xref: /openbmc/linux/kernel/events/ring_buffer.c (revision b003fb5c9df8a8923bf46e0c00cc54edcfb0fbe3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events ring-buffer code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
17 
18 #include "internal.h"
19 
20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, EPOLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending_irq);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct perf_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 
42 	/*
43 	 * Avoid an explicit LOAD/STORE such that architectures with memops
44 	 * can use them.
45 	 */
46 	(*(volatile unsigned int *)&rb->nest)++;
47 	handle->wakeup = local_read(&rb->wakeup);
48 }
49 
50 static void perf_output_put_handle(struct perf_output_handle *handle)
51 {
52 	struct perf_buffer *rb = handle->rb;
53 	unsigned long head;
54 	unsigned int nest;
55 
56 	/*
57 	 * If this isn't the outermost nesting, we don't have to update
58 	 * @rb->user_page->data_head.
59 	 */
60 	nest = READ_ONCE(rb->nest);
61 	if (nest > 1) {
62 		WRITE_ONCE(rb->nest, nest - 1);
63 		goto out;
64 	}
65 
66 again:
67 	/*
68 	 * In order to avoid publishing a head value that goes backwards,
69 	 * we must ensure the load of @rb->head happens after we've
70 	 * incremented @rb->nest.
71 	 *
72 	 * Otherwise we can observe a @rb->head value before one published
73 	 * by an IRQ/NMI happening between the load and the increment.
74 	 */
75 	barrier();
76 	head = local_read(&rb->head);
77 
78 	/*
79 	 * IRQ/NMI can happen here and advance @rb->head, causing our
80 	 * load above to be stale.
81 	 */
82 
83 	/*
84 	 * Since the mmap() consumer (userspace) can run on a different CPU:
85 	 *
86 	 *   kernel				user
87 	 *
88 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
89 	 *			(A)		smp_rmb()	(C)
90 	 *	STORE $data			LOAD $data
91 	 *	smp_wmb()	(B)		smp_mb()	(D)
92 	 *	STORE ->data_head		STORE ->data_tail
93 	 *   }
94 	 *
95 	 * Where A pairs with D, and B pairs with C.
96 	 *
97 	 * In our case (A) is a control dependency that separates the load of
98 	 * the ->data_tail and the stores of $data. In case ->data_tail
99 	 * indicates there is no room in the buffer to store $data we do not.
100 	 *
101 	 * D needs to be a full barrier since it separates the data READ
102 	 * from the tail WRITE.
103 	 *
104 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
105 	 * an RMB is sufficient since it separates two READs.
106 	 *
107 	 * See perf_output_begin().
108 	 */
109 	smp_wmb(); /* B, matches C */
110 	WRITE_ONCE(rb->user_page->data_head, head);
111 
112 	/*
113 	 * We must publish the head before decrementing the nest count,
114 	 * otherwise an IRQ/NMI can publish a more recent head value and our
115 	 * write will (temporarily) publish a stale value.
116 	 */
117 	barrier();
118 	WRITE_ONCE(rb->nest, 0);
119 
120 	/*
121 	 * Ensure we decrement @rb->nest before we validate the @rb->head.
122 	 * Otherwise we cannot be sure we caught the 'last' nested update.
123 	 */
124 	barrier();
125 	if (unlikely(head != local_read(&rb->head))) {
126 		WRITE_ONCE(rb->nest, 1);
127 		goto again;
128 	}
129 
130 	if (handle->wakeup != local_read(&rb->wakeup))
131 		perf_output_wakeup(handle);
132 
133 out:
134 	preempt_enable();
135 }
136 
137 static __always_inline bool
138 ring_buffer_has_space(unsigned long head, unsigned long tail,
139 		      unsigned long data_size, unsigned int size,
140 		      bool backward)
141 {
142 	if (!backward)
143 		return CIRC_SPACE(head, tail, data_size) >= size;
144 	else
145 		return CIRC_SPACE(tail, head, data_size) >= size;
146 }
147 
148 static __always_inline int
149 __perf_output_begin(struct perf_output_handle *handle,
150 		    struct perf_sample_data *data,
151 		    struct perf_event *event, unsigned int size,
152 		    bool backward)
153 {
154 	struct perf_buffer *rb;
155 	unsigned long tail, offset, head;
156 	int have_lost, page_shift;
157 	struct {
158 		struct perf_event_header header;
159 		u64			 id;
160 		u64			 lost;
161 	} lost_event;
162 
163 	rcu_read_lock();
164 	/*
165 	 * For inherited events we send all the output towards the parent.
