xref: /openbmc/linux/kernel/events/hw_breakpoint.c (revision bc05aa6e)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15  *
16  * Copyright (C) 2007 Alan Stern
17  * Copyright (C) IBM Corporation, 2009
18  * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
19  *
20  * Thanks to Ingo Molnar for his many suggestions.
21  *
22  * Authors: Alan Stern <stern@rowland.harvard.edu>
23  *          K.Prasad <prasad@linux.vnet.ibm.com>
24  *          Frederic Weisbecker <fweisbec@gmail.com>
25  */
26 
27 /*
28  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
29  * using the CPU's debug registers.
30  * This file contains the arch-independent routines.
31  */
32 
33 #include <linux/irqflags.h>
34 #include <linux/kallsyms.h>
35 #include <linux/notifier.h>
36 #include <linux/kprobes.h>
37 #include <linux/kdebug.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/percpu.h>
41 #include <linux/sched.h>
42 #include <linux/init.h>
43 #include <linux/slab.h>
44 #include <linux/list.h>
45 #include <linux/cpu.h>
46 #include <linux/smp.h>
47 
48 #include <linux/hw_breakpoint.h>
49 /*
50  * Constraints data
51  */
52 struct bp_cpuinfo {
53 	/* Number of pinned cpu breakpoints in a cpu */
54 	unsigned int	cpu_pinned;
55 	/* tsk_pinned[n] is the number of tasks having n+1 breakpoints */
56 	unsigned int	*tsk_pinned;
57 	/* Number of non-pinned cpu/task breakpoints in a cpu */
58 	unsigned int	flexible; /* XXX: placeholder, see fetch_this_slot() */
59 };
60 
61 static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
62 static int nr_slots[TYPE_MAX];
63 
64 static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
65 {
66 	return per_cpu_ptr(bp_cpuinfo + type, cpu);
67 }
68 
69 /* Keep track of the breakpoints attached to tasks */
70 static LIST_HEAD(bp_task_head);
71 
72 static int constraints_initialized;
73 
74 /* Gather the number of total pinned and un-pinned bp in a cpuset */
75 struct bp_busy_slots {
76 	unsigned int pinned;
77 	unsigned int flexible;
78 };
79 
80 /* Serialize accesses to the above constraints */
81 static DEFINE_MUTEX(nr_bp_mutex);
82 
83 __weak int hw_breakpoint_weight(struct perf_event *bp)
84 {
85 	return 1;
86 }
87 
88 static inline enum bp_type_idx find_slot_idx(struct perf_event *bp)
89 {
90 	if (bp->attr.bp_type & HW_BREAKPOINT_RW)
91 		return TYPE_DATA;
92 
93 	return TYPE_INST;
94 }
95 
96 /*
97  * Report the maximum number of pinned breakpoints a task
98  * have in this cpu
99  */
100 static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
101 {
102 	unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
103 	int i;
104 
105 	for (i = nr_slots[type] - 1; i >= 0; i--) {
106 		if (tsk_pinned[i] > 0)
107 			return i + 1;
108 	}
109 
110 	return 0;
111 }
112 
113 /*
114  * Count the number of breakpoints of the same type and same task.
115  * The given event must be not on the list.
116  */
117 static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
118 {
119 	struct task_struct *tsk = bp->hw.target;
120 	struct perf_event *iter;
121 	int count = 0;
122 
123 	list_for_each_entry(iter, &bp_task_head, hw.bp_list) {
124 		if (iter->hw.target == tsk &&
125 		    find_slot_idx(iter) == type &&
126 		    (iter->cpu < 0 || cpu == iter->cpu))
127 			count += hw_breakpoint_weight(iter);
128 	}
129 
130 	return count;
131 }
132 
133 static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
134 {
135 	if (bp->cpu >= 0)
136 		return cpumask_of(bp->cpu);
137 	return cpu_possible_mask;
138 }
139 
140 /*
141  * Report the number of pinned/un-pinned breakpoints we have in
142  * a given cpu (cpu > -1) or in all of them (cpu = -1).
143  */
144 static void
145 fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp,
146 		    enum bp_type_idx type)
147 {
148 	const struct cpumask *cpumask = cpumask_of_bp(bp);
149 	int cpu;
150 
151 	for_each_cpu(cpu, cpumask) {
152 		struct bp_cpuinfo *info = get_bp_info(cpu, type);
153 		int nr;
154 
155 		nr = info->cpu_pinned;
156 		if (!bp->hw.target)
157 			nr += max_task_bp_pinned(cpu, type);
158 		else
159 			nr += task_bp_pinned(cpu, bp, type);
160 
161 		if (nr > slots->pinned)
162 			slots->pinned = nr;
163 
164 		nr = info->flexible;
165 		if (nr > slots->flexible)
166 			slots->flexible = nr;
167 	}
168 }
169 
170 /*
171  * For now, continue to consider flexible as pinned, until we can
172  * ensure no flexible event can ever be scheduled before a pinned event
173  * in a same cpu.
