1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2007 Alan Stern 17 * Copyright (C) IBM Corporation, 2009 18 * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com> 19 * 20 * Thanks to Ingo Molnar for his many suggestions. 21 * 22 * Authors: Alan Stern <stern@rowland.harvard.edu> 23 * K.Prasad <prasad@linux.vnet.ibm.com> 24 * Frederic Weisbecker <fweisbec@gmail.com> 25 */ 26 27 /* 28 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, 29 * using the CPU's debug registers. 30 * This file contains the arch-independent routines. 31 */ 32 33 #include <linux/irqflags.h> 34 #include <linux/kallsyms.h> 35 #include <linux/notifier.h> 36 #include <linux/kprobes.h> 37 #include <linux/kdebug.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/percpu.h> 41 #include <linux/sched.h> 42 #include <linux/init.h> 43 #include <linux/slab.h> 44 #include <linux/list.h> 45 #include <linux/cpu.h> 46 #include <linux/smp.h> 47 48 #include <linux/hw_breakpoint.h> 49 /* 50 * Constraints data 51 */ 52 struct bp_cpuinfo { 53 /* Number of pinned cpu breakpoints in a cpu */ 54 unsigned int cpu_pinned; 55 /* tsk_pinned[n] is the number of tasks having n+1 breakpoints */ 56 unsigned int *tsk_pinned; 57 /* Number of non-pinned cpu/task breakpoints in a cpu */ 58 unsigned int flexible; /* XXX: placeholder, see fetch_this_slot() */ 59 }; 60 61 static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]); 62 static int nr_slots[TYPE_MAX]; 63 64 static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type) 65 { 66 return per_cpu_ptr(bp_cpuinfo + type, cpu); 67 } 68 69 /* Keep track of the breakpoints attached to tasks */ 70 static LIST_HEAD(bp_task_head); 71 72 static int constraints_initialized; 73 74 /* Gather the number of total pinned and un-pinned bp in a cpuset */ 75 struct bp_busy_slots { 76 unsigned int pinned; 77 unsigned int flexible; 78 }; 79 80 /* Serialize accesses to the above constraints */ 81 static DEFINE_MUTEX(nr_bp_mutex); 82 83 __weak int hw_breakpoint_weight(struct perf_event *bp) 84 { 85 return 1; 86 } 87 88 static inline enum bp_type_idx find_slot_idx(struct perf_event *bp) 89 { 90 if (bp->attr.bp_type & HW_BREAKPOINT_RW) 91 return TYPE_DATA; 92 93 return TYPE_INST; 94 } 95 96 /* 97 * Report the maximum number of pinned breakpoints a task 98 * have in this cpu 99 */ 100 static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type) 101 { 102 unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned; 103 int i; 104 105 for (i = nr_slots[type] - 1; i >= 0; i--) { 106 if (tsk_pinned[i] > 0) 107 return i + 1; 108 } 109 110 return 0; 111 } 112 113 /* 114 * Count the number of breakpoints of the same type and same task. 115 * The given event must be not on the list. 116 */ 117 static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type) 118 { 119 struct task_struct *tsk = bp->hw.bp_target; 120 struct perf_event *iter; 121 int count = 0; 122 123 list_for_each_entry(iter, &bp_task_head, hw.bp_list) { 124 if (iter->hw.bp_target == tsk && 125 find_slot_idx(iter) == type && 126 (iter->cpu < 0 || cpu == iter->cpu)) 127 count += hw_breakpoint_weight(iter); 128 } 129 130 return count; 131 } 132 133 static const struct cpumask *cpumask_of_bp(struct perf_event *bp) 134 { 135 if (bp->cpu >= 0) 136 return cpumask_of(bp->cpu); 137 return cpu_possible_mask; 138 } 139 140 /* 141 * Report the number of pinned/un-pinned breakpoints we have in 142 * a given cpu (cpu > -1) or in all of them (cpu = -1). 