166 	 */
167 	if (event->parent)
168 		event = event->parent;
169 
170 	rb = rcu_dereference(event->rb);
171 	if (unlikely(!rb))
172 		goto out;
173 
174 	if (unlikely(rb->paused)) {
175 		if (rb->nr_pages) {
176 			local_inc(&rb->lost);
177 			atomic64_inc(&event->lost_samples);
178 		}
179 		goto out;
180 	}
181 
182 	handle->rb    = rb;
183 	handle->event = event;
184 
185 	have_lost = local_read(&rb->lost);
186 	if (unlikely(have_lost)) {
187 		size += sizeof(lost_event);
188 		if (event->attr.sample_id_all)
189 			size += event->id_header_size;
190 	}
191 
192 	perf_output_get_handle(handle);
193 
194 	do {
195 		tail = READ_ONCE(rb->user_page->data_tail);
196 		offset = head = local_read(&rb->head);
197 		if (!rb->overwrite) {
198 			if (unlikely(!ring_buffer_has_space(head, tail,
199 							    perf_data_size(rb),
200 							    size, backward)))
201 				goto fail;
202 		}
203 
204 		/*
205 		 * The above forms a control dependency barrier separating the
206 		 * @tail load above from the data stores below. Since the @tail
207 		 * load is required to compute the branch to fail below.
208 		 *
209 		 * A, matches D; the full memory barrier userspace SHOULD issue
210 		 * after reading the data and before storing the new tail
211 		 * position.
212 		 *
213 		 * See perf_output_put_handle().
214 		 */
215 
216 		if (!backward)
217 			head += size;
218 		else
219 			head -= size;
220 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
221 
222 	if (backward) {
223 		offset = head;
224 		head = (u64)(-head);
225 	}
226 
227 	/*
228 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
229 	 * none of the data stores below can be lifted up by the compiler.
230 	 */
231 
232 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
233 		local_add(rb->watermark, &rb->wakeup);
234 
235 	page_shift = PAGE_SHIFT + page_order(rb);
236 
237 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
238 	offset &= (1UL << page_shift) - 1;
239 	handle->addr = rb->data_pages[handle->page] + offset;
240 	handle->size = (1UL << page_shift) - offset;
241 
242 	if (unlikely(have_lost)) {
243 		lost_event.header.size = sizeof(lost_event);
244 		lost_event.header.type = PERF_RECORD_LOST;
245 		lost_event.header.misc = 0;
246 		lost_event.id          = event->id;
247 		lost_event.lost        = local_xchg(&rb->lost, 0);
248 
249 		/* XXX mostly redundant; @data is already fully initializes */
250 		perf_event_header__init_id(&lost_event.header, data, event);
251 		perf_output_put(handle, lost_event);
252 		perf_event__output_id_sample(event, handle, data);
253 	}
254 
255 	return 0;
256 
257 fail:
258 	local_inc(&rb->lost);
259 	atomic64_inc(&event->lost_samples);
260 	perf_output_put_handle(handle);
261 out:
262 	rcu_read_unlock();
263 
264 	return -ENOSPC;
265 }
266 
267 int perf_output_begin_forward(struct perf_output_handle *handle,
268 			      struct perf_sample_data *data,
269 			      struct perf_event *event, unsigned int size)
270 {
271 	return __perf_output_begin(handle, data, event, size, false);
272 }
273 
274 int perf_output_begin_backward(struct perf_output_handle *handle,
275 			       struct perf_sample_data *data,
276 			       struct perf_event *event, unsigned int size)
277 {
278 	return __perf_output_begin(handle, data, event, size, true);
279 }
280 
281 int perf_output_begin(struct perf_output_handle *handle,
282 		      struct perf_sample_data *data,
