xref: /openbmc/linux/kernel/events/core.c (revision fb960bd2)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 	if (cgrp_out)
729 		__update_cgrp_time(cgrp_out);
730 }
731 
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734 	struct perf_cgroup *cgrp;
735 
736 	/*
737 	 * ensure we access cgroup data only when needed and
738 	 * when we know the cgroup is pinned (css_get)
739 	 */
740 	if (!is_cgroup_event(event))
741 		return;
742 
743 	cgrp = perf_cgroup_from_task(current, event->ctx);
744 	/*
745 	 * Do not update time when cgroup is not active
746 	 */
747        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748 		__update_cgrp_time(event->cgrp);
749 }
750 
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753 			  struct perf_event_context *ctx)
754 {
755 	struct perf_cgroup *cgrp;
756 	struct perf_cgroup_info *info;
757 
758 	/*
759 	 * ctx->lock held by caller
760 	 * ensure we do not access cgroup data
761 	 * unless we have the cgroup pinned (css_get)
762 	 */
763 	if (!task || !ctx->nr_cgroups)
764 		return;
765 
766 	cgrp = perf_cgroup_from_task(task, ctx);
767 	info = this_cpu_ptr(cgrp->info);
768 	info->timestamp = ctx->timestamp;
769 }
770 
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772 
773 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
775 
776 /*
777  * reschedule events based on the cgroup constraint of task.
778  *
779  * mode SWOUT : schedule out everything
780  * mode SWIN : schedule in based on cgroup for next
781  */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784 	struct perf_cpu_context *cpuctx;
785 	struct list_head *list;
786 	unsigned long flags;
787 
788 	/*
789 	 * Disable interrupts and preemption to avoid this CPU's
790 	 * cgrp_cpuctx_entry to change under us.
791 	 */
792 	local_irq_save(flags);
793 
794 	list = this_cpu_ptr(&cgrp_cpuctx_list);
795 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797 
798 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 		perf_pmu_disable(cpuctx->ctx.pmu);
800 
801 		if (mode & PERF_CGROUP_SWOUT) {
802 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 			/*
804 			 * must not be done before ctxswout due
805 			 * to event_filter_match() in event_sched_out()
806 			 */
807 			cpuctx->cgrp = NULL;
808 		}
809 
810 		if (mode & PERF_CGROUP_SWIN) {
811 			WARN_ON_ONCE(cpuctx->cgrp);
812 			/*
813 			 * set cgrp before ctxsw in to allow
814 			 * event_filter_match() to not have to pass
815 			 * task around
816 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 			 * because cgorup events are only per-cpu
818 			 */
819 			cpuctx->cgrp = perf_cgroup_from_task(task,
820 							     &cpuctx->ctx);
821 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822 		}
823 		perf_pmu_enable(cpuctx->ctx.pmu);
824 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825 	}
826 
827 	local_irq_restore(flags);
828 }
829 
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831 					 struct task_struct *next)
832 {
833 	struct perf_cgroup *cgrp1;
834 	struct perf_cgroup *cgrp2 = NULL;
835 
836 	rcu_read_lock();
837 	/*
838 	 * we come here when we know perf_cgroup_events > 0
839 	 * we do not need to pass the ctx here because we know
840 	 * we are holding the rcu lock
841 	 */
842 	cgrp1 = perf_cgroup_from_task(task, NULL);
843 	cgrp2 = perf_cgroup_from_task(next, NULL);
844 
845 	/*
846 	 * only schedule out current cgroup events if we know
847 	 * that we are switching to a different cgroup. Otherwise,
848 	 * do no touch the cgroup events.
849 	 */
850 	if (cgrp1 != cgrp2)
851 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852 
853 	rcu_read_unlock();
854 }
855 
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 					struct task_struct *task)
858 {
859 	struct perf_cgroup *cgrp1;
860 	struct perf_cgroup *cgrp2 = NULL;
861 
862 	rcu_read_lock();
863 	/*
864 	 * we come here when we know perf_cgroup_events > 0
865 	 * we do not need to pass the ctx here because we know
866 	 * we are holding the rcu lock
867 	 */
868 	cgrp1 = perf_cgroup_from_task(task, NULL);
869 	cgrp2 = perf_cgroup_from_task(prev, NULL);
870 
871 	/*
872 	 * only need to schedule in cgroup events if we are changing
873 	 * cgroup during ctxsw. Cgroup events were not scheduled
874 	 * out of ctxsw out if that was not the case.
875 	 */
876 	if (cgrp1 != cgrp2)
877 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878 
879 	rcu_read_unlock();
880 }
881 
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 				      struct perf_event_attr *attr,
884 				      struct perf_event *group_leader)
885 {
886 	struct perf_cgroup *cgrp;
887 	struct cgroup_subsys_state *css;
888 	struct fd f = fdget(fd);
889 	int ret = 0;
890 
891 	if (!f.file)
892 		return -EBADF;
893 
894 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
895 					 &perf_event_cgrp_subsys);
896 	if (IS_ERR(css)) {
897 		ret = PTR_ERR(css);
898 		goto out;
899 	}
900 
901 	cgrp = container_of(css, struct perf_cgroup, css);
902 	event->cgrp = cgrp;
903 
904 	/*
905 	 * all events in a group must monitor
906 	 * the same cgroup because a task belongs
907 	 * to only one perf cgroup at a time
908 	 */
909 	if (group_leader && group_leader->cgrp != cgrp) {
910 		perf_detach_cgroup(event);
911 		ret = -EINVAL;
912 	}
913 out:
914 	fdput(f);
915 	return ret;
916 }
917 
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921 	struct perf_cgroup_info *t;
922 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 	event->shadow_ctx_time = now - t->timestamp;
924 }
925 
926 /*
927  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928  * cleared when last cgroup event is removed.
929  */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932 			 struct perf_event_context *ctx, bool add)
933 {
934 	struct perf_cpu_context *cpuctx;
935 	struct list_head *cpuctx_entry;
936 
937 	if (!is_cgroup_event(event))
938 		return;
939 
940 	if (add && ctx->nr_cgroups++)
941 		return;
942 	else if (!add && --ctx->nr_cgroups)
943 		return;
944 	/*
945 	 * Because cgroup events are always per-cpu events,
946 	 * this will always be called from the right CPU.
947 	 */
948 	cpuctx = __get_cpu_context(ctx);
949 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 	if (add) {
952 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953 
954 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 			cpuctx->cgrp = cgrp;
957 	} else {
958 		list_del(cpuctx_entry);
959 		cpuctx->cgrp = NULL;
960 	}
961 }
962 
963 #else /* !CONFIG_CGROUP_PERF */
964 
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968 	return true;
969 }
970 
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973 
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976 	return 0;
977 }
978 
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982 
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986 
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988 					 struct task_struct *next)
989 {
990 }
991 
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 					struct task_struct *task)
994 {
995 }
996 
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 				      struct perf_event_attr *attr,
999 				      struct perf_event *group_leader)
1000 {
1001 	return -EINVAL;
1002 }
1003 
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006 			  struct perf_event_context *ctx)
1007 {
1008 }
1009 
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014 
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019 
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022 	return 0;
1023 }
1024 
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027 			 struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030 
1031 #endif
1032 
1033 /*
1034  * set default to be dependent on timer tick just
1035  * like original code
1036  */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039  * function must be called with interrupts disabled
1040  */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043 	struct perf_cpu_context *cpuctx;
1044 	int rotations = 0;
1045 
1046 	lockdep_assert_irqs_disabled();
1047 
1048 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049 	rotations = perf_rotate_context(cpuctx);
1050 
1051 	raw_spin_lock(&cpuctx->hrtimer_lock);
1052 	if (rotations)
1053 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054 	else
1055 		cpuctx->hrtimer_active = 0;
1056 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1057 
1058 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060 
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063 	struct hrtimer *timer = &cpuctx->hrtimer;
1064 	struct pmu *pmu = cpuctx->ctx.pmu;
1065 	u64 interval;
1066 
1067 	/* no multiplexing needed for SW PMU */
1068 	if (pmu->task_ctx_nr == perf_sw_context)
1069 		return;
1070 
1071 	/*
1072 	 * check default is sane, if not set then force to
1073 	 * default interval (1/tick)
1074 	 */
1075 	interval = pmu->hrtimer_interval_ms;
1076 	if (interval < 1)
1077 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078 
1079 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080 
1081 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083 	timer->function = perf_mux_hrtimer_handler;
1084 }
1085 
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088 	struct hrtimer *timer = &cpuctx->hrtimer;
1089 	struct pmu *pmu = cpuctx->ctx.pmu;
1090 	unsigned long flags;
1091 
1092 	/* not for SW PMU */
1093 	if (pmu->task_ctx_nr == perf_sw_context)
1094 		return 0;
1095 
1096 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 	if (!cpuctx->hrtimer_active) {
1098 		cpuctx->hrtimer_active = 1;
1099 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 	}
1102 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103 
1104 	return 0;
1105 }
1106 
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 	if (!(*count)++)
1111 		pmu->pmu_disable(pmu);
1112 }
1113 
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 	if (!--(*count))
1118 		pmu->pmu_enable(pmu);
1119 }
1120 
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122 
1123 /*
1124  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125  * perf_event_task_tick() are fully serialized because they're strictly cpu
1126  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127  * disabled, while perf_event_task_tick is called from IRQ context.
1128  */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132 
1133 	lockdep_assert_irqs_disabled();
1134 
1135 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1136 
1137 	list_add(&ctx->active_ctx_list, head);
1138 }
1139 
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142 	lockdep_assert_irqs_disabled();
1143 
1144 	WARN_ON(list_empty(&ctx->active_ctx_list));
1145 
1146 	list_del_init(&ctx->active_ctx_list);
1147 }
1148 
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153 
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156 	struct perf_event_context *ctx;
1157 
1158 	ctx = container_of(head, struct perf_event_context, rcu_head);
1159 	kfree(ctx->task_ctx_data);
1160 	kfree(ctx);
1161 }
1162 
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165 	if (atomic_dec_and_test(&ctx->refcount)) {
1166 		if (ctx->parent_ctx)
1167 			put_ctx(ctx->parent_ctx);
1168 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169 			put_task_struct(ctx->task);
1170 		call_rcu(&ctx->rcu_head, free_ctx);
1171 	}
1172 }
1173 
1174 /*
1175  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176  * perf_pmu_migrate_context() we need some magic.
1177  *
1178  * Those places that change perf_event::ctx will hold both
1179  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180  *
1181  * Lock ordering is by mutex address. There are two other sites where
1182  * perf_event_context::mutex nests and those are:
1183  *
1184  *  - perf_event_exit_task_context()	[ child , 0 ]
1185  *      perf_event_exit_event()
1186  *        put_event()			[ parent, 1 ]
1187  *
1188  *  - perf_event_init_context()		[ parent, 0 ]
1189  *      inherit_task_group()
1190  *        inherit_group()
1191  *          inherit_event()
1192  *            perf_event_alloc()
1193  *              perf_init_event()
1194  *                perf_try_init_event()	[ child , 1 ]
1195  *
1196  * While it appears there is an obvious deadlock here -- the parent and child
1197  * nesting levels are inverted between the two. This is in fact safe because
1198  * life-time rules separate them. That is an exiting task cannot fork, and a
1199  * spawning task cannot (yet) exit.
1200  *
1201  * But remember that that these are parent<->child context relations, and
1202  * migration does not affect children, therefore these two orderings should not
1203  * interact.
1204  *
1205  * The change in perf_event::ctx does not affect children (as claimed above)
1206  * because the sys_perf_event_open() case will install a new event and break
1207  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208  * concerned with cpuctx and that doesn't have children.
1209  *
1210  * The places that change perf_event::ctx will issue:
1211  *
1212  *   perf_remove_from_context();
1213  *   synchronize_rcu();
1214  *   perf_install_in_context();
1215  *
1216  * to affect the change. The remove_from_context() + synchronize_rcu() should
1217  * quiesce the event, after which we can install it in the new location. This
1218  * means that only external vectors (perf_fops, prctl) can perturb the event
1219  * while in transit. Therefore all such accessors should also acquire
1220  * perf_event_context::mutex to serialize against this.
1221  *
1222  * However; because event->ctx can change while we're waiting to acquire
1223  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224  * function.
