1 /* 2 * Performance events ring-buffer code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/perf_event.h> 13 #include <linux/vmalloc.h> 14 #include <linux/slab.h> 15 #include <linux/circ_buf.h> 16 #include <linux/poll.h> 17 18 #include "internal.h" 19 20 static void perf_output_wakeup(struct perf_output_handle *handle) 21 { 22 atomic_set(&handle->rb->poll, POLLIN); 23 24 handle->event->pending_wakeup = 1; 25 irq_work_queue(&handle->event->pending); 26 } 27 28 /* 29 * We need to ensure a later event_id doesn't publish a head when a former 30 * event isn't done writing. However since we need to deal with NMIs we 31 * cannot fully serialize things. 32 * 33 * We only publish the head (and generate a wakeup) when the outer-most 34 * event completes. 35 */ 36 static void perf_output_get_handle(struct perf_output_handle *handle) 37 { 38 struct ring_buffer *rb = handle->rb; 39 40 preempt_disable(); 41 local_inc(&rb->nest); 42 handle->wakeup = local_read(&rb->wakeup); 43 } 44 45 static void perf_output_put_handle(struct perf_output_handle *handle) 46 { 47 struct ring_buffer *rb = handle->rb; 48 unsigned long head; 49 50 again: 51 head = local_read(&rb->head); 52 53 /* 54 * IRQ/NMI can happen here, which means we can miss a head update. 55 */ 56 57 if (!local_dec_and_test(&rb->nest)) 58 goto out; 59 60 /* 61 * Since the mmap() consumer (userspace) can run on a different CPU: 62 * 63 * kernel user 64 * 65 * if (LOAD ->data_tail) { LOAD ->data_head 66 * (A) smp_rmb() (C) 67 * STORE $data LOAD $data 68 * smp_wmb() (B) smp_mb() (D) 69 * STORE ->data_head STORE ->data_tail 70 * } 71 * 72 * Where A pairs with D, and B pairs with C. 73 * 74 * In our case (A) is a control dependency that separates the load of 75 * the ->data_tail and the stores of $data. In case ->data_tail 76 * indicates there is no room in the buffer to store $data we do not. 77 * 78 * D needs to be a full barrier since it separates the data READ 79 * from the tail WRITE. 80 * 81 * For B a WMB is sufficient since it separates two WRITEs, and for C 82 * an RMB is sufficient since it separates two READs. 83 * 84 * See perf_output_begin(). 85 */ 86 smp_wmb(); /* B, matches C */ 87 rb->user_page->data_head = head; 88 89 /* 90 * Now check if we missed an update -- rely on previous implied 91 * compiler barriers to force a re-read. 92 */ 93 if (unlikely(head != local_read(&rb->head))) { 94 local_inc(&rb->nest); 95 goto again; 96 } 97 98 if (handle->wakeup != local_read(&rb->wakeup)) 99 perf_output_wakeup(handle); 100 101 out: 102 preempt_enable(); 103 } 104 105 static bool __always_inline 106 ring_buffer_has_space(unsigned long head, unsigned long tail, 107 unsigned long data_size, unsigned int size, 108 bool backward) 109 { 110 if (!backward) 111 return CIRC_SPACE(head, tail, data_size) >= size; 112 else 113 return CIRC_SPACE(tail, head, data_size) >= size; 114 } 115 116 static int __always_inline 117 __perf_output_begin(struct perf_output_handle *handle, 118 struct perf_event *event, unsigned int size, 119 bool backward) 120 { 121 struct ring_buffer *rb; 122 unsigned long tail, offset, head; 123 int have_lost, page_shift; 124 struct { 125 struct perf_event_header header; 126 u64 id; 127 u64 lost; 128 } lost_event; 129 130 rcu_read_lock(); 131 /* 132 * For inherited events we send all the output towards the parent. 