1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events ring-buffer code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/perf_event.h> 12 #include <linux/vmalloc.h> 13 #include <linux/slab.h> 14 #include <linux/circ_buf.h> 15 #include <linux/poll.h> 16 #include <linux/nospec.h> 17 18 #include "internal.h" 19 20 static void perf_output_wakeup(struct perf_output_handle *handle) 21 { 22 atomic_set(&handle->rb->poll, EPOLLIN); 23 24 handle->event->pending_wakeup = 1; 25 irq_work_queue(&handle->event->pending); 26 } 27 28 /* 29 * We need to ensure a later event_id doesn't publish a head when a former 30 * event isn't done writing. However since we need to deal with NMIs we 31 * cannot fully serialize things. 32 * 33 * We only publish the head (and generate a wakeup) when the outer-most 34 * event completes. 35 */ 36 static void perf_output_get_handle(struct perf_output_handle *handle) 37 { 38 struct ring_buffer *rb = handle->rb; 39 40 preempt_disable(); 41 local_inc(&rb->nest); 42 handle->wakeup = local_read(&rb->wakeup); 43 } 44 45 static void perf_output_put_handle(struct perf_output_handle *handle) 46 { 47 struct ring_buffer *rb = handle->rb; 48 unsigned long head; 49 50 again: 51 head = local_read(&rb->head); 52 53 /* 54 * IRQ/NMI can happen here, which means we can miss a head update. 55 */ 56 57 if (!local_dec_and_test(&rb->nest)) 58 goto out; 59 60 /* 61 * Since the mmap() consumer (userspace) can run on a different CPU: 62 * 63 * kernel user 64 * 65 * if (LOAD ->data_tail) { LOAD ->data_head 66 * (A) smp_rmb() (C) 67 * STORE $data LOAD $data 68 * smp_wmb() (B) smp_mb() (D) 69 * STORE ->data_head STORE ->data_tail 70 * } 71 * 72 * Where A pairs with D, and B pairs with C. 73 * 74 * In our case (A) is a control dependency that separates the load of 75 * the ->data_tail and the stores of $data. In case ->data_tail 76 * indicates there is no room in the buffer to store $data we do not. 77 * 78 * D needs to be a full barrier since it separates the data READ 79 * from the tail WRITE. 80 * 81 * For B a WMB is sufficient since it separates two WRITEs, and for C 82 * an RMB is sufficient since it separates two READs. 83 * 84 * See perf_output_begin(). 85 */ 86 smp_wmb(); /* B, matches C */ 87 rb->user_page->data_head = head; 88 89 /* 90 * Now check if we missed an update -- rely on previous implied 91 * compiler barriers to force a re-read. 92 */ 93 if (unlikely(head != local_read(&rb->head))) { 94 local_inc(&rb->nest); 95 goto again; 96 } 97 98 if (handle->wakeup != local_read(&rb->wakeup)) 99 perf_output_wakeup(handle); 100 101 out: 102 preempt_enable(); 103 } 104 105 static __always_inline bool 106 ring_buffer_has_space(unsigned long head, unsigned long tail, 107 unsigned long data_size, unsigned int size, 108 bool backward) 109 { 110 if (!backward) 111 return CIRC_SPACE(head, tail, data_size) >= size; 112 else 113 return CIRC_SPACE(tail, head, data_size) >= size; 114 } 115 116 static __always_inline int 117 __perf_output_begin(struct perf_output_handle *handle, 118 struct perf_event *event, unsigned int size, 119 bool backward) 120 { 121 struct ring_buffer *rb; 122 unsigned long tail, offset, head; 123 int have_lost, page_shift; 124 struct { 125 struct perf_event_header header; 126 u64 id; 127 u64 lost; 128 } lost_event; 129 130 rcu_read_lock(); 131 /* 132 * For inherited events we send all the output towards the parent. 