xref: /openbmc/linux/kernel/events/ring_buffer.c (revision d3964221)
1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16 #include <linux/poll.h>
17 
18 #include "internal.h"
19 
20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, POLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct ring_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 	local_inc(&rb->nest);
42 	handle->wakeup = local_read(&rb->wakeup);
43 }
44 
45 static void perf_output_put_handle(struct perf_output_handle *handle)
46 {
47 	struct ring_buffer *rb = handle->rb;
48 	unsigned long head;
49 
50 again:
51 	head = local_read(&rb->head);
52 
53 	/*
54 	 * IRQ/NMI can happen here, which means we can miss a head update.
55 	 */
56 
57 	if (!local_dec_and_test(&rb->nest))
58 		goto out;
59 
60 	/*
61 	 * Since the mmap() consumer (userspace) can run on a different CPU:
62 	 *
63 	 *   kernel				user
64 	 *
65 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
66 	 *			(A)		smp_rmb()	(C)
67 	 *	STORE $data			LOAD $data
68 	 *	smp_wmb()	(B)		smp_mb()	(D)
69 	 *	STORE ->data_head		STORE ->data_tail
70 	 *   }
71 	 *
72 	 * Where A pairs with D, and B pairs with C.
73 	 *
74 	 * In our case (A) is a control dependency that separates the load of
75 	 * the ->data_tail and the stores of $data. In case ->data_tail
76 	 * indicates there is no room in the buffer to store $data we do not.
77 	 *
78 	 * D needs to be a full barrier since it separates the data READ
79 	 * from the tail WRITE.
80 	 *
81 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
82 	 * an RMB is sufficient since it separates two READs.
83 	 *
84 	 * See perf_output_begin().
85 	 */
86 	smp_wmb(); /* B, matches C */
87 	rb->user_page->data_head = head;
88 
89 	/*
90 	 * Now check if we missed an update -- rely on previous implied
91 	 * compiler barriers to force a re-read.
92 	 */
93 	if (unlikely(head != local_read(&rb->head))) {
94 		local_inc(&rb->nest);
95 		goto again;
96 	}
97 
98 	if (handle->wakeup != local_read(&rb->wakeup))
99 		perf_output_wakeup(handle);
100 
101 out:
102 	preempt_enable();
103 }
104 
105 static bool __always_inline
106 ring_buffer_has_space(unsigned long head, unsigned long tail,
107 		      unsigned long data_size, unsigned int size,
108 		      bool backward)
109 {
110 	if (!backward)
111 		return CIRC_SPACE(head, tail, data_size) >= size;
112 	else
113 		return CIRC_SPACE(tail, head, data_size) >= size;
114 }
115 
116 static int __always_inline
117 __perf_output_begin(struct perf_output_handle *handle,
118 		    struct perf_event *event, unsigned int size,
119 		    bool backward)
120 {
121 	struct ring_buffer *rb;
122 	unsigned long tail, offset, head;
123 	int have_lost, page_shift;
124 	struct {
125 		struct perf_event_header header;
126 		u64			 id;
127 		u64			 lost;
128 	} lost_event;
129 
130 	rcu_read_lock();
131 	/*
132 	 * For inherited events we send all the output towards the parent.
133 	 */
134 	if (event->parent)
135 		event = event->parent;
136 
137 	rb = rcu_dereference(event->rb);
138 	if (unlikely(!rb))
139 		goto out;
140 
141 	if (unlikely(rb->paused)) {
142 		if (rb->nr_pages)
143 			local_inc(&rb->lost);
144 		goto out;
145 	}
146 
147 	handle->rb    = rb;
148 	handle->event = event;
149 
150 	have_lost = local_read(&rb->lost);
151 	if (unlikely(have_lost)) {
152 		size += sizeof(lost_event);
153 		if (event->attr.sample_id_all)
154 			size += event->id_header_size;
155 	}
156 
157 	perf_output_get_handle(handle);
158 
159 	do {
160 		tail = READ_ONCE(rb->user_page->data_tail);
161 		offset = head = local_read(&rb->head);
162 		if (!rb->overwrite) {
163 			if (unlikely(!ring_buffer_has_space(head, tail,
164 							    perf_data_size(rb),
165 							    size, backward)))
166 				goto fail;
167 		}
168 
169 		/*
170 		 * The above forms a control dependency barrier separating the
171 		 * @tail load above from the data stores below. Since the @tail
172 		 * load is required to compute the branch to fail below.