133 */ 134 if (event->parent) 135 event = event->parent; 136 137 rb = rcu_dereference(event->rb); 138 if (unlikely(!rb)) 139 goto out; 140 141 if (unlikely(rb->paused)) { 142 if (rb->nr_pages) 143 local_inc(&rb->lost); 144 goto out; 145 } 146 147 handle->rb = rb; 148 handle->event = event; 149 150 have_lost = local_read(&rb->lost); 151 if (unlikely(have_lost)) { 152 size += sizeof(lost_event); 153 if (event->attr.sample_id_all) 154 size += event->id_header_size; 155 } 156 157 perf_output_get_handle(handle); 158 159 do { 160 tail = READ_ONCE(rb->user_page->data_tail); 161 offset = head = local_read(&rb->head); 162 if (!rb->overwrite) { 163 if (unlikely(!ring_buffer_has_space(head, tail, 164 perf_data_size(rb), 165 size, backward))) 166 goto fail; 167 } 168 169 /* 170 * The above forms a control dependency barrier separating the 171 * @tail load above from the data stores below. Since the @tail 172 * load is required to compute the branch to fail below. 173 * 174 * A, matches D; the full memory barrier userspace SHOULD issue 175 * after reading the data and before storing the new tail 176 * position. 177 * 178 * See perf_output_put_handle(). 179 */ 180 181 if (!backward) 182 head += size; 183 else 184 head -= size; 185 } while (local_cmpxchg(&rb->head, offset, head) != offset); 186 187 if (backward) { 188 offset = head; 189 head = (u64)(-head); 190 } 191 192 /* 193 * We rely on the implied barrier() by local_cmpxchg() to ensure 194 * none of the data stores below can be lifted up by the compiler. 195 */ 196 197 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 198 local_add(rb->watermark, &rb->wakeup); 199 200 page_shift = PAGE_SHIFT + page_order(rb); 201 202 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 203 offset &= (1UL << page_shift) - 1; 204 handle->addr = rb->data_pages[handle->page] + offset; 205 handle->size = (1UL << page_shift) - offset; 206 207 if (unlikely(have_lost)) { 208 struct perf_sample_data sample_data; 209 210 lost_event.header.size = sizeof(lost_event); 211 lost_event.header.type = PERF_RECORD_LOST; 212 lost_event.header.misc = 0; 213 lost_event.id = event->id; 214 lost_event.lost = local_xchg(&rb->lost, 0); 215 216 perf_event_header__init_id(&lost_event.header, 217 &sample_data, event); 218 perf_output_put(handle, lost_event); 219 perf_event__output_id_sample(event, handle, &sample_data); 220 } 221 222 return 0; 223 224 fail: 225 local_inc(&rb->lost); 226 perf_output_put_handle(handle); 227 out: 228 rcu_read_unlock(); 229 230 return -ENOSPC; 231 } 232 233 int perf_output_begin_forward(struct perf_output_handle *handle, 234 struct perf_event *event, unsigned int size) 235 { 236 return __perf_output_begin(handle, event, size, false); 237 } 238 239 int perf_output_begin_backward(struct perf_output_handle *handle, 240 struct perf_event *event, unsigned int size) 241 { 242 return __perf_output_begin(handle, event, size, true); 243 } 244 245 int perf_output_begin(struct perf_output_handle *handle, 246 struct perf_event *event, unsigned int size) 247 { 248 249 return __perf_output_begin(handle, event, size, 250 unlikely(is_write_backward(event))); 251 } 252 253 unsigned int perf_output_copy(struct perf_output_handle *handle, 254 const void *buf, unsigned int len) 255 { 256 return __output_copy(handle, buf, len); 257 } 258 259 unsigned int perf_output_skip(struct perf_output_handle *handle, 260 unsigned int len) 261 { 262 return __output_skip(handle, NULL, len); 263 } 264 265 void perf_output_end(struct perf_output_handle *handle) 266 { 267 perf_output_put_handle(handle); 268 rcu_read_unlock(); 269 } 270 271 static void 272 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) 273 { 274 long max_size = perf_data_size(rb); 275 276 if (watermark) 277 rb->watermark = min(max_size, watermark); 278 279 if (!rb->watermark) 280 rb->watermark = max_size / 2; 281 282 if (flags & RING_BUFFER_WRITABLE) 283 rb->overwrite = 0; 284 else 285 rb->overwrite = 1; 286 287 atomic_set(&rb->refcount, 1); 288 289 INIT_LIST_HEAD(&rb->event_list); 290 spin_lock_init(&rb->event_lock); 291 292 /* 293 * perf_output_begin() only checks rb->paused, therefore 294 * rb->paused must be true if we have no pages for output. 