1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events ring-buffer code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/perf_event.h> 12 #include <linux/vmalloc.h> 13 #include <linux/slab.h> 14 #include <linux/circ_buf.h> 15 #include <linux/poll.h> 16 #include <linux/nospec.h> 17 18 #include "internal.h" 19 20 static void perf_output_wakeup(struct perf_output_handle *handle) 21 { 22 atomic_set(&handle->rb->poll, EPOLLIN); 23 24 handle->event->pending_wakeup = 1; 25 irq_work_queue(&handle->event->pending_irq); 26 } 27 28 /* 29 * We need to ensure a later event_id doesn't publish a head when a former 30 * event isn't done writing. However since we need to deal with NMIs we 31 * cannot fully serialize things. 32 * 33 * We only publish the head (and generate a wakeup) when the outer-most 34 * event completes. 35 */ 36 static void perf_output_get_handle(struct perf_output_handle *handle) 37 { 38 struct perf_buffer *rb = handle->rb; 39 40 preempt_disable(); 41 42 /* 43 * Avoid an explicit LOAD/STORE such that architectures with memops 44 * can use them. 45 */ 46 (*(volatile unsigned int *)&rb->nest)++; 47 handle->wakeup = local_read(&rb->wakeup); 48 } 49 50 static void perf_output_put_handle(struct perf_output_handle *handle) 51 { 52 struct perf_buffer *rb = handle->rb; 53 unsigned long head; 54 unsigned int nest; 55 56 /* 57 * If this isn't the outermost nesting, we don't have to update 58 * @rb->user_page->data_head. 59 */ 60 nest = READ_ONCE(rb->nest); 61 if (nest > 1) { 62 WRITE_ONCE(rb->nest, nest - 1); 63 goto out; 64 } 65 66 again: 67 /* 68 * In order to avoid publishing a head value that goes backwards, 69 * we must ensure the load of @rb->head happens after we've 70 * incremented @rb->nest. 71 * 72 * Otherwise we can observe a @rb->head value before one published 73 * by an IRQ/NMI happening between the load and the increment. 74 */ 75 barrier(); 76 head = local_read(&rb->head); 77 78 /* 79 * IRQ/NMI can happen here and advance @rb->head, causing our 80 * load above to be stale. 81 */ 82 83 /* 84 * Since the mmap() consumer (userspace) can run on a different CPU: 85 * 86 * kernel user 87 * 88 * if (LOAD ->data_tail) { LOAD ->data_head 89 * (A) smp_rmb() (C) 90 * STORE $data LOAD $data 91 * smp_wmb() (B) smp_mb() (D) 92 * STORE ->data_head STORE ->data_tail 93 * } 94 * 95 * Where A pairs with D, and B pairs with C. 96 * 97 * In our case (A) is a control dependency that separates the load of 98 * the ->data_tail and the stores of $data. In case ->data_tail 99 * indicates there is no room in the buffer to store $data we do not. 100 * 101 * D needs to be a full barrier since it separates the data READ 102 * from the tail WRITE. 103 * 104 * For B a WMB is sufficient since it separates two WRITEs, and for C 105 * an RMB is sufficient since it separates two READs. 106 * 107 * See perf_output_begin(). 108 */ 109 smp_wmb(); /* B, matches C */ 110 WRITE_ONCE(rb->user_page->data_head, head); 111 112 /* 113 * We must publish the head before decrementing the nest count, 114 * otherwise an IRQ/NMI can publish a more recent head value and our 115 * write will (temporarily) publish a stale value. 116 */ 117 barrier(); 118 WRITE_ONCE(rb->nest, 0); 119 120 /* 121 * Ensure we decrement @rb->nest before we validate the @rb->head. 122 * Otherwise we cannot be sure we caught the 'last' nested update. 