173 		 *
174 		 * A, matches D; the full memory barrier userspace SHOULD issue
175 		 * after reading the data and before storing the new tail
176 		 * position.
177 		 *
178 		 * See perf_output_put_handle().
179 		 */
180 
181 		if (!backward)
182 			head += size;
183 		else
184 			head -= size;
185 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
186 
187 	if (backward) {
188 		offset = head;
189 		head = (u64)(-head);
190 	}
191 
192 	/*
193 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
194 	 * none of the data stores below can be lifted up by the compiler.
195 	 */
196 
197 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
198 		local_add(rb->watermark, &rb->wakeup);
199 
200 	page_shift = PAGE_SHIFT + page_order(rb);
201 
202 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
203 	offset &= (1UL << page_shift) - 1;
204 	handle->addr = rb->data_pages[handle->page] + offset;
205 	handle->size = (1UL << page_shift) - offset;
206 
207 	if (unlikely(have_lost)) {
208 		struct perf_sample_data sample_data;
209 
210 		lost_event.header.size = sizeof(lost_event);
211 		lost_event.header.type = PERF_RECORD_LOST;
212 		lost_event.header.misc = 0;
213 		lost_event.id          = event->id;
214 		lost_event.lost        = local_xchg(&rb->lost, 0);
215 
216 		perf_event_header__init_id(&lost_event.header,
217 					   &sample_data, event);
218 		perf_output_put(handle, lost_event);
219 		perf_event__output_id_sample(event, handle, &sample_data);
220 	}
221 
222 	return 0;
223 
224 fail:
225 	local_inc(&rb->lost);
226 	perf_output_put_handle(handle);
227 out:
228 	rcu_read_unlock();
229 
230 	return -ENOSPC;
231 }
232 
233 int perf_output_begin_forward(struct perf_output_handle *handle,
234 			     struct perf_event *event, unsigned int size)
235 {
236 	return __perf_output_begin(handle, event, size, false);
237 }
238 
239 int perf_output_begin_backward(struct perf_output_handle *handle,
240 			       struct perf_event *event, unsigned int size)
241 {
242 	return __perf_output_begin(handle, event, size, true);
243 }
244 
245 int perf_output_begin(struct perf_output_handle *handle,
246 		      struct perf_event *event, unsigned int size)
247 {
248 
249 	return __perf_output_begin(handle, event, size,
250 				   unlikely(is_write_backward(event)));
251 }
252 
253 unsigned int perf_output_copy(struct perf_output_handle *handle,
254 		      const void *buf, unsigned int len)
255 {
256 	return __output_copy(handle, buf, len);
257 }
258 
259 unsigned int perf_output_skip(struct perf_output_handle *handle,
260 			      unsigned int len)
261 {
262 	return __output_skip(handle, NULL, len);
263 }
264 
265 void perf_output_end(struct perf_output_handle *handle)
266 {
267 	perf_output_put_handle(handle);
268 	rcu_read_unlock();
269 }
270 
271 static void
272 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
273 {
274 	long max_size = perf_data_size(rb);
275 
276 	if (watermark)
277 		rb->watermark = min(max_size, watermark);
278 
279 	if (!rb->watermark)
280 		rb->watermark = max_size / 2;
281 
282 	if (flags & RING_BUFFER_WRITABLE)
283 		rb->overwrite = 0;
284 	else
285 		rb->overwrite = 1;
286 
287 	atomic_set(&rb->refcount, 1);
288 
289 	INIT_LIST_HEAD(&rb->event_list);
290 	spin_lock_init(&rb->event_lock);
291 
292 	/*
293 	 * perf_output_begin() only checks rb->paused, therefore
294 	 * rb->paused must be true if we have no pages for output.