143 */ 144 static void 145 fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp, 146 enum bp_type_idx type) 147 { 148 const struct cpumask *cpumask = cpumask_of_bp(bp); 149 int cpu; 150 151 for_each_cpu(cpu, cpumask) { 152 struct bp_cpuinfo *info = get_bp_info(cpu, type); 153 int nr; 154 155 nr = info->cpu_pinned; 156 if (!bp->hw.bp_target) 157 nr += max_task_bp_pinned(cpu, type); 158 else 159 nr += task_bp_pinned(cpu, bp, type); 160 161 if (nr > slots->pinned) 162 slots->pinned = nr; 163 164 nr = info->flexible; 165 if (nr > slots->flexible) 166 slots->flexible = nr; 167 } 168 } 169 170 /* 171 * For now, continue to consider flexible as pinned, until we can 172 * ensure no flexible event can ever be scheduled before a pinned event 173 * in a same cpu. 174 */ 175 static void 176 fetch_this_slot(struct bp_busy_slots *slots, int weight) 177 { 178 slots->pinned += weight; 179 } 180 181 /* 182 * Add a pinned breakpoint for the given task in our constraint table 183 */ 184 static void toggle_bp_task_slot(struct perf_event *bp, int cpu, 185 enum bp_type_idx type, int weight) 186 { 187 unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned; 188 int old_idx, new_idx; 189 190 old_idx = task_bp_pinned(cpu, bp, type) - 1; 191 new_idx = old_idx + weight; 192 193 if (old_idx >= 0) 194 tsk_pinned[old_idx]--; 195 if (new_idx >= 0) 196 tsk_pinned[new_idx]++; 197 } 198 199 /* 200 * Add/remove the given breakpoint in our constraint table 201 */ 202 static void 203 toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, 204 int weight) 205 { 206 const struct cpumask *cpumask = cpumask_of_bp(bp); 207 int cpu; 208 209 if (!enable) 210 weight = -weight; 211 212 /* Pinned counter cpu profiling */ 213 if (!bp->hw.bp_target) { 214 get_bp_info(bp->cpu, type)->cpu_pinned += weight; 215 return; 216 } 217 218 /* Pinned counter task profiling */ 219 for_each_cpu(cpu, cpumask) 220 toggle_bp_task_slot(bp, cpu, type, weight); 221 222 if (enable) 223 list_add_tail(&bp->hw.bp_list, &bp_task_head); 224 else 225 list_del(&bp->hw.bp_list); 226 } 227 228 /* 229 * Function to perform processor-specific cleanup during unregistration 230 */ 231 __weak void arch_unregister_hw_breakpoint(struct perf_event *bp) 232 { 233 /* 234 * A weak stub function here for those archs that don't define 235 * it inside arch/.../kernel/hw_breakpoint.c 236 */ 237 } 238 239 /* 240 * Contraints to check before allowing this new breakpoint counter: 241 * 242 * == Non-pinned counter == (Considered as pinned for now) 243 * 244 * - If attached to a single cpu, check: 245 * 246 * (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu) 247 * + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM 248 * 249 * -> If there are already non-pinned counters in this cpu, it means 250 * there is already a free slot for them. 251 * Otherwise, we check that the maximum number of per task 252 * breakpoints (for this cpu) plus the number of per cpu breakpoint 253 * (for this cpu) doesn't cover every registers. 254 * 255 * - If attached to every cpus, check: 256 * 257 * (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *)) 258 * + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM 259 * 260 * -> This is roughly the same, except we check the number of per cpu 261 * bp for every cpu and we keep the max one. Same for the per tasks 262 * breakpoints. 