283 		      struct perf_event *event, unsigned int size)
284 {
285 
286 	return __perf_output_begin(handle, data, event, size,
287 				   unlikely(is_write_backward(event)));
288 }
289 
290 unsigned int perf_output_copy(struct perf_output_handle *handle,
291 		      const void *buf, unsigned int len)
292 {
293 	return __output_copy(handle, buf, len);
294 }
295 
296 unsigned int perf_output_skip(struct perf_output_handle *handle,
297 			      unsigned int len)
298 {
299 	return __output_skip(handle, NULL, len);
300 }
301 
302 void perf_output_end(struct perf_output_handle *handle)
303 {
304 	perf_output_put_handle(handle);
305 	rcu_read_unlock();
306 }
307 
308 static void
309 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
310 {
311 	long max_size = perf_data_size(rb);
312 
313 	if (watermark)
314 		rb->watermark = min(max_size, watermark);
315 
316 	if (!rb->watermark)
317 		rb->watermark = max_size / 2;
318 
319 	if (flags & RING_BUFFER_WRITABLE)
320 		rb->overwrite = 0;
321 	else
322 		rb->overwrite = 1;
323 
324 	refcount_set(&rb->refcount, 1);
325 
326 	INIT_LIST_HEAD(&rb->event_list);
327 	spin_lock_init(&rb->event_lock);
328 
329 	/*
330 	 * perf_output_begin() only checks rb->paused, therefore
331 	 * rb->paused must be true if we have no pages for output.
332 	 */
333 	if (!rb->nr_pages)
334 		rb->paused = 1;
335 }
336 
337 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
338 {
339 	/*
340 	 * OVERWRITE is determined by perf_aux_output_end() and can't
341 	 * be passed in directly.
342 	 */
343 	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
344 		return;
345 
346 	handle->aux_flags |= flags;
347 }
348 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
349 
350 /*
351  * This is called before hardware starts writing to the AUX area to
352  * obtain an output handle and make sure there's room in the buffer.
353  * When the capture completes, call perf_aux_output_end() to commit
354  * the recorded data to the buffer.
355  *
356  * The ordering is similar to that of perf_output_{begin,end}, with
357  * the exception of (B), which should be taken care of by the pmu
358  * driver, since ordering rules will differ depending on hardware.
359  *
360  * Call this from pmu::start(); see the comment in perf_aux_output_end()
361  * about its use in pmu callbacks. Both can also be called from the PMI
362  * handler if needed.
363  */
364 void *perf_aux_output_begin(struct perf_output_handle *handle,
365 			    struct perf_event *event)
366 {
367 	struct perf_event *output_event = event;
368 	unsigned long aux_head, aux_tail;
369 	struct perf_buffer *rb;
370 	unsigned int nest;
371 
372 	if (output_event->parent)
373 		output_event = output_event->parent;
374 
375 	/*
376 	 * Since this will typically be open across pmu::add/pmu::del, we
377 	 * grab ring_buffer's refcount instead of holding rcu read lock
378 	 * to make sure it doesn't disappear under us.
379 	 */
380 	rb = ring_buffer_get(output_event);
381 	if (!rb)
382 		return NULL;
383 
384 	if (!rb_has_aux(rb))
385 		goto err;
386 
387 	/*
388 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
389 	 * about to get freed, so we leave immediately.
390 	 *
391 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
392 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
393 	 * aux pages in this path, which is a bug, because in_atomic().