123 */ 124 barrier(); 125 if (unlikely(head != local_read(&rb->head))) { 126 WRITE_ONCE(rb->nest, 1); 127 goto again; 128 } 129 130 if (handle->wakeup != local_read(&rb->wakeup)) 131 perf_output_wakeup(handle); 132 133 out: 134 preempt_enable(); 135 } 136 137 static __always_inline bool 138 ring_buffer_has_space(unsigned long head, unsigned long tail, 139 unsigned long data_size, unsigned int size, 140 bool backward) 141 { 142 if (!backward) 143 return CIRC_SPACE(head, tail, data_size) >= size; 144 else 145 return CIRC_SPACE(tail, head, data_size) >= size; 146 } 147 148 static __always_inline int 149 __perf_output_begin(struct perf_output_handle *handle, 150 struct perf_sample_data *data, 151 struct perf_event *event, unsigned int size, 152 bool backward) 153 { 154 struct perf_buffer *rb; 155 unsigned long tail, offset, head; 156 int have_lost, page_shift; 157 struct { 158 struct perf_event_header header; 159 u64 id; 160 u64 lost; 161 } lost_event; 162 163 rcu_read_lock(); 164 /* 165 * For inherited events we send all the output towards the parent. 166 */ 167 if (event->parent) 168 event = event->parent; 169 170 rb = rcu_dereference(event->rb); 171 if (unlikely(!rb)) 172 goto out; 173 174 if (unlikely(rb->paused)) { 175 if (rb->nr_pages) { 176 local_inc(&rb->lost); 177 atomic64_inc(&event->lost_samples); 178 } 179 goto out; 180 } 181 182 handle->rb = rb; 183 handle->event = event; 184 185 have_lost = local_read(&rb->lost); 186 if (unlikely(have_lost)) { 187 size += sizeof(lost_event); 188 if (event->attr.sample_id_all) 189 size += event->id_header_size; 190 } 191 192 perf_output_get_handle(handle); 193 194 offset = local_read(&rb->head); 195 do { 196 head = offset; 197 tail = READ_ONCE(rb->user_page->data_tail); 198 if (!rb->overwrite) { 199 if (unlikely(!ring_buffer_has_space(head, tail, 200 perf_data_size(rb), 201 size, backward))) 202 goto fail; 203 } 204 205 /* 206 * The above forms a control dependency barrier separating the 207 * @tail load above from the data stores below. Since the @tail 208 * load is required to compute the branch to fail below. 209 * 210 * A, matches D; the full memory barrier userspace SHOULD issue 211 * after reading the data and before storing the new tail 212 * position. 213 * 214 * See perf_output_put_handle(). 215 */ 216 217 if (!backward) 218 head += size; 219 else 220 head -= size; 221 } while (!local_try_cmpxchg(&rb->head, &offset, head)); 222 223 if (backward) { 224 offset = head; 225 head = (u64)(-head); 226 } 227 228 /* 229 * We rely on the implied barrier() by local_cmpxchg() to ensure 230 * none of the data stores below can be lifted up by the compiler. 231 */ 232 233 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 234 local_add(rb->watermark, &rb->wakeup); 235 236 page_shift = PAGE_SHIFT + page_order(rb); 237 238 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 239 offset &= (1UL << page_shift) - 1; 240 handle->addr = rb->data_pages[handle->page] + offset; 241 handle->size = (1UL << page_shift) - offset; 242 243 if (unlikely(have_lost)) { 244 lost_event.header.size = sizeof(lost_event); 245 lost_event.header.type = PERF_RECORD_LOST; 246 lost_event.header.misc = 0; 247 lost_event.id = event->id; 248 lost_event.lost = local_xchg(&rb->lost, 0); 249 250 /* XXX mostly redundant; @data is already fully initializes */ 251 perf_event_header__init_id(&lost_event.header, data, event); 252 perf_output_put(handle, lost_event); 253 perf_event__output_id_sample(event, handle, data); 254 } 255 256 return 0; 257 258 fail: 259 local_inc(&rb->lost); 260 atomic64_inc(&event->lost_samples); 261 perf_output_put_handle(handle); 262 out: 263 rcu_read_unlock(); 264 265 return -ENOSPC; 266 } 267 268 int perf_output_begin_forward(struct perf_output_handle *handle, 269 struct perf_sample_data *data, 270 struct perf_event *event, unsigned int size) 271 { 272 return __perf_output_begin(handle, data, event, size, false); 273 } 274 275 int perf_output_begin_backward(struct perf_output_handle *handle, 276 