xref: /openbmc/linux/kernel/events/uprobes.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* folio_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include <linux/percpu-rwsem.h>
26 #include <linux/task_work.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/khugepaged.h>
29 
30 #include <linux/uprobes.h>
31 
32 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
34 
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37  * allows us to skip the uprobe_mmap if there are no uprobe events active
38  * at this time.  Probably a fine grained per inode count is better?
39  */
40 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
41 
42 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
43 
44 #define UPROBES_HASH_SZ	13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48 
49 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
50 
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN	0
53 
54 struct uprobe {
55 	struct rb_node		rb_node;	/* node in the rb tree */
56 	refcount_t		ref;
57 	struct rw_semaphore	register_rwsem;
58 	struct rw_semaphore	consumer_rwsem;
59 	struct list_head	pending_list;
60 	struct uprobe_consumer	*consumers;
61 	struct inode		*inode;		/* Also hold a ref to inode */
62 	loff_t			offset;
63 	loff_t			ref_ctr_offset;
64 	unsigned long		flags;
65 
66 	/*
67 	 * The generic code assumes that it has two members of unknown type
68 	 * owned by the arch-specific code:
69 	 *
70 	 * 	insn -	copy_insn() saves the original instruction here for
71 	 *		arch_uprobe_analyze_insn().
72 	 *
73 	 *	ixol -	potentially modified instruction to execute out of
74 	 *		line, copied to xol_area by xol_get_insn_slot().
75 	 */
76 	struct arch_uprobe	arch;
77 };
78 
79 struct delayed_uprobe {
80 	struct list_head list;
81 	struct uprobe *uprobe;
82 	struct mm_struct *mm;
83 };
84 
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87 
88 /*
89  * Execute out of line area: anonymous executable mapping installed
90  * by the probed task to execute the copy of the original instruction
91  * mangled by set_swbp().
92  *
93  * On a breakpoint hit, thread contests for a slot.  It frees the
94  * slot after singlestep. Currently a fixed number of slots are
95  * allocated.
96  */
97 struct xol_area {
98 	wait_queue_head_t 		wq;		/* if all slots are busy */
99 	atomic_t 			slot_count;	/* number of in-use slots */
100 	unsigned long 			*bitmap;	/* 0 = free slot */
101 
102 	struct vm_special_mapping	xol_mapping;
103 	struct page 			*pages[2];
104 	/*
105 	 * We keep the vma's vm_start rather than a pointer to the vma
106 	 * itself.  The probed process or a naughty kernel module could make
107 	 * the vma go away, and we must handle that reasonably gracefully.
108 	 */
109 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
110 };
111 
112 /*
113  * valid_vma: Verify if the specified vma is an executable vma
114  * Relax restrictions while unregistering: vm_flags might have
115  * changed after breakpoint was inserted.
116  *	- is_register: indicates if we are in register context.
117  *	- Return 1 if the specified virtual address is in an
118  *	  executable vma.
119  */
120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123 
124 	if (is_register)
125 		flags |= VM_WRITE;
126 
127 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129 
130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134 
135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139 
140 /**
141  * __replace_page - replace page in vma by new page.
142  * based on replace_page in mm/ksm.c
143  *
144  * @vma:      vma that holds the pte pointing to page
145  * @addr:     address the old @page is mapped at
146  * @old_page: the page we are replacing by new_page
147  * @new_page: the modified page we replace page by
148  *
149  * If @new_page is NULL, only unmap @old_page.
150  *
151  * Returns 0 on success, negative error code otherwise.
152  */
153 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
154 				struct page *old_page, struct page *new_page)
155 {
156 	struct folio *old_folio = page_folio(old_page);
157 	struct folio *new_folio;
158 	struct mm_struct *mm = vma->vm_mm;
159 	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
160 	int err;
161 	struct mmu_notifier_range range;
162 
163 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
164 				addr + PAGE_SIZE);
165 
166 	if (new_page) {
167 		new_folio = page_folio(new_page);
168 		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
169 		if (err)
170 			return err;
171 	}
172 
173 	/* For folio_free_swap() below */
174 	folio_lock(old_folio);
175 
176 	mmu_notifier_invalidate_range_start(&range);
177 	err = -EAGAIN;
178 	if (!page_vma_mapped_walk(&pvmw))
179 		goto unlock;
180 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
181 
182 	if (new_page) {
183 		folio_get(new_folio);
184 		page_add_new_anon_rmap(new_page, vma, addr);
185 		folio_add_lru_vma(new_folio, vma);
186 	} else
187 		/* no new page, just dec_mm_counter for old_page */
188 		dec_mm_counter(mm, MM_ANONPAGES);
189 
190 	if (!folio_test_anon(old_folio)) {
191 		dec_mm_counter(mm, mm_counter_file(old_page));
192 		inc_mm_counter(mm, MM_ANONPAGES);
193 	}
194 
195 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
196 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
197 	if (new_page)
198 		set_pte_at_notify(mm, addr, pvmw.pte,
199 				  mk_pte(new_page, vma->vm_page_prot));
200 
201 	page_remove_rmap(old_page, vma, false);
202 	if (!folio_mapped(old_folio))
203 		folio_free_swap(old_folio);
204 	page_vma_mapped_walk_done(&pvmw);
205 	folio_put(old_folio);
206 
207 	err = 0;
208  unlock:
209 	mmu_notifier_invalidate_range_end(&range);
210 	folio_unlock(old_folio);
211 	return err;
212 }
213 
214 /**
215  * is_swbp_insn - check if instruction is breakpoint instruction.
216  * @insn: instruction to be checked.
217  * Default implementation of is_swbp_insn
218  * Returns true if @insn is a breakpoint instruction.
219  */
220 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
221 {
222 	return *insn == UPROBE_SWBP_INSN;
223 }
224 
225 /**
226  * is_trap_insn - check if instruction is breakpoint instruction.
227  * @insn: instruction to be checked.
228  * Default implementation of is_trap_insn
229  * Returns true if @insn is a breakpoint instruction.
230  *
231  * This function is needed for the case where an architecture has multiple
232  * trap instructions (like powerpc).
233  */
234 bool __weak is_trap_insn(uprobe_opcode_t *insn)
235 {
236 	return is_swbp_insn(insn);
237 }
238 
239 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
240 {
241 	void *kaddr = kmap_atomic(page);
242 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
243 	kunmap_atomic(kaddr);
244 }
245 
246 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
247 {
248 	void *kaddr = kmap_atomic(page);
249 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
250 	kunmap_atomic(kaddr);
251 }
252 
253 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
254 {
255 	uprobe_opcode_t old_opcode;
256 	bool is_swbp;
257 
258 	/*
259 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
260 	 * We do not check if it is any other 'trap variant' which could
261 	 * be conditional trap instruction such as the one powerpc supports.
262 	 *
263 	 * The logic is that we do not care if the underlying instruction
264 	 * is a trap variant; uprobes always wins over any other (gdb)
265 	 * breakpoint.