1225  *
1226  * Lock order:
1227  *    cred_guard_mutex
1228  *	task_struct::perf_event_mutex
1229  *	  perf_event_context::mutex
1230  *	    perf_event::child_mutex;
1231  *	      perf_event_context::lock
1232  *	    perf_event::mmap_mutex
1233  *	    mmap_sem
1234  */
1235 static struct perf_event_context *
1236 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1237 {
1238 	struct perf_event_context *ctx;
1239 
1240 again:
1241 	rcu_read_lock();
1242 	ctx = READ_ONCE(event->ctx);
1243 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1244 		rcu_read_unlock();
1245 		goto again;
1246 	}
1247 	rcu_read_unlock();
1248 
1249 	mutex_lock_nested(&ctx->mutex, nesting);
1250 	if (event->ctx != ctx) {
1251 		mutex_unlock(&ctx->mutex);
1252 		put_ctx(ctx);
1253 		goto again;
1254 	}
1255 
1256 	return ctx;
1257 }
1258 
1259 static inline struct perf_event_context *
1260 perf_event_ctx_lock(struct perf_event *event)
1261 {
1262 	return perf_event_ctx_lock_nested(event, 0);
1263 }
1264 
1265 static void perf_event_ctx_unlock(struct perf_event *event,
1266 				  struct perf_event_context *ctx)
1267 {
1268 	mutex_unlock(&ctx->mutex);
1269 	put_ctx(ctx);
1270 }
1271 
1272 /*
1273  * This must be done under the ctx->lock, such as to serialize against
1274  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1275  * calling scheduler related locks and ctx->lock nests inside those.
1276  */
1277 static __must_check struct perf_event_context *
1278 unclone_ctx(struct perf_event_context *ctx)
1279 {
1280 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1281 
1282 	lockdep_assert_held(&ctx->lock);
1283 
1284 	if (parent_ctx)
1285 		ctx->parent_ctx = NULL;
1286 	ctx->generation++;
1287 
1288 	return parent_ctx;
1289 }
1290 
1291 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1292 				enum pid_type type)
1293 {
1294 	u32 nr;
1295 	/*
1296 	 * only top level events have the pid namespace they were created in
1297 	 */
1298 	if (event->parent)
1299 		event = event->parent;
1300 
1301 	nr = __task_pid_nr_ns(p, type, event->ns);
1302 	/* avoid -1 if it is idle thread or runs in another ns */
1303 	if (!nr && !pid_alive(p))
1304 		nr = -1;
1305 	return nr;
1306 }
1307 
1308 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1309 {
1310 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1311 }
1312 
1313 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1314 {
1315 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1316 }
1317 
1318 /*
1319  * If we inherit events we want to return the parent event id
1320  * to userspace.
1321  */
1322 static u64 primary_event_id(struct perf_event *event)
1323 {
1324 	u64 id = event->id;
1325 
1326 	if (event->parent)
1327 		id = event->parent->id;
1328 
1329 	return id;
1330 }
1331 
1332 /*
1333  * Get the perf_event_context for a task and lock it.
1334  *
1335  * This has to cope with with the fact that until it is locked,
1336  * the context could get moved to another task.
1337  */
1338 static struct perf_event_context *
1339 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1340 {
1341 	struct perf_event_context *ctx;
1342 
1343 retry:
1344 	/*
1345 	 * One of the few rules of preemptible RCU is that one cannot do
1346 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1347 	 * part of the read side critical section was irqs-enabled -- see
1348 	 * rcu_read_unlock_special().
1349 	 *
1350 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1351 	 * side critical section has interrupts disabled.
1352 	 */
1353 	local_irq_save(*flags);
1354 	rcu_read_lock();
1355 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1356 	if (ctx) {
1357 		/*
1358 		 * If this context is a clone of another, it might
1359 		 * get swapped for another underneath us by
1360 		 * perf_event_task_sched_out, though the
1361 		 * rcu_read_lock() protects us from any context
1362 		 * getting freed.  Lock the context and check if it
1363 		 * got swapped before we could get the lock, and retry
1364 		 * if so.  If we locked the right context, then it
1365 		 * can't get swapped on us any more.
1366 		 */
1367 		raw_spin_lock(&ctx->lock);
1368 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1369 			raw_spin_unlock(&ctx->lock);
1370 			rcu_read_unlock();
1371 			local_irq_restore(*flags);
1372 			goto retry;
1373 		}
1374 
1375 		if (ctx->task == TASK_TOMBSTONE ||
1376 		    !atomic_inc_not_zero(&ctx->refcount)) {
1377 			raw_spin_unlock(&ctx->lock);
1378 			ctx = NULL;
1379 		} else {
1380 			WARN_ON_ONCE(ctx->task != task);
1381 		}
1382 	}
1383 	rcu_read_unlock();
1384 	if (!ctx)
1385 		local_irq_restore(*flags);
1386 	return ctx;
1387 }
1388 
1389 /*
1390  * Get the context for a task and increment its pin_count so it
1391  * can't get swapped to another task.  This also increments its
1392  * reference count so that the context can't get freed.
1393  */
1394 static struct perf_event_context *
1395 perf_pin_task_context(struct task_struct *task, int ctxn)
1396 {
1397 	struct perf_event_context *ctx;
1398 	unsigned long flags;
1399 
1400 	ctx = perf_lock_task_context(task, ctxn, &flags);
1401 	if (ctx) {
1402 		++ctx->pin_count;
1403 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1404 	}
1405 	return ctx;
1406 }
1407 
1408 static void perf_unpin_context(struct perf_event_context *ctx)
1409 {
1410 	unsigned long flags;
1411 
1412 	raw_spin_lock_irqsave(&ctx->lock, flags);
1413 	--ctx->pin_count;
1414 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1415 }
1416 
1417 /*
1418  * Update the record of the current time in a context.
1419  */
1420 static void update_context_time(struct perf_event_context *ctx)
1421 {
1422 	u64 now = perf_clock();
1423 
1424 	ctx->time += now - ctx->timestamp;
1425 	ctx->timestamp = now;
1426 }
1427 
1428 static u64 perf_event_time(struct perf_event *event)
1429 {
1430 	struct perf_event_context *ctx = event->ctx;
1431 
1432 	if (is_cgroup_event(event))
1433 		return perf_cgroup_event_time(event);
1434 
1435 	return ctx ? ctx->time : 0;
1436 }
1437 
1438 static enum event_type_t get_event_type(struct perf_event *event)
1439 {
1440 	struct perf_event_context *ctx = event->ctx;
1441 	enum event_type_t event_type;
1442 
1443 	lockdep_assert_held(&ctx->lock);
1444 
1445 	/*
1446 	 * It's 'group type', really, because if our group leader is
1447 	 * pinned, so are we.
1448 	 */
1449 	if (event->group_leader != event)
1450 		event = event->group_leader;
1451 
1452 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1453 	if (!ctx->task)
1454 		event_type |= EVENT_CPU;
1455 
1456 	return event_type;
1457 }
1458 
1459 static struct list_head *
1460 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1461 {
1462 	if (event->attr.pinned)
1463 		return &ctx->pinned_groups;
1464 	else
1465 		return &ctx->flexible_groups;
1466 }
1467 
1468 /*
1469  * Add a event from the lists for its context.
1470  * Must be called with ctx->mutex and ctx->lock held.
1471  */
1472 static void
1473 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1474 {
1475 	lockdep_assert_held(&ctx->lock);
1476 
1477 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1478 	event->attach_state |= PERF_ATTACH_CONTEXT;
1479 
1480 	event->tstamp = perf_event_time(event);
1481 
1482 	/*
1483 	 * If we're a stand alone event or group leader, we go to the context
1484 	 * list, group events are kept attached to the group so that
1485 	 * perf_group_detach can, at all times, locate all siblings.
1486 	 */
1487 	if (event->group_leader == event) {
1488 		struct list_head *list;
1489 
1490 		event->group_caps = event->event_caps;
1491 
1492 		list = ctx_group_list(event, ctx);
1493 		list_add_tail(&event->group_entry, list);
1494 	}
1495 
1496 	list_update_cgroup_event(event, ctx, true);
1497 
1498 	list_add_rcu(&event->event_entry, &ctx->event_list);
1499 	ctx->nr_events++;
1500 	if (event->attr.inherit_stat)
1501 		ctx->nr_stat++;
1502 
1503 	ctx->generation++;
1504 }
1505 
1506 /*
1507  * Initialize event state based on the perf_event_attr::disabled.
1508  */
1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 					      PERF_EVENT_STATE_INACTIVE;
1513 }
1514 
1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517 	int entry = sizeof(u64); /* value */
1518 	int size = 0;
1519 	int nr = 1;
1520 
1521 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 		size += sizeof(u64);
1523 
1524 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 		size += sizeof(u64);
1526 
1527 	if (event->attr.read_format & PERF_FORMAT_ID)
1528 		entry += sizeof(u64);
1529 
1530 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531 		nr += nr_siblings;
1532 		size += sizeof(u64);
1533 	}
1534 
1535 	size += entry * nr;
1536 	event->read_size = size;
1537 }
1538 
1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541 	struct perf_sample_data *data;
1542 	u16 size = 0;
1543 
1544 	if (sample_type & PERF_SAMPLE_IP)
1545 		size += sizeof(data->ip);
1546 
1547 	if (sample_type & PERF_SAMPLE_ADDR)
1548 		size += sizeof(data->addr);
1549 
1550 	if (sample_type & PERF_SAMPLE_PERIOD)
1551 		size += sizeof(data->period);
1552 
1553 	if (sample_type & PERF_SAMPLE_WEIGHT)
1554 		size += sizeof(data->weight);
1555 
1556 	if (sample_type & PERF_SAMPLE_READ)
1557 		size += event->read_size;
1558 
1559 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 		size += sizeof(data->data_src.val);
1561 
1562 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 		size += sizeof(data->txn);
1564 
1565 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1566 		size += sizeof(data->phys_addr);
1567 
1568 	event->header_size = size;
1569 }
1570 
1571 /*
1572  * Called at perf_event creation and when events are attached/detached from a
1573  * group.
1574  */
1575 static void perf_event__header_size(struct perf_event *event)
1576 {
1577 	__perf_event_read_size(event,
1578 			       event->group_leader->nr_siblings);
1579 	__perf_event_header_size(event, event->attr.sample_type);
1580 }
1581 
1582 static void perf_event__id_header_size(struct perf_event *event)
1583 {
1584 	struct perf_sample_data *data;
1585 	u64 sample_type = event->attr.sample_type;
1586 	u16 size = 0;
1587 
1588 	if (sample_type & PERF_SAMPLE_TID)
1589 		size += sizeof(data->tid_entry);
1590 
1591 	if (sample_type & PERF_SAMPLE_TIME)
1592 		size += sizeof(data->time);
1593 
1594 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1595 		size += sizeof(data->id);
1596 
1597 	if (sample_type & PERF_SAMPLE_ID)
1598 		size += sizeof(data->id);
1599 
1600 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1601 		size += sizeof(data->stream_id);
1602 
1603 	if (sample_type & PERF_SAMPLE_CPU)
1604 		size += sizeof(data->cpu_entry);
1605 
1606 	event->id_header_size = size;
1607 }
1608 
1609 static bool perf_event_validate_size(struct perf_event *event)
1610 {
1611 	/*
1612 	 * The values computed here will be over-written when we actually
1613 	 * attach the event.
1614 	 */
1615 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1616 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1617 	perf_event__id_header_size(event);
1618 
1619 	/*
1620 	 * Sum the lot; should not exceed the 64k limit we have on records.
1621 	 * Conservative limit to allow for callchains and other variable fields.
1622 	 */
1623 	if (event->read_size + event->header_size +
1624 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1625 		return false;
1626 
1627 	return true;
1628 }
1629 
1630 static void perf_group_attach(struct perf_event *event)
1631 {
1632 	struct perf_event *group_leader = event->group_leader, *pos;
1633 
1634 	lockdep_assert_held(&event->ctx->lock);
1635 
1636 	/*
1637 	 * We can have double attach due to group movement in perf_event_open.
1638 	 */
1639 	if (event->attach_state & PERF_ATTACH_GROUP)
1640 		return;
1641 
1642 	event->attach_state |= PERF_ATTACH_GROUP;
1643 
1644 	if (group_leader == event)
1645 		return;
1646 
1647 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1648 
1649 	group_leader->group_caps &= event->event_caps;
1650 
1651 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1652 	group_leader->nr_siblings++;
1653 
1654 	perf_event__header_size(group_leader);
1655 
1656 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1657 		perf_event__header_size(pos);
1658 }
1659 
1660 /*
1661  * Remove a event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	WARN_ON_ONCE(event->ctx != ctx);
1668 	lockdep_assert_held(&ctx->lock);
1669 
1670 	/*
1671 	 * We can have double detach due to exit/hot-unplug + close.
