xref: /openbmc/linux/kernel/events/hw_breakpoint.c (revision 2359ccdd)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15  *
16  * Copyright (C) 2007 Alan Stern
17  * Copyright (C) IBM Corporation, 2009
18  * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
19  *
20  * Thanks to Ingo Molnar for his many suggestions.
21  *
22  * Authors: Alan Stern <stern@rowland.harvard.edu>
23  *          K.Prasad <prasad@linux.vnet.ibm.com>
24  *          Frederic Weisbecker <fweisbec@gmail.com>
25  */
26 
27 /*
28  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
29  * using the CPU's debug registers.
30  * This file contains the arch-independent routines.
31  */
32 
33 #include <linux/irqflags.h>
34 #include <linux/kallsyms.h>
35 #include <linux/notifier.h>
36 #include <linux/kprobes.h>
37 #include <linux/kdebug.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/percpu.h>
41 #include <linux/sched.h>
42 #include <linux/init.h>
43 #include <linux/slab.h>
44 #include <linux/list.h>
45 #include <linux/cpu.h>
46 #include <linux/smp.h>
47 #include <linux/bug.h>
48 
49 #include <linux/hw_breakpoint.h>
50 /*
51  * Constraints data
52  */
53 struct bp_cpuinfo {
54 	/* Number of pinned cpu breakpoints in a cpu */
55 	unsigned int	cpu_pinned;
56 	/* tsk_pinned[n] is the number of tasks having n+1 breakpoints */
57 	unsigned int	*tsk_pinned;
58 	/* Number of non-pinned cpu/task breakpoints in a cpu */
59 	unsigned int	flexible; /* XXX: placeholder, see fetch_this_slot() */
60 };
61 
62 static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
63 static int nr_slots[TYPE_MAX];
64 
65 static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
66 {
67 	return per_cpu_ptr(bp_cpuinfo + type, cpu);
68 }
69 
70 /* Keep track of the breakpoints attached to tasks */
71 static LIST_HEAD(bp_task_head);
72 
73 static int constraints_initialized;
74 
75 /* Gather the number of total pinned and un-pinned bp in a cpuset */
76 struct bp_busy_slots {
77 	unsigned int pinned;
78 	unsigned int flexible;
79 };
80 
81 /* Serialize accesses to the above constraints */
82 static DEFINE_MUTEX(nr_bp_mutex);
83 
84 __weak int hw_breakpoint_weight(struct perf_event *bp)
85 {
86 	return 1;
87 }
88 
89 static inline enum bp_type_idx find_slot_idx(u64 bp_type)
90 {
91 	if (bp_type & HW_BREAKPOINT_RW)
92 		return TYPE_DATA;
93 
94 	return TYPE_INST;
95 }
96 
97 /*
98  * Report the maximum number of pinned breakpoints a task
99  * have in this cpu
100  */
101 static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
102 {
103 	unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
104 	int i;
105 
106 	for (i = nr_slots[type] - 1; i >= 0; i--) {
107 		if (tsk_pinned[i] > 0)
108 			return i + 1;
109 	}
110 
111 	return 0;
112 }
113 
114 /*
115  * Count the number of breakpoints of the same type and same task.
116  * The given event must be not on the list.
117  */
118 static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
119 {
120 	struct task_struct *tsk = bp->hw.target;
121 	struct perf_event *iter;
122 	int count = 0;
123 
124 	list_for_each_entry(iter, &bp_task_head, hw.bp_list) {
125 		if (iter->hw.target == tsk &&
126 		    find_slot_idx(iter->attr.bp_type) == type &&
127 		    (iter->cpu < 0 || cpu == iter->cpu))
128 			count += hw_breakpoint_weight(iter);
129 	}
130 
131 	return count;
132 }
133 
134 static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
135 {
136 	if (bp->cpu >= 0)
137 		return cpumask_of(bp->cpu);
138 	return cpu_possible_mask;
139 }
140 
141 /*
142  * Report the number of pinned/un-pinned breakpoints we have in
143  * a given cpu (cpu > -1) or in all of them (cpu = -1).