struct perf_sample_data *data, 277 struct perf_event *event, unsigned int size) 278 { 279 return __perf_output_begin(handle, data, event, size, true); 280 } 281 282 int perf_output_begin(struct perf_output_handle *handle, 283 struct perf_sample_data *data, 284 struct perf_event *event, unsigned int size) 285 { 286 287 return __perf_output_begin(handle, data, event, size, 288 unlikely(is_write_backward(event))); 289 } 290 291 unsigned int perf_output_copy(struct perf_output_handle *handle, 292 const void *buf, unsigned int len) 293 { 294 return __output_copy(handle, buf, len); 295 } 296 297 unsigned int perf_output_skip(struct perf_output_handle *handle, 298 unsigned int len) 299 { 300 return __output_skip(handle, NULL, len); 301 } 302 303 void perf_output_end(struct perf_output_handle *handle) 304 { 305 perf_output_put_handle(handle); 306 rcu_read_unlock(); 307 } 308 309 static void 310 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags) 311 { 312 long max_size = perf_data_size(rb); 313 314 if (watermark) 315 rb->watermark = min(max_size, watermark); 316 317 if (!rb->watermark) 318 rb->watermark = max_size / 2; 319 320 if (flags & RING_BUFFER_WRITABLE) 321 rb->overwrite = 0; 322 else 323 rb->overwrite = 1; 324 325 refcount_set(&rb->refcount, 1); 326 327 INIT_LIST_HEAD(&rb->event_list); 328 spin_lock_init(&rb->event_lock); 329 330 /* 331 * perf_output_begin() only checks rb->paused, therefore 332 * rb->paused must be true if we have no pages for output. 333 */ 334 if (!rb->nr_pages) 335 rb->paused = 1; 336 337 mutex_init(&rb->aux_mutex); 338 } 339 340 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags) 341 { 342 /* 343 * OVERWRITE is determined by perf_aux_output_end() and can't 344 * be passed in directly. 345 */ 346 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE)) 347 return; 348 349 handle->aux_flags |= flags; 350 } 351 EXPORT_SYMBOL_GPL(perf_aux_output_flag); 352 353 /* 354 * This is called before hardware starts writing to the AUX area to 355 * obtain an output handle and make sure there's room in the buffer. 356 * When the capture completes, call perf_aux_output_end() to commit 357 * the recorded data to the buffer. 358 * 359 * The ordering is similar to that of perf_output_{begin,end}, with 360 * the exception of (B), which should be taken care of by the pmu 361 * driver, since ordering rules will differ depending on hardware. 362 * 363 * Call this from pmu::start(); see the comment in perf_aux_output_end() 364 * about its use in pmu callbacks. Both can also be called from the PMI 365 * handler if needed. 366 */ 367 void *perf_aux_output_begin(struct perf_output_handle *handle, 368 struct perf_event *event) 369 { 370 struct perf_event *output_event = event; 371 unsigned long aux_head, aux_tail; 372 struct perf_buffer *rb; 373 unsigned int nest; 374 375 if (output_event->parent) 376 output_event = output_event->parent; 377 378 /* 379 * Since this will typically be open across pmu::add/pmu::del, we 380 * grab ring_buffer's refcount instead of holding rcu read lock 381 * to make sure it doesn't disappear under us. 382 */ 383 rb = ring_buffer_get(output_event); 384 if (!rb) 385 return NULL; 386 387 if (!rb_has_aux(rb)) 388 goto err; 389 390 /* 391 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(), 392 * about to get freed, so we leave immediately. 393 * 394 * Checking rb::aux_mmap_count and rb::refcount has to be done in 395 * the same order, see perf_mmap_close. Otherwise we end up freeing 396 * aux pages in this path, which is a bug, because in_atomic(). 