1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events ring-buffer code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/perf_event.h> 12 #include <linux/vmalloc.h> 13 #include <linux/slab.h> 14 #include <linux/circ_buf.h> 15 #include <linux/poll.h> 16 #include <linux/nospec.h> 17 18 #include "internal.h" 19 20 static void perf_output_wakeup(struct perf_output_handle *handle) 21 { 22 atomic_set(&handle->rb->poll, EPOLLIN); 23 24 handle->event->pending_wakeup = 1; 25 irq_work_queue(&handle->event->pending); 26 } 27 28 /* 29 * We need to ensure a later event_id doesn't publish a head when a former 30 * event isn't done writing. However since we need to deal with NMIs we 31 * cannot fully serialize things. 32 * 33 * We only publish the head (and generate a wakeup) when the outer-most 34 * event completes. 35 */ 36 static void perf_output_get_handle(struct perf_output_handle *handle) 37 { 38 struct perf_buffer *rb = handle->rb; 39 40 preempt_disable(); 41 42 /* 43 * Avoid an explicit LOAD/STORE such that architectures with memops 44 * can use them. 45 */ 46 (*(volatile unsigned int *)&rb->nest)++; 47 handle->wakeup = local_read(&rb->wakeup); 48 } 49 50 static void perf_output_put_handle(struct perf_output_handle *handle) 51 { 52 struct perf_buffer *rb = handle->rb; 53 unsigned long head; 54 unsigned int nest; 55 56 /* 57 * If this isn't the outermost nesting, we don't have to update 58 * @rb->user_page->data_head. 59 */ 60 nest = READ_ONCE(rb->nest); 61 if (nest > 1) { 62 WRITE_ONCE(rb->nest, nest - 1); 63 goto out; 64 } 65 66 again: 67 /* 68 * In order to avoid publishing a head value that goes backwards, 69 * we must ensure the load of @rb->head happens after we've 70 * incremented @rb->nest. 71 * 72 * Otherwise we can observe a @rb->head value before one published 73 * by an IRQ/NMI happening between the load and the increment. 74 */ 75 barrier(); 76 head = local_read(&rb->head); 77 78 /* 79 * IRQ/NMI can happen here and advance @rb->head, causing our 80 * load above to be stale. 81 */ 82 83 /* 84 * Since the mmap() consumer (userspace) can run on a different CPU: 85 * 86 * kernel user 87 * 88 * if (LOAD ->data_tail) { LOAD ->data_head 89 * (A) smp_rmb() (C) 90 * STORE $data LOAD $data 91 * smp_wmb() (B) smp_mb() (D) 92 * STORE ->data_head STORE ->data_tail 93 * } 94 * 95 * Where A pairs with D, and B pairs with C. 96 * 97 * In our case (A) is a control dependency that separates the load of 98 * the ->data_tail and the stores of $data. In case ->data_tail 99 * indicates there is no room in the buffer to store $data we do not. 100 * 101 * D needs to be a full barrier since it separates the data READ 102 * from the tail WRITE. 103 * 104 * For B a WMB is sufficient since it separates two WRITEs, and for C 105 * an RMB is sufficient since it separates two READs. 106 * 107 * See perf_output_begin(). 108 */ 109 smp_wmb(); /* B, matches C */ 110 WRITE_ONCE(rb->user_page->data_head, head); 111 112 /* 113 * We must publish the head before decrementing the nest count, 114 * otherwise an IRQ/NMI can publish a more recent head value and our 115 * write will (temporarily) publish a stale value. 116 */ 117 barrier(); 118 WRITE_ONCE(rb->nest, 0); 119 120 /* 121 * Ensure we decrement @rb->nest before we validate the @rb->head. 122 * Otherwise we cannot be sure we caught the 'last' nested update. 