xref: /openbmc/linux/kernel/events/ring_buffer.c (revision 0da85d1e)
1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16 #include <linux/poll.h>
17 
18 #include "internal.h"
19 
20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, POLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct ring_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 	local_inc(&rb->nest);
42 	handle->wakeup = local_read(&rb->wakeup);
43 }
44 
45 static void perf_output_put_handle(struct perf_output_handle *handle)
46 {
47 	struct ring_buffer *rb = handle->rb;
48 	unsigned long head;
49 
50 again:
51 	head = local_read(&rb->head);
52 
53 	/*
54 	 * IRQ/NMI can happen here, which means we can miss a head update.
55 	 */
56 
57 	if (!local_dec_and_test(&rb->nest))
58 		goto out;
59 
60 	/*
61 	 * Since the mmap() consumer (userspace) can run on a different CPU:
62 	 *
63 	 *   kernel				user
64 	 *
65 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
66 	 *			(A)		smp_rmb()	(C)
67 	 *	STORE $data			LOAD $data
68 	 *	smp_wmb()	(B)		smp_mb()	(D)
69 	 *	STORE ->data_head		STORE ->data_tail
70 	 *   }
71 	 *
72 	 * Where A pairs with D, and B pairs with C.
73 	 *
74 	 * In our case (A) is a control dependency that separates the load of
75 	 * the ->data_tail and the stores of $data. In case ->data_tail
76 	 * indicates there is no room in the buffer to store $data we do not.
77 	 *
78 	 * D needs to be a full barrier since it separates the data READ
79 	 * from the tail WRITE.
80 	 *
81 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
82 	 * an RMB is sufficient since it separates two READs.
83 	 *
84 	 * See perf_output_begin().
85 	 */
86 	smp_wmb(); /* B, matches C */
87 	rb->user_page->data_head = head;
88 
89 	/*
90 	 * Now check if we missed an update -- rely on previous implied
91 	 * compiler barriers to force a re-read.
92 	 */
93 	if (unlikely(head != local_read(&rb->head))) {
94 		local_inc(&rb->nest);
95 		goto again;
96 	}
97 
98 	if (handle->wakeup != local_read(&rb->wakeup))
99 		perf_output_wakeup(handle);
100 
101 out:
102 	preempt_enable();
103 }
104 
105 int perf_output_begin(struct perf_output_handle *handle,
106 		      struct perf_event *event, unsigned int size)
107 {
108 	struct ring_buffer *rb;
109 	unsigned long tail, offset, head;
110 	int have_lost, page_shift;
111 	struct {
112 		struct perf_event_header header;
113 		u64			 id;
114 		u64			 lost;
115 	} lost_event;
116 
117 	rcu_read_lock();
118 	/*
119 	 * For inherited events we send all the output towards the parent.
120 	 */
121 	if (event->parent)
122 		event = event->parent;
123 
124 	rb = rcu_dereference(event->rb);
125 	if (unlikely(!rb))
126 		goto out;
127 
128 	if (unlikely(!rb->nr_pages))
129 		goto out;
130 
131 	handle->rb    = rb;
132 	handle->event = event;
133 
134 	have_lost = local_read(&rb->lost);
135 	if (unlikely(have_lost)) {
136 		size += sizeof(lost_event);
137 		if (event->attr.sample_id_all)
138 			size += event->id_header_size;
139 	}
140 
141 	perf_output_get_handle(handle);
142 
143 	do {
144 		tail = ACCESS_ONCE(rb->user_page->data_tail);
145 		offset = head = local_read(&rb->head);
146 		if (!rb->overwrite &&
147 		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
148 			goto fail;
149 
150 		/*
151 		 * The above forms a control dependency barrier separating the
152 		 * @tail load above from the data stores below. Since the @tail
153 		 * load is required to compute the branch to fail below.
154 		 *
155 		 * A, matches D; the full memory barrier userspace SHOULD issue
156 		 * after reading the data and before storing the new tail
157 		 * position.
