xref: /openbmc/linux/kernel/events/ring_buffer.c (revision c4b69bee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events ring-buffer code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
17 
18 #include "internal.h"
19 
perf_output_wakeup(struct perf_output_handle * handle)20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, EPOLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending_irq);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
perf_output_get_handle(struct perf_output_handle * handle)36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct perf_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 
42 	/*
43 	 * Avoid an explicit LOAD/STORE such that architectures with memops
44 	 * can use them.
45 	 */
46 	(*(volatile unsigned int *)&rb->nest)++;
47 	handle->wakeup = local_read(&rb->wakeup);
48 }
49 
perf_output_put_handle(struct perf_output_handle * handle)50 static void perf_output_put_handle(struct perf_output_handle *handle)
51 {
52 	struct perf_buffer *rb = handle->rb;
53 	unsigned long head;
54 	unsigned int nest;
55 
56 	/*
57 	 * If this isn't the outermost nesting, we don't have to update
58 	 * @rb->user_page->data_head.
59 	 */
60 	nest = READ_ONCE(rb->nest);
61 	if (nest > 1) {
62 		WRITE_ONCE(rb->nest, nest - 1);
63 		goto out;
64 	}
65 
66 again:
67 	/*
68 	 * In order to avoid publishing a head value that goes backwards,
69 	 * we must ensure the load of @rb->head happens after we've
70 	 * incremented @rb->nest.
71 	 *
72 	 * Otherwise we can observe a @rb->head value before one published
73 	 * by an IRQ/NMI happening between the load and the increment.
74 	 */
75 	barrier();
76 	head = local_read(&rb->head);
77 
78 	/*
79 	 * IRQ/NMI can happen here and advance @rb->head, causing our
80 	 * load above to be stale.
81 	 */
82 
83 	/*
84 	 * Since the mmap() consumer (userspace) can run on a different CPU:
85 	 *
86 	 *   kernel				user
87 	 *
88 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
89 	 *			(A)		smp_rmb()	(C)
90 	 *	STORE $data			LOAD $data
91 	 *	smp_wmb()	(B)		smp_mb()	(D)
92 	 *	STORE ->data_head		STORE ->data_tail
93 	 *   }
94 	 *
95 	 * Where A pairs with D, and B pairs with C.
96 	 *
97 	 * In our case (A) is a control dependency that separates the load of
98 	 * the ->data_tail and the stores of $data. In case ->data_tail
99 	 * indicates there is no room in the buffer to store $data we do not.
100 	 *
101 	 * D needs to be a full barrier since it separates the data READ
102 	 * from the tail WRITE.
103 	 *
104 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
105 	 * an RMB is sufficient since it separates two READs.
106 	 *
107 	 * See perf_output_begin().
108 	 */
109 	smp_wmb(); /* B, matches C */
110 	WRITE_ONCE(rb->user_page->data_head, head);
111 
112 	/*
113 	 * We must publish the head before decrementing the nest count,
114 	 * otherwise an IRQ/NMI can publish a more recent head value and our
115 	 * write will (temporarily) publish a stale value.
116 	 */
117 	barrier();
118 	WRITE_ONCE(rb->nest, 0);
119 
120 	/*
121 	 * Ensure we decrement @rb->nest before we validate the @rb->head.
122 	 * Otherwise we cannot be sure we caught the 'last' nested update.
123 	 */
124 	barrier();
125 	if (unlikely(head != local_read(&rb->head))) {
126 		WRITE_ONCE(rb->nest, 1);
127 		goto again;
128 	}
129 
130 	if (handle->wakeup != local_read(&rb->wakeup))
131 		perf_output_wakeup(handle);
132 
133 out:
134 	preempt_enable();
135 }
136 
137 static __always_inline bool
ring_buffer_has_space(unsigned long head,unsigned long tail,unsigned long data_size,unsigned int size,bool backward)138 ring_buffer_has_space(unsigned long head, unsigned long tail,
139 		      unsigned long data_size, unsigned int size,
140 		      bool backward)
141 {
142 	if (!backward)
143 		return CIRC_SPACE(head, tail, data_size) >= size;
144 	else
145 		return CIRC_SPACE(tail, head, data_size) >= size;
146 }
147 
148 static __always_inline int
__perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size,bool backward)149 __perf_output_begin(struct perf_output_handle *handle,
150 		    struct perf_sample_data *data,
151 		    struct perf_event *event, unsigned int size,
152 		    bool backward)
153 {
154 	struct perf_buffer *rb;
155 	unsigned long tail, offset, head;
156 	int have_lost, page_shift;
157 	struct {
158 		struct perf_event_header header;
159 		u64			 id;
160 		u64			 lost;
161 	} lost_event;
162 
163 	rcu_read_lock();
164 	/*
165 	 * For inherited events we send all the output towards the parent.