263 * 264 * 265 * == Pinned counter == 266 * 267 * - If attached to a single cpu, check: 268 * 269 * ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu) 270 * + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM 271 * 272 * -> Same checks as before. But now the info->flexible, if any, must keep 273 * one register at least (or they will never be fed). 274 * 275 * - If attached to every cpus, check: 276 * 277 * ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *)) 278 * + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM 279 */ 280 static int __reserve_bp_slot(struct perf_event *bp) 281 { 282 struct bp_busy_slots slots = {0}; 283 enum bp_type_idx type; 284 int weight; 285 286 /* We couldn't initialize breakpoint constraints on boot */ 287 if (!constraints_initialized) 288 return -ENOMEM; 289 290 /* Basic checks */ 291 if (bp->attr.bp_type == HW_BREAKPOINT_EMPTY || 292 bp->attr.bp_type == HW_BREAKPOINT_INVALID) 293 return -EINVAL; 294 295 type = find_slot_idx(bp); 296 weight = hw_breakpoint_weight(bp); 297 298 fetch_bp_busy_slots(&slots, bp, type); 299 /* 300 * Simulate the addition of this breakpoint to the constraints 301 * and see the result. 302 */ 303 fetch_this_slot(&slots, weight); 304 305 /* Flexible counters need to keep at least one slot */ 306 if (slots.pinned + (!!slots.flexible) > nr_slots[type]) 307 return -ENOSPC; 308 309 toggle_bp_slot(bp, true, type, weight); 310 311 return 0; 312 } 313 314 int reserve_bp_slot(struct perf_event *bp) 315 { 316 int ret; 317 318 mutex_lock(&nr_bp_mutex); 319 320 ret = __reserve_bp_slot(bp); 321 322 mutex_unlock(&nr_bp_mutex); 323 324 return ret; 325 } 326 327 static void __release_bp_slot(struct perf_event *bp) 328 { 329 enum bp_type_idx type; 330 int weight; 331 332 type = find_slot_idx(bp); 333 weight = hw_breakpoint_weight(bp); 334 toggle_bp_slot(bp, false, type, weight); 335 } 336 337 void release_bp_slot(struct perf_event *bp) 338 { 339 mutex_lock(&nr_bp_mutex); 340 341 arch_unregister_hw_breakpoint(bp); 342 __release_bp_slot(bp); 343 344 mutex_unlock(&nr_bp_mutex); 345 } 346 347 /* 348 * Allow the kernel debugger to reserve breakpoint slots without 349 * taking a lock using the dbg_* variant of for the reserve and 350 * release breakpoint slots. 351 */ 352 int dbg_reserve_bp_slot(struct perf_event *bp) 353 { 354 if (mutex_is_locked(&nr_bp_mutex)) 355 return -1; 356 357 return __reserve_bp_slot(bp); 358 } 359 360 int dbg_release_bp_slot(struct perf_event *bp) 361 { 362 if (mutex_is_locked(&nr_bp_mutex)) 363 return -1; 364 365 __release_bp_slot(bp); 366 367 return 0; 368 } 369 370 static int validate_hw_breakpoint(struct perf_event *bp) 371 { 372 int ret; 373 374 ret = arch_validate_hwbkpt_settings(bp); 375 if (ret) 376 return ret; 377 378 if (arch_check_bp_in_kernelspace(bp)) { 379 if (bp->attr.exclude_kernel) 380 return -EINVAL; 381 /* 382 * Don't let unprivileged users set a breakpoint in the trap 383 * path to avoid trap recursion attacks. 