158 		 *
159 		 * See perf_output_put_handle().
160 		 */
161 
162 		head += size;
163 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
164 
165 	/*
166 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
167 	 * none of the data stores below can be lifted up by the compiler.
168 	 */
169 
170 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
171 		local_add(rb->watermark, &rb->wakeup);
172 
173 	page_shift = PAGE_SHIFT + page_order(rb);
174 
175 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
176 	offset &= (1UL << page_shift) - 1;
177 	handle->addr = rb->data_pages[handle->page] + offset;
178 	handle->size = (1UL << page_shift) - offset;
179 
180 	if (unlikely(have_lost)) {
181 		struct perf_sample_data sample_data;
182 
183 		lost_event.header.size = sizeof(lost_event);
184 		lost_event.header.type = PERF_RECORD_LOST;
185 		lost_event.header.misc = 0;
186 		lost_event.id          = event->id;
187 		lost_event.lost        = local_xchg(&rb->lost, 0);
188 
189 		perf_event_header__init_id(&lost_event.header,
190 					   &sample_data, event);
191 		perf_output_put(handle, lost_event);
192 		perf_event__output_id_sample(event, handle, &sample_data);
193 	}
194 
195 	return 0;
196 
197 fail:
198 	local_inc(&rb->lost);
199 	perf_output_put_handle(handle);
200 out:
201 	rcu_read_unlock();
202 
203 	return -ENOSPC;
204 }
205 
206 unsigned int perf_output_copy(struct perf_output_handle *handle,
207 		      const void *buf, unsigned int len)
208 {
209 	return __output_copy(handle, buf, len);
210 }
211 
212 unsigned int perf_output_skip(struct perf_output_handle *handle,
213 			      unsigned int len)
214 {
215 	return __output_skip(handle, NULL, len);
216 }
217 
218 void perf_output_end(struct perf_output_handle *handle)
219 {
220 	perf_output_put_handle(handle);
221 	rcu_read_unlock();
222 }
223 
224 static void
225 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
226 {
227 	long max_size = perf_data_size(rb);
228 
229 	if (watermark)
230 		rb->watermark = min(max_size, watermark);
231 
232 	if (!rb->watermark)
233 		rb->watermark = max_size / 2;
234 
235 	if (flags & RING_BUFFER_WRITABLE)
236 		rb->overwrite = 0;
237 	else
238 		rb->overwrite = 1;
239 
240 	atomic_set(&rb->refcount, 1);
241 
242 	INIT_LIST_HEAD(&rb->event_list);
243 	spin_lock_init(&rb->event_lock);
244 }
245 
246 /*
247  * This is called before hardware starts writing to the AUX area to
248  * obtain an output handle and make sure there's room in the buffer.
249  * When the capture completes, call perf_aux_output_end() to commit
250  * the recorded data to the buffer.
251  *
252  * The ordering is similar to that of perf_output_{begin,end}, with
253  * the exception of (B), which should be taken care of by the pmu
254  * driver, since ordering rules will differ depending on hardware.
255  */
256 void *perf_aux_output_begin(struct perf_output_handle *handle,
257 			    struct perf_event *event)
258 {
259 	struct perf_event *output_event = event;
260 	unsigned long aux_head, aux_tail;
261 	struct ring_buffer *rb;
262 
263 	if (output_event->parent)
264 		output_event = output_event->parent;
265 
266 	/*
267 	 * Since this will typically be open across pmu::add/pmu::del, we
268 	 * grab ring_buffer's refcount instead of holding rcu read lock
269 	 * to make sure it doesn't disappear under us.
270 	 */
271 	rb = ring_buffer_get(output_event);
272 	if (!rb)
273 		return NULL;
274 
275 	if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount))
276 		goto err;
277 
278 	/*
279 	 * Nesting is not supported for AUX area, make sure nested
280 	 * writers are caught early
281 	 */
282 	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
283 		goto err_put;
284 
285 	aux_head = local_read(&rb->aux_head);
286 
287 	handle->rb = rb;
288 	handle->event = event;
289 	handle->head = aux_head;
290 	handle->size = 0;
291 
292 	/*
293 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
294 	 * therefore (A) control dependency barrier does not exist. The
295 	 * (B) <-> (C) ordering is still observed by the pmu driver.