394 	 */
395 	if (!atomic_read(&rb->aux_mmap_count))
396 		goto err;
397 
398 	if (!refcount_inc_not_zero(&rb->aux_refcount))
399 		goto err;
400 
401 	nest = READ_ONCE(rb->aux_nest);
402 	/*
403 	 * Nesting is not supported for AUX area, make sure nested
404 	 * writers are caught early
405 	 */
406 	if (WARN_ON_ONCE(nest))
407 		goto err_put;
408 
409 	WRITE_ONCE(rb->aux_nest, nest + 1);
410 
411 	aux_head = rb->aux_head;
412 
413 	handle->rb = rb;
414 	handle->event = event;
415 	handle->head = aux_head;
416 	handle->size = 0;
417 	handle->aux_flags = 0;
418 
419 	/*
420 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
421 	 * therefore (A) control dependency barrier does not exist. The
422 	 * (B) <-> (C) ordering is still observed by the pmu driver.
423 	 */
424 	if (!rb->aux_overwrite) {
425 		aux_tail = READ_ONCE(rb->user_page->aux_tail);
426 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
427 		if (aux_head - aux_tail < perf_aux_size(rb))
428 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
429 
430 		/*
431 		 * handle->size computation depends on aux_tail load; this forms a
432 		 * control dependency barrier separating aux_tail load from aux data
433 		 * store that will be enabled on successful return
434 		 */
435 		if (!handle->size) { /* A, matches D */
436 			event->pending_disable = smp_processor_id();
437 			perf_output_wakeup(handle);
438 			WRITE_ONCE(rb->aux_nest, 0);
439 			goto err_put;
440 		}
441 	}
442 
443 	return handle->rb->aux_priv;
444 
445 err_put:
446 	/* can't be last */
447 	rb_free_aux(rb);
448 
449 err:
450 	ring_buffer_put(rb);
451 	handle->event = NULL;
452 
453 	return NULL;
454 }
455 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
456 
457 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
458 {
459 	if (rb->aux_overwrite)
460 		return false;
461 
462 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
463 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
464 		return true;
465 	}
466 
467 	return false;
468 }
469 
470 /*
471  * Commit the data written by hardware into the ring buffer by adjusting
472  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
473  * pmu driver's responsibility to observe ordering rules of the hardware,
474  * so that all the data is externally visible before this is called.
475  *
476  * Note: this has to be called from pmu::stop() callback, as the assumption
477  * of the AUX buffer management code is that after pmu::stop(), the AUX
478  * transaction must be stopped and therefore drop the AUX reference count.
479  */
480 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
481 {
482 	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
483 	struct perf_buffer *rb = handle->rb;
484 	unsigned long aux_head;
485 
486 	/* in overwrite mode, driver provides aux_head via handle */
487 	if (rb->aux_overwrite) {
488 		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
489 
490 		aux_head = handle->head;
491 		rb->aux_head = aux_head;
492 	} else {
493 		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
494 
495 		aux_head = rb->aux_head;
496 		rb->aux_head += size;
497 	}
498 
499 	/*
500 	 * Only send RECORD_AUX if we have something useful to communicate
501 	 *
502 	 * Note: the OVERWRITE records by themselves are not considered
503 	 * useful, as they don't communicate any *new* information,
504 	 * aside from the short-lived offset, that becomes history at
505 	 * the next event sched-in and therefore isn't useful.
506 	 * The userspace that needs to copy out AUX data in overwrite
507 	 * mode should know to use user_page::aux_head for the actual
508 	 * offset. So, from now on we don't output AUX records that
509 	 * have *only* OVERWRITE flag set.
510 	 */
511 	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
512 		perf_event_aux_event(handle->event, aux_head, size,
513 				     handle->aux_flags);
514 
515 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
516 	if (rb_need_aux_wakeup(rb))
517 		wakeup = true;
518 
519 	if (wakeup) {
520 		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
521 			handle->event->pending_disable = smp_processor_id();
522 		perf_output_wakeup(handle);
523 	}
524 
525 	handle->event = NULL;
526 
527 	WRITE_ONCE(rb->aux_nest, 0);
528 	/* can't be last */
529 	rb_free_aux(rb);
530 	ring_buffer_put(rb);
531 }
532 EXPORT_SYMBOL_GPL(perf_aux_output_end);
533 
534 /*
535  * Skip over a given number of bytes in the AUX buffer, due to, for example,
536  * hardware's alignment constraints.
