1 /* 2 * Performance events ring-buffer code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/perf_event.h> 13 #include <linux/vmalloc.h> 14 #include <linux/slab.h> 15 #include <linux/circ_buf.h> 16 #include <linux/poll.h> 17 18 #include "internal.h" 19 20 static void perf_output_wakeup(struct perf_output_handle *handle) 21 { 22 atomic_set(&handle->rb->poll, POLLIN); 23 24 handle->event->pending_wakeup = 1; 25 irq_work_queue(&handle->event->pending); 26 } 27 28 /* 29 * We need to ensure a later event_id doesn't publish a head when a former 30 * event isn't done writing. However since we need to deal with NMIs we 31 * cannot fully serialize things. 32 * 33 * We only publish the head (and generate a wakeup) when the outer-most 34 * event completes. 35 */ 36 static void perf_output_get_handle(struct perf_output_handle *handle) 37 { 38 struct ring_buffer *rb = handle->rb; 39 40 preempt_disable(); 41 local_inc(&rb->nest); 42 handle->wakeup = local_read(&rb->wakeup); 43 } 44 45 static void perf_output_put_handle(struct perf_output_handle *handle) 46 { 47 struct ring_buffer *rb = handle->rb; 48 unsigned long head; 49 50 again: 51 head = local_read(&rb->head); 52 53 /* 54 * IRQ/NMI can happen here, which means we can miss a head update. 55 */ 56 57 if (!local_dec_and_test(&rb->nest)) 58 goto out; 59 60 /* 61 * Since the mmap() consumer (userspace) can run on a different CPU: 62 * 63 * kernel user 64 * 65 * if (LOAD ->data_tail) { LOAD ->data_head 66 * (A) smp_rmb() (C) 67 * STORE $data LOAD $data 68 * smp_wmb() (B) smp_mb() (D) 69 * STORE ->data_head STORE ->data_tail 70 * } 71 * 72 * Where A pairs with D, and B pairs with C. 73 * 74 * In our case (A) is a control dependency that separates the load of 75 * the ->data_tail and the stores of $data. In case ->data_tail 76 * indicates there is no room in the buffer to store $data we do not. 77 * 78 * D needs to be a full barrier since it separates the data READ 79 * from the tail WRITE. 80 * 81 * For B a WMB is sufficient since it separates two WRITEs, and for C 82 * an RMB is sufficient since it separates two READs. 83 * 84 * See perf_output_begin(). 85 */ 86 smp_wmb(); /* B, matches C */ 87 rb->user_page->data_head = head; 88 89 /* 90 * Now check if we missed an update -- rely on previous implied 91 * compiler barriers to force a re-read. 92 */ 93 if (unlikely(head != local_read(&rb->head))) { 94 local_inc(&rb->nest); 95 goto again; 96 } 97 98 if (handle->wakeup != local_read(&rb->wakeup)) 99 perf_output_wakeup(handle); 100 101 out: 102 preempt_enable(); 103 } 104 105 int perf_output_begin(struct perf_output_handle *handle, 106 struct perf_event *event, unsigned int size) 107 { 108 struct ring_buffer *rb; 109 unsigned long tail, offset, head; 110 int have_lost, page_shift; 111 struct { 112 struct perf_event_header header; 113 u64 id; 114 u64 lost; 115 } lost_event; 116 117 rcu_read_lock(); 118 /* 119 * For inherited events we send all the output towards the parent. 120 */ 121 if (event->parent) 122 event = event->parent; 123 124 rb = rcu_dereference(event->rb); 125 if (unlikely(!rb)) 126 goto out; 127 128 if (unlikely(!rb->nr_pages)) 129 goto out; 130 131 handle->rb = rb; 132 handle->event = event; 133 134 have_lost = local_read(&rb->lost); 135 if (unlikely(have_lost)) { 136 size += sizeof(lost_event); 137 if (event->attr.sample_id_all) 138 size += event->id_header_size; 139 } 140 141 perf_output_get_handle(handle); 142 143 do { 144 tail = ACCESS_ONCE(rb->user_page->data_tail); 145 offset = head = local_read(&rb->head); 146 if (!rb->overwrite && 147 unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size)) 148 goto fail; 149 150 /* 151 * The above forms a control dependency barrier separating the 152 * @tail load above from the data stores below. Since the @tail 153 * load is required to compute the branch to fail below. 