123 */ 124 barrier(); 125 if (unlikely(head != local_read(&rb->head))) { 126 WRITE_ONCE(rb->nest, 1); 127 goto again; 128 } 129 130 if (handle->wakeup != local_read(&rb->wakeup)) 131 perf_output_wakeup(handle); 132 133 out: 134 preempt_enable(); 135 } 136 137 static __always_inline bool 138 ring_buffer_has_space(unsigned long head, unsigned long tail, 139 unsigned long data_size, unsigned int size, 140 bool backward) 141 { 142 if (!backward) 143 return CIRC_SPACE(head, tail, data_size) >= size; 144 else 145 return CIRC_SPACE(tail, head, data_size) >= size; 146 } 147 148 static __always_inline int 149 __perf_output_begin(struct perf_output_handle *handle, 150 struct perf_sample_data *data, 151 struct perf_event *event, unsigned int size, 152 bool backward) 153 { 154 struct perf_buffer *rb; 155 unsigned long tail, offset, head; 156 int have_lost, page_shift; 157 struct { 158 struct perf_event_header header; 159 u64 id; 160 u64 lost; 161 } lost_event; 162 163 rcu_read_lock(); 164 /* 165 * For inherited events we send all the output towards the parent. 166 */ 167 if (event->parent) 168 event = event->parent; 169 170 rb = rcu_dereference(event->rb); 171 if (unlikely(!rb)) 172 goto out; 173 174 if (unlikely(rb->paused)) { 175 if (rb->nr_pages) { 176 local_inc(&rb->lost); 177 atomic64_inc(&event->lost_samples); 178 } 179 goto out; 180 } 181 182 handle->rb = rb; 183 handle->event = event; 184 185 have_lost = local_read(&rb->lost); 186 if (unlikely(have_lost)) { 187 size += sizeof(lost_event); 188 if (event->attr.sample_id_all) 189 size += event->id_header_size; 190 } 191 192 perf_output_get_handle(handle); 193 194 do { 195 tail = READ_ONCE(rb->user_page->data_tail); 196 offset = head = local_read(&rb->head); 197 if (!rb->overwrite) { 198 if (unlikely(!ring_buffer_has_space(head, tail, 199 perf_data_size(rb), 200 size, backward))) 201 goto fail; 202 } 203 204 /* 205 * The above forms a control dependency barrier separating the 206 * @tail load above from the data stores below. Since the @tail 207 * load is required to compute the branch to fail below. 208 * 209 * A, matches D; the full memory barrier userspace SHOULD issue 210 * after reading the data and before storing the new tail 211 * position. 212 * 213 * See perf_output_put_handle(). 214 */ 215 216 if (!backward) 217 head += size; 218 else 219 head -= size; 220 } while (local_cmpxchg(&rb->head, offset, head) != offset); 221 222 if (backward) { 223 offset = head; 224 head = (u64)(-head); 225 } 226 227 /* 228 * We rely on the implied barrier() by local_cmpxchg() to ensure 229 * none of the data stores below can be lifted up by the compiler. 230 */ 231 232 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 233 local_add(rb->watermark, &rb->wakeup); 234 235 page_shift = PAGE_SHIFT + page_order(rb); 236 237 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 238 offset &= (1UL << page_shift) - 1; 239 handle->addr = rb->data_pages[handle->page] + offset; 240 handle->size = (1UL << page_shift) - offset; 241 242 if (unlikely(have_lost)) { 243 lost_event.header.size = sizeof(lost_event); 244 lost_event.header.type = PERF_RECORD_LOST; 245 lost_event.header.misc = 0; 246 lost_event.id = event->id; 247 lost_event.lost = local_xchg(&rb->lost, 0); 248 249 /* XXX mostly redundant; @data is already fully initializes */ 250 perf_event_header__init_id(&lost_event.header, data, event); 251 perf_output_put(handle, lost_event); 252 perf_event__output_id_sample(event, handle, data); 253 } 254 255 return 0; 256 257 fail: 258 local_inc(&rb->lost); 259 atomic64_inc(&event->lost_samples); 260 perf_output_put_handle(handle); 261 out: 262 rcu_read_unlock(); 263 264 return -ENOSPC; 265 } 266 267 int perf_output_begin_forward(struct perf_output_handle *handle, 268 struct perf_sample_data *data, 269 struct perf_event *event, unsigned int size) 270 { 271 return __perf_output_begin(handle, data, event, size, false); 272 } 273 274 int perf_output_begin_backward(struct perf_output_handle *handle, 275 struct perf_sample_data *data, 276 struct perf_event *event, unsigned int size) 277 { 278 return __perf_output_begin(handle, data, event, size, true); 279 } 280 281 int perf_output_begin(struct perf_output_handle *handle, 282 struct perf_sample_data *data, 283 struct perf_event *event, unsigned int size) 284 { 285 286 return __perf_output_begin(handle, data, event, size, 287 unlikely(is_write_backward(event))); 288 } 289 290 unsigned int perf_output_copy(struct perf_output_handle *handle, 291 const void *buf, unsigned int len) 292 { 293 return __output_copy(handle, buf, len); 294 } 295 296 unsigned int perf_output_skip(struct perf_output_handle *handle, 297 unsigned int len) 298 { 299 return __output_skip(handle, NULL, len); 300 } 301 302 void perf_output_end(struct perf_output_handle *handle) 303 { 304 perf_output_put_handle(handle); 305 rcu_read_unlock(); 306 } 307 308 static void 309 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags) 310 { 311 long max_size = perf_data_size(rb); 312 313 if (watermark) 314 rb->watermark = min(max_size, watermark); 315 316 if (!rb->watermark) 317 rb->watermark = max_size / 2; 318 319 if (flags & RING_BUFFER_WRITABLE) 320 rb->overwrite = 0; 321 else 322 rb->overwrite = 1; 323 324 refcount_set(&rb->refcount, 1); 325 326 INIT_LIST_HEAD(&rb->event_list); 327 spin_lock_init(&rb->event_lock); 328 329 /* 330 * perf_output_begin() only checks rb->paused, therefore 331 * rb->paused must be true if we have no pages for output. 332 */ 333 if (!rb->nr_pages) 334 rb->paused = 1; 335 } 336 337 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags) 338 { 339 /* 340 * OVERWRITE is determined by perf_aux_output_end() and can't 341 * be passed in directly. 342 */ 343 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE)) 344 return; 345 346 handle->aux_flags |= flags; 347 } 348 EXPORT_SYMBOL_GPL(perf_aux_output_flag); 349 350 /* 351 * This is called before hardware starts writing to the AUX area to 352 * obtain an output handle and make sure there's room in the buffer. 353 * When the capture completes, call perf_aux_output_end() to commit 354 * the recorded data to the buffer. 355 * 356 * The ordering is similar to that of perf_output_{begin,end}, with 357 * the exception of (B), which should be taken care of by the pmu 358 * driver, since ordering rules will differ depending on hardware. 359 * 360 * Call this from pmu::start(); see the comment in perf_aux_output_end() 361 * about its use in pmu callbacks. Both can also be called from the PMI 362 * handler if needed. 363 */ 364 void *perf_aux_output_begin(struct perf_output_handle *handle, 365 struct perf_event *event) 366 { 367 struct perf_event *output_event = event; 368 unsigned long aux_head, aux_tail; 369 struct perf_buffer *rb; 370 unsigned int nest; 371 372 if (output_event->parent) 373 output_event = output_event->parent; 374 375 /* 376 * Since this will typically be open across pmu::add/pmu::del, we 377 * grab ring_buffer's refcount instead of holding rcu read lock 378 * to make sure it doesn't disappear under us. 379 */ 380 rb = ring_buffer_get(output_event); 381 if (!rb) 382 return NULL; 383 384 if (!rb_has_aux(rb)) 385 goto err; 386 387 /* 388 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(), 389 * about to get freed, so we leave immediately. 390 * 391 * Checking rb::aux_mmap_count and rb::refcount has to be done in 392 * the same order, see perf_mmap_close. Otherwise we end up freeing 393 * aux pages in this path, which is a bug, because in_atomic(). 