174  */
175 static void
176 fetch_this_slot(struct bp_busy_slots *slots, int weight)
177 {
178 	slots->pinned += weight;
179 }
180 
181 /*
182  * Add a pinned breakpoint for the given task in our constraint table
183  */
184 static void toggle_bp_task_slot(struct perf_event *bp, int cpu,
185 				enum bp_type_idx type, int weight)
186 {
187 	unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
188 	int old_idx, new_idx;
189 
190 	old_idx = task_bp_pinned(cpu, bp, type) - 1;
191 	new_idx = old_idx + weight;
192 
193 	if (old_idx >= 0)
194 		tsk_pinned[old_idx]--;
195 	if (new_idx >= 0)
196 		tsk_pinned[new_idx]++;
197 }
198 
199 /*
200  * Add/remove the given breakpoint in our constraint table
201  */
202 static void
203 toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
204 	       int weight)
205 {
206 	const struct cpumask *cpumask = cpumask_of_bp(bp);
207 	int cpu;
208 
209 	if (!enable)
210 		weight = -weight;
211 
212 	/* Pinned counter cpu profiling */
213 	if (!bp->hw.target) {
214 		get_bp_info(bp->cpu, type)->cpu_pinned += weight;
215 		return;
216 	}
217 
218 	/* Pinned counter task profiling */
219 	for_each_cpu(cpu, cpumask)
220 		toggle_bp_task_slot(bp, cpu, type, weight);
221 
222 	if (enable)
223 		list_add_tail(&bp->hw.bp_list, &bp_task_head);
224 	else
225 		list_del(&bp->hw.bp_list);
226 }
227 
228 /*
229  * Function to perform processor-specific cleanup during unregistration
230  */
231 __weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
232 {
233 	/*
234 	 * A weak stub function here for those archs that don't define
235 	 * it inside arch/.../kernel/hw_breakpoint.c
236 	 */
237 }
238 
239 /*
240  * Contraints to check before allowing this new breakpoint counter:
241  *
242  *  == Non-pinned counter == (Considered as pinned for now)
243  *
244  *   - If attached to a single cpu, check:
245  *
246  *       (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
247  *           + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
248  *
249  *       -> If there are already non-pinned counters in this cpu, it means
250  *          there is already a free slot for them.
251  *          Otherwise, we check that the maximum number of per task
252  *          breakpoints (for this cpu) plus the number of per cpu breakpoint
253  *          (for this cpu) doesn't cover every registers.
254  *
255  *   - If attached to every cpus, check:
256  *
257  *       (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
258  *           + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
259  *
260  *       -> This is roughly the same, except we check the number of per cpu
261  *          bp for every cpu and we keep the max one. Same for the per tasks
262  *          breakpoints.
263  *
264  *
265  * == Pinned counter ==
266  *
267  *   - If attached to a single cpu, check:
268  *
269  *       ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
270  *            + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
271  *
272  *       -> Same checks as before. But now the info->flexible, if any, must keep
273  *          one register at least (or they will never be fed).
274  *
275  *   - If attached to every cpus, check:
276  *
277  *       ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
278  *            + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
279  */
280 static int __reserve_bp_slot(struct perf_event *bp)
281 {
282 	struct bp_busy_slots slots = {0};
283 	enum bp_type_idx type;
284 	int weight;
285 
286 	/* We couldn't initialize breakpoint constraints on boot */
287 	if (!constraints_initialized)
288 		return -ENOMEM;
289 
290 	/* Basic checks */
291 	if (bp->attr.bp_type == HW_BREAKPOINT_EMPTY ||
292 	    bp->attr.bp_type == HW_BREAKPOINT_INVALID)
293 		return -EINVAL;
294 
295 	type = find_slot_idx(bp);
296 	weight = hw_breakpoint_weight(bp);
297 
298 	fetch_bp_busy_slots(&slots, bp, type);
299 	/*
300 	 * Simulate the addition of this breakpoint to the constraints
301 	 * and see the result.
