xref: /openbmc/linux/kernel/events/hw_breakpoint.c (revision 83b975b5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2007 Alan Stern
4  * Copyright (C) IBM Corporation, 2009
5  * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
6  *
7  * Thanks to Ingo Molnar for his many suggestions.
8  *
9  * Authors: Alan Stern <stern@rowland.harvard.edu>
10  *          K.Prasad <prasad@linux.vnet.ibm.com>
11  *          Frederic Weisbecker <fweisbec@gmail.com>
12  */
13 
14 /*
15  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
16  * using the CPU's debug registers.
17  * This file contains the arch-independent routines.
18  */
19 
20 #include <linux/hw_breakpoint.h>
21 
22 #include <linux/atomic.h>
23 #include <linux/bug.h>
24 #include <linux/cpu.h>
25 #include <linux/export.h>
26 #include <linux/init.h>
27 #include <linux/irqflags.h>
28 #include <linux/kdebug.h>
29 #include <linux/kernel.h>
30 #include <linux/mutex.h>
31 #include <linux/notifier.h>
32 #include <linux/percpu-rwsem.h>
33 #include <linux/percpu.h>
34 #include <linux/rhashtable.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 
38 /*
39  * Datastructure to track the total uses of N slots across tasks or CPUs;
40  * bp_slots_histogram::count[N] is the number of assigned N+1 breakpoint slots.
41  */
42 struct bp_slots_histogram {
43 #ifdef hw_breakpoint_slots
44 	atomic_t count[hw_breakpoint_slots(0)];
45 #else
46 	atomic_t *count;
47 #endif
48 };
49 
50 /*
51  * Per-CPU constraints data.
52  */
53 struct bp_cpuinfo {
54 	/* Number of pinned CPU breakpoints in a CPU. */
55 	unsigned int			cpu_pinned;
56 	/* Histogram of pinned task breakpoints in a CPU. */
57 	struct bp_slots_histogram	tsk_pinned;
58 };
59 
60 static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
61 
62 static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
63 {
64 	return per_cpu_ptr(bp_cpuinfo + type, cpu);
65 }
66 
67 /* Number of pinned CPU breakpoints globally. */
68 static struct bp_slots_histogram cpu_pinned[TYPE_MAX];
69 /* Number of pinned CPU-independent task breakpoints. */
70 static struct bp_slots_histogram tsk_pinned_all[TYPE_MAX];
71 
72 /* Keep track of the breakpoints attached to tasks */
73 static struct rhltable task_bps_ht;
74 static const struct rhashtable_params task_bps_ht_params = {
75 	.head_offset = offsetof(struct hw_perf_event, bp_list),
76 	.key_offset = offsetof(struct hw_perf_event, target),
77 	.key_len = sizeof_field(struct hw_perf_event, target),
78 	.automatic_shrinking = true,
79 };
80 
81 static bool constraints_initialized __ro_after_init;
82 
83 /*
84  * Synchronizes accesses to the per-CPU constraints; the locking rules are:
85  *
86  *  1. Atomic updates to bp_cpuinfo::tsk_pinned only require a held read-lock
87  *     (due to bp_slots_histogram::count being atomic, no update are lost).
88  *
89  *  2. Holding a write-lock is required for computations that require a
90  *     stable snapshot of all bp_cpuinfo::tsk_pinned.
91  *
92  *  3. In all other cases, non-atomic accesses require the appropriately held
93  *     lock (read-lock for read-only accesses; write-lock for reads/writes).
94  */
95 DEFINE_STATIC_PERCPU_RWSEM(bp_cpuinfo_sem);
96 
97 /*
98  * Return mutex to serialize accesses to per-task lists in task_bps_ht. Since
99  * rhltable synchronizes concurrent insertions/deletions, independent tasks may
100  * insert/delete concurrently; therefore, a mutex per task is sufficient.
101  *
102  * Uses task_struct::perf_event_mutex, to avoid extending task_struct with a
103  * hw_breakpoint-only mutex, which may be infrequently used. The caveat here is
104  * that hw_breakpoint may contend with per-task perf event list management. The
105  * assumption is that perf usecases involving hw_breakpoints are very unlikely
106  * to result in unnecessary contention.