266 	 */
267 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
268 	is_swbp = is_swbp_insn(&old_opcode);
269 
270 	if (is_swbp_insn(new_opcode)) {
271 		if (is_swbp)		/* register: already installed? */
272 			return 0;
273 	} else {
274 		if (!is_swbp)		/* unregister: was it changed by us? */
275 			return 0;
276 	}
277 
278 	return 1;
279 }
280 
281 static struct delayed_uprobe *
282 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
283 {
284 	struct delayed_uprobe *du;
285 
286 	list_for_each_entry(du, &delayed_uprobe_list, list)
287 		if (du->uprobe == uprobe && du->mm == mm)
288 			return du;
289 	return NULL;
290 }
291 
292 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
293 {
294 	struct delayed_uprobe *du;
295 
296 	if (delayed_uprobe_check(uprobe, mm))
297 		return 0;
298 
299 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
300 	if (!du)
301 		return -ENOMEM;
302 
303 	du->uprobe = uprobe;
304 	du->mm = mm;
305 	list_add(&du->list, &delayed_uprobe_list);
306 	return 0;
307 }
308 
309 static void delayed_uprobe_delete(struct delayed_uprobe *du)
310 {
311 	if (WARN_ON(!du))
312 		return;
313 	list_del(&du->list);
314 	kfree(du);
315 }
316 
317 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
318 {
319 	struct list_head *pos, *q;
320 	struct delayed_uprobe *du;
321 
322 	if (!uprobe && !mm)
323 		return;
324 
325 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
326 		du = list_entry(pos, struct delayed_uprobe, list);
327 
328 		if (uprobe && du->uprobe != uprobe)
329 			continue;
330 		if (mm && du->mm != mm)
331 			continue;
332 
333 		delayed_uprobe_delete(du);
334 	}
335 }
336 
337 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
338 			      struct vm_area_struct *vma)
339 {
340 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
341 
342 	return uprobe->ref_ctr_offset &&
343 		vma->vm_file &&
344 		file_inode(vma->vm_file) == uprobe->inode &&
345 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
346 		vma->vm_start <= vaddr &&
347 		vma->vm_end > vaddr;
348 }
349 
350 static struct vm_area_struct *
351 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
352 {
353 	VMA_ITERATOR(vmi, mm, 0);
354 	struct vm_area_struct *tmp;
355 
356 	for_each_vma(vmi, tmp)
357 		if (valid_ref_ctr_vma(uprobe, tmp))
358 			return tmp;
359 
360 	return NULL;
361 }
362 
363 static int
364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365 {
366 	void *kaddr;
367 	struct page *page;
368 	struct vm_area_struct *vma;
369 	int ret;
370 	short *ptr;
371 
372 	if (!vaddr || !d)
373 		return -EINVAL;
374 
375 	ret = get_user_pages_remote(mm, vaddr, 1,
376 			FOLL_WRITE, &page, &vma, NULL);
377 	if (unlikely(ret <= 0)) {
378 		/*
379 		 * We are asking for 1 page. If get_user_pages_remote() fails,
380 		 * it may return 0, in that case we have to return error.
381 		 */
382 		return ret == 0 ? -EBUSY : ret;
383 	}
384 
385 	kaddr = kmap_atomic(page);
386 	ptr = kaddr + (vaddr & ~PAGE_MASK);
387 
388 	if (unlikely(*ptr + d < 0)) {
389 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
390 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
391 		ret = -EINVAL;
392 		goto out;
393 	}
394 
395 	*ptr += d;
396 	ret = 0;
397 out:
398 	kunmap_atomic(kaddr);
399 	put_page(page);
400 	return ret;
401 }
402 
403 static void update_ref_ctr_warn(struct uprobe *uprobe,
404 				struct mm_struct *mm, short d)
405 {
406 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
407 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
408 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
409 		(unsigned long long) uprobe->offset,
410 		(unsigned long long) uprobe->ref_ctr_offset, mm);
411 }
412 
413 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
414 			  short d)
415 {
416 	struct vm_area_struct *rc_vma;
417 	unsigned long rc_vaddr;
418 	int ret = 0;
419 
420 	rc_vma = find_ref_ctr_vma(uprobe, mm);
421 
422 	if (rc_vma) {
423 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
424 		ret = __update_ref_ctr(mm, rc_vaddr, d);
425 		if (ret)
426 			update_ref_ctr_warn(uprobe, mm, d);
427 
428 		if (d > 0)
429 			return ret;
430 	}
431 
432 	mutex_lock(&delayed_uprobe_lock);
433 	if (d > 0)
434 		ret = delayed_uprobe_add(uprobe, mm);
435 	else
436 		delayed_uprobe_remove(uprobe, mm);
437 	mutex_unlock(&delayed_uprobe_lock);
438 
439 	return ret;
440 }
441 
442 /*
443  * NOTE:
444  * Expect the breakpoint instruction to be the smallest size instruction for
445  * the architecture. If an arch has variable length instruction and the
446  * breakpoint instruction is not of the smallest length instruction
447  * supported by that architecture then we need to modify is_trap_at_addr and
448  * uprobe_write_opcode accordingly. This would never be a problem for archs
449  * that have fixed length instructions.
450  *
451  * uprobe_write_opcode - write the opcode at a given virtual address.
452  * @auprobe: arch specific probepoint information.
453  * @mm: the probed process address space.
454  * @vaddr: the virtual address to store the opcode.
455  * @opcode: opcode to be written at @vaddr.
456  *
457  * Called with mm->mmap_lock held for write.
458  * Return 0 (success) or a negative errno.
459  */
460 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
461 			unsigned long vaddr, uprobe_opcode_t opcode)
462 {
463 	struct uprobe *uprobe;
464 	struct page *old_page, *new_page;
465 	struct vm_area_struct *vma;
466 	int ret, is_register, ref_ctr_updated = 0;
467 	bool orig_page_huge = false;
468 	unsigned int gup_flags = FOLL_FORCE;
469 
470 	is_register = is_swbp_insn(&opcode);
471 	uprobe = container_of(auprobe, struct uprobe, arch);
472 
473 retry:
474 	if (is_register)
475 		gup_flags |= FOLL_SPLIT_PMD;
476 	/* Read the page with vaddr into memory */
477 	ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
478 				    &old_page, &vma, NULL);
479 	if (ret <= 0)
480 		return ret;
481 
482 	ret = verify_opcode(old_page, vaddr, &opcode);
483 	if (ret <= 0)
484 		goto put_old;
485 
486 	if (WARN(!is_register && PageCompound(old_page),
487 		 "uprobe unregister should never work on compound page\n")) {
488 		ret = -EINVAL;
489 		goto put_old;
490 	}
491 
492 	/* We are going to replace instruction, update ref_ctr. */
493 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
494 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
495 		if (ret)
496 			goto put_old;
497 
498 		ref_ctr_updated = 1;
499 	}
500 
501 	ret = 0;
502 	if (!is_register && !PageAnon(old_page))
503 		goto put_old;
504 
505 	ret = anon_vma_prepare(vma);
506 	if (ret)
507 		goto put_old;
508 
509 	ret = -ENOMEM;
510 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
511 	if (!new_page)
512 		goto put_old;
513 
514 	__SetPageUptodate(new_page);
515 	copy_highpage(new_page, old_page);
516 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
517 
518 	if (!is_register) {
519 		struct page *orig_page;
520 		pgoff_t index;
521 
522 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
523 
524 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
525 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
526 					  index);
527 
528 		if (orig_page) {
529 			if (PageUptodate(orig_page) &&
530 			    pages_identical(new_page, orig_page)) {
531 				/* let go new_page */
532 				put_page(new_page);
533 				new_page = NULL;
534 
535 				if (PageCompound(orig_page))
536 					orig_page_huge = true;
537 			}
538 			put_page(orig_page);
539 		}
540 	}
541 
542 	ret = __replace_page(vma, vaddr, old_page, new_page);
543 	if (new_page)
544 		put_page(new_page);
545 put_old:
546 	put_page(old_page);
547 
548 	if (unlikely(ret == -EAGAIN))
549 		goto retry;
550 
551 	/* Revert back reference counter if instruction update failed. */
552 	if (ret && is_register && ref_ctr_updated)
553 		update_ref_ctr(uprobe, mm, -1);
554 
555 	/* try collapse pmd for compound page */
556 	if (!ret && orig_page_huge)
557 		collapse_pte_mapped_thp(mm, vaddr, false);
558 
559 	return ret;
560 }
561 
562 /**
563  * set_swbp - store breakpoint at a given address.
564  * @auprobe: arch specific probepoint information.
565  * @mm: the probed process address space.
566  * @vaddr: the virtual address to insert the opcode.
567  *
568  * For mm @mm, store the breakpoint instruction at @vaddr.
569  * Return 0 (success) or a negative errno.
570  */
571 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
572 {
573 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
574 }
575 
576 /**
577  * set_orig_insn - Restore the original instruction.
578  * @mm: the probed process address space.
579  * @auprobe: arch specific probepoint information.
580  * @vaddr: the virtual address to insert the opcode.
581  *
582  * For mm @mm, restore the original opcode (opcode) at @vaddr.
583  * Return 0 (success) or a negative errno.