133 */ 134 if (event->parent) 135 event = event->parent; 136 137 rb = rcu_dereference(event->rb); 138 if (unlikely(!rb)) 139 goto out; 140 141 if (unlikely(rb->paused)) { 142 if (rb->nr_pages) 143 local_inc(&rb->lost); 144 goto out; 145 } 146 147 handle->rb = rb; 148 handle->event = event; 149 150 have_lost = local_read(&rb->lost); 151 if (unlikely(have_lost)) { 152 size += sizeof(lost_event); 153 if (event->attr.sample_id_all) 154 size += event->id_header_size; 155 } 156 157 perf_output_get_handle(handle); 158 159 do { 160 tail = READ_ONCE(rb->user_page->data_tail); 161 offset = head = local_read(&rb->head); 162 if (!rb->overwrite) { 163 if (unlikely(!ring_buffer_has_space(head, tail, 164 perf_data_size(rb), 165 size, backward))) 166 goto fail; 167 } 168 169 /* 170 * The above forms a control dependency barrier separating the 171 * @tail load above from the data stores below. Since the @tail 172 * load is required to compute the branch to fail below. 173 * 174 * A, matches D; the full memory barrier userspace SHOULD issue 175 * after reading the data and before storing the new tail 176 * position. 177 * 178 * See perf_output_put_handle(). 179 */ 180 181 if (!backward) 182 head += size; 183 else 184 head -= size; 185 } while (local_cmpxchg(&rb->head, offset, head) != offset); 186 187 if (backward) { 188 offset = head; 189 head = (u64)(-head); 190 } 191 192 /* 193 * We rely on the implied barrier() by local_cmpxchg() to ensure 194 * none of the data stores below can be lifted up by the compiler. 195 */ 196 197 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 198 local_add(rb->watermark, &rb->wakeup); 199 200 page_shift = PAGE_SHIFT + page_order(rb); 201 202 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 203 offset &= (1UL << page_shift) - 1; 204 handle->addr = rb->data_pages[handle->page] + offset; 205 handle->size = (1UL << page_shift) - offset; 206 207 if (unlikely(have_lost)) { 208 struct perf_sample_data sample_data; 209 210 lost_event.header.size = sizeof(lost_event); 211 lost_event.header.type = PERF_RECORD_LOST; 212 lost_event.header.misc = 0; 213 lost_event.id = event->id; 214 lost_event.lost = local_xchg(&rb->lost, 0); 215 216 perf_event_header__init_id(&lost_event.header, 217 &sample_data, event); 218 perf_output_put(handle, lost_event); 219 perf_event__output_id_sample(event, handle, &sample_data); 220 } 221 222 return 0; 223 224 fail: 225 local_inc(&rb->lost); 226 perf_output_put_handle(handle); 227 out: 228 rcu_read_unlock(); 229 230 return -ENOSPC; 231 } 232 233 int perf_output_begin_forward(struct perf_output_handle *handle, 234 struct perf_event *event, unsigned int size) 235 { 236 return __perf_output_begin(handle, event, size, false); 237 } 238 239 int perf_output_begin_backward(struct perf_output_handle *handle, 240 struct perf_event *event, unsigned int size) 241 { 242 return __perf_output_begin(handle, event, size, true); 243 } 244 245 int perf_output_begin(struct perf_output_handle *handle, 246 struct perf_event *event, unsigned int size) 247 { 248 249 return __perf_output_begin(handle, event, size, 250 unlikely(is_write_backward(event))); 251 } 252 253 unsigned int perf_output_copy(struct perf_output_handle *handle, 254 const void *buf, unsigned int len) 255 { 256 return __output_copy(handle, buf, len); 257 } 258 259 unsigned int perf_output_skip(struct perf_output_handle *handle, 260 unsigned int len) 261 { 262 return __output_skip(handle, NULL, len); 263 } 264 265 void perf_output_end(struct perf_output_handle *handle) 266 { 267 perf_output_put_handle(handle); 268 rcu_read_unlock(); 269 } 270 271 static void 272 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) 273 { 274 long max_size = perf_data_size(rb); 275 276 if (watermark) 277 rb->watermark = min(max_size, watermark); 278 279 if (!rb->watermark) 280 rb->watermark = max_size / 2; 281 282 if (flags & RING_BUFFER_WRITABLE) 283 rb->overwrite = 0; 284 else 285 rb->overwrite = 1; 286 287 refcount_set(&rb->refcount, 1); 288 289 INIT_LIST_HEAD(&rb->event_list); 290 spin_lock_init(&rb->event_lock); 291 292 /* 293 * perf_output_begin() only checks rb->paused, therefore 294 * rb->paused must be true if we have no pages for output. 