107  */
108 static inline struct mutex *get_task_bps_mutex(struct perf_event *bp)
109 {
110 	struct task_struct *tsk = bp->hw.target;
111 
112 	return tsk ? &tsk->perf_event_mutex : NULL;
113 }
114 
115 static struct mutex *bp_constraints_lock(struct perf_event *bp)
116 {
117 	struct mutex *tsk_mtx = get_task_bps_mutex(bp);
118 
119 	if (tsk_mtx) {
120 		/*
121 		 * Fully analogous to the perf_try_init_event() nesting
122 		 * argument in the comment near perf_event_ctx_lock_nested();
123 		 * this child->perf_event_mutex cannot ever deadlock against
124 		 * the parent->perf_event_mutex usage from
125 		 * perf_event_task_{en,dis}able().
126 		 *
127 		 * Specifically, inherited events will never occur on
128 		 * ->perf_event_list.
129 		 */
130 		mutex_lock_nested(tsk_mtx, SINGLE_DEPTH_NESTING);
131 		percpu_down_read(&bp_cpuinfo_sem);
132 	} else {
133 		percpu_down_write(&bp_cpuinfo_sem);
134 	}
135 
136 	return tsk_mtx;
137 }
138 
139 static void bp_constraints_unlock(struct mutex *tsk_mtx)
140 {
141 	if (tsk_mtx) {
142 		percpu_up_read(&bp_cpuinfo_sem);
143 		mutex_unlock(tsk_mtx);
144 	} else {
145 		percpu_up_write(&bp_cpuinfo_sem);
146 	}
147 }
148 
149 static bool bp_constraints_is_locked(struct perf_event *bp)
150 {
151 	struct mutex *tsk_mtx = get_task_bps_mutex(bp);
152 
153 	return percpu_is_write_locked(&bp_cpuinfo_sem) ||
154 	       (tsk_mtx ? mutex_is_locked(tsk_mtx) :
155 			  percpu_is_read_locked(&bp_cpuinfo_sem));
156 }
157 
158 static inline void assert_bp_constraints_lock_held(struct perf_event *bp)
159 {
160 	struct mutex *tsk_mtx = get_task_bps_mutex(bp);
161 
162 	if (tsk_mtx)
163 		lockdep_assert_held(tsk_mtx);
164 	lockdep_assert_held(&bp_cpuinfo_sem);
165 }
166 
167 #ifdef hw_breakpoint_slots
168 /*
169  * Number of breakpoint slots is constant, and the same for all types.
170  */
171 static_assert(hw_breakpoint_slots(TYPE_INST) == hw_breakpoint_slots(TYPE_DATA));
172 static inline int hw_breakpoint_slots_cached(int type)	{ return hw_breakpoint_slots(type); }
173 static inline int init_breakpoint_slots(void)		{ return 0; }
174 #else
175 /*
176  * Dynamic number of breakpoint slots.
177  */
178 static int __nr_bp_slots[TYPE_MAX] __ro_after_init;
179 
180 static inline int hw_breakpoint_slots_cached(int type)
181 {
182 	return __nr_bp_slots[type];
183 }
184 
185 static __init bool
186 bp_slots_histogram_alloc(struct bp_slots_histogram *hist, enum bp_type_idx type)
187 {
188 	hist->count = kcalloc(hw_breakpoint_slots_cached(type), sizeof(*hist->count), GFP_KERNEL);
189 	return hist->count;
190 }
191 
192 static __init void bp_slots_histogram_free(struct bp_slots_histogram *hist)
193 {
194 	kfree(hist->count);
195 }
196 
197 static __init int init_breakpoint_slots(void)
198 {
199 	int i, cpu, err_cpu;
200 
201 	for (i = 0; i < TYPE_MAX; i++)
202 		__nr_bp_slots[i] = hw_breakpoint_slots(i);
203 
204 	for_each_possible_cpu(cpu) {
205 		for (i = 0; i < TYPE_MAX; i++) {
206 			struct bp_cpuinfo *info = get_bp_info(cpu, i);
207 
208 			if (!bp_slots_histogram_alloc(&info->tsk_pinned, i))
209 				goto err;
210 		}
211 	}
212 	for (i = 0; i < TYPE_MAX; i++) {
213 		if (!bp_slots_histogram_alloc(&cpu_pinned[i], i))
214 			goto err;
215 		if (!bp_slots_histogram_alloc(&tsk_pinned_all[i], i))
216 			goto err;
217 	}
218 
219 	return 0;
220 err:
221 	for_each_possible_cpu(err_cpu) {
222 		for (i = 0; i < TYPE_MAX; i++)
223 			bp_slots_histogram_free(&get_bp_info(err_cpu, i)->tsk_pinned);
224 		if (err_cpu == cpu)
225 			break;
226 	}
227 	for (i = 0; i < TYPE_MAX; i++) {
228 		bp_slots_histogram_free(&cpu_pinned[i]);
229 		bp_slots_histogram_free(&tsk_pinned_all[i]);
230 	}
231 
232 	return -ENOMEM;
233 }
234 #endif
235 
236 static inline void
237 bp_slots_histogram_add(struct bp_slots_histogram *hist, int old, int val)