154 * 155 * A, matches D; the full memory barrier userspace SHOULD issue 156 * after reading the data and before storing the new tail 157 * position. 158 * 159 * See perf_output_put_handle(). 160 */ 161 162 head += size; 163 } while (local_cmpxchg(&rb->head, offset, head) != offset); 164 165 /* 166 * We rely on the implied barrier() by local_cmpxchg() to ensure 167 * none of the data stores below can be lifted up by the compiler. 168 */ 169 170 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 171 local_add(rb->watermark, &rb->wakeup); 172 173 page_shift = PAGE_SHIFT + page_order(rb); 174 175 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 176 offset &= (1UL << page_shift) - 1; 177 handle->addr = rb->data_pages[handle->page] + offset; 178 handle->size = (1UL << page_shift) - offset; 179 180 if (unlikely(have_lost)) { 181 struct perf_sample_data sample_data; 182 183 lost_event.header.size = sizeof(lost_event); 184 lost_event.header.type = PERF_RECORD_LOST; 185 lost_event.header.misc = 0; 186 lost_event.id = event->id; 187 lost_event.lost = local_xchg(&rb->lost, 0); 188 189 perf_event_header__init_id(&lost_event.header, 190 &sample_data, event); 191 perf_output_put(handle, lost_event); 192 perf_event__output_id_sample(event, handle, &sample_data); 193 } 194 195 return 0; 196 197 fail: 198 local_inc(&rb->lost); 199 perf_output_put_handle(handle); 200 out: 201 rcu_read_unlock(); 202 203 return -ENOSPC; 204 } 205 206 unsigned int perf_output_copy(struct perf_output_handle *handle, 207 const void *buf, unsigned int len) 208 { 209 return __output_copy(handle, buf, len); 210 } 211 212 unsigned int perf_output_skip(struct perf_output_handle *handle, 213 unsigned int len) 214 { 215 return __output_skip(handle, NULL, len); 216 } 217 218 void perf_output_end(struct perf_output_handle *handle) 219 { 220 perf_output_put_handle(handle); 221 rcu_read_unlock(); 222 } 223 224 static void 225 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) 226 { 227 long max_size = perf_data_size(rb); 228 229 if (watermark) 230 rb->watermark = min(max_size, watermark); 231 232 if (!rb->watermark) 233 rb->watermark = max_size / 2; 234 235 if (flags & RING_BUFFER_WRITABLE) 236 rb->overwrite = 0; 237 else 238 rb->overwrite = 1; 239 240 atomic_set(&rb->refcount, 1); 241 242 INIT_LIST_HEAD(&rb->event_list); 243 spin_lock_init(&rb->event_lock); 244 } 245 246 /* 247 * This is called before hardware starts writing to the AUX area to 248 * obtain an output handle and make sure there's room in the buffer. 249 * When the capture completes, call perf_aux_output_end() to commit 250 * the recorded data to the buffer. 251 * 252 * The ordering is similar to that of perf_output_{begin,end}, with 253 * the exception of (B), which should be taken care of by the pmu 254 * driver, since ordering rules will differ depending on hardware. 255 */ 256 void *perf_aux_output_begin(struct perf_output_handle *handle, 257 struct perf_event *event) 258 { 259 struct perf_event *output_event = event; 260 unsigned long aux_head, aux_tail; 261 struct ring_buffer *rb; 262 263 if (output_event->parent) 264 output_event = output_event->parent; 265 266 /* 267 * Since this will typically be open across pmu::add/pmu::del, we 268 * grab ring_buffer's refcount instead of holding rcu read lock 269 * to make sure it doesn't disappear under us. 270 */ 271 rb = ring_buffer_get(output_event); 272 if (!rb) 273 return NULL; 274 275 if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount)) 276 goto err; 277 278 /* 279 * Nesting is not supported for AUX area, make sure nested 280 * writers are caught early 281 */ 282 if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1))) 283 goto err_put; 284 285 aux_head = local_read(&rb->aux_head); 286 287 handle->rb = rb; 288 handle->event = event; 289 handle->head = aux_head; 290 handle->size = 0; 291 292 /* 293 * In overwrite mode, AUX data stores do not depend on aux_tail, 294 * therefore (A) control dependency barrier does not exist. The 295 * (B) <-> (C) ordering is still observed by the pmu driver. 