166 	 */
167 	if (event->parent)
168 		event = event->parent;
169 
170 	rb = rcu_dereference(event->rb);
171 	if (unlikely(!rb))
172 		goto out;
173 
174 	if (unlikely(rb->paused)) {
175 		if (rb->nr_pages) {
176 			local_inc(&rb->lost);
177 			atomic64_inc(&event->lost_samples);
178 		}
179 		goto out;
180 	}
181 
182 	handle->rb    = rb;
183 	handle->event = event;
184 
185 	have_lost = local_read(&rb->lost);
186 	if (unlikely(have_lost)) {
187 		size += sizeof(lost_event);
188 		if (event->attr.sample_id_all)
189 			size += event->id_header_size;
190 	}
191 
192 	perf_output_get_handle(handle);
193 
194 	offset = local_read(&rb->head);
195 	do {
196 		head = offset;
197 		tail = READ_ONCE(rb->user_page->data_tail);
198 		if (!rb->overwrite) {
199 			if (unlikely(!ring_buffer_has_space(head, tail,
200 							    perf_data_size(rb),
201 							    size, backward)))
202 				goto fail;
203 		}
204 
205 		/*
206 		 * The above forms a control dependency barrier separating the
207 		 * @tail load above from the data stores below. Since the @tail
208 		 * load is required to compute the branch to fail below.
209 		 *
210 		 * A, matches D; the full memory barrier userspace SHOULD issue
211 		 * after reading the data and before storing the new tail
212 		 * position.
213 		 *
214 		 * See perf_output_put_handle().
215 		 */
216 
217 		if (!backward)
218 			head += size;
219 		else
220 			head -= size;
221 	} while (!local_try_cmpxchg(&rb->head, &offset, head));
222 
223 	if (backward) {
224 		offset = head;
225 		head = (u64)(-head);
226 	}
227 
228 	/*
229 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
230 	 * none of the data stores below can be lifted up by the compiler.
231 	 */
232 
233 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
234 		local_add(rb->watermark, &rb->wakeup);
235 
236 	page_shift = PAGE_SHIFT + page_order(rb);
237 
238 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
239 	offset &= (1UL << page_shift) - 1;
240 	handle->addr = rb->data_pages[handle->page] + offset;
241 	handle->size = (1UL << page_shift) - offset;
242 
243 	if (unlikely(have_lost)) {
244 		lost_event.header.size = sizeof(lost_event);
245 		lost_event.header.type = PERF_RECORD_LOST;
246 		lost_event.header.misc = 0;
247 		lost_event.id          = event->id;
248 		lost_event.lost        = local_xchg(&rb->lost, 0);
249 
250 		/* XXX mostly redundant; @data is already fully initializes */
251 		perf_event_header__init_id(&lost_event.header, data, event);
252 		perf_output_put(handle, lost_event);
253 		perf_event__output_id_sample(event, handle, data);
254 	}
255 
256 	return 0;
257 
258 fail:
259 	local_inc(&rb->lost);
260 	atomic64_inc(&event->lost_samples);
261 	perf_output_put_handle(handle);
262 out:
263 	rcu_read_unlock();
264 
265 	return -ENOSPC;
266 }
267 
perf_output_begin_forward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)268 int perf_output_begin_forward(struct perf_output_handle *handle,
269 			      struct perf_sample_data *data,
270 			      struct perf_event *event, unsigned int size)
271 {
272 	return __perf_output_begin(handle, data, event, size, false);
273 }
274 
perf_output_begin_backward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)275 int perf_output_begin_backward(struct perf_output_handle *handle,
276 			       struct perf_sample_data *data,
277 			       struct perf_event *event, unsigned int size)
278 {
279 	return __perf_output_begin(handle, data, event, size, true);
280 }
281 
perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)282 int perf_output_begin(struct perf_output_handle *handle,
283 		      struct perf_sample_data *data,
284 		      struct perf_event *event, unsigned int size)
285 {
