1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events ring-buffer code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/perf_event.h> 12 #include <linux/vmalloc.h> 13 #include <linux/slab.h> 14 #include <linux/circ_buf.h> 15 #include <linux/poll.h> 16 #include <linux/nospec.h> 17 18 #include "internal.h" 19 20 static void perf_output_wakeup(struct perf_output_handle *handle) 21 { 22 atomic_set(&handle->rb->poll, EPOLLIN); 23 24 handle->event->pending_wakeup = 1; 25 irq_work_queue(&handle->event->pending); 26 } 27 28 /* 29 * We need to ensure a later event_id doesn't publish a head when a former 30 * event isn't done writing. However since we need to deal with NMIs we 31 * cannot fully serialize things. 32 * 33 * We only publish the head (and generate a wakeup) when the outer-most 34 * event completes. 35 */ 36 static void perf_output_get_handle(struct perf_output_handle *handle) 37 { 38 struct ring_buffer *rb = handle->rb; 39 40 preempt_disable(); 41 local_inc(&rb->nest); 42 handle->wakeup = local_read(&rb->wakeup); 43 } 44 45 static void perf_output_put_handle(struct perf_output_handle *handle) 46 { 47 struct ring_buffer *rb = handle->rb; 48 unsigned long head; 49 50 again: 51 head = local_read(&rb->head); 52 53 /* 54 * IRQ/NMI can happen here, which means we can miss a head update. 55 */ 56 57 if (!local_dec_and_test(&rb->nest)) 58 goto out; 59 60 /* 61 * Since the mmap() consumer (userspace) can run on a different CPU: 62 * 63 * kernel user 64 * 65 * if (LOAD ->data_tail) { LOAD ->data_head 66 * (A) smp_rmb() (C) 67 * STORE $data LOAD $data 68 * smp_wmb() (B) smp_mb() (D) 69 * STORE ->data_head STORE ->data_tail 70 * } 71 * 72 * Where A pairs with D, and B pairs with C. 73 * 74 * In our case (A) is a control dependency that separates the load of 75 * the ->data_tail and the stores of $data. In case ->data_tail 76 * indicates there is no room in the buffer to store $data we do not. 77 * 78 * D needs to be a full barrier since it separates the data READ 79 * from the tail WRITE. 80 * 81 * For B a WMB is sufficient since it separates two WRITEs, and for C 82 * an RMB is sufficient since it separates two READs. 83 * 84 * See perf_output_begin(). 85 */ 86 smp_wmb(); /* B, matches C */ 87 rb->user_page->data_head = head; 88 89 /* 90 * Now check if we missed an update -- rely on previous implied 91 * compiler barriers to force a re-read. 92 */ 93 if (unlikely(head != local_read(&rb->head))) { 94 local_inc(&rb->nest); 95 goto again; 96 } 97 98 if (handle->wakeup != local_read(&rb->wakeup)) 99 perf_output_wakeup(handle); 100 101 out: 102 preempt_enable(); 103 } 104 105 static __always_inline bool 106 ring_buffer_has_space(unsigned long head, unsigned long tail, 107 unsigned long data_size, unsigned int size, 108 bool backward) 109 { 110 if (!backward) 111 return CIRC_SPACE(head, tail, data_size) >= size; 112 else 113 return CIRC_SPACE(tail, head, data_size) >= size; 114 } 115 116 static __always_inline int 117 __perf_output_begin(struct perf_output_handle *handle, 118 struct perf_event *event, unsigned int size, 119 bool backward) 120 { 121 struct ring_buffer *rb; 122 unsigned long tail, offset, head; 123 int have_lost, page_shift; 124 struct { 125 struct perf_event_header header; 126 u64 id; 127 u64 lost; 128 } lost_event; 129 130 rcu_read_lock(); 131 /* 132 * For inherited events we send all the output towards the parent. 