302 	 */
303 	fetch_this_slot(&slots, weight);
304 
305 	/* Flexible counters need to keep at least one slot */
306 	if (slots.pinned + (!!slots.flexible) > nr_slots[type])
307 		return -ENOSPC;
308 
309 	toggle_bp_slot(bp, true, type, weight);
310 
311 	return 0;
312 }
313 
314 int reserve_bp_slot(struct perf_event *bp)
315 {
316 	int ret;
317 
318 	mutex_lock(&nr_bp_mutex);
319 
320 	ret = __reserve_bp_slot(bp);
321 
322 	mutex_unlock(&nr_bp_mutex);
323 
324 	return ret;
325 }
326 
327 static void __release_bp_slot(struct perf_event *bp)
328 {
329 	enum bp_type_idx type;
330 	int weight;
331 
332 	type = find_slot_idx(bp);
333 	weight = hw_breakpoint_weight(bp);
334 	toggle_bp_slot(bp, false, type, weight);
335 }
336 
337 void release_bp_slot(struct perf_event *bp)
338 {
339 	mutex_lock(&nr_bp_mutex);
340 
341 	arch_unregister_hw_breakpoint(bp);
342 	__release_bp_slot(bp);
343 
344 	mutex_unlock(&nr_bp_mutex);
345 }
346 
347 /*
348  * Allow the kernel debugger to reserve breakpoint slots without
349  * taking a lock using the dbg_* variant of for the reserve and
350  * release breakpoint slots.
351  */
352 int dbg_reserve_bp_slot(struct perf_event *bp)
353 {
354 	if (mutex_is_locked(&nr_bp_mutex))
355 		return -1;
356 
357 	return __reserve_bp_slot(bp);
358 }
359 
360 int dbg_release_bp_slot(struct perf_event *bp)
361 {
362 	if (mutex_is_locked(&nr_bp_mutex))
363 		return -1;
364 
365 	__release_bp_slot(bp);
366 
367 	return 0;
368 }
369 
370 static int validate_hw_breakpoint(struct perf_event *bp)
371 {
372 	int ret;
373 
374 	ret = arch_validate_hwbkpt_settings(bp);
375 	if (ret)
376 		return ret;
377 
378 	if (arch_check_bp_in_kernelspace(bp)) {
379 		if (bp->attr.exclude_kernel)
380 			return -EINVAL;
381 		/*
382 		 * Don't let unprivileged users set a breakpoint in the trap
383 		 * path to avoid trap recursion attacks.
384 		 */
385 		if (!capable(CAP_SYS_ADMIN))
386 			return -EPERM;
387 	}
388 
389 	return 0;
390 }
391 
392 int register_perf_hw_breakpoint(struct perf_event *bp)
393 {
394 	int ret;
395 
396 	ret = reserve_bp_slot(bp);
397 	if (ret)
398 		return ret;
399 
400 	ret = validate_hw_breakpoint(bp);
401 
402 	/* if arch_validate_hwbkpt_settings() fails then release bp slot */
403 	if (ret)
404 		release_bp_slot(bp);
405 
406 	return ret;
407 }
408 
409 /**
410  * register_user_hw_breakpoint - register a hardware breakpoint for user space
411  * @attr: breakpoint attributes
412  * @triggered: callback to trigger when we hit the breakpoint
413  * @tsk: pointer to 'task_struct' of the process to which the address belongs
414  */
415 struct perf_event *
416 register_user_hw_breakpoint(struct perf_event_attr *attr,
417 			    perf_overflow_handler_t triggered,
418 			    void *context,
419 			    struct task_struct *tsk)
420 {
421 	return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
422 						context);
423 }
424 EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
425 
426 /**
427  * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
428  * @bp: the breakpoint structure to modify
429  * @attr: new breakpoint attributes
430  */
431 int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
432 {
433 	/*
434 	 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
435 	 * will not be possible to raise IPIs that invoke __perf_event_disable.
436 	 * So call the function directly after making sure we are targeting the
437 	 * current task.