286 
287 	return __perf_output_begin(handle, data, event, size,
288 				   unlikely(is_write_backward(event)));
289 }
290 
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)291 unsigned int perf_output_copy(struct perf_output_handle *handle,
292 		      const void *buf, unsigned int len)
293 {
294 	return __output_copy(handle, buf, len);
295 }
296 
perf_output_skip(struct perf_output_handle * handle,unsigned int len)297 unsigned int perf_output_skip(struct perf_output_handle *handle,
298 			      unsigned int len)
299 {
300 	return __output_skip(handle, NULL, len);
301 }
302 
perf_output_end(struct perf_output_handle * handle)303 void perf_output_end(struct perf_output_handle *handle)
304 {
305 	perf_output_put_handle(handle);
306 	rcu_read_unlock();
307 }
308 
309 static void
ring_buffer_init(struct perf_buffer * rb,long watermark,int flags)310 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
311 {
312 	long max_size = perf_data_size(rb);
313 
314 	if (watermark)
315 		rb->watermark = min(max_size, watermark);
316 
317 	if (!rb->watermark)
318 		rb->watermark = max_size / 2;
319 
320 	if (flags & RING_BUFFER_WRITABLE)
321 		rb->overwrite = 0;
322 	else
323 		rb->overwrite = 1;
324 
325 	refcount_set(&rb->refcount, 1);
326 
327 	INIT_LIST_HEAD(&rb->event_list);
328 	spin_lock_init(&rb->event_lock);
329 
330 	/*
331 	 * perf_output_begin() only checks rb->paused, therefore
332 	 * rb->paused must be true if we have no pages for output.
333 	 */
334 	if (!rb->nr_pages)
335 		rb->paused = 1;
336 
337 	mutex_init(&rb->aux_mutex);
338 }
339 
perf_aux_output_flag(struct perf_output_handle * handle,u64 flags)340 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
341 {
342 	/*
343 	 * OVERWRITE is determined by perf_aux_output_end() and can't
344 	 * be passed in directly.
345 	 */
346 	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
347 		return;
348 
349 	handle->aux_flags |= flags;
350 }
351 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
352 
353 /*
354  * This is called before hardware starts writing to the AUX area to
355  * obtain an output handle and make sure there's room in the buffer.
356  * When the capture completes, call perf_aux_output_end() to commit
357  * the recorded data to the buffer.
358  *
359  * The ordering is similar to that of perf_output_{begin,end}, with
360  * the exception of (B), which should be taken care of by the pmu
361  * driver, since ordering rules will differ depending on hardware.
362  *
363  * Call this from pmu::start(); see the comment in perf_aux_output_end()
364  * about its use in pmu callbacks. Both can also be called from the PMI
365  * handler if needed.
366  */
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)367 void *perf_aux_output_begin(struct perf_output_handle *handle,
368 			    struct perf_event *event)
369 {
370 	struct perf_event *output_event = event;
371 	unsigned long aux_head, aux_tail;
372 	struct perf_buffer *rb;
373 	unsigned int nest;
374 
375 	if (output_event->parent)
376 		output_event = output_event->parent;
377 
378 	/*
379 	 * Since this will typically be open across pmu::add/pmu::del, we
380 	 * grab ring_buffer's refcount instead of holding rcu read lock
381 	 * to make sure it doesn't disappear under us.
382 	 */
383 	rb = ring_buffer_get(output_event);
384 	if (!rb)
385 		return NULL;
386 
387 	if (!rb_has_aux(rb))
388 		goto err;
389 
390 	/*
391 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
392 	 * about to get freed, so we leave immediately.
393 	 *
394 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
395 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
396 	 * aux pages in this path, which is a bug, because in_atomic().