295 	 */
296 	if (!rb->nr_pages)
297 		rb->paused = 1;
298 }
299 
300 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
301 {
302 	/*
303 	 * OVERWRITE is determined by perf_aux_output_end() and can't
304 	 * be passed in directly.
305 	 */
306 	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
307 		return;
308 
309 	handle->aux_flags |= flags;
310 }
311 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
312 
313 /*
314  * This is called before hardware starts writing to the AUX area to
315  * obtain an output handle and make sure there's room in the buffer.
316  * When the capture completes, call perf_aux_output_end() to commit
317  * the recorded data to the buffer.
318  *
319  * The ordering is similar to that of perf_output_{begin,end}, with
320  * the exception of (B), which should be taken care of by the pmu
321  * driver, since ordering rules will differ depending on hardware.
322  *
323  * Call this from pmu::start(); see the comment in perf_aux_output_end()
324  * about its use in pmu callbacks. Both can also be called from the PMI
325  * handler if needed.
326  */
327 void *perf_aux_output_begin(struct perf_output_handle *handle,
328 			    struct perf_event *event)
329 {
330 	struct perf_event *output_event = event;
331 	unsigned long aux_head, aux_tail;
332 	struct ring_buffer *rb;
333 
334 	if (output_event->parent)
335 		output_event = output_event->parent;
336 
337 	/*
338 	 * Since this will typically be open across pmu::add/pmu::del, we
339 	 * grab ring_buffer's refcount instead of holding rcu read lock
340 	 * to make sure it doesn't disappear under us.
341 	 */
342 	rb = ring_buffer_get(output_event);
343 	if (!rb)
344 		return NULL;
345 
346 	if (!rb_has_aux(rb))
347 		goto err;
348 
349 	/*
350 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
351 	 * about to get freed, so we leave immediately.
352 	 *
353 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
354 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
355 	 * aux pages in this path, which is a bug, because in_atomic().
356 	 */
357 	if (!atomic_read(&rb->aux_mmap_count))
358 		goto err;
359 
360 	if (!atomic_inc_not_zero(&rb->aux_refcount))
361 		goto err;
362 
363 	/*
364 	 * Nesting is not supported for AUX area, make sure nested
365 	 * writers are caught early
366 	 */
367 	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
368 		goto err_put;
369 
370 	aux_head = rb->aux_head;
371 
372 	handle->rb = rb;
373 	handle->event = event;
374 	handle->head = aux_head;
375 	handle->size = 0;
376 	handle->aux_flags = 0;
377 
378 	/*
379 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
380 	 * therefore (A) control dependency barrier does not exist. The
381 	 * (B) <-> (C) ordering is still observed by the pmu driver.
382 	 */
383 	if (!rb->aux_overwrite) {
384 		aux_tail = READ_ONCE(rb->user_page->aux_tail);
385 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
386 		if (aux_head - aux_tail < perf_aux_size(rb))
387 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
388 
389 		/*
390 		 * handle->size computation depends on aux_tail load; this forms a
391 		 * control dependency barrier separating aux_tail load from aux data
392 		 * store that will be enabled on successful return
393 		 */
394 		if (!handle->size) { /* A, matches D */
395 			event->pending_disable = 1;
396 			perf_output_wakeup(handle);
397 			local_set(&rb->aux_nest, 0);
398 			goto err_put;
399 		}
400 	}
401 
402 	return handle->rb->aux_priv;
403 
404 err_put:
405 	/* can't be last */
406 	rb_free_aux(rb);
407 
408 err:
409 	ring_buffer_put(rb);
410 	handle->event = NULL;
411 
412 	return NULL;
413 }
414 
415 static bool __always_inline rb_need_aux_wakeup(struct ring_buffer *rb)
416 {
417 	if (rb->aux_overwrite)
418 		return false;
419 
420 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
421 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
422 		return true;
423 	}
424 
425 	return false;
426 }
427 
428 /*
429  * Commit the data written by hardware into the ring buffer by adjusting
430  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
431  * pmu driver's responsibility to observe ordering rules of the hardware,
432  * so that all the data is externally visible before this is called.
