1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events ring-buffer code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/perf_event.h> 12 #include <linux/vmalloc.h> 13 #include <linux/slab.h> 14 #include <linux/circ_buf.h> 15 #include <linux/poll.h> 16 #include <linux/nospec.h> 17 18 #include "internal.h" 19 20 static void perf_output_wakeup(struct perf_output_handle *handle) 21 { 22 atomic_set(&handle->rb->poll, EPOLLIN); 23 24 handle->event->pending_wakeup = 1; 25 irq_work_queue(&handle->event->pending); 26 } 27 28 /* 29 * We need to ensure a later event_id doesn't publish a head when a former 30 * event isn't done writing. However since we need to deal with NMIs we 31 * cannot fully serialize things. 32 * 33 * We only publish the head (and generate a wakeup) when the outer-most 34 * event completes. 35 */ 36 static void perf_output_get_handle(struct perf_output_handle *handle) 37 { 38 struct ring_buffer *rb = handle->rb; 39 40 preempt_disable(); 41 42 /* 43 * Avoid an explicit LOAD/STORE such that architectures with memops 44 * can use them. 45 */ 46 (*(volatile unsigned int *)&rb->nest)++; 47 handle->wakeup = local_read(&rb->wakeup); 48 } 49 50 static void perf_output_put_handle(struct perf_output_handle *handle) 51 { 52 struct ring_buffer *rb = handle->rb; 53 unsigned long head; 54 unsigned int nest; 55 56 /* 57 * If this isn't the outermost nesting, we don't have to update 58 * @rb->user_page->data_head. 59 */ 60 nest = READ_ONCE(rb->nest); 61 if (nest > 1) { 62 WRITE_ONCE(rb->nest, nest - 1); 63 goto out; 64 } 65 66 again: 67 /* 68 * In order to avoid publishing a head value that goes backwards, 69 * we must ensure the load of @rb->head happens after we've 70 * incremented @rb->nest. 71 * 72 * Otherwise we can observe a @rb->head value before one published 73 * by an IRQ/NMI happening between the load and the increment. 74 */ 75 barrier(); 76 head = local_read(&rb->head); 77 78 /* 79 * IRQ/NMI can happen here and advance @rb->head, causing our 80 * load above to be stale. 81 */ 82 83 /* 84 * Since the mmap() consumer (userspace) can run on a different CPU: 85 * 86 * kernel user 87 * 88 * if (LOAD ->data_tail) { LOAD ->data_head 89 * (A) smp_rmb() (C) 90 * STORE $data LOAD $data 91 * smp_wmb() (B) smp_mb() (D) 92 * STORE ->data_head STORE ->data_tail 93 * } 94 * 95 * Where A pairs with D, and B pairs with C. 96 * 97 * In our case (A) is a control dependency that separates the load of 98 * the ->data_tail and the stores of $data. In case ->data_tail 99 * indicates there is no room in the buffer to store $data we do not. 100 * 101 * D needs to be a full barrier since it separates the data READ 102 * from the tail WRITE. 103 * 104 * For B a WMB is sufficient since it separates two WRITEs, and for C 105 * an RMB is sufficient since it separates two READs. 106 * 107 * See perf_output_begin(). 108 */ 109 smp_wmb(); /* B, matches C */ 110 WRITE_ONCE(rb->user_page->data_head, head); 111 112 /* 113 * We must publish the head before decrementing the nest count, 114 * otherwise an IRQ/NMI can publish a more recent head value and our 115 * write will (temporarily) publish a stale value. 116 */ 117 barrier(); 118 WRITE_ONCE(rb->nest, 0); 119 120 /* 121 * Ensure we decrement @rb->nest before we validate the @rb->head. 122 * Otherwise we cannot be sure we caught the 'last' nested update. 123 */ 124 barrier(); 125 if (unlikely(head != local_read(&rb->head))) { 126 WRITE_ONCE(rb->nest, 1); 127 goto again; 128 } 129 130 if (handle->wakeup != local_read(&rb->wakeup)) 131 perf_output_wakeup(handle); 132 133 out: 134 preempt_enable(); 135 } 136 137 static __always_inline bool 138 ring_buffer_has_space(unsigned long head, unsigned long tail, 139 unsigned long data_size, unsigned int size, 140 bool backward) 141 { 142 if (!backward) 143 return CIRC_SPACE(head, tail, data_size) >= size; 144 else 145 return CIRC_SPACE(tail, head, data_size) >= size; 146 } 147 148 static __always_inline int 149 __perf_output_begin(struct perf_output_handle *handle, 150 struct perf_event *event, unsigned int size, 151 bool backward) 152 { 153 struct ring_buffer *rb; 154 unsigned long tail, offset, head; 155 int have_lost, page_shift; 156 struct { 157 struct perf_event_header header; 158 u64 id; 159 u64 lost; 160 } lost_event; 161 162 rcu_read_lock(); 163 /* 164 * For inherited events we send all the output towards the parent. 