296 	 */
297 	if (!rb->aux_overwrite) {
298 		aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
299 		handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark;
300 		if (aux_head - aux_tail < perf_aux_size(rb))
301 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
302 
303 		/*
304 		 * handle->size computation depends on aux_tail load; this forms a
305 		 * control dependency barrier separating aux_tail load from aux data
306 		 * store that will be enabled on successful return
307 		 */
308 		if (!handle->size) { /* A, matches D */
309 			event->pending_disable = 1;
310 			perf_output_wakeup(handle);
311 			local_set(&rb->aux_nest, 0);
312 			goto err_put;
313 		}
314 	}
315 
316 	return handle->rb->aux_priv;
317 
318 err_put:
319 	rb_free_aux(rb);
320 
321 err:
322 	ring_buffer_put(rb);
323 	handle->event = NULL;
324 
325 	return NULL;
326 }
327 
328 /*
329  * Commit the data written by hardware into the ring buffer by adjusting
330  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
331  * pmu driver's responsibility to observe ordering rules of the hardware,
332  * so that all the data is externally visible before this is called.
333  */
334 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
335 			 bool truncated)
336 {
337 	struct ring_buffer *rb = handle->rb;
338 	unsigned long aux_head;
339 	u64 flags = 0;
340 
341 	if (truncated)
342 		flags |= PERF_AUX_FLAG_TRUNCATED;
343 
344 	/* in overwrite mode, driver provides aux_head via handle */
345 	if (rb->aux_overwrite) {
346 		flags |= PERF_AUX_FLAG_OVERWRITE;
347 
348 		aux_head = handle->head;
349 		local_set(&rb->aux_head, aux_head);
350 	} else {
351 		aux_head = local_read(&rb->aux_head);
352 		local_add(size, &rb->aux_head);
353 	}
354 
355 	if (size || flags) {
356 		/*
357 		 * Only send RECORD_AUX if we have something useful to communicate
358 		 */
359 
360 		perf_event_aux_event(handle->event, aux_head, size, flags);
361 	}
362 
363 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
364 
365 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
366 		perf_output_wakeup(handle);
367 		local_add(rb->aux_watermark, &rb->aux_wakeup);
368 	}
369 	handle->event = NULL;
370 
371 	local_set(&rb->aux_nest, 0);
372 	rb_free_aux(rb);
373 	ring_buffer_put(rb);
374 }
375 
376 /*
377  * Skip over a given number of bytes in the AUX buffer, due to, for example,
378  * hardware's alignment constraints.
379  */
380 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
381 {
382 	struct ring_buffer *rb = handle->rb;
383 	unsigned long aux_head;
384 
385 	if (size > handle->size)
386 		return -ENOSPC;
387 
388 	local_add(size, &rb->aux_head);
389 
390 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
391 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
392 		perf_output_wakeup(handle);
393 		local_add(rb->aux_watermark, &rb->aux_wakeup);
394 		handle->wakeup = local_read(&rb->aux_wakeup) +
395 				 rb->aux_watermark;
396 	}
397 
398 	handle->head = aux_head;
399 	handle->size -= size;
400 
401 	return 0;
402 }
403 
404 void *perf_get_aux(struct perf_output_handle *handle)
405 {
406 	/* this is only valid between perf_aux_output_begin and *_end */
407 	if (!handle->event)
408 		return NULL;
409 
410 	return handle->rb->aux_priv;
411 }
412 
413 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
414 
415 static struct page *rb_alloc_aux_page(int node, int order)
416 {
417 	struct page *page;
418 
419 	if (order > MAX_ORDER)
420 		order = MAX_ORDER;
421 
422 	do {
423 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
424 	} while (!page && order--);
425 
426 	if (page && order) {
427 		/*
428 		 * Communicate the allocation size to the driver
429 		 */
430 		split_page(page, order);
431 		SetPagePrivate(page);
432 		set_page_private(page, order);
433 	}
434 
435 	return page;
436 }
437 
438 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
439 {
440 	struct page *page = virt_to_page(rb->aux_pages[idx]);
441 
442 	ClearPagePrivate(page);
443 	page->mapping = NULL;
444 	__free_page(page);
445 }
446 
447 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
448 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
449 {
450 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
451 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
452 	int ret = -ENOMEM, max_order = 0;
453 
454 	if (!has_aux(event))
455 		return -ENOTSUPP;
456 
457 	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
458 		/*
459 		 * We need to start with the max_order that fits in nr_pages,
460 		 * not the other way around, hence ilog2() and not get_order.
