1829  * equal area->vaddr.
1830  *
1831  * Returns -1 in case the xol_area is not allocated.
1832  */
1833 static unsigned long get_trampoline_vaddr(void)
1834 {
1835 	struct xol_area *area;
1836 	unsigned long trampoline_vaddr = -1;
1837 
1838 	/* Pairs with xol_add_vma() smp_store_release() */
1839 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1840 	if (area)
1841 		trampoline_vaddr = area->vaddr;
1842 
1843 	return trampoline_vaddr;
1844 }
1845 
1846 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1847 					struct pt_regs *regs)
1848 {
1849 	struct return_instance *ri = utask->return_instances;
1850 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1851 
1852 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1853 		ri = free_ret_instance(ri);
1854 		utask->depth--;
1855 	}
1856 	utask->return_instances = ri;
1857 }
1858 
1859 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1860 {
1861 	struct return_instance *ri;
1862 	struct uprobe_task *utask;
1863 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1864 	bool chained;
1865 
1866 	if (!get_xol_area())
1867 		return;
1868 
1869 	utask = get_utask();
1870 	if (!utask)
1871 		return;
1872 
1873 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1874 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1875 				" nestedness limit pid/tgid=%d/%d\n",
1876 				current->pid, current->tgid);
1877 		return;
1878 	}
1879 
1880 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1881 	if (!ri)
1882 		return;
1883 
1884 	trampoline_vaddr = get_trampoline_vaddr();
1885 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1886 	if (orig_ret_vaddr == -1)
1887 		goto fail;
1888 
1889 	/* drop the entries invalidated by longjmp() */
1890 	chained = (orig_ret_vaddr == trampoline_vaddr);
1891 	cleanup_return_instances(utask, chained, regs);
1892 
1893 	/*
1894 	 * We don't want to keep trampoline address in stack, rather keep the
1895 	 * original return address of first caller thru all the consequent
1896 	 * instances. This also makes breakpoint unwrapping easier.
1897 	 */
1898 	if (chained) {
1899 		if (!utask->return_instances) {
1900 			/*
1901 			 * This situation is not possible. Likely we have an
1902 			 * attack from user-space.
1903 			 */
1904 			uprobe_warn(current, "handle tail call");
1905 			goto fail;
1906 		}
1907 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1908 	}
1909 
1910 	ri->uprobe = get_uprobe(uprobe);
1911 	ri->func = instruction_pointer(regs);
1912 	ri->stack = user_stack_pointer(regs);
1913 	ri->orig_ret_vaddr = orig_ret_vaddr;
1914 	ri->chained = chained;
1915 
1916 	utask->depth++;
1917 	ri->next = utask->return_instances;
1918 	utask->return_instances = ri;
1919 
1920 	return;
1921  fail:
1922 	kfree(ri);
1923 }
1924 
1925 /* Prepare to single-step probed instruction out of line. */
1926 static int
1927 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1928 {
1929 	struct uprobe_task *utask;
1930 	unsigned long xol_vaddr;
1931 	int err;
1932 
1933 	utask = get_utask();
1934 	if (!utask)
1935 		return -ENOMEM;
1936 
1937 	xol_vaddr = xol_get_insn_slot(uprobe);
1938 	if (!xol_vaddr)
1939 		return -ENOMEM;
1940 
1941 	utask->xol_vaddr = xol_vaddr;
1942 	utask->vaddr = bp_vaddr;
1943 
1944 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1945 	if (unlikely(err)) {
1946 		xol_free_insn_slot(current);
1947 		return err;
1948 	}
1949 
1950 	utask->active_uprobe = uprobe;
1951 	utask->state = UTASK_SSTEP;
1952 	return 0;
1953 }
1954 
1955 /*
1956  * If we are singlestepping, then ensure this thread is not connected to
1957  * non-fatal signals until completion of singlestep.  When xol insn itself
1958  * triggers the signal,  restart the original insn even if the task is
1959  * already SIGKILL'ed (since coredump should report the correct ip).  This
1960  * is even more important if the task has a handler for SIGSEGV/etc, The
1961  * _same_ instruction should be repeated again after return from the signal
1962  * handler, and SSTEP can never finish in this case.
1963  */
1964 bool uprobe_deny_signal(void)
1965 {
1966 	struct task_struct *t = current;
1967 	struct uprobe_task *utask = t->utask;
1968 
1969 	if (likely(!utask || !utask->active_uprobe))
1970 		return false;
1971 
1972 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1973 
1974 	if (task_sigpending(t)) {
1975 		spin_lock_irq(&t->sighand->siglock);
1976 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1977 		spin_unlock_irq(&t->sighand->siglock);
1978 
1979 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1980 			utask->state = UTASK_SSTEP_TRAPPED;
1981 			set_tsk_thread_flag(t, TIF_UPROBE);
1982 		}
1983 	}
1984 
1985 	return true;
1986 }
1987 
1988 static void mmf_recalc_uprobes(struct mm_struct *mm)
1989 {
1990 	struct vm_area_struct *vma;
1991 
1992 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1993 		if (!valid_vma(vma, false))
1994 			continue;
1995 		/*
1996 		 * This is not strictly accurate, we can race with
1997 		 * uprobe_unregister() and see the already removed
1998 		 * uprobe if delete_uprobe() was not yet called.