394 */ 395 if (!atomic_read(&rb->aux_mmap_count)) 396 goto err; 397 398 if (!refcount_inc_not_zero(&rb->aux_refcount)) 399 goto err; 400 401 nest = READ_ONCE(rb->aux_nest); 402 /* 403 * Nesting is not supported for AUX area, make sure nested 404 * writers are caught early 405 */ 406 if (WARN_ON_ONCE(nest)) 407 goto err_put; 408 409 WRITE_ONCE(rb->aux_nest, nest + 1); 410 411 aux_head = rb->aux_head; 412 413 handle->rb = rb; 414 handle->event = event; 415 handle->head = aux_head; 416 handle->size = 0; 417 handle->aux_flags = 0; 418 419 /* 420 * In overwrite mode, AUX data stores do not depend on aux_tail, 421 * therefore (A) control dependency barrier does not exist. The 422 * (B) <-> (C) ordering is still observed by the pmu driver. 423 */ 424 if (!rb->aux_overwrite) { 425 aux_tail = READ_ONCE(rb->user_page->aux_tail); 426 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 427 if (aux_head - aux_tail < perf_aux_size(rb)) 428 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 429 430 /* 431 * handle->size computation depends on aux_tail load; this forms a 432 * control dependency barrier separating aux_tail load from aux data 433 * store that will be enabled on successful return 434 */ 435 if (!handle->size) { /* A, matches D */ 436 event->pending_disable = smp_processor_id(); 437 perf_output_wakeup(handle); 438 WRITE_ONCE(rb->aux_nest, 0); 439 goto err_put; 440 } 441 } 442 443 return handle->rb->aux_priv; 444 445 err_put: 446 /* can't be last */ 447 rb_free_aux(rb); 448 449 err: 450 ring_buffer_put(rb); 451 handle->event = NULL; 452 453 return NULL; 454 } 455 EXPORT_SYMBOL_GPL(perf_aux_output_begin); 456 457 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb) 458 { 459 if (rb->aux_overwrite) 460 return false; 461 462 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) { 463 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark); 464 return true; 465 } 466 467 return false; 468 } 469 470 /* 471 * Commit the data written by hardware into the ring buffer by adjusting 472 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 473 * pmu driver's responsibility to observe ordering rules of the hardware, 474 * so that all the data is externally visible before this is called. 475 * 476 * Note: this has to be called from pmu::stop() callback, as the assumption 477 * of the AUX buffer management code is that after pmu::stop(), the AUX 478 * transaction must be stopped and therefore drop the AUX reference count. 479 */ 480 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 481 { 482 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED); 483 struct perf_buffer *rb = handle->rb; 484 unsigned long aux_head; 485 486 /* in overwrite mode, driver provides aux_head via handle */ 487 if (rb->aux_overwrite) { 488 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE; 489 490 aux_head = handle->head; 491 rb->aux_head = aux_head; 492 } else { 493 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE; 494 495 aux_head = rb->aux_head; 496 rb->aux_head += size; 497 } 498 499 /* 500 * Only send RECORD_AUX if we have something useful to communicate 501 * 502 * Note: the OVERWRITE records by themselves are not considered 503 * useful, as they don't communicate any *new* information, 504 * aside from the short-lived offset, that becomes history at 505 * the next event sched-in and therefore isn't useful. 