584  */
585 int __weak
586 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
587 {
588 	return uprobe_write_opcode(auprobe, mm, vaddr,
589 			*(uprobe_opcode_t *)&auprobe->insn);
590 }
591 
592 static struct uprobe *get_uprobe(struct uprobe *uprobe)
593 {
594 	refcount_inc(&uprobe->ref);
595 	return uprobe;
596 }
597 
598 static void put_uprobe(struct uprobe *uprobe)
599 {
600 	if (refcount_dec_and_test(&uprobe->ref)) {
601 		/*
602 		 * If application munmap(exec_vma) before uprobe_unregister()
603 		 * gets called, we don't get a chance to remove uprobe from
604 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
605 		 */
606 		mutex_lock(&delayed_uprobe_lock);
607 		delayed_uprobe_remove(uprobe, NULL);
608 		mutex_unlock(&delayed_uprobe_lock);
609 		kfree(uprobe);
610 	}
611 }
612 
613 static __always_inline
614 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
615 	       const struct uprobe *r)
616 {
617 	if (l_inode < r->inode)
618 		return -1;
619 
620 	if (l_inode > r->inode)
621 		return 1;
622 
623 	if (l_offset < r->offset)
624 		return -1;
625 
626 	if (l_offset > r->offset)
627 		return 1;
628 
629 	return 0;
630 }
631 
632 #define __node_2_uprobe(node) \
633 	rb_entry((node), struct uprobe, rb_node)
634 
635 struct __uprobe_key {
636 	struct inode *inode;
637 	loff_t offset;
638 };
639 
640 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
641 {
642 	const struct __uprobe_key *a = key;
643 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
644 }
645 
646 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
647 {
648 	struct uprobe *u = __node_2_uprobe(a);
649 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
650 }
651 
652 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
653 {
654 	struct __uprobe_key key = {
655 		.inode = inode,
656 		.offset = offset,
657 	};
658 	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
659 
660 	if (node)
661 		return get_uprobe(__node_2_uprobe(node));
662 
663 	return NULL;
664 }
665 
666 /*
667  * Find a uprobe corresponding to a given inode:offset
668  * Acquires uprobes_treelock
669  */
670 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
671 {
672 	struct uprobe *uprobe;
673 
674 	spin_lock(&uprobes_treelock);
675 	uprobe = __find_uprobe(inode, offset);
676 	spin_unlock(&uprobes_treelock);
677 
678 	return uprobe;
679 }
680 
681 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
682 {
683 	struct rb_node *node;
684 
685 	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
686 	if (node)
687 		return get_uprobe(__node_2_uprobe(node));
688 
689 	/* get access + creation ref */
690 	refcount_set(&uprobe->ref, 2);
691 	return NULL;
692 }
693 
694 /*
695  * Acquire uprobes_treelock.
696  * Matching uprobe already exists in rbtree;
697  *	increment (access refcount) and return the matching uprobe.
698  *
699  * No matching uprobe; insert the uprobe in rb_tree;
700  *	get a double refcount (access + creation) and return NULL.
701  */
702 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
703 {
704 	struct uprobe *u;
705 
706 	spin_lock(&uprobes_treelock);
707 	u = __insert_uprobe(uprobe);
708 	spin_unlock(&uprobes_treelock);
709 
710 	return u;
711 }
712 
713 static void
714 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
715 {
716 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
717 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
718 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
719 		(unsigned long long) cur_uprobe->ref_ctr_offset,
720 		(unsigned long long) uprobe->ref_ctr_offset);
721 }
722 
723 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
724 				   loff_t ref_ctr_offset)
725 {
726 	struct uprobe *uprobe, *cur_uprobe;
727 
728 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
729 	if (!uprobe)
730 		return NULL;
731 
732 	uprobe->inode = inode;
733 	uprobe->offset = offset;
734 	uprobe->ref_ctr_offset = ref_ctr_offset;
735 	init_rwsem(&uprobe->register_rwsem);
736 	init_rwsem(&uprobe->consumer_rwsem);
737 
738 	/* add to uprobes_tree, sorted on inode:offset */
739 	cur_uprobe = insert_uprobe(uprobe);
740 	/* a uprobe exists for this inode:offset combination */
741 	if (cur_uprobe) {
742 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
743 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
744 			put_uprobe(cur_uprobe);
745 			kfree(uprobe);
746 			return ERR_PTR(-EINVAL);
747 		}
748 		kfree(uprobe);
749 		uprobe = cur_uprobe;
750 	}
751 
752 	return uprobe;
753 }
754 
755 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
756 {
757 	down_write(&uprobe->consumer_rwsem);
758 	uc->next = uprobe->consumers;
759 	uprobe->consumers = uc;
760 	up_write(&uprobe->consumer_rwsem);
761 }
762 
763 /*
764  * For uprobe @uprobe, delete the consumer @uc.
765  * Return true if the @uc is deleted successfully
766  * or return false.
767  */
768 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
769 {
770 	struct uprobe_consumer **con;
771 	bool ret = false;
772 
773 	down_write(&uprobe->consumer_rwsem);
774 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
775 		if (*con == uc) {
776 			*con = uc->next;
777 			ret = true;
778 			break;
779 		}
780 	}
781 	up_write(&uprobe->consumer_rwsem);
782 
783 	return ret;
784 }
785 
786 static int __copy_insn(struct address_space *mapping, struct file *filp,
787 			void *insn, int nbytes, loff_t offset)
788 {
789 	struct page *page;
790 	/*
791 	 * Ensure that the page that has the original instruction is populated
792 	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
793 	 * see uprobe_register().
794 	 */
795 	if (mapping->a_ops->read_folio)
796 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
797 	else
798 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
799 	if (IS_ERR(page))
800 		return PTR_ERR(page);
801 
802 	copy_from_page(page, offset, insn, nbytes);
803 	put_page(page);
804 
805 	return 0;
806 }
807 
808 static int copy_insn(struct uprobe *uprobe, struct file *filp)
809 {
810 	struct address_space *mapping = uprobe->inode->i_mapping;
811 	loff_t offs = uprobe->offset;
812 	void *insn = &uprobe->arch.insn;
813 	int size = sizeof(uprobe->arch.insn);
814 	int len, err = -EIO;
815 
816 	/* Copy only available bytes, -EIO if nothing was read */
817 	do {
818 		if (offs >= i_size_read(uprobe->inode))
819 			break;
820 
821 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
822 		err = __copy_insn(mapping, filp, insn, len, offs);
823 		if (err)
824 			break;
825 
826 		insn += len;
827 		offs += len;
828 		size -= len;
829 	} while (size);
830 
831 	return err;
832 }
833 
834 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
835 				struct mm_struct *mm, unsigned long vaddr)
836 {
837 	int ret = 0;
838 
839 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
840 		return ret;
841 
842 	/* TODO: move this into _register, until then we abuse this sem. */
843 	down_write(&uprobe->consumer_rwsem);
844 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
845 		goto out;
846 
847 	ret = copy_insn(uprobe, file);
848 	if (ret)
849 		goto out;
850 
851 	ret = -ENOTSUPP;
852 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
853 		goto out;
854 
855 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
856 	if (ret)
857 		goto out;
858 
859 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
860 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
861 
862  out:
863 	up_write(&uprobe->consumer_rwsem);
864 
865 	return ret;
866 }
867 
868 static inline bool consumer_filter(struct uprobe_consumer *uc,
869 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
870 {
871 	return !uc->filter || uc->filter(uc, ctx, mm);
872 }
873 
874 static bool filter_chain(struct uprobe *uprobe,
875 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
876 {
877 	struct uprobe_consumer *uc;
878 	bool ret = false;
879 
880 	down_read(&uprobe->consumer_rwsem);
881 	for (uc = uprobe->consumers; uc; uc = uc->next) {
882 		ret = consumer_filter(uc, ctx, mm);
883 		if (ret)
884 			break;
885 	}
886 	up_read(&uprobe->consumer_rwsem);
887 
888 	return ret;
889 }
890 
891 static int
892 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
893 			struct vm_area_struct *vma, unsigned long vaddr)
894 {
895 	bool first_uprobe;
896 	int ret;
897 
898 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
899 	if (ret)
900 		return ret;
901 
902 	/*
903 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
904 	 * the task can hit this breakpoint right after __replace_page().
905 	 */
906 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
907 	if (first_uprobe)
908 		set_bit(MMF_HAS_UPROBES, &mm->flags);
909 
910 	ret = set_swbp(&uprobe->arch, mm, vaddr);
911 	if (!ret)
912 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
913 	else if (first_uprobe)
914 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
915 
916 	return ret;
917 }
918 
919 static int
920 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
921 {
922 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
923 	return set_orig_insn(&uprobe->arch, mm, vaddr);
924 }
925 
926 static inline bool uprobe_is_active(struct uprobe *uprobe)
927 {
928 	return !RB_EMPTY_NODE(&uprobe->rb_node);
929 }
930 /*
931  * There could be threads that have already hit the breakpoint. They
932  * will recheck the current insn and restart if find_uprobe() fails.