384 */ 385 if (!capable(CAP_SYS_ADMIN)) 386 return -EPERM; 387 } 388 389 return 0; 390 } 391 392 int register_perf_hw_breakpoint(struct perf_event *bp) 393 { 394 int ret; 395 396 ret = reserve_bp_slot(bp); 397 if (ret) 398 return ret; 399 400 ret = validate_hw_breakpoint(bp); 401 402 /* if arch_validate_hwbkpt_settings() fails then release bp slot */ 403 if (ret) 404 release_bp_slot(bp); 405 406 return ret; 407 } 408 409 /** 410 * register_user_hw_breakpoint - register a hardware breakpoint for user space 411 * @attr: breakpoint attributes 412 * @triggered: callback to trigger when we hit the breakpoint 413 * @tsk: pointer to 'task_struct' of the process to which the address belongs 414 */ 415 struct perf_event * 416 register_user_hw_breakpoint(struct perf_event_attr *attr, 417 perf_overflow_handler_t triggered, 418 void *context, 419 struct task_struct *tsk) 420 { 421 return perf_event_create_kernel_counter(attr, -1, tsk, triggered, 422 context); 423 } 424 EXPORT_SYMBOL_GPL(register_user_hw_breakpoint); 425 426 /** 427 * modify_user_hw_breakpoint - modify a user-space hardware breakpoint 428 * @bp: the breakpoint structure to modify 429 * @attr: new breakpoint attributes 430 * @triggered: callback to trigger when we hit the breakpoint 431 * @tsk: pointer to 'task_struct' of the process to which the address belongs 432 */ 433 int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr) 434 { 435 u64 old_addr = bp->attr.bp_addr; 436 u64 old_len = bp->attr.bp_len; 437 int old_type = bp->attr.bp_type; 438 int err = 0; 439 440 /* 441 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it 442 * will not be possible to raise IPIs that invoke __perf_event_disable. 443 * So call the function directly after making sure we are targeting the 444 * current task. 445 */ 446 if (irqs_disabled() && bp->ctx && bp->ctx->task == current) 447 __perf_event_disable(bp); 448 else 449 perf_event_disable(bp); 450 451 bp->attr.bp_addr = attr->bp_addr; 452 bp->attr.bp_type = attr->bp_type; 453 bp->attr.bp_len = attr->bp_len; 454 455 if (attr->disabled) 456 goto end; 457 458 err = validate_hw_breakpoint(bp); 459 if (!err) 460 perf_event_enable(bp); 461 462 if (err) { 463 bp->attr.bp_addr = old_addr; 464 bp->attr.bp_type = old_type; 465 bp->attr.bp_len = old_len; 466 if (!bp->attr.disabled) 467 perf_event_enable(bp); 468 469 return err; 470 } 471 472 end: 473 bp->attr.disabled = attr->disabled; 474 475 return 0; 476 } 477 EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint); 478 479 /** 480 * unregister_hw_breakpoint - unregister a user-space hardware breakpoint 481 * @bp: the breakpoint structure to unregister 482 */ 483 void unregister_hw_breakpoint(struct perf_event *bp) 484 { 485 if (!bp) 486 return; 487 perf_event_release_kernel(bp); 488 } 489 EXPORT_SYMBOL_GPL(unregister_hw_breakpoint); 490 491 /** 492 * register_wide_hw_breakpoint - register a wide breakpoint in the kernel 493 * @attr: breakpoint attributes 494 * @triggered: callback to trigger when we hit the breakpoint 495 * 496 * @return a set of per_cpu pointers to perf events 497 */ 498 struct perf_event * __percpu * 499 register_wide_hw_breakpoint(struct perf_event_attr *attr, 500 perf_overflow_handler_t triggered, 501 void *context) 502 { 503 struct perf_event * __percpu *cpu_events, *bp; 504 long err = 0; 505 int cpu; 506 507 cpu_events = alloc_percpu(typeof(*cpu_events)); 508 if (!cpu_events) 509 return (void __percpu __force *)ERR_PTR(-ENOMEM); 510 511 get_online_cpus(); 512 for_each_online_cpu(cpu) { 513 bp = perf_event_create_kernel_counter(attr, cpu, NULL, 514 triggered, context); 