133 */ 134 if (event->parent) 135 event = event->parent; 136 137 rb = rcu_dereference(event->rb); 138 if (unlikely(!rb)) 139 goto out; 140 141 if (unlikely(rb->paused)) { 142 if (rb->nr_pages) 143 local_inc(&rb->lost); 144 goto out; 145 } 146 147 handle->rb = rb; 148 handle->event = event; 149 150 have_lost = local_read(&rb->lost); 151 if (unlikely(have_lost)) { 152 size += sizeof(lost_event); 153 if (event->attr.sample_id_all) 154 size += event->id_header_size; 155 } 156 157 perf_output_get_handle(handle); 158 159 do { 160 tail = READ_ONCE(rb->user_page->data_tail); 161 offset = head = local_read(&rb->head); 162 if (!rb->overwrite) { 163 if (unlikely(!ring_buffer_has_space(head, tail, 164 perf_data_size(rb), 165 size, backward))) 166 goto fail; 167 } 168 169 /* 170 * The above forms a control dependency barrier separating the 171 * @tail load above from the data stores below. Since the @tail 172 * load is required to compute the branch to fail below. 173 * 174 * A, matches D; the full memory barrier userspace SHOULD issue 175 * after reading the data and before storing the new tail 176 * position. 177 * 178 * See perf_output_put_handle(). 179 */ 180 181 if (!backward) 182 head += size; 183 else 184 head -= size; 185 } while (local_cmpxchg(&rb->head, offset, head) != offset); 186 187 if (backward) { 188 offset = head; 189 head = (u64)(-head); 190 } 191 192 /* 193 * We rely on the implied barrier() by local_cmpxchg() to ensure 194 * none of the data stores below can be lifted up by the compiler. 195 */ 196 197 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 198 local_add(rb->watermark, &rb->wakeup); 199 200 page_shift = PAGE_SHIFT + page_order(rb); 201 202 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 203 offset &= (1UL << page_shift) - 1; 204 handle->addr = rb->data_pages[handle->page] + offset; 205 handle->size = (1UL << page_shift) - offset; 206 207 if (unlikely(have_lost)) { 208 struct perf_sample_data sample_data; 209 210 lost_event.header.size = sizeof(lost_event); 211 lost_event.header.type = PERF_RECORD_LOST; 212 lost_event.header.misc = 0; 213 lost_event.id = event->id; 214 lost_event.lost = local_xchg(&rb->lost, 0); 215 216 perf_event_header__init_id(&lost_event.header, 217 &sample_data, event); 218 perf_output_put(handle, lost_event); 219 perf_event__output_id_sample(event, handle, &sample_data); 220 } 221 222 return 0; 223 224 fail: 225 local_inc(&rb->lost); 226 perf_output_put_handle(handle); 227 out: 228 rcu_read_unlock(); 229 230 return -ENOSPC; 231 } 232 233 int perf_output_begin_forward(struct perf_output_handle *handle, 234 struct perf_event *event, unsigned int size) 235 { 236 return __perf_output_begin(handle, event, size, false); 237 } 238 239 int perf_output_begin_backward(struct perf_output_handle *handle, 240 struct perf_event *event, unsigned int size) 241 { 242 return __perf_output_begin(handle, event, size, true); 243 } 244 245 int perf_output_begin(struct perf_output_handle *handle, 246 struct perf_event *event, unsigned int size) 247 { 248 249 return __perf_output_begin(handle, event, size, 250 unlikely(is_write_backward(event))); 251 } 252 253 unsigned int perf_output_copy(struct perf_output_handle *handle, 254 const void *buf, unsigned int len) 255 { 256 return __output_copy(handle, buf, len); 257 } 258 259 unsigned int perf_output_skip(struct perf_output_handle *handle, 260 unsigned int len) 261 { 262 return __output_skip(handle, NULL, len); 263 } 264 265 void perf_output_end(struct perf_output_handle *handle) 266 { 267 perf_output_put_handle(handle); 268 rcu_read_unlock(); 269 } 270 271 static void 272 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) 273 { 274 long max_size = perf_data_size(rb); 275 276 if (watermark) 277 rb->watermark = min(max_size, watermark); 278 279 if (!rb->watermark) 280 rb->watermark = max_size / 2; 281 282 if (flags & RING_BUFFER_WRITABLE) 283 rb->overwrite = 0; 284 else 285 rb->overwrite = 1; 286 287 refcount_set(&rb->refcount, 1); 288 289 INIT_LIST_HEAD(&rb->event_list); 290 spin_lock_init(&rb->event_lock); 291 292 /* 293 * perf_output_begin() only checks rb->paused, therefore 294 * rb->paused must be true if we have no pages for output. 295 */ 296 if (!rb->nr_pages) 297 rb->paused = 1; 298 } 299 300 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags) 301 { 302 /* 303 * OVERWRITE is determined by perf_aux_output_end() and can't 304 * be passed in directly. 