xref: /openbmc/linux/kernel/events/uprobes.c (revision 1491eaf9)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>		/* anon_vma_prepare */
32 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33 #include <linux/swap.h>		/* try_to_free_swap */
34 #include <linux/ptrace.h>	/* user_enable_single_step */
35 #include <linux/kdebug.h>	/* notifier mechanism */
36 #include "../../mm/internal.h"	/* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40 
41 #include <linux/uprobes.h>
42 
43 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
45 
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
52 
53 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
54 
55 #define UPROBES_HASH_SZ	13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59 
60 static struct percpu_rw_semaphore dup_mmap_sem;
61 
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN	0
64 
65 struct uprobe {
66 	struct rb_node		rb_node;	/* node in the rb tree */
67 	atomic_t		ref;
68 	struct rw_semaphore	register_rwsem;
69 	struct rw_semaphore	consumer_rwsem;
70 	struct list_head	pending_list;
71 	struct uprobe_consumer	*consumers;
72 	struct inode		*inode;		/* Also hold a ref to inode */
73 	loff_t			offset;
74 	unsigned long		flags;
75 
76 	/*
77 	 * The generic code assumes that it has two members of unknown type
78 	 * owned by the arch-specific code:
79 	 *
80 	 * 	insn -	copy_insn() saves the original instruction here for
81 	 *		arch_uprobe_analyze_insn().
82 	 *
83 	 *	ixol -	potentially modified instruction to execute out of
84 	 *		line, copied to xol_area by xol_get_insn_slot().
85 	 */
86 	struct arch_uprobe	arch;
87 };
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @page:     the cowed page we are replacing by kpage
148  * @kpage:    the modified page we replace page by
149  *
150  * Returns 0 on success, -EFAULT on failure.
151  */
152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153 				struct page *page, struct page *kpage)
154 {
155 	struct mm_struct *mm = vma->vm_mm;
156 	spinlock_t *ptl;
157 	pte_t *ptep;
158 	int err;
159 	/* For mmu_notifiers */
160 	const unsigned long mmun_start = addr;
161 	const unsigned long mmun_end   = addr + PAGE_SIZE;
162 	struct mem_cgroup *memcg;
163 
164 	err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg,
165 			false);
166 	if (err)
167 		return err;
168 
169 	/* For try_to_free_swap() and munlock_vma_page() below */
170 	lock_page(page);
171 
172 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
173 	err = -EAGAIN;
174 	ptep = page_check_address(page, mm, addr, &ptl, 0);
175 	if (!ptep) {
176 		mem_cgroup_cancel_charge(kpage, memcg, false);
177 		goto unlock;
178 	}
179 
180 	get_page(kpage);
181 	page_add_new_anon_rmap(kpage, vma, addr, false);
182 	mem_cgroup_commit_charge(kpage, memcg, false, false);
183 	lru_cache_add_active_or_unevictable(kpage, vma);
184 
185 	if (!PageAnon(page)) {
186 		dec_mm_counter(mm, mm_counter_file(page));
187 		inc_mm_counter(mm, MM_ANONPAGES);
188 	}
189 
190 	flush_cache_page(vma, addr, pte_pfn(*ptep));
191 	ptep_clear_flush_notify(vma, addr, ptep);
192 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
193 
194 	page_remove_rmap(page, false);
195 	if (!page_mapped(page))
196 		try_to_free_swap(page);
197 	pte_unmap_unlock(ptep, ptl);
198 
199 	if (vma->vm_flags & VM_LOCKED)
200 		munlock_vma_page(page);
201 	put_page(page);
202 
203 	err = 0;
204  unlock:
205 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
206 	unlock_page(page);
207 	return err;
208 }
209 
210 /**
211  * is_swbp_insn - check if instruction is breakpoint instruction.
212  * @insn: instruction to be checked.
213  * Default implementation of is_swbp_insn
214  * Returns true if @insn is a breakpoint instruction.
215  */
216 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
217 {
218 	return *insn == UPROBE_SWBP_INSN;
219 }
220 
221 /**
222  * is_trap_insn - check if instruction is breakpoint instruction.
223  * @insn: instruction to be checked.
224  * Default implementation of is_trap_insn
225  * Returns true if @insn is a breakpoint instruction.
226  *
227  * This function is needed for the case where an architecture has multiple
228  * trap instructions (like powerpc).
229  */
230 bool __weak is_trap_insn(uprobe_opcode_t *insn)
231 {
232 	return is_swbp_insn(insn);
233 }
234 
235 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
236 {
237 	void *kaddr = kmap_atomic(page);
238 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
239 	kunmap_atomic(kaddr);
240 }
241 
242 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
243 {
244 	void *kaddr = kmap_atomic(page);
245 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
246 	kunmap_atomic(kaddr);
247 }
248 
249 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
250 {
251 	uprobe_opcode_t old_opcode;
252 	bool is_swbp;
253 
254 	/*
255 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
256 	 * We do not check if it is any other 'trap variant' which could
257 	 * be conditional trap instruction such as the one powerpc supports.
258 	 *
259 	 * The logic is that we do not care if the underlying instruction
260 	 * is a trap variant; uprobes always wins over any other (gdb)
261 	 * breakpoint.
262 	 */
263 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
264 	is_swbp = is_swbp_insn(&old_opcode);
265 
266 	if (is_swbp_insn(new_opcode)) {
267 		if (is_swbp)		/* register: already installed? */
268 			return 0;
269 	} else {
270 		if (!is_swbp)		/* unregister: was it changed by us? */
271 			return 0;
272 	}
273 
274 	return 1;
275 }
276 
277 /*
278  * NOTE:
279  * Expect the breakpoint instruction to be the smallest size instruction for
280  * the architecture. If an arch has variable length instruction and the
281  * breakpoint instruction is not of the smallest length instruction
282  * supported by that architecture then we need to modify is_trap_at_addr and
283  * uprobe_write_opcode accordingly. This would never be a problem for archs
284  * that have fixed length instructions.
285  *
286  * uprobe_write_opcode - write the opcode at a given virtual address.
287  * @mm: the probed process address space.
288  * @vaddr: the virtual address to store the opcode.
289  * @opcode: opcode to be written at @vaddr.
290  *
291  * Called with mm->mmap_sem held for write.
292  * Return 0 (success) or a negative errno.
293  */
294 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
295 			uprobe_opcode_t opcode)
296 {
297 	struct page *old_page, *new_page;
298 	struct vm_area_struct *vma;
299 	int ret;
300 
301 retry:
302 	/* Read the page with vaddr into memory */
303 	ret = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
304 	if (ret <= 0)
305 		return ret;
306 
307 	ret = verify_opcode(old_page, vaddr, &opcode);
308 	if (ret <= 0)
309 		goto put_old;
310 
311 	ret = anon_vma_prepare(vma);
312 	if (ret)
313 		goto put_old;
314 
315 	ret = -ENOMEM;
316 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
317 	if (!new_page)
318 		goto put_old;
319 
320 	__SetPageUptodate(new_page);
321 	copy_highpage(new_page, old_page);
322 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
323 
324 	ret = __replace_page(vma, vaddr, old_page, new_page);
325 	put_page(new_page);
326 put_old:
327 	put_page(old_page);
328 
329 	if (unlikely(ret == -EAGAIN))
330 		goto retry;
331 	return ret;
332 }
333 
334 /**
335  * set_swbp - store breakpoint at a given address.