1672 	 */
1673 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1674 		return;
1675 
1676 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1677 
1678 	list_update_cgroup_event(event, ctx, false);
1679 
1680 	ctx->nr_events--;
1681 	if (event->attr.inherit_stat)
1682 		ctx->nr_stat--;
1683 
1684 	list_del_rcu(&event->event_entry);
1685 
1686 	if (event->group_leader == event)
1687 		list_del_init(&event->group_entry);
1688 
1689 	/*
1690 	 * If event was in error state, then keep it
1691 	 * that way, otherwise bogus counts will be
1692 	 * returned on read(). The only way to get out
1693 	 * of error state is by explicit re-enabling
1694 	 * of the event
1695 	 */
1696 	if (event->state > PERF_EVENT_STATE_OFF)
1697 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1698 
1699 	ctx->generation++;
1700 }
1701 
1702 static void perf_group_detach(struct perf_event *event)
1703 {
1704 	struct perf_event *sibling, *tmp;
1705 	struct list_head *list = NULL;
1706 
1707 	lockdep_assert_held(&event->ctx->lock);
1708 
1709 	/*
1710 	 * We can have double detach due to exit/hot-unplug + close.
1711 	 */
1712 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1713 		return;
1714 
1715 	event->attach_state &= ~PERF_ATTACH_GROUP;
1716 
1717 	/*
1718 	 * If this is a sibling, remove it from its group.
1719 	 */
1720 	if (event->group_leader != event) {
1721 		list_del_init(&event->group_entry);
1722 		event->group_leader->nr_siblings--;
1723 		goto out;
1724 	}
1725 
1726 	if (!list_empty(&event->group_entry))
1727 		list = &event->group_entry;
1728 
1729 	/*
1730 	 * If this was a group event with sibling events then
1731 	 * upgrade the siblings to singleton events by adding them
1732 	 * to whatever list we are on.
1733 	 */
1734 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1735 		if (list)
1736 			list_move_tail(&sibling->group_entry, list);
1737 		sibling->group_leader = sibling;
1738 
1739 		/* Inherit group flags from the previous leader */
1740 		sibling->group_caps = event->group_caps;
1741 
1742 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1743 	}
1744 
1745 out:
1746 	perf_event__header_size(event->group_leader);
1747 
1748 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749 		perf_event__header_size(tmp);
1750 }
1751 
1752 static bool is_orphaned_event(struct perf_event *event)
1753 {
1754 	return event->state == PERF_EVENT_STATE_DEAD;
1755 }
1756 
1757 static inline int __pmu_filter_match(struct perf_event *event)
1758 {
1759 	struct pmu *pmu = event->pmu;
1760 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1761 }
1762 
1763 /*
1764  * Check whether we should attempt to schedule an event group based on
1765  * PMU-specific filtering. An event group can consist of HW and SW events,
1766  * potentially with a SW leader, so we must check all the filters, to
1767  * determine whether a group is schedulable:
1768  */
1769 static inline int pmu_filter_match(struct perf_event *event)
1770 {
1771 	struct perf_event *child;
1772 
1773 	if (!__pmu_filter_match(event))
1774 		return 0;
1775 
1776 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1777 		if (!__pmu_filter_match(child))
1778 			return 0;
1779 	}
1780 
1781 	return 1;
1782 }
1783 
1784 static inline int
1785 event_filter_match(struct perf_event *event)
1786 {
1787 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788 	       perf_cgroup_match(event) && pmu_filter_match(event);
1789 }
1790 
1791 static void
1792 event_sched_out(struct perf_event *event,
1793 		  struct perf_cpu_context *cpuctx,
1794 		  struct perf_event_context *ctx)
1795 {
1796 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1797 
1798 	WARN_ON_ONCE(event->ctx != ctx);
1799 	lockdep_assert_held(&ctx->lock);
1800 
1801 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1802 		return;
1803 
1804 	perf_pmu_disable(event->pmu);
1805 
1806 	event->pmu->del(event, 0);
1807 	event->oncpu = -1;
1808 
1809 	if (event->pending_disable) {
1810 		event->pending_disable = 0;
1811 		state = PERF_EVENT_STATE_OFF;
1812 	}
1813 	perf_event_set_state(event, state);
1814 
1815 	if (!is_software_event(event))
1816 		cpuctx->active_oncpu--;
1817 	if (!--ctx->nr_active)
1818 		perf_event_ctx_deactivate(ctx);
1819 	if (event->attr.freq && event->attr.sample_freq)
1820 		ctx->nr_freq--;
1821 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1822 		cpuctx->exclusive = 0;
1823 
1824 	perf_pmu_enable(event->pmu);
1825 }
1826 
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829 		struct perf_cpu_context *cpuctx,
1830 		struct perf_event_context *ctx)
1831 {
1832 	struct perf_event *event;
1833 
1834 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1835 		return;
1836 
1837 	perf_pmu_disable(ctx->pmu);
1838 
1839 	event_sched_out(group_event, cpuctx, ctx);
1840 
1841 	/*
1842 	 * Schedule out siblings (if any):
1843 	 */
1844 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1845 		event_sched_out(event, cpuctx, ctx);
1846 
1847 	perf_pmu_enable(ctx->pmu);
1848 
1849 	if (group_event->attr.exclusive)
1850 		cpuctx->exclusive = 0;
1851 }
1852 
1853 #define DETACH_GROUP	0x01UL
1854 
1855 /*
1856  * Cross CPU call to remove a performance event
1857  *
1858  * We disable the event on the hardware level first. After that we
1859  * remove it from the context list.
1860  */
1861 static void
1862 __perf_remove_from_context(struct perf_event *event,
1863 			   struct perf_cpu_context *cpuctx,
1864 			   struct perf_event_context *ctx,
1865 			   void *info)
1866 {
1867 	unsigned long flags = (unsigned long)info;
1868 
1869 	if (ctx->is_active & EVENT_TIME) {
1870 		update_context_time(ctx);
1871 		update_cgrp_time_from_cpuctx(cpuctx);
1872 	}
1873 
1874 	event_sched_out(event, cpuctx, ctx);
1875 	if (flags & DETACH_GROUP)
1876 		perf_group_detach(event);
1877 	list_del_event(event, ctx);
1878 
1879 	if (!ctx->nr_events && ctx->is_active) {
1880 		ctx->is_active = 0;
1881 		if (ctx->task) {
1882 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1883 			cpuctx->task_ctx = NULL;
1884 		}
1885 	}
1886 }
1887 
1888 /*
1889  * Remove the event from a task's (or a CPU's) list of events.
1890  *
1891  * If event->ctx is a cloned context, callers must make sure that
1892  * every task struct that event->ctx->task could possibly point to
1893  * remains valid.  This is OK when called from perf_release since
1894  * that only calls us on the top-level context, which can't be a clone.
1895  * When called from perf_event_exit_task, it's OK because the
1896  * context has been detached from its task.
1897  */
1898 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1899 {
1900 	struct perf_event_context *ctx = event->ctx;
1901 
1902 	lockdep_assert_held(&ctx->mutex);
1903 
1904 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1905 
1906 	/*
1907 	 * The above event_function_call() can NO-OP when it hits
1908 	 * TASK_TOMBSTONE. In that case we must already have been detached
1909 	 * from the context (by perf_event_exit_event()) but the grouping
1910 	 * might still be in-tact.
1911 	 */
1912 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1913 	if ((flags & DETACH_GROUP) &&
1914 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1915 		/*
1916 		 * Since in that case we cannot possibly be scheduled, simply
1917 		 * detach now.
1918 		 */
1919 		raw_spin_lock_irq(&ctx->lock);
1920 		perf_group_detach(event);
1921 		raw_spin_unlock_irq(&ctx->lock);
1922 	}
1923 }
1924 
1925 /*
1926  * Cross CPU call to disable a performance event
1927  */
1928 static void __perf_event_disable(struct perf_event *event,
1929 				 struct perf_cpu_context *cpuctx,
1930 				 struct perf_event_context *ctx,
1931 				 void *info)
1932 {
1933 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1934 		return;
1935 
1936 	if (ctx->is_active & EVENT_TIME) {
1937 		update_context_time(ctx);
1938 		update_cgrp_time_from_event(event);
1939 	}
1940 
1941 	if (event == event->group_leader)
1942 		group_sched_out(event, cpuctx, ctx);
1943 	else
1944 		event_sched_out(event, cpuctx, ctx);
1945 
1946 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1947 }
1948 
1949 /*
1950  * Disable a event.
1951  *
1952  * If event->ctx is a cloned context, callers must make sure that
1953  * every task struct that event->ctx->task could possibly point to
1954  * remains valid.  This condition is satisifed when called through
1955  * perf_event_for_each_child or perf_event_for_each because they
1956  * hold the top-level event's child_mutex, so any descendant that
1957  * goes to exit will block in perf_event_exit_event().
1958  *
1959  * When called from perf_pending_event it's OK because event->ctx
1960  * is the current context on this CPU and preemption is disabled,
1961  * hence we can't get into perf_event_task_sched_out for this context.
1962  */
1963 static void _perf_event_disable(struct perf_event *event)
1964 {
1965 	struct perf_event_context *ctx = event->ctx;
1966 
1967 	raw_spin_lock_irq(&ctx->lock);
1968 	if (event->state <= PERF_EVENT_STATE_OFF) {
1969 		raw_spin_unlock_irq(&ctx->lock);
1970 		return;
1971 	}
1972 	raw_spin_unlock_irq(&ctx->lock);
1973 
1974 	event_function_call(event, __perf_event_disable, NULL);
1975 }
1976 
1977 void perf_event_disable_local(struct perf_event *event)
1978 {
1979 	event_function_local(event, __perf_event_disable, NULL);
1980 }
1981 
1982 /*
1983  * Strictly speaking kernel users cannot create groups and therefore this
1984  * interface does not need the perf_event_ctx_lock() magic.
1985  */
1986 void perf_event_disable(struct perf_event *event)
1987 {
1988 	struct perf_event_context *ctx;
1989 
1990 	ctx = perf_event_ctx_lock(event);
1991 	_perf_event_disable(event);
1992 	perf_event_ctx_unlock(event, ctx);
1993 }
1994 EXPORT_SYMBOL_GPL(perf_event_disable);
1995 
1996 void perf_event_disable_inatomic(struct perf_event *event)
1997 {
1998 	event->pending_disable = 1;
1999 	irq_work_queue(&event->pending);
2000 }
2001 
2002 static void perf_set_shadow_time(struct perf_event *event,
2003 				 struct perf_event_context *ctx)
2004 {
2005 	/*
2006 	 * use the correct time source for the time snapshot
2007 	 *
2008 	 * We could get by without this by leveraging the
2009 	 * fact that to get to this function, the caller
2010 	 * has most likely already called update_context_time()
2011 	 * and update_cgrp_time_xx() and thus both timestamp
2012 	 * are identical (or very close). Given that tstamp is,
2013 	 * already adjusted for cgroup, we could say that:
2014 	 *    tstamp - ctx->timestamp
2015 	 * is equivalent to
2016 	 *    tstamp - cgrp->timestamp.
2017 	 *
2018 	 * Then, in perf_output_read(), the calculation would
2019 	 * work with no changes because:
2020 	 * - event is guaranteed scheduled in
2021 	 * - no scheduled out in between
2022 	 * - thus the timestamp would be the same
2023 	 *
2024 	 * But this is a bit hairy.
2025 	 *
2026 	 * So instead, we have an explicit cgroup call to remain
2027 	 * within the time time source all along. We believe it
2028 	 * is cleaner and simpler to understand.
2029 	 */
2030 	if (is_cgroup_event(event))
2031 		perf_cgroup_set_shadow_time(event, event->tstamp);
2032 	else
2033 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2034 }
2035 
2036 #define MAX_INTERRUPTS (~0ULL)
2037 
2038 static void perf_log_throttle(struct perf_event *event, int enable);
2039 static void perf_log_itrace_start(struct perf_event *event);
2040 
2041 static int
2042 event_sched_in(struct perf_event *event,
2043 		 struct perf_cpu_context *cpuctx,
2044 		 struct perf_event_context *ctx)
2045 {
2046 	int ret = 0;
2047 
2048 	lockdep_assert_held(&ctx->lock);
2049 
2050 	if (event->state <= PERF_EVENT_STATE_OFF)
2051 		return 0;
2052 
2053 	WRITE_ONCE(event->oncpu, smp_processor_id());
2054 	/*
2055 	 * Order event::oncpu write to happen before the ACTIVE state is
2056 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2057 	 * ->oncpu if it sees ACTIVE.