238 {
239 	const int old_idx = old - 1;
240 	const int new_idx = old_idx + val;
241 
242 	if (old_idx >= 0)
243 		WARN_ON(atomic_dec_return_relaxed(&hist->count[old_idx]) < 0);
244 	if (new_idx >= 0)
245 		WARN_ON(atomic_inc_return_relaxed(&hist->count[new_idx]) < 0);
246 }
247 
248 static int
249 bp_slots_histogram_max(struct bp_slots_histogram *hist, enum bp_type_idx type)
250 {
251 	for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
252 		const int count = atomic_read(&hist->count[i]);
253 
254 		/* Catch unexpected writers; we want a stable snapshot. */
255 		ASSERT_EXCLUSIVE_WRITER(hist->count[i]);
256 		if (count > 0)
257 			return i + 1;
258 		WARN(count < 0, "inconsistent breakpoint slots histogram");
259 	}
260 
261 	return 0;
262 }
263 
264 static int
265 bp_slots_histogram_max_merge(struct bp_slots_histogram *hist1, struct bp_slots_histogram *hist2,
266 			     enum bp_type_idx type)
267 {
268 	for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
269 		const int count1 = atomic_read(&hist1->count[i]);
270 		const int count2 = atomic_read(&hist2->count[i]);
271 
272 		/* Catch unexpected writers; we want a stable snapshot. */
273 		ASSERT_EXCLUSIVE_WRITER(hist1->count[i]);
274 		ASSERT_EXCLUSIVE_WRITER(hist2->count[i]);
275 		if (count1 + count2 > 0)
276 			return i + 1;
277 		WARN(count1 < 0, "inconsistent breakpoint slots histogram");
278 		WARN(count2 < 0, "inconsistent breakpoint slots histogram");
279 	}
280 
281 	return 0;
282 }
283 
284 #ifndef hw_breakpoint_weight
285 static inline int hw_breakpoint_weight(struct perf_event *bp)
286 {
287 	return 1;
288 }
289 #endif
290 
291 static inline enum bp_type_idx find_slot_idx(u64 bp_type)
292 {
293 	if (bp_type & HW_BREAKPOINT_RW)
294 		return TYPE_DATA;
295 
296 	return TYPE_INST;
297 }
298 
299 /*
300  * Return the maximum number of pinned breakpoints a task has in this CPU.
301  */
302 static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
303 {
304 	struct bp_slots_histogram *tsk_pinned = &get_bp_info(cpu, type)->tsk_pinned;
305 
306 	/*
307 	 * At this point we want to have acquired the bp_cpuinfo_sem as a
308 	 * writer to ensure that there are no concurrent writers in
309 	 * toggle_bp_task_slot() to tsk_pinned, and we get a stable snapshot.
310 	 */
311 	lockdep_assert_held_write(&bp_cpuinfo_sem);
312 	return bp_slots_histogram_max_merge(tsk_pinned, &tsk_pinned_all[type], type);
313 }
314 
315 /*
316  * Count the number of breakpoints of the same type and same task.
317  * The given event must be not on the list.
318  *
319  * If @cpu is -1, but the result of task_bp_pinned() is not CPU-independent,
320  * returns a negative value.
321  */
322 static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
323 {
324 	struct rhlist_head *head, *pos;
325 	struct perf_event *iter;
326 	int count = 0;
327 
328 	/*
329 	 * We need a stable snapshot of the per-task breakpoint list.
330 	 */
331 	assert_bp_constraints_lock_held(bp);
332 
333 	rcu_read_lock();
334 	head = rhltable_lookup(&task_bps_ht, &bp->hw.target, task_bps_ht_params);
335 	if (!head)
336 		goto out;
337 
338 	rhl_for_each_entry_rcu(iter, pos, head, hw.bp_list) {
339 		if (find_slot_idx(iter->attr.bp_type) != type)
340 			continue;
341 
342 		if (iter->cpu >= 0) {
343 			if (cpu == -1) {
344 				count = -1;
345 				goto out;
346 			} else if (cpu != iter->cpu)
347 				continue;
348 		}
349 
350 		count += hw_breakpoint_weight(iter);
351 	}
352 
353 out:
354 	rcu_read_unlock();
355 	return count;
356 }
357 
358 static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
359 {
360 	if (bp->cpu >= 0)
361 		return cpumask_of(bp->cpu);
362 	return cpu_possible_mask;
363 }
364 
365 /*
366  * Returns the max pinned breakpoint slots in a given
367  * CPU (cpu > -1) or across all of them (cpu = -1).