296 */ 297 if (!rb->aux_overwrite) { 298 aux_tail = ACCESS_ONCE(rb->user_page->aux_tail); 299 handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark; 300 if (aux_head - aux_tail < perf_aux_size(rb)) 301 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 302 303 /* 304 * handle->size computation depends on aux_tail load; this forms a 305 * control dependency barrier separating aux_tail load from aux data 306 * store that will be enabled on successful return 307 */ 308 if (!handle->size) { /* A, matches D */ 309 event->pending_disable = 1; 310 perf_output_wakeup(handle); 311 local_set(&rb->aux_nest, 0); 312 goto err_put; 313 } 314 } 315 316 return handle->rb->aux_priv; 317 318 err_put: 319 rb_free_aux(rb); 320 321 err: 322 ring_buffer_put(rb); 323 handle->event = NULL; 324 325 return NULL; 326 } 327 328 /* 329 * Commit the data written by hardware into the ring buffer by adjusting 330 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 331 * pmu driver's responsibility to observe ordering rules of the hardware, 332 * so that all the data is externally visible before this is called. 333 */ 334 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 335 bool truncated) 336 { 337 struct ring_buffer *rb = handle->rb; 338 unsigned long aux_head; 339 u64 flags = 0; 340 341 if (truncated) 342 flags |= PERF_AUX_FLAG_TRUNCATED; 343 344 /* in overwrite mode, driver provides aux_head via handle */ 345 if (rb->aux_overwrite) { 346 flags |= PERF_AUX_FLAG_OVERWRITE; 347 348 aux_head = handle->head; 349 local_set(&rb->aux_head, aux_head); 350 } else { 351 aux_head = local_read(&rb->aux_head); 352 local_add(size, &rb->aux_head); 353 } 354 355 if (size || flags) { 356 /* 357 * Only send RECORD_AUX if we have something useful to communicate 358 */ 359 360 perf_event_aux_event(handle->event, aux_head, size, flags); 361 } 362 363 aux_head = rb->user_page->aux_head = local_read(&rb->aux_head); 364 365 if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) { 366 perf_output_wakeup(handle); 367 local_add(rb->aux_watermark, &rb->aux_wakeup); 368 } 369 handle->event = NULL; 370 371 local_set(&rb->aux_nest, 0); 372 rb_free_aux(rb); 373 ring_buffer_put(rb); 374 } 375 376 /* 377 * Skip over a given number of bytes in the AUX buffer, due to, for example, 378 * hardware's alignment constraints. 379 */ 380 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 381 { 382 struct ring_buffer *rb = handle->rb; 383 unsigned long aux_head; 384 385 if (size > handle->size) 386 return -ENOSPC; 387 388 local_add(size, &rb->aux_head); 389 390 aux_head = rb->user_page->aux_head = local_read(&rb->aux_head); 391 if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) { 392 perf_output_wakeup(handle); 393 local_add(rb->aux_watermark, &rb->aux_wakeup); 394 handle->wakeup = local_read(&rb->aux_wakeup) + 395 rb->aux_watermark; 396 } 397 398 handle->head = aux_head; 399 handle->size -= size; 400 401 return 0; 402 } 403 404 void *perf_get_aux(struct perf_output_handle *handle) 405 { 406 /* this is only valid between perf_aux_output_begin and *_end */ 407 if (!handle->event) 408 return NULL; 409 410 return handle->rb->aux_priv; 411 } 412 413 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 414 415 static struct page *rb_alloc_aux_page(int node, int order) 416 { 417 struct page *page; 418 419 if (order > MAX_ORDER) 420 order = MAX_ORDER; 421 422 do { 423 page = alloc_pages_node(node, PERF_AUX_GFP, order); 424 } while (!page && order--); 425 426 if (page && order) { 427 /* 428 * Communicate the allocation size to the driver 429 */ 430 split_page(page, order); 431 SetPagePrivate(page); 432 set_page_private(page, order); 433 } 434 435 return page; 436 } 437 438 static void rb_free_aux_page(struct ring_buffer *rb, int idx) 439 { 440 struct page *page = virt_to_page(rb->aux_pages[idx]); 441 442 ClearPagePrivate(page); 443 page->mapping = NULL; 444 __free_page(page); 445 } 446 447 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event, 448 pgoff_t pgoff, int nr_pages, long watermark, int flags) 449 { 450 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 451 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 452 int ret = -ENOMEM, max_order = 0; 453 454 if (!has_aux(event)) 455 return -ENOTSUPP; 456 457 if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) { 458 /* 459 * We need to start with the max_order that fits in nr_pages, 460 * not the other way around, hence ilog2() and not get_order. 461 */ 462 max_order = ilog2(nr_pages); 463 464 /* 465 * PMU requests more than one contiguous chunks of memory 466 * for SW double buffering 467 */ 468 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) && 469 !overwrite) { 470 if (!max_order) 471 return -EINVAL; 472 473 max_order--; 474 } 475 } 476 477 rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node); 478 if (!rb->aux_pages) 479 return -ENOMEM; 480 481 rb->free_aux = event->pmu->free_aux; 482 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 483 struct page *page; 484 int last, order; 485 486 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 487 page = rb_alloc_aux_page(node, order); 488 if (!page) 489 goto out; 490 491 for (last = rb->aux_nr_pages + (1 << page_private(page)); 492 last > rb->aux_nr_pages; rb->aux_nr_pages++) 493 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 494 } 495 496 /* 497 * In overwrite mode, PMUs that don't support SG may not handle more 498 * than one contiguous allocation, since they rely on PMI to do double 499 * buffering. In this case, the entire buffer has to be one contiguous 500 * chunk. 501 */ 502 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 503 overwrite) { 504 struct page *page = virt_to_page(rb->aux_pages[0]); 505 506 if (page_private(page) != max_order) 507 goto out; 508 } 509 510 rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages, 511 overwrite); 512 if (!rb->aux_priv) 513 goto out; 514 515 ret = 0; 516 517 /* 518 * aux_pages (and pmu driver's private data, aux_priv) will be 519 * referenced in both producer's and consumer's contexts, thus 520 * we keep a refcount here to make sure either of the two can 521 * reference them safely. 522 */ 523 atomic_set(&rb->aux_refcount, 1); 524 525 rb->aux_overwrite = overwrite; 526 rb->aux_watermark = watermark; 527 528 if (!rb->aux_watermark && !rb->aux_overwrite) 529 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1); 530 531 out: 532 if (!ret) 533 rb->aux_pgoff = pgoff; 534 else 535 rb_free_aux(rb); 536 537 return ret; 538 } 539 540 static void __rb_free_aux(struct ring_buffer *rb) 541 { 542 int pg; 543 544 if (rb->aux_priv) { 545 rb->free_aux(rb->aux_priv); 546 rb->free_aux = NULL; 547 rb->aux_priv = NULL; 548 } 549 550 for (pg = 0; pg < rb->aux_nr_pages; pg++) 551 rb_free_aux_page(rb, pg); 552 553 kfree(rb->aux_pages); 554 rb->aux_nr_pages = 0; 555 } 556 557 void rb_free_aux(struct ring_buffer *rb) 558 { 559 if (atomic_dec_and_test(&rb->aux_refcount)) 560 __rb_free_aux(rb); 561 } 562 563 #ifndef CONFIG_PERF_USE_VMALLOC 564 565 /* 566 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 567 */ 568 569 static struct page * 570 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 571 { 572 if (pgoff > rb->nr_pages) 573 return NULL; 574 575 if (pgoff == 0) 576 return virt_to_page(rb->user_page); 