2058 	 */
2059 	smp_wmb();
2060 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2061 
2062 	/*
2063 	 * Unthrottle events, since we scheduled we might have missed several
2064 	 * ticks already, also for a heavily scheduling task there is little
2065 	 * guarantee it'll get a tick in a timely manner.
2066 	 */
2067 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2068 		perf_log_throttle(event, 1);
2069 		event->hw.interrupts = 0;
2070 	}
2071 
2072 	perf_pmu_disable(event->pmu);
2073 
2074 	perf_set_shadow_time(event, ctx);
2075 
2076 	perf_log_itrace_start(event);
2077 
2078 	if (event->pmu->add(event, PERF_EF_START)) {
2079 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2080 		event->oncpu = -1;
2081 		ret = -EAGAIN;
2082 		goto out;
2083 	}
2084 
2085 	if (!is_software_event(event))
2086 		cpuctx->active_oncpu++;
2087 	if (!ctx->nr_active++)
2088 		perf_event_ctx_activate(ctx);
2089 	if (event->attr.freq && event->attr.sample_freq)
2090 		ctx->nr_freq++;
2091 
2092 	if (event->attr.exclusive)
2093 		cpuctx->exclusive = 1;
2094 
2095 out:
2096 	perf_pmu_enable(event->pmu);
2097 
2098 	return ret;
2099 }
2100 
2101 static int
2102 group_sched_in(struct perf_event *group_event,
2103 	       struct perf_cpu_context *cpuctx,
2104 	       struct perf_event_context *ctx)
2105 {
2106 	struct perf_event *event, *partial_group = NULL;
2107 	struct pmu *pmu = ctx->pmu;
2108 
2109 	if (group_event->state == PERF_EVENT_STATE_OFF)
2110 		return 0;
2111 
2112 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2113 
2114 	if (event_sched_in(group_event, cpuctx, ctx)) {
2115 		pmu->cancel_txn(pmu);
2116 		perf_mux_hrtimer_restart(cpuctx);
2117 		return -EAGAIN;
2118 	}
2119 
2120 	/*
2121 	 * Schedule in siblings as one group (if any):
2122 	 */
2123 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2124 		if (event_sched_in(event, cpuctx, ctx)) {
2125 			partial_group = event;
2126 			goto group_error;
2127 		}
2128 	}
2129 
2130 	if (!pmu->commit_txn(pmu))
2131 		return 0;
2132 
2133 group_error:
2134 	/*
2135 	 * Groups can be scheduled in as one unit only, so undo any
2136 	 * partial group before returning:
2137 	 * The events up to the failed event are scheduled out normally.
2138 	 */
2139 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2140 		if (event == partial_group)
2141 			break;
2142 
2143 		event_sched_out(event, cpuctx, ctx);
2144 	}
2145 	event_sched_out(group_event, cpuctx, ctx);
2146 
2147 	pmu->cancel_txn(pmu);
2148 
2149 	perf_mux_hrtimer_restart(cpuctx);
2150 
2151 	return -EAGAIN;
2152 }
2153 
2154 /*
2155  * Work out whether we can put this event group on the CPU now.
2156  */
2157 static int group_can_go_on(struct perf_event *event,
2158 			   struct perf_cpu_context *cpuctx,
2159 			   int can_add_hw)
2160 {
2161 	/*
2162 	 * Groups consisting entirely of software events can always go on.
2163 	 */
2164 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2165 		return 1;
2166 	/*
2167 	 * If an exclusive group is already on, no other hardware
2168 	 * events can go on.
2169 	 */
2170 	if (cpuctx->exclusive)
2171 		return 0;
2172 	/*
2173 	 * If this group is exclusive and there are already
2174 	 * events on the CPU, it can't go on.
2175 	 */
2176 	if (event->attr.exclusive && cpuctx->active_oncpu)
2177 		return 0;
2178 	/*
2179 	 * Otherwise, try to add it if all previous groups were able
2180 	 * to go on.
2181 	 */
2182 	return can_add_hw;
2183 }
2184 
2185 static void add_event_to_ctx(struct perf_event *event,
2186 			       struct perf_event_context *ctx)
2187 {
2188 	list_add_event(event, ctx);
2189 	perf_group_attach(event);
2190 }
2191 
2192 static void ctx_sched_out(struct perf_event_context *ctx,
2193 			  struct perf_cpu_context *cpuctx,
2194 			  enum event_type_t event_type);
2195 static void
2196 ctx_sched_in(struct perf_event_context *ctx,
2197 	     struct perf_cpu_context *cpuctx,
2198 	     enum event_type_t event_type,
2199 	     struct task_struct *task);
2200 
2201 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2202 			       struct perf_event_context *ctx,
2203 			       enum event_type_t event_type)
2204 {
2205 	if (!cpuctx->task_ctx)
2206 		return;
2207 
2208 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2209 		return;
2210 
2211 	ctx_sched_out(ctx, cpuctx, event_type);
2212 }
2213 
2214 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2215 				struct perf_event_context *ctx,
2216 				struct task_struct *task)
2217 {
2218 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2219 	if (ctx)
2220 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2221 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2222 	if (ctx)
2223 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2224 }
2225 
2226 /*
2227  * We want to maintain the following priority of scheduling:
2228  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2229  *  - task pinned (EVENT_PINNED)
2230  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2231  *  - task flexible (EVENT_FLEXIBLE).
2232  *
2233  * In order to avoid unscheduling and scheduling back in everything every
2234  * time an event is added, only do it for the groups of equal priority and
2235  * below.
2236  *
2237  * This can be called after a batch operation on task events, in which case
2238  * event_type is a bit mask of the types of events involved. For CPU events,
2239  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2240  */
2241 static void ctx_resched(struct perf_cpu_context *cpuctx,
2242 			struct perf_event_context *task_ctx,
2243 			enum event_type_t event_type)
2244 {
2245 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2246 	bool cpu_event = !!(event_type & EVENT_CPU);
2247 
2248 	/*
2249 	 * If pinned groups are involved, flexible groups also need to be
2250 	 * scheduled out.
2251 	 */
2252 	if (event_type & EVENT_PINNED)
2253 		event_type |= EVENT_FLEXIBLE;
2254 
2255 	perf_pmu_disable(cpuctx->ctx.pmu);
2256 	if (task_ctx)
2257 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2258 
2259 	/*
2260 	 * Decide which cpu ctx groups to schedule out based on the types
2261 	 * of events that caused rescheduling:
2262 	 *  - EVENT_CPU: schedule out corresponding groups;
2263 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2264 	 *  - otherwise, do nothing more.
2265 	 */
2266 	if (cpu_event)
2267 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2268 	else if (ctx_event_type & EVENT_PINNED)
2269 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2270 
2271 	perf_event_sched_in(cpuctx, task_ctx, current);
2272 	perf_pmu_enable(cpuctx->ctx.pmu);
2273 }
2274 
2275 /*
2276  * Cross CPU call to install and enable a performance event
2277  *
2278  * Very similar to remote_function() + event_function() but cannot assume that
2279  * things like ctx->is_active and cpuctx->task_ctx are set.
2280  */
2281 static int  __perf_install_in_context(void *info)
2282 {
2283 	struct perf_event *event = info;
2284 	struct perf_event_context *ctx = event->ctx;
2285 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2286 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2287 	bool reprogram = true;
2288 	int ret = 0;
2289 
2290 	raw_spin_lock(&cpuctx->ctx.lock);
2291 	if (ctx->task) {
2292 		raw_spin_lock(&ctx->lock);
2293 		task_ctx = ctx;
2294 
2295 		reprogram = (ctx->task == current);
2296 
2297 		/*
2298 		 * If the task is running, it must be running on this CPU,
2299 		 * otherwise we cannot reprogram things.
2300 		 *
2301 		 * If its not running, we don't care, ctx->lock will
2302 		 * serialize against it becoming runnable.
2303 		 */
2304 		if (task_curr(ctx->task) && !reprogram) {
2305 			ret = -ESRCH;
2306 			goto unlock;
2307 		}
2308 
2309 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2310 	} else if (task_ctx) {
2311 		raw_spin_lock(&task_ctx->lock);
2312 	}
2313 
2314 	if (reprogram) {
2315 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2316 		add_event_to_ctx(event, ctx);
2317 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2318 	} else {
2319 		add_event_to_ctx(event, ctx);
2320 	}
2321 
2322 unlock:
2323 	perf_ctx_unlock(cpuctx, task_ctx);
2324 
2325 	return ret;
2326 }
2327 
2328 /*
2329  * Attach a performance event to a context.
2330  *
2331  * Very similar to event_function_call, see comment there.
2332  */
2333 static void
2334 perf_install_in_context(struct perf_event_context *ctx,
2335 			struct perf_event *event,
2336 			int cpu)
2337 {
2338 	struct task_struct *task = READ_ONCE(ctx->task);
2339 
2340 	lockdep_assert_held(&ctx->mutex);
2341 
2342 	if (event->cpu != -1)
2343 		event->cpu = cpu;
2344 
2345 	/*
2346 	 * Ensures that if we can observe event->ctx, both the event and ctx
2347 	 * will be 'complete'. See perf_iterate_sb_cpu().
2348 	 */
2349 	smp_store_release(&event->ctx, ctx);
2350 
2351 	if (!task) {
2352 		cpu_function_call(cpu, __perf_install_in_context, event);
2353 		return;
2354 	}
2355 
2356 	/*
2357 	 * Should not happen, we validate the ctx is still alive before calling.
2358 	 */
2359 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2360 		return;
2361 
2362 	/*
2363 	 * Installing events is tricky because we cannot rely on ctx->is_active
2364 	 * to be set in case this is the nr_events 0 -> 1 transition.
2365 	 *
2366 	 * Instead we use task_curr(), which tells us if the task is running.
2367 	 * However, since we use task_curr() outside of rq::lock, we can race
2368 	 * against the actual state. This means the result can be wrong.
2369 	 *
2370 	 * If we get a false positive, we retry, this is harmless.
2371 	 *
2372 	 * If we get a false negative, things are complicated. If we are after
2373 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2374 	 * value must be correct. If we're before, it doesn't matter since
2375 	 * perf_event_context_sched_in() will program the counter.
2376 	 *
2377 	 * However, this hinges on the remote context switch having observed
2378 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2379 	 * ctx::lock in perf_event_context_sched_in().
2380 	 *
2381 	 * We do this by task_function_call(), if the IPI fails to hit the task
2382 	 * we know any future context switch of task must see the
2383 	 * perf_event_ctpx[] store.
2384 	 */
2385 
2386 	/*
2387 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2388 	 * task_cpu() load, such that if the IPI then does not find the task
2389 	 * running, a future context switch of that task must observe the
2390 	 * store.
2391 	 */
2392 	smp_mb();
2393 again:
2394 	if (!task_function_call(task, __perf_install_in_context, event))
2395 		return;
2396 
2397 	raw_spin_lock_irq(&ctx->lock);
2398 	task = ctx->task;
2399 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2400 		/*
2401 		 * Cannot happen because we already checked above (which also
2402 		 * cannot happen), and we hold ctx->mutex, which serializes us
2403 		 * against perf_event_exit_task_context().
2404 		 */
2405 		raw_spin_unlock_irq(&ctx->lock);
2406 		return;
2407 	}
2408 	/*
2409 	 * If the task is not running, ctx->lock will avoid it becoming so,
2410 	 * thus we can safely install the event.
2411 	 */
2412 	if (task_curr(task)) {
2413 		raw_spin_unlock_irq(&ctx->lock);
2414 		goto again;
2415 	}
2416 	add_event_to_ctx(event, ctx);
2417 	raw_spin_unlock_irq(&ctx->lock);
2418 }
2419 
2420 /*
2421  * Cross CPU call to enable a performance event
2422  */
2423 static void __perf_event_enable(struct perf_event *event,
2424 				struct perf_cpu_context *cpuctx,
2425 				struct perf_event_context *ctx,
2426 				void *info)
2427 {
2428 	struct perf_event *leader = event->group_leader;
2429 	struct perf_event_context *task_ctx;
2430 
2431 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2432 	    event->state <= PERF_EVENT_STATE_ERROR)
2433 		return;
2434 
2435 	if (ctx->is_active)
2436 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2437 
2438 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2439 
2440 	if (!ctx->is_active)
2441 		return;
2442 
2443 	if (!event_filter_match(event)) {
2444 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2445 		return;
2446 	}
2447 
2448 	/*
2449 	 * If the event is in a group and isn't the group leader,
2450 	 * then don't put it on unless the group is on.