165 */ 166 if (event->parent) 167 event = event->parent; 168 169 rb = rcu_dereference(event->rb); 170 if (unlikely(!rb)) 171 goto out; 172 173 if (unlikely(rb->paused)) { 174 if (rb->nr_pages) 175 local_inc(&rb->lost); 176 goto out; 177 } 178 179 handle->rb = rb; 180 handle->event = event; 181 182 have_lost = local_read(&rb->lost); 183 if (unlikely(have_lost)) { 184 size += sizeof(lost_event); 185 if (event->attr.sample_id_all) 186 size += event->id_header_size; 187 } 188 189 perf_output_get_handle(handle); 190 191 do { 192 tail = READ_ONCE(rb->user_page->data_tail); 193 offset = head = local_read(&rb->head); 194 if (!rb->overwrite) { 195 if (unlikely(!ring_buffer_has_space(head, tail, 196 perf_data_size(rb), 197 size, backward))) 198 goto fail; 199 } 200 201 /* 202 * The above forms a control dependency barrier separating the 203 * @tail load above from the data stores below. Since the @tail 204 * load is required to compute the branch to fail below. 205 * 206 * A, matches D; the full memory barrier userspace SHOULD issue 207 * after reading the data and before storing the new tail 208 * position. 209 * 210 * See perf_output_put_handle(). 211 */ 212 213 if (!backward) 214 head += size; 215 else 216 head -= size; 217 } while (local_cmpxchg(&rb->head, offset, head) != offset); 218 219 if (backward) { 220 offset = head; 221 head = (u64)(-head); 222 } 223 224 /* 225 * We rely on the implied barrier() by local_cmpxchg() to ensure 226 * none of the data stores below can be lifted up by the compiler. 227 */ 228 229 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 230 local_add(rb->watermark, &rb->wakeup); 231 232 page_shift = PAGE_SHIFT + page_order(rb); 233 234 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 235 offset &= (1UL << page_shift) - 1; 236 handle->addr = rb->data_pages[handle->page] + offset; 237 handle->size = (1UL << page_shift) - offset; 238 239 if (unlikely(have_lost)) { 240 struct perf_sample_data sample_data; 241 242 lost_event.header.size = sizeof(lost_event); 243 lost_event.header.type = PERF_RECORD_LOST; 244 lost_event.header.misc = 0; 245 lost_event.id = event->id; 246 lost_event.lost = local_xchg(&rb->lost, 0); 247 248 perf_event_header__init_id(&lost_event.header, 249 &sample_data, event); 250 perf_output_put(handle, lost_event); 251 perf_event__output_id_sample(event, handle, &sample_data); 252 } 253 254 return 0; 255 256 fail: 257 local_inc(&rb->lost); 258 perf_output_put_handle(handle); 259 out: 260 rcu_read_unlock(); 261 262 return -ENOSPC; 263 } 264 265 int perf_output_begin_forward(struct perf_output_handle *handle, 266 struct perf_event *event, unsigned int size) 267 { 268 return __perf_output_begin(handle, event, size, false); 269 } 270 271 int perf_output_begin_backward(struct perf_output_handle *handle, 272 struct perf_event *event, unsigned int size) 273 { 274 return __perf_output_begin(handle, event, size, true); 275 } 276 277 int perf_output_begin(struct perf_output_handle *handle, 278 struct perf_event *event, unsigned int size) 279 { 280 281 return __perf_output_begin(handle, event, size, 282 unlikely(is_write_backward(event))); 283 } 284 285 unsigned int perf_output_copy(struct perf_output_handle *handle, 286 const void *buf, unsigned int len) 287 { 288 return __output_copy(handle, buf, len); 289 } 290 291 unsigned int perf_output_skip(struct perf_output_handle *handle, 292 unsigned int len) 293 { 294 return __output_skip(handle, NULL, len); 295 } 296 297 void perf_output_end(struct perf_output_handle *handle) 298 { 299 perf_output_put_handle(handle); 300 rcu_read_unlock(); 301 } 302 303 static void 304 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) 305 { 306 long max_size = perf_data_size(rb); 307 308 if (watermark) 309 rb->watermark = min(max_size, watermark); 310 311 if (!rb->watermark) 312 rb->watermark = max_size / 2; 313 314 if (flags & RING_BUFFER_WRITABLE) 315 rb->overwrite = 0; 316 else 317 rb->overwrite = 1; 318 319 refcount_set(&rb->refcount, 1); 320 321 INIT_LIST_HEAD(&rb->event_list); 322 spin_lock_init(&rb->event_lock); 323 324 /* 325 * perf_output_begin() only checks rb->paused, therefore 326 * rb->paused must be true if we have no pages for output. 