1 /* 2 * Performance events ring-buffer code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/perf_event.h> 13 #include <linux/vmalloc.h> 14 #include <linux/slab.h> 15 #include <linux/circ_buf.h> 16 #include <linux/poll.h> 17 #include <linux/nospec.h> 18 19 #include "internal.h" 20 21 static void perf_output_wakeup(struct perf_output_handle *handle) 22 { 23 atomic_set(&handle->rb->poll, EPOLLIN); 24 25 handle->event->pending_wakeup = 1; 26 irq_work_queue(&handle->event->pending); 27 } 28 29 /* 30 * We need to ensure a later event_id doesn't publish a head when a former 31 * event isn't done writing. However since we need to deal with NMIs we 32 * cannot fully serialize things. 33 * 34 * We only publish the head (and generate a wakeup) when the outer-most 35 * event completes. 36 */ 37 static void perf_output_get_handle(struct perf_output_handle *handle) 38 { 39 struct ring_buffer *rb = handle->rb; 40 41 preempt_disable(); 42 local_inc(&rb->nest); 43 handle->wakeup = local_read(&rb->wakeup); 44 } 45 46 static void perf_output_put_handle(struct perf_output_handle *handle) 47 { 48 struct ring_buffer *rb = handle->rb; 49 unsigned long head; 50 51 again: 52 head = local_read(&rb->head); 53 54 /* 55 * IRQ/NMI can happen here, which means we can miss a head update. 56 */ 57 58 if (!local_dec_and_test(&rb->nest)) 59 goto out; 60 61 /* 62 * Since the mmap() consumer (userspace) can run on a different CPU: 63 * 64 * kernel user 65 * 66 * if (LOAD ->data_tail) { LOAD ->data_head 67 * (A) smp_rmb() (C) 68 * STORE $data LOAD $data 69 * smp_wmb() (B) smp_mb() (D) 70 * STORE ->data_head STORE ->data_tail 71 * } 72 * 73 * Where A pairs with D, and B pairs with C. 74 * 75 * In our case (A) is a control dependency that separates the load of 76 * the ->data_tail and the stores of $data. In case ->data_tail 77 * indicates there is no room in the buffer to store $data we do not. 78 * 79 * D needs to be a full barrier since it separates the data READ 80 * from the tail WRITE. 81 * 82 * For B a WMB is sufficient since it separates two WRITEs, and for C 83 * an RMB is sufficient since it separates two READs. 84 * 85 * See perf_output_begin(). 86 */ 87 smp_wmb(); /* B, matches C */ 88 rb->user_page->data_head = head; 89 90 /* 91 * Now check if we missed an update -- rely on previous implied 92 * compiler barriers to force a re-read. 93 */ 94 if (unlikely(head != local_read(&rb->head))) { 95 local_inc(&rb->nest); 96 goto again; 97 } 98 99 if (handle->wakeup != local_read(&rb->wakeup)) 100 perf_output_wakeup(handle); 101 102 out: 103 preempt_enable(); 104 } 105 106 static __always_inline bool 107 ring_buffer_has_space(unsigned long head, unsigned long tail, 108 unsigned long data_size, unsigned int size, 109 bool backward) 110 { 111 if (!backward) 112 return CIRC_SPACE(head, tail, data_size) >= size; 113 else 114 return CIRC_SPACE(tail, head, data_size) >= size; 115 } 116 117 static __always_inline int 118 __perf_output_begin(struct perf_output_handle *handle, 119 struct perf_event *event, unsigned int size, 120 bool backward) 121 { 122 struct ring_buffer *rb; 123 unsigned long tail, offset, head; 124 int have_lost, page_shift; 125 struct { 126 struct perf_event_header header; 127 u64 id; 128 u64 lost; 129 } lost_event; 130 131 rcu_read_lock(); 132 /* 133 * For inherited events we send all the output towards the parent. 134 */ 135 if (event->parent) 136 event = event->parent; 137 138 rb = rcu_dereference(event->rb); 139 if (unlikely(!rb)) 140 goto out; 141 142 if (unlikely(rb->paused)) { 143 if (rb->nr_pages) 144 local_inc(&rb->lost); 145 goto out; 146 } 147 148 handle->rb = rb; 149 handle->event = event; 150 151 have_lost = local_read(&rb->lost); 152 if (unlikely(have_lost)) { 153 size += sizeof(lost_event); 154 if (event->attr.sample_id_all) 155 size += event->id_header_size; 156 } 157 158 perf_output_get_handle(handle); 159 160 do { 161 tail = READ_ONCE(rb->user_page->data_tail); 162 offset = head = local_read(&rb->head); 163 if (!rb->overwrite) { 164 if (unlikely(!ring_buffer_has_space(head, tail, 165 perf_data_size(rb), 166 size, backward))) 167 goto fail; 168 } 169 170 /* 171 * The above forms a control dependency barrier separating the 172 * @tail load above from the data stores below. Since the @tail 173 * load is required to compute the branch to fail below. 