368  */
369 static int
370 max_bp_pinned_slots(struct perf_event *bp, enum bp_type_idx type)
371 {
372 	const struct cpumask *cpumask = cpumask_of_bp(bp);
373 	int pinned_slots = 0;
374 	int cpu;
375 
376 	if (bp->hw.target && bp->cpu < 0) {
377 		int max_pinned = task_bp_pinned(-1, bp, type);
378 
379 		if (max_pinned >= 0) {
380 			/*
381 			 * Fast path: task_bp_pinned() is CPU-independent and
382 			 * returns the same value for any CPU.
383 			 */
384 			max_pinned += bp_slots_histogram_max(&cpu_pinned[type], type);
385 			return max_pinned;
386 		}
387 	}
388 
389 	for_each_cpu(cpu, cpumask) {
390 		struct bp_cpuinfo *info = get_bp_info(cpu, type);
391 		int nr;
392 
393 		nr = info->cpu_pinned;
394 		if (!bp->hw.target)
395 			nr += max_task_bp_pinned(cpu, type);
396 		else
397 			nr += task_bp_pinned(cpu, bp, type);
398 
399 		pinned_slots = max(nr, pinned_slots);
400 	}
401 
402 	return pinned_slots;
403 }
404 
405 /*
406  * Add/remove the given breakpoint in our constraint table
407  */
408 static int
409 toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight)
410 {
411 	int cpu, next_tsk_pinned;
412 
413 	if (!enable)
414 		weight = -weight;
415 
416 	if (!bp->hw.target) {
417 		/*
418 		 * Update the pinned CPU slots, in per-CPU bp_cpuinfo and in the
419 		 * global histogram.
420 		 */
421 		struct bp_cpuinfo *info = get_bp_info(bp->cpu, type);
422 
423 		lockdep_assert_held_write(&bp_cpuinfo_sem);
424 		bp_slots_histogram_add(&cpu_pinned[type], info->cpu_pinned, weight);
425 		info->cpu_pinned += weight;
426 		return 0;
427 	}
428 
429 	/*
430 	 * If bp->hw.target, tsk_pinned is only modified, but not used
431 	 * otherwise. We can permit concurrent updates as long as there are no
432 	 * other uses: having acquired bp_cpuinfo_sem as a reader allows
433 	 * concurrent updates here. Uses of tsk_pinned will require acquiring
434 	 * bp_cpuinfo_sem as a writer to stabilize tsk_pinned's value.
435 	 */
436 	lockdep_assert_held_read(&bp_cpuinfo_sem);
437 
438 	/*
439 	 * Update the pinned task slots, in per-CPU bp_cpuinfo and in the global
440 	 * histogram. We need to take care of 4 cases:
441 	 *
442 	 *  1. This breakpoint targets all CPUs (cpu < 0), and there may only
443 	 *     exist other task breakpoints targeting all CPUs. In this case we
444 	 *     can simply update the global slots histogram.
445 	 *
446 	 *  2. This breakpoint targets a specific CPU (cpu >= 0), but there may
447 	 *     only exist other task breakpoints targeting all CPUs.
448 	 *
449 	 *     a. On enable: remove the existing breakpoints from the global
450 	 *        slots histogram and use the per-CPU histogram.
451 	 *
452 	 *     b. On disable: re-insert the existing breakpoints into the global
453 	 *        slots histogram and remove from per-CPU histogram.
454 	 *
455 	 *  3. Some other existing task breakpoints target specific CPUs. Only
456 	 *     update the per-CPU slots histogram.
457 	 */
458 
459 	if (!enable) {
460 		/*
461 		 * Remove before updating histograms so we can determine if this
462 		 * was the last task breakpoint for a specific CPU.
463 		 */
464 		int ret = rhltable_remove(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
465 
466 		if (ret)
467 			return ret;
468 	}
469 	/*
470 	 * Note: If !enable, next_tsk_pinned will not count the to-be-removed breakpoint.
