xref: /openbmc/linux/kernel/events/ring_buffer.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16 #include <linux/poll.h>
17 
18 #include "internal.h"
19 
20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, POLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct ring_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 	local_inc(&rb->nest);
42 	handle->wakeup = local_read(&rb->wakeup);
43 }
44 
45 static void perf_output_put_handle(struct perf_output_handle *handle)
46 {
47 	struct ring_buffer *rb = handle->rb;
48 	unsigned long head;
49 
50 again:
51 	head = local_read(&rb->head);
52 
53 	/*
54 	 * IRQ/NMI can happen here, which means we can miss a head update.
55 	 */
56 
57 	if (!local_dec_and_test(&rb->nest))
58 		goto out;
59 
60 	/*
61 	 * Since the mmap() consumer (userspace) can run on a different CPU:
62 	 *
63 	 *   kernel				user
64 	 *
65 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
66 	 *			(A)		smp_rmb()	(C)
67 	 *	STORE $data			LOAD $data
68 	 *	smp_wmb()	(B)		smp_mb()	(D)
69 	 *	STORE ->data_head		STORE ->data_tail
70 	 *   }
71 	 *
72 	 * Where A pairs with D, and B pairs with C.
73 	 *
74 	 * In our case (A) is a control dependency that separates the load of
75 	 * the ->data_tail and the stores of $data. In case ->data_tail
76 	 * indicates there is no room in the buffer to store $data we do not.
77 	 *
78 	 * D needs to be a full barrier since it separates the data READ
79 	 * from the tail WRITE.
80 	 *
81 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
82 	 * an RMB is sufficient since it separates two READs.
83 	 *
84 	 * See perf_output_begin().
85 	 */
86 	smp_wmb(); /* B, matches C */
87 	rb->user_page->data_head = head;
88 
89 	/*
90 	 * Now check if we missed an update -- rely on previous implied
91 	 * compiler barriers to force a re-read.
92 	 */
93 	if (unlikely(head != local_read(&rb->head))) {
94 		local_inc(&rb->nest);
95 		goto again;
96 	}
97 
98 	if (handle->wakeup != local_read(&rb->wakeup))
99 		perf_output_wakeup(handle);
100 
101 out:
102 	preempt_enable();
103 }
104 
105 static bool __always_inline
106 ring_buffer_has_space(unsigned long head, unsigned long tail,
107 		      unsigned long data_size, unsigned int size,
108 		      bool backward)
109 {
110 	if (!backward)
111 		return CIRC_SPACE(head, tail, data_size) >= size;
112 	else
113 		return CIRC_SPACE(tail, head, data_size) >= size;
114 }
115 
116 static int __always_inline
117 __perf_output_begin(struct perf_output_handle *handle,
118 		    struct perf_event *event, unsigned int size,
119 		    bool backward)
120 {
121 	struct ring_buffer *rb;
122 	unsigned long tail, offset, head;
123 	int have_lost, page_shift;
124 	struct {
125 		struct perf_event_header header;
126 		u64			 id;
127 		u64			 lost;
128 	} lost_event;
129 
130 	rcu_read_lock();
131 	/*
132 	 * For inherited events we send all the output towards the parent.
133 	 */
134 	if (event->parent)
135 		event = event->parent;
136 
137 	rb = rcu_dereference(event->rb);
138 	if (unlikely(!rb))
139 		goto out;
140 
141 	if (unlikely(rb->paused)) {
142 		if (rb->nr_pages)
143 			local_inc(&rb->lost);
144 		goto out;
145 	}
146 
147 	handle->rb    = rb;
148 	handle->event = event;
149 
150 	have_lost = local_read(&rb->lost);
151 	if (unlikely(have_lost)) {
152 		size += sizeof(lost_event);
153 		if (event->attr.sample_id_all)
154 			size += event->id_header_size;
155 	}
156 
157 	perf_output_get_handle(handle);
158 
159 	do {
160 		tail = READ_ONCE(rb->user_page->data_tail);
161 		offset = head = local_read(&rb->head);
162 		if (!rb->overwrite) {
163 			if (unlikely(!ring_buffer_has_space(head, tail,
164 							    perf_data_size(rb),
165 							    size, backward)))
166 				goto fail;
167 		}
168 
169 		/*
170 		 * The above forms a control dependency barrier separating the
171 		 * @tail load above from the data stores below. Since the @tail
172 		 * load is required to compute the branch to fail below.