2451 	 */
2452 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2453 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2454 		return;
2455 	}
2456 
2457 	task_ctx = cpuctx->task_ctx;
2458 	if (ctx->task)
2459 		WARN_ON_ONCE(task_ctx != ctx);
2460 
2461 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2462 }
2463 
2464 /*
2465  * Enable a event.
2466  *
2467  * If event->ctx is a cloned context, callers must make sure that
2468  * every task struct that event->ctx->task could possibly point to
2469  * remains valid.  This condition is satisfied when called through
2470  * perf_event_for_each_child or perf_event_for_each as described
2471  * for perf_event_disable.
2472  */
2473 static void _perf_event_enable(struct perf_event *event)
2474 {
2475 	struct perf_event_context *ctx = event->ctx;
2476 
2477 	raw_spin_lock_irq(&ctx->lock);
2478 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2479 	    event->state <  PERF_EVENT_STATE_ERROR) {
2480 		raw_spin_unlock_irq(&ctx->lock);
2481 		return;
2482 	}
2483 
2484 	/*
2485 	 * If the event is in error state, clear that first.
2486 	 *
2487 	 * That way, if we see the event in error state below, we know that it
2488 	 * has gone back into error state, as distinct from the task having
2489 	 * been scheduled away before the cross-call arrived.
2490 	 */
2491 	if (event->state == PERF_EVENT_STATE_ERROR)
2492 		event->state = PERF_EVENT_STATE_OFF;
2493 	raw_spin_unlock_irq(&ctx->lock);
2494 
2495 	event_function_call(event, __perf_event_enable, NULL);
2496 }
2497 
2498 /*
2499  * See perf_event_disable();
2500  */
2501 void perf_event_enable(struct perf_event *event)
2502 {
2503 	struct perf_event_context *ctx;
2504 
2505 	ctx = perf_event_ctx_lock(event);
2506 	_perf_event_enable(event);
2507 	perf_event_ctx_unlock(event, ctx);
2508 }
2509 EXPORT_SYMBOL_GPL(perf_event_enable);
2510 
2511 struct stop_event_data {
2512 	struct perf_event	*event;
2513 	unsigned int		restart;
2514 };
2515 
2516 static int __perf_event_stop(void *info)
2517 {
2518 	struct stop_event_data *sd = info;
2519 	struct perf_event *event = sd->event;
2520 
2521 	/* if it's already INACTIVE, do nothing */
2522 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2523 		return 0;
2524 
2525 	/* matches smp_wmb() in event_sched_in() */
2526 	smp_rmb();
2527 
2528 	/*
2529 	 * There is a window with interrupts enabled before we get here,
2530 	 * so we need to check again lest we try to stop another CPU's event.
2531 	 */
2532 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2533 		return -EAGAIN;
2534 
2535 	event->pmu->stop(event, PERF_EF_UPDATE);
2536 
2537 	/*
2538 	 * May race with the actual stop (through perf_pmu_output_stop()),
2539 	 * but it is only used for events with AUX ring buffer, and such
2540 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2541 	 * see comments in perf_aux_output_begin().
2542 	 *
2543 	 * Since this is happening on a event-local CPU, no trace is lost
2544 	 * while restarting.
2545 	 */
2546 	if (sd->restart)
2547 		event->pmu->start(event, 0);
2548 
2549 	return 0;
2550 }
2551 
2552 static int perf_event_stop(struct perf_event *event, int restart)
2553 {
2554 	struct stop_event_data sd = {
2555 		.event		= event,
2556 		.restart	= restart,
2557 	};
2558 	int ret = 0;
2559 
2560 	do {
2561 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2562 			return 0;
2563 
2564 		/* matches smp_wmb() in event_sched_in() */
2565 		smp_rmb();
2566 
2567 		/*
2568 		 * We only want to restart ACTIVE events, so if the event goes
2569 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2570 		 * fall through with ret==-ENXIO.
2571 		 */
2572 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2573 					__perf_event_stop, &sd);
2574 	} while (ret == -EAGAIN);
2575 
2576 	return ret;
2577 }
2578 
2579 /*
2580  * In order to contain the amount of racy and tricky in the address filter
2581  * configuration management, it is a two part process:
2582  *
2583  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2584  *      we update the addresses of corresponding vmas in
2585  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2586  * (p2) when an event is scheduled in (pmu::add), it calls
2587  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2588  *      if the generation has changed since the previous call.
2589  *
2590  * If (p1) happens while the event is active, we restart it to force (p2).
2591  *
2592  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2593  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2594  *     ioctl;
2595  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2596  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2597  *     for reading;
2598  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2599  *     of exec.
2600  */
2601 void perf_event_addr_filters_sync(struct perf_event *event)
2602 {
2603 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2604 
2605 	if (!has_addr_filter(event))
2606 		return;
2607 
2608 	raw_spin_lock(&ifh->lock);
2609 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2610 		event->pmu->addr_filters_sync(event);
2611 		event->hw.addr_filters_gen = event->addr_filters_gen;
2612 	}
2613 	raw_spin_unlock(&ifh->lock);
2614 }
2615 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2616 
2617 static int _perf_event_refresh(struct perf_event *event, int refresh)
2618 {
2619 	/*
2620 	 * not supported on inherited events
2621 	 */
2622 	if (event->attr.inherit || !is_sampling_event(event))
2623 		return -EINVAL;
2624 
2625 	atomic_add(refresh, &event->event_limit);
2626 	_perf_event_enable(event);
2627 
2628 	return 0;
2629 }
2630 
2631 /*
2632  * See perf_event_disable()
2633  */
2634 int perf_event_refresh(struct perf_event *event, int refresh)
2635 {
2636 	struct perf_event_context *ctx;
2637 	int ret;
2638 
2639 	ctx = perf_event_ctx_lock(event);
2640 	ret = _perf_event_refresh(event, refresh);
2641 	perf_event_ctx_unlock(event, ctx);
2642 
2643 	return ret;
2644 }
2645 EXPORT_SYMBOL_GPL(perf_event_refresh);
2646 
2647 static void ctx_sched_out(struct perf_event_context *ctx,
2648 			  struct perf_cpu_context *cpuctx,
2649 			  enum event_type_t event_type)
2650 {
2651 	int is_active = ctx->is_active;
2652 	struct perf_event *event;
2653 
2654 	lockdep_assert_held(&ctx->lock);
2655 
2656 	if (likely(!ctx->nr_events)) {
2657 		/*
2658 		 * See __perf_remove_from_context().
2659 		 */
2660 		WARN_ON_ONCE(ctx->is_active);
2661 		if (ctx->task)
2662 			WARN_ON_ONCE(cpuctx->task_ctx);
2663 		return;
2664 	}
2665 
2666 	ctx->is_active &= ~event_type;
2667 	if (!(ctx->is_active & EVENT_ALL))
2668 		ctx->is_active = 0;
2669 
2670 	if (ctx->task) {
2671 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2672 		if (!ctx->is_active)
2673 			cpuctx->task_ctx = NULL;
2674 	}
2675 
2676 	/*
2677 	 * Always update time if it was set; not only when it changes.
2678 	 * Otherwise we can 'forget' to update time for any but the last
2679 	 * context we sched out. For example:
2680 	 *
2681 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2682 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2683 	 *
2684 	 * would only update time for the pinned events.
2685 	 */
2686 	if (is_active & EVENT_TIME) {
2687 		/* update (and stop) ctx time */
2688 		update_context_time(ctx);
2689 		update_cgrp_time_from_cpuctx(cpuctx);
2690 	}
2691 
2692 	is_active ^= ctx->is_active; /* changed bits */
2693 
2694 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2695 		return;
2696 
2697 	perf_pmu_disable(ctx->pmu);
2698 	if (is_active & EVENT_PINNED) {
2699 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2700 			group_sched_out(event, cpuctx, ctx);
2701 	}
2702 
2703 	if (is_active & EVENT_FLEXIBLE) {
2704 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2705 			group_sched_out(event, cpuctx, ctx);
2706 	}
2707 	perf_pmu_enable(ctx->pmu);
2708 }
2709 
2710 /*
2711  * Test whether two contexts are equivalent, i.e. whether they have both been
2712  * cloned from the same version of the same context.
2713  *
2714  * Equivalence is measured using a generation number in the context that is
2715  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2716  * and list_del_event().
2717  */
2718 static int context_equiv(struct perf_event_context *ctx1,
2719 			 struct perf_event_context *ctx2)
2720 {
2721 	lockdep_assert_held(&ctx1->lock);
2722 	lockdep_assert_held(&ctx2->lock);
2723 
2724 	/* Pinning disables the swap optimization */
2725 	if (ctx1->pin_count || ctx2->pin_count)
2726 		return 0;
2727 
2728 	/* If ctx1 is the parent of ctx2 */
2729 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2730 		return 1;
2731 
2732 	/* If ctx2 is the parent of ctx1 */
2733 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2734 		return 1;
2735 
2736 	/*
2737 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2738 	 * hierarchy, see perf_event_init_context().
2739 	 */
2740 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2741 			ctx1->parent_gen == ctx2->parent_gen)
2742 		return 1;
2743 
2744 	/* Unmatched */
2745 	return 0;
2746 }
2747 
2748 static void __perf_event_sync_stat(struct perf_event *event,
2749 				     struct perf_event *next_event)
2750 {
2751 	u64 value;
2752 
2753 	if (!event->attr.inherit_stat)
2754 		return;
2755 
2756 	/*
2757 	 * Update the event value, we cannot use perf_event_read()
2758 	 * because we're in the middle of a context switch and have IRQs
2759 	 * disabled, which upsets smp_call_function_single(), however
2760 	 * we know the event must be on the current CPU, therefore we
2761 	 * don't need to use it.
2762 	 */
2763 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2764 		event->pmu->read(event);
2765 
2766 	perf_event_update_time(event);
2767 
2768 	/*
2769 	 * In order to keep per-task stats reliable we need to flip the event
2770 	 * values when we flip the contexts.
2771 	 */
2772 	value = local64_read(&next_event->count);
2773 	value = local64_xchg(&event->count, value);
2774 	local64_set(&next_event->count, value);
2775 
2776 	swap(event->total_time_enabled, next_event->total_time_enabled);
2777 	swap(event->total_time_running, next_event->total_time_running);
2778 
2779 	/*
2780 	 * Since we swizzled the values, update the user visible data too.
2781 	 */
2782 	perf_event_update_userpage(event);
2783 	perf_event_update_userpage(next_event);
2784 }
2785 
2786 static void perf_event_sync_stat(struct perf_event_context *ctx,
2787 				   struct perf_event_context *next_ctx)
2788 {
2789 	struct perf_event *event, *next_event;
2790 
2791 	if (!ctx->nr_stat)
2792 		return;
2793 
2794 	update_context_time(ctx);
2795 
2796 	event = list_first_entry(&ctx->event_list,
2797 				   struct perf_event, event_entry);
2798 
2799 	next_event = list_first_entry(&next_ctx->event_list,
2800 					struct perf_event, event_entry);
2801 
2802 	while (&event->event_entry != &ctx->event_list &&
2803 	       &next_event->event_entry != &next_ctx->event_list) {
2804 
2805 		__perf_event_sync_stat(event, next_event);
2806 
2807 		event = list_next_entry(event, event_entry);
2808 		next_event = list_next_entry(next_event, event_entry);
2809 	}
2810 }
2811 
2812 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2813 					 struct task_struct *next)
2814 {
2815 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2816 	struct perf_event_context *next_ctx;
2817 	struct perf_event_context *parent, *next_parent;
2818 	struct perf_cpu_context *cpuctx;
2819 	int do_switch = 1;
2820 
2821 	if (likely(!ctx))
2822 		return;
2823 
2824 	cpuctx = __get_cpu_context(ctx);
2825 	if (!cpuctx->task_ctx)
2826 		return;
2827 
2828 	rcu_read_lock();
2829 	next_ctx = next->perf_event_ctxp[ctxn];
2830 	if (!next_ctx)
2831 		goto unlock;
2832 
2833 	parent = rcu_dereference(ctx->parent_ctx);
2834 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2835 
2836 	/* If neither context have a parent context; they cannot be clones. */
2837 	if (!parent && !next_parent)
2838 		goto unlock;
2839 
2840 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2841 		/*
2842 		 * Looks like the two contexts are clones, so we might be
2843 		 * able to optimize the context switch.  We lock both
2844 		 * contexts and check that they are clones under the
2845 		 * lock (including re-checking that neither has been
2846 		 * uncloned in the meantime).  It doesn't matter which
2847 		 * order we take the locks because no other cpu could
2848 		 * be trying to lock both of these tasks.