144  */
145 static void
146 fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp,
147 		    enum bp_type_idx type)
148 {
149 	const struct cpumask *cpumask = cpumask_of_bp(bp);
150 	int cpu;
151 
152 	for_each_cpu(cpu, cpumask) {
153 		struct bp_cpuinfo *info = get_bp_info(cpu, type);
154 		int nr;
155 
156 		nr = info->cpu_pinned;
157 		if (!bp->hw.target)
158 			nr += max_task_bp_pinned(cpu, type);
159 		else
160 			nr += task_bp_pinned(cpu, bp, type);
161 
162 		if (nr > slots->pinned)
163 			slots->pinned = nr;
164 
165 		nr = info->flexible;
166 		if (nr > slots->flexible)
167 			slots->flexible = nr;
168 	}
169 }
170 
171 /*
172  * For now, continue to consider flexible as pinned, until we can
173  * ensure no flexible event can ever be scheduled before a pinned event
174  * in a same cpu.
175  */
176 static void
177 fetch_this_slot(struct bp_busy_slots *slots, int weight)
178 {
179 	slots->pinned += weight;
180 }
181 
182 /*
183  * Add a pinned breakpoint for the given task in our constraint table
184  */
185 static void toggle_bp_task_slot(struct perf_event *bp, int cpu,
186 				enum bp_type_idx type, int weight)
187 {
188 	unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
189 	int old_idx, new_idx;
190 
191 	old_idx = task_bp_pinned(cpu, bp, type) - 1;
192 	new_idx = old_idx + weight;
193 
194 	if (old_idx >= 0)
195 		tsk_pinned[old_idx]--;
196 	if (new_idx >= 0)
197 		tsk_pinned[new_idx]++;
198 }
199 
200 /*
201  * Add/remove the given breakpoint in our constraint table
202  */
203 static void
204 toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
205 	       int weight)
206 {
207 	const struct cpumask *cpumask = cpumask_of_bp(bp);
208 	int cpu;
209 
210 	if (!enable)
211 		weight = -weight;
212 
213 	/* Pinned counter cpu profiling */
214 	if (!bp->hw.target) {
215 		get_bp_info(bp->cpu, type)->cpu_pinned += weight;
216 		return;
217 	}
218 
219 	/* Pinned counter task profiling */
220 	for_each_cpu(cpu, cpumask)
221 		toggle_bp_task_slot(bp, cpu, type, weight);
222 
223 	if (enable)
224 		list_add_tail(&bp->hw.bp_list, &bp_task_head);
225 	else
226 		list_del(&bp->hw.bp_list);
227 }
228 
229 /*
230  * Function to perform processor-specific cleanup during unregistration
231  */
232 __weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
233 {
234 	/*
235 	 * A weak stub function here for those archs that don't define
236 	 * it inside arch/.../kernel/hw_breakpoint.c
237 	 */
238 }
239 
240 /*
241  * Contraints to check before allowing this new breakpoint counter:
242  *
243  *  == Non-pinned counter == (Considered as pinned for now)
244  *
245  *   - If attached to a single cpu, check:
246  *
247  *       (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
248  *           + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
249  *
250  *       -> If there are already non-pinned counters in this cpu, it means
251  *          there is already a free slot for them.
252  *          Otherwise, we check that the maximum number of per task
253  *          breakpoints (for this cpu) plus the number of per cpu breakpoint
254  *          (for this cpu) doesn't cover every registers.
255  *
256  *   - If attached to every cpus, check:
257  *
258  *       (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
259  *           + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
260  *
261  *       -> This is roughly the same, except we check the number of per cpu
262  *          bp for every cpu and we keep the max one. Same for the per tasks
263  *          breakpoints.
264  *
265  *
266  * == Pinned counter ==
267  *
268  *   - If attached to a single cpu, check:
269  *
270  *       ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
271  *            + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
272  *
273  *       -> Same checks as before. But now the info->flexible, if any, must keep
274  *          one register at least (or they will never be fed).