471 	 */
472 	next_tsk_pinned = task_bp_pinned(-1, bp, type);
473 
474 	if (next_tsk_pinned >= 0) {
475 		if (bp->cpu < 0) { /* Case 1: fast path */
476 			if (!enable)
477 				next_tsk_pinned += hw_breakpoint_weight(bp);
478 			bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned, weight);
479 		} else if (enable) { /* Case 2.a: slow path */
480 			/* Add existing to per-CPU histograms. */
481 			for_each_possible_cpu(cpu) {
482 				bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
483 						       0, next_tsk_pinned);
484 			}
485 			/* Add this first CPU-pinned task breakpoint. */
486 			bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
487 					       next_tsk_pinned, weight);
488 			/* Rebalance global task pinned histogram. */
489 			bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned,
490 					       -next_tsk_pinned);
491 		} else { /* Case 2.b: slow path */
492 			/* Remove this last CPU-pinned task breakpoint. */
493 			bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
494 					       next_tsk_pinned + hw_breakpoint_weight(bp), weight);
495 			/* Remove all from per-CPU histograms. */
496 			for_each_possible_cpu(cpu) {
497 				bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
498 						       next_tsk_pinned, -next_tsk_pinned);
499 			}
500 			/* Rebalance global task pinned histogram. */
501 			bp_slots_histogram_add(&tsk_pinned_all[type], 0, next_tsk_pinned);
502 		}
503 	} else { /* Case 3: slow path */
504 		const struct cpumask *cpumask = cpumask_of_bp(bp);
505 
506 		for_each_cpu(cpu, cpumask) {
507 			next_tsk_pinned = task_bp_pinned(cpu, bp, type);
508 			if (!enable)
509 				next_tsk_pinned += hw_breakpoint_weight(bp);
510 			bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
511 					       next_tsk_pinned, weight);
512 		}
513 	}
514 
515 	/*
516 	 * Readers want a stable snapshot of the per-task breakpoint list.
517 	 */
518 	assert_bp_constraints_lock_held(bp);
519 
520 	if (enable)
521 		return rhltable_insert(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
522 
523 	return 0;
524 }
525 
526 __weak int arch_reserve_bp_slot(struct perf_event *bp)
527 {
528 	return 0;
529 }
530 
531 __weak void arch_release_bp_slot(struct perf_event *bp)
532 {
533 }
534 
535 /*
536  * Function to perform processor-specific cleanup during unregistration
537  */
538 __weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
539 {
540 	/*
541 	 * A weak stub function here for those archs that don't define
542 	 * it inside arch/.../kernel/hw_breakpoint.c
543 	 */
544 }
545 
546 /*
547  * Constraints to check before allowing this new breakpoint counter.
548  *
549  * Note: Flexible breakpoints are currently unimplemented, but outlined in the
550  * below algorithm for completeness.  The implementation treats flexible as
551  * pinned due to no guarantee that we currently always schedule flexible events
552  * before a pinned event in a same CPU.
553  *
554  *  == Non-pinned counter == (Considered as pinned for now)
555  *
556  *   - If attached to a single cpu, check:
557  *
558  *       (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
559  *           + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
560  *
561  *       -> If there are already non-pinned counters in this cpu, it means
562  *          there is already a free slot for them.
563  *          Otherwise, we check that the maximum number of per task
564  *          breakpoints (for this cpu) plus the number of per cpu breakpoint
565  *          (for this cpu) doesn't cover every registers.
566  *
567  *   - If attached to every cpus, check:
568  *
569  *       (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
570  *           + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
571  *
572  *       -> This is roughly the same, except we check the number of per cpu
573  *          bp for every cpu and we keep the max one. Same for the per tasks
574  *          breakpoints.
575  *
576  *
577  * == Pinned counter ==
578  *
579  *   - If attached to a single cpu, check:
580  *
581  *       ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
582  *            + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
583  *
584  *       -> Same checks as before. But now the info->flexible, if any, must keep
585  *          one register at least (or they will never be fed).