933  * See find_active_uprobe().
934  */
935 static void delete_uprobe(struct uprobe *uprobe)
936 {
937 	if (WARN_ON(!uprobe_is_active(uprobe)))
938 		return;
939 
940 	spin_lock(&uprobes_treelock);
941 	rb_erase(&uprobe->rb_node, &uprobes_tree);
942 	spin_unlock(&uprobes_treelock);
943 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
944 	put_uprobe(uprobe);
945 }
946 
947 struct map_info {
948 	struct map_info *next;
949 	struct mm_struct *mm;
950 	unsigned long vaddr;
951 };
952 
953 static inline struct map_info *free_map_info(struct map_info *info)
954 {
955 	struct map_info *next = info->next;
956 	kfree(info);
957 	return next;
958 }
959 
960 static struct map_info *
961 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
962 {
963 	unsigned long pgoff = offset >> PAGE_SHIFT;
964 	struct vm_area_struct *vma;
965 	struct map_info *curr = NULL;
966 	struct map_info *prev = NULL;
967 	struct map_info *info;
968 	int more = 0;
969 
970  again:
971 	i_mmap_lock_read(mapping);
972 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
973 		if (!valid_vma(vma, is_register))
974 			continue;
975 
976 		if (!prev && !more) {
977 			/*
978 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
979 			 * reclaim. This is optimistic, no harm done if it fails.
980 			 */
981 			prev = kmalloc(sizeof(struct map_info),
982 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
983 			if (prev)
984 				prev->next = NULL;
985 		}
986 		if (!prev) {
987 			more++;
988 			continue;
989 		}
990 
991 		if (!mmget_not_zero(vma->vm_mm))
992 			continue;
993 
994 		info = prev;
995 		prev = prev->next;
996 		info->next = curr;
997 		curr = info;
998 
999 		info->mm = vma->vm_mm;
1000 		info->vaddr = offset_to_vaddr(vma, offset);
1001 	}
1002 	i_mmap_unlock_read(mapping);
1003 
1004 	if (!more)
1005 		goto out;
1006 
1007 	prev = curr;
1008 	while (curr) {
1009 		mmput(curr->mm);
1010 		curr = curr->next;
1011 	}
1012 
1013 	do {
1014 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1015 		if (!info) {
1016 			curr = ERR_PTR(-ENOMEM);
1017 			goto out;
1018 		}
1019 		info->next = prev;
1020 		prev = info;
1021 	} while (--more);
1022 
1023 	goto again;
1024  out:
1025 	while (prev)
1026 		prev = free_map_info(prev);
1027 	return curr;
1028 }
1029 
1030 static int
1031 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1032 {
1033 	bool is_register = !!new;
1034 	struct map_info *info;
1035 	int err = 0;
1036 
1037 	percpu_down_write(&dup_mmap_sem);
1038 	info = build_map_info(uprobe->inode->i_mapping,
1039 					uprobe->offset, is_register);
1040 	if (IS_ERR(info)) {
1041 		err = PTR_ERR(info);
1042 		goto out;
1043 	}
1044 
1045 	while (info) {
1046 		struct mm_struct *mm = info->mm;
1047 		struct vm_area_struct *vma;
1048 
1049 		if (err && is_register)
1050 			goto free;
1051 
1052 		mmap_write_lock(mm);
1053 		vma = find_vma(mm, info->vaddr);
1054 		if (!vma || !valid_vma(vma, is_register) ||
1055 		    file_inode(vma->vm_file) != uprobe->inode)
1056 			goto unlock;
1057 
1058 		if (vma->vm_start > info->vaddr ||
1059 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1060 			goto unlock;
1061 
1062 		if (is_register) {
1063 			/* consult only the "caller", new consumer. */
1064 			if (consumer_filter(new,
1065 					UPROBE_FILTER_REGISTER, mm))
1066 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1067 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1068 			if (!filter_chain(uprobe,
1069 					UPROBE_FILTER_UNREGISTER, mm))
1070 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1071 		}
1072 
1073  unlock:
1074 		mmap_write_unlock(mm);
1075  free:
1076 		mmput(mm);
1077 		info = free_map_info(info);
1078 	}
1079  out:
1080 	percpu_up_write(&dup_mmap_sem);
1081 	return err;
1082 }
1083 
1084 static void
1085 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1086 {
1087 	int err;
1088 
1089 	if (WARN_ON(!consumer_del(uprobe, uc)))
1090 		return;
1091 
1092 	err = register_for_each_vma(uprobe, NULL);
1093 	/* TODO : cant unregister? schedule a worker thread */
1094 	if (!uprobe->consumers && !err)
1095 		delete_uprobe(uprobe);
1096 }
1097 
1098 /*
1099  * uprobe_unregister - unregister an already registered probe.
1100  * @inode: the file in which the probe has to be removed.
1101  * @offset: offset from the start of the file.
1102  * @uc: identify which probe if multiple probes are colocated.
1103  */
1104 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1105 {
1106 	struct uprobe *uprobe;
1107 
1108 	uprobe = find_uprobe(inode, offset);
1109 	if (WARN_ON(!uprobe))
1110 		return;
1111 
1112 	down_write(&uprobe->register_rwsem);
1113 	__uprobe_unregister(uprobe, uc);
1114 	up_write(&uprobe->register_rwsem);
1115 	put_uprobe(uprobe);
1116 }
1117 EXPORT_SYMBOL_GPL(uprobe_unregister);
1118 
1119 /*
1120  * __uprobe_register - register a probe
1121  * @inode: the file in which the probe has to be placed.
1122  * @offset: offset from the start of the file.
1123  * @uc: information on howto handle the probe..
1124  *
1125  * Apart from the access refcount, __uprobe_register() takes a creation
1126  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1127  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1128  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1129  * @uprobe even before the register operation is complete. Creation
1130  * refcount is released when the last @uc for the @uprobe
1131  * unregisters. Caller of __uprobe_register() is required to keep @inode
1132  * (and the containing mount) referenced.
1133  *
1134  * Return errno if it cannot successully install probes
1135  * else return 0 (success)
1136  */
1137 static int __uprobe_register(struct inode *inode, loff_t offset,
1138 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1139 {
1140 	struct uprobe *uprobe;
1141 	int ret;
1142 
1143 	/* Uprobe must have at least one set consumer */
1144 	if (!uc->handler && !uc->ret_handler)
1145 		return -EINVAL;
1146 
1147 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1148 	if (!inode->i_mapping->a_ops->read_folio &&
1149 	    !shmem_mapping(inode->i_mapping))
1150 		return -EIO;
1151 	/* Racy, just to catch the obvious mistakes */
1152 	if (offset > i_size_read(inode))
1153 		return -EINVAL;
1154 
1155 	/*
1156 	 * This ensures that copy_from_page(), copy_to_page() and
1157 	 * __update_ref_ctr() can't cross page boundary.
1158 	 */
1159 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1160 		return -EINVAL;
1161 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1162 		return -EINVAL;
1163 
1164  retry:
1165 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1166 	if (!uprobe)
1167 		return -ENOMEM;
1168 	if (IS_ERR(uprobe))
1169 		return PTR_ERR(uprobe);
1170 
1171 	/*
1172 	 * We can race with uprobe_unregister()->delete_uprobe().
1173 	 * Check uprobe_is_active() and retry if it is false.
1174 	 */
1175 	down_write(&uprobe->register_rwsem);
1176 	ret = -EAGAIN;
1177 	if (likely(uprobe_is_active(uprobe))) {
1178 		consumer_add(uprobe, uc);
1179 		ret = register_for_each_vma(uprobe, uc);
1180 		if (ret)
1181 			__uprobe_unregister(uprobe, uc);
1182 	}
1183 	up_write(&uprobe->register_rwsem);
1184 	put_uprobe(uprobe);
1185 
1186 	if (unlikely(ret == -EAGAIN))
1187 		goto retry;
1188 	return ret;
1189 }
1190 
1191 int uprobe_register(struct inode *inode, loff_t offset,
1192 		    struct uprobe_consumer *uc)
1193 {
1194 	return __uprobe_register(inode, offset, 0, uc);
1195 }
1196 EXPORT_SYMBOL_GPL(uprobe_register);
1197 
1198 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1199 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1200 {
1201 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1202 }
1203 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1204 
1205 /*
1206  * uprobe_apply - unregister an already registered probe.