397 */ 398 if (!atomic_read(&rb->aux_mmap_count)) 399 goto err; 400 401 if (!refcount_inc_not_zero(&rb->aux_refcount)) 402 goto err; 403 404 nest = READ_ONCE(rb->aux_nest); 405 /* 406 * Nesting is not supported for AUX area, make sure nested 407 * writers are caught early 408 */ 409 if (WARN_ON_ONCE(nest)) 410 goto err_put; 411 412 WRITE_ONCE(rb->aux_nest, nest + 1); 413 414 aux_head = rb->aux_head; 415 416 handle->rb = rb; 417 handle->event = event; 418 handle->head = aux_head; 419 handle->size = 0; 420 handle->aux_flags = 0; 421 422 /* 423 * In overwrite mode, AUX data stores do not depend on aux_tail, 424 * therefore (A) control dependency barrier does not exist. The 425 * (B) <-> (C) ordering is still observed by the pmu driver. 426 */ 427 if (!rb->aux_overwrite) { 428 aux_tail = READ_ONCE(rb->user_page->aux_tail); 429 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 430 if (aux_head - aux_tail < perf_aux_size(rb)) 431 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 432 433 /* 434 * handle->size computation depends on aux_tail load; this forms a 435 * control dependency barrier separating aux_tail load from aux data 436 * store that will be enabled on successful return 437 */ 438 if (!handle->size) { /* A, matches D */ 439 event->pending_disable = smp_processor_id(); 440 perf_output_wakeup(handle); 441 WRITE_ONCE(rb->aux_nest, 0); 442 goto err_put; 443 } 444 } 445 446 return handle->rb->aux_priv; 447 448 err_put: 449 /* can't be last */ 450 rb_free_aux(rb); 451 452 err: 453 ring_buffer_put(rb); 454 handle->event = NULL; 455 456 return NULL; 457 } 458 EXPORT_SYMBOL_GPL(perf_aux_output_begin); 459 460 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb) 461 { 462 if (rb->aux_overwrite) 463 return false; 464 465 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) { 466 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark); 467 return true; 468 } 469 470 return false; 471 } 472 473 /* 474 * Commit the data written by hardware into the ring buffer by adjusting 475 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 476 * pmu driver's responsibility to observe ordering rules of the hardware, 477 * so that all the data is externally visible before this is called. 478 * 479 * Note: this has to be called from pmu::stop() callback, as the assumption 480 * of the AUX buffer management code is that after pmu::stop(), the AUX 481 * transaction must be stopped and therefore drop the AUX reference count. 482 */ 483 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 484 { 485 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED); 486 struct perf_buffer *rb = handle->rb; 487 unsigned long aux_head; 488 489 /* in overwrite mode, driver provides aux_head via handle */ 490 if (rb->aux_overwrite) { 491 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE; 492 493 aux_head = handle->head; 494 rb->aux_head = aux_head; 495 } else { 496 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE; 497 498 aux_head = rb->aux_head; 499 rb->aux_head += size; 500 } 501 502 /* 503 * Only send RECORD_AUX if we have something useful to communicate 504 * 505 * Note: the OVERWRITE records by themselves are not considered 506 * useful, as they don't communicate any *new* information, 507 * aside from the short-lived offset, that becomes history at 508 * the next event sched-in and therefore isn't useful. 