173 		 *
174 		 * A, matches D; the full memory barrier userspace SHOULD issue
175 		 * after reading the data and before storing the new tail
176 		 * position.
177 		 *
178 		 * See perf_output_put_handle().
179 		 */
180 
181 		if (!backward)
182 			head += size;
183 		else
184 			head -= size;
185 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
186 
187 	if (backward) {
188 		offset = head;
189 		head = (u64)(-head);
190 	}
191 
192 	/*
193 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
194 	 * none of the data stores below can be lifted up by the compiler.
195 	 */
196 
197 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
198 		local_add(rb->watermark, &rb->wakeup);
199 
200 	page_shift = PAGE_SHIFT + page_order(rb);
201 
202 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
203 	offset &= (1UL << page_shift) - 1;
204 	handle->addr = rb->data_pages[handle->page] + offset;
205 	handle->size = (1UL << page_shift) - offset;
206 
207 	if (unlikely(have_lost)) {
208 		struct perf_sample_data sample_data;
209 
210 		lost_event.header.size = sizeof(lost_event);
211 		lost_event.header.type = PERF_RECORD_LOST;
212 		lost_event.header.misc = 0;
213 		lost_event.id          = event->id;
214 		lost_event.lost        = local_xchg(&rb->lost, 0);
215 
216 		perf_event_header__init_id(&lost_event.header,
217 					   &sample_data, event);
218 		perf_output_put(handle, lost_event);
219 		perf_event__output_id_sample(event, handle, &sample_data);
220 	}
221 
222 	return 0;
223 
224 fail:
225 	local_inc(&rb->lost);
226 	perf_output_put_handle(handle);
227 out:
228 	rcu_read_unlock();
229 
230 	return -ENOSPC;
231 }
232 
233 int perf_output_begin_forward(struct perf_output_handle *handle,
234 			     struct perf_event *event, unsigned int size)
235 {
236 	return __perf_output_begin(handle, event, size, false);
237 }
238 
239 int perf_output_begin_backward(struct perf_output_handle *handle,
240 			       struct perf_event *event, unsigned int size)
241 {
242 	return __perf_output_begin(handle, event, size, true);
243 }
244 
245 int perf_output_begin(struct perf_output_handle *handle,
246 		      struct perf_event *event, unsigned int size)
247 {
248 
249 	return __perf_output_begin(handle, event, size,
250 				   unlikely(is_write_backward(event)));
251 }
252 
253 unsigned int perf_output_copy(struct perf_output_handle *handle,
254 		      const void *buf, unsigned int len)
255 {
256 	return __output_copy(handle, buf, len);
257 }
258 
259 unsigned int perf_output_skip(struct perf_output_handle *handle,
260 			      unsigned int len)
261 {
262 	return __output_skip(handle, NULL, len);
263 }
264 
265 void perf_output_end(struct perf_output_handle *handle)
266 {
267 	perf_output_put_handle(handle);
268 	rcu_read_unlock();
269 }
270 
271 static void
272 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
273 {
274 	long max_size = perf_data_size(rb);
275 
276 	if (watermark)
277 		rb->watermark = min(max_size, watermark);
278 
279 	if (!rb->watermark)
280 		rb->watermark = max_size / 2;
281 
282 	if (flags & RING_BUFFER_WRITABLE)
283 		rb->overwrite = 0;
284 	else
285 		rb->overwrite = 1;
286 
287 	atomic_set(&rb->refcount, 1);
288 
289 	INIT_LIST_HEAD(&rb->event_list);
290 	spin_lock_init(&rb->event_lock);
291 
292 	/*
293 	 * perf_output_begin() only checks rb->paused, therefore
294 	 * rb->paused must be true if we have no pages for output.