2849 		 */
2850 		raw_spin_lock(&ctx->lock);
2851 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2852 		if (context_equiv(ctx, next_ctx)) {
2853 			WRITE_ONCE(ctx->task, next);
2854 			WRITE_ONCE(next_ctx->task, task);
2855 
2856 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2857 
2858 			/*
2859 			 * RCU_INIT_POINTER here is safe because we've not
2860 			 * modified the ctx and the above modification of
2861 			 * ctx->task and ctx->task_ctx_data are immaterial
2862 			 * since those values are always verified under
2863 			 * ctx->lock which we're now holding.
2864 			 */
2865 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2866 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2867 
2868 			do_switch = 0;
2869 
2870 			perf_event_sync_stat(ctx, next_ctx);
2871 		}
2872 		raw_spin_unlock(&next_ctx->lock);
2873 		raw_spin_unlock(&ctx->lock);
2874 	}
2875 unlock:
2876 	rcu_read_unlock();
2877 
2878 	if (do_switch) {
2879 		raw_spin_lock(&ctx->lock);
2880 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2881 		raw_spin_unlock(&ctx->lock);
2882 	}
2883 }
2884 
2885 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2886 
2887 void perf_sched_cb_dec(struct pmu *pmu)
2888 {
2889 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2890 
2891 	this_cpu_dec(perf_sched_cb_usages);
2892 
2893 	if (!--cpuctx->sched_cb_usage)
2894 		list_del(&cpuctx->sched_cb_entry);
2895 }
2896 
2897 
2898 void perf_sched_cb_inc(struct pmu *pmu)
2899 {
2900 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2901 
2902 	if (!cpuctx->sched_cb_usage++)
2903 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2904 
2905 	this_cpu_inc(perf_sched_cb_usages);
2906 }
2907 
2908 /*
2909  * This function provides the context switch callback to the lower code
2910  * layer. It is invoked ONLY when the context switch callback is enabled.
2911  *
2912  * This callback is relevant even to per-cpu events; for example multi event
2913  * PEBS requires this to provide PID/TID information. This requires we flush
2914  * all queued PEBS records before we context switch to a new task.
2915  */
2916 static void perf_pmu_sched_task(struct task_struct *prev,
2917 				struct task_struct *next,
2918 				bool sched_in)
2919 {
2920 	struct perf_cpu_context *cpuctx;
2921 	struct pmu *pmu;
2922 
2923 	if (prev == next)
2924 		return;
2925 
2926 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2927 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2928 
2929 		if (WARN_ON_ONCE(!pmu->sched_task))
2930 			continue;
2931 
2932 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2933 		perf_pmu_disable(pmu);
2934 
2935 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2936 
2937 		perf_pmu_enable(pmu);
2938 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2939 	}
2940 }
2941 
2942 static void perf_event_switch(struct task_struct *task,
2943 			      struct task_struct *next_prev, bool sched_in);
2944 
2945 #define for_each_task_context_nr(ctxn)					\
2946 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2947 
2948 /*
2949  * Called from scheduler to remove the events of the current task,
2950  * with interrupts disabled.
2951  *
2952  * We stop each event and update the event value in event->count.
2953  *
2954  * This does not protect us against NMI, but disable()
2955  * sets the disabled bit in the control field of event _before_
2956  * accessing the event control register. If a NMI hits, then it will
2957  * not restart the event.
2958  */
2959 void __perf_event_task_sched_out(struct task_struct *task,
2960 				 struct task_struct *next)
2961 {
2962 	int ctxn;
2963 
2964 	if (__this_cpu_read(perf_sched_cb_usages))
2965 		perf_pmu_sched_task(task, next, false);
2966 
2967 	if (atomic_read(&nr_switch_events))
2968 		perf_event_switch(task, next, false);
2969 
2970 	for_each_task_context_nr(ctxn)
2971 		perf_event_context_sched_out(task, ctxn, next);
2972 
2973 	/*
2974 	 * if cgroup events exist on this CPU, then we need
2975 	 * to check if we have to switch out PMU state.
2976 	 * cgroup event are system-wide mode only
2977 	 */
2978 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2979 		perf_cgroup_sched_out(task, next);
2980 }
2981 
2982 /*
2983  * Called with IRQs disabled
2984  */
2985 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2986 			      enum event_type_t event_type)
2987 {
2988 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2989 }
2990 
2991 static void
2992 ctx_pinned_sched_in(struct perf_event_context *ctx,
2993 		    struct perf_cpu_context *cpuctx)
2994 {
2995 	struct perf_event *event;
2996 
2997 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2998 		if (event->state <= PERF_EVENT_STATE_OFF)
2999 			continue;
3000 		if (!event_filter_match(event))
3001 			continue;
3002 
3003 		if (group_can_go_on(event, cpuctx, 1))
3004 			group_sched_in(event, cpuctx, ctx);
3005 
3006 		/*
3007 		 * If this pinned group hasn't been scheduled,
3008 		 * put it in error state.
3009 		 */
3010 		if (event->state == PERF_EVENT_STATE_INACTIVE)
3011 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3012 	}
3013 }
3014 
3015 static void
3016 ctx_flexible_sched_in(struct perf_event_context *ctx,
3017 		      struct perf_cpu_context *cpuctx)
3018 {
3019 	struct perf_event *event;
3020 	int can_add_hw = 1;
3021 
3022 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3023 		/* Ignore events in OFF or ERROR state */
3024 		if (event->state <= PERF_EVENT_STATE_OFF)
3025 			continue;
3026 		/*
3027 		 * Listen to the 'cpu' scheduling filter constraint
3028 		 * of events:
3029 		 */
3030 		if (!event_filter_match(event))
3031 			continue;
3032 
3033 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3034 			if (group_sched_in(event, cpuctx, ctx))
3035 				can_add_hw = 0;
3036 		}
3037 	}
3038 }
3039 
3040 static void
3041 ctx_sched_in(struct perf_event_context *ctx,
3042 	     struct perf_cpu_context *cpuctx,
3043 	     enum event_type_t event_type,
3044 	     struct task_struct *task)
3045 {
3046 	int is_active = ctx->is_active;
3047 	u64 now;
3048 
3049 	lockdep_assert_held(&ctx->lock);
3050 
3051 	if (likely(!ctx->nr_events))
3052 		return;
3053 
3054 	ctx->is_active |= (event_type | EVENT_TIME);
3055 	if (ctx->task) {
3056 		if (!is_active)
3057 			cpuctx->task_ctx = ctx;
3058 		else
3059 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3060 	}
3061 
3062 	is_active ^= ctx->is_active; /* changed bits */
3063 
3064 	if (is_active & EVENT_TIME) {
3065 		/* start ctx time */
3066 		now = perf_clock();
3067 		ctx->timestamp = now;
3068 		perf_cgroup_set_timestamp(task, ctx);
3069 	}
3070 
3071 	/*
3072 	 * First go through the list and put on any pinned groups
3073 	 * in order to give them the best chance of going on.
3074 	 */
3075 	if (is_active & EVENT_PINNED)
3076 		ctx_pinned_sched_in(ctx, cpuctx);
3077 
3078 	/* Then walk through the lower prio flexible groups */
3079 	if (is_active & EVENT_FLEXIBLE)
3080 		ctx_flexible_sched_in(ctx, cpuctx);
3081 }
3082 
3083 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3084 			     enum event_type_t event_type,
3085 			     struct task_struct *task)
3086 {
3087 	struct perf_event_context *ctx = &cpuctx->ctx;
3088 
3089 	ctx_sched_in(ctx, cpuctx, event_type, task);
3090 }
3091 
3092 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3093 					struct task_struct *task)
3094 {
3095 	struct perf_cpu_context *cpuctx;
3096 
3097 	cpuctx = __get_cpu_context(ctx);
3098 	if (cpuctx->task_ctx == ctx)
3099 		return;
3100 
3101 	perf_ctx_lock(cpuctx, ctx);
3102 	/*
3103 	 * We must check ctx->nr_events while holding ctx->lock, such
3104 	 * that we serialize against perf_install_in_context().
3105 	 */
3106 	if (!ctx->nr_events)
3107 		goto unlock;
3108 
3109 	perf_pmu_disable(ctx->pmu);
3110 	/*
3111 	 * We want to keep the following priority order:
3112 	 * cpu pinned (that don't need to move), task pinned,
3113 	 * cpu flexible, task flexible.
3114 	 *
3115 	 * However, if task's ctx is not carrying any pinned
3116 	 * events, no need to flip the cpuctx's events around.
3117 	 */
3118 	if (!list_empty(&ctx->pinned_groups))
3119 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3120 	perf_event_sched_in(cpuctx, ctx, task);
3121 	perf_pmu_enable(ctx->pmu);
3122 
3123 unlock:
3124 	perf_ctx_unlock(cpuctx, ctx);
3125 }
3126 
3127 /*
3128  * Called from scheduler to add the events of the current task
3129  * with interrupts disabled.
3130  *
3131  * We restore the event value and then enable it.
3132  *
3133  * This does not protect us against NMI, but enable()
3134  * sets the enabled bit in the control field of event _before_
3135  * accessing the event control register. If a NMI hits, then it will
3136  * keep the event running.
3137  */
3138 void __perf_event_task_sched_in(struct task_struct *prev,
3139 				struct task_struct *task)
3140 {
3141 	struct perf_event_context *ctx;
3142 	int ctxn;
3143 
3144 	/*
3145 	 * If cgroup events exist on this CPU, then we need to check if we have
3146 	 * to switch in PMU state; cgroup event are system-wide mode only.
3147 	 *
3148 	 * Since cgroup events are CPU events, we must schedule these in before
3149 	 * we schedule in the task events.
3150 	 */
3151 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3152 		perf_cgroup_sched_in(prev, task);
3153 
3154 	for_each_task_context_nr(ctxn) {
3155 		ctx = task->perf_event_ctxp[ctxn];
3156 		if (likely(!ctx))
3157 			continue;
3158 
3159 		perf_event_context_sched_in(ctx, task);
3160 	}
3161 
3162 	if (atomic_read(&nr_switch_events))
3163 		perf_event_switch(task, prev, true);
3164 
3165 	if (__this_cpu_read(perf_sched_cb_usages))
3166 		perf_pmu_sched_task(prev, task, true);
3167 }
3168 
3169 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3170 {
3171 	u64 frequency = event->attr.sample_freq;
3172 	u64 sec = NSEC_PER_SEC;
3173 	u64 divisor, dividend;
3174 
3175 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3176 
3177 	count_fls = fls64(count);
3178 	nsec_fls = fls64(nsec);
3179 	frequency_fls = fls64(frequency);
3180 	sec_fls = 30;
3181 
3182 	/*
3183 	 * We got @count in @nsec, with a target of sample_freq HZ
3184 	 * the target period becomes:
3185 	 *
3186 	 *             @count * 10^9
3187 	 * period = -------------------
3188 	 *          @nsec * sample_freq
3189 	 *
3190 	 */
3191 
3192 	/*
3193 	 * Reduce accuracy by one bit such that @a and @b converge
3194 	 * to a similar magnitude.
3195 	 */
3196 #define REDUCE_FLS(a, b)		\
3197 do {					\
3198 	if (a##_fls > b##_fls) {	\
3199 		a >>= 1;		\
3200 		a##_fls--;		\
3201 	} else {			\
3202 		b >>= 1;		\
3203 		b##_fls--;		\
3204 	}				\
3205 } while (0)
3206 
3207 	/*
3208 	 * Reduce accuracy until either term fits in a u64, then proceed with
3209 	 * the other, so that finally we can do a u64/u64 division.