305 */ 306 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE)) 307 return; 308 309 handle->aux_flags |= flags; 310 } 311 EXPORT_SYMBOL_GPL(perf_aux_output_flag); 312 313 /* 314 * This is called before hardware starts writing to the AUX area to 315 * obtain an output handle and make sure there's room in the buffer. 316 * When the capture completes, call perf_aux_output_end() to commit 317 * the recorded data to the buffer. 318 * 319 * The ordering is similar to that of perf_output_{begin,end}, with 320 * the exception of (B), which should be taken care of by the pmu 321 * driver, since ordering rules will differ depending on hardware. 322 * 323 * Call this from pmu::start(); see the comment in perf_aux_output_end() 324 * about its use in pmu callbacks. Both can also be called from the PMI 325 * handler if needed. 326 */ 327 void *perf_aux_output_begin(struct perf_output_handle *handle, 328 struct perf_event *event) 329 { 330 struct perf_event *output_event = event; 331 unsigned long aux_head, aux_tail; 332 struct ring_buffer *rb; 333 334 if (output_event->parent) 335 output_event = output_event->parent; 336 337 /* 338 * Since this will typically be open across pmu::add/pmu::del, we 339 * grab ring_buffer's refcount instead of holding rcu read lock 340 * to make sure it doesn't disappear under us. 341 */ 342 rb = ring_buffer_get(output_event); 343 if (!rb) 344 return NULL; 345 346 if (!rb_has_aux(rb)) 347 goto err; 348 349 /* 350 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(), 351 * about to get freed, so we leave immediately. 352 * 353 * Checking rb::aux_mmap_count and rb::refcount has to be done in 354 * the same order, see perf_mmap_close. Otherwise we end up freeing 355 * aux pages in this path, which is a bug, because in_atomic(). 356 */ 357 if (!atomic_read(&rb->aux_mmap_count)) 358 goto err; 359 360 if (!refcount_inc_not_zero(&rb->aux_refcount)) 361 goto err; 362 363 /* 364 * Nesting is not supported for AUX area, make sure nested 365 * writers are caught early 366 */ 367 if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1))) 368 goto err_put; 369 370 aux_head = rb->aux_head; 371 372 handle->rb = rb; 373 handle->event = event; 374 handle->head = aux_head; 375 handle->size = 0; 376 handle->aux_flags = 0; 377 378 /* 379 * In overwrite mode, AUX data stores do not depend on aux_tail, 380 * therefore (A) control dependency barrier does not exist. The 381 * (B) <-> (C) ordering is still observed by the pmu driver. 382 */ 383 if (!rb->aux_overwrite) { 384 aux_tail = READ_ONCE(rb->user_page->aux_tail); 385 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 386 if (aux_head - aux_tail < perf_aux_size(rb)) 387 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 388 389 /* 390 * handle->size computation depends on aux_tail load; this forms a 391 * control dependency barrier separating aux_tail load from aux data 392 * store that will be enabled on successful return 393 */ 394 if (!handle->size) { /* A, matches D */ 395 event->pending_disable = 1; 396 perf_output_wakeup(handle); 397 local_set(&rb->aux_nest, 0); 398 goto err_put; 399 } 400 } 401 402 return handle->rb->aux_priv; 403 404 err_put: 405 /* can't be last */ 406 rb_free_aux(rb); 407 408 err: 409 ring_buffer_put(rb); 410 handle->event = NULL; 411 412 return NULL; 413 } 414 EXPORT_SYMBOL_GPL(perf_aux_output_begin); 415 416 static __always_inline bool rb_need_aux_wakeup(struct ring_buffer *rb) 417 { 418 if (rb->aux_overwrite) 419 return false; 420 421 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) { 422 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark); 423 return true; 424 } 425 426 return false; 427 } 428 429 /* 430 * Commit the data written by hardware into the ring buffer by adjusting 431 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 432 * pmu driver's responsibility to observe ordering rules of the hardware, 433 * so that all the data is externally visible before this is called. 