397 	 */
398 	if (!atomic_read(&rb->aux_mmap_count))
399 		goto err;
400 
401 	if (!refcount_inc_not_zero(&rb->aux_refcount))
402 		goto err;
403 
404 	nest = READ_ONCE(rb->aux_nest);
405 	/*
406 	 * Nesting is not supported for AUX area, make sure nested
407 	 * writers are caught early
408 	 */
409 	if (WARN_ON_ONCE(nest))
410 		goto err_put;
411 
412 	WRITE_ONCE(rb->aux_nest, nest + 1);
413 
414 	aux_head = rb->aux_head;
415 
416 	handle->rb = rb;
417 	handle->event = event;
418 	handle->head = aux_head;
419 	handle->size = 0;
420 	handle->aux_flags = 0;
421 
422 	/*
423 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
424 	 * therefore (A) control dependency barrier does not exist. The
425 	 * (B) <-> (C) ordering is still observed by the pmu driver.
426 	 */
427 	if (!rb->aux_overwrite) {
428 		aux_tail = READ_ONCE(rb->user_page->aux_tail);
429 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
430 		if (aux_head - aux_tail < perf_aux_size(rb))
431 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
432 
433 		/*
434 		 * handle->size computation depends on aux_tail load; this forms a
435 		 * control dependency barrier separating aux_tail load from aux data
436 		 * store that will be enabled on successful return
437 		 */
438 		if (!handle->size) { /* A, matches D */
439 			event->pending_disable = smp_processor_id();
440 			perf_output_wakeup(handle);
441 			WRITE_ONCE(rb->aux_nest, 0);
442 			goto err_put;
443 		}
444 	}
445 
446 	return handle->rb->aux_priv;
447 
448 err_put:
449 	/* can't be last */
450 	rb_free_aux(rb);
451 
452 err:
453 	ring_buffer_put(rb);
454 	handle->event = NULL;
455 
456 	return NULL;
457 }
458 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
459 
rb_need_aux_wakeup(struct perf_buffer * rb)460 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
461 {
462 	if (rb->aux_overwrite)
463 		return false;
464 
465 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
466 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
467 		return true;
468 	}
469 
470 	return false;
471 }
472 
473 /*
474  * Commit the data written by hardware into the ring buffer by adjusting
475  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
476  * pmu driver's responsibility to observe ordering rules of the hardware,
477  * so that all the data is externally visible before this is called.
478  *
479  * Note: this has to be called from pmu::stop() callback, as the assumption
480  * of the AUX buffer management code is that after pmu::stop(), the AUX
481  * transaction must be stopped and therefore drop the AUX reference count.
482  */
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)483 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
484 {
485 	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
486 	struct perf_buffer *rb = handle->rb;
487 	unsigned long aux_head;
488 
489 	/* in overwrite mode, driver provides aux_head via handle */
490 	if (rb->aux_overwrite) {
491 		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
492 
493 		aux_head = handle->head;
494 		rb->aux_head = aux_head;
495 	} else {
496 		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
497 
498 		aux_head = rb->aux_head;
499 		rb->aux_head += size;
500 	}
501 
502 	/*
503 	 * Only send RECORD_AUX if we have something useful to communicate
504 	 *
505 	 * Note: the OVERWRITE records by themselves are not considered
506 	 * useful, as they don't communicate any *new* information,
507 	 * aside from the short-lived offset, that becomes history at
508 	 * the next event sched-in and therefore isn't useful.
509 	 * The userspace that needs to copy out AUX data in overwrite
510 	 * mode should know to use user_page::aux_head for the actual
511 	 * offset. So, from now on we don't output AUX records that
512 	 * have *only* OVERWRITE flag set.
513 	 */
514 	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
515 		perf_event_aux_event(handle->event, aux_head, size,
516 				     handle->aux_flags);
517 
518 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
519 	if (rb_need_aux_wakeup(rb))
520 		wakeup = true;
521 
522 	if (wakeup) {
523 		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
524 			handle->event->pending_disable = smp_processor_id();
525 		perf_output_wakeup(handle);
526 	}
527 
528 	handle->event = NULL;
529 
530 	WRITE_ONCE(rb->aux_nest, 0);
531 	/* can't be last */
532 	rb_free_aux(rb);
533 	ring_buffer_put(rb);
534 }
535 EXPORT_SYMBOL_GPL(perf_aux_output_end);
536 
537 /*
538  * Skip over a given number of bytes in the AUX buffer, due to, for example,
539  * hardware's alignment constraints.