336  * @auprobe: arch specific probepoint information.
337  * @mm: the probed process address space.
338  * @vaddr: the virtual address to insert the opcode.
339  *
340  * For mm @mm, store the breakpoint instruction at @vaddr.
341  * Return 0 (success) or a negative errno.
342  */
343 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
344 {
345 	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
346 }
347 
348 /**
349  * set_orig_insn - Restore the original instruction.
350  * @mm: the probed process address space.
351  * @auprobe: arch specific probepoint information.
352  * @vaddr: the virtual address to insert the opcode.
353  *
354  * For mm @mm, restore the original opcode (opcode) at @vaddr.
355  * Return 0 (success) or a negative errno.
356  */
357 int __weak
358 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
359 {
360 	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
361 }
362 
363 static struct uprobe *get_uprobe(struct uprobe *uprobe)
364 {
365 	atomic_inc(&uprobe->ref);
366 	return uprobe;
367 }
368 
369 static void put_uprobe(struct uprobe *uprobe)
370 {
371 	if (atomic_dec_and_test(&uprobe->ref))
372 		kfree(uprobe);
373 }
374 
375 static int match_uprobe(struct uprobe *l, struct uprobe *r)
376 {
377 	if (l->inode < r->inode)
378 		return -1;
379 
380 	if (l->inode > r->inode)
381 		return 1;
382 
383 	if (l->offset < r->offset)
384 		return -1;
385 
386 	if (l->offset > r->offset)
387 		return 1;
388 
389 	return 0;
390 }
391 
392 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
393 {
394 	struct uprobe u = { .inode = inode, .offset = offset };
395 	struct rb_node *n = uprobes_tree.rb_node;
396 	struct uprobe *uprobe;
397 	int match;
398 
399 	while (n) {
400 		uprobe = rb_entry(n, struct uprobe, rb_node);
401 		match = match_uprobe(&u, uprobe);
402 		if (!match)
403 			return get_uprobe(uprobe);
404 
405 		if (match < 0)
406 			n = n->rb_left;
407 		else
408 			n = n->rb_right;
409 	}
410 	return NULL;
411 }
412 
413 /*
414  * Find a uprobe corresponding to a given inode:offset
415  * Acquires uprobes_treelock
416  */
417 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
418 {
419 	struct uprobe *uprobe;
420 
421 	spin_lock(&uprobes_treelock);
422 	uprobe = __find_uprobe(inode, offset);
423 	spin_unlock(&uprobes_treelock);
424 
425 	return uprobe;
426 }
427 
428 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
429 {
430 	struct rb_node **p = &uprobes_tree.rb_node;
431 	struct rb_node *parent = NULL;
432 	struct uprobe *u;
433 	int match;
434 
435 	while (*p) {
436 		parent = *p;
437 		u = rb_entry(parent, struct uprobe, rb_node);
438 		match = match_uprobe(uprobe, u);
439 		if (!match)
440 			return get_uprobe(u);
441 
442 		if (match < 0)
443 			p = &parent->rb_left;
444 		else
445 			p = &parent->rb_right;
446 
447 	}
448 
449 	u = NULL;
450 	rb_link_node(&uprobe->rb_node, parent, p);
451 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
452 	/* get access + creation ref */
453 	atomic_set(&uprobe->ref, 2);
454 
455 	return u;
456 }
457 
458 /*
459  * Acquire uprobes_treelock.
460  * Matching uprobe already exists in rbtree;
461  *	increment (access refcount) and return the matching uprobe.
462  *
463  * No matching uprobe; insert the uprobe in rb_tree;
464  *	get a double refcount (access + creation) and return NULL.
465  */
466 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
467 {
468 	struct uprobe *u;
469 
470 	spin_lock(&uprobes_treelock);
471 	u = __insert_uprobe(uprobe);
472 	spin_unlock(&uprobes_treelock);
473 
474 	return u;
475 }
476 
477 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
478 {
479 	struct uprobe *uprobe, *cur_uprobe;
480 
481 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
482 	if (!uprobe)
483 		return NULL;
484 
485 	uprobe->inode = igrab(inode);
486 	uprobe->offset = offset;
487 	init_rwsem(&uprobe->register_rwsem);
488 	init_rwsem(&uprobe->consumer_rwsem);
489 
490 	/* add to uprobes_tree, sorted on inode:offset */
491 	cur_uprobe = insert_uprobe(uprobe);
492 	/* a uprobe exists for this inode:offset combination */
493 	if (cur_uprobe) {
494 		kfree(uprobe);
495 		uprobe = cur_uprobe;
496 		iput(inode);
497 	}
498 
499 	return uprobe;
500 }
501 
502 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
503 {
504 	down_write(&uprobe->consumer_rwsem);
505 	uc->next = uprobe->consumers;
506 	uprobe->consumers = uc;
507 	up_write(&uprobe->consumer_rwsem);
508 }
509 
510 /*
511  * For uprobe @uprobe, delete the consumer @uc.
512  * Return true if the @uc is deleted successfully
513  * or return false.
514  */
515 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
516 {
517 	struct uprobe_consumer **con;
518 	bool ret = false;
519 
520 	down_write(&uprobe->consumer_rwsem);
521 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
522 		if (*con == uc) {
523 			*con = uc->next;
524 			ret = true;
525 			break;
526 		}
527 	}
528 	up_write(&uprobe->consumer_rwsem);
529 
530 	return ret;
531 }
532 
533 static int __copy_insn(struct address_space *mapping, struct file *filp,
534 			void *insn, int nbytes, loff_t offset)
535 {
536 	struct page *page;
537 	/*
538 	 * Ensure that the page that has the original instruction is populated
539 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
540 	 * see uprobe_register().