506 * The userspace that needs to copy out AUX data in overwrite 507 * mode should know to use user_page::aux_head for the actual 508 * offset. So, from now on we don't output AUX records that 509 * have *only* OVERWRITE flag set. 510 */ 511 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE)) 512 perf_event_aux_event(handle->event, aux_head, size, 513 handle->aux_flags); 514 515 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); 516 if (rb_need_aux_wakeup(rb)) 517 wakeup = true; 518 519 if (wakeup) { 520 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED) 521 handle->event->pending_disable = smp_processor_id(); 522 perf_output_wakeup(handle); 523 } 524 525 handle->event = NULL; 526 527 WRITE_ONCE(rb->aux_nest, 0); 528 /* can't be last */ 529 rb_free_aux(rb); 530 ring_buffer_put(rb); 531 } 532 EXPORT_SYMBOL_GPL(perf_aux_output_end); 533 534 /* 535 * Skip over a given number of bytes in the AUX buffer, due to, for example, 536 * hardware's alignment constraints. 537 */ 538 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 539 { 540 struct perf_buffer *rb = handle->rb; 541 542 if (size > handle->size) 543 return -ENOSPC; 544 545 rb->aux_head += size; 546 547 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); 548 if (rb_need_aux_wakeup(rb)) { 549 perf_output_wakeup(handle); 550 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 551 } 552 553 handle->head = rb->aux_head; 554 handle->size -= size; 555 556 return 0; 557 } 558 EXPORT_SYMBOL_GPL(perf_aux_output_skip); 559 560 void *perf_get_aux(struct perf_output_handle *handle) 561 { 562 /* this is only valid between perf_aux_output_begin and *_end */ 563 if (!handle->event) 564 return NULL; 565 566 return handle->rb->aux_priv; 567 } 568 EXPORT_SYMBOL_GPL(perf_get_aux); 569 570 /* 571 * Copy out AUX data from an AUX handle. 572 */ 573 long perf_output_copy_aux(struct perf_output_handle *aux_handle, 574 struct perf_output_handle *handle, 575 unsigned long from, unsigned long to) 576 { 577 struct perf_buffer *rb = aux_handle->rb; 578 unsigned long tocopy, remainder, len = 0; 579 void *addr; 580 581 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 582 to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 583 584 do { 585 tocopy = PAGE_SIZE - offset_in_page(from); 586 if (to > from) 587 tocopy = min(tocopy, to - from); 588 if (!tocopy) 589 break; 590 591 addr = rb->aux_pages[from >> PAGE_SHIFT]; 592 addr += offset_in_page(from); 593 594 remainder = perf_output_copy(handle, addr, tocopy); 595 if (remainder) 596 return -EFAULT; 597 598 len += tocopy; 599 from += tocopy; 600 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 601 } while (to != from); 602 603 return len; 604 } 605 606 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 607 608 static struct page *rb_alloc_aux_page(int node, int order) 609 { 610 struct page *page; 611 612 if (order > MAX_ORDER) 613 order = MAX_ORDER; 614 615 do { 616 page = alloc_pages_node(node, PERF_AUX_GFP, order); 617 } while (!page && order--); 618 619 if (page && order) { 620 /* 621 * Communicate the allocation size to the driver: 622 * if we managed to secure a high-order allocation, 623 * set its first page's private to this order; 624 * !PagePrivate(page) means it's just a normal page. 625 */ 626 split_page(page, order); 627 SetPagePrivate(page); 628 set_page_private(page, order); 629 } 630 631 return page; 632 } 633 634 static void rb_free_aux_page(struct perf_buffer *rb, int idx) 635 { 636 struct page *page = virt_to_page(rb->aux_pages[idx]); 637 638 ClearPagePrivate(page); 639 page->mapping = NULL; 640 __free_page(page); 641 } 642 643 static void __rb_free_aux(struct perf_buffer *rb) 644 { 645 int pg; 646 647 /* 648 * Should never happen, the last reference should be dropped from 649 * perf_mmap_close() path, which first stops aux transactions (which 650 * in turn are the atomic holders of aux_refcount) and then does the 651 * last rb_free_aux(). 