295 */ 296 if (!rb->nr_pages) 297 rb->paused = 1; 298 } 299 300 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags) 301 { 302 /* 303 * OVERWRITE is determined by perf_aux_output_end() and can't 304 * be passed in directly. 305 */ 306 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE)) 307 return; 308 309 handle->aux_flags |= flags; 310 } 311 EXPORT_SYMBOL_GPL(perf_aux_output_flag); 312 313 /* 314 * This is called before hardware starts writing to the AUX area to 315 * obtain an output handle and make sure there's room in the buffer. 316 * When the capture completes, call perf_aux_output_end() to commit 317 * the recorded data to the buffer. 318 * 319 * The ordering is similar to that of perf_output_{begin,end}, with 320 * the exception of (B), which should be taken care of by the pmu 321 * driver, since ordering rules will differ depending on hardware. 322 * 323 * Call this from pmu::start(); see the comment in perf_aux_output_end() 324 * about its use in pmu callbacks. Both can also be called from the PMI 325 * handler if needed. 326 */ 327 void *perf_aux_output_begin(struct perf_output_handle *handle, 328 struct perf_event *event) 329 { 330 struct perf_event *output_event = event; 331 unsigned long aux_head, aux_tail; 332 struct ring_buffer *rb; 333 334 if (output_event->parent) 335 output_event = output_event->parent; 336 337 /* 338 * Since this will typically be open across pmu::add/pmu::del, we 339 * grab ring_buffer's refcount instead of holding rcu read lock 340 * to make sure it doesn't disappear under us. 341 */ 342 rb = ring_buffer_get(output_event); 343 if (!rb) 344 return NULL; 345 346 if (!rb_has_aux(rb)) 347 goto err; 348 349 /* 350 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(), 351 * about to get freed, so we leave immediately. 352 * 353 * Checking rb::aux_mmap_count and rb::refcount has to be done in 354 * the same order, see perf_mmap_close. Otherwise we end up freeing 355 * aux pages in this path, which is a bug, because in_atomic(). 356 */ 357 if (!atomic_read(&rb->aux_mmap_count)) 358 goto err; 359 360 if (!refcount_inc_not_zero(&rb->aux_refcount)) 361 goto err; 362 363 /* 364 * Nesting is not supported for AUX area, make sure nested 365 * writers are caught early 366 */ 367 if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1))) 368 goto err_put; 369 370 aux_head = rb->aux_head; 371 372 handle->rb = rb; 373 handle->event = event; 374 handle->head = aux_head; 375 handle->size = 0; 376 handle->aux_flags = 0; 377 378 /* 379 * In overwrite mode, AUX data stores do not depend on aux_tail, 380 * therefore (A) control dependency barrier does not exist. The 381 * (B) <-> (C) ordering is still observed by the pmu driver. 382 */ 383 if (!rb->aux_overwrite) { 384 aux_tail = READ_ONCE(rb->user_page->aux_tail); 385 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 386 if (aux_head - aux_tail < perf_aux_size(rb)) 387 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 388 389 /* 390 * handle->size computation depends on aux_tail load; this forms a 391 * control dependency barrier separating aux_tail load from aux data 392 * store that will be enabled on successful return 393 */ 394 if (!handle->size) { /* A, matches D */ 395 event->pending_disable = smp_processor_id(); 396 perf_output_wakeup(handle); 397 local_set(&rb->aux_nest, 0); 398 goto err_put; 399 } 400 } 401 402 return handle->rb->aux_priv; 403 404 err_put: 405 /* can't be last */ 406 rb_free_aux(rb); 407 408 err: 409 ring_buffer_put(rb); 410 handle->event = NULL; 411 412 return NULL; 413 } 414 EXPORT_SYMBOL_GPL(perf_aux_output_begin); 415 416 static __always_inline bool rb_need_aux_wakeup(struct ring_buffer *rb) 417 { 418 if (rb->aux_overwrite) 419 return false; 420 421 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) { 422 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark); 423 return true; 424 } 425 426 return false; 427 } 428 429 /* 430 * Commit the data written by hardware into the ring buffer by adjusting 431 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 432 * pmu driver's responsibility to observe ordering rules of the hardware, 433 * so that all the data is externally visible before this is called. 