295 	 */
296 	if (!rb->nr_pages)
297 		rb->paused = 1;
298 }
299 
300 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
301 {
302 	/*
303 	 * OVERWRITE is determined by perf_aux_output_end() and can't
304 	 * be passed in directly.
305 	 */
306 	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
307 		return;
308 
309 	handle->aux_flags |= flags;
310 }
311 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
312 
313 /*
314  * This is called before hardware starts writing to the AUX area to
315  * obtain an output handle and make sure there's room in the buffer.
316  * When the capture completes, call perf_aux_output_end() to commit
317  * the recorded data to the buffer.
318  *
319  * The ordering is similar to that of perf_output_{begin,end}, with
320  * the exception of (B), which should be taken care of by the pmu
321  * driver, since ordering rules will differ depending on hardware.
322  *
323  * Call this from pmu::start(); see the comment in perf_aux_output_end()
324  * about its use in pmu callbacks. Both can also be called from the PMI
325  * handler if needed.
326  */
327 void *perf_aux_output_begin(struct perf_output_handle *handle,
328 			    struct perf_event *event)
329 {
330 	struct perf_event *output_event = event;
331 	unsigned long aux_head, aux_tail;
332 	struct ring_buffer *rb;
333 
334 	if (output_event->parent)
335 		output_event = output_event->parent;
336 
337 	/*
338 	 * Since this will typically be open across pmu::add/pmu::del, we
339 	 * grab ring_buffer's refcount instead of holding rcu read lock
340 	 * to make sure it doesn't disappear under us.
341 	 */
342 	rb = ring_buffer_get(output_event);
343 	if (!rb)
344 		return NULL;
345 
346 	if (!rb_has_aux(rb))
347 		goto err;
348 
349 	/*
350 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
351 	 * about to get freed, so we leave immediately.
352 	 *
353 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
354 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
355 	 * aux pages in this path, which is a bug, because in_atomic().
356 	 */
357 	if (!atomic_read(&rb->aux_mmap_count))
358 		goto err;
359 
360 	if (!atomic_inc_not_zero(&rb->aux_refcount))
361 		goto err;
362 
363 	/*
364 	 * Nesting is not supported for AUX area, make sure nested
365 	 * writers are caught early
366 	 */
367 	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
368 		goto err_put;
369 
370 	aux_head = rb->aux_head;
371 
372 	handle->rb = rb;
373 	handle->event = event;
374 	handle->head = aux_head;
375 	handle->size = 0;
376 	handle->aux_flags = 0;
377 
378 	/*
379 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
380 	 * therefore (A) control dependency barrier does not exist. The
381 	 * (B) <-> (C) ordering is still observed by the pmu driver.
382 	 */
383 	if (!rb->aux_overwrite) {
384 		aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
385 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
386 		if (aux_head - aux_tail < perf_aux_size(rb))
387 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
388 
389 		/*
390 		 * handle->size computation depends on aux_tail load; this forms a
391 		 * control dependency barrier separating aux_tail load from aux data
392 		 * store that will be enabled on successful return
393 		 */
394 		if (!handle->size) { /* A, matches D */
395 			event->pending_disable = 1;
396 			perf_output_wakeup(handle);
397 			local_set(&rb->aux_nest, 0);
398 			goto err_put;
399 		}
400 	}
401 
402 	return handle->rb->aux_priv;
403 
404 err_put:
405 	/* can't be last */
406 	rb_free_aux(rb);
407 
408 err:
409 	ring_buffer_put(rb);
410 	handle->event = NULL;
411 
412 	return NULL;
413 }
414 
415 /*
416  * Commit the data written by hardware into the ring buffer by adjusting
417  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
418  * pmu driver's responsibility to observe ordering rules of the hardware,
419  * so that all the data is externally visible before this is called.