461 		 */
462 		max_order = ilog2(nr_pages);
463 
464 		/*
465 		 * PMU requests more than one contiguous chunks of memory
466 		 * for SW double buffering
467 		 */
468 		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
469 		    !overwrite) {
470 			if (!max_order)
471 				return -EINVAL;
472 
473 			max_order--;
474 		}
475 	}
476 
477 	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
478 	if (!rb->aux_pages)
479 		return -ENOMEM;
480 
481 	rb->free_aux = event->pmu->free_aux;
482 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
483 		struct page *page;
484 		int last, order;
485 
486 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
487 		page = rb_alloc_aux_page(node, order);
488 		if (!page)
489 			goto out;
490 
491 		for (last = rb->aux_nr_pages + (1 << page_private(page));
492 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
493 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
494 	}
495 
496 	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
497 					     overwrite);
498 	if (!rb->aux_priv)
499 		goto out;
500 
501 	ret = 0;
502 
503 	/*
504 	 * aux_pages (and pmu driver's private data, aux_priv) will be
505 	 * referenced in both producer's and consumer's contexts, thus
506 	 * we keep a refcount here to make sure either of the two can
507 	 * reference them safely.
508 	 */
509 	atomic_set(&rb->aux_refcount, 1);
510 
511 	rb->aux_overwrite = overwrite;
512 	rb->aux_watermark = watermark;
513 
514 	if (!rb->aux_watermark && !rb->aux_overwrite)
515 		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
516 
517 out:
518 	if (!ret)
519 		rb->aux_pgoff = pgoff;
520 	else
521 		rb_free_aux(rb);
522 
523 	return ret;
524 }
525 
526 static void __rb_free_aux(struct ring_buffer *rb)
527 {
528 	int pg;
529 
530 	if (rb->aux_priv) {
531 		rb->free_aux(rb->aux_priv);
532 		rb->free_aux = NULL;
533 		rb->aux_priv = NULL;
534 	}
535 
536 	for (pg = 0; pg < rb->aux_nr_pages; pg++)
537 		rb_free_aux_page(rb, pg);
538 
539 	kfree(rb->aux_pages);
540 	rb->aux_nr_pages = 0;
541 }
542 
543 void rb_free_aux(struct ring_buffer *rb)
544 {
545 	if (atomic_dec_and_test(&rb->aux_refcount))
546 		__rb_free_aux(rb);
547 }
548 
549 #ifndef CONFIG_PERF_USE_VMALLOC
550 
551 /*
552  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
553  */
554 
555 static struct page *
556 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
557 {
558 	if (pgoff > rb->nr_pages)
559 		return NULL;
560 
561 	if (pgoff == 0)
562 		return virt_to_page(rb->user_page);
563 
564 	return virt_to_page(rb->data_pages[pgoff - 1]);
565 }
566 
567 static void *perf_mmap_alloc_page(int cpu)
568 {
569 	struct page *page;
570 	int node;
571 
572 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
573 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
574 	if (!page)
575 		return NULL;
576 
577 	return page_address(page);
578 }
579 
580 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
581 {
582 	struct ring_buffer *rb;
583 	unsigned long size;
584 	int i;
585 
586 	size = sizeof(struct ring_buffer);
587 	size += nr_pages * sizeof(void *);
588 
589 	rb = kzalloc(size, GFP_KERNEL);
590 	if (!rb)
591 		goto fail;
592 
593 	rb->user_page = perf_mmap_alloc_page(cpu);