327 */ 328 if (!rb->nr_pages) 329 rb->paused = 1; 330 } 331 332 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags) 333 { 334 /* 335 * OVERWRITE is determined by perf_aux_output_end() and can't 336 * be passed in directly. 337 */ 338 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE)) 339 return; 340 341 handle->aux_flags |= flags; 342 } 343 EXPORT_SYMBOL_GPL(perf_aux_output_flag); 344 345 /* 346 * This is called before hardware starts writing to the AUX area to 347 * obtain an output handle and make sure there's room in the buffer. 348 * When the capture completes, call perf_aux_output_end() to commit 349 * the recorded data to the buffer. 350 * 351 * The ordering is similar to that of perf_output_{begin,end}, with 352 * the exception of (B), which should be taken care of by the pmu 353 * driver, since ordering rules will differ depending on hardware. 354 * 355 * Call this from pmu::start(); see the comment in perf_aux_output_end() 356 * about its use in pmu callbacks. Both can also be called from the PMI 357 * handler if needed. 358 */ 359 void *perf_aux_output_begin(struct perf_output_handle *handle, 360 struct perf_event *event) 361 { 362 struct perf_event *output_event = event; 363 unsigned long aux_head, aux_tail; 364 struct ring_buffer *rb; 365 unsigned int nest; 366 367 if (output_event->parent) 368 output_event = output_event->parent; 369 370 /* 371 * Since this will typically be open across pmu::add/pmu::del, we 372 * grab ring_buffer's refcount instead of holding rcu read lock 373 * to make sure it doesn't disappear under us. 374 */ 375 rb = ring_buffer_get(output_event); 376 if (!rb) 377 return NULL; 378 379 if (!rb_has_aux(rb)) 380 goto err; 381 382 /* 383 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(), 384 * about to get freed, so we leave immediately. 385 * 386 * Checking rb::aux_mmap_count and rb::refcount has to be done in 387 * the same order, see perf_mmap_close. Otherwise we end up freeing 388 * aux pages in this path, which is a bug, because in_atomic(). 389 */ 390 if (!atomic_read(&rb->aux_mmap_count)) 391 goto err; 392 393 if (!refcount_inc_not_zero(&rb->aux_refcount)) 394 goto err; 395 396 nest = READ_ONCE(rb->aux_nest); 397 /* 398 * Nesting is not supported for AUX area, make sure nested 399 * writers are caught early 400 */ 401 if (WARN_ON_ONCE(nest)) 402 goto err_put; 403 404 WRITE_ONCE(rb->aux_nest, nest + 1); 405 406 aux_head = rb->aux_head; 407 408 handle->rb = rb; 409 handle->event = event; 410 handle->head = aux_head; 411 handle->size = 0; 412 handle->aux_flags = 0; 413 414 /* 415 * In overwrite mode, AUX data stores do not depend on aux_tail, 416 * therefore (A) control dependency barrier does not exist. The 417 * (B) <-> (C) ordering is still observed by the pmu driver. 418 */ 419 if (!rb->aux_overwrite) { 420 aux_tail = READ_ONCE(rb->user_page->aux_tail); 421 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 422 if (aux_head - aux_tail < perf_aux_size(rb)) 423 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 424 425 /* 426 * handle->size computation depends on aux_tail load; this forms a 427 * control dependency barrier separating aux_tail load from aux data 428 * store that will be enabled on successful return 429 */ 430 if (!handle->size) { /* A, matches D */ 431 event->pending_disable = smp_processor_id(); 432 perf_output_wakeup(handle); 433 WRITE_ONCE(rb->aux_nest, 0); 434 goto err_put; 435 } 436 } 437 438 return handle->rb->aux_priv; 439 440 err_put: 441 /* can't be last */ 442 