174 * 175 * A, matches D; the full memory barrier userspace SHOULD issue 176 * after reading the data and before storing the new tail 177 * position. 178 * 179 * See perf_output_put_handle(). 180 */ 181 182 if (!backward) 183 head += size; 184 else 185 head -= size; 186 } while (local_cmpxchg(&rb->head, offset, head) != offset); 187 188 if (backward) { 189 offset = head; 190 head = (u64)(-head); 191 } 192 193 /* 194 * We rely on the implied barrier() by local_cmpxchg() to ensure 195 * none of the data stores below can be lifted up by the compiler. 196 */ 197 198 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 199 local_add(rb->watermark, &rb->wakeup); 200 201 page_shift = PAGE_SHIFT + page_order(rb); 202 203 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 204 offset &= (1UL << page_shift) - 1; 205 handle->addr = rb->data_pages[handle->page] + offset; 206 handle->size = (1UL << page_shift) - offset; 207 208 if (unlikely(have_lost)) { 209 struct perf_sample_data sample_data; 210 211 lost_event.header.size = sizeof(lost_event); 212 lost_event.header.type = PERF_RECORD_LOST; 213 lost_event.header.misc = 0; 214 lost_event.id = event->id; 215 lost_event.lost = local_xchg(&rb->lost, 0); 216 217 perf_event_header__init_id(&lost_event.header, 218 &sample_data, event); 219 perf_output_put(handle, lost_event); 220 perf_event__output_id_sample(event, handle, &sample_data); 221 } 222 223 return 0; 224 225 fail: 226 local_inc(&rb->lost); 227 perf_output_put_handle(handle); 228 out: 229 rcu_read_unlock(); 230 231 return -ENOSPC; 232 } 233 234 int perf_output_begin_forward(struct perf_output_handle *handle, 235 struct perf_event *event, unsigned int size) 236 { 237 return __perf_output_begin(handle, event, size, false); 238 } 239 240 int perf_output_begin_backward(struct perf_output_handle *handle, 241 struct perf_event *event, unsigned int size) 242 { 243 return __perf_output_begin(handle, event, size, true); 244 } 245 246 int perf_output_begin(struct perf_output_handle *handle, 247 struct perf_event *event, unsigned int size) 248 { 249 250 return __perf_output_begin(handle, event, size, 251 unlikely(is_write_backward(event))); 252 } 253 254 unsigned int perf_output_copy(struct perf_output_handle *handle, 255 const void *buf, unsigned int len) 256 { 257 return __output_copy(handle, buf, len); 258 } 259 260 unsigned int perf_output_skip(struct perf_output_handle *handle, 261 unsigned int len) 262 { 263 return __output_skip(handle, NULL, len); 264 } 265 266 void perf_output_end(struct perf_output_handle *handle) 267 { 268 perf_output_put_handle(handle); 269 rcu_read_unlock(); 270 } 271 272 static void 273 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) 274 { 275 long max_size = perf_data_size(rb); 276 277 if (watermark) 278 rb->watermark = min(max_size, watermark); 279 280 if (!rb->watermark) 281 rb->watermark = max_size / 2; 282 283 if (flags & RING_BUFFER_WRITABLE) 284 rb->overwrite = 0; 285 else 286 rb->overwrite = 1; 287 288 atomic_set(&rb->refcount, 1); 289 290 INIT_LIST_HEAD(&rb->event_list); 291 spin_lock_init(&rb->event_lock); 292 293 /* 294 * perf_output_begin() only checks rb->paused, therefore 295 * rb->paused must be true if we have no pages for output. 296 */ 297 if (!rb->nr_pages) 298 rb->paused = 1; 299 } 300 301 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags) 302 { 303 /* 304 * OVERWRITE is determined by perf_aux_output_end() and can't 305 * be passed in directly. 