541 	 */
542 	if (mapping->a_ops->readpage)
543 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
544 	else
545 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
546 	if (IS_ERR(page))
547 		return PTR_ERR(page);
548 
549 	copy_from_page(page, offset, insn, nbytes);
550 	put_page(page);
551 
552 	return 0;
553 }
554 
555 static int copy_insn(struct uprobe *uprobe, struct file *filp)
556 {
557 	struct address_space *mapping = uprobe->inode->i_mapping;
558 	loff_t offs = uprobe->offset;
559 	void *insn = &uprobe->arch.insn;
560 	int size = sizeof(uprobe->arch.insn);
561 	int len, err = -EIO;
562 
563 	/* Copy only available bytes, -EIO if nothing was read */
564 	do {
565 		if (offs >= i_size_read(uprobe->inode))
566 			break;
567 
568 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
569 		err = __copy_insn(mapping, filp, insn, len, offs);
570 		if (err)
571 			break;
572 
573 		insn += len;
574 		offs += len;
575 		size -= len;
576 	} while (size);
577 
578 	return err;
579 }
580 
581 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
582 				struct mm_struct *mm, unsigned long vaddr)
583 {
584 	int ret = 0;
585 
586 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
587 		return ret;
588 
589 	/* TODO: move this into _register, until then we abuse this sem. */
590 	down_write(&uprobe->consumer_rwsem);
591 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
592 		goto out;
593 
594 	ret = copy_insn(uprobe, file);
595 	if (ret)
596 		goto out;
597 
598 	ret = -ENOTSUPP;
599 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
600 		goto out;
601 
602 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
603 	if (ret)
604 		goto out;
605 
606 	/* uprobe_write_opcode() assumes we don't cross page boundary */
607 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
608 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
609 
610 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
611 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
612 
613  out:
614 	up_write(&uprobe->consumer_rwsem);
615 
616 	return ret;
617 }
618 
619 static inline bool consumer_filter(struct uprobe_consumer *uc,
620 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
621 {
622 	return !uc->filter || uc->filter(uc, ctx, mm);
623 }
624 
625 static bool filter_chain(struct uprobe *uprobe,
626 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
627 {
628 	struct uprobe_consumer *uc;
629 	bool ret = false;
630 
631 	down_read(&uprobe->consumer_rwsem);
632 	for (uc = uprobe->consumers; uc; uc = uc->next) {
633 		ret = consumer_filter(uc, ctx, mm);
634 		if (ret)
635 			break;
636 	}
637 	up_read(&uprobe->consumer_rwsem);
638 
639 	return ret;
640 }
641 
642 static int
643 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
644 			struct vm_area_struct *vma, unsigned long vaddr)
645 {
646 	bool first_uprobe;
647 	int ret;
648 
649 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
650 	if (ret)
651 		return ret;
652 
653 	/*
654 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
655 	 * the task can hit this breakpoint right after __replace_page().
656 	 */
657 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
658 	if (first_uprobe)
659 		set_bit(MMF_HAS_UPROBES, &mm->flags);
660 
661 	ret = set_swbp(&uprobe->arch, mm, vaddr);
662 	if (!ret)
663 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
664 	else if (first_uprobe)
665 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
666 
667 	return ret;
668 }
669 
670 static int
671 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
672 {
673 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
674 	return set_orig_insn(&uprobe->arch, mm, vaddr);
675 }
676 
677 static inline bool uprobe_is_active(struct uprobe *uprobe)
678 {
679 	return !RB_EMPTY_NODE(&uprobe->rb_node);
680 }
681 /*
682  * There could be threads that have already hit the breakpoint. They
683  * will recheck the current insn and restart if find_uprobe() fails.
684  * See find_active_uprobe().
685  */
686 static void delete_uprobe(struct uprobe *uprobe)
687 {
688 	if (WARN_ON(!uprobe_is_active(uprobe)))
689 		return;
690 
691 	spin_lock(&uprobes_treelock);
692 	rb_erase(&uprobe->rb_node, &uprobes_tree);
693 	spin_unlock(&uprobes_treelock);
694 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
695 	iput(uprobe->inode);
696 	put_uprobe(uprobe);
697 }
698 
699 struct map_info {
700 	struct map_info *next;
701 	struct mm_struct *mm;
702 	unsigned long vaddr;
703 };
704 
705 static inline struct map_info *free_map_info(struct map_info *info)
706 {
707 	struct map_info *next = info->next;
708 	kfree(info);
709 	return next;
710 }
711 
712 static struct map_info *
713 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
714 {
715 	unsigned long pgoff = offset >> PAGE_SHIFT;
716 	struct vm_area_struct *vma;
717 	struct map_info *curr = NULL;
718 	struct map_info *prev = NULL;
719 	struct map_info *info;
720 	int more = 0;
721 
722  again:
723 	i_mmap_lock_read(mapping);
724 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
725 		if (!valid_vma(vma, is_register))
726 			continue;
727 
728 		if (!prev && !more) {
729 			/*
730 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
731 			 * reclaim. This is optimistic, no harm done if it fails.
732 			 */
733 			prev = kmalloc(sizeof(struct map_info),
734 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
735 			if (prev)
736 				prev->next = NULL;
737 		}
738 		if (!prev) {
739 			more++;
740 			continue;
741 		}
742 
743 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
744 			continue;
745 
746 		info = prev;
747 		prev = prev->next;
748 		info->next = curr;
749 		curr = info;
750 
751 		info->mm = vma->vm_mm;
752 		info->vaddr = offset_to_vaddr(vma, offset);
753 	}
754 	i_mmap_unlock_read(mapping);
755 
756 	if (!more)
757 		goto out;
758 
759 	prev = curr;
760 	while (curr) {
761 		mmput(curr->mm);
762 		curr = curr->next;
763 	}
764 
765 	do {
766 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
767 		if (!info) {
768 			curr = ERR_PTR(-ENOMEM);
769 			goto out;
770 		}
771 		info->next = prev;
772 		prev = info;
773 	} while (--more);
774 
775 	goto again;
776  out:
777 	while (prev)
778 		prev = free_map_info(prev);
779 	return curr;
780 }
781 
782 static int
783 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
784 {
785 	bool is_register = !!new;
786 	struct map_info *info;
787 	int err = 0;
788 
789 	percpu_down_write(&dup_mmap_sem);
790 	info = build_map_info(uprobe->inode->i_mapping,
791 					uprobe->offset, is_register);
792 	if (IS_ERR(info)) {
793 		err = PTR_ERR(info);
794 		goto out;
795 	}
796 
797 	while (info) {
798 		struct mm_struct *mm = info->mm;
799 		struct vm_area_struct *vma;
800 
801 		if (err && is_register)
802 			goto free;
803 
804 		down_write(&mm->mmap_sem);
805 		vma = find_vma(mm, info->vaddr);
806 		if (!vma || !valid_vma(vma, is_register) ||
807 		    file_inode(vma->vm_file) != uprobe->inode)
808 			goto unlock;
809 
810 		if (vma->vm_start > info->vaddr ||
811 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
812 			goto unlock;
813 
814 		if (is_register) {
815 			/* consult only the "caller", new consumer. */
816 			if (consumer_filter(new,
817 					UPROBE_FILTER_REGISTER, mm))
818 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
819 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
820 			if (!filter_chain(uprobe,
821 					UPROBE_FILTER_UNREGISTER, mm))
822 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
823 		}
824 
825  unlock:
826 		up_write(&mm->mmap_sem);
827  free:
828 		mmput(mm);
829 		info = free_map_info(info);
830 	}
831  out:
832 	percpu_up_write(&dup_mmap_sem);
833 	return err;
834 }
835 
836 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
837 {
838 	consumer_add(uprobe, uc);
839 	return register_for_each_vma(uprobe, uc);
840 }
841 
842 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
843 {
844 	int err;
845 
846 	if (WARN_ON(!consumer_del(uprobe, uc)))
847 		return;
848 
849 	err = register_for_each_vma(uprobe, NULL);
850 	/* TODO : cant unregister? schedule a worker thread */
851 	if (!uprobe->consumers && !err)
852 		delete_uprobe(uprobe);
853 }
854 
855 /*
856  * uprobe_register - register a probe
857  * @inode: the file in which the probe has to be placed.