537  */
538 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
539 {
540 	struct perf_buffer *rb = handle->rb;
541 
542 	if (size > handle->size)
543 		return -ENOSPC;
544 
545 	rb->aux_head += size;
546 
547 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
548 	if (rb_need_aux_wakeup(rb)) {
549 		perf_output_wakeup(handle);
550 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
551 	}
552 
553 	handle->head = rb->aux_head;
554 	handle->size -= size;
555 
556 	return 0;
557 }
558 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
559 
560 void *perf_get_aux(struct perf_output_handle *handle)
561 {
562 	/* this is only valid between perf_aux_output_begin and *_end */
563 	if (!handle->event)
564 		return NULL;
565 
566 	return handle->rb->aux_priv;
567 }
568 EXPORT_SYMBOL_GPL(perf_get_aux);
569 
570 /*
571  * Copy out AUX data from an AUX handle.
572  */
573 long perf_output_copy_aux(struct perf_output_handle *aux_handle,
574 			  struct perf_output_handle *handle,
575 			  unsigned long from, unsigned long to)
576 {
577 	struct perf_buffer *rb = aux_handle->rb;
578 	unsigned long tocopy, remainder, len = 0;
579 	void *addr;
580 
581 	from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
582 	to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
583 
584 	do {
585 		tocopy = PAGE_SIZE - offset_in_page(from);
586 		if (to > from)
587 			tocopy = min(tocopy, to - from);
588 		if (!tocopy)
589 			break;
590 
591 		addr = rb->aux_pages[from >> PAGE_SHIFT];
592 		addr += offset_in_page(from);
593 
594 		remainder = perf_output_copy(handle, addr, tocopy);
595 		if (remainder)
596 			return -EFAULT;
597 
598 		len += tocopy;
599 		from += tocopy;
600 		from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
601 	} while (to != from);
602 
603 	return len;
604 }
605 
606 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
607 
608 static struct page *rb_alloc_aux_page(int node, int order)
609 {
610 	struct page *page;
611 
612 	if (order > MAX_ORDER)
613 		order = MAX_ORDER;
614 
615 	do {
616 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
617 	} while (!page && order--);
618 
619 	if (page && order) {
620 		/*
621 		 * Communicate the allocation size to the driver:
622 		 * if we managed to secure a high-order allocation,
623 		 * set its first page's private to this order;
624 		 * !PagePrivate(page) means it's just a normal page.
625 		 */
626 		split_page(page, order);
627 		SetPagePrivate(page);
628 		set_page_private(page, order);
629 	}
630 
631 	return page;
632 }
633 
634 static void rb_free_aux_page(struct perf_buffer *rb, int idx)
635 {
636 	struct page *page = virt_to_page(rb->aux_pages[idx]);
637 
638 	ClearPagePrivate(page);
639 	page->mapping = NULL;
640 	__free_page(page);
641 }
642 
643 static void __rb_free_aux(struct perf_buffer *rb)
644 {
645 	int pg;
646 
647 	/*
648 	 * Should never happen, the last reference should be dropped from
649 	 * perf_mmap_close() path, which first stops aux transactions (which
650 	 * in turn are the atomic holders of aux_refcount) and then does the
651 	 * last rb_free_aux().