306 */ 307 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE)) 308 return; 309 310 handle->aux_flags |= flags; 311 } 312 EXPORT_SYMBOL_GPL(perf_aux_output_flag); 313 314 /* 315 * This is called before hardware starts writing to the AUX area to 316 * obtain an output handle and make sure there's room in the buffer. 317 * When the capture completes, call perf_aux_output_end() to commit 318 * the recorded data to the buffer. 319 * 320 * The ordering is similar to that of perf_output_{begin,end}, with 321 * the exception of (B), which should be taken care of by the pmu 322 * driver, since ordering rules will differ depending on hardware. 323 * 324 * Call this from pmu::start(); see the comment in perf_aux_output_end() 325 * about its use in pmu callbacks. Both can also be called from the PMI 326 * handler if needed. 327 */ 328 void *perf_aux_output_begin(struct perf_output_handle *handle, 329 struct perf_event *event) 330 { 331 struct perf_event *output_event = event; 332 unsigned long aux_head, aux_tail; 333 struct ring_buffer *rb; 334 335 if (output_event->parent) 336 output_event = output_event->parent; 337 338 /* 339 * Since this will typically be open across pmu::add/pmu::del, we 340 * grab ring_buffer's refcount instead of holding rcu read lock 341 * to make sure it doesn't disappear under us. 342 */ 343 rb = ring_buffer_get(output_event); 344 if (!rb) 345 return NULL; 346 347 if (!rb_has_aux(rb)) 348 goto err; 349 350 /* 351 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(), 352 * about to get freed, so we leave immediately. 353 * 354 * Checking rb::aux_mmap_count and rb::refcount has to be done in 355 * the same order, see perf_mmap_close. Otherwise we end up freeing 356 * aux pages in this path, which is a bug, because in_atomic(). 357 */ 358 if (!atomic_read(&rb->aux_mmap_count)) 359 goto err; 360 361 if (!atomic_inc_not_zero(&rb->aux_refcount)) 362 goto err; 363 364 /* 365 * Nesting is not supported for AUX area, make sure nested 366 * writers are caught early 367 */ 368 if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1))) 369 goto err_put; 370 371 aux_head = rb->aux_head; 372 373 handle->rb = rb; 374 handle->event = event; 375 handle->head = aux_head; 376 handle->size = 0; 377 handle->aux_flags = 0; 378 379 /* 380 * In overwrite mode, AUX data stores do not depend on aux_tail, 381 * therefore (A) control dependency barrier does not exist. The 382 * (B) <-> (C) ordering is still observed by the pmu driver. 383 */ 384 if (!rb->aux_overwrite) { 385 aux_tail = READ_ONCE(rb->user_page->aux_tail); 386 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 387 if (aux_head - aux_tail < perf_aux_size(rb)) 388 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 389 390 /* 391 * handle->size computation depends on aux_tail load; this forms a 392 * control dependency barrier separating aux_tail load from aux data 393 * store that will be enabled on successful return 394 */ 395 if (!handle->size) { /* A, matches D */ 396 event->pending_disable = 1; 397 perf_output_wakeup(handle); 398 local_set(&rb->aux_nest, 0); 399 goto err_put; 400 } 401 } 402 403 return handle->rb->aux_priv; 404 405 err_put: 406 /* can't be last */ 407 rb_free_aux(rb); 408 409 err: 410 ring_buffer_put(rb); 411 handle->event = NULL; 412 413 return NULL; 414 } 415 EXPORT_SYMBOL_GPL(perf_aux_output_begin); 416 417 static __always_inline bool rb_need_aux_wakeup(struct ring_buffer *rb) 418 { 419 if (rb->aux_overwrite) 420 return false; 421 422 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) { 423 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark); 424 return true; 425 } 426 427 return false; 428 } 429 430 /* 431 * Commit the data written by hardware into the ring buffer by adjusting 432 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 433 * pmu driver's responsibility to observe ordering rules of the hardware, 434 * so that all the data is externally visible before this is called. 