420  *
421  * Note: this has to be called from pmu::stop() callback, as the assumption
422  * of the AUX buffer management code is that after pmu::stop(), the AUX
423  * transaction must be stopped and therefore drop the AUX reference count.
424  */
425 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
426 {
427 	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
428 	struct ring_buffer *rb = handle->rb;
429 	unsigned long aux_head;
430 
431 	/* in overwrite mode, driver provides aux_head via handle */
432 	if (rb->aux_overwrite) {
433 		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
434 
435 		aux_head = handle->head;
436 		rb->aux_head = aux_head;
437 	} else {
438 		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
439 
440 		aux_head = rb->aux_head;
441 		rb->aux_head += size;
442 	}
443 
444 	if (size || handle->aux_flags) {
445 		/*
446 		 * Only send RECORD_AUX if we have something useful to communicate
447 		 */
448 
449 		perf_event_aux_event(handle->event, aux_head, size,
450 		                     handle->aux_flags);
451 	}
452 
453 	rb->user_page->aux_head = rb->aux_head;
454 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
455 		wakeup = true;
456 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
457 	}
458 
459 	if (wakeup) {
460 		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
461 			handle->event->pending_disable = 1;
462 		perf_output_wakeup(handle);
463 	}
464 
465 	handle->event = NULL;
466 
467 	local_set(&rb->aux_nest, 0);
468 	/* can't be last */
469 	rb_free_aux(rb);
470 	ring_buffer_put(rb);
471 }
472 
473 /*
474  * Skip over a given number of bytes in the AUX buffer, due to, for example,
475  * hardware's alignment constraints.
476  */
477 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
478 {
479 	struct ring_buffer *rb = handle->rb;
480 
481 	if (size > handle->size)
482 		return -ENOSPC;
483 
484 	rb->aux_head += size;
485 
486 	rb->user_page->aux_head = rb->aux_head;
487 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
488 		perf_output_wakeup(handle);
489 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
490 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
491 	}
492 
493 	handle->head = rb->aux_head;
494 	handle->size -= size;
495 
496 	return 0;
497 }
498 
499 void *perf_get_aux(struct perf_output_handle *handle)
500 {
501 	/* this is only valid between perf_aux_output_begin and *_end */
502 	if (!handle->event)
503 		return NULL;
504 
505 	return handle->rb->aux_priv;
506 }
507 
508 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
509 
510 static struct page *rb_alloc_aux_page(int node, int order)
511 {
512 	struct page *page;
513 
514 	if (order > MAX_ORDER)
515 		order = MAX_ORDER;
516 
517 	do {
518 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
519 	} while (!page && order--);
520 
521 	if (page && order) {
522 		/*
523 		 * Communicate the allocation size to the driver:
524 		 * if we managed to secure a high-order allocation,
525 		 * set its first page's private to this order;
526 		 * !PagePrivate(page) means it's just a normal page.
527 		 */
528 		split_page(page, order);
529 		SetPagePrivate(page);
530 		set_page_private(page, order);
531 	}
532 
533 	return page;
534 }
535 
536 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
537 {
538 	struct page *page = virt_to_page(rb->aux_pages[idx]);
539 
540 	ClearPagePrivate(page);
541 	page->mapping = NULL;
542 	__free_page(page);
543 }
544 
545 static void __rb_free_aux(struct ring_buffer *rb)
546 {
547 	int pg;
548 
549 	/*
550 	 * Should never happen, the last reference should be dropped from
551 	 * perf_mmap_close() path, which first stops aux transactions (which
552 	 * in turn are the atomic holders of aux_refcount) and then does the
553 	 * last rb_free_aux().