540  */
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)541 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
542 {
543 	struct perf_buffer *rb = handle->rb;
544 
545 	if (size > handle->size)
546 		return -ENOSPC;
547 
548 	rb->aux_head += size;
549 
550 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
551 	if (rb_need_aux_wakeup(rb)) {
552 		perf_output_wakeup(handle);
553 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
554 	}
555 
556 	handle->head = rb->aux_head;
557 	handle->size -= size;
558 
559 	return 0;
560 }
561 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
562 
perf_get_aux(struct perf_output_handle * handle)563 void *perf_get_aux(struct perf_output_handle *handle)
564 {
565 	/* this is only valid between perf_aux_output_begin and *_end */
566 	if (!handle->event)
567 		return NULL;
568 
569 	return handle->rb->aux_priv;
570 }
571 EXPORT_SYMBOL_GPL(perf_get_aux);
572 
573 /*
574  * Copy out AUX data from an AUX handle.
575  */
perf_output_copy_aux(struct perf_output_handle * aux_handle,struct perf_output_handle * handle,unsigned long from,unsigned long to)576 long perf_output_copy_aux(struct perf_output_handle *aux_handle,
577 			  struct perf_output_handle *handle,
578 			  unsigned long from, unsigned long to)
579 {
580 	struct perf_buffer *rb = aux_handle->rb;
581 	unsigned long tocopy, remainder, len = 0;
582 	void *addr;
583 
584 	from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
585 	to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
586 
587 	do {
588 		tocopy = PAGE_SIZE - offset_in_page(from);
589 		if (to > from)
590 			tocopy = min(tocopy, to - from);
591 		if (!tocopy)
592 			break;
593 
594 		addr = rb->aux_pages[from >> PAGE_SHIFT];
595 		addr += offset_in_page(from);
596 
597 		remainder = perf_output_copy(handle, addr, tocopy);
598 		if (remainder)
599 			return -EFAULT;
600 
601 		len += tocopy;
602 		from += tocopy;
603 		from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
604 	} while (to != from);
605 
606 	return len;
607 }
608 
609 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
610 
rb_alloc_aux_page(int node,int order)611 static struct page *rb_alloc_aux_page(int node, int order)
612 {
613 	struct page *page;
614 
615 	if (order > MAX_ORDER)
616 		order = MAX_ORDER;
617 
618 	do {
619 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
620 	} while (!page && order--);
621 
622 	if (page && order) {
623 		/*
624 		 * Communicate the allocation size to the driver:
625 		 * if we managed to secure a high-order allocation,
626 		 * set its first page's private to this order;
627 		 * !PagePrivate(page) means it's just a normal page.
628 		 */
629 		split_page(page, order);
630 		SetPagePrivate(page);
631 		set_page_private(page, order);
632 	}
633 
634 	return page;
635 }
636 
rb_free_aux_page(struct perf_buffer * rb,int idx)637 static void rb_free_aux_page(struct perf_buffer *rb, int idx)
638 {
639 	struct page *page = virt_to_page(rb->aux_pages[idx]);
640 
641 	ClearPagePrivate(page);
642 	page->mapping = NULL;
643 	__free_page(page);
644 }
645 
__rb_free_aux(struct perf_buffer * rb)646 static void __rb_free_aux(struct perf_buffer *rb)
647 {
648 	int pg;
649 
650 	/*
651 	 * Should never happen, the last reference should be dropped from
652 	 * perf_mmap_close() path, which first stops aux transactions (which
653 	 * in turn are the atomic holders of aux_refcount) and then does the
654 	 * last rb_free_aux().
655 	 */
656 	WARN_ON_ONCE(in_atomic());
657 
658 	if (rb->aux_priv) {
659 		rb->free_aux(rb->aux_priv);
660 		rb->free_aux = NULL;
661 		rb->aux_priv = NULL;
662 	}
663 
664 	if (rb->aux_nr_pages) {
665 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
666 			rb_free_aux_page(rb, pg);
667 
668 		kfree(rb->aux_pages);
669 		rb->aux_nr_pages = 0;
670 	}
671 }
672 
rb_alloc_aux(struct perf_buffer * rb,struct perf_event * event,pgoff_t pgoff,int nr_pages,long watermark,int flags)673 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
674 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
675 {
676 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
677 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
678 	int ret = -ENOMEM, max_order;
679 
680 	if (!has_aux(event))
681 		return -EOPNOTSUPP;
682 
683 	if (!overwrite) {
684 		/*
685 		 * Watermark defaults to half the buffer, and so does the
686 		 * max_order, to aid PMU drivers in double buffering.