295 */ 296 if (!rb->nr_pages) 297 rb->paused = 1; 298 } 299 300 /* 301 * This is called before hardware starts writing to the AUX area to 302 * obtain an output handle and make sure there's room in the buffer. 303 * When the capture completes, call perf_aux_output_end() to commit 304 * the recorded data to the buffer. 305 * 306 * The ordering is similar to that of perf_output_{begin,end}, with 307 * the exception of (B), which should be taken care of by the pmu 308 * driver, since ordering rules will differ depending on hardware. 309 * 310 * Call this from pmu::start(); see the comment in perf_aux_output_end() 311 * about its use in pmu callbacks. Both can also be called from the PMI 312 * handler if needed. 313 */ 314 void *perf_aux_output_begin(struct perf_output_handle *handle, 315 struct perf_event *event) 316 { 317 struct perf_event *output_event = event; 318 unsigned long aux_head, aux_tail; 319 struct ring_buffer *rb; 320 321 if (output_event->parent) 322 output_event = output_event->parent; 323 324 /* 325 * Since this will typically be open across pmu::add/pmu::del, we 326 * grab ring_buffer's refcount instead of holding rcu read lock 327 * to make sure it doesn't disappear under us. 328 */ 329 rb = ring_buffer_get(output_event); 330 if (!rb) 331 return NULL; 332 333 if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount)) 334 goto err; 335 336 /* 337 * If rb::aux_mmap_count is zero (and rb_has_aux() above went through), 338 * the aux buffer is in perf_mmap_close(), about to get freed. 339 */ 340 if (!atomic_read(&rb->aux_mmap_count)) 341 goto err_put; 342 343 /* 344 * Nesting is not supported for AUX area, make sure nested 345 * writers are caught early 346 */ 347 if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1))) 348 goto err_put; 349 350 aux_head = local_read(&rb->aux_head); 351 352 handle->rb = rb; 353 handle->event = event; 354 handle->head = aux_head; 355 handle->size = 0; 356 357 /* 358 * In overwrite mode, AUX data stores do not depend on aux_tail, 359 * therefore (A) control dependency barrier does not exist. The 360 * (B) <-> (C) ordering is still observed by the pmu driver. 361 */ 362 if (!rb->aux_overwrite) { 363 aux_tail = ACCESS_ONCE(rb->user_page->aux_tail); 364 handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark; 365 if (aux_head - aux_tail < perf_aux_size(rb)) 366 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 367 368 /* 369 * handle->size computation depends on aux_tail load; this forms a 370 * control dependency barrier separating aux_tail load from aux data 371 * store that will be enabled on successful return 372 */ 373 if (!handle->size) { /* A, matches D */ 374 event->pending_disable = 1; 375 perf_output_wakeup(handle); 376 local_set(&rb->aux_nest, 0); 377 goto err_put; 378 } 379 } 380 381 return handle->rb->aux_priv; 382 383 err_put: 384 /* can't be last */ 385 rb_free_aux(rb); 386 387 err: 388 ring_buffer_put(rb); 389 handle->event = NULL; 390 391 return NULL; 392 } 393 394 /* 395 * Commit the data written by hardware into the ring buffer by adjusting 396 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 397 * pmu driver's responsibility to observe ordering rules of the hardware, 398 * so that all the data is externally visible before this is called. 