509 * The userspace that needs to copy out AUX data in overwrite 510 * mode should know to use user_page::aux_head for the actual 511 * offset. So, from now on we don't output AUX records that 512 * have *only* OVERWRITE flag set. 513 */ 514 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE)) 515 perf_event_aux_event(handle->event, aux_head, size, 516 handle->aux_flags); 517 518 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); 519 if (rb_need_aux_wakeup(rb)) 520 wakeup = true; 521 522 if (wakeup) { 523 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED) 524 handle->event->pending_disable = smp_processor_id(); 525 perf_output_wakeup(handle); 526 } 527 528 handle->event = NULL; 529 530 WRITE_ONCE(rb->aux_nest, 0); 531 /* can't be last */ 532 rb_free_aux(rb); 533 ring_buffer_put(rb); 534 } 535 EXPORT_SYMBOL_GPL(perf_aux_output_end); 536 537 /* 538 * Skip over a given number of bytes in the AUX buffer, due to, for example, 539 * hardware's alignment constraints. 540 */ 541 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 542 { 543 struct perf_buffer *rb = handle->rb; 544 545 if (size > handle->size) 546 return -ENOSPC; 547 548 rb->aux_head += size; 549 550 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); 551 if (rb_need_aux_wakeup(rb)) { 552 perf_output_wakeup(handle); 553 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 554 } 555 556 handle->head = rb->aux_head; 557 handle->size -= size; 558 559 return 0; 560 } 561 EXPORT_SYMBOL_GPL(perf_aux_output_skip); 562 563 void *perf_get_aux(struct perf_output_handle *handle) 564 { 565 /* this is only valid between perf_aux_output_begin and *_end */ 566 if (!handle->event) 567 return NULL; 568 569 return handle->rb->aux_priv; 570 } 571 EXPORT_SYMBOL_GPL(perf_get_aux); 572 573 /* 574 * Copy out AUX data from an AUX handle. 575 */ 576 long perf_output_copy_aux(struct perf_output_handle *aux_handle, 577 struct perf_output_handle *handle, 578 unsigned long from, unsigned long to) 579 { 580 struct perf_buffer *rb = aux_handle->rb; 581 unsigned long tocopy, remainder, len = 0; 582 void *addr; 583 584 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 585 to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 586 587 do { 588 tocopy = PAGE_SIZE - offset_in_page(from); 589 if (to > from) 590 tocopy = min(tocopy, to - from); 591 if (!tocopy) 592 break; 593 594 addr = rb->aux_pages[from >> PAGE_SHIFT]; 595 addr += offset_in_page(from); 596 597 remainder = perf_output_copy(handle, addr, tocopy); 598 if (remainder) 599 return -EFAULT; 600 601 len += tocopy; 602 from += tocopy; 603 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 604 } while (to != from); 605 606 return len; 607 } 608 609 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 610 611 static struct page *rb_alloc_aux_page(int node, int order) 612 { 613 struct page *page; 614 615 if (order > MAX_ORDER) 616 order = MAX_ORDER; 617 618 do { 619 page = alloc_pages_node(node, PERF_AUX_GFP, order); 620 } while (!page && order--); 621 622 if (page && order) { 623 /* 624 * Communicate the allocation size to the driver: 625 * if we managed to secure a high-order allocation, 626 * set its first page's private to this order; 627 * !PagePrivate(page) means it's just a normal page. 628 */ 629 split_page(page, order); 630 SetPagePrivate(page); 631 set_page_private(page, order); 632 } 633 634 return page; 635 } 636 637 static void rb_free_aux_page(struct perf_buffer *rb, int idx) 638 { 639 struct page *page = virt_to_page(rb->aux_pages[idx]); 640 641 ClearPagePrivate(page); 642 page->mapping = NULL; 643 __free_page(page); 644 } 645 646 static void __rb_free_aux(struct perf_buffer *rb) 647 { 648 int pg; 649 650 /* 651 * Should never happen, the last reference should be dropped from 652 * perf_mmap_close() path, which first stops aux transactions (which 653 * in turn are the atomic holders of aux_refcount) and then does the 654 * last rb_free_aux(). 