858  * @offset: offset from the start of the file.
859  * @uc: information on howto handle the probe..
860  *
861  * Apart from the access refcount, uprobe_register() takes a creation
862  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
863  * inserted into the rbtree (i.e first consumer for a @inode:@offset
864  * tuple).  Creation refcount stops uprobe_unregister from freeing the
865  * @uprobe even before the register operation is complete. Creation
866  * refcount is released when the last @uc for the @uprobe
867  * unregisters.
868  *
869  * Return errno if it cannot successully install probes
870  * else return 0 (success)
871  */
872 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
873 {
874 	struct uprobe *uprobe;
875 	int ret;
876 
877 	/* Uprobe must have at least one set consumer */
878 	if (!uc->handler && !uc->ret_handler)
879 		return -EINVAL;
880 
881 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
882 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
883 		return -EIO;
884 	/* Racy, just to catch the obvious mistakes */
885 	if (offset > i_size_read(inode))
886 		return -EINVAL;
887 
888  retry:
889 	uprobe = alloc_uprobe(inode, offset);
890 	if (!uprobe)
891 		return -ENOMEM;
892 	/*
893 	 * We can race with uprobe_unregister()->delete_uprobe().
894 	 * Check uprobe_is_active() and retry if it is false.
895 	 */
896 	down_write(&uprobe->register_rwsem);
897 	ret = -EAGAIN;
898 	if (likely(uprobe_is_active(uprobe))) {
899 		ret = __uprobe_register(uprobe, uc);
900 		if (ret)
901 			__uprobe_unregister(uprobe, uc);
902 	}
903 	up_write(&uprobe->register_rwsem);
904 	put_uprobe(uprobe);
905 
906 	if (unlikely(ret == -EAGAIN))
907 		goto retry;
908 	return ret;
909 }
910 EXPORT_SYMBOL_GPL(uprobe_register);
911 
912 /*
913  * uprobe_apply - unregister a already registered probe.
914  * @inode: the file in which the probe has to be removed.
915  * @offset: offset from the start of the file.
916  * @uc: consumer which wants to add more or remove some breakpoints
917  * @add: add or remove the breakpoints
918  */
919 int uprobe_apply(struct inode *inode, loff_t offset,
920 			struct uprobe_consumer *uc, bool add)
921 {
922 	struct uprobe *uprobe;
923 	struct uprobe_consumer *con;
924 	int ret = -ENOENT;
925 
926 	uprobe = find_uprobe(inode, offset);
927 	if (WARN_ON(!uprobe))
928 		return ret;
929 
930 	down_write(&uprobe->register_rwsem);
931 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
932 		;
933 	if (con)
934 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
935 	up_write(&uprobe->register_rwsem);
936 	put_uprobe(uprobe);
937 
938 	return ret;
939 }
940 
941 /*
942  * uprobe_unregister - unregister a already registered probe.
943  * @inode: the file in which the probe has to be removed.
944  * @offset: offset from the start of the file.
945  * @uc: identify which probe if multiple probes are colocated.
946  */
947 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
948 {
949 	struct uprobe *uprobe;
950 
951 	uprobe = find_uprobe(inode, offset);
952 	if (WARN_ON(!uprobe))
953 		return;
954 
955 	down_write(&uprobe->register_rwsem);
956 	__uprobe_unregister(uprobe, uc);
957 	up_write(&uprobe->register_rwsem);
958 	put_uprobe(uprobe);
959 }
960 EXPORT_SYMBOL_GPL(uprobe_unregister);
961 
962 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
963 {
964 	struct vm_area_struct *vma;
965 	int err = 0;
966 
967 	down_read(&mm->mmap_sem);
968 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
969 		unsigned long vaddr;
970 		loff_t offset;
971 
972 		if (!valid_vma(vma, false) ||
973 		    file_inode(vma->vm_file) != uprobe->inode)
974 			continue;
975 
976 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
977 		if (uprobe->offset <  offset ||
978 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
979 			continue;
980 
981 		vaddr = offset_to_vaddr(vma, uprobe->offset);
982 		err |= remove_breakpoint(uprobe, mm, vaddr);
983 	}
984 	up_read(&mm->mmap_sem);
985 
986 	return err;
987 }
988 
989 static struct rb_node *
990 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
991 {
992 	struct rb_node *n = uprobes_tree.rb_node;
993 
994 	while (n) {
995 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
996 
997 		if (inode < u->inode) {
998 			n = n->rb_left;
999 		} else if (inode > u->inode) {
1000 			n = n->rb_right;
1001 		} else {
1002 			if (max < u->offset)
1003 				n = n->rb_left;
1004 			else if (min > u->offset)
1005 				n = n->rb_right;
1006 			else
1007 				break;
1008 		}
1009 	}
1010 
1011 	return n;
1012 }
1013 
1014 /*
1015  * For a given range in vma, build a list of probes that need to be inserted.
1016  */
1017 static void build_probe_list(struct inode *inode,
1018 				struct vm_area_struct *vma,
1019 				unsigned long start, unsigned long end,
1020 				struct list_head *head)
1021 {
1022 	loff_t min, max;
1023 	struct rb_node *n, *t;
1024 	struct uprobe *u;
1025 
1026 	INIT_LIST_HEAD(head);
1027 	min = vaddr_to_offset(vma, start);
1028 	max = min + (end - start) - 1;
1029 
1030 	spin_lock(&uprobes_treelock);
1031 	n = find_node_in_range(inode, min, max);
1032 	if (n) {
1033 		for (t = n; t; t = rb_prev(t)) {
1034 			u = rb_entry(t, struct uprobe, rb_node);
1035 			if (u->inode != inode || u->offset < min)
1036 				break;
1037 			list_add(&u->pending_list, head);
1038 			get_uprobe(u);
1039 		}
1040 		for (t = n; (t = rb_next(t)); ) {
1041 			u = rb_entry(t, struct uprobe, rb_node);
1042 			if (u->inode != inode || u->offset > max)
1043 				break;
1044 			list_add(&u->pending_list, head);
1045 			get_uprobe(u);
1046 		}
1047 	}
1048 	spin_unlock(&uprobes_treelock);
1049 }
1050 
1051 /*
1052  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1053  *
1054  * Currently we ignore all errors and always return 0, the callers
1055  * can't handle the failure anyway.