433  *
434  * Note: this has to be called from pmu::stop() callback, as the assumption
435  * of the AUX buffer management code is that after pmu::stop(), the AUX
436  * transaction must be stopped and therefore drop the AUX reference count.
437  */
438 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
439 {
440 	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
441 	struct ring_buffer *rb = handle->rb;
442 	unsigned long aux_head;
443 
444 	/* in overwrite mode, driver provides aux_head via handle */
445 	if (rb->aux_overwrite) {
446 		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
447 
448 		aux_head = handle->head;
449 		rb->aux_head = aux_head;
450 	} else {
451 		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
452 
453 		aux_head = rb->aux_head;
454 		rb->aux_head += size;
455 	}
456 
457 	if (size || handle->aux_flags) {
458 		/*
459 		 * Only send RECORD_AUX if we have something useful to communicate
460 		 */
461 
462 		perf_event_aux_event(handle->event, aux_head, size,
463 		                     handle->aux_flags);
464 	}
465 
466 	rb->user_page->aux_head = rb->aux_head;
467 	if (rb_need_aux_wakeup(rb))
468 		wakeup = true;
469 
470 	if (wakeup) {
471 		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
472 			handle->event->pending_disable = 1;
473 		perf_output_wakeup(handle);
474 	}
475 
476 	handle->event = NULL;
477 
478 	local_set(&rb->aux_nest, 0);
479 	/* can't be last */
480 	rb_free_aux(rb);
481 	ring_buffer_put(rb);
482 }
483 
484 /*
485  * Skip over a given number of bytes in the AUX buffer, due to, for example,
486  * hardware's alignment constraints.
487  */
488 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
489 {
490 	struct ring_buffer *rb = handle->rb;
491 
492 	if (size > handle->size)
493 		return -ENOSPC;
494 
495 	rb->aux_head += size;
496 
497 	rb->user_page->aux_head = rb->aux_head;
498 	if (rb_need_aux_wakeup(rb)) {
499 		perf_output_wakeup(handle);
500 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
501 	}
502 
503 	handle->head = rb->aux_head;
504 	handle->size -= size;
505 
506 	return 0;
507 }
508 
509 void *perf_get_aux(struct perf_output_handle *handle)
510 {
511 	/* this is only valid between perf_aux_output_begin and *_end */
512 	if (!handle->event)
513 		return NULL;
514 
515 	return handle->rb->aux_priv;
516 }
517 
518 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
519 
520 static struct page *rb_alloc_aux_page(int node, int order)
521 {
522 	struct page *page;
523 
524 	if (order > MAX_ORDER)
525 		order = MAX_ORDER;
526 
527 	do {
528 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
529 	} while (!page && order--);
530 
531 	if (page && order) {
532 		/*
533 		 * Communicate the allocation size to the driver:
534 		 * if we managed to secure a high-order allocation,
535 		 * set its first page's private to this order;
536 		 * !PagePrivate(page) means it's just a normal page.
537 		 */
538 		split_page(page, order);
539 		SetPagePrivate(page);
540 		set_page_private(page, order);
541 	}
542 
543 	return page;
544 }
545 
546 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
547 {
548 	struct page *page = virt_to_page(rb->aux_pages[idx]);
549 
550 	ClearPagePrivate(page);
551 	page->mapping = NULL;
552 	__free_page(page);
553 }
554 
555 static void __rb_free_aux(struct ring_buffer *rb)
556 {
557 	int pg;
558 
559 	/*
560 	 * Should never happen, the last reference should be dropped from
561 	 * perf_mmap_close() path, which first stops aux transactions (which
562 	 * in turn are the atomic holders of aux_refcount) and then does the
563 	 * last rb_free_aux().