577 578 return virt_to_page(rb->data_pages[pgoff - 1]); 579 } 580 581 static void *perf_mmap_alloc_page(int cpu) 582 { 583 struct page *page; 584 int node; 585 586 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 587 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 588 if (!page) 589 return NULL; 590 591 return page_address(page); 592 } 593 594 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 595 { 596 struct ring_buffer *rb; 597 unsigned long size; 598 int i; 599 600 size = sizeof(struct ring_buffer); 601 size += nr_pages * sizeof(void *); 602 603 rb = kzalloc(size, GFP_KERNEL); 604 if (!rb) 605 goto fail; 606 607 rb->user_page = perf_mmap_alloc_page(cpu); 608 if (!rb->user_page) 609 goto fail_user_page; 610 611 for (i = 0; i < nr_pages; i++) { 612 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 613 if (!rb->data_pages[i]) 614 goto fail_data_pages; 615 } 616 617 rb->nr_pages = nr_pages; 618 619 ring_buffer_init(rb, watermark, flags); 620 621 return rb; 622 623 fail_data_pages: 624 for (i--; i >= 0; i--) 625 free_page((unsigned long)rb->data_pages[i]); 626 627 free_page((unsigned long)rb->user_page); 628 629 fail_user_page: 630 kfree(rb); 631 632 fail: 633 return NULL; 634 } 635 636 static void perf_mmap_free_page(unsigned long addr) 637 { 638 struct page *page = virt_to_page((void *)addr); 639 640 page->mapping = NULL; 641 __free_page(page); 642 } 643 644 void rb_free(struct ring_buffer *rb) 645 { 646 int i; 647 648 perf_mmap_free_page((unsigned long)rb->user_page); 649 for (i = 0; i < rb->nr_pages; i++) 650 perf_mmap_free_page((unsigned long)rb->data_pages[i]); 651 kfree(rb); 652 } 653 654 #else 655 static int data_page_nr(struct ring_buffer *rb) 656 { 657 return rb->nr_pages << page_order(rb); 658 } 659 660 static struct page * 661 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 662 { 663 /* The '>' counts in the user page. */ 664 if (pgoff > data_page_nr(rb)) 665 return NULL; 666 667 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 668 } 669 670 static void perf_mmap_unmark_page(void *addr) 671 { 672 struct page *page = vmalloc_to_page(addr); 673 674 page->mapping = NULL; 675 } 676 677 static void rb_free_work(struct work_struct *work) 678 { 679 struct ring_buffer *rb; 680 void *base; 681 int i, nr; 682 683 rb = container_of(work, struct ring_buffer, work); 684 nr = data_page_nr(rb); 685 686 base = rb->user_page; 687 /* The '<=' counts in the user page. */ 688 for (i = 0; i <= nr; i++) 689 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 690 691 vfree(base); 692 kfree(rb); 693 } 694 695 void rb_free(struct ring_buffer *rb) 696 { 697 schedule_work(&rb->work); 698 } 699 700 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 701 { 702 struct ring_buffer *rb; 703 unsigned long size; 704 void *all_buf; 705 706 size = sizeof(struct ring_buffer); 707 size += sizeof(void *); 708 709 rb = kzalloc(size, GFP_KERNEL); 710 if (!rb) 711 goto fail; 712 713 INIT_WORK(&rb->work, rb_free_work); 714 715 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 716 if (!all_buf) 717 goto fail_all_buf; 718 719 rb->user_page = all_buf; 720 rb->data_pages[0] = all_buf + PAGE_SIZE; 721 rb->page_order = ilog2(nr_pages); 722 rb->nr_pages = !!nr_pages; 723 724 ring_buffer_init(rb, watermark, flags); 725 726 return rb; 727 728 fail_all_buf: 729 kfree(rb); 730 731 fail: 732 return NULL; 733 } 734 735 #endif 736 737 struct page * 738 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 739 { 740 if (rb->aux_nr_pages) { 741 /* above AUX space */ 742 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 743 return NULL; 744 745 /* AUX space */ 746 if (pgoff >= rb->aux_pgoff) 747 return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]); 748 } 749 750 return __perf_mmap_to_page(rb, pgoff); 751 } 752