1056  */
1057 int uprobe_mmap(struct vm_area_struct *vma)
1058 {
1059 	struct list_head tmp_list;
1060 	struct uprobe *uprobe, *u;
1061 	struct inode *inode;
1062 
1063 	if (no_uprobe_events() || !valid_vma(vma, true))
1064 		return 0;
1065 
1066 	inode = file_inode(vma->vm_file);
1067 	if (!inode)
1068 		return 0;
1069 
1070 	mutex_lock(uprobes_mmap_hash(inode));
1071 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1072 	/*
1073 	 * We can race with uprobe_unregister(), this uprobe can be already
1074 	 * removed. But in this case filter_chain() must return false, all
1075 	 * consumers have gone away.
1076 	 */
1077 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1078 		if (!fatal_signal_pending(current) &&
1079 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1080 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1081 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1082 		}
1083 		put_uprobe(uprobe);
1084 	}
1085 	mutex_unlock(uprobes_mmap_hash(inode));
1086 
1087 	return 0;
1088 }
1089 
1090 static bool
1091 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1092 {
1093 	loff_t min, max;
1094 	struct inode *inode;
1095 	struct rb_node *n;
1096 
1097 	inode = file_inode(vma->vm_file);
1098 
1099 	min = vaddr_to_offset(vma, start);
1100 	max = min + (end - start) - 1;
1101 
1102 	spin_lock(&uprobes_treelock);
1103 	n = find_node_in_range(inode, min, max);
1104 	spin_unlock(&uprobes_treelock);
1105 
1106 	return !!n;
1107 }
1108 
1109 /*
1110  * Called in context of a munmap of a vma.
1111  */
1112 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1113 {
1114 	if (no_uprobe_events() || !valid_vma(vma, false))
1115 		return;
1116 
1117 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1118 		return;
1119 
1120 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1121 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1122 		return;
1123 
1124 	if (vma_has_uprobes(vma, start, end))
1125 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1126 }
1127 
1128 /* Slot allocation for XOL */
1129 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1130 {
1131 	struct vm_area_struct *vma;
1132 	int ret;
1133 
1134 	if (down_write_killable(&mm->mmap_sem))
1135 		return -EINTR;
1136 
1137 	if (mm->uprobes_state.xol_area) {
1138 		ret = -EALREADY;
1139 		goto fail;
1140 	}
1141 
1142 	if (!area->vaddr) {
1143 		/* Try to map as high as possible, this is only a hint. */
1144 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1145 						PAGE_SIZE, 0, 0);
1146 		if (area->vaddr & ~PAGE_MASK) {
1147 			ret = area->vaddr;
1148 			goto fail;
1149 		}
1150 	}
1151 
1152 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1153 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1154 				&area->xol_mapping);
1155 	if (IS_ERR(vma)) {
1156 		ret = PTR_ERR(vma);
1157 		goto fail;
1158 	}
1159 
1160 	ret = 0;
1161 	smp_wmb();	/* pairs with get_xol_area() */
1162 	mm->uprobes_state.xol_area = area;
1163  fail:
1164 	up_write(&mm->mmap_sem);
1165 
1166 	return ret;
1167 }
1168 
1169 static struct xol_area *__create_xol_area(unsigned long vaddr)
1170 {
1171 	struct mm_struct *mm = current->mm;
1172 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1173 	struct xol_area *area;
1174 
1175 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1176 	if (unlikely(!area))
1177 		goto out;
1178 
1179 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1180 	if (!area->bitmap)
1181 		goto free_area;
1182 
1183 	area->xol_mapping.name = "[uprobes]";
1184 	area->xol_mapping.fault = NULL;
1185 	area->xol_mapping.pages = area->pages;
1186 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1187 	if (!area->pages[0])
1188 		goto free_bitmap;
1189 	area->pages[1] = NULL;
1190 
1191 	area->vaddr = vaddr;
1192 	init_waitqueue_head(&area->wq);
1193 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1194 	set_bit(0, area->bitmap);
1195 	atomic_set(&area->slot_count, 1);
1196 	copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1197 
1198 	if (!xol_add_vma(mm, area))
1199 		return area;
1200 
1201 	__free_page(area->pages[0]);
1202  free_bitmap:
1203 	kfree(area->bitmap);
1204  free_area:
1205 	kfree(area);
1206  out:
1207 	return NULL;
1208 }
1209 
1210 /*
1211  * get_xol_area - Allocate process's xol_area if necessary.
1212  * This area will be used for storing instructions for execution out of line.
1213  *
1214  * Returns the allocated area or NULL.
1215  */
1216 static struct xol_area *get_xol_area(void)
1217 {
1218 	struct mm_struct *mm = current->mm;
1219 	struct xol_area *area;
1220 
1221 	if (!mm->uprobes_state.xol_area)
1222 		__create_xol_area(0);
1223 
1224 	area = mm->uprobes_state.xol_area;
1225 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1226 	return area;
1227 }
1228 
1229 /*
1230  * uprobe_clear_state - Free the area allocated for slots.
1231  */
1232 void uprobe_clear_state(struct mm_struct *mm)
1233 {
1234 	struct xol_area *area = mm->uprobes_state.xol_area;
1235 
1236 	if (!area)
1237 		return;
1238 
1239 	put_page(area->pages[0]);
1240 	kfree(area->bitmap);
1241 	kfree(area);
1242 }
1243 
1244 void uprobe_start_dup_mmap(void)
1245 {
1246 	percpu_down_read(&dup_mmap_sem);
1247 }
1248 
1249 void uprobe_end_dup_mmap(void)
1250 {
1251 	percpu_up_read(&dup_mmap_sem);
1252 }
1253 
1254 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1255 {
1256 	newmm->uprobes_state.xol_area = NULL;
1257 
1258 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1259 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1260 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1261 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1262 	}
1263 }
1264 
1265 /*
1266  *  - search for a free slot.
1267  */
1268 static unsigned long xol_take_insn_slot(struct xol_area *area)
1269 {
1270 	unsigned long slot_addr;
1271 	int slot_nr;
1272 
1273 	do {
1274 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1275 		if (slot_nr < UINSNS_PER_PAGE) {
1276 			if (!test_and_set_bit(slot_nr, area->bitmap))
1277 				break;
1278 
1279 			slot_nr = UINSNS_PER_PAGE;
1280 			continue;
1281 		}
1282 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1283 	} while (slot_nr >= UINSNS_PER_PAGE);
1284 
1285 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1286 	atomic_inc(&area->slot_count);
1287 
1288 	return slot_addr;
1289 }
1290 
1291 /*
1292  * xol_get_insn_slot - allocate a slot for xol.
1293  * Returns the allocated slot address or 0.
1294  */
1295 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1296 {
1297 	struct xol_area *area;
1298 	unsigned long xol_vaddr;
1299 
1300 	area = get_xol_area();
1301 	if (!area)
1302 		return 0;
1303 
1304 	xol_vaddr = xol_take_insn_slot(area);
1305 	if (unlikely(!xol_vaddr))
1306 		return 0;
1307 
1308 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1309 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1310 
1311 	return xol_vaddr;
1312 }
1313 
1314 /*
1315  * xol_free_insn_slot - If slot was earlier allocated by
1316  * @xol_get_insn_slot(), make the slot available for
1317  * subsequent requests.