1999 		 * Or this uprobe can be filtered out.
2000 		 */
2001 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2002 			return;
2003 	}
2004 
2005 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2006 }
2007 
2008 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2009 {
2010 	struct page *page;
2011 	uprobe_opcode_t opcode;
2012 	int result;
2013 
2014 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2015 		return -EINVAL;
2016 
2017 	pagefault_disable();
2018 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2019 	pagefault_enable();
2020 
2021 	if (likely(result == 0))
2022 		goto out;
2023 
2024 	/*
2025 	 * The NULL 'tsk' here ensures that any faults that occur here
2026 	 * will not be accounted to the task.  'mm' *is* current->mm,
2027 	 * but we treat this as a 'remote' access since it is
2028 	 * essentially a kernel access to the memory.
2029 	 */
2030 	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2031 			NULL, NULL);
2032 	if (result < 0)
2033 		return result;
2034 
2035 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2036 	put_page(page);
2037  out:
2038 	/* This needs to return true for any variant of the trap insn */
2039 	return is_trap_insn(&opcode);
2040 }
2041 
2042 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2043 {
2044 	struct mm_struct *mm = current->mm;
2045 	struct uprobe *uprobe = NULL;
2046 	struct vm_area_struct *vma;
2047 
2048 	mmap_read_lock(mm);
2049 	vma = find_vma(mm, bp_vaddr);
2050 	if (vma && vma->vm_start <= bp_vaddr) {
2051 		if (valid_vma(vma, false)) {
2052 			struct inode *inode = file_inode(vma->vm_file);
2053 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2054 
2055 			uprobe = find_uprobe(inode, offset);
2056 		}
2057 
2058 		if (!uprobe)
2059 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2060 	} else {
2061 		*is_swbp = -EFAULT;
2062 	}
2063 
2064 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065 		mmf_recalc_uprobes(mm);
2066 	mmap_read_unlock(mm);
2067 
2068 	return uprobe;
2069 }
2070 
2071 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072 {
2073 	struct uprobe_consumer *uc;
2074 	int remove = UPROBE_HANDLER_REMOVE;
2075 	bool need_prep = false; /* prepare return uprobe, when needed */
2076 
2077 	down_read(&uprobe->register_rwsem);
2078 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2079 		int rc = 0;
2080 
2081 		if (uc->handler) {
2082 			rc = uc->handler(uc, regs);
2083 			WARN(rc & ~UPROBE_HANDLER_MASK,
2084 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2085 		}
2086 
2087 		if (uc->ret_handler)
2088 			need_prep = true;
2089 
2090 		remove &= rc;
2091 	}
2092 
2093 	if (need_prep && !remove)
2094 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2095 
2096 	if (remove && uprobe->consumers) {
2097 		WARN_ON(!uprobe_is_active(uprobe));
2098 		unapply_uprobe(uprobe, current->mm);
2099 	}
2100 	up_read(&uprobe->register_rwsem);
2101 }
2102 
2103 static void
2104 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105 {
2106 	struct uprobe *uprobe = ri->uprobe;
2107 	struct uprobe_consumer *uc;
2108 
2109 	down_read(&uprobe->register_rwsem);
2110 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2111 		if (uc->ret_handler)
2112 			uc->ret_handler(uc, ri->func, regs);
2113 	}
2114 	up_read(&uprobe->register_rwsem);
2115 }
2116 
2117 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118 {
2119 	bool chained;
2120 
2121 	do {
2122 		chained = ri->chained;
2123 		ri = ri->next;	/* can't be NULL if chained */
2124 	} while (chained);
2125 
2126 	return ri;
2127 }
2128 
2129 static void handle_trampoline(struct pt_regs *regs)
2130 {
2131 	struct uprobe_task *utask;
2132 	struct return_instance *ri, *next;
2133 	bool valid;
2134 
2135 	utask = current->utask;
2136 	if (!utask)
2137 		goto sigill;
2138 
2139 	ri = utask->return_instances;
2140 	if (!ri)
2141 		goto sigill;
2142 
2143 	do {
2144 		/*
2145 		 * We should throw out the frames invalidated by longjmp().
2146 		 * If this chain is valid, then the next one should be alive
2147 		 * or NULL; the latter case means that nobody but ri->func
2148 		 * could hit this trampoline on return. TODO: sigaltstack().
2149 		 */
2150 		next = find_next_ret_chain(ri);
2151 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2152 
2153 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154 		do {
2155 			if (valid)
2156 				handle_uretprobe_chain(ri, regs);
2157 			ri = free_ret_instance(ri);
2158 			utask->depth--;
2159 		} while (ri != next);
2160 	} while (!valid);
2161 
2162 	utask->return_instances = ri;
2163 	return;
2164 
2165  sigill:
2166 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2167 	force_sig(SIGILL);
2168 
2169 }
2170 
2171 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172 {
2173 	return false;
2174 }
2175 
2176 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177 					struct pt_regs *regs)
2178 {
2179 	return true;
2180 }
2181 
2182 /*
2183  * Run handler and ask thread to singlestep.