652 */ 653 WARN_ON_ONCE(in_atomic()); 654 655 if (rb->aux_priv) { 656 rb->free_aux(rb->aux_priv); 657 rb->free_aux = NULL; 658 rb->aux_priv = NULL; 659 } 660 661 if (rb->aux_nr_pages) { 662 for (pg = 0; pg < rb->aux_nr_pages; pg++) 663 rb_free_aux_page(rb, pg); 664 665 kfree(rb->aux_pages); 666 rb->aux_nr_pages = 0; 667 } 668 } 669 670 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, 671 pgoff_t pgoff, int nr_pages, long watermark, int flags) 672 { 673 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 674 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 675 int ret = -ENOMEM, max_order; 676 677 if (!has_aux(event)) 678 return -EOPNOTSUPP; 679 680 if (!overwrite) { 681 /* 682 * Watermark defaults to half the buffer, and so does the 683 * max_order, to aid PMU drivers in double buffering. 684 */ 685 if (!watermark) 686 watermark = nr_pages << (PAGE_SHIFT - 1); 687 688 /* 689 * Use aux_watermark as the basis for chunking to 690 * help PMU drivers honor the watermark. 691 */ 692 max_order = get_order(watermark); 693 } else { 694 /* 695 * We need to start with the max_order that fits in nr_pages, 696 * not the other way around, hence ilog2() and not get_order. 697 */ 698 max_order = ilog2(nr_pages); 699 watermark = 0; 700 } 701 702 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL, 703 node); 704 if (!rb->aux_pages) 705 return -ENOMEM; 706 707 rb->free_aux = event->pmu->free_aux; 708 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 709 struct page *page; 710 int last, order; 711 712 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 713 page = rb_alloc_aux_page(node, order); 714 if (!page) 715 goto out; 716 717 for (last = rb->aux_nr_pages + (1 << page_private(page)); 718 last > rb->aux_nr_pages; rb->aux_nr_pages++) 719 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 720 } 721 722 /* 723 * In overwrite mode, PMUs that don't support SG may not handle more 724 * than one contiguous allocation, since they rely on PMI to do double 725 * buffering. In this case, the entire buffer has to be one contiguous 726 * chunk. 727 */ 728 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 729 overwrite) { 730 struct page *page = virt_to_page(rb->aux_pages[0]); 731 732 if (page_private(page) != max_order) 733 goto out; 734 } 735 736 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages, 737 overwrite); 738 if (!rb->aux_priv) 739 goto out; 740 741 ret = 0; 742 743 /* 744 * aux_pages (and pmu driver's private data, aux_priv) will be 745 * referenced in both producer's and consumer's contexts, thus 746 * we keep a refcount here to make sure either of the two can 747 * reference them safely. 748 */ 749 refcount_set(&rb->aux_refcount, 1); 750 751 rb->aux_overwrite = overwrite; 752 rb->aux_watermark = watermark; 753 754 out: 755 if (!ret) 756 rb->aux_pgoff = pgoff; 757 else 758 __rb_free_aux(rb); 759 760 return ret; 761 } 762 763 void rb_free_aux(struct perf_buffer *rb) 764 { 765 if (refcount_dec_and_test(&rb->aux_refcount)) 766 __rb_free_aux(rb); 767 } 768 769 #ifndef CONFIG_PERF_USE_VMALLOC 770 771 /* 772 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 773 */ 774 775 static struct page * 776 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 777 { 778 if (pgoff > rb->nr_pages) 779 return NULL; 780 781 if (pgoff == 0) 782 return virt_to_page(rb->user_page); 783 784 return virt_to_page(rb->data_pages[pgoff - 1]); 785 } 786 787 static void *perf_mmap_alloc_page(int cpu) 788 { 789 struct page *page; 790 int node; 791 792 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 793 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 794 if (!page) 795 