275  *
276  *   - If attached to every cpus, check:
277  *
278  *       ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
279  *            + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
280  */
281 static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
282 {
283 	struct bp_busy_slots slots = {0};
284 	enum bp_type_idx type;
285 	int weight;
286 
287 	/* We couldn't initialize breakpoint constraints on boot */
288 	if (!constraints_initialized)
289 		return -ENOMEM;
290 
291 	/* Basic checks */
292 	if (bp_type == HW_BREAKPOINT_EMPTY ||
293 	    bp_type == HW_BREAKPOINT_INVALID)
294 		return -EINVAL;
295 
296 	type = find_slot_idx(bp_type);
297 	weight = hw_breakpoint_weight(bp);
298 
299 	fetch_bp_busy_slots(&slots, bp, type);
300 	/*
301 	 * Simulate the addition of this breakpoint to the constraints
302 	 * and see the result.
303 	 */
304 	fetch_this_slot(&slots, weight);
305 
306 	/* Flexible counters need to keep at least one slot */
307 	if (slots.pinned + (!!slots.flexible) > nr_slots[type])
308 		return -ENOSPC;
309 
310 	toggle_bp_slot(bp, true, type, weight);
311 
312 	return 0;
313 }
314 
315 int reserve_bp_slot(struct perf_event *bp)
316 {
317 	int ret;
318 
319 	mutex_lock(&nr_bp_mutex);
320 
321 	ret = __reserve_bp_slot(bp, bp->attr.bp_type);
322 
323 	mutex_unlock(&nr_bp_mutex);
324 
325 	return ret;
326 }
327 
328 static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
329 {
330 	enum bp_type_idx type;
331 	int weight;
332 
333 	type = find_slot_idx(bp_type);
334 	weight = hw_breakpoint_weight(bp);
335 	toggle_bp_slot(bp, false, type, weight);
336 }
337 
338 void release_bp_slot(struct perf_event *bp)
339 {
340 	mutex_lock(&nr_bp_mutex);
341 
342 	arch_unregister_hw_breakpoint(bp);
343 	__release_bp_slot(bp, bp->attr.bp_type);
344 
345 	mutex_unlock(&nr_bp_mutex);
346 }
347 
348 static int __modify_bp_slot(struct perf_event *bp, u64 old_type)
349 {
350 	int err;
351 
352 	__release_bp_slot(bp, old_type);
353 
354 	err = __reserve_bp_slot(bp, bp->attr.bp_type);
355 	if (err) {
356 		/*
357 		 * Reserve the old_type slot back in case
358 		 * there's no space for the new type.
359 		 *
360 		 * This must succeed, because we just released
361 		 * the old_type slot in the __release_bp_slot
362 		 * call above. If not, something is broken.
363 		 */
364 		WARN_ON(__reserve_bp_slot(bp, old_type));
365 	}
366 
367 	return err;
368 }
369 
370 static int modify_bp_slot(struct perf_event *bp, u64 old_type)
371 {
372 	int ret;
373 
374 	mutex_lock(&nr_bp_mutex);
375 	ret = __modify_bp_slot(bp, old_type);
376 	mutex_unlock(&nr_bp_mutex);
377 	return ret;
378 }
379 
380 /*
381  * Allow the kernel debugger to reserve breakpoint slots without
382  * taking a lock using the dbg_* variant of for the reserve and
383  * release breakpoint slots.
384  */
385 int dbg_reserve_bp_slot(struct perf_event *bp)
386 {
387 	if (mutex_is_locked(&nr_bp_mutex))
388 		return -1;
389 
390 	return __reserve_bp_slot(bp, bp->attr.bp_type);
391 }
392 
393 int dbg_release_bp_slot(struct perf_event *bp)
394 {
395 	if (mutex_is_locked(&nr_bp_mutex))
396 		return -1;
397 
398 	__release_bp_slot(bp, bp->attr.bp_type);
399 
400 	return 0;
401 }
402 
403 static int validate_hw_breakpoint(struct perf_event *bp)
404 {
405 	int ret;
406 
407 	ret = arch_validate_hwbkpt_settings(bp);
408 	if (ret)
409 		return ret;
410 
411 	if (arch_check_bp_in_kernelspace(bp)) {
412 		if (bp->attr.exclude_kernel)
413 			return -EINVAL;
414 		/*
415 		 * Don't let unprivileged users set a breakpoint in the trap
416 		 * path to avoid trap recursion attacks.