434 * 435 * Note: this has to be called from pmu::stop() callback, as the assumption 436 * of the AUX buffer management code is that after pmu::stop(), the AUX 437 * transaction must be stopped and therefore drop the AUX reference count. 438 */ 439 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 440 { 441 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED); 442 struct ring_buffer *rb = handle->rb; 443 unsigned long aux_head; 444 445 /* in overwrite mode, driver provides aux_head via handle */ 446 if (rb->aux_overwrite) { 447 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE; 448 449 aux_head = handle->head; 450 rb->aux_head = aux_head; 451 } else { 452 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE; 453 454 aux_head = rb->aux_head; 455 rb->aux_head += size; 456 } 457 458 if (size || handle->aux_flags) { 459 /* 460 * Only send RECORD_AUX if we have something useful to communicate 461 * 462 * Note: the OVERWRITE records by themselves are not considered 463 * useful, as they don't communicate any *new* information, 464 * aside from the short-lived offset, that becomes history at 465 * the next event sched-in and therefore isn't useful. 466 * The userspace that needs to copy out AUX data in overwrite 467 * mode should know to use user_page::aux_head for the actual 468 * offset. So, from now on we don't output AUX records that 469 * have *only* OVERWRITE flag set. 470 */ 471 472 if (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE) 473 perf_event_aux_event(handle->event, aux_head, size, 474 handle->aux_flags); 475 } 476 477 rb->user_page->aux_head = rb->aux_head; 478 if (rb_need_aux_wakeup(rb)) 479 wakeup = true; 480 481 if (wakeup) { 482 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED) 483 handle->event->pending_disable = 1; 484 perf_output_wakeup(handle); 485 } 486 487 handle->event = NULL; 488 489 local_set(&rb->aux_nest, 0); 490 /* can't be last */ 491 rb_free_aux(rb); 492 ring_buffer_put(rb); 493 } 494 EXPORT_SYMBOL_GPL(perf_aux_output_end); 495 496 /* 497 * Skip over a given number of bytes in the AUX buffer, due to, for example, 498 * hardware's alignment constraints. 499 */ 500 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 501 { 502 struct ring_buffer *rb = handle->rb; 503 504 if (size > handle->size) 505 return -ENOSPC; 506 507 rb->aux_head += size; 508 509 rb->user_page->aux_head = rb->aux_head; 510 if (rb_need_aux_wakeup(rb)) { 511 perf_output_wakeup(handle); 512 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 513 } 514 515 handle->head = rb->aux_head; 516 handle->size -= size; 517 518 return 0; 519 } 520 EXPORT_SYMBOL_GPL(perf_aux_output_skip); 521 522 void *perf_get_aux(struct perf_output_handle *handle) 523 { 524 /* this is only valid between perf_aux_output_begin and *_end */ 525 if (!handle->event) 526 return NULL; 527 528 return handle->rb->aux_priv; 529 } 530 EXPORT_SYMBOL_GPL(perf_get_aux); 531 532 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 533 534 static struct page *rb_alloc_aux_page(int node, int order) 535 { 536 struct page *page; 537 538 if (order > MAX_ORDER) 539 order = MAX_ORDER; 540 541 do { 542 page = alloc_pages_node(node, PERF_AUX_GFP, order); 543 } while (!page && order--); 544 545 if (page && order) { 546 /* 547 * Communicate the allocation size to the driver: 548 * if we managed to secure a high-order allocation, 549 * set its first page's private to this order; 550 * !PagePrivate(page) means it's just a normal page. 551 */ 552 split_page(page, order); 553 SetPagePrivate(page); 554 set_page_private(page, order); 555 } 556 557 return page; 558 } 559 560 static void rb_free_aux_page(struct ring_buffer *rb, int idx) 561 { 562 struct page *page = virt_to_page(rb->aux_pages[idx]); 563 564 ClearPagePrivate(page); 565 page->mapping = NULL; 566 __free_page(page); 567 } 568 569 static void __rb_free_aux(struct ring_buffer *rb) 570 { 571 int pg; 572 573 /* 574 * Should never happen, the last reference should be dropped from 575 * perf_mmap_close() path, which first stops aux transactions (which 576 * in turn are the atomic holders of aux_refcount) and then does the 577 * last rb_free_aux(). 