399 * 400 * Note: this has to be called from pmu::stop() callback, as the assumption 401 * of the AUX buffer management code is that after pmu::stop(), the AUX 402 * transaction must be stopped and therefore drop the AUX reference count. 403 */ 404 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 405 bool truncated) 406 { 407 struct ring_buffer *rb = handle->rb; 408 bool wakeup = truncated; 409 unsigned long aux_head; 410 u64 flags = 0; 411 412 if (truncated) 413 flags |= PERF_AUX_FLAG_TRUNCATED; 414 415 /* in overwrite mode, driver provides aux_head via handle */ 416 if (rb->aux_overwrite) { 417 flags |= PERF_AUX_FLAG_OVERWRITE; 418 419 aux_head = handle->head; 420 local_set(&rb->aux_head, aux_head); 421 } else { 422 aux_head = local_read(&rb->aux_head); 423 local_add(size, &rb->aux_head); 424 } 425 426 if (size || flags) { 427 /* 428 * Only send RECORD_AUX if we have something useful to communicate 429 */ 430 431 perf_event_aux_event(handle->event, aux_head, size, flags); 432 } 433 434 aux_head = rb->user_page->aux_head = local_read(&rb->aux_head); 435 436 if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) { 437 wakeup = true; 438 local_add(rb->aux_watermark, &rb->aux_wakeup); 439 } 440 441 if (wakeup) { 442 if (truncated) 443 handle->event->pending_disable = 1; 444 perf_output_wakeup(handle); 445 } 446 447 handle->event = NULL; 448 449 local_set(&rb->aux_nest, 0); 450 /* can't be last */ 451 rb_free_aux(rb); 452 ring_buffer_put(rb); 453 } 454 455 /* 456 * Skip over a given number of bytes in the AUX buffer, due to, for example, 457 * hardware's alignment constraints. 458 */ 459 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 460 { 461 struct ring_buffer *rb = handle->rb; 462 unsigned long aux_head; 463 464 if (size > handle->size) 465 return -ENOSPC; 466 467 local_add(size, &rb->aux_head); 468 469 aux_head = rb->user_page->aux_head = local_read(&rb->aux_head); 470 if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) { 471 perf_output_wakeup(handle); 472 local_add(rb->aux_watermark, &rb->aux_wakeup); 473 handle->wakeup = local_read(&rb->aux_wakeup) + 474 rb->aux_watermark; 475 } 476 477 handle->head = aux_head; 478 handle->size -= size; 479 480 return 0; 481 } 482 483 void *perf_get_aux(struct perf_output_handle *handle) 484 { 485 /* this is only valid between perf_aux_output_begin and *_end */ 486 if (!handle->event) 487 return NULL; 488 489 return handle->rb->aux_priv; 490 } 491 492 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 493 494 static struct page *rb_alloc_aux_page(int node, int order) 495 { 496 struct page *page; 497 498 if (order > MAX_ORDER) 499 order = MAX_ORDER; 500 501 do { 502 page = alloc_pages_node(node, PERF_AUX_GFP, order); 503 } while (!page && order--); 504 505 if (page && order) { 506 /* 507 * Communicate the allocation size to the driver: 508 * if we managed to secure a high-order allocation, 509 * set its first page's private to this order; 510 * !PagePrivate(page) means it's just a normal page. 511 */ 512 split_page(page, order); 513 SetPagePrivate(page); 514 set_page_private(page, order); 515 } 516 517 return page; 518 } 519 520 static void rb_free_aux_page(struct ring_buffer *rb, int idx) 521 { 522 struct page *page = virt_to_page(rb->aux_pages[idx]); 523 524 ClearPagePrivate(page); 525 page->mapping = NULL; 526 __free_page(page); 527 } 528 529 static void __rb_free_aux(struct ring_buffer *rb) 530 { 531 int pg; 532 533 /* 534 * Should never happen, the last reference should be dropped from 535 * perf_mmap_close() path, which first stops aux transactions (which 536 * in turn are the atomic holders of aux_refcount) and then does the 537 * last rb_free_aux(). 