return NULL; 796 797 return page_address(page); 798 } 799 800 static void perf_mmap_free_page(void *addr) 801 { 802 struct page *page = virt_to_page(addr); 803 804 page->mapping = NULL; 805 __free_page(page); 806 } 807 808 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 809 { 810 struct perf_buffer *rb; 811 unsigned long size; 812 int i, node; 813 814 size = sizeof(struct perf_buffer); 815 size += nr_pages * sizeof(void *); 816 817 if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER) 818 goto fail; 819 820 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 821 rb = kzalloc_node(size, GFP_KERNEL, node); 822 if (!rb) 823 goto fail; 824 825 rb->user_page = perf_mmap_alloc_page(cpu); 826 if (!rb->user_page) 827 goto fail_user_page; 828 829 for (i = 0; i < nr_pages; i++) { 830 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 831 if (!rb->data_pages[i]) 832 goto fail_data_pages; 833 } 834 835 rb->nr_pages = nr_pages; 836 837 ring_buffer_init(rb, watermark, flags); 838 839 return rb; 840 841 fail_data_pages: 842 for (i--; i >= 0; i--) 843 perf_mmap_free_page(rb->data_pages[i]); 844 845 perf_mmap_free_page(rb->user_page); 846 847 fail_user_page: 848 kfree(rb); 849 850 fail: 851 return NULL; 852 } 853 854 void rb_free(struct perf_buffer *rb) 855 { 856 int i; 857 858 perf_mmap_free_page(rb->user_page); 859 for (i = 0; i < rb->nr_pages; i++) 860 perf_mmap_free_page(rb->data_pages[i]); 861 kfree(rb); 862 } 863 864 #else 865 static struct page * 866 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 867 { 868 /* The '>' counts in the user page. */ 869 if (pgoff > data_page_nr(rb)) 870 return NULL; 871 872 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 873 } 874 875 static void perf_mmap_unmark_page(void *addr) 876 { 877 struct page *page = vmalloc_to_page(addr); 878 879 page->mapping = NULL; 880 } 881 882 static void rb_free_work(struct work_struct *work) 883 { 884 struct perf_buffer *rb; 885 void *base; 886 int i, nr; 887 888 rb = container_of(work, struct perf_buffer, work); 889 nr = data_page_nr(rb); 890 891 base = rb->user_page; 892 /* The '<=' counts in the user page. */ 893 for (i = 0; i <= nr; i++) 894 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 895 896 vfree(base); 897 kfree(rb); 898 } 899 900 void rb_free(struct perf_buffer *rb) 901 { 902 schedule_work(&rb->work); 903 } 904 905 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 906 { 907 struct perf_buffer *rb; 908 unsigned long size; 909 void *all_buf; 910 int node; 911 912 size = sizeof(struct perf_buffer); 913 size += sizeof(void *); 914 915 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 916 rb = kzalloc_node(size, GFP_KERNEL, node); 917 if (!rb) 918 goto fail; 919 920 INIT_WORK(&rb->work, rb_free_work); 921 922 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 923 if (!all_buf) 924 goto fail_all_buf; 925 926 rb->user_page = all_buf; 927 rb->data_pages[0] = all_buf + PAGE_SIZE; 928 if (nr_pages) { 929 rb->nr_pages = 1; 930 rb->page_order = ilog2(nr_pages); 931 } 932 933 ring_buffer_init(rb, watermark, flags); 934 935 return rb; 936 937 fail_all_buf: 938 kfree(rb); 939 940 fail: 941 return NULL; 942 } 943 944 #endif 945 946 struct page * 947 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 948 { 949 if (rb->aux_nr_pages) { 950 /* above AUX space */ 951 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 952 return NULL; 953 954 /* AUX space */ 955 if (pgoff >= rb->aux_pgoff) { 956 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages); 957 return virt_to_page(rb->aux_pages[aux_pgoff]); 958 } 959 } 960 961 return __perf_mmap_to_page(rb, pgoff); 962 } 963