3210 	 */
3211 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3212 		REDUCE_FLS(nsec, frequency);
3213 		REDUCE_FLS(sec, count);
3214 	}
3215 
3216 	if (count_fls + sec_fls > 64) {
3217 		divisor = nsec * frequency;
3218 
3219 		while (count_fls + sec_fls > 64) {
3220 			REDUCE_FLS(count, sec);
3221 			divisor >>= 1;
3222 		}
3223 
3224 		dividend = count * sec;
3225 	} else {
3226 		dividend = count * sec;
3227 
3228 		while (nsec_fls + frequency_fls > 64) {
3229 			REDUCE_FLS(nsec, frequency);
3230 			dividend >>= 1;
3231 		}
3232 
3233 		divisor = nsec * frequency;
3234 	}
3235 
3236 	if (!divisor)
3237 		return dividend;
3238 
3239 	return div64_u64(dividend, divisor);
3240 }
3241 
3242 static DEFINE_PER_CPU(int, perf_throttled_count);
3243 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3244 
3245 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3246 {
3247 	struct hw_perf_event *hwc = &event->hw;
3248 	s64 period, sample_period;
3249 	s64 delta;
3250 
3251 	period = perf_calculate_period(event, nsec, count);
3252 
3253 	delta = (s64)(period - hwc->sample_period);
3254 	delta = (delta + 7) / 8; /* low pass filter */
3255 
3256 	sample_period = hwc->sample_period + delta;
3257 
3258 	if (!sample_period)
3259 		sample_period = 1;
3260 
3261 	hwc->sample_period = sample_period;
3262 
3263 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3264 		if (disable)
3265 			event->pmu->stop(event, PERF_EF_UPDATE);
3266 
3267 		local64_set(&hwc->period_left, 0);
3268 
3269 		if (disable)
3270 			event->pmu->start(event, PERF_EF_RELOAD);
3271 	}
3272 }
3273 
3274 /*
3275  * combine freq adjustment with unthrottling to avoid two passes over the
3276  * events. At the same time, make sure, having freq events does not change
3277  * the rate of unthrottling as that would introduce bias.
3278  */
3279 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3280 					   int needs_unthr)
3281 {
3282 	struct perf_event *event;
3283 	struct hw_perf_event *hwc;
3284 	u64 now, period = TICK_NSEC;
3285 	s64 delta;
3286 
3287 	/*
3288 	 * only need to iterate over all events iff:
3289 	 * - context have events in frequency mode (needs freq adjust)
3290 	 * - there are events to unthrottle on this cpu
3291 	 */
3292 	if (!(ctx->nr_freq || needs_unthr))
3293 		return;
3294 
3295 	raw_spin_lock(&ctx->lock);
3296 	perf_pmu_disable(ctx->pmu);
3297 
3298 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3299 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3300 			continue;
3301 
3302 		if (!event_filter_match(event))
3303 			continue;
3304 
3305 		perf_pmu_disable(event->pmu);
3306 
3307 		hwc = &event->hw;
3308 
3309 		if (hwc->interrupts == MAX_INTERRUPTS) {
3310 			hwc->interrupts = 0;
3311 			perf_log_throttle(event, 1);
3312 			event->pmu->start(event, 0);
3313 		}
3314 
3315 		if (!event->attr.freq || !event->attr.sample_freq)
3316 			goto next;
3317 
3318 		/*
3319 		 * stop the event and update event->count
3320 		 */
3321 		event->pmu->stop(event, PERF_EF_UPDATE);
3322 
3323 		now = local64_read(&event->count);
3324 		delta = now - hwc->freq_count_stamp;
3325 		hwc->freq_count_stamp = now;
3326 
3327 		/*
3328 		 * restart the event
3329 		 * reload only if value has changed
3330 		 * we have stopped the event so tell that
3331 		 * to perf_adjust_period() to avoid stopping it
3332 		 * twice.
3333 		 */
3334 		if (delta > 0)
3335 			perf_adjust_period(event, period, delta, false);
3336 
3337 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3338 	next:
3339 		perf_pmu_enable(event->pmu);
3340 	}
3341 
3342 	perf_pmu_enable(ctx->pmu);
3343 	raw_spin_unlock(&ctx->lock);
3344 }
3345 
3346 /*
3347  * Round-robin a context's events:
3348  */
3349 static void rotate_ctx(struct perf_event_context *ctx)
3350 {
3351 	/*
3352 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3353 	 * disabled by the inheritance code.
3354 	 */
3355 	if (!ctx->rotate_disable)
3356 		list_rotate_left(&ctx->flexible_groups);
3357 }
3358 
3359 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3360 {
3361 	struct perf_event_context *ctx = NULL;
3362 	int rotate = 0;
3363 
3364 	if (cpuctx->ctx.nr_events) {
3365 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3366 			rotate = 1;
3367 	}
3368 
3369 	ctx = cpuctx->task_ctx;
3370 	if (ctx && ctx->nr_events) {
3371 		if (ctx->nr_events != ctx->nr_active)
3372 			rotate = 1;
3373 	}
3374 
3375 	if (!rotate)
3376 		goto done;
3377 
3378 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3379 	perf_pmu_disable(cpuctx->ctx.pmu);
3380 
3381 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3382 	if (ctx)
3383 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3384 
3385 	rotate_ctx(&cpuctx->ctx);
3386 	if (ctx)
3387 		rotate_ctx(ctx);
3388 
3389 	perf_event_sched_in(cpuctx, ctx, current);
3390 
3391 	perf_pmu_enable(cpuctx->ctx.pmu);
3392 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3393 done:
3394 
3395 	return rotate;
3396 }
3397 
3398 void perf_event_task_tick(void)
3399 {
3400 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3401 	struct perf_event_context *ctx, *tmp;
3402 	int throttled;
3403 
3404 	lockdep_assert_irqs_disabled();
3405 
3406 	__this_cpu_inc(perf_throttled_seq);
3407 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3408 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3409 
3410 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3411 		perf_adjust_freq_unthr_context(ctx, throttled);
3412 }
3413 
3414 static int event_enable_on_exec(struct perf_event *event,
3415 				struct perf_event_context *ctx)
3416 {
3417 	if (!event->attr.enable_on_exec)
3418 		return 0;
3419 
3420 	event->attr.enable_on_exec = 0;
3421 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3422 		return 0;
3423 
3424 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3425 
3426 	return 1;
3427 }
3428 
3429 /*
3430  * Enable all of a task's events that have been marked enable-on-exec.
3431  * This expects task == current.
3432  */
3433 static void perf_event_enable_on_exec(int ctxn)
3434 {
3435 	struct perf_event_context *ctx, *clone_ctx = NULL;
3436 	enum event_type_t event_type = 0;
3437 	struct perf_cpu_context *cpuctx;
3438 	struct perf_event *event;
3439 	unsigned long flags;
3440 	int enabled = 0;
3441 
3442 	local_irq_save(flags);
3443 	ctx = current->perf_event_ctxp[ctxn];
3444 	if (!ctx || !ctx->nr_events)
3445 		goto out;
3446 
3447 	cpuctx = __get_cpu_context(ctx);
3448 	perf_ctx_lock(cpuctx, ctx);
3449 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3450 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3451 		enabled |= event_enable_on_exec(event, ctx);
3452 		event_type |= get_event_type(event);
3453 	}
3454 
3455 	/*
3456 	 * Unclone and reschedule this context if we enabled any event.
3457 	 */
3458 	if (enabled) {
3459 		clone_ctx = unclone_ctx(ctx);
3460 		ctx_resched(cpuctx, ctx, event_type);
3461 	} else {
3462 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3463 	}
3464 	perf_ctx_unlock(cpuctx, ctx);
3465 
3466 out:
3467 	local_irq_restore(flags);
3468 
3469 	if (clone_ctx)
3470 		put_ctx(clone_ctx);
3471 }
3472 
3473 struct perf_read_data {
3474 	struct perf_event *event;
3475 	bool group;
3476 	int ret;
3477 };
3478 
3479 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3480 {
3481 	u16 local_pkg, event_pkg;
3482 
3483 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3484 		int local_cpu = smp_processor_id();
3485 
3486 		event_pkg = topology_physical_package_id(event_cpu);
3487 		local_pkg = topology_physical_package_id(local_cpu);
3488 
3489 		if (event_pkg == local_pkg)
3490 			return local_cpu;
3491 	}
3492 
3493 	return event_cpu;
3494 }
3495 
3496 /*
3497  * Cross CPU call to read the hardware event
3498  */
3499 static void __perf_event_read(void *info)
3500 {
3501 	struct perf_read_data *data = info;
3502 	struct perf_event *sub, *event = data->event;
3503 	struct perf_event_context *ctx = event->ctx;
3504 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3505 	struct pmu *pmu = event->pmu;
3506 
3507 	/*
3508 	 * If this is a task context, we need to check whether it is
3509 	 * the current task context of this cpu.  If not it has been
3510 	 * scheduled out before the smp call arrived.  In that case
3511 	 * event->count would have been updated to a recent sample
3512 	 * when the event was scheduled out.
3513 	 */
3514 	if (ctx->task && cpuctx->task_ctx != ctx)
3515 		return;
3516 
3517 	raw_spin_lock(&ctx->lock);
3518 	if (ctx->is_active & EVENT_TIME) {
3519 		update_context_time(ctx);
3520 		update_cgrp_time_from_event(event);
3521 	}
3522 
3523 	perf_event_update_time(event);
3524 	if (data->group)
3525 		perf_event_update_sibling_time(event);
3526 
3527 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3528 		goto unlock;
3529 
3530 	if (!data->group) {
3531 		pmu->read(event);
3532 		data->ret = 0;
3533 		goto unlock;
3534 	}
3535 
3536 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3537 
3538 	pmu->read(event);
3539 
3540 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3541 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3542 			/*
3543 			 * Use sibling's PMU rather than @event's since
3544 			 * sibling could be on different (eg: software) PMU.
3545 			 */
3546 			sub->pmu->read(sub);
3547 		}
3548 	}
3549 
3550 	data->ret = pmu->commit_txn(pmu);
3551 
3552 unlock:
3553 	raw_spin_unlock(&ctx->lock);
3554 }
3555 
3556 static inline u64 perf_event_count(struct perf_event *event)
3557 {
3558 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3559 }
3560 
3561 /*
3562  * NMI-safe method to read a local event, that is an event that
3563  * is:
3564  *   - either for the current task, or for this CPU
3565  *   - does not have inherit set, for inherited task events
3566  *     will not be local and we cannot read them atomically
3567  *   - must not have a pmu::count method
3568  */
3569 int perf_event_read_local(struct perf_event *event, u64 *value,
3570 			  u64 *enabled, u64 *running)
3571 {
3572 	unsigned long flags;
3573 	int ret = 0;
3574 
3575 	/*
3576 	 * Disabling interrupts avoids all counter scheduling (context
3577 	 * switches, timer based rotation and IPIs).
3578 	 */
3579 	local_irq_save(flags);
3580 
3581 	/*
3582 	 * It must not be an event with inherit set, we cannot read
3583 	 * all child counters from atomic context.
3584 	 */
3585 	if (event->attr.inherit) {
3586 		ret = -EOPNOTSUPP;
3587 		goto out;
3588 	}
3589 
3590 	/* If this is a per-task event, it must be for current */
3591 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3592 	    event->hw.target != current) {
3593 		ret = -EINVAL;
3594 		goto out;
3595 	}
3596 
3597 	/* If this is a per-CPU event, it must be for this CPU */
3598 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3599 	    event->cpu != smp_processor_id()) {
3600 		ret = -EINVAL;
3601 		goto out;
3602 	}
3603 
3604 	/*
3605 	 * If the event is currently on this CPU, its either a per-task event,
3606 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3607 	 * oncpu == -1).
3608 	 */
3609 	if (event->oncpu == smp_processor_id())
3610 		event->pmu->read(event);
3611 
3612 	*value = local64_read(&event->count);
3613 	if (enabled || running) {
3614 		u64 now = event->shadow_ctx_time + perf_clock();
3615 		u64 __enabled, __running;
3616 
3617 		__perf_update_times(event, now, &__enabled, &__running);
3618 		if (enabled)
3619 			*enabled = __enabled;
3620 		if (running)
3621 			*running = __running;
3622 	}
3623 out:
3624 	local_irq_restore(flags);
3625 
3626 	return ret;
3627 }
3628 
3629 static int perf_event_read(struct perf_event *event, bool group)
3630 {
3631 	enum perf_event_state state = READ_ONCE(event->state);
3632 	int event_cpu, ret = 0;
3633 
3634 	/*
3635 	 * If event is enabled and currently active on a CPU, update the
3636 	 * value in the event structure:
3637 	 */
3638 again:
3639 	if (state == PERF_EVENT_STATE_ACTIVE) {
3640 		struct perf_read_data data;
3641 
3642 		/*
3643 		 * Orders the ->state and ->oncpu loads such that if we see
3644 		 * ACTIVE we must also see the right ->oncpu.