1207  * @inode: the file in which the probe has to be removed.
1208  * @offset: offset from the start of the file.
1209  * @uc: consumer which wants to add more or remove some breakpoints
1210  * @add: add or remove the breakpoints
1211  */
1212 int uprobe_apply(struct inode *inode, loff_t offset,
1213 			struct uprobe_consumer *uc, bool add)
1214 {
1215 	struct uprobe *uprobe;
1216 	struct uprobe_consumer *con;
1217 	int ret = -ENOENT;
1218 
1219 	uprobe = find_uprobe(inode, offset);
1220 	if (WARN_ON(!uprobe))
1221 		return ret;
1222 
1223 	down_write(&uprobe->register_rwsem);
1224 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1225 		;
1226 	if (con)
1227 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1228 	up_write(&uprobe->register_rwsem);
1229 	put_uprobe(uprobe);
1230 
1231 	return ret;
1232 }
1233 
1234 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1235 {
1236 	VMA_ITERATOR(vmi, mm, 0);
1237 	struct vm_area_struct *vma;
1238 	int err = 0;
1239 
1240 	mmap_read_lock(mm);
1241 	for_each_vma(vmi, vma) {
1242 		unsigned long vaddr;
1243 		loff_t offset;
1244 
1245 		if (!valid_vma(vma, false) ||
1246 		    file_inode(vma->vm_file) != uprobe->inode)
1247 			continue;
1248 
1249 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1250 		if (uprobe->offset <  offset ||
1251 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1252 			continue;
1253 
1254 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1255 		err |= remove_breakpoint(uprobe, mm, vaddr);
1256 	}
1257 	mmap_read_unlock(mm);
1258 
1259 	return err;
1260 }
1261 
1262 static struct rb_node *
1263 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1264 {
1265 	struct rb_node *n = uprobes_tree.rb_node;
1266 
1267 	while (n) {
1268 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1269 
1270 		if (inode < u->inode) {
1271 			n = n->rb_left;
1272 		} else if (inode > u->inode) {
1273 			n = n->rb_right;
1274 		} else {
1275 			if (max < u->offset)
1276 				n = n->rb_left;
1277 			else if (min > u->offset)
1278 				n = n->rb_right;
1279 			else
1280 				break;
1281 		}
1282 	}
1283 
1284 	return n;
1285 }
1286 
1287 /*
1288  * For a given range in vma, build a list of probes that need to be inserted.
1289  */
1290 static void build_probe_list(struct inode *inode,
1291 				struct vm_area_struct *vma,
1292 				unsigned long start, unsigned long end,
1293 				struct list_head *head)
1294 {
1295 	loff_t min, max;
1296 	struct rb_node *n, *t;
1297 	struct uprobe *u;
1298 
1299 	INIT_LIST_HEAD(head);
1300 	min = vaddr_to_offset(vma, start);
1301 	max = min + (end - start) - 1;
1302 
1303 	spin_lock(&uprobes_treelock);
1304 	n = find_node_in_range(inode, min, max);
1305 	if (n) {
1306 		for (t = n; t; t = rb_prev(t)) {
1307 			u = rb_entry(t, struct uprobe, rb_node);
1308 			if (u->inode != inode || u->offset < min)
1309 				break;
1310 			list_add(&u->pending_list, head);
1311 			get_uprobe(u);
1312 		}
1313 		for (t = n; (t = rb_next(t)); ) {
1314 			u = rb_entry(t, struct uprobe, rb_node);
1315 			if (u->inode != inode || u->offset > max)
1316 				break;
1317 			list_add(&u->pending_list, head);
1318 			get_uprobe(u);
1319 		}
1320 	}
1321 	spin_unlock(&uprobes_treelock);
1322 }
1323 
1324 /* @vma contains reference counter, not the probed instruction. */
1325 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1326 {
1327 	struct list_head *pos, *q;
1328 	struct delayed_uprobe *du;
1329 	unsigned long vaddr;
1330 	int ret = 0, err = 0;
1331 
1332 	mutex_lock(&delayed_uprobe_lock);
1333 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1334 		du = list_entry(pos, struct delayed_uprobe, list);
1335 
1336 		if (du->mm != vma->vm_mm ||
1337 		    !valid_ref_ctr_vma(du->uprobe, vma))
1338 			continue;
1339 
1340 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1341 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1342 		if (ret) {
1343 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1344 			if (!err)
1345 				err = ret;
1346 		}
1347 		delayed_uprobe_delete(du);
1348 	}
1349 	mutex_unlock(&delayed_uprobe_lock);
1350 	return err;
1351 }
1352 
1353 /*
1354  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1355  *
1356  * Currently we ignore all errors and always return 0, the callers
1357  * can't handle the failure anyway.
1358  */
1359 int uprobe_mmap(struct vm_area_struct *vma)
1360 {
1361 	struct list_head tmp_list;
1362 	struct uprobe *uprobe, *u;
1363 	struct inode *inode;
1364 
1365 	if (no_uprobe_events())
1366 		return 0;
1367 
1368 	if (vma->vm_file &&
1369 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1370 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1371 		delayed_ref_ctr_inc(vma);
1372 
1373 	if (!valid_vma(vma, true))
1374 		return 0;
1375 
1376 	inode = file_inode(vma->vm_file);
1377 	if (!inode)
1378 		return 0;
1379 
1380 	mutex_lock(uprobes_mmap_hash(inode));
1381 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1382 	/*
1383 	 * We can race with uprobe_unregister(), this uprobe can be already
1384 	 * removed. But in this case filter_chain() must return false, all
1385 	 * consumers have gone away.
1386 	 */
1387 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1388 		if (!fatal_signal_pending(current) &&
1389 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1390 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1391 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1392 		}
1393 		put_uprobe(uprobe);
1394 	}
1395 	mutex_unlock(uprobes_mmap_hash(inode));
1396 
1397 	return 0;
1398 }
1399 
1400 static bool
1401 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1402 {
1403 	loff_t min, max;
1404 	struct inode *inode;
1405 	struct rb_node *n;
1406 
1407 	inode = file_inode(vma->vm_file);
1408 
1409 	min = vaddr_to_offset(vma, start);
1410 	max = min + (end - start) - 1;
1411 
1412 	spin_lock(&uprobes_treelock);
1413 	n = find_node_in_range(inode, min, max);
1414 	spin_unlock(&uprobes_treelock);
1415 
1416 	return !!n;
1417 }
1418 
1419 /*
1420  * Called in context of a munmap of a vma.
1421  */
1422 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1423 {
1424 	if (no_uprobe_events() || !valid_vma(vma, false))
1425 		return;
1426 
1427 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1428 		return;
1429 
1430 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1431 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1432 		return;
1433 
1434 	if (vma_has_uprobes(vma, start, end))
1435 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1436 }
1437 
1438 /* Slot allocation for XOL */
1439 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1440 {
1441 	struct vm_area_struct *vma;
1442 	int ret;
1443 
1444 	if (mmap_write_lock_killable(mm))
1445 		return -EINTR;
1446 
1447 	if (mm->uprobes_state.xol_area) {
1448 		ret = -EALREADY;
1449 		goto fail;
1450 	}
1451 
1452 	if (!area->vaddr) {
1453 		/* Try to map as high as possible, this is only a hint. */
1454 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1455 						PAGE_SIZE, 0, 0);
1456 		if (IS_ERR_VALUE(area->vaddr)) {
1457 			ret = area->vaddr;
1458 			goto fail;
1459 		}
1460 	}
1461 
1462 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1463 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1464 				&area->xol_mapping);
1465 	if (IS_ERR(vma)) {
1466 		ret = PTR_ERR(vma);
1467 		goto fail;
1468 	}
1469 
1470 	ret = 0;
1471 	/* pairs with get_xol_area() */
1472 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1473  fail:
1474 	mmap_write_unlock(mm);
1475 
1476 	return ret;
1477 }
1478 
1479 static struct xol_area *__create_xol_area(unsigned long vaddr)
1480 {
1481 	struct mm_struct *mm = current->mm;
1482 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1483 	struct xol_area *area;
1484 
1485 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1486 	if (unlikely(!area))
1487 		goto out;
1488 
1489 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1490 			       GFP_KERNEL);
1491 	if (!area->bitmap)
1492 		goto free_area;
1493 
1494 	area->xol_mapping.name = "[uprobes]";
1495 	area->xol_mapping.fault = NULL;
1496 	area->xol_mapping.pages = area->pages;
1497 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1498 	if (!area->pages[0])
1499 		goto free_bitmap;
1500 	area->pages[1] = NULL;
1501 
1502 	area->vaddr = vaddr;
1503 	init_waitqueue_head(&area->wq);
1504 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1505 	set_bit(0, area->bitmap);
1506 	atomic_set(&area->slot_count, 1);
1507 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1508 
1509 	if (!xol_add_vma(mm, area))
1510 		return area;
1511 
1512 	__free_page(area->pages[0]);
1513  free_bitmap:
1514 	kfree(area->bitmap);
1515  free_area:
1516 	kfree(area);
1517  out:
1518 	return NULL;
1519 }
1520 
1521 /*
1522  * get_xol_area - Allocate process's xol_area if necessary.