rb_free_aux(rb); 443 444 err: 445 ring_buffer_put(rb); 446 handle->event = NULL; 447 448 return NULL; 449 } 450 EXPORT_SYMBOL_GPL(perf_aux_output_begin); 451 452 static __always_inline bool rb_need_aux_wakeup(struct ring_buffer *rb) 453 { 454 if (rb->aux_overwrite) 455 return false; 456 457 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) { 458 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark); 459 return true; 460 } 461 462 return false; 463 } 464 465 /* 466 * Commit the data written by hardware into the ring buffer by adjusting 467 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 468 * pmu driver's responsibility to observe ordering rules of the hardware, 469 * so that all the data is externally visible before this is called. 470 * 471 * Note: this has to be called from pmu::stop() callback, as the assumption 472 * of the AUX buffer management code is that after pmu::stop(), the AUX 473 * transaction must be stopped and therefore drop the AUX reference count. 474 */ 475 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 476 { 477 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED); 478 struct ring_buffer *rb = handle->rb; 479 unsigned long aux_head; 480 481 /* in overwrite mode, driver provides aux_head via handle */ 482 if (rb->aux_overwrite) { 483 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE; 484 485 aux_head = handle->head; 486 rb->aux_head = aux_head; 487 } else { 488 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE; 489 490 aux_head = rb->aux_head; 491 rb->aux_head += size; 492 } 493 494 /* 495 * Only send RECORD_AUX if we have something useful to communicate 496 * 497 * Note: the OVERWRITE records by themselves are not considered 498 * useful, as they don't communicate any *new* information, 499 * aside from the short-lived offset, that becomes history at 500 * the next event sched-in and therefore isn't useful. 501 * The userspace that needs to copy out AUX data in overwrite 502 * mode should know to use user_page::aux_head for the actual 503 * offset. So, from now on we don't output AUX records that 504 * have *only* OVERWRITE flag set. 505 */ 506 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE)) 507 perf_event_aux_event(handle->event, aux_head, size, 508 handle->aux_flags); 509 510 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); 511 if (rb_need_aux_wakeup(rb)) 512 wakeup = true; 513 514 if (wakeup) { 515 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED) 516 handle->event->pending_disable = smp_processor_id(); 517 perf_output_wakeup(handle); 518 } 519 520 handle->event = NULL; 521 522 WRITE_ONCE(rb->aux_nest, 0); 523 /* can't be last */ 524 rb_free_aux(rb); 525 ring_buffer_put(rb); 526 } 527 EXPORT_SYMBOL_GPL(perf_aux_output_end); 528 529 /* 530 * Skip over a given number of bytes in the AUX buffer, due to, for example, 531 * hardware's alignment constraints. 532 */ 533 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 534 { 535 struct ring_buffer *rb = handle->rb; 536 537 if (size > handle->size) 538 return -ENOSPC; 539 540 rb->aux_head += size; 541 542 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); 543 if (rb_need_aux_wakeup(rb)) { 544 perf_output_wakeup(handle); 545 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 546 } 547 548 handle->head = rb->aux_head; 549 handle->size -= size; 550 551 return 0; 552 } 553 EXPORT_SYMBOL_GPL(perf_aux_output_skip); 554 555 void *perf_get_aux(struct perf_output_handle *handle) 556 { 557 /* this is only valid between perf_aux_output_begin and *_end */ 558 if (!handle->event) 559 return NULL; 560 561 return handle->rb->aux_priv; 562 } 563 EXPORT_SYMBOL_GPL(perf_get_aux); 564 565 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 566 567 static struct page *rb_alloc_aux_page(int node, int order) 568 { 569 struct page *page; 570 571 if (order > MAX_ORDER) 572 order = MAX_ORDER; 573 574 do { 575 page = alloc_pages_node(node, PERF_AUX_GFP, order); 576 } while (!page && order--); 577 578 if (page && order) { 579 /* 580 * Communicate