687 		 */
688 		if (!watermark)
689 			watermark = min_t(unsigned long,
690 					  U32_MAX,
691 					  (unsigned long)nr_pages << (PAGE_SHIFT - 1));
692 
693 		/*
694 		 * Use aux_watermark as the basis for chunking to
695 		 * help PMU drivers honor the watermark.
696 		 */
697 		max_order = get_order(watermark);
698 	} else {
699 		/*
700 		 * We need to start with the max_order that fits in nr_pages,
701 		 * not the other way around, hence ilog2() and not get_order.
702 		 */
703 		max_order = ilog2(nr_pages);
704 		watermark = 0;
705 	}
706 
707 	/*
708 	 * kcalloc_node() is unable to allocate buffer if the size is larger
709 	 * than: PAGE_SIZE << MAX_ORDER; directly bail out in this case.
710 	 */
711 	if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_ORDER)
712 		return -ENOMEM;
713 	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
714 				     node);
715 	if (!rb->aux_pages)
716 		return -ENOMEM;
717 
718 	rb->free_aux = event->pmu->free_aux;
719 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
720 		struct page *page;
721 		int last, order;
722 
723 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
724 		page = rb_alloc_aux_page(node, order);
725 		if (!page)
726 			goto out;
727 
728 		for (last = rb->aux_nr_pages + (1 << page_private(page));
729 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
730 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
731 	}
732 
733 	/*
734 	 * In overwrite mode, PMUs that don't support SG may not handle more
735 	 * than one contiguous allocation, since they rely on PMI to do double
736 	 * buffering. In this case, the entire buffer has to be one contiguous
737 	 * chunk.
738 	 */
739 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
740 	    overwrite) {
741 		struct page *page = virt_to_page(rb->aux_pages[0]);
742 
743 		if (page_private(page) != max_order)
744 			goto out;
745 	}
746 
747 	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
748 					     overwrite);
749 	if (!rb->aux_priv)
750 		goto out;
751 
752 	ret = 0;
753 
754 	/*
755 	 * aux_pages (and pmu driver's private data, aux_priv) will be
756 	 * referenced in both producer's and consumer's contexts, thus
757 	 * we keep a refcount here to make sure either of the two can
758 	 * reference them safely.
759 	 */
760 	refcount_set(&rb->aux_refcount, 1);
761 
762 	rb->aux_overwrite = overwrite;
763 	rb->aux_watermark = watermark;
764 
765 out:
766 	if (!ret)
767 		rb->aux_pgoff = pgoff;
768 	else
769 		__rb_free_aux(rb);
770 
771 	return ret;
772 }
773 
rb_free_aux(struct perf_buffer * rb)774 void rb_free_aux(struct perf_buffer *rb)
775 {
776 	if (refcount_dec_and_test(&rb->aux_refcount))
777 		__rb_free_aux(rb);
778 }
779 
780 #ifndef CONFIG_PERF_USE_VMALLOC
781 
782 /*
783  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
784  */
785 
786 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)787 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
788 {
789 	if (pgoff > rb->nr_pages)
790 		return NULL;
791 
792 	if (pgoff == 0)
793 		return virt_to_page(rb->user_page);
794 
795 	return virt_to_page(rb->data_pages[pgoff - 1]);
796 }
797 
perf_mmap_alloc_page(int cpu)798 static void *perf_mmap_alloc_page(int cpu)
799 {
800 	struct page *page;
801 	int node;
802 
803 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
804 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
805 	if (!page)
806 		return NULL;
807 
808 	return page_address(page);
809 }
810 
perf_mmap_free_page(void * addr)811 static void perf_mmap_free_page(void *addr)
812 {
813 	struct page *page = virt_to_page(addr);
814 
815 	page->mapping = NULL;
816 	__free_page(page);
817 }
818 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)819 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