435 * 436 * Note: this has to be called from pmu::stop() callback, as the assumption 437 * of the AUX buffer management code is that after pmu::stop(), the AUX 438 * transaction must be stopped and therefore drop the AUX reference count. 439 */ 440 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 441 { 442 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED); 443 struct ring_buffer *rb = handle->rb; 444 unsigned long aux_head; 445 446 /* in overwrite mode, driver provides aux_head via handle */ 447 if (rb->aux_overwrite) { 448 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE; 449 450 aux_head = handle->head; 451 rb->aux_head = aux_head; 452 } else { 453 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE; 454 455 aux_head = rb->aux_head; 456 rb->aux_head += size; 457 } 458 459 if (size || handle->aux_flags) { 460 /* 461 * Only send RECORD_AUX if we have something useful to communicate 462 * 463 * Note: the OVERWRITE records by themselves are not considered 464 * useful, as they don't communicate any *new* information, 465 * aside from the short-lived offset, that becomes history at 466 * the next event sched-in and therefore isn't useful. 467 * The userspace that needs to copy out AUX data in overwrite 468 * mode should know to use user_page::aux_head for the actual 469 * offset. So, from now on we don't output AUX records that 470 * have *only* OVERWRITE flag set. 471 */ 472 473 if (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE) 474 perf_event_aux_event(handle->event, aux_head, size, 475 handle->aux_flags); 476 } 477 478 rb->user_page->aux_head = rb->aux_head; 479 if (rb_need_aux_wakeup(rb)) 480 wakeup = true; 481 482 if (wakeup) { 483 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED) 484 handle->event->pending_disable = 1; 485 perf_output_wakeup(handle); 486 } 487 488 handle->event = NULL; 489 490 local_set(&rb->aux_nest, 0); 491 /* can't be last */ 492 rb_free_aux(rb); 493 ring_buffer_put(rb); 494 } 495 EXPORT_SYMBOL_GPL(perf_aux_output_end); 496 497 /* 498 * Skip over a given number of bytes in the AUX buffer, due to, for example, 499 * hardware's alignment constraints. 500 */ 501 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 502 { 503 struct ring_buffer *rb = handle->rb; 504 505 if (size > handle->size) 506 return -ENOSPC; 507 508 rb->aux_head += size; 509 510 rb->user_page->aux_head = rb->aux_head; 511 if (rb_need_aux_wakeup(rb)) { 512 perf_output_wakeup(handle); 513 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 514 } 515 516 handle->head = rb->aux_head; 517 handle->size -= size; 518 519 return 0; 520 } 521 EXPORT_SYMBOL_GPL(perf_aux_output_skip); 522 523 void *perf_get_aux(struct perf_output_handle *handle) 524 { 525 /* this is only valid between perf_aux_output_begin and *_end */ 526 if (!handle->event) 527 return NULL; 528 529 return handle->rb->aux_priv; 530 } 531 EXPORT_SYMBOL_GPL(perf_get_aux); 532 533 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 534 535 static struct page *rb_alloc_aux_page(int node, int order) 536 { 537 struct page *page; 538 539 if (order > MAX_ORDER) 540 order = MAX_ORDER; 541 542 do { 543 page = alloc_pages_node(node, PERF_AUX_GFP, order); 544 } while (!page && order--); 545 546 if (page && order) { 547 /* 548 * Communicate the allocation size to the driver: 549 * if we managed to secure a high-order allocation, 550 * set its first page's private to this order; 551 * !PagePrivate(page) means it's just a normal page. 552 */ 553 split_page(page, order); 554 SetPagePrivate(page); 555 set_page_private(page, order); 556 } 557 558 return page; 559 } 560 561 static void rb_free_aux_page(struct ring_buffer *rb, int idx) 562 { 563 struct page *page = virt_to_page(rb->aux_pages[idx]); 564 565 ClearPagePrivate(page); 566 page->mapping = NULL; 567 __free_page(page); 568 } 569 570 static void __rb_free_aux(struct ring_buffer *rb) 571 { 572 int pg; 573 574 /* 575 * Should never happen, the last reference should be dropped from 576 * perf_mmap_close() path, which first stops aux transactions (which 577 * in turn are the atomic holders of aux_refcount) and then does the 578 * last rb_free_aux(). 