538 */ 539 WARN_ON_ONCE(in_atomic()); 540 541 if (rb->aux_priv) { 542 rb->free_aux(rb->aux_priv); 543 rb->free_aux = NULL; 544 rb->aux_priv = NULL; 545 } 546 547 if (rb->aux_nr_pages) { 548 for (pg = 0; pg < rb->aux_nr_pages; pg++) 549 rb_free_aux_page(rb, pg); 550 551 kfree(rb->aux_pages); 552 rb->aux_nr_pages = 0; 553 } 554 } 555 556 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event, 557 pgoff_t pgoff, int nr_pages, long watermark, int flags) 558 { 559 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 560 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 561 int ret = -ENOMEM, max_order = 0; 562 563 if (!has_aux(event)) 564 return -ENOTSUPP; 565 566 if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) { 567 /* 568 * We need to start with the max_order that fits in nr_pages, 569 * not the other way around, hence ilog2() and not get_order. 570 */ 571 max_order = ilog2(nr_pages); 572 573 /* 574 * PMU requests more than one contiguous chunks of memory 575 * for SW double buffering 576 */ 577 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) && 578 !overwrite) { 579 if (!max_order) 580 return -EINVAL; 581 582 max_order--; 583 } 584 } 585 586 rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node); 587 if (!rb->aux_pages) 588 return -ENOMEM; 589 590 rb->free_aux = event->pmu->free_aux; 591 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 592 struct page *page; 593 int last, order; 594 595 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 596 page = rb_alloc_aux_page(node, order); 597 if (!page) 598 goto out; 599 600 for (last = rb->aux_nr_pages + (1 << page_private(page)); 601 last > rb->aux_nr_pages; rb->aux_nr_pages++) 602 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 603 } 604 605 /* 606 * In overwrite mode, PMUs that don't support SG may not handle more 607 * than one contiguous allocation, since they rely on PMI to do double 608 * buffering. In this case, the entire buffer has to be one contiguous 609 * chunk. 610 */ 611 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 612 overwrite) { 613 struct page *page = virt_to_page(rb->aux_pages[0]); 614 615 if (page_private(page) != max_order) 616 goto out; 617 } 618 619 rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages, 620 overwrite); 621 if (!rb->aux_priv) 622 goto out; 623 624 ret = 0; 625 626 /* 627 * aux_pages (and pmu driver's private data, aux_priv) will be 628 * referenced in both producer's and consumer's contexts, thus 629 * we keep a refcount here to make sure either of the two can 630 * reference them safely. 631 */ 632 atomic_set(&rb->aux_refcount, 1); 633 634 rb->aux_overwrite = overwrite; 635 rb->aux_watermark = watermark; 636 637 if (!rb->aux_watermark && !rb->aux_overwrite) 638 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1); 639 640 out: 641 if (!ret) 642 rb->aux_pgoff = pgoff; 643 else 644 __rb_free_aux(rb); 645 646 return ret; 647 } 648 649 void rb_free_aux(struct ring_buffer *rb) 650 { 651 if (atomic_dec_and_test(&rb->aux_refcount)) 652 __rb_free_aux(rb); 653 } 654 655 #ifndef CONFIG_PERF_USE_VMALLOC 656 657 /* 658 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 659 */ 660 661 static struct page * 662 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 663 { 664 if (pgoff > rb->nr_pages) 665 return NULL; 666 667 if (pgoff == 0) 668 return virt_to_page(rb->user_page); 669 670 return virt_to_page(rb->data_pages[pgoff - 1]); 671 } 672 673 static void *perf_mmap_alloc_page(int cpu) 674 { 675 struct page *page; 676 int node; 677 678 