820 {
821 	struct perf_buffer *rb;
822 	unsigned long size;
823 	int i, node;
824 
825 	size = sizeof(struct perf_buffer);
826 	size += nr_pages * sizeof(void *);
827 
828 	if (order_base_2(size) > PAGE_SHIFT+MAX_ORDER)
829 		goto fail;
830 
831 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
832 	rb = kzalloc_node(size, GFP_KERNEL, node);
833 	if (!rb)
834 		goto fail;
835 
836 	rb->user_page = perf_mmap_alloc_page(cpu);
837 	if (!rb->user_page)
838 		goto fail_user_page;
839 
840 	for (i = 0; i < nr_pages; i++) {
841 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
842 		if (!rb->data_pages[i])
843 			goto fail_data_pages;
844 	}
845 
846 	rb->nr_pages = nr_pages;
847 
848 	ring_buffer_init(rb, watermark, flags);
849 
850 	return rb;
851 
852 fail_data_pages:
853 	for (i--; i >= 0; i--)
854 		perf_mmap_free_page(rb->data_pages[i]);
855 
856 	perf_mmap_free_page(rb->user_page);
857 
858 fail_user_page:
859 	kfree(rb);
860 
861 fail:
862 	return NULL;
863 }
864 
rb_free(struct perf_buffer * rb)865 void rb_free(struct perf_buffer *rb)
866 {
867 	int i;
868 
869 	perf_mmap_free_page(rb->user_page);
870 	for (i = 0; i < rb->nr_pages; i++)
871 		perf_mmap_free_page(rb->data_pages[i]);
872 	kfree(rb);
873 }
874 
875 #else
876 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)877 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
878 {
879 	/* The '>' counts in the user page. */
880 	if (pgoff > data_page_nr(rb))
881 		return NULL;
882 
883 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
884 }
885 
perf_mmap_unmark_page(void * addr)886 static void perf_mmap_unmark_page(void *addr)
887 {
888 	struct page *page = vmalloc_to_page(addr);
889 
890 	page->mapping = NULL;
891 }
892 
rb_free_work(struct work_struct * work)893 static void rb_free_work(struct work_struct *work)
894 {
895 	struct perf_buffer *rb;
896 	void *base;
897 	int i, nr;
898 
899 	rb = container_of(work, struct perf_buffer, work);
900 	nr = data_page_nr(rb);
901 
902 	base = rb->user_page;
903 	/* The '<=' counts in the user page. */
904 	for (i = 0; i <= nr; i++)
905 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
906 
907 	vfree(base);
908 	kfree(rb);
909 }
910 
rb_free(struct perf_buffer * rb)911 void rb_free(struct perf_buffer *rb)
912 {
913 	schedule_work(&rb->work);
914 }
915 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)916 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
917 {
918 	struct perf_buffer *rb;
919 	unsigned long size;
920 	void *all_buf;
921 	int node;
922 
923 	size = sizeof(struct perf_buffer);
924 	size += sizeof(void *);
925 
926 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
927 	rb = kzalloc_node(size, GFP_KERNEL, node);
928 	if (!rb)
929 		goto fail;
930 
931 	INIT_WORK(&rb->work, rb_free_work);
932 
933 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
934 	if (!all_buf)
935 		goto fail_all_buf;
936 
937 	rb->user_page = all_buf;
938 	rb->data_pages[0] = all_buf + PAGE_SIZE;
939 	if (nr_pages) {
940 		rb->nr_pages = 1;
941 		rb->page_order = ilog2(nr_pages);
942 	}
943 
944 	ring_buffer_init(rb, watermark, flags);
945 
946 	return rb;
947 
948 fail_all_buf:
949 	kfree(rb);
950 
951 fail:
952 	return NULL;
953 }
954 
955 #endif
956 
957 struct page *
perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)958 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
959 {
960 	if (rb->aux_nr_pages) {
961 		/* above AUX space */
962 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
963 			return NULL;
964 
965 		/* AUX space */
966 		if (pgoff >= rb->aux_pgoff) {
967 			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
968 			return virt_to_page(rb->aux_pages[aux_pgoff]);
969 		}
970 	}
971 
972 	return __perf_mmap_to_page(rb, pgoff);
973 }
974