515 if (IS_ERR(bp)) { 516 err = PTR_ERR(bp); 517 break; 518 } 519 520 per_cpu(*cpu_events, cpu) = bp; 521 } 522 put_online_cpus(); 523 524 if (likely(!err)) 525 return cpu_events; 526 527 unregister_wide_hw_breakpoint(cpu_events); 528 return (void __percpu __force *)ERR_PTR(err); 529 } 530 EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint); 531 532 /** 533 * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel 534 * @cpu_events: the per cpu set of events to unregister 535 */ 536 void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events) 537 { 538 int cpu; 539 540 for_each_possible_cpu(cpu) 541 unregister_hw_breakpoint(per_cpu(*cpu_events, cpu)); 542 543 free_percpu(cpu_events); 544 } 545 EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint); 546 547 static struct notifier_block hw_breakpoint_exceptions_nb = { 548 .notifier_call = hw_breakpoint_exceptions_notify, 549 /* we need to be notified first */ 550 .priority = 0x7fffffff 551 }; 552 553 static void bp_perf_event_destroy(struct perf_event *event) 554 { 555 release_bp_slot(event); 556 } 557 558 static int hw_breakpoint_event_init(struct perf_event *bp) 559 { 560 int err; 561 562 if (bp->attr.type != PERF_TYPE_BREAKPOINT) 563 return -ENOENT; 564 565 /* 566 * no branch sampling for breakpoint events 567 */ 568 if (has_branch_stack(bp)) 569 return -EOPNOTSUPP; 570 571 err = register_perf_hw_breakpoint(bp); 572 if (err) 573 return err; 574 575 bp->destroy = bp_perf_event_destroy; 576 577 return 0; 578 } 579 580 static int hw_breakpoint_add(struct perf_event *bp, int flags) 581 { 582 if (!(flags & PERF_EF_START)) 583 bp->hw.state = PERF_HES_STOPPED; 584 585 if (is_sampling_event(bp)) { 586 bp->hw.last_period = bp->hw.sample_period; 587 perf_swevent_set_period(bp); 588 } 589 590 return arch_install_hw_breakpoint(bp); 591 } 592 593 static void hw_breakpoint_del(struct perf_event *bp, int flags) 594 { 595 arch_uninstall_hw_breakpoint(bp); 596 } 597 598 static void hw_breakpoint_start(struct perf_event *bp, int flags) 599 { 600 bp->hw.state = 0; 601 } 602 603 static void hw_breakpoint_stop(struct perf_event *bp, int flags) 604 { 605 bp->hw.state = PERF_HES_STOPPED; 606 } 607 608 static struct pmu perf_breakpoint = { 609 .task_ctx_nr = perf_sw_context, /* could eventually get its own */ 610 611 .event_init = hw_breakpoint_event_init, 612 .add = hw_breakpoint_add, 613 .del = hw_breakpoint_del, 614 .start = hw_breakpoint_start, 615 .stop = hw_breakpoint_stop, 616 .read = hw_breakpoint_pmu_read, 617 }; 618 619 int __init init_hw_breakpoint(void) 620 { 621 int cpu, err_cpu; 622 int i; 623 624 for (i = 0; i < TYPE_MAX; i++) 625 nr_slots[i] = hw_breakpoint_slots(i); 626 627 for_each_possible_cpu(cpu) { 628 for (i = 0; i < TYPE_MAX; i++) { 629 struct bp_cpuinfo *info = get_bp_info(cpu, i); 630 631 info->tsk_pinned = kcalloc(nr_slots[i], sizeof(int), 632 GFP_KERNEL); 633 if (!info->tsk_pinned) 634 goto err_alloc; 635 } 636 } 637 638 constraints_initialized = 1; 639 640 perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT); 641 642 return register_die_notifier(&hw_breakpoint_exceptions_nb); 643 644 err_alloc: 645 for_each_possible_cpu(err_cpu) { 646 for (i = 0; i < TYPE_MAX; i++) 647 kfree(get_bp_info(err_cpu, i)->tsk_pinned); 648 if (err_cpu == cpu) 649 break; 650 } 651 652 return -ENOMEM; 653 } 654 655 656