586  *
587  *   - If attached to every cpus, check:
588  *
589  *       ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
590  *            + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
591  */
592 static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
593 {
594 	enum bp_type_idx type;
595 	int max_pinned_slots;
596 	int weight;
597 	int ret;
598 
599 	/* We couldn't initialize breakpoint constraints on boot */
600 	if (!constraints_initialized)
601 		return -ENOMEM;
602 
603 	/* Basic checks */
604 	if (bp_type == HW_BREAKPOINT_EMPTY ||
605 	    bp_type == HW_BREAKPOINT_INVALID)
606 		return -EINVAL;
607 
608 	type = find_slot_idx(bp_type);
609 	weight = hw_breakpoint_weight(bp);
610 
611 	/* Check if this new breakpoint can be satisfied across all CPUs. */
612 	max_pinned_slots = max_bp_pinned_slots(bp, type) + weight;
613 	if (max_pinned_slots > hw_breakpoint_slots_cached(type))
614 		return -ENOSPC;
615 
616 	ret = arch_reserve_bp_slot(bp);
617 	if (ret)
618 		return ret;
619 
620 	return toggle_bp_slot(bp, true, type, weight);
621 }
622 
623 int reserve_bp_slot(struct perf_event *bp)
624 {
625 	struct mutex *mtx = bp_constraints_lock(bp);
626 	int ret = __reserve_bp_slot(bp, bp->attr.bp_type);
627 
628 	bp_constraints_unlock(mtx);
629 	return ret;
630 }
631 
632 static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
633 {
634 	enum bp_type_idx type;
635 	int weight;
636 
637 	arch_release_bp_slot(bp);
638 
639 	type = find_slot_idx(bp_type);
640 	weight = hw_breakpoint_weight(bp);
641 	WARN_ON(toggle_bp_slot(bp, false, type, weight));
642 }
643 
644 void release_bp_slot(struct perf_event *bp)
645 {
646 	struct mutex *mtx = bp_constraints_lock(bp);
647 
648 	arch_unregister_hw_breakpoint(bp);
649 	__release_bp_slot(bp, bp->attr.bp_type);
650 	bp_constraints_unlock(mtx);
651 }
652 
653 static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
654 {
655 	int err;
656 
657 	__release_bp_slot(bp, old_type);
658 
659 	err = __reserve_bp_slot(bp, new_type);
660 	if (err) {
661 		/*
662 		 * Reserve the old_type slot back in case
663 		 * there's no space for the new type.
664 		 *
665 		 * This must succeed, because we just released
666 		 * the old_type slot in the __release_bp_slot
667 		 * call above. If not, something is broken.
668 		 */
669 		WARN_ON(__reserve_bp_slot(bp, old_type));
670 	}
671 
672 	return err;
673 }
674 
675 static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
676 {
677 	struct mutex *mtx = bp_constraints_lock(bp);
678 	int ret = __modify_bp_slot(bp, old_type, new_type);
679 
680 	bp_constraints_unlock(mtx);
681 	return ret;
682 }
683 
684 /*
685  * Allow the kernel debugger to reserve breakpoint slots without
686  * taking a lock using the dbg_* variant of for the reserve and
687  * release breakpoint slots.
688  */
689 int dbg_reserve_bp_slot(struct perf_event *bp)
690 {
691 	int ret;
692 
693 	if (bp_constraints_is_locked(bp))
694 		return -1;
695 
696 	/* Locks aren't held; disable lockdep assert checking. */
697 	lockdep_off();
698 	ret = __reserve_bp_slot(bp, bp->attr.bp_type);
699 	lockdep_on();
700 
701 	return ret;
702 }
703 
704 int dbg_release_bp_slot(struct perf_event *bp)
705 {
706 	if (bp_constraints_is_locked(bp))
707 		return -1;
708 
709 	/* Locks aren't held; disable lockdep assert checking. */
710 	lockdep_off();
711 	__release_bp_slot(bp, bp->attr.bp_type);
712 	lockdep_on();
713 
714 	return 0;
715 }
716 
717 static int hw_breakpoint_parse(struct perf_event *bp,
718 			       const struct perf_event_attr *attr,
719 			       struct arch_hw_breakpoint *hw)
720 {
721 	int err;
722 
723 	err = hw_breakpoint_arch_parse(bp, attr, hw);
724 	if (err)
725 		return err;
726 
727 	if (arch_check_bp_in_kernelspace(hw)) {
728 		if (attr->exclude_kernel)
729 			return -EINVAL;
730 		/*
731 		 * Don't let unprivileged users set a breakpoint in the trap
732 		 * path to avoid trap recursion attacks.