417 		 */
418 		if (!capable(CAP_SYS_ADMIN))
419 			return -EPERM;
420 	}
421 
422 	return 0;
423 }
424 
425 int register_perf_hw_breakpoint(struct perf_event *bp)
426 {
427 	int ret;
428 
429 	ret = reserve_bp_slot(bp);
430 	if (ret)
431 		return ret;
432 
433 	ret = validate_hw_breakpoint(bp);
434 
435 	/* if arch_validate_hwbkpt_settings() fails then release bp slot */
436 	if (ret)
437 		release_bp_slot(bp);
438 
439 	return ret;
440 }
441 
442 /**
443  * register_user_hw_breakpoint - register a hardware breakpoint for user space
444  * @attr: breakpoint attributes
445  * @triggered: callback to trigger when we hit the breakpoint
446  * @tsk: pointer to 'task_struct' of the process to which the address belongs
447  */
448 struct perf_event *
449 register_user_hw_breakpoint(struct perf_event_attr *attr,
450 			    perf_overflow_handler_t triggered,
451 			    void *context,
452 			    struct task_struct *tsk)
453 {
454 	return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
455 						context);
456 }
457 EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
458 
459 int
460 modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
461 			        bool check)
462 {
463 	u64 old_addr = bp->attr.bp_addr;
464 	u64 old_len  = bp->attr.bp_len;
465 	int old_type = bp->attr.bp_type;
466 	bool modify  = attr->bp_type != old_type;
467 	int err = 0;
468 
469 	bp->attr.bp_addr = attr->bp_addr;
470 	bp->attr.bp_type = attr->bp_type;
471 	bp->attr.bp_len  = attr->bp_len;
472 
473 	if (check && memcmp(&bp->attr, attr, sizeof(*attr)))
474 		return -EINVAL;
475 
476 	err = validate_hw_breakpoint(bp);
477 	if (!err && modify)
478 		err = modify_bp_slot(bp, old_type);
479 
480 	if (err) {
481 		bp->attr.bp_addr = old_addr;
482 		bp->attr.bp_type = old_type;
483 		bp->attr.bp_len  = old_len;
484 		return err;
485 	}
486 
487 	bp->attr.disabled = attr->disabled;
488 	return 0;
489 }
490 
491 /**
492  * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
493  * @bp: the breakpoint structure to modify
494  * @attr: new breakpoint attributes
495  */
496 int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
497 {
498 	/*
499 	 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
500 	 * will not be possible to raise IPIs that invoke __perf_event_disable.
501 	 * So call the function directly after making sure we are targeting the
502 	 * current task.
503 	 */
504 	if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
505 		perf_event_disable_local(bp);
506 	else
507 		perf_event_disable(bp);
508 
509 	if (!attr->disabled) {
510 		int err = modify_user_hw_breakpoint_check(bp, attr, false);
511 
512 		if (err)
513 			return err;
514 		perf_event_enable(bp);
515 		bp->attr.disabled = 0;
516 	}
517 	return 0;
518 }
519 EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
520 
521 /**
522  * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
523  * @bp: the breakpoint structure to unregister
524  */
525 void unregister_hw_breakpoint(struct perf_event *bp)
526 {
527 	if (!bp)
528 		return;
529 	perf_event_release_kernel(bp);
530 }
531 EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
532 
533 /**
534  * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
535  * @attr: breakpoint attributes
536  * @triggered: callback to trigger when we hit the breakpoint
537  *
538  * @return a set of per_cpu pointers to perf events
539  */
540 struct perf_event * __percpu *
541 register_wide_hw_breakpoint(struct perf_event_attr *attr,
542 			    perf_overflow_handler_t triggered,
543 			    void *context)
544 {
545 	struct perf_event * __percpu *cpu_events, *bp;
546 	long err = 0;
547 	int cpu;
548 
549 	cpu_events = alloc_percpu(typeof(*cpu_events));