434 * 435 * Note: this has to be called from pmu::stop() callback, as the assumption 436 * of the AUX buffer management code is that after pmu::stop(), the AUX 437 * transaction must be stopped and therefore drop the AUX reference count. 438 */ 439 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 440 { 441 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED); 442 struct ring_buffer *rb = handle->rb; 443 unsigned long aux_head; 444 445 /* in overwrite mode, driver provides aux_head via handle */ 446 if (rb->aux_overwrite) { 447 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE; 448 449 aux_head = handle->head; 450 rb->aux_head = aux_head; 451 } else { 452 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE; 453 454 aux_head = rb->aux_head; 455 rb->aux_head += size; 456 } 457 458 /* 459 * Only send RECORD_AUX if we have something useful to communicate 460 * 461 * Note: the OVERWRITE records by themselves are not considered 462 * useful, as they don't communicate any *new* information, 463 * aside from the short-lived offset, that becomes history at 464 * the next event sched-in and therefore isn't useful. 465 * The userspace that needs to copy out AUX data in overwrite 466 * mode should know to use user_page::aux_head for the actual 467 * offset. So, from now on we don't output AUX records that 468 * have *only* OVERWRITE flag set. 469 */ 470 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE)) 471 perf_event_aux_event(handle->event, aux_head, size, 472 handle->aux_flags); 473 474 rb->user_page->aux_head = rb->aux_head; 475 if (rb_need_aux_wakeup(rb)) 476 wakeup = true; 477 478 if (wakeup) { 479 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED) 480 handle->event->pending_disable = smp_processor_id(); 481 perf_output_wakeup(handle); 482 } 483 484 handle->event = NULL; 485 486 local_set(&rb->aux_nest, 0); 487 /* can't be last */ 488 rb_free_aux(rb); 489 ring_buffer_put(rb); 490 } 491 EXPORT_SYMBOL_GPL(perf_aux_output_end); 492 493 /* 494 * Skip over a given number of bytes in the AUX buffer, due to, for example, 495 * hardware's alignment constraints. 496 */ 497 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 498 { 499 struct ring_buffer *rb = handle->rb; 500 501 if (size > handle->size) 502 return -ENOSPC; 503 504 rb->aux_head += size; 505 506 rb->user_page->aux_head = rb->aux_head; 507 if (rb_need_aux_wakeup(rb)) { 508 perf_output_wakeup(handle); 509 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 510 } 511 512 handle->head = rb->aux_head; 513 handle->size -= size; 514 515 return 0; 516 } 517 EXPORT_SYMBOL_GPL(perf_aux_output_skip); 518 519 void *perf_get_aux(struct perf_output_handle *handle) 520 { 521 /* this is only valid between perf_aux_output_begin and *_end */ 522 if (!handle->event) 523 return NULL; 524 525 return handle->rb->aux_priv; 526 } 527 EXPORT_SYMBOL_GPL(perf_get_aux); 528 529 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 530 531 static struct page *rb_alloc_aux_page(int node, int order) 532 { 533 struct page *page; 534 535 if (order > MAX_ORDER) 536 order = MAX_ORDER; 537 538 do { 539 page = alloc_pages_node(node, PERF_AUX_GFP, order); 540 } while (!page && order--); 541 542 if (page && order) { 543 /* 544 * Communicate the allocation size to the driver: 545 * if we managed to secure a high-order allocation, 546 * set its first page's private to this order; 547 * !PagePrivate(page) means it's just a normal page. 548 */ 549 split_page(page, order); 550 SetPagePrivate(page); 551 set_page_private(page, order); 552 } 553 554 return page; 555 } 556 557 static void rb_free_aux_page(struct ring_buffer *rb, int idx) 558 { 559 struct page *page = virt_to_page(rb->aux_pages[idx]); 560 561 ClearPagePrivate(page); 562 page->mapping = NULL; 563 __free_page(page); 564 } 565 566 static void __rb_free_aux(struct ring_buffer *rb) 567 { 568 int pg; 569 570 /* 571 * Should never happen, the last reference should be dropped from 572 * perf_mmap_close() path, which first stops aux transactions (which 573 * in turn are the atomic holders of aux_refcount) and then does the 574 * last rb_free_aux(). 