578 */ 579 WARN_ON_ONCE(in_atomic()); 580 581 if (rb->aux_priv) { 582 rb->free_aux(rb->aux_priv); 583 rb->free_aux = NULL; 584 rb->aux_priv = NULL; 585 } 586 587 if (rb->aux_nr_pages) { 588 for (pg = 0; pg < rb->aux_nr_pages; pg++) 589 rb_free_aux_page(rb, pg); 590 591 kfree(rb->aux_pages); 592 rb->aux_nr_pages = 0; 593 } 594 } 595 596 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event, 597 pgoff_t pgoff, int nr_pages, long watermark, int flags) 598 { 599 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 600 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 601 int ret = -ENOMEM, max_order; 602 603 if (!has_aux(event)) 604 return -EOPNOTSUPP; 605 606 /* 607 * We need to start with the max_order that fits in nr_pages, 608 * not the other way around, hence ilog2() and not get_order. 609 */ 610 max_order = ilog2(nr_pages); 611 612 /* 613 * PMU requests more than one contiguous chunks of memory 614 * for SW double buffering 615 */ 616 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) && 617 !overwrite) { 618 if (!max_order) 619 return -EINVAL; 620 621 max_order--; 622 } 623 624 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL, 625 node); 626 if (!rb->aux_pages) 627 return -ENOMEM; 628 629 rb->free_aux = event->pmu->free_aux; 630 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 631 struct page *page; 632 int last, order; 633 634 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 635 page = rb_alloc_aux_page(node, order); 636 if (!page) 637 goto out; 638 639 for (last = rb->aux_nr_pages + (1 << page_private(page)); 640 last > rb->aux_nr_pages; rb->aux_nr_pages++) 641 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 642 } 643 644 /* 645 * In overwrite mode, PMUs that don't support SG may not handle more 646 * than one contiguous allocation, since they rely on PMI to do double 647 * buffering. In this case, the entire buffer has to be one contiguous 648 * chunk. 649 */ 650 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 651 overwrite) { 652 struct page *page = virt_to_page(rb->aux_pages[0]); 653 654 if (page_private(page) != max_order) 655 goto out; 656 } 657 658 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages, 659 overwrite); 660 if (!rb->aux_priv) 661 goto out; 662 663 ret = 0; 664 665 /* 666 * aux_pages (and pmu driver's private data, aux_priv) will be 667 * referenced in both producer's and consumer's contexts, thus 668 * we keep a refcount here to make sure either of the two can 669 * reference them safely. 670 */ 671 refcount_set(&rb->aux_refcount, 1); 672 673 rb->aux_overwrite = overwrite; 674 rb->aux_watermark = watermark; 675 676 if (!rb->aux_watermark && !rb->aux_overwrite) 677 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1); 678 679 out: 680 if (!ret) 681 rb->aux_pgoff = pgoff; 682 else 683 __rb_free_aux(rb); 684 685 return ret; 686 } 687 688 void rb_free_aux(struct ring_buffer *rb) 689 { 690 if (refcount_dec_and_test(&rb->aux_refcount)) 691 __rb_free_aux(rb); 692 } 693 694 #ifndef CONFIG_PERF_USE_VMALLOC 695 696 /* 697 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 698 */ 699 700 static struct page * 701 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 702 { 703 if (pgoff > rb->nr_pages) 704 return NULL; 705 706 if (pgoff == 0) 707 return virt_to_page(rb->user_page); 708 709 return virt_to_page(rb->data_pages[pgoff - 1]); 710 } 711 712 static