1318  */
1319 static void xol_free_insn_slot(struct task_struct *tsk)
1320 {
1321 	struct xol_area *area;
1322 	unsigned long vma_end;
1323 	unsigned long slot_addr;
1324 
1325 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1326 		return;
1327 
1328 	slot_addr = tsk->utask->xol_vaddr;
1329 	if (unlikely(!slot_addr))
1330 		return;
1331 
1332 	area = tsk->mm->uprobes_state.xol_area;
1333 	vma_end = area->vaddr + PAGE_SIZE;
1334 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1335 		unsigned long offset;
1336 		int slot_nr;
1337 
1338 		offset = slot_addr - area->vaddr;
1339 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1340 		if (slot_nr >= UINSNS_PER_PAGE)
1341 			return;
1342 
1343 		clear_bit(slot_nr, area->bitmap);
1344 		atomic_dec(&area->slot_count);
1345 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1346 		if (waitqueue_active(&area->wq))
1347 			wake_up(&area->wq);
1348 
1349 		tsk->utask->xol_vaddr = 0;
1350 	}
1351 }
1352 
1353 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1354 				  void *src, unsigned long len)
1355 {
1356 	/* Initialize the slot */
1357 	copy_to_page(page, vaddr, src, len);
1358 
1359 	/*
1360 	 * We probably need flush_icache_user_range() but it needs vma.
1361 	 * This should work on most of architectures by default. If
1362 	 * architecture needs to do something different it can define
1363 	 * its own version of the function.
1364 	 */
1365 	flush_dcache_page(page);
1366 }
1367 
1368 /**
1369  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1370  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1371  * instruction.
1372  * Return the address of the breakpoint instruction.
1373  */
1374 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1375 {
1376 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1377 }
1378 
1379 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1380 {
1381 	struct uprobe_task *utask = current->utask;
1382 
1383 	if (unlikely(utask && utask->active_uprobe))
1384 		return utask->vaddr;
1385 
1386 	return instruction_pointer(regs);
1387 }
1388 
1389 static struct return_instance *free_ret_instance(struct return_instance *ri)
1390 {
1391 	struct return_instance *next = ri->next;
1392 	put_uprobe(ri->uprobe);
1393 	kfree(ri);
1394 	return next;
1395 }
1396 
1397 /*
1398  * Called with no locks held.
1399  * Called in context of a exiting or a exec-ing thread.
1400  */
1401 void uprobe_free_utask(struct task_struct *t)
1402 {
1403 	struct uprobe_task *utask = t->utask;
1404 	struct return_instance *ri;
1405 
1406 	if (!utask)
1407 		return;
1408 
1409 	if (utask->active_uprobe)
1410 		put_uprobe(utask->active_uprobe);
1411 
1412 	ri = utask->return_instances;
1413 	while (ri)
1414 		ri = free_ret_instance(ri);
1415 
1416 	xol_free_insn_slot(t);
1417 	kfree(utask);
1418 	t->utask = NULL;
1419 }
1420 
1421 /*
1422  * Allocate a uprobe_task object for the task if if necessary.
1423  * Called when the thread hits a breakpoint.
1424  *
1425  * Returns:
1426  * - pointer to new uprobe_task on success
1427  * - NULL otherwise
1428  */
1429 static struct uprobe_task *get_utask(void)
1430 {
1431 	if (!current->utask)
1432 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1433 	return current->utask;
1434 }
1435 
1436 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1437 {
1438 	struct uprobe_task *n_utask;
1439 	struct return_instance **p, *o, *n;
1440 
1441 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1442 	if (!n_utask)
1443 		return -ENOMEM;
1444 	t->utask = n_utask;
1445 
1446 	p = &n_utask->return_instances;
1447 	for (o = o_utask->return_instances; o; o = o->next) {
1448 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1449 		if (!n)
1450 			return -ENOMEM;
1451 
1452 		*n = *o;
1453 		get_uprobe(n->uprobe);
1454 		n->next = NULL;
1455 
1456 		*p = n;
1457 		p = &n->next;
1458 		n_utask->depth++;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 static void uprobe_warn(struct task_struct *t, const char *msg)
1465 {
1466 	pr_warn("uprobe: %s:%d failed to %s\n",
1467 			current->comm, current->pid, msg);
1468 }
1469 
1470 static void dup_xol_work(struct callback_head *work)
1471 {
1472 	if (current->flags & PF_EXITING)
1473 		return;
1474 
1475 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1476 			!fatal_signal_pending(current))
1477 		uprobe_warn(current, "dup xol area");
1478 }
1479 
1480 /*
1481  * Called in context of a new clone/fork from copy_process.
1482  */
1483 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1484 {
1485 	struct uprobe_task *utask = current->utask;
1486 	struct mm_struct *mm = current->mm;
1487 	struct xol_area *area;
1488 
1489 	t->utask = NULL;
1490 
1491 	if (!utask || !utask->return_instances)
1492 		return;
1493 
1494 	if (mm == t->mm && !(flags & CLONE_VFORK))
1495 		return;
1496 
1497 	if (dup_utask(t, utask))
1498 		return uprobe_warn(t, "dup ret instances");
1499 
1500 	/* The task can fork() after dup_xol_work() fails */
1501 	area = mm->uprobes_state.xol_area;
1502 	if (!area)
1503 		return uprobe_warn(t, "dup xol area");
1504 
1505 	if (mm == t->mm)
1506 		return;
1507 
1508 	t->utask->dup_xol_addr = area->vaddr;
1509 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1510 	task_work_add(t, &t->utask->dup_xol_work, true);
1511 }
1512 
1513 /*
1514  * Current area->vaddr notion assume the trampoline address is always
1515  * equal area->vaddr.
1516  *
1517  * Returns -1 in case the xol_area is not allocated.
1518  */
1519 static unsigned long get_trampoline_vaddr(void)
1520 {
1521 	struct xol_area *area;
1522 	unsigned long trampoline_vaddr = -1;
1523 
1524 	area = current->mm->uprobes_state.xol_area;
1525 	smp_read_barrier_depends();
1526 	if (area)
1527 		trampoline_vaddr = area->vaddr;
1528 
1529 	return trampoline_vaddr;
1530 }
1531 
1532 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1533 					struct pt_regs *regs)
1534 {
1535 	struct return_instance *ri = utask->return_instances;
1536 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1537 
1538 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1539 		ri = free_ret_instance(ri);
1540 		utask->depth--;
1541 	}
1542 	utask->return_instances = ri;
1543 }
1544 
1545 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1546 {
1547 	struct return_instance *ri;
1548 	struct uprobe_task *utask;
1549 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1550 	bool chained;
1551 
1552 	if (!get_xol_area())
1553 		return;
1554 
1555 	utask = get_utask();
1556 	if (!utask)
1557 		return;
1558 
1559 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1560 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1561 				" nestedness limit pid/tgid=%d/%d\n",
1562 				current->pid, current->tgid);
1563 		return;
1564 	}
1565 
1566 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1567 	if (!ri)
1568 		return;
1569 
1570 	trampoline_vaddr = get_trampoline_vaddr();
1571 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1572 	if (orig_ret_vaddr == -1)
1573 		goto fail;
1574 
1575 	/* drop the entries invalidated by longjmp() */
1576 	chained = (orig_ret_vaddr == trampoline_vaddr);
1577 	cleanup_return_instances(utask, chained, regs);
1578 
1579 	/*
1580 	 * We don't want to keep trampoline address in stack, rather keep the
1581 	 * original return address of first caller thru all the consequent
1582 	 * instances. This also makes breakpoint unwrapping easier.