550 	if (!cpu_events)
551 		return (void __percpu __force *)ERR_PTR(-ENOMEM);
552 
553 	get_online_cpus();
554 	for_each_online_cpu(cpu) {
555 		bp = perf_event_create_kernel_counter(attr, cpu, NULL,
556 						      triggered, context);
557 		if (IS_ERR(bp)) {
558 			err = PTR_ERR(bp);
559 			break;
560 		}
561 
562 		per_cpu(*cpu_events, cpu) = bp;
563 	}
564 	put_online_cpus();
565 
566 	if (likely(!err))
567 		return cpu_events;
568 
569 	unregister_wide_hw_breakpoint(cpu_events);
570 	return (void __percpu __force *)ERR_PTR(err);
571 }
572 EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
573 
574 /**
575  * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
576  * @cpu_events: the per cpu set of events to unregister
577  */
578 void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
579 {
580 	int cpu;
581 
582 	for_each_possible_cpu(cpu)
583 		unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
584 
585 	free_percpu(cpu_events);
586 }
587 EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
588 
589 static struct notifier_block hw_breakpoint_exceptions_nb = {
590 	.notifier_call = hw_breakpoint_exceptions_notify,
591 	/* we need to be notified first */
592 	.priority = 0x7fffffff
593 };
594 
595 static void bp_perf_event_destroy(struct perf_event *event)
596 {
597 	release_bp_slot(event);
598 }
599 
600 static int hw_breakpoint_event_init(struct perf_event *bp)
601 {
602 	int err;
603 
604 	if (bp->attr.type != PERF_TYPE_BREAKPOINT)
605 		return -ENOENT;
606 
607 	/*
608 	 * no branch sampling for breakpoint events
609 	 */
610 	if (has_branch_stack(bp))
611 		return -EOPNOTSUPP;
612 
613 	err = register_perf_hw_breakpoint(bp);
614 	if (err)
615 		return err;
616 
617 	bp->destroy = bp_perf_event_destroy;
618 
619 	return 0;
620 }
621 
622 static int hw_breakpoint_add(struct perf_event *bp, int flags)
623 {
624 	if (!(flags & PERF_EF_START))
625 		bp->hw.state = PERF_HES_STOPPED;
626 
627 	if (is_sampling_event(bp)) {
628 		bp->hw.last_period = bp->hw.sample_period;
629 		perf_swevent_set_period(bp);
630 	}
631 
632 	return arch_install_hw_breakpoint(bp);
633 }
634 
635 static void hw_breakpoint_del(struct perf_event *bp, int flags)
636 {
637 	arch_uninstall_hw_breakpoint(bp);
638 }
639 
640 static void hw_breakpoint_start(struct perf_event *bp, int flags)
641 {
642 	bp->hw.state = 0;
643 }
644 
645 static void hw_breakpoint_stop(struct perf_event *bp, int flags)
646 {
647 	bp->hw.state = PERF_HES_STOPPED;
648 }
649 
650 static struct pmu perf_breakpoint = {
651 	.task_ctx_nr	= perf_sw_context, /* could eventually get its own */
652 
653 	.event_init	= hw_breakpoint_event_init,
654 	.add		= hw_breakpoint_add,
655 	.del		= hw_breakpoint_del,
656 	.start		= hw_breakpoint_start,
657 	.stop		= hw_breakpoint_stop,
658 	.read		= hw_breakpoint_pmu_read,
659 };
660 
661 int __init init_hw_breakpoint(void)
662 {
663 	int cpu, err_cpu;
664 	int i;
665 
666 	for (i = 0; i < TYPE_MAX; i++)
667 		nr_slots[i] = hw_breakpoint_slots(i);
668 
669 	for_each_possible_cpu(cpu) {
670 		for (i = 0; i < TYPE_MAX; i++) {
671 			struct bp_cpuinfo *info = get_bp_info(cpu, i);
672 
673 			info->tsk_pinned = kcalloc(nr_slots[i], sizeof(int),
674 							GFP_KERNEL);
675 			if (!info->tsk_pinned)
676 				goto err_alloc;
677 		}
678 	}
679 
680 	constraints_initialized = 1;
681 
682 	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
683 
684 	return register_die_notifier(&hw_breakpoint_exceptions_nb);
685 
686  err_alloc:
687 	for_each_possible_cpu(err_cpu) {
688 		for (i = 0; i < TYPE_MAX; i++)
689 			kfree(get_bp_info(err_cpu, i)->tsk_pinned);
690 		if (err_cpu == cpu)
691 			break;
692 	}
693 
694 	return -ENOMEM;
695 }
696 
697 
698