2184  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185  */
2186 static void handle_swbp(struct pt_regs *regs)
2187 {
2188 	struct uprobe *uprobe;
2189 	unsigned long bp_vaddr;
2190 	int is_swbp;
2191 
2192 	bp_vaddr = uprobe_get_swbp_addr(regs);
2193 	if (bp_vaddr == get_trampoline_vaddr())
2194 		return handle_trampoline(regs);
2195 
2196 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2197 	if (!uprobe) {
2198 		if (is_swbp > 0) {
2199 			/* No matching uprobe; signal SIGTRAP. */
2200 			force_sig(SIGTRAP);
2201 		} else {
2202 			/*
2203 			 * Either we raced with uprobe_unregister() or we can't
2204 			 * access this memory. The latter is only possible if
2205 			 * another thread plays with our ->mm. In both cases
2206 			 * we can simply restart. If this vma was unmapped we
2207 			 * can pretend this insn was not executed yet and get
2208 			 * the (correct) SIGSEGV after restart.
2209 			 */
2210 			instruction_pointer_set(regs, bp_vaddr);
2211 		}
2212 		return;
2213 	}
2214 
2215 	/* change it in advance for ->handler() and restart */
2216 	instruction_pointer_set(regs, bp_vaddr);
2217 
2218 	/*
2219 	 * TODO: move copy_insn/etc into _register and remove this hack.
2220 	 * After we hit the bp, _unregister + _register can install the
2221 	 * new and not-yet-analyzed uprobe at the same address, restart.
2222 	 */
2223 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2224 		goto out;
2225 
2226 	/*
2227 	 * Pairs with the smp_wmb() in prepare_uprobe().
2228 	 *
2229 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230 	 * we must also see the stores to &uprobe->arch performed by the
2231 	 * prepare_uprobe() call.
2232 	 */
2233 	smp_rmb();
2234 
2235 	/* Tracing handlers use ->utask to communicate with fetch methods */
2236 	if (!get_utask())
2237 		goto out;
2238 
2239 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2240 		goto out;
2241 
2242 	handler_chain(uprobe, regs);
2243 
2244 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2245 		goto out;
2246 
2247 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2248 		return;
2249 
2250 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2251 out:
2252 	put_uprobe(uprobe);
2253 }
2254 
2255 /*
2256  * Perform required fix-ups and disable singlestep.
2257  * Allow pending signals to take effect.
2258  */
2259 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260 {
2261 	struct uprobe *uprobe;
2262 	int err = 0;
2263 
2264 	uprobe = utask->active_uprobe;
2265 	if (utask->state == UTASK_SSTEP_ACK)
2266 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2267 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2268 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2269 	else
2270 		WARN_ON_ONCE(1);
2271 
2272 	put_uprobe(uprobe);
2273 	utask->active_uprobe = NULL;
2274 	utask->state = UTASK_RUNNING;
2275 	xol_free_insn_slot(current);
2276 
2277 	spin_lock_irq(&current->sighand->siglock);
2278 	recalc_sigpending(); /* see uprobe_deny_signal() */
2279 	spin_unlock_irq(&current->sighand->siglock);
2280 
2281 	if (unlikely(err)) {
2282 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2283 		force_sig(SIGILL);
2284 	}
2285 }
2286 
2287 /*
2288  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289  * allows the thread to return from interrupt. After that handle_swbp()
2290  * sets utask->active_uprobe.
2291  *
2292  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293  * and allows the thread to return from interrupt.
2294  *
2295  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296  * uprobe_notify_resume().
2297  */
2298 void uprobe_notify_resume(struct pt_regs *regs)
2299 {
2300 	struct uprobe_task *utask;
2301 
2302 	clear_thread_flag(TIF_UPROBE);
2303 
2304 	utask = current->utask;
2305 	if (utask && utask->active_uprobe)
2306 		handle_singlestep(utask, regs);
2307 	else
2308 		handle_swbp(regs);
2309 }
2310 
2311 /*
2312  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314  */
2315 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316 {
2317 	if (!current->mm)
2318 		return 0;
2319 
2320 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2321 	    (!current->utask || !current->utask->return_instances))
2322 		return 0;
2323 
2324 	set_thread_flag(TIF_UPROBE);
2325 	return 1;
2326 }
2327 
2328 /*
2329  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331  */
2332 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333 {
2334 	struct uprobe_task *utask = current->utask;
2335 
2336 	if (!current->mm || !utask || !utask->active_uprobe)
2337 		/* task is currently not uprobed */
2338 		return 0;
2339 
2340 	utask->state = UTASK_SSTEP_ACK;
2341 	set_thread_flag(TIF_UPROBE);
2342 	return 1;
2343 }
2344 
2345 static struct notifier_block uprobe_exception_nb = {
2346 	.notifier_call		= arch_uprobe_exception_notify,
2347 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2348 };
2349 
2350 void __init uprobes_init(void)
2351 {
2352 	int i;
2353 
2354 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2355 		mutex_init(&uprobes_mmap_mutex[i]);
2356 
2357 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2358 }
2359