733 		 */
734 		if (!capable(CAP_SYS_ADMIN))
735 			return -EPERM;
736 	}
737 
738 	return 0;
739 }
740 
741 int register_perf_hw_breakpoint(struct perf_event *bp)
742 {
743 	struct arch_hw_breakpoint hw = { };
744 	int err;
745 
746 	err = reserve_bp_slot(bp);
747 	if (err)
748 		return err;
749 
750 	err = hw_breakpoint_parse(bp, &bp->attr, &hw);
751 	if (err) {
752 		release_bp_slot(bp);
753 		return err;
754 	}
755 
756 	bp->hw.info = hw;
757 
758 	return 0;
759 }
760 
761 /**
762  * register_user_hw_breakpoint - register a hardware breakpoint for user space
763  * @attr: breakpoint attributes
764  * @triggered: callback to trigger when we hit the breakpoint
765  * @context: context data could be used in the triggered callback
766  * @tsk: pointer to 'task_struct' of the process to which the address belongs
767  */
768 struct perf_event *
769 register_user_hw_breakpoint(struct perf_event_attr *attr,
770 			    perf_overflow_handler_t triggered,
771 			    void *context,
772 			    struct task_struct *tsk)
773 {
774 	return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
775 						context);
776 }
777 EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
778 
779 static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
780 				    struct perf_event_attr *from)
781 {
782 	to->bp_addr = from->bp_addr;
783 	to->bp_type = from->bp_type;
784 	to->bp_len  = from->bp_len;
785 	to->disabled = from->disabled;
786 }
787 
788 int
789 modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
790 			        bool check)
791 {
792 	struct arch_hw_breakpoint hw = { };
793 	int err;
794 
795 	err = hw_breakpoint_parse(bp, attr, &hw);
796 	if (err)
797 		return err;
798 
799 	if (check) {
800 		struct perf_event_attr old_attr;
801 
802 		old_attr = bp->attr;
803 		hw_breakpoint_copy_attr(&old_attr, attr);
804 		if (memcmp(&old_attr, attr, sizeof(*attr)))
805 			return -EINVAL;
806 	}
807 
808 	if (bp->attr.bp_type != attr->bp_type) {
809 		err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
810 		if (err)
811 			return err;
812 	}
813 
814 	hw_breakpoint_copy_attr(&bp->attr, attr);
815 	bp->hw.info = hw;
816 
817 	return 0;
818 }
819 
820 /**
821  * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
822  * @bp: the breakpoint structure to modify
823  * @attr: new breakpoint attributes
824  */
825 int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
826 {
827 	int err;
828 
829 	/*
830 	 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
831 	 * will not be possible to raise IPIs that invoke __perf_event_disable.
832 	 * So call the function directly after making sure we are targeting the
833 	 * current task.
834 	 */
835 	if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
836 		perf_event_disable_local(bp);
837 	else
838 		perf_event_disable(bp);
839 
840 	err = modify_user_hw_breakpoint_check(bp, attr, false);
841 
842 	if (!bp->attr.disabled)
843 		perf_event_enable(bp);
844 
845 	return err;
846 }
847 EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
848 
849 /**
850  * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
851  * @bp: the breakpoint structure to unregister
852  */
853 void unregister_hw_breakpoint(struct perf_event *bp)
854 {
855 	if (!bp)
856 		return;
857 	perf_event_release_kernel(bp);
858 }
859 EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
860 
861 /**
862  * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
863  * @attr: breakpoint attributes
864  * @triggered: callback to trigger when we hit the breakpoint
865  * @context: context data could be used in the triggered callback
866  *
867  * @return a set of per_cpu pointers to perf events
868  */
869 struct perf_event * __percpu *
870 register_wide_hw_breakpoint(struct perf_event_attr *attr,
871 			    perf_overflow_handler_t triggered,
872 			    void *context)
873 {
874 	struct perf_event * __percpu *cpu_events, *bp;
875 	long err = 0;
876 	int cpu;
877 
878 	cpu_events = alloc_percpu(typeof(*cpu_events));
879 	if (!cpu_events)
880 		return (void __percpu __force *)ERR_PTR(-ENOMEM);
881 
882 	cpus_read_lock();
883 	for_each_online_cpu(cpu) {
884 		bp = perf_event_create_kernel_counter(attr, cpu, NULL,
885 						      triggered, context);
886 		if (IS_ERR(bp)) {
887 			err = PTR_ERR(bp);
888 			break;
889 		}
890 
891 		per_cpu(*cpu_events, cpu) = bp;
892 	}
893 	cpus_read_unlock();
894 
895 	if (likely(!err))
896 		return cpu_events;
897 
898 	unregister_wide_hw_breakpoint(cpu_events);
899 	return (void __percpu __force *)ERR_PTR(err);
900 }
901 EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
902 
903 /**
904  * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
905  * @cpu_events: the per cpu set of events to unregister
906  */
907 void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
908 {
909 	int cpu;
910 
911 	for_each_possible_cpu(cpu)
912 		unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
913 
914 	free_percpu(cpu_events);
915 }
916 EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
917 
918 /**
919  * hw_breakpoint_is_used - check if breakpoints are currently used
920  *
921  * Returns: true if breakpoints are used, false otherwise.