655 */ 656 WARN_ON_ONCE(in_atomic()); 657 658 if (rb->aux_priv) { 659 rb->free_aux(rb->aux_priv); 660 rb->free_aux = NULL; 661 rb->aux_priv = NULL; 662 } 663 664 if (rb->aux_nr_pages) { 665 for (pg = 0; pg < rb->aux_nr_pages; pg++) 666 rb_free_aux_page(rb, pg); 667 668 kfree(rb->aux_pages); 669 rb->aux_nr_pages = 0; 670 } 671 } 672 673 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, 674 pgoff_t pgoff, int nr_pages, long watermark, int flags) 675 { 676 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 677 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 678 int ret = -ENOMEM, max_order; 679 680 if (!has_aux(event)) 681 return -EOPNOTSUPP; 682 683 if (!overwrite) { 684 /* 685 * Watermark defaults to half the buffer, and so does the 686 * max_order, to aid PMU drivers in double buffering. 687 */ 688 if (!watermark) 689 watermark = min_t(unsigned long, 690 U32_MAX, 691 (unsigned long)nr_pages << (PAGE_SHIFT - 1)); 692 693 /* 694 * Use aux_watermark as the basis for chunking to 695 * help PMU drivers honor the watermark. 696 */ 697 max_order = get_order(watermark); 698 } else { 699 /* 700 * We need to start with the max_order that fits in nr_pages, 701 * not the other way around, hence ilog2() and not get_order. 702 */ 703 max_order = ilog2(nr_pages); 704 watermark = 0; 705 } 706 707 /* 708 * kcalloc_node() is unable to allocate buffer if the size is larger 709 * than: PAGE_SIZE << MAX_ORDER; directly bail out in this case. 710 */ 711 if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_ORDER) 712 return -ENOMEM; 713 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL, 714 node); 715 if (!rb->aux_pages) 716 return -ENOMEM; 717 718 rb->free_aux = event->pmu->free_aux; 719 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 720 struct page *page; 721 int last, order; 722 723 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 724 page = rb_alloc_aux_page(node, order); 725 if (!page) 726 goto out; 727 728 for (last = rb->aux_nr_pages + (1 << page_private(page)); 729 last > rb->aux_nr_pages; rb->aux_nr_pages++) 730 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 731 } 732 733 /* 734 * In overwrite mode, PMUs that don't support SG may not handle more 735 * than one contiguous allocation, since they rely on PMI to do double 736 * buffering. In this case, the entire buffer has to be one contiguous 737 * chunk. 738 */ 739 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 740 overwrite) { 741 struct page *page = virt_to_page(rb->aux_pages[0]); 742 743 if (page_private(page) != max_order) 744 goto out; 745 } 746 747 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages, 748 overwrite); 749 if (!rb->aux_priv) 750 goto out; 751 752 ret = 0; 753 754 /* 755 * aux_pages (and pmu driver's private data, aux_priv) will be 756 * referenced in both producer's and consumer's contexts, thus 757 * we keep a refcount here to make sure either of the two can 758 * reference them safely. 759 */ 760 refcount_set(&rb->aux_refcount, 1); 761 762 rb->aux_overwrite = overwrite; 763 rb->aux_watermark = watermark; 764 765 out: 766 if (!ret) 767 rb->aux_pgoff = pgoff; 768 else 769 __rb_free_aux(rb); 770 771 return ret; 772 } 773 774 void rb_free_aux(struct perf_buffer *rb) 775 { 776 if (refcount_dec_and_test(&rb->aux_refcount)) 777 __rb_free_aux(rb); 778 } 779 780 #ifndef CONFIG_PERF_USE_VMALLOC 781 782 /* 783 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 784 */ 785 786 static struct page * 787 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 788 { 789 if (pgoff > rb->nr_pages) 790 return NULL; 791 792 if (pgoff == 0) 793 return virt_to_page(rb->user_page); 794 795 return virt_to_page(rb->data_pages[pgoff - 1]); 796 } 797 798 static void *perf_mmap_alloc_page(int cpu) 799 { 800 struct page *page; 801 int node; 802 803 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 804 