1523  * This area will be used for storing instructions for execution out of line.
1524  *
1525  * Returns the allocated area or NULL.
1526  */
1527 static struct xol_area *get_xol_area(void)
1528 {
1529 	struct mm_struct *mm = current->mm;
1530 	struct xol_area *area;
1531 
1532 	if (!mm->uprobes_state.xol_area)
1533 		__create_xol_area(0);
1534 
1535 	/* Pairs with xol_add_vma() smp_store_release() */
1536 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1537 	return area;
1538 }
1539 
1540 /*
1541  * uprobe_clear_state - Free the area allocated for slots.
1542  */
1543 void uprobe_clear_state(struct mm_struct *mm)
1544 {
1545 	struct xol_area *area = mm->uprobes_state.xol_area;
1546 
1547 	mutex_lock(&delayed_uprobe_lock);
1548 	delayed_uprobe_remove(NULL, mm);
1549 	mutex_unlock(&delayed_uprobe_lock);
1550 
1551 	if (!area)
1552 		return;
1553 
1554 	put_page(area->pages[0]);
1555 	kfree(area->bitmap);
1556 	kfree(area);
1557 }
1558 
1559 void uprobe_start_dup_mmap(void)
1560 {
1561 	percpu_down_read(&dup_mmap_sem);
1562 }
1563 
1564 void uprobe_end_dup_mmap(void)
1565 {
1566 	percpu_up_read(&dup_mmap_sem);
1567 }
1568 
1569 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1570 {
1571 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1572 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1573 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1574 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1575 	}
1576 }
1577 
1578 /*
1579  *  - search for a free slot.
1580  */
1581 static unsigned long xol_take_insn_slot(struct xol_area *area)
1582 {
1583 	unsigned long slot_addr;
1584 	int slot_nr;
1585 
1586 	do {
1587 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1588 		if (slot_nr < UINSNS_PER_PAGE) {
1589 			if (!test_and_set_bit(slot_nr, area->bitmap))
1590 				break;
1591 
1592 			slot_nr = UINSNS_PER_PAGE;
1593 			continue;
1594 		}
1595 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1596 	} while (slot_nr >= UINSNS_PER_PAGE);
1597 
1598 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1599 	atomic_inc(&area->slot_count);
1600 
1601 	return slot_addr;
1602 }
1603 
1604 /*
1605  * xol_get_insn_slot - allocate a slot for xol.
1606  * Returns the allocated slot address or 0.
1607  */
1608 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1609 {
1610 	struct xol_area *area;
1611 	unsigned long xol_vaddr;
1612 
1613 	area = get_xol_area();
1614 	if (!area)
1615 		return 0;
1616 
1617 	xol_vaddr = xol_take_insn_slot(area);
1618 	if (unlikely(!xol_vaddr))
1619 		return 0;
1620 
1621 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1622 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1623 
1624 	return xol_vaddr;
1625 }
1626 
1627 /*
1628  * xol_free_insn_slot - If slot was earlier allocated by
1629  * @xol_get_insn_slot(), make the slot available for
1630  * subsequent requests.
1631  */
1632 static void xol_free_insn_slot(struct task_struct *tsk)
1633 {
1634 	struct xol_area *area;
1635 	unsigned long vma_end;
1636 	unsigned long slot_addr;
1637 
1638 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1639 		return;
1640 
1641 	slot_addr = tsk->utask->xol_vaddr;
1642 	if (unlikely(!slot_addr))
1643 		return;
1644 
1645 	area = tsk->mm->uprobes_state.xol_area;
1646 	vma_end = area->vaddr + PAGE_SIZE;
1647 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1648 		unsigned long offset;
1649 		int slot_nr;
1650 
1651 		offset = slot_addr - area->vaddr;
1652 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1653 		if (slot_nr >= UINSNS_PER_PAGE)
1654 			return;
1655 
1656 		clear_bit(slot_nr, area->bitmap);
1657 		atomic_dec(&area->slot_count);
1658 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1659 		if (waitqueue_active(&area->wq))
1660 			wake_up(&area->wq);
1661 
1662 		tsk->utask->xol_vaddr = 0;
1663 	}
1664 }
1665 
1666 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1667 				  void *src, unsigned long len)
1668 {
1669 	/* Initialize the slot */
1670 	copy_to_page(page, vaddr, src, len);
1671 
1672 	/*
1673 	 * We probably need flush_icache_user_page() but it needs vma.
1674 	 * This should work on most of architectures by default. If
1675 	 * architecture needs to do something different it can define
1676 	 * its own version of the function.
1677 	 */
1678 	flush_dcache_page(page);
1679 }
1680 
1681 /**
1682  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1683  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1684  * instruction.
1685  * Return the address of the breakpoint instruction.
1686  */
1687 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1688 {
1689 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1690 }
1691 
1692 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1693 {
1694 	struct uprobe_task *utask = current->utask;
1695 
1696 	if (unlikely(utask && utask->active_uprobe))
1697 		return utask->vaddr;
1698 
1699 	return instruction_pointer(regs);
1700 }
1701 
1702 static struct return_instance *free_ret_instance(struct return_instance *ri)
1703 {
1704 	struct return_instance *next = ri->next;
1705 	put_uprobe(ri->uprobe);
1706 	kfree(ri);
1707 	return next;
1708 }
1709 
1710 /*
1711  * Called with no locks held.
1712  * Called in context of an exiting or an exec-ing thread.
1713  */
1714 void uprobe_free_utask(struct task_struct *t)
1715 {
1716 	struct uprobe_task *utask = t->utask;
1717 	struct return_instance *ri;
1718 
1719 	if (!utask)
1720 		return;
1721 
1722 	if (utask->active_uprobe)
1723 		put_uprobe(utask->active_uprobe);
1724 
1725 	ri = utask->return_instances;
1726 	while (ri)
1727 		ri = free_ret_instance(ri);
1728 
1729 	xol_free_insn_slot(t);
1730 	kfree(utask);
1731 	t->utask = NULL;
1732 }
1733 
1734 /*
1735  * Allocate a uprobe_task object for the task if necessary.
1736  * Called when the thread hits a breakpoint.
1737  *
1738  * Returns:
1739  * - pointer to new uprobe_task on success
1740  * - NULL otherwise
1741  */
1742 static struct uprobe_task *get_utask(void)
1743 {
1744 	if (!current->utask)
1745 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1746 	return current->utask;
1747 }
1748 
1749 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1750 {
1751 	struct uprobe_task *n_utask;
1752 	struct return_instance **p, *o, *n;
1753 
1754 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1755 	if (!n_utask)
1756 		return -ENOMEM;
1757 	t->utask = n_utask;
1758 
1759 	p = &n_utask->return_instances;
1760 	for (o = o_utask->return_instances; o; o = o->next) {
1761 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1762 		if (!n)
1763 			return -ENOMEM;
1764 
1765 		*n = *o;
1766 		get_uprobe(n->uprobe);
1767 		n->next = NULL;
1768 
1769 		*p = n;
1770 		p = &n->next;
1771 		n_utask->depth++;
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 static void uprobe_warn(struct task_struct *t, const char *msg)
1778 {
1779 	pr_warn("uprobe: %s:%d failed to %s\n",
1780 			current->comm, current->pid, msg);
1781 }
1782 
1783 static void dup_xol_work(struct callback_head *work)
1784 {
1785 	if (current->flags & PF_EXITING)
1786 		return;
1787 
1788 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1789 			!fatal_signal_pending(current))
1790 		uprobe_warn(current, "dup xol area");
1791 }
1792 
1793 /*
1794  * Called in context of a new clone/fork from copy_process.