void *perf_mmap_alloc_page(int cpu) 713 { 714 struct page *page; 715 int node; 716 717 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 718 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 719 if (!page) 720 return NULL; 721 722 return page_address(page); 723 } 724 725 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 726 { 727 struct ring_buffer *rb; 728 unsigned long size; 729 int i; 730 731 size = sizeof(struct ring_buffer); 732 size += nr_pages * sizeof(void *); 733 734 if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER) 735 goto fail; 736 737 rb = kzalloc(size, GFP_KERNEL); 738 if (!rb) 739 goto fail; 740 741 rb->user_page = perf_mmap_alloc_page(cpu); 742 if (!rb->user_page) 743 goto fail_user_page; 744 745 for (i = 0; i < nr_pages; i++) { 746 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 747 if (!rb->data_pages[i]) 748 goto fail_data_pages; 749 } 750 751 rb->nr_pages = nr_pages; 752 753 ring_buffer_init(rb, watermark, flags); 754 755 return rb; 756 757 fail_data_pages: 758 for (i--; i >= 0; i--) 759 free_page((unsigned long)rb->data_pages[i]); 760 761 free_page((unsigned long)rb->user_page); 762 763 fail_user_page: 764 kfree(rb); 765 766 fail: 767 return NULL; 768 } 769 770 static void perf_mmap_free_page(unsigned long addr) 771 { 772 struct page *page = virt_to_page((void *)addr); 773 774 page->mapping = NULL; 775 __free_page(page); 776 } 777 778 void rb_free(struct ring_buffer *rb) 779 { 780 int i; 781 782 perf_mmap_free_page((unsigned long)rb->user_page); 783 for (i = 0; i < rb->nr_pages; i++) 784 perf_mmap_free_page((unsigned long)rb->data_pages[i]); 785 kfree(rb); 786 } 787 788 #else 789 static int data_page_nr(struct ring_buffer *rb) 790 { 791 return rb->nr_pages << page_order(rb); 792 } 793 794 static struct page * 795 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 796 { 797 /* The '>' counts in the user page. */ 798 if (pgoff > data_page_nr(rb)) 799 return NULL; 800 801 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 802 } 803 804 static void perf_mmap_unmark_page(void *addr) 805 { 806 struct page *page = vmalloc_to_page(addr); 807 808 page->mapping = NULL; 809 } 810 811 static void rb_free_work(struct work_struct *work) 812 { 813 struct ring_buffer *rb; 814 void *base; 815 int i, nr; 816 817 rb = container_of(work, struct ring_buffer, work); 818 nr = data_page_nr(rb); 819 820 base = rb->user_page; 821 /* The '<=' counts in the user page. */ 822 for (i = 0; i <= nr; i++) 823 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 824 825 vfree(base); 826 kfree(rb); 827 } 828 829 void rb_free(struct ring_buffer *rb) 830 { 831 schedule_work(&rb->work); 832 } 833 834 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 835 { 836 struct ring_buffer *rb; 837 unsigned long size; 838 void *all_buf; 839 840 size = sizeof(struct ring_buffer); 841 size += sizeof(void *); 842 843 rb = kzalloc(size, GFP_KERNEL); 844 if (!rb) 845 goto fail; 846 847 INIT_WORK(&rb->work, rb_free_work); 848 849 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 850 if (!all_buf) 851 goto fail_all_buf; 852 853 rb->user_page = all_buf; 854 rb->data_pages[0] = all_buf + PAGE_SIZE; 855 if (nr_pages) { 856 rb->nr_pages = 1; 857 rb->page_order = ilog2(nr_pages); 858 } 859 860 ring_buffer_init(rb, watermark, flags); 861 862 return rb; 863 864 fail_all_buf: 865 kfree(rb); 866 867 fail: 868 return NULL; 869 } 870 871 #endif 872 873 struct page * 874 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 875 { 876 if (rb->aux_nr_pages) { 877 /* above AUX space */ 878 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 879 return NULL; 880 881 /* AUX space */ 882 if (pgoff >= rb->aux_pgoff) { 883 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages); 884 return virt_to_page(rb->aux_pages[aux_pgoff]); 885 } 886 } 887 888 return __perf_mmap_to_page(rb, pgoff); 889 } 890