1583 	 */
1584 	if (chained) {
1585 		if (!utask->return_instances) {
1586 			/*
1587 			 * This situation is not possible. Likely we have an
1588 			 * attack from user-space.
1589 			 */
1590 			uprobe_warn(current, "handle tail call");
1591 			goto fail;
1592 		}
1593 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1594 	}
1595 
1596 	ri->uprobe = get_uprobe(uprobe);
1597 	ri->func = instruction_pointer(regs);
1598 	ri->stack = user_stack_pointer(regs);
1599 	ri->orig_ret_vaddr = orig_ret_vaddr;
1600 	ri->chained = chained;
1601 
1602 	utask->depth++;
1603 	ri->next = utask->return_instances;
1604 	utask->return_instances = ri;
1605 
1606 	return;
1607  fail:
1608 	kfree(ri);
1609 }
1610 
1611 /* Prepare to single-step probed instruction out of line. */
1612 static int
1613 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1614 {
1615 	struct uprobe_task *utask;
1616 	unsigned long xol_vaddr;
1617 	int err;
1618 
1619 	utask = get_utask();
1620 	if (!utask)
1621 		return -ENOMEM;
1622 
1623 	xol_vaddr = xol_get_insn_slot(uprobe);
1624 	if (!xol_vaddr)
1625 		return -ENOMEM;
1626 
1627 	utask->xol_vaddr = xol_vaddr;
1628 	utask->vaddr = bp_vaddr;
1629 
1630 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1631 	if (unlikely(err)) {
1632 		xol_free_insn_slot(current);
1633 		return err;
1634 	}
1635 
1636 	utask->active_uprobe = uprobe;
1637 	utask->state = UTASK_SSTEP;
1638 	return 0;
1639 }
1640 
1641 /*
1642  * If we are singlestepping, then ensure this thread is not connected to
1643  * non-fatal signals until completion of singlestep.  When xol insn itself
1644  * triggers the signal,  restart the original insn even if the task is
1645  * already SIGKILL'ed (since coredump should report the correct ip).  This
1646  * is even more important if the task has a handler for SIGSEGV/etc, The
1647  * _same_ instruction should be repeated again after return from the signal
1648  * handler, and SSTEP can never finish in this case.
1649  */
1650 bool uprobe_deny_signal(void)
1651 {
1652 	struct task_struct *t = current;
1653 	struct uprobe_task *utask = t->utask;
1654 
1655 	if (likely(!utask || !utask->active_uprobe))
1656 		return false;
1657 
1658 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1659 
1660 	if (signal_pending(t)) {
1661 		spin_lock_irq(&t->sighand->siglock);
1662 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1663 		spin_unlock_irq(&t->sighand->siglock);
1664 
1665 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1666 			utask->state = UTASK_SSTEP_TRAPPED;
1667 			set_tsk_thread_flag(t, TIF_UPROBE);
1668 		}
1669 	}
1670 
1671 	return true;
1672 }
1673 
1674 static void mmf_recalc_uprobes(struct mm_struct *mm)
1675 {
1676 	struct vm_area_struct *vma;
1677 
1678 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1679 		if (!valid_vma(vma, false))
1680 			continue;
1681 		/*
1682 		 * This is not strictly accurate, we can race with
1683 		 * uprobe_unregister() and see the already removed
1684 		 * uprobe if delete_uprobe() was not yet called.
1685 		 * Or this uprobe can be filtered out.
1686 		 */
1687 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1688 			return;
1689 	}
1690 
1691 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1692 }
1693 
1694 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1695 {
1696 	struct page *page;
1697 	uprobe_opcode_t opcode;
1698 	int result;
1699 
1700 	pagefault_disable();
1701 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1702 	pagefault_enable();
1703 
1704 	if (likely(result == 0))
1705 		goto out;
1706 
1707 	/*
1708 	 * The NULL 'tsk' here ensures that any faults that occur here
1709 	 * will not be accounted to the task.  'mm' *is* current->mm,
1710 	 * but we treat this as a 'remote' access since it is
1711 	 * essentially a kernel access to the memory.
1712 	 */
1713 	result = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1714 	if (result < 0)
1715 		return result;
1716 
1717 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1718 	put_page(page);
1719  out:
1720 	/* This needs to return true for any variant of the trap insn */
1721 	return is_trap_insn(&opcode);
1722 }
1723 
1724 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1725 {
1726 	struct mm_struct *mm = current->mm;
1727 	struct uprobe *uprobe = NULL;
1728 	struct vm_area_struct *vma;
1729 
1730 	down_read(&mm->mmap_sem);
1731 	vma = find_vma(mm, bp_vaddr);
1732 	if (vma && vma->vm_start <= bp_vaddr) {
1733 		if (valid_vma(vma, false)) {
1734 			struct inode *inode = file_inode(vma->vm_file);
1735 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1736 
1737 			uprobe = find_uprobe(inode, offset);
1738 		}
1739 
1740 		if (!uprobe)
1741 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1742 	} else {
1743 		*is_swbp = -EFAULT;
1744 	}
1745 
1746 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1747 		mmf_recalc_uprobes(mm);
1748 	up_read(&mm->mmap_sem);
1749 
1750 	return uprobe;
1751 }
1752 
1753 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1754 {
1755 	struct uprobe_consumer *uc;
1756 	int remove = UPROBE_HANDLER_REMOVE;
1757 	bool need_prep = false; /* prepare return uprobe, when needed */
1758 
1759 	down_read(&uprobe->register_rwsem);
1760 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1761 		int rc = 0;
1762 
1763 		if (uc->handler) {
1764 			rc = uc->handler(uc, regs);
1765 			WARN(rc & ~UPROBE_HANDLER_MASK,
1766 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1767 		}
1768 
1769 		if (uc->ret_handler)
1770 			need_prep = true;
1771 
1772 		remove &= rc;
1773 	}
1774 
1775 	if (need_prep && !remove)
1776 		prepare_uretprobe(uprobe, regs); /* put bp at return */
1777 
1778 	if (remove && uprobe->consumers) {
1779 		WARN_ON(!uprobe_is_active(uprobe));
1780 		unapply_uprobe(uprobe, current->mm);
1781 	}
1782 	up_read(&uprobe->register_rwsem);
1783 }
1784 
1785 static void
1786 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1787 {
1788 	struct uprobe *uprobe = ri->uprobe;
1789 	struct uprobe_consumer *uc;
1790 
1791 	down_read(&uprobe->register_rwsem);
1792 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1793 		if (uc->ret_handler)
1794 			uc->ret_handler(uc, ri->func, regs);
1795 	}
1796 	up_read(&uprobe->register_rwsem);
1797 }
1798 
1799 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1800 {
1801 	bool chained;
1802 
1803 	do {
1804 		chained = ri->chained;
1805 		ri = ri->next;	/* can't be NULL if chained */
1806 	} while (chained);
1807 
1808 	return ri;
1809 }
1810 
1811 static void handle_trampoline(struct pt_regs *regs)
1812 {
1813 	struct uprobe_task *utask;
1814 	struct return_instance *ri, *next;
1815 	bool valid;
1816 
1817 	utask = current->utask;
1818 	if (!utask)
1819 		goto sigill;
1820 
1821 	ri = utask->return_instances;
1822 	if (!ri)
1823 		goto sigill;
1824 
1825 	do {
1826 		/*
1827 		 * We should throw out the frames invalidated by longjmp().