554 	 */
555 	WARN_ON_ONCE(in_atomic());
556 
557 	if (rb->aux_priv) {
558 		rb->free_aux(rb->aux_priv);
559 		rb->free_aux = NULL;
560 		rb->aux_priv = NULL;
561 	}
562 
563 	if (rb->aux_nr_pages) {
564 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
565 			rb_free_aux_page(rb, pg);
566 
567 		kfree(rb->aux_pages);
568 		rb->aux_nr_pages = 0;
569 	}
570 }
571 
572 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
573 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
574 {
575 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
576 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
577 	int ret = -ENOMEM, max_order = 0;
578 
579 	if (!has_aux(event))
580 		return -EOPNOTSUPP;
581 
582 	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
583 		/*
584 		 * We need to start with the max_order that fits in nr_pages,
585 		 * not the other way around, hence ilog2() and not get_order.
586 		 */
587 		max_order = ilog2(nr_pages);
588 
589 		/*
590 		 * PMU requests more than one contiguous chunks of memory
591 		 * for SW double buffering
592 		 */
593 		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
594 		    !overwrite) {
595 			if (!max_order)
596 				return -EINVAL;
597 
598 			max_order--;
599 		}
600 	}
601 
602 	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
603 	if (!rb->aux_pages)
604 		return -ENOMEM;
605 
606 	rb->free_aux = event->pmu->free_aux;
607 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
608 		struct page *page;
609 		int last, order;
610 
611 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
612 		page = rb_alloc_aux_page(node, order);
613 		if (!page)
614 			goto out;
615 
616 		for (last = rb->aux_nr_pages + (1 << page_private(page));
617 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
618 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
619 	}
620 
621 	/*
622 	 * In overwrite mode, PMUs that don't support SG may not handle more
623 	 * than one contiguous allocation, since they rely on PMI to do double
624 	 * buffering. In this case, the entire buffer has to be one contiguous
625 	 * chunk.
626 	 */
627 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
628 	    overwrite) {
629 		struct page *page = virt_to_page(rb->aux_pages[0]);
630 
631 		if (page_private(page) != max_order)
632 			goto out;
633 	}
634 
635 	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
636 					     overwrite);
637 	if (!rb->aux_priv)
638 		goto out;
639 
640 	ret = 0;
641 
642 	/*
643 	 * aux_pages (and pmu driver's private data, aux_priv) will be
644 	 * referenced in both producer's and consumer's contexts, thus
645 	 * we keep a refcount here to make sure either of the two can
646 	 * reference them safely.
647 	 */
648 	atomic_set(&rb->aux_refcount, 1);
649 
650 	rb->aux_overwrite = overwrite;
651 	rb->aux_watermark = watermark;
652 
653 	if (!rb->aux_watermark && !rb->aux_overwrite)
654 		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
655 
656 out:
657 	if (!ret)
658 		rb->aux_pgoff = pgoff;
659 	else
660 		__rb_free_aux(rb);
661 
662 	return ret;
663 }
664 
665 void rb_free_aux(struct ring_buffer *rb)
666 {
667 	if (atomic_dec_and_test(&rb->aux_refcount))
668 		__rb_free_aux(rb);
669 }
670 
671 #ifndef CONFIG_PERF_USE_VMALLOC
672 
673 /*
674  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
675  */
676 
677 static struct page *
678 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
679 {
680 	if (pgoff > rb->nr_pages)
681 		return NULL;
682 
683 	if (pgoff == 0)
684 		return virt_to_page(rb->user_page);
685 
686 	return virt_to_page(rb->data_pages[pgoff - 1]);
687 }
688 
689 static void *perf_mmap_alloc_page(int cpu)
690 {
691 	struct page *page;
692 	int node;
693 