1795  */
1796 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1797 {
1798 	struct uprobe_task *utask = current->utask;
1799 	struct mm_struct *mm = current->mm;
1800 	struct xol_area *area;
1801 
1802 	t->utask = NULL;
1803 
1804 	if (!utask || !utask->return_instances)
1805 		return;
1806 
1807 	if (mm == t->mm && !(flags & CLONE_VFORK))
1808 		return;
1809 
1810 	if (dup_utask(t, utask))
1811 		return uprobe_warn(t, "dup ret instances");
1812 
1813 	/* The task can fork() after dup_xol_work() fails */
1814 	area = mm->uprobes_state.xol_area;
1815 	if (!area)
1816 		return uprobe_warn(t, "dup xol area");
1817 
1818 	if (mm == t->mm)
1819 		return;
1820 
1821 	t->utask->dup_xol_addr = area->vaddr;
1822 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1823 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1824 }
1825 
1826 /*
1827  * Current area->vaddr notion assume the trampoline address is always
1828  * equal area->vaddr.
1829  *
1830  * Returns -1 in case the xol_area is not allocated.
1831  */
1832 static unsigned long get_trampoline_vaddr(void)
1833 {
1834 	struct xol_area *area;
1835 	unsigned long trampoline_vaddr = -1;
1836 
1837 	/* Pairs with xol_add_vma() smp_store_release() */
1838 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1839 	if (area)
1840 		trampoline_vaddr = area->vaddr;
1841 
1842 	return trampoline_vaddr;
1843 }
1844 
1845 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1846 					struct pt_regs *regs)
1847 {
1848 	struct return_instance *ri = utask->return_instances;
1849 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1850 
1851 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1852 		ri = free_ret_instance(ri);
1853 		utask->depth--;
1854 	}
1855 	utask->return_instances = ri;
1856 }
1857 
1858 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1859 {
1860 	struct return_instance *ri;
1861 	struct uprobe_task *utask;
1862 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1863 	bool chained;
1864 
1865 	if (!get_xol_area())
1866 		return;
1867 
1868 	utask = get_utask();
1869 	if (!utask)
1870 		return;
1871 
1872 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1873 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1874 				" nestedness limit pid/tgid=%d/%d\n",
1875 				current->pid, current->tgid);
1876 		return;
1877 	}
1878 
1879 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1880 	if (!ri)
1881 		return;
1882 
1883 	trampoline_vaddr = get_trampoline_vaddr();
1884 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1885 	if (orig_ret_vaddr == -1)
1886 		goto fail;
1887 
1888 	/* drop the entries invalidated by longjmp() */
1889 	chained = (orig_ret_vaddr == trampoline_vaddr);
1890 	cleanup_return_instances(utask, chained, regs);
1891 
1892 	/*
1893 	 * We don't want to keep trampoline address in stack, rather keep the
1894 	 * original return address of first caller thru all the consequent
1895 	 * instances. This also makes breakpoint unwrapping easier.
1896 	 */
1897 	if (chained) {
1898 		if (!utask->return_instances) {
1899 			/*
1900 			 * This situation is not possible. Likely we have an
1901 			 * attack from user-space.
1902 			 */
1903 			uprobe_warn(current, "handle tail call");
1904 			goto fail;
1905 		}
1906 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1907 	}
1908 
1909 	ri->uprobe = get_uprobe(uprobe);
1910 	ri->func = instruction_pointer(regs);
1911 	ri->stack = user_stack_pointer(regs);
1912 	ri->orig_ret_vaddr = orig_ret_vaddr;
1913 	ri->chained = chained;
1914 
1915 	utask->depth++;
1916 	ri->next = utask->return_instances;
1917 	utask->return_instances = ri;
1918 
1919 	return;
1920  fail:
1921 	kfree(ri);
1922 }
1923 
1924 /* Prepare to single-step probed instruction out of line. */
1925 static int
1926 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1927 {
1928 	struct uprobe_task *utask;
1929 	unsigned long xol_vaddr;
1930 	int err;
1931 
1932 	utask = get_utask();
1933 	if (!utask)
1934 		return -ENOMEM;
1935 
1936 	xol_vaddr = xol_get_insn_slot(uprobe);
1937 	if (!xol_vaddr)
1938 		return -ENOMEM;
1939 
1940 	utask->xol_vaddr = xol_vaddr;
1941 	utask->vaddr = bp_vaddr;
1942 
1943 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1944 	if (unlikely(err)) {
1945 		xol_free_insn_slot(current);
1946 		return err;
1947 	}
1948 
1949 	utask->active_uprobe = uprobe;
1950 	utask->state = UTASK_SSTEP;
1951 	return 0;
1952 }
1953 
1954 /*
1955  * If we are singlestepping, then ensure this thread is not connected to
1956  * non-fatal signals until completion of singlestep.  When xol insn itself
1957  * triggers the signal,  restart the original insn even if the task is
1958  * already SIGKILL'ed (since coredump should report the correct ip).  This
1959  * is even more important if the task has a handler for SIGSEGV/etc, The
1960  * _same_ instruction should be repeated again after return from the signal
1961  * handler, and SSTEP can never finish in this case.
1962  */
1963 bool uprobe_deny_signal(void)
1964 {
1965 	struct task_struct *t = current;
1966 	struct uprobe_task *utask = t->utask;
1967 
1968 	if (likely(!utask || !utask->active_uprobe))
1969 		return false;
1970 
1971 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1972 
1973 	if (task_sigpending(t)) {
1974 		spin_lock_irq(&t->sighand->siglock);
1975 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1976 		spin_unlock_irq(&t->sighand->siglock);
1977 
1978 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1979 			utask->state = UTASK_SSTEP_TRAPPED;
1980 			set_tsk_thread_flag(t, TIF_UPROBE);
1981 		}
1982 	}
1983 
1984 	return true;
1985 }
1986 
1987 static void mmf_recalc_uprobes(struct mm_struct *mm)
1988 {
1989 	VMA_ITERATOR(vmi, mm, 0);
1990 	struct vm_area_struct *vma;
1991 
1992 	for_each_vma(vmi, vma) {
1993 		if (!valid_vma(vma, false))
1994 			continue;
1995 		/*
1996 		 * This is not strictly accurate, we can race with
1997 		 * uprobe_unregister() and see the already removed
1998 		 * uprobe if delete_uprobe() was not yet called.
1999 		 * Or this uprobe can be filtered out.
2000 		 */
2001 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2002 			return;
2003 	}
2004 
2005 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2006 }
2007 
2008 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2009 {
2010 	struct page *page;
2011 	uprobe_opcode_t opcode;
2012 	int result;
2013 
2014 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2015 		return -EINVAL;
2016 
2017 	pagefault_disable();
2018 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2019 	pagefault_enable();
2020 
2021 	if (likely(result == 0))
2022 		goto out;
2023 
2024 	/*
2025 	 * The NULL 'tsk' here ensures that any faults that occur here
2026 	 * will not be accounted to the task.  'mm' *is* current->mm,
2027 	 * but we treat this as a 'remote' access since it is
2028 	 * essentially a kernel access to the memory.