1828 		 * If this chain is valid, then the next one should be alive
1829 		 * or NULL; the latter case means that nobody but ri->func
1830 		 * could hit this trampoline on return. TODO: sigaltstack().
1831 		 */
1832 		next = find_next_ret_chain(ri);
1833 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1834 
1835 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
1836 		do {
1837 			if (valid)
1838 				handle_uretprobe_chain(ri, regs);
1839 			ri = free_ret_instance(ri);
1840 			utask->depth--;
1841 		} while (ri != next);
1842 	} while (!valid);
1843 
1844 	utask->return_instances = ri;
1845 	return;
1846 
1847  sigill:
1848 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1849 	force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1850 
1851 }
1852 
1853 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1854 {
1855 	return false;
1856 }
1857 
1858 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1859 					struct pt_regs *regs)
1860 {
1861 	return true;
1862 }
1863 
1864 /*
1865  * Run handler and ask thread to singlestep.
1866  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1867  */
1868 static void handle_swbp(struct pt_regs *regs)
1869 {
1870 	struct uprobe *uprobe;
1871 	unsigned long bp_vaddr;
1872 	int uninitialized_var(is_swbp);
1873 
1874 	bp_vaddr = uprobe_get_swbp_addr(regs);
1875 	if (bp_vaddr == get_trampoline_vaddr())
1876 		return handle_trampoline(regs);
1877 
1878 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1879 	if (!uprobe) {
1880 		if (is_swbp > 0) {
1881 			/* No matching uprobe; signal SIGTRAP. */
1882 			send_sig(SIGTRAP, current, 0);
1883 		} else {
1884 			/*
1885 			 * Either we raced with uprobe_unregister() or we can't
1886 			 * access this memory. The latter is only possible if
1887 			 * another thread plays with our ->mm. In both cases
1888 			 * we can simply restart. If this vma was unmapped we
1889 			 * can pretend this insn was not executed yet and get
1890 			 * the (correct) SIGSEGV after restart.
1891 			 */
1892 			instruction_pointer_set(regs, bp_vaddr);
1893 		}
1894 		return;
1895 	}
1896 
1897 	/* change it in advance for ->handler() and restart */
1898 	instruction_pointer_set(regs, bp_vaddr);
1899 
1900 	/*
1901 	 * TODO: move copy_insn/etc into _register and remove this hack.
1902 	 * After we hit the bp, _unregister + _register can install the
1903 	 * new and not-yet-analyzed uprobe at the same address, restart.
1904 	 */
1905 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1906 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1907 		goto out;
1908 
1909 	/* Tracing handlers use ->utask to communicate with fetch methods */
1910 	if (!get_utask())
1911 		goto out;
1912 
1913 	if (arch_uprobe_ignore(&uprobe->arch, regs))
1914 		goto out;
1915 
1916 	handler_chain(uprobe, regs);
1917 
1918 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1919 		goto out;
1920 
1921 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1922 		return;
1923 
1924 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1925 out:
1926 	put_uprobe(uprobe);
1927 }
1928 
1929 /*
1930  * Perform required fix-ups and disable singlestep.
1931  * Allow pending signals to take effect.
1932  */
1933 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1934 {
1935 	struct uprobe *uprobe;
1936 	int err = 0;
1937 
1938 	uprobe = utask->active_uprobe;
1939 	if (utask->state == UTASK_SSTEP_ACK)
1940 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1941 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1942 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1943 	else
1944 		WARN_ON_ONCE(1);
1945 
1946 	put_uprobe(uprobe);
1947 	utask->active_uprobe = NULL;
1948 	utask->state = UTASK_RUNNING;
1949 	xol_free_insn_slot(current);
1950 
1951 	spin_lock_irq(&current->sighand->siglock);
1952 	recalc_sigpending(); /* see uprobe_deny_signal() */
1953 	spin_unlock_irq(&current->sighand->siglock);
1954 
1955 	if (unlikely(err)) {
1956 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1957 		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1958 	}
1959 }
1960 
1961 /*
1962  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1963  * allows the thread to return from interrupt. After that handle_swbp()
1964  * sets utask->active_uprobe.
1965  *
1966  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1967  * and allows the thread to return from interrupt.
1968  *
1969  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1970  * uprobe_notify_resume().
1971  */
1972 void uprobe_notify_resume(struct pt_regs *regs)
1973 {
1974 	struct uprobe_task *utask;
1975 
1976 	clear_thread_flag(TIF_UPROBE);
1977 
1978 	utask = current->utask;
1979 	if (utask && utask->active_uprobe)
1980 		handle_singlestep(utask, regs);
1981 	else
1982 		handle_swbp(regs);
1983 }
1984 
1985 /*
1986  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1987  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1988  */
1989 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1990 {
1991 	if (!current->mm)
1992 		return 0;
1993 
1994 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1995 	    (!current->utask || !current->utask->return_instances))
1996 		return 0;
1997 
1998 	set_thread_flag(TIF_UPROBE);
1999 	return 1;
2000 }
2001 
2002 /*
2003  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2004  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2005  */
2006 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2007 {
2008 	struct uprobe_task *utask = current->utask;
2009 
2010 	if (!current->mm || !utask || !utask->active_uprobe)
2011 		/* task is currently not uprobed */
2012 		return 0;
2013 
2014 	utask->state = UTASK_SSTEP_ACK;
2015 	set_thread_flag(TIF_UPROBE);
2016 	return 1;
2017 }
2018 
2019 static struct notifier_block uprobe_exception_nb = {
2020 	.notifier_call		= arch_uprobe_exception_notify,
2021 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2022 };
2023 
2024 static int __init init_uprobes(void)
2025 {
2026 	int i;
2027 
2028 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2029 		mutex_init(&uprobes_mmap_mutex[i]);
2030 
2031 	if (percpu_init_rwsem(&dup_mmap_sem))
2032 		return -ENOMEM;
2033 
2034 	return register_die_notifier(&uprobe_exception_nb);
2035 }
2036 __initcall(init_uprobes);
2037