the allocation size to the driver: 581 * if we managed to secure a high-order allocation, 582 * set its first page's private to this order; 583 * !PagePrivate(page) means it's just a normal page. 584 */ 585 split_page(page, order); 586 SetPagePrivate(page); 587 set_page_private(page, order); 588 } 589 590 return page; 591 } 592 593 static void rb_free_aux_page(struct ring_buffer *rb, int idx) 594 { 595 struct page *page = virt_to_page(rb->aux_pages[idx]); 596 597 ClearPagePrivate(page); 598 page->mapping = NULL; 599 __free_page(page); 600 } 601 602 static void __rb_free_aux(struct ring_buffer *rb) 603 { 604 int pg; 605 606 /* 607 * Should never happen, the last reference should be dropped from 608 * perf_mmap_close() path, which first stops aux transactions (which 609 * in turn are the atomic holders of aux_refcount) and then does the 610 * last rb_free_aux(). 611 */ 612 WARN_ON_ONCE(in_atomic()); 613 614 if (rb->aux_priv) { 615 rb->free_aux(rb->aux_priv); 616 rb->free_aux = NULL; 617 rb->aux_priv = NULL; 618 } 619 620 if (rb->aux_nr_pages) { 621 for (pg = 0; pg < rb->aux_nr_pages; pg++) 622 rb_free_aux_page(rb, pg); 623 624 kfree(rb->aux_pages); 625 rb->aux_nr_pages = 0; 626 } 627 } 628 629 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event, 630 pgoff_t pgoff, int nr_pages, long watermark, int flags) 631 { 632 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 633 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 634 int ret = -ENOMEM, max_order; 635 636 if (!has_aux(event)) 637 return -EOPNOTSUPP; 638 639 /* 640 * We need to start with the max_order that fits in nr_pages, 641 * not the other way around, hence ilog2() and not get_order. 642 */ 643 max_order = ilog2(nr_pages); 644 645 /* 646 * PMU requests more than one contiguous chunks of memory 647 * for SW double buffering 648 */ 649 if (!overwrite) { 650 if (!max_order) 651 return -EINVAL; 652 653 max_order--; 654 } 655 656 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL, 657 node); 658 if (!rb->aux_pages) 659 return -ENOMEM; 660 661 rb->free_aux = event->pmu->free_aux; 662 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 663 struct page *page; 664 int last, order; 665 666 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 667 page = rb_alloc_aux_page(node, order); 668 if (!page) 669 goto out; 670 671 for (last = rb->aux_nr_pages + (1 << page_private(page)); 672 last > rb->aux_nr_pages; rb->aux_nr_pages++) 673 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 674 } 675 676 /* 677 * In overwrite mode, PMUs that don't support SG may not handle more 678 * than one contiguous allocation, since they rely on PMI to do double 679 * buffering. In this case, the entire buffer has to be one contiguous 680 * chunk. 681 */ 682 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 683 overwrite) { 684 struct page *page = virt_to_page(rb->aux_pages[0]); 685 686 if (page_private(page) != max_order) 687 goto out; 688 } 689 690 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages, 691 overwrite); 692 if (!rb->aux_priv) 693 goto out; 694 695 ret = 0; 696 697 /* 698 * aux_pages (and pmu driver's private data, aux_priv) will be 699 * referenced in both producer's and consumer's contexts, thus 700 * we keep a refcount here to make sure either of the two can 701 * reference them safely. 702 */ 703 refcount_set(&rb->aux_refcount, 1); 704 705 rb->aux_overwrite = overwrite; 706 rb->aux_watermark = watermark; 707 708 if (!rb->aux_watermark && !rb->aux_overwrite) 709 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1); 710 711 out: 712 if (!ret) 713 rb->aux_pgoff = pgoff; 714 else 715 __rb_free_aux(rb); 716 717 return ret; 718 } 719 720 void rb_free_aux(struct ring_buffer *rb) 721 { 722 if (refcount_dec_and_test(&rb->aux_refcount)) 723 __rb_free_aux(rb); 724 } 725 726 #ifndef CONFIG_PERF_USE_VMALLOC 727 728 /* 729 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 730 */ 731 732 static struct page * 733 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 734 { 735 if (pgoff > rb->nr_pages) 736 return NULL; 737 738 if (pgoff == 0) 739 return virt_to_page(rb->user_page); 740 741 return virt_to_page(rb->data_pages[pgoff - 1]); 742 } 743 744 static void *perf_mmap_alloc_page(int cpu) 745 { 746 struct page *page; 747 int node; 748 749 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 750 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 751 if (!page) 752 return NULL; 753 754 return page_address(page); 755 } 756 757 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 758 { 759 struct ring_buffer *rb; 760 unsigned long size; 761 int i; 762 763 size = sizeof(struct ring_buffer); 764 size += nr_pages * sizeof(void *); 765 766 if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER) 767 goto fail; 768 769 rb = kzalloc(size, GFP_KERNEL); 770 if (!rb) 771 goto fail; 772 773 rb->user_page = perf_mmap_alloc_page(cpu); 774 if (!rb->user_page) 775 goto fail_user_page; 776 777 for (i = 0; i < nr_pages; i++) { 778 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 779 if (!rb->data_pages[i]) 780 goto fail_data_pages; 781 } 782 783 rb->nr_pages = nr_pages; 784 785 ring_buffer_init(rb, watermark, flags); 786 787 return rb; 788 789 fail_data_pages: 790 for (i--; i >= 0; i--) 791 free_page((unsigned long)rb->data_pages[i]); 792 793 free_page((unsigned long)rb->user_page); 794 795 fail_user_page: 796 kfree(rb); 797 798 fail: 799 return NULL; 800 } 801 802 static void perf_mmap_free_page(unsigned long addr) 803 { 804 struct page *page = virt_to_page((void *)addr); 805 806 page->mapping = NULL; 807 __free_page(page); 808 } 809 810 void rb_free(struct ring_buffer *rb) 811 { 812 int i; 813 814 perf_mmap_free_page((unsigned long)rb->user_page); 815 for (i = 0; i < rb->nr_pages; i++) 816 perf_mmap_free_page((unsigned long)rb->data_pages[i]); 817 kfree(rb); 818 } 819 820 #else 821 static int data_page_nr(struct ring_buffer *rb) 822 { 823 return rb->nr_pages << page_order(rb); 824 } 825 826 static struct page * 827 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 828 { 829 /* The '>' counts in the user page. */ 830 if (pgoff > data_page_nr(rb)) 831 return NULL; 832 833 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 834 } 835 836 static void perf_mmap_unmark_page(void *addr) 837 { 838 struct page *page = vmalloc_to_page(addr); 839 840 page->mapping = NULL; 841 } 842 843 static void rb_free_work(struct work_struct *work) 844 { 845 struct ring_buffer *rb; 846 void *base; 847 int i, nr; 848 849 rb = container_of(work, struct ring_buffer, work); 850 nr = data_page_nr(rb); 851 852 base = rb->user_page; 853 /* The '<=' counts in the user page. */ 854 for (i = 0; i <= nr; i++) 855 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 856 857 vfree(base); 858 kfree(rb); 859 } 860 861 void rb_free(struct ring_buffer *rb) 862 { 863 schedule_work(&rb->work); 864 } 865 866 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 867 { 868 struct ring_buffer *rb; 869 unsigned long size; 870 void *all_buf; 871 872 size = sizeof(struct ring_buffer); 873 size += sizeof(void *); 874 875 rb = kzalloc(size, GFP_KERNEL); 876 if (!rb) 877 goto fail; 878 879 INIT_WORK(&rb->work, rb_free_work); 880 881 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 882 if (!all_buf) 883 goto fail_all_buf; 884 885 rb->user_page = all_buf; 886 rb->data_pages[0] = all_buf + PAGE_SIZE; 887 if (nr_pages) { 888 rb->nr_pages = 1; 889 rb->page_order = ilog2(nr_pages); 890 } 891 892 ring_buffer_init(rb, watermark, flags); 893 894 return rb; 895 896 fail_all_buf: 897 kfree(rb); 898 899 fail: 900 return NULL; 901 } 902 903 #endif 904 905 struct page * 906 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 907 { 908 if (rb->aux_nr_pages) { 909 /* above AUX space */ 910 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 911 return NULL; 912 913 /* AUX space */ 914 if (pgoff >= rb->aux_pgoff) { 915 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages); 916 return virt_to_page(rb->aux_pages[aux_pgoff]); 917 } 918 } 919 920 return __perf_mmap_to_page(rb, pgoff); 921 } 922