438 	 */
439 	if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
440 		perf_event_disable_local(bp);
441 	else
442 		perf_event_disable(bp);
443 
444 	bp->attr.bp_addr = attr->bp_addr;
445 	bp->attr.bp_type = attr->bp_type;
446 	bp->attr.bp_len = attr->bp_len;
447 	bp->attr.disabled = 1;
448 
449 	if (!attr->disabled) {
450 		int err = validate_hw_breakpoint(bp);
451 
452 		if (err)
453 			return err;
454 
455 		perf_event_enable(bp);
456 		bp->attr.disabled = 0;
457 	}
458 
459 	return 0;
460 }
461 EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
462 
463 /**
464  * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
465  * @bp: the breakpoint structure to unregister
466  */
467 void unregister_hw_breakpoint(struct perf_event *bp)
468 {
469 	if (!bp)
470 		return;
471 	perf_event_release_kernel(bp);
472 }
473 EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
474 
475 /**
476  * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
477  * @attr: breakpoint attributes
478  * @triggered: callback to trigger when we hit the breakpoint
479  *
480  * @return a set of per_cpu pointers to perf events
481  */
482 struct perf_event * __percpu *
483 register_wide_hw_breakpoint(struct perf_event_attr *attr,
484 			    perf_overflow_handler_t triggered,
485 			    void *context)
486 {
487 	struct perf_event * __percpu *cpu_events, *bp;
488 	long err = 0;
489 	int cpu;
490 
491 	cpu_events = alloc_percpu(typeof(*cpu_events));
492 	if (!cpu_events)
493 		return (void __percpu __force *)ERR_PTR(-ENOMEM);
494 
495 	get_online_cpus();
496 	for_each_online_cpu(cpu) {
497 		bp = perf_event_create_kernel_counter(attr, cpu, NULL,
498 						      triggered, context);
499 		if (IS_ERR(bp)) {
500 			err = PTR_ERR(bp);
501 			break;
502 		}
503 
504 		per_cpu(*cpu_events, cpu) = bp;
505 	}
506 	put_online_cpus();
507 
508 	if (likely(!err))
509 		return cpu_events;
510 
511 	unregister_wide_hw_breakpoint(cpu_events);
512 	return (void __percpu __force *)ERR_PTR(err);
513 }
514 EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
515 
516 /**
517  * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
518  * @cpu_events: the per cpu set of events to unregister
519  */
520 void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
521 {
522 	int cpu;
523 
524 	for_each_possible_cpu(cpu)
525 		unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
526 
527 	free_percpu(cpu_events);
528 }
529 EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
530 
531 static struct notifier_block hw_breakpoint_exceptions_nb = {
532 	.notifier_call = hw_breakpoint_exceptions_notify,
533 	/* we need to be notified first */
534 	.priority = 0x7fffffff
535 };
536 
537 static void bp_perf_event_destroy(struct perf_event *event)
538 {
539 	release_bp_slot(event);
540 }
541 
542 static int hw_breakpoint_event_init(struct perf_event *bp)
543 {
544 	int err;
545 
546 	if (bp->attr.type != PERF_TYPE_BREAKPOINT)
547 		return -ENOENT;
548 
549 	/*
550 	 * no branch sampling for breakpoint events
551 	 */
552 	if (has_branch_stack(bp))
553 		return -EOPNOTSUPP;
554 
555 	err = register_perf_hw_breakpoint(bp);
556 	if (err)
557 		return err;
558 
559 	bp->destroy = bp_perf_event_destroy;
560 
561 	return 0;
562 }
563 
564 static int hw_breakpoint_add(struct perf_event *bp, int flags)
565 {
566 	if (!(flags & PERF_EF_START))
567 		bp->hw.state = PERF_HES_STOPPED;
568 
569 	if (is_sampling_event(bp)) {
570 		bp->hw.last_period = bp->hw.sample_period;
571 		perf_swevent_set_period(bp);
572 	}
573 
574 	return arch_install_hw_breakpoint(bp);
575 }
576 
577 static void hw_breakpoint_del(struct perf_event *bp, int flags)
578 {
579 	arch_uninstall_hw_breakpoint(bp);
580 }
581 
582 static void hw_breakpoint_start(struct perf_event *bp, int flags)
583 {
584 	bp->hw.state = 0;
585 }
586 
587 static void hw_breakpoint_stop(struct perf_event *bp, int flags)
588 {
589 	bp->hw.state = PERF_HES_STOPPED;
590 }
591 
592 static struct pmu perf_breakpoint = {
593 	.task_ctx_nr	= perf_sw_context, /* could eventually get its own */
594 
595 	.event_init	= hw_breakpoint_event_init,
596 	.add		= hw_breakpoint_add,
597 	.del		= hw_breakpoint_del,
598 	.start		= hw_breakpoint_start,
599 	.stop		= hw_breakpoint_stop,
600 	.read		= hw_breakpoint_pmu_read,
601 };
602 
603 int __init init_hw_breakpoint(void)
604 {
605 	int cpu, err_cpu;
606 	int i;
607 
608 	for (i = 0; i < TYPE_MAX; i++)
609 		nr_slots[i] = hw_breakpoint_slots(i);
610 
611 	for_each_possible_cpu(cpu) {
612 		for (i = 0; i < TYPE_MAX; i++) {
613 			struct bp_cpuinfo *info = get_bp_info(cpu, i);
614 
615 			info->tsk_pinned = kcalloc(nr_slots[i], sizeof(int),
616 							GFP_KERNEL);
617 			if (!info->tsk_pinned)
618 				goto err_alloc;
619 		}
620 	}
621 
622 	constraints_initialized = 1;
623 
624 	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
625 
626 	return register_die_notifier(&hw_breakpoint_exceptions_nb);
627 
628  err_alloc:
629 	for_each_possible_cpu(err_cpu) {
630 		for (i = 0; i < TYPE_MAX; i++)
631 			kfree(get_bp_info(err_cpu, i)->tsk_pinned);
632 		if (err_cpu == cpu)
633 			break;
634 	}
635 
636 	return -ENOMEM;
637 }
638 
639 
640