922  */
923 bool hw_breakpoint_is_used(void)
924 {
925 	int cpu;
926 
927 	if (!constraints_initialized)
928 		return false;
929 
930 	for_each_possible_cpu(cpu) {
931 		for (int type = 0; type < TYPE_MAX; ++type) {
932 			struct bp_cpuinfo *info = get_bp_info(cpu, type);
933 
934 			if (info->cpu_pinned)
935 				return true;
936 
937 			for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
938 				if (atomic_read(&info->tsk_pinned.count[slot]))
939 					return true;
940 			}
941 		}
942 	}
943 
944 	for (int type = 0; type < TYPE_MAX; ++type) {
945 		for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
946 			/*
947 			 * Warn, because if there are CPU pinned counters,
948 			 * should never get here; bp_cpuinfo::cpu_pinned should
949 			 * be consistent with the global cpu_pinned histogram.
950 			 */
951 			if (WARN_ON(atomic_read(&cpu_pinned[type].count[slot])))
952 				return true;
953 
954 			if (atomic_read(&tsk_pinned_all[type].count[slot]))
955 				return true;
956 		}
957 	}
958 
959 	return false;
960 }
961 
962 static struct notifier_block hw_breakpoint_exceptions_nb = {
963 	.notifier_call = hw_breakpoint_exceptions_notify,
964 	/* we need to be notified first */
965 	.priority = 0x7fffffff
966 };
967 
968 static void bp_perf_event_destroy(struct perf_event *event)
969 {
970 	release_bp_slot(event);
971 }
972 
973 static int hw_breakpoint_event_init(struct perf_event *bp)
974 {
975 	int err;
976 
977 	if (bp->attr.type != PERF_TYPE_BREAKPOINT)
978 		return -ENOENT;
979 
980 	/*
981 	 * no branch sampling for breakpoint events
982 	 */
983 	if (has_branch_stack(bp))
984 		return -EOPNOTSUPP;
985 
986 	err = register_perf_hw_breakpoint(bp);
987 	if (err)
988 		return err;
989 
990 	bp->destroy = bp_perf_event_destroy;
991 
992 	return 0;
993 }
994 
995 static int hw_breakpoint_add(struct perf_event *bp, int flags)
996 {
997 	if (!(flags & PERF_EF_START))
998 		bp->hw.state = PERF_HES_STOPPED;
999 
1000 	if (is_sampling_event(bp)) {
1001 		bp->hw.last_period = bp->hw.sample_period;
1002 		perf_swevent_set_period(bp);
1003 	}
1004 
1005 	return arch_install_hw_breakpoint(bp);
1006 }
1007 
1008 static void hw_breakpoint_del(struct perf_event *bp, int flags)
1009 {
1010 	arch_uninstall_hw_breakpoint(bp);
1011 }
1012 
1013 static void hw_breakpoint_start(struct perf_event *bp, int flags)
1014 {
1015 	bp->hw.state = 0;
1016 }
1017 
1018 static void hw_breakpoint_stop(struct perf_event *bp, int flags)
1019 {
1020 	bp->hw.state = PERF_HES_STOPPED;
1021 }
1022 
1023 static struct pmu perf_breakpoint = {
1024 	.task_ctx_nr	= perf_sw_context, /* could eventually get its own */
1025 
1026 	.event_init	= hw_breakpoint_event_init,
1027 	.add		= hw_breakpoint_add,
1028 	.del		= hw_breakpoint_del,
1029 	.start		= hw_breakpoint_start,
1030 	.stop		= hw_breakpoint_stop,
1031 	.read		= hw_breakpoint_pmu_read,
1032 };
1033 
1034 int __init init_hw_breakpoint(void)
1035 {
1036 	int ret;
1037 
1038 	ret = rhltable_init(&task_bps_ht, &task_bps_ht_params);
1039 	if (ret)
1040 		return ret;
1041 
1042 	ret = init_breakpoint_slots();
1043 	if (ret)
1044 		return ret;
1045 
1046 	constraints_initialized = true;
1047 
1048 	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
1049 
1050 	return register_die_notifier(&hw_breakpoint_exceptions_nb);
1051 }
1052