694 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
695 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
696 	if (!page)
697 		return NULL;
698 
699 	return page_address(page);
700 }
701 
702 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
703 {
704 	struct ring_buffer *rb;
705 	unsigned long size;
706 	int i;
707 
708 	size = sizeof(struct ring_buffer);
709 	size += nr_pages * sizeof(void *);
710 
711 	rb = kzalloc(size, GFP_KERNEL);
712 	if (!rb)
713 		goto fail;
714 
715 	rb->user_page = perf_mmap_alloc_page(cpu);
716 	if (!rb->user_page)
717 		goto fail_user_page;
718 
719 	for (i = 0; i < nr_pages; i++) {
720 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
721 		if (!rb->data_pages[i])
722 			goto fail_data_pages;
723 	}
724 
725 	rb->nr_pages = nr_pages;
726 
727 	ring_buffer_init(rb, watermark, flags);
728 
729 	return rb;
730 
731 fail_data_pages:
732 	for (i--; i >= 0; i--)
733 		free_page((unsigned long)rb->data_pages[i]);
734 
735 	free_page((unsigned long)rb->user_page);
736 
737 fail_user_page:
738 	kfree(rb);
739 
740 fail:
741 	return NULL;
742 }
743 
744 static void perf_mmap_free_page(unsigned long addr)
745 {
746 	struct page *page = virt_to_page((void *)addr);
747 
748 	page->mapping = NULL;
749 	__free_page(page);
750 }
751 
752 void rb_free(struct ring_buffer *rb)
753 {
754 	int i;
755 
756 	perf_mmap_free_page((unsigned long)rb->user_page);
757 	for (i = 0; i < rb->nr_pages; i++)
758 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
759 	kfree(rb);
760 }
761 
762 #else
763 static int data_page_nr(struct ring_buffer *rb)
764 {
765 	return rb->nr_pages << page_order(rb);
766 }
767 
768 static struct page *
769 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
770 {
771 	/* The '>' counts in the user page. */
772 	if (pgoff > data_page_nr(rb))
773 		return NULL;
774 
775 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
776 }
777 
778 static void perf_mmap_unmark_page(void *addr)
779 {
780 	struct page *page = vmalloc_to_page(addr);
781 
782 	page->mapping = NULL;
783 }
784 
785 static void rb_free_work(struct work_struct *work)
786 {
787 	struct ring_buffer *rb;
788 	void *base;
789 	int i, nr;
790 
791 	rb = container_of(work, struct ring_buffer, work);
792 	nr = data_page_nr(rb);
793 
794 	base = rb->user_page;
795 	/* The '<=' counts in the user page. */
796 	for (i = 0; i <= nr; i++)
797 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
798 
799 	vfree(base);
800 	kfree(rb);
801 }
802 
803 void rb_free(struct ring_buffer *rb)
804 {
805 	schedule_work(&rb->work);
806 }
807 
808 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
809 {
810 	struct ring_buffer *rb;
811 	unsigned long size;
812 	void *all_buf;
813 
814 	size = sizeof(struct ring_buffer);
815 	size += sizeof(void *);
816 
817 	rb = kzalloc(size, GFP_KERNEL);
818 	if (!rb)
819 		goto fail;
820 
821 	INIT_WORK(&rb->work, rb_free_work);
822 
823 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
824 	if (!all_buf)
825 		goto fail_all_buf;
826 
827 	rb->user_page = all_buf;
828 	rb->data_pages[0] = all_buf + PAGE_SIZE;
829 	if (nr_pages) {
830 		rb->nr_pages = 1;
831 		rb->page_order = ilog2(nr_pages);
832 	}
833 
834 	ring_buffer_init(rb, watermark, flags);
835 
836 	return rb;
837 
838 fail_all_buf:
839 	kfree(rb);
840 
841 fail:
842 	return NULL;
843 }
844 
845 #endif
846 
847 struct page *
848 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
849 {
850 	if (rb->aux_nr_pages) {
851 		/* above AUX space */
852 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
853 			return NULL;
854 
855 		/* AUX space */
856 		if (pgoff >= rb->aux_pgoff)
857 			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
858 	}
859 
860 	return __perf_mmap_to_page(rb, pgoff);
861 }
862