579 */ 580 WARN_ON_ONCE(in_atomic()); 581 582 if (rb->aux_priv) { 583 rb->free_aux(rb->aux_priv); 584 rb->free_aux = NULL; 585 rb->aux_priv = NULL; 586 } 587 588 if (rb->aux_nr_pages) { 589 for (pg = 0; pg < rb->aux_nr_pages; pg++) 590 rb_free_aux_page(rb, pg); 591 592 kfree(rb->aux_pages); 593 rb->aux_nr_pages = 0; 594 } 595 } 596 597 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event, 598 pgoff_t pgoff, int nr_pages, long watermark, int flags) 599 { 600 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 601 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 602 int ret = -ENOMEM, max_order = 0; 603 604 if (!has_aux(event)) 605 return -EOPNOTSUPP; 606 607 if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) { 608 /* 609 * We need to start with the max_order that fits in nr_pages, 610 * not the other way around, hence ilog2() and not get_order. 611 */ 612 max_order = ilog2(nr_pages); 613 614 /* 615 * PMU requests more than one contiguous chunks of memory 616 * for SW double buffering 617 */ 618 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) && 619 !overwrite) { 620 if (!max_order) 621 return -EINVAL; 622 623 max_order--; 624 } 625 } 626 627 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL, 628 node); 629 if (!rb->aux_pages) 630 return -ENOMEM; 631 632 rb->free_aux = event->pmu->free_aux; 633 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 634 struct page *page; 635 int last, order; 636 637 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 638 page = rb_alloc_aux_page(node, order); 639 if (!page) 640 goto out; 641 642 for (last = rb->aux_nr_pages + (1 << page_private(page)); 643 last > rb->aux_nr_pages; rb->aux_nr_pages++) 644 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 645 } 646 647 /* 648 * In overwrite mode, PMUs that don't support SG may not handle more 649 * than one contiguous allocation, since they rely on PMI to do double 650 * buffering. In this case, the entire buffer has to be one contiguous 651 * chunk. 652 */ 653 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 654 overwrite) { 655 struct page *page = virt_to_page(rb->aux_pages[0]); 656 657 if (page_private(page) != max_order) 658 goto out; 659 } 660 661 rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages, 662 overwrite); 663 if (!rb->aux_priv) 664 goto out; 665 666 ret = 0; 667 668 /* 669 * aux_pages (and pmu driver's private data, aux_priv) will be 670 * referenced in both producer's and consumer's contexts, thus 671 * we keep a refcount here to make sure either of the two can 672 * reference them safely. 673 */ 674 atomic_set(&rb->aux_refcount, 1); 675 676 rb->aux_overwrite = overwrite; 677 rb->aux_watermark = watermark; 678 679 if (!rb->aux_watermark && !rb->aux_overwrite) 680 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1); 681 682 out: 683 if (!ret) 684 rb->aux_pgoff = pgoff; 685 else 686 __rb_free_aux(rb); 687 688 return ret; 689 } 690 691 void rb_free_aux(struct ring_buffer *rb) 692 { 693 if (atomic_dec_and_test(&rb->aux_refcount)) 694 __rb_free_aux(rb); 695 } 696 697 #ifndef CONFIG_PERF_USE_VMALLOC 698 699 /* 700 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 701 */ 702 703 static struct page * 704 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 705 { 706 if (pgoff > rb->nr_pages) 707 return NULL; 708 709 if (pgoff == 0) 710 return virt_to_page(rb->user_page); 