594 	if (!rb->user_page)
595 		goto fail_user_page;
596 
597 	for (i = 0; i < nr_pages; i++) {
598 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
599 		if (!rb->data_pages[i])
600 			goto fail_data_pages;
601 	}
602 
603 	rb->nr_pages = nr_pages;
604 
605 	ring_buffer_init(rb, watermark, flags);
606 
607 	return rb;
608 
609 fail_data_pages:
610 	for (i--; i >= 0; i--)
611 		free_page((unsigned long)rb->data_pages[i]);
612 
613 	free_page((unsigned long)rb->user_page);
614 
615 fail_user_page:
616 	kfree(rb);
617 
618 fail:
619 	return NULL;
620 }
621 
622 static void perf_mmap_free_page(unsigned long addr)
623 {
624 	struct page *page = virt_to_page((void *)addr);
625 
626 	page->mapping = NULL;
627 	__free_page(page);
628 }
629 
630 void rb_free(struct ring_buffer *rb)
631 {
632 	int i;
633 
634 	perf_mmap_free_page((unsigned long)rb->user_page);
635 	for (i = 0; i < rb->nr_pages; i++)
636 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
637 	kfree(rb);
638 }
639 
640 #else
641 static int data_page_nr(struct ring_buffer *rb)
642 {
643 	return rb->nr_pages << page_order(rb);
644 }
645 
646 static struct page *
647 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
648 {
649 	/* The '>' counts in the user page. */
650 	if (pgoff > data_page_nr(rb))
651 		return NULL;
652 
653 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
654 }
655 
656 static void perf_mmap_unmark_page(void *addr)
657 {
658 	struct page *page = vmalloc_to_page(addr);
659 
660 	page->mapping = NULL;
661 }
662 
663 static void rb_free_work(struct work_struct *work)
664 {
665 	struct ring_buffer *rb;
666 	void *base;
667 	int i, nr;
668 
669 	rb = container_of(work, struct ring_buffer, work);
670 	nr = data_page_nr(rb);
671 
672 	base = rb->user_page;
673 	/* The '<=' counts in the user page. */
674 	for (i = 0; i <= nr; i++)
675 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
676 
677 	vfree(base);
678 	kfree(rb);
679 }
680 
681 void rb_free(struct ring_buffer *rb)
682 {
683 	schedule_work(&rb->work);
684 }
685 
686 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
687 {
688 	struct ring_buffer *rb;
689 	unsigned long size;
690 	void *all_buf;
691 
692 	size = sizeof(struct ring_buffer);
693 	size += sizeof(void *);
694 
695 	rb = kzalloc(size, GFP_KERNEL);
696 	if (!rb)
697 		goto fail;
698 
699 	INIT_WORK(&rb->work, rb_free_work);
700 
701 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
702 	if (!all_buf)
703 		goto fail_all_buf;
704 
705 	rb->user_page = all_buf;
706 	rb->data_pages[0] = all_buf + PAGE_SIZE;
707 	rb->page_order = ilog2(nr_pages);
708 	rb->nr_pages = !!nr_pages;
709 
710 	ring_buffer_init(rb, watermark, flags);
711 
712 	return rb;
713 
714 fail_all_buf:
715 	kfree(rb);
716 
717 fail:
718 	return NULL;
719 }
720 
721 #endif
722 
723 struct page *
724 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
725 {
726 	if (rb->aux_nr_pages) {
727 		/* above AUX space */
728 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
729 			return NULL;
730 
731 		/* AUX space */
732 		if (pgoff >= rb->aux_pgoff)
733 			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
734 	}
735 
736 	return __perf_mmap_to_page(rb, pgoff);
737 }
738