652 	 */
653 	WARN_ON_ONCE(in_atomic());
654 
655 	if (rb->aux_priv) {
656 		rb->free_aux(rb->aux_priv);
657 		rb->free_aux = NULL;
658 		rb->aux_priv = NULL;
659 	}
660 
661 	if (rb->aux_nr_pages) {
662 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
663 			rb_free_aux_page(rb, pg);
664 
665 		kfree(rb->aux_pages);
666 		rb->aux_nr_pages = 0;
667 	}
668 }
669 
670 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
671 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
672 {
673 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
674 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
675 	int ret = -ENOMEM, max_order;
676 
677 	if (!has_aux(event))
678 		return -EOPNOTSUPP;
679 
680 	if (!overwrite) {
681 		/*
682 		 * Watermark defaults to half the buffer, and so does the
683 		 * max_order, to aid PMU drivers in double buffering.
684 		 */
685 		if (!watermark)
686 			watermark = nr_pages << (PAGE_SHIFT - 1);
687 
688 		/*
689 		 * Use aux_watermark as the basis for chunking to
690 		 * help PMU drivers honor the watermark.
691 		 */
692 		max_order = get_order(watermark);
693 	} else {
694 		/*
695 		 * We need to start with the max_order that fits in nr_pages,
696 		 * not the other way around, hence ilog2() and not get_order.
697 		 */
698 		max_order = ilog2(nr_pages);
699 		watermark = 0;
700 	}
701 
702 	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
703 				     node);
704 	if (!rb->aux_pages)
705 		return -ENOMEM;
706 
707 	rb->free_aux = event->pmu->free_aux;
708 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
709 		struct page *page;
710 		int last, order;
711 
712 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
713 		page = rb_alloc_aux_page(node, order);
714 		if (!page)
715 			goto out;
716 
717 		for (last = rb->aux_nr_pages + (1 << page_private(page));
718 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
719 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
720 	}
721 
722 	/*
723 	 * In overwrite mode, PMUs that don't support SG may not handle more
724 	 * than one contiguous allocation, since they rely on PMI to do double
725 	 * buffering. In this case, the entire buffer has to be one contiguous
726 	 * chunk.
727 	 */
728 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
729 	    overwrite) {
730 		struct page *page = virt_to_page(rb->aux_pages[0]);
731 
732 		if (page_private(page) != max_order)
733 			goto out;
734 	}
735 
736 	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
737 					     overwrite);
738 	if (!rb->aux_priv)
739 		goto out;
740 
741 	ret = 0;
742 
743 	/*
744 	 * aux_pages (and pmu driver's private data, aux_priv) will be
745 	 * referenced in both producer's and consumer's contexts, thus
746 	 * we keep a refcount here to make sure either of the two can
747 	 * reference them safely.
748 	 */
749 	refcount_set(&rb->aux_refcount, 1);
750 
751 	rb->aux_overwrite = overwrite;
752 	rb->aux_watermark = watermark;
753 
754 out:
755 	if (!ret)
756 		rb->aux_pgoff = pgoff;
757 	else
758 		__rb_free_aux(rb);
759 
760 	return ret;
761 }
762 
763 void rb_free_aux(struct perf_buffer *rb)
764 {
765 	if (refcount_dec_and_test(&rb->aux_refcount))
766 		__rb_free_aux(rb);
767 }
768 
769 #ifndef CONFIG_PERF_USE_VMALLOC
770 
771 /*
772  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
773  */
774 
775 static struct page *
776 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
777 {
778 	if (pgoff > rb->nr_pages)
779 		return NULL;
780 
781 	if (pgoff == 0)
782 		return virt_to_page(rb->user_page);
783 
784 	return virt_to_page(rb->data_pages[pgoff - 1]);
785 }
786 
787 static void *perf_mmap_alloc_page(int cpu)
788 {
789 	struct page *page;
790 	int node;
791 
792 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
793 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