564 	 */
565 	WARN_ON_ONCE(in_atomic());
566 
567 	if (rb->aux_priv) {
568 		rb->free_aux(rb->aux_priv);
569 		rb->free_aux = NULL;
570 		rb->aux_priv = NULL;
571 	}
572 
573 	if (rb->aux_nr_pages) {
574 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
575 			rb_free_aux_page(rb, pg);
576 
577 		kfree(rb->aux_pages);
578 		rb->aux_nr_pages = 0;
579 	}
580 }
581 
582 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
583 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
584 {
585 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
586 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
587 	int ret = -ENOMEM, max_order = 0;
588 
589 	if (!has_aux(event))
590 		return -EOPNOTSUPP;
591 
592 	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
593 		/*
594 		 * We need to start with the max_order that fits in nr_pages,
595 		 * not the other way around, hence ilog2() and not get_order.
596 		 */
597 		max_order = ilog2(nr_pages);
598 
599 		/*
600 		 * PMU requests more than one contiguous chunks of memory
601 		 * for SW double buffering
602 		 */
603 		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
604 		    !overwrite) {
605 			if (!max_order)
606 				return -EINVAL;
607 
608 			max_order--;
609 		}
610 	}
611 
612 	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
613 	if (!rb->aux_pages)
614 		return -ENOMEM;
615 
616 	rb->free_aux = event->pmu->free_aux;
617 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
618 		struct page *page;
619 		int last, order;
620 
621 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
622 		page = rb_alloc_aux_page(node, order);
623 		if (!page)
624 			goto out;
625 
626 		for (last = rb->aux_nr_pages + (1 << page_private(page));
627 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
628 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
629 	}
630 
631 	/*
632 	 * In overwrite mode, PMUs that don't support SG may not handle more
633 	 * than one contiguous allocation, since they rely on PMI to do double
634 	 * buffering. In this case, the entire buffer has to be one contiguous
635 	 * chunk.
636 	 */
637 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
638 	    overwrite) {
639 		struct page *page = virt_to_page(rb->aux_pages[0]);
640 
641 		if (page_private(page) != max_order)
642 			goto out;
643 	}
644 
645 	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
646 					     overwrite);
647 	if (!rb->aux_priv)
648 		goto out;
649 
650 	ret = 0;
651 
652 	/*
653 	 * aux_pages (and pmu driver's private data, aux_priv) will be
654 	 * referenced in both producer's and consumer's contexts, thus
655 	 * we keep a refcount here to make sure either of the two can
656 	 * reference them safely.
657 	 */
658 	atomic_set(&rb->aux_refcount, 1);
659 
660 	rb->aux_overwrite = overwrite;
661 	rb->aux_watermark = watermark;
662 
663 	if (!rb->aux_watermark && !rb->aux_overwrite)
664 		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
665 
666 out:
667 	if (!ret)
668 		rb->aux_pgoff = pgoff;
669 	else
670 		__rb_free_aux(rb);
671 
672 	return ret;
673 }
674 
675 void rb_free_aux(struct ring_buffer *rb)
676 {
677 	if (atomic_dec_and_test(&rb->aux_refcount))
678 		__rb_free_aux(rb);
679 }
680 
681 #ifndef CONFIG_PERF_USE_VMALLOC
682 
683 /*
684  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
685  */
686 
687 static struct page *
688 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
689 {
690 	if (pgoff > rb->nr_pages)
691 		return NULL;
692 
693 	if (pgoff == 0)
694 		return virt_to_page(rb->user_page);
695 
696 	return virt_to_page(rb->data_pages[pgoff - 1]);
697 }
698 
699 static void *perf_mmap_alloc_page(int cpu)
700 {
701 	struct page *page;
702 	int node;
703 