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 679 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 680 if (!page) 681 return NULL; 682 683 return page_address(page); 684 } 685 686 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 687 { 688 struct ring_buffer *rb; 689 unsigned long size; 690 int i; 691 692 size = sizeof(struct ring_buffer); 693 size += nr_pages * sizeof(void *); 694 695 rb = kzalloc(size, GFP_KERNEL); 696 if (!rb) 697 goto fail; 698 699 rb->user_page = perf_mmap_alloc_page(cpu); 700 if (!rb->user_page) 701 goto fail_user_page; 702 703 for (i = 0; i < nr_pages; i++) { 704 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 705 if (!rb->data_pages[i]) 706 goto fail_data_pages; 707 } 708 709 rb->nr_pages = nr_pages; 710 711 ring_buffer_init(rb, watermark, flags); 712 713 return rb; 714 715 fail_data_pages: 716 for (i--; i >= 0; i--) 717 free_page((unsigned long)rb->data_pages[i]); 718 719 free_page((unsigned long)rb->user_page); 720 721 fail_user_page: 722 kfree(rb); 723 724 fail: 725 return NULL; 726 } 727 728 static void perf_mmap_free_page(unsigned long addr) 729 { 730 struct page *page = virt_to_page((void *)addr); 731 732 page->mapping = NULL; 733 __free_page(page); 734 } 735 736 void rb_free(struct ring_buffer *rb) 737 { 738 int i; 739 740 perf_mmap_free_page((unsigned long)rb->user_page); 741 for (i = 0; i < rb->nr_pages; i++) 742 perf_mmap_free_page((unsigned long)rb->data_pages[i]); 743 kfree(rb); 744 } 745 746 #else 747 static int data_page_nr(struct ring_buffer *rb) 748 { 749 return rb->nr_pages << page_order(rb); 750 } 751 752 static struct page * 753 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 754 { 755 /* The '>' counts in the user page. */ 756 if (pgoff > data_page_nr(rb)) 757 return NULL; 758 759 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 760 } 761 762 static void perf_mmap_unmark_page(void *addr) 763 { 764 struct page *page = vmalloc_to_page(addr); 765 766 page->mapping = NULL; 767 } 768 769 static void rb_free_work(struct work_struct *work) 770 { 771 struct ring_buffer *rb; 772 void *base; 773 int i, nr; 774 775 rb = container_of(work, struct ring_buffer, work); 776 nr = data_page_nr(rb); 777 778 base = rb->user_page; 779 /* The '<=' counts in the user page. */ 780 for (i = 0; i <= nr; i++) 781 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 782 783 vfree(base); 784 kfree(rb); 785 } 786 787 void rb_free(struct ring_buffer *rb) 788 { 789 schedule_work(&rb->work); 790 } 791 792 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 793 { 794 struct ring_buffer *rb; 795 unsigned long size; 796 void *all_buf; 797 798 size = sizeof(struct ring_buffer); 799 size += sizeof(void *); 800 801 rb = kzalloc(size, GFP_KERNEL); 802 if (!rb) 803 goto fail; 804 805 INIT_WORK(&rb->work, rb_free_work); 806 807 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 808 if (!all_buf) 809 goto fail_all_buf; 810 811 rb->user_page = all_buf; 812 rb->data_pages[0] = all_buf + PAGE_SIZE; 813 if (nr_pages) { 814 rb->nr_pages = 1; 815 rb->page_order = ilog2(nr_pages); 816 } 817 818 ring_buffer_init(rb, watermark, flags); 819 820 return rb; 821 822 fail_all_buf: 823 kfree(rb); 824 825 fail: 826 return NULL; 827 } 828 829 #endif 830 831 struct page * 832 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 833 { 834 if (rb->aux_nr_pages) { 835 /* above AUX space */ 836 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 837 return NULL; 838 839 /* AUX space */ 840 if (pgoff >= rb->aux_pgoff) 841 return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]); 842 } 843 844 return __perf_mmap_to_page(rb, pgoff); 845 } 846