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 805 if (!page) 806 return NULL; 807 808 return page_address(page); 809 } 810 811 static void perf_mmap_free_page(void *addr) 812 { 813 struct page *page = virt_to_page(addr); 814 815 page->mapping = NULL; 816 __free_page(page); 817 } 818 819 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 820 { 821 struct perf_buffer *rb; 822 unsigned long size; 823 int i, node; 824 825 size = sizeof(struct perf_buffer); 826 size += nr_pages * sizeof(void *); 827 828 if (order_base_2(size) > PAGE_SHIFT+MAX_ORDER) 829 goto fail; 830 831 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 832 rb = kzalloc_node(size, GFP_KERNEL, node); 833 if (!rb) 834 goto fail; 835 836 rb->user_page = perf_mmap_alloc_page(cpu); 837 if (!rb->user_page) 838 goto fail_user_page; 839 840 for (i = 0; i < nr_pages; i++) { 841 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 842 if (!rb->data_pages[i]) 843 goto fail_data_pages; 844 } 845 846 rb->nr_pages = nr_pages; 847 848 ring_buffer_init(rb, watermark, flags); 849 850 return rb; 851 852 fail_data_pages: 853 for (i--; i >= 0; i--) 854 perf_mmap_free_page(rb->data_pages[i]); 855 856 perf_mmap_free_page(rb->user_page); 857 858 fail_user_page: 859 kfree(rb); 860 861 fail: 862 return NULL; 863 } 864 865 void rb_free(struct perf_buffer *rb) 866 { 867 int i; 868 869 perf_mmap_free_page(rb->user_page); 870 for (i = 0; i < rb->nr_pages; i++) 871 perf_mmap_free_page(rb->data_pages[i]); 872 kfree(rb); 873 } 874 875 #else 876 static struct page * 877 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 878 { 879 /* The '>' counts in the user page. */ 880 if (pgoff > data_page_nr(rb)) 881 return NULL; 882 883 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 884 } 885 886 static void perf_mmap_unmark_page(void *addr) 887 { 888 struct page *page = vmalloc_to_page(addr); 889 890 page->mapping = NULL; 891 } 892 893 static void rb_free_work(struct work_struct *work) 894 { 895 struct perf_buffer *rb; 896 void *base; 897 int i, nr; 898 899 rb = container_of(work, struct perf_buffer, work); 900 nr = data_page_nr(rb); 901 902 base = rb->user_page; 903 /* The '<=' counts in the user page. */ 904 for (i = 0; i <= nr; i++) 905 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 906 907 vfree(base); 908 kfree(rb); 909 } 910 911 void rb_free(struct perf_buffer *rb) 912 { 913 schedule_work(&rb->work); 914 } 915 916 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 917 { 918 struct perf_buffer *rb; 919 unsigned long size; 920 void *all_buf; 921 int node; 922 923 size = sizeof(struct perf_buffer); 924 size += sizeof(void *); 925 926 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 927 rb = kzalloc_node(size, GFP_KERNEL, node); 928 if (!rb) 929 goto fail; 930 931 INIT_WORK(&rb->work, rb_free_work); 932 933 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 934 if (!all_buf) 935 goto fail_all_buf; 936 937 rb->user_page = all_buf; 938 rb->data_pages[0] = all_buf + PAGE_SIZE; 939 if (nr_pages) { 940 rb->nr_pages = 1; 941 rb->page_order = ilog2(nr_pages); 942 } 943 944 ring_buffer_init(rb, watermark, flags); 945 946 return rb; 947 948 fail_all_buf: 949 kfree(rb); 950 951 fail: 952 return NULL; 953 } 954 955 #endif 956 957 struct page * 958 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 959 { 960 if (rb->aux_nr_pages) { 961 /* above AUX space */ 962 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 963 return NULL; 964 965 /* AUX space */ 966 if (pgoff >= rb->aux_pgoff) { 967 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages); 968 return virt_to_page(rb->aux_pages[aux_pgoff]); 969 } 970 } 971 972 return __perf_mmap_to_page(rb, pgoff); 973 } 974