704 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
705 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
706 	if (!page)
707 		return NULL;
708 
709 	return page_address(page);
710 }
711 
712 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
713 {
714 	struct ring_buffer *rb;
715 	unsigned long size;
716 	int i;
717 
718 	size = sizeof(struct ring_buffer);
719 	size += nr_pages * sizeof(void *);
720 
721 	rb = kzalloc(size, GFP_KERNEL);
722 	if (!rb)
723 		goto fail;
724 
725 	rb->user_page = perf_mmap_alloc_page(cpu);
726 	if (!rb->user_page)
727 		goto fail_user_page;
728 
729 	for (i = 0; i < nr_pages; i++) {
730 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
731 		if (!rb->data_pages[i])
732 			goto fail_data_pages;
733 	}
734 
735 	rb->nr_pages = nr_pages;
736 
737 	ring_buffer_init(rb, watermark, flags);
738 
739 	return rb;
740 
741 fail_data_pages:
742 	for (i--; i >= 0; i--)
743 		free_page((unsigned long)rb->data_pages[i]);
744 
745 	free_page((unsigned long)rb->user_page);
746 
747 fail_user_page:
748 	kfree(rb);
749 
750 fail:
751 	return NULL;
752 }
753 
754 static void perf_mmap_free_page(unsigned long addr)
755 {
756 	struct page *page = virt_to_page((void *)addr);
757 
758 	page->mapping = NULL;
759 	__free_page(page);
760 }
761 
762 void rb_free(struct ring_buffer *rb)
763 {
764 	int i;
765 
766 	perf_mmap_free_page((unsigned long)rb->user_page);
767 	for (i = 0; i < rb->nr_pages; i++)
768 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
769 	kfree(rb);
770 }
771 
772 #else
773 static int data_page_nr(struct ring_buffer *rb)
774 {
775 	return rb->nr_pages << page_order(rb);
776 }
777 
778 static struct page *
779 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
780 {
781 	/* The '>' counts in the user page. */
782 	if (pgoff > data_page_nr(rb))
783 		return NULL;
784 
785 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
786 }
787 
788 static void perf_mmap_unmark_page(void *addr)
789 {
790 	struct page *page = vmalloc_to_page(addr);
791 
792 	page->mapping = NULL;
793 }
794 
795 static void rb_free_work(struct work_struct *work)
796 {
797 	struct ring_buffer *rb;
798 	void *base;
799 	int i, nr;
800 
801 	rb = container_of(work, struct ring_buffer, work);
802 	nr = data_page_nr(rb);
803 
804 	base = rb->user_page;
805 	/* The '<=' counts in the user page. */
806 	for (i = 0; i <= nr; i++)
807 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
808 
809 	vfree(base);
810 	kfree(rb);
811 }
812 
813 void rb_free(struct ring_buffer *rb)
814 {
815 	schedule_work(&rb->work);
816 }
817 
818 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
819 {
820 	struct ring_buffer *rb;
821 	unsigned long size;
822 	void *all_buf;
823 
824 	size = sizeof(struct ring_buffer);
825 	size += sizeof(void *);
826 
827 	rb = kzalloc(size, GFP_KERNEL);
828 	if (!rb)
829 		goto fail;
830 
831 	INIT_WORK(&rb->work, rb_free_work);
832 
833 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
834 	if (!all_buf)
835 		goto fail_all_buf;
836 
837 	rb->user_page = all_buf;
838 	rb->data_pages[0] = all_buf + PAGE_SIZE;
839 	if (nr_pages) {
840 		rb->nr_pages = 1;
841 		rb->page_order = ilog2(nr_pages);
842 	}
843 
844 	ring_buffer_init(rb, watermark, flags);
845 
846 	return rb;
847 
848 fail_all_buf:
849 	kfree(rb);
850 
851 fail:
852 	return NULL;
853 }
854 
855 #endif
856 
857 struct page *
858 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
859 {
860 	if (rb->aux_nr_pages) {
861 		/* above AUX space */
862 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
863 			return NULL;
864 
865 		/* AUX space */
866 		if (pgoff >= rb->aux_pgoff)
867 			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
868 	}
869 
870 	return __perf_mmap_to_page(rb, pgoff);
871 }
872