575 */ 576 WARN_ON_ONCE(in_atomic()); 577 578 if (rb->aux_priv) { 579 rb->free_aux(rb->aux_priv); 580 rb->free_aux = NULL; 581 rb->aux_priv = NULL; 582 } 583 584 if (rb->aux_nr_pages) { 585 for (pg = 0; pg < rb->aux_nr_pages; pg++) 586 rb_free_aux_page(rb, pg); 587 588 kfree(rb->aux_pages); 589 rb->aux_nr_pages = 0; 590 } 591 } 592 593 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event, 594 pgoff_t pgoff, int nr_pages, long watermark, int flags) 595 { 596 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 597 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 598 int ret = -ENOMEM, max_order; 599 600 if (!has_aux(event)) 601 return -EOPNOTSUPP; 602 603 /* 604 * We need to start with the max_order that fits in nr_pages, 605 * not the other way around, hence ilog2() and not get_order. 606 */ 607 max_order = ilog2(nr_pages); 608 609 /* 610 * PMU requests more than one contiguous chunks of memory 611 * for SW double buffering 612 */ 613 if (!overwrite) { 614 if (!max_order) 615 return -EINVAL; 616 617 max_order--; 618 } 619 620 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL, 621 node); 622 if (!rb->aux_pages) 623 return -ENOMEM; 624 625 rb->free_aux = event->pmu->free_aux; 626 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 627 struct page *page; 628 int last, order; 629 630 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 631 page = rb_alloc_aux_page(node, order); 632 if (!page) 633 goto out; 634 635 for (last = rb->aux_nr_pages + (1 << page_private(page)); 636 last > rb->aux_nr_pages; rb->aux_nr_pages++) 637 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 638 } 639 640 /* 641 * In overwrite mode, PMUs that don't support SG may not handle more 642 * than one contiguous allocation, since they rely on PMI to do double 643 * buffering. In this case, the entire buffer has to be one contiguous 644 * chunk. 645 */ 646 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 647 overwrite) { 648 struct page *page = virt_to_page(rb->aux_pages[0]); 649 650 if (page_private(page) != max_order) 651 goto out; 652 } 653 654 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages, 655 overwrite); 656 if (!rb->aux_priv) 657 goto out; 658 659 ret = 0; 660 661 /* 662 * aux_pages (and pmu driver's private data, aux_priv) will be 663 * referenced in both producer's and consumer's contexts, thus 664 * we keep a refcount here to make sure either of the two can 665 * reference them safely. 666 */ 667 refcount_set(&rb->aux_refcount, 1); 668 669 rb->aux_overwrite = overwrite; 670 rb->aux_watermark = watermark; 671 672 if (!rb->aux_watermark && !rb->aux_overwrite) 673 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1); 674 675 out: 676 if (!ret) 677 rb->aux_pgoff = pgoff; 678 else 679 __rb_free_aux(rb); 680 681 return ret; 682 } 683 684 void rb_free_aux(struct ring_buffer *rb) 685 { 686 if (refcount_dec_and_test(&rb->aux_refcount)) 687 __rb_free_aux(rb); 688 } 689 690 #ifndef CONFIG_PERF_USE_VMALLOC 691 692 /* 693 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 694 */ 695 696 static struct page * 697 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 698 { 699 if (pgoff > rb->nr_pages) 700 return NULL; 701 702 if (pgoff == 0) 703 return virt_to_page(rb->user_page); 704 705 return virt_to_page(rb->data_pages[pgoff - 1]); 706 } 707 708 static void *perf_mmap_alloc_page(int cpu) 709 { 710 struct page *page; 711 int node; 712 713 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 714 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 715 if (!page) 716 return NULL; 717 718 return page_address(page); 719 } 720 721 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 722 { 723 struct ring_buffer *rb; 724 unsigned long size; 725 int i; 726 727 size = sizeof(struct ring_buffer); 728 size += nr_pages * sizeof(void *); 729 730 if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER) 731 goto fail; 732 733 rb = kzalloc(size, GFP_KERNEL); 734 if (!rb) 735 goto fail; 736 737 rb->user_page = perf_mmap_alloc_page(cpu); 738 if (!rb->user_page) 739 goto fail_user_page; 740 741 for (i = 0; i < nr_pages; i++) { 742 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 743 if (!rb->data_pages[i]) 744 goto fail_data_pages; 745 } 746 747 rb->nr_pages = nr_pages; 748 749 ring_buffer_init(rb, watermark, flags); 750 751 return rb; 752 753 fail_data_pages: 754 for (i--; i >= 0; i--) 755 free_page((unsigned long)rb->data_pages[i]); 756 757 free_page((unsigned long)rb->user_page); 758 759 fail_user_page: 760 kfree(rb); 761 762 fail: 763 return NULL; 764 } 765 766 static void perf_mmap_free_page(unsigned long addr) 767 { 768 struct page *page = virt_to_page((void *)addr); 769 770 page->mapping = NULL; 771 __free_page(page); 772 } 773 774 void rb_free(struct ring_buffer *rb) 775 { 776 int i; 777 778 perf_mmap_free_page((unsigned long)rb->user_page); 779 for (i = 0; i < rb->nr_pages; i++) 780 perf_mmap_free_page((unsigned long)rb->data_pages[i]); 781 kfree(rb); 782 } 783 784 #else 785 static int data_page_nr(struct ring_buffer *rb) 786 { 787 return rb->nr_pages << page_order(rb); 788 } 789 790 static struct page * 791 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 792 { 793 /* The '>' counts in the user page. */ 794 if (pgoff > data_page_nr(rb)) 795 return NULL; 796 797 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 798 } 799 800 static void perf_mmap_unmark_page(void *addr) 801 { 802 struct page *page = vmalloc_to_page(addr); 803 804 page->mapping = NULL; 805 } 806 807 static void rb_free_work(struct work_struct *work) 808 { 809 struct ring_buffer *rb; 810 void *base; 811 int i, nr; 812 813 rb = container_of(work, struct ring_buffer, work); 814 nr = data_page_nr(rb); 815 816 base = rb->user_page; 817 /* The '<=' counts in the user page. */ 818 for (i = 0; i <= nr; i++) 819 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 820 821 vfree(base); 822 kfree(rb); 823 } 824 825 void rb_free(struct ring_buffer *rb) 826 { 827 schedule_work(&rb->work); 828 } 829 830 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 831 { 832 struct ring_buffer *rb; 833 unsigned long size; 834 void *all_buf; 835 836 size = sizeof(struct ring_buffer); 837 size += sizeof(void *); 838 839 rb = kzalloc(size, GFP_KERNEL); 840 if (!rb) 841 goto fail; 842 843 INIT_WORK(&rb->work, rb_free_work); 844 845 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 846 if (!all_buf) 847 goto fail_all_buf; 848 849 rb->user_page = all_buf; 850 rb->data_pages[0] = all_buf + PAGE_SIZE; 851 if (nr_pages) { 852 rb->nr_pages = 1; 853 rb->page_order = ilog2(nr_pages); 854 } 855 856 ring_buffer_init(rb, watermark, flags); 857 858 return rb; 859 860 fail_all_buf: 861 kfree(rb); 862 863 fail: 864 return NULL; 865 } 866 867 #endif 868 869 struct page * 870 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 871 { 872 if (rb->aux_nr_pages) { 873 /* above AUX space */ 874 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 875 return NULL; 876 877 /* AUX space */ 878 if (pgoff >= rb->aux_pgoff) { 879 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages); 880 return virt_to_page(rb->aux_pages[aux_pgoff]); 881 } 882 } 883 884 return __perf_mmap_to_page(rb, pgoff); 885 } 886