794 	if (!page)
795 		return NULL;
796 
797 	return page_address(page);
798 }
799 
800 static void perf_mmap_free_page(void *addr)
801 {
802 	struct page *page = virt_to_page(addr);
803 
804 	page->mapping = NULL;
805 	__free_page(page);
806 }
807 
808 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
809 {
810 	struct perf_buffer *rb;
811 	unsigned long size;
812 	int i, node;
813 
814 	size = sizeof(struct perf_buffer);
815 	size += nr_pages * sizeof(void *);
816 
817 	if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER)
818 		goto fail;
819 
820 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
821 	rb = kzalloc_node(size, GFP_KERNEL, node);
822 	if (!rb)
823 		goto fail;
824 
825 	rb->user_page = perf_mmap_alloc_page(cpu);
826 	if (!rb->user_page)
827 		goto fail_user_page;
828 
829 	for (i = 0; i < nr_pages; i++) {
830 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
831 		if (!rb->data_pages[i])
832 			goto fail_data_pages;
833 	}
834 
835 	rb->nr_pages = nr_pages;
836 
837 	ring_buffer_init(rb, watermark, flags);
838 
839 	return rb;
840 
841 fail_data_pages:
842 	for (i--; i >= 0; i--)
843 		perf_mmap_free_page(rb->data_pages[i]);
844 
845 	perf_mmap_free_page(rb->user_page);
846 
847 fail_user_page:
848 	kfree(rb);
849 
850 fail:
851 	return NULL;
852 }
853 
854 void rb_free(struct perf_buffer *rb)
855 {
856 	int i;
857 
858 	perf_mmap_free_page(rb->user_page);
859 	for (i = 0; i < rb->nr_pages; i++)
860 		perf_mmap_free_page(rb->data_pages[i]);
861 	kfree(rb);
862 }
863 
864 #else
865 static struct page *
866 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
867 {
868 	/* The '>' counts in the user page. */
869 	if (pgoff > data_page_nr(rb))
870 		return NULL;
871 
872 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
873 }
874 
875 static void perf_mmap_unmark_page(void *addr)
876 {
877 	struct page *page = vmalloc_to_page(addr);
878 
879 	page->mapping = NULL;
880 }
881 
882 static void rb_free_work(struct work_struct *work)
883 {
884 	struct perf_buffer *rb;
885 	void *base;
886 	int i, nr;
887 
888 	rb = container_of(work, struct perf_buffer, work);
889 	nr = data_page_nr(rb);
890 
891 	base = rb->user_page;
892 	/* The '<=' counts in the user page. */
893 	for (i = 0; i <= nr; i++)
894 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
895 
896 	vfree(base);
897 	kfree(rb);
898 }
899 
900 void rb_free(struct perf_buffer *rb)
901 {
902 	schedule_work(&rb->work);
903 }
904 
905 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
906 {
907 	struct perf_buffer *rb;
908 	unsigned long size;
909 	void *all_buf;
910 	int node;
911 
912 	size = sizeof(struct perf_buffer);
913 	size += sizeof(void *);
914 
915 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
916 	rb = kzalloc_node(size, GFP_KERNEL, node);
917 	if (!rb)
918 		goto fail;
919 
920 	INIT_WORK(&rb->work, rb_free_work);
921 
922 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
923 	if (!all_buf)
924 		goto fail_all_buf;
925 
926 	rb->user_page = all_buf;
927 	rb->data_pages[0] = all_buf + PAGE_SIZE;
928 	if (nr_pages) {
929 		rb->nr_pages = 1;
930 		rb->page_order = ilog2(nr_pages);
931 	}
932 
933 	ring_buffer_init(rb, watermark, flags);
934 
935 	return rb;
936 
937 fail_all_buf:
938 	kfree(rb);
939 
940 fail:
941 	return NULL;
942 }
943 
944 #endif
945 
946 struct page *
947 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
948 {
949 	if (rb->aux_nr_pages) {
950 		/* above AUX space */
951 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
952 			return NULL;
953 
954 		/* AUX space */
955 		if (pgoff >= rb->aux_pgoff) {
956 			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
957 			return virt_to_page(rb->aux_pages[aux_pgoff]);
958 		}
959 	}
960 
961 	return __perf_mmap_to_page(rb, pgoff);
962 }
963