711 712 return virt_to_page(rb->data_pages[pgoff - 1]); 713 } 714 715 static void *perf_mmap_alloc_page(int cpu) 716 { 717 struct page *page; 718 int node; 719 720 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 721 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 722 if (!page) 723 return NULL; 724 725 return page_address(page); 726 } 727 728 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 729 { 730 struct ring_buffer *rb; 731 unsigned long size; 732 int i; 733 734 size = sizeof(struct ring_buffer); 735 size += nr_pages * sizeof(void *); 736 737 rb = kzalloc(size, GFP_KERNEL); 738 if (!rb) 739 goto fail; 740 741 rb->user_page = perf_mmap_alloc_page(cpu); 742 if (!rb->user_page) 743 goto fail_user_page; 744 745 for (i = 0; i < nr_pages; i++) { 746 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 747 if (!rb->data_pages[i]) 748 goto fail_data_pages; 749 } 750 751 rb->nr_pages = nr_pages; 752 753 ring_buffer_init(rb, watermark, flags); 754 755 return rb; 756 757 fail_data_pages: 758 for (i--; i >= 0; i--) 759 free_page((unsigned long)rb->data_pages[i]); 760 761 free_page((unsigned long)rb->user_page); 762 763 fail_user_page: 764 kfree(rb); 765 766 fail: 767 return NULL; 768 } 769 770 static void perf_mmap_free_page(unsigned long addr) 771 { 772 struct page *page = virt_to_page((void *)addr); 773 774 page->mapping = NULL; 775 __free_page(page); 776 } 777 778 void rb_free(struct ring_buffer *rb) 779 { 780 int i; 781 782 perf_mmap_free_page((unsigned long)rb->user_page); 783 for (i = 0; i < rb->nr_pages; i++) 784 perf_mmap_free_page((unsigned long)rb->data_pages[i]); 785 kfree(rb); 786 } 787 788 #else 789 static int data_page_nr(struct ring_buffer *rb) 790 { 791 return rb->nr_pages << page_order(rb); 792 } 793 794 static struct page * 795 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 796 { 797 /* The '>' counts in the user page. */ 798 if (pgoff > data_page_nr(rb)) 799 return NULL; 800 801 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 802 } 803 804 static void perf_mmap_unmark_page(void *addr) 805 { 806 struct page *page = vmalloc_to_page(addr); 807 808 page->mapping = NULL; 809 } 810 811 static void rb_free_work(struct work_struct *work) 812 { 813 struct ring_buffer *rb; 814 void *base; 815 int i, nr; 816 817 rb = container_of(work, struct ring_buffer, work); 818 nr = data_page_nr(rb); 819 820 base = rb->user_page; 821 /* The '<=' counts in the user page. */ 822 for (i = 0; i <= nr; i++) 823 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 824 825 vfree(base); 826 kfree(rb); 827 } 828 829 void rb_free(struct ring_buffer *rb) 830 { 831 schedule_work(&rb->work); 832 } 833 834 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 835 { 836 struct ring_buffer *rb; 837 unsigned long size; 838 void *all_buf; 839 840 size = sizeof(struct ring_buffer); 841 size += sizeof(void *); 842 843 rb = kzalloc(size, GFP_KERNEL); 844 if (!rb) 845 goto fail; 846 847 INIT_WORK(&rb->work, rb_free_work); 848 849 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 850 if (!all_buf) 851 goto fail_all_buf; 852 853 rb->user_page = all_buf; 854 rb->data_pages[0] = all_buf + PAGE_SIZE; 855 if (nr_pages) { 856 rb->nr_pages = 1; 857 rb->page_order = ilog2(nr_pages); 858 } 859 860 ring_buffer_init(rb, watermark, flags); 861 862 return rb; 863 864 fail_all_buf: 865 kfree(rb); 866 867 fail: 868 return NULL; 869 } 870 871 #endif 872 873 struct page * 874 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 875 { 876 if (rb->aux_nr_pages) { 877 /* above AUX space */ 878 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 879 return NULL; 880 881 /* AUX space */ 882 if (pgoff >= rb->aux_pgoff) { 883 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages); 884 return virt_to_page(rb->aux_pages[aux_pgoff]); 885 } 886 } 887 888 return __perf_mmap_to_page(rb, pgoff); 889 } 890