2029 	 */
2030 	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2031 			NULL, NULL);
2032 	if (result < 0)
2033 		return result;
2034 
2035 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2036 	put_page(page);
2037  out:
2038 	/* This needs to return true for any variant of the trap insn */
2039 	return is_trap_insn(&opcode);
2040 }
2041 
2042 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2043 {
2044 	struct mm_struct *mm = current->mm;
2045 	struct uprobe *uprobe = NULL;
2046 	struct vm_area_struct *vma;
2047 
2048 	mmap_read_lock(mm);
2049 	vma = vma_lookup(mm, bp_vaddr);
2050 	if (vma) {
2051 		if (valid_vma(vma, false)) {
2052 			struct inode *inode = file_inode(vma->vm_file);
2053 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2054 
2055 			uprobe = find_uprobe(inode, offset);
2056 		}
2057 
2058 		if (!uprobe)
2059 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2060 	} else {
2061 		*is_swbp = -EFAULT;
2062 	}
2063 
2064 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065 		mmf_recalc_uprobes(mm);
2066 	mmap_read_unlock(mm);
2067 
2068 	return uprobe;
2069 }
2070 
2071 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072 {
2073 	struct uprobe_consumer *uc;
2074 	int remove = UPROBE_HANDLER_REMOVE;
2075 	bool need_prep = false; /* prepare return uprobe, when needed */
2076 
2077 	down_read(&uprobe->register_rwsem);
2078 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2079 		int rc = 0;
2080 
2081 		if (uc->handler) {
2082 			rc = uc->handler(uc, regs);
2083 			WARN(rc & ~UPROBE_HANDLER_MASK,
2084 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2085 		}
2086 
2087 		if (uc->ret_handler)
2088 			need_prep = true;
2089 
2090 		remove &= rc;
2091 	}
2092 
2093 	if (need_prep && !remove)
2094 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2095 
2096 	if (remove && uprobe->consumers) {
2097 		WARN_ON(!uprobe_is_active(uprobe));
2098 		unapply_uprobe(uprobe, current->mm);
2099 	}
2100 	up_read(&uprobe->register_rwsem);
2101 }
2102 
2103 static void
2104 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105 {
2106 	struct uprobe *uprobe = ri->uprobe;
2107 	struct uprobe_consumer *uc;
2108 
2109 	down_read(&uprobe->register_rwsem);
2110 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2111 		if (uc->ret_handler)
2112 			uc->ret_handler(uc, ri->func, regs);
2113 	}
2114 	up_read(&uprobe->register_rwsem);
2115 }
2116 
2117 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118 {
2119 	bool chained;
2120 
2121 	do {
2122 		chained = ri->chained;
2123 		ri = ri->next;	/* can't be NULL if chained */
2124 	} while (chained);
2125 
2126 	return ri;
2127 }
2128 
2129 static void handle_trampoline(struct pt_regs *regs)
2130 {
2131 	struct uprobe_task *utask;
2132 	struct return_instance *ri, *next;
2133 	bool valid;
2134 
2135 	utask = current->utask;
2136 	if (!utask)
2137 		goto sigill;
2138 
2139 	ri = utask->return_instances;
2140 	if (!ri)
2141 		goto sigill;
2142 
2143 	do {
2144 		/*
2145 		 * We should throw out the frames invalidated by longjmp().
2146 		 * If this chain is valid, then the next one should be alive
2147 		 * or NULL; the latter case means that nobody but ri->func
2148 		 * could hit this trampoline on return. TODO: sigaltstack().
2149 		 */
2150 		next = find_next_ret_chain(ri);
2151 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2152 
2153 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154 		do {
2155 			if (valid)
2156 				handle_uretprobe_chain(ri, regs);
2157 			ri = free_ret_instance(ri);
2158 			utask->depth--;
2159 		} while (ri != next);
2160 	} while (!valid);
2161 
2162 	utask->return_instances = ri;
2163 	return;
2164 
2165  sigill:
2166 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2167 	force_sig(SIGILL);
2168 
2169 }
2170 
2171 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172 {
2173 	return false;
2174 }
2175 
2176 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177 					struct pt_regs *regs)
2178 {
2179 	return true;
2180 }
2181 
2182 /*
2183  * Run handler and ask thread to singlestep.
2184  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185  */
2186 static void handle_swbp(struct pt_regs *regs)
2187 {
2188 	struct uprobe *uprobe;
2189 	unsigned long bp_vaddr;
2190 	int is_swbp;
2191 
2192 	bp_vaddr = uprobe_get_swbp_addr(regs);
2193 	if (bp_vaddr == get_trampoline_vaddr())
2194 		return handle_trampoline(regs);
2195 
2196 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2197 	if (!uprobe) {
2198 		if (is_swbp > 0) {
2199 			/* No matching uprobe; signal SIGTRAP. */
2200 			force_sig(SIGTRAP);
2201 		} else {
2202 			/*
2203 			 * Either we raced with uprobe_unregister() or we can't
2204 			 * access this memory. The latter is only possible if
2205 			 * another thread plays with our ->mm. In both cases
2206 			 * we can simply restart. If this vma was unmapped we
2207 			 * can pretend this insn was not executed yet and get
2208 			 * the (correct) SIGSEGV after restart.
2209 			 */
2210 			instruction_pointer_set(regs, bp_vaddr);
2211 		}
2212 		return;
2213 	}
2214 
2215 	/* change it in advance for ->handler() and restart */
2216 	instruction_pointer_set(regs, bp_vaddr);
2217 
2218 	/*
2219 	 * TODO: move copy_insn/etc into _register and remove this hack.
2220 	 * After we hit the bp, _unregister + _register can install the
2221 	 * new and not-yet-analyzed uprobe at the same address, restart.
2222 	 */
2223 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2224 		goto out;
2225 
2226 	/*
2227 	 * Pairs with the smp_wmb() in prepare_uprobe().
2228 	 *
2229 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230 	 * we must also see the stores to &uprobe->arch performed by the
2231 	 * prepare_uprobe() call.
2232 	 */
2233 	smp_rmb();
2234 
2235 	/* Tracing handlers use ->utask to communicate with fetch methods */
2236 	if (!get_utask())
2237 		goto out;
2238 
2239 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2240 		goto out;
2241 
2242 	handler_chain(uprobe, regs);
2243 
2244 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2245 		goto out;
2246 
2247 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2248 		return;
2249 
2250 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2251 out:
2252 	put_uprobe(uprobe);
2253 }
2254 
2255 /*
2256  * Perform required fix-ups and disable singlestep.
2257  * Allow pending signals to take effect.
2258  */
2259 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260 {
2261 	struct uprobe *uprobe;
2262 	int err = 0;
2263 
2264 	uprobe = utask->active_uprobe;
2265 	if (utask->state == UTASK_SSTEP_ACK)
2266 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2267 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2268 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2269 	else
2270 		WARN_ON_ONCE(1);
2271 
2272 	put_uprobe(uprobe);
2273 	utask->active_uprobe = NULL;
2274 	utask->state = UTASK_RUNNING;
2275 	xol_free_insn_slot(current);
2276 
2277 	spin_lock_irq(&current->sighand->siglock);
2278 	recalc_sigpending(); /* see uprobe_deny_signal() */
2279 	spin_unlock_irq(&current->sighand->siglock);
2280 
2281 	if (unlikely(err)) {
2282 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2283 		force_sig(SIGILL);
2284 	}
2285 }
2286 
2287 /*
2288  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289  * allows the thread to return from interrupt. After that handle_swbp()
2290  * sets utask->active_uprobe.
2291  *
2292  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293  * and allows the thread to return from interrupt.
2294  *
2295  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296  * uprobe_notify_resume().
2297  */
2298 void uprobe_notify_resume(struct pt_regs *regs)
2299 {
2300 	struct uprobe_task *utask;
2301 
2302 	clear_thread_flag(TIF_UPROBE);
2303 
2304 	utask = current->utask;
2305 	if (utask && utask->active_uprobe)
2306 		handle_singlestep(utask, regs);
2307 	else
2308 		handle_swbp(regs);
2309 }
2310 
2311 /*
2312  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314  */
2315 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316 {
2317 	if (!current->mm)
2318 		return 0;
2319 
2320 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2321 	    (!current->utask || !current->utask->return_instances))
2322 		return 0;
2323 
2324 	set_thread_flag(TIF_UPROBE);
2325 	return 1;
2326 }
2327 
2328 /*
2329  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331  */
2332 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333 {
2334 	struct uprobe_task *utask = current->utask;
2335 
2336 	if (!current->mm || !utask || !utask->active_uprobe)
2337 		/* task is currently not uprobed */
2338 		return 0;
2339 
2340 	utask->state = UTASK_SSTEP_ACK;
2341 	set_thread_flag(TIF_UPROBE);
2342 	return 1;
2343 }
2344 
2345 static struct notifier_block uprobe_exception_nb = {
2346 	.notifier_call		= arch_uprobe_exception_notify,
2347 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2348 };
2349 
2350 void __init uprobes_init(void)
2351 {
2352 	int i;
2353 
2354 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2355 		mutex_init(&uprobes_mmap_mutex[i]);
2356 
2357 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2358 }
2359