3645 		 *
3646 		 * Matches the smp_wmb() from event_sched_in().
3647 		 */
3648 		smp_rmb();
3649 
3650 		event_cpu = READ_ONCE(event->oncpu);
3651 		if ((unsigned)event_cpu >= nr_cpu_ids)
3652 			return 0;
3653 
3654 		data = (struct perf_read_data){
3655 			.event = event,
3656 			.group = group,
3657 			.ret = 0,
3658 		};
3659 
3660 		preempt_disable();
3661 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3662 
3663 		/*
3664 		 * Purposely ignore the smp_call_function_single() return
3665 		 * value.
3666 		 *
3667 		 * If event_cpu isn't a valid CPU it means the event got
3668 		 * scheduled out and that will have updated the event count.
3669 		 *
3670 		 * Therefore, either way, we'll have an up-to-date event count
3671 		 * after this.
3672 		 */
3673 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3674 		preempt_enable();
3675 		ret = data.ret;
3676 
3677 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
3678 		struct perf_event_context *ctx = event->ctx;
3679 		unsigned long flags;
3680 
3681 		raw_spin_lock_irqsave(&ctx->lock, flags);
3682 		state = event->state;
3683 		if (state != PERF_EVENT_STATE_INACTIVE) {
3684 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
3685 			goto again;
3686 		}
3687 
3688 		/*
3689 		 * May read while context is not active (e.g., thread is
3690 		 * blocked), in that case we cannot update context time
3691 		 */
3692 		if (ctx->is_active & EVENT_TIME) {
3693 			update_context_time(ctx);
3694 			update_cgrp_time_from_event(event);
3695 		}
3696 
3697 		perf_event_update_time(event);
3698 		if (group)
3699 			perf_event_update_sibling_time(event);
3700 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3701 	}
3702 
3703 	return ret;
3704 }
3705 
3706 /*
3707  * Initialize the perf_event context in a task_struct:
3708  */
3709 static void __perf_event_init_context(struct perf_event_context *ctx)
3710 {
3711 	raw_spin_lock_init(&ctx->lock);
3712 	mutex_init(&ctx->mutex);
3713 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3714 	INIT_LIST_HEAD(&ctx->pinned_groups);
3715 	INIT_LIST_HEAD(&ctx->flexible_groups);
3716 	INIT_LIST_HEAD(&ctx->event_list);
3717 	atomic_set(&ctx->refcount, 1);
3718 }
3719 
3720 static struct perf_event_context *
3721 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3722 {
3723 	struct perf_event_context *ctx;
3724 
3725 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3726 	if (!ctx)
3727 		return NULL;
3728 
3729 	__perf_event_init_context(ctx);
3730 	if (task) {
3731 		ctx->task = task;
3732 		get_task_struct(task);
3733 	}
3734 	ctx->pmu = pmu;
3735 
3736 	return ctx;
3737 }
3738 
3739 static struct task_struct *
3740 find_lively_task_by_vpid(pid_t vpid)
3741 {
3742 	struct task_struct *task;
3743 
3744 	rcu_read_lock();
3745 	if (!vpid)
3746 		task = current;
3747 	else
3748 		task = find_task_by_vpid(vpid);
3749 	if (task)
3750 		get_task_struct(task);
3751 	rcu_read_unlock();
3752 
3753 	if (!task)
3754 		return ERR_PTR(-ESRCH);
3755 
3756 	return task;
3757 }
3758 
3759 /*
3760  * Returns a matching context with refcount and pincount.
3761  */
3762 static struct perf_event_context *
3763 find_get_context(struct pmu *pmu, struct task_struct *task,
3764 		struct perf_event *event)
3765 {
3766 	struct perf_event_context *ctx, *clone_ctx = NULL;
3767 	struct perf_cpu_context *cpuctx;
3768 	void *task_ctx_data = NULL;
3769 	unsigned long flags;
3770 	int ctxn, err;
3771 	int cpu = event->cpu;
3772 
3773 	if (!task) {
3774 		/* Must be root to operate on a CPU event: */
3775 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3776 			return ERR_PTR(-EACCES);
3777 
3778 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3779 		ctx = &cpuctx->ctx;
3780 		get_ctx(ctx);
3781 		++ctx->pin_count;
3782 
3783 		return ctx;
3784 	}
3785 
3786 	err = -EINVAL;
3787 	ctxn = pmu->task_ctx_nr;
3788 	if (ctxn < 0)
3789 		goto errout;
3790 
3791 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3792 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3793 		if (!task_ctx_data) {
3794 			err = -ENOMEM;
3795 			goto errout;
3796 		}
3797 	}
3798 
3799 retry:
3800 	ctx = perf_lock_task_context(task, ctxn, &flags);
3801 	if (ctx) {
3802 		clone_ctx = unclone_ctx(ctx);
3803 		++ctx->pin_count;
3804 
3805 		if (task_ctx_data && !ctx->task_ctx_data) {
3806 			ctx->task_ctx_data = task_ctx_data;
3807 			task_ctx_data = NULL;
3808 		}
3809 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3810 
3811 		if (clone_ctx)
3812 			put_ctx(clone_ctx);
3813 	} else {
3814 		ctx = alloc_perf_context(pmu, task);
3815 		err = -ENOMEM;
3816 		if (!ctx)
3817 			goto errout;
3818 
3819 		if (task_ctx_data) {
3820 			ctx->task_ctx_data = task_ctx_data;
3821 			task_ctx_data = NULL;
3822 		}
3823 
3824 		err = 0;
3825 		mutex_lock(&task->perf_event_mutex);
3826 		/*
3827 		 * If it has already passed perf_event_exit_task().
3828 		 * we must see PF_EXITING, it takes this mutex too.
3829 		 */
3830 		if (task->flags & PF_EXITING)
3831 			err = -ESRCH;
3832 		else if (task->perf_event_ctxp[ctxn])
3833 			err = -EAGAIN;
3834 		else {
3835 			get_ctx(ctx);
3836 			++ctx->pin_count;
3837 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3838 		}
3839 		mutex_unlock(&task->perf_event_mutex);
3840 
3841 		if (unlikely(err)) {
3842 			put_ctx(ctx);
3843 
3844 			if (err == -EAGAIN)
3845 				goto retry;
3846 			goto errout;
3847 		}
3848 	}
3849 
3850 	kfree(task_ctx_data);
3851 	return ctx;
3852 
3853 errout:
3854 	kfree(task_ctx_data);
3855 	return ERR_PTR(err);
3856 }
3857 
3858 static void perf_event_free_filter(struct perf_event *event);
3859 static void perf_event_free_bpf_prog(struct perf_event *event);
3860 
3861 static void free_event_rcu(struct rcu_head *head)
3862 {
3863 	struct perf_event *event;
3864 
3865 	event = container_of(head, struct perf_event, rcu_head);
3866 	if (event->ns)
3867 		put_pid_ns(event->ns);
3868 	perf_event_free_filter(event);
3869 	kfree(event);
3870 }
3871 
3872 static void ring_buffer_attach(struct perf_event *event,
3873 			       struct ring_buffer *rb);
3874 
3875 static void detach_sb_event(struct perf_event *event)
3876 {
3877 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3878 
3879 	raw_spin_lock(&pel->lock);
3880 	list_del_rcu(&event->sb_list);
3881 	raw_spin_unlock(&pel->lock);
3882 }
3883 
3884 static bool is_sb_event(struct perf_event *event)
3885 {
3886 	struct perf_event_attr *attr = &event->attr;
3887 
3888 	if (event->parent)
3889 		return false;
3890 
3891 	if (event->attach_state & PERF_ATTACH_TASK)
3892 		return false;
3893 
3894 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3895 	    attr->comm || attr->comm_exec ||
3896 	    attr->task ||
3897 	    attr->context_switch)
3898 		return true;
3899 	return false;
3900 }
3901 
3902 static void unaccount_pmu_sb_event(struct perf_event *event)
3903 {
3904 	if (is_sb_event(event))
3905 		detach_sb_event(event);
3906 }
3907 
3908 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3909 {
3910 	if (event->parent)
3911 		return;
3912 
3913 	if (is_cgroup_event(event))
3914 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3915 }
3916 
3917 #ifdef CONFIG_NO_HZ_FULL
3918 static DEFINE_SPINLOCK(nr_freq_lock);
3919 #endif
3920 
3921 static void unaccount_freq_event_nohz(void)
3922 {
3923 #ifdef CONFIG_NO_HZ_FULL
3924 	spin_lock(&nr_freq_lock);
3925 	if (atomic_dec_and_test(&nr_freq_events))
3926 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3927 	spin_unlock(&nr_freq_lock);
3928 #endif
3929 }
3930 
3931 static void unaccount_freq_event(void)
3932 {
3933 	if (tick_nohz_full_enabled())
3934 		unaccount_freq_event_nohz();
3935 	else
3936 		atomic_dec(&nr_freq_events);
3937 }
3938 
3939 static void unaccount_event(struct perf_event *event)
3940 {
3941 	bool dec = false;
3942 
3943 	if (event->parent)
3944 		return;
3945 
3946 	if (event->attach_state & PERF_ATTACH_TASK)
3947 		dec = true;
3948 	if (event->attr.mmap || event->attr.mmap_data)
3949 		atomic_dec(&nr_mmap_events);
3950 	if (event->attr.comm)
3951 		atomic_dec(&nr_comm_events);
3952 	if (event->attr.namespaces)
3953 		atomic_dec(&nr_namespaces_events);
3954 	if (event->attr.task)
3955 		atomic_dec(&nr_task_events);
3956 	if (event->attr.freq)
3957 		unaccount_freq_event();
3958 	if (event->attr.context_switch) {
3959 		dec = true;
3960 		atomic_dec(&nr_switch_events);
3961 	}
3962 	if (is_cgroup_event(event))
3963 		dec = true;
3964 	if (has_branch_stack(event))
3965 		dec = true;
3966 
3967 	if (dec) {
3968 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3969 			schedule_delayed_work(&perf_sched_work, HZ);
3970 	}
3971 
3972 	unaccount_event_cpu(event, event->cpu);
3973 
3974 	unaccount_pmu_sb_event(event);
3975 }
3976 
3977 static void perf_sched_delayed(struct work_struct *work)
3978 {
3979 	mutex_lock(&perf_sched_mutex);
3980 	if (atomic_dec_and_test(&perf_sched_count))
3981 		static_branch_disable(&perf_sched_events);
3982 	mutex_unlock(&perf_sched_mutex);
3983 }
3984 
3985 /*
3986  * The following implement mutual exclusion of events on "exclusive" pmus
3987  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3988  * at a time, so we disallow creating events that might conflict, namely:
3989  *
3990  *  1) cpu-wide events in the presence of per-task events,
3991  *  2) per-task events in the presence of cpu-wide events,
3992  *  3) two matching events on the same context.
3993  *
3994  * The former two cases are handled in the allocation path (perf_event_alloc(),
3995  * _free_event()), the latter -- before the first perf_install_in_context().
3996  */
3997 static int exclusive_event_init(struct perf_event *event)
3998 {
3999 	struct pmu *pmu = event->pmu;
4000 
4001 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4002 		return 0;
4003 
4004 	/*
4005 	 * Prevent co-existence of per-task and cpu-wide events on the
4006 	 * same exclusive pmu.
4007 	 *
4008 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4009 	 * events on this "exclusive" pmu, positive means there are
4010 	 * per-task events.
4011 	 *
4012 	 * Since this is called in perf_event_alloc() path, event::ctx
4013 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4014 	 * to mean "per-task event", because unlike other attach states it
4015 	 * never gets cleared.
4016 	 */
4017 	if (event->attach_state & PERF_ATTACH_TASK) {
4018 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4019 			return -EBUSY;
4020 	} else {
4021 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4022 			return -EBUSY;
4023 	}
4024 
4025 	return 0;
4026 }
4027 
4028 static void exclusive_event_destroy(struct perf_event *event)
4029 {
4030 	struct pmu *pmu = event->pmu;
4031 
4032 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4033 		return;
4034 
4035 	/* see comment in exclusive_event_init() */
4036 	if (event->attach_state & PERF_ATTACH_TASK)
4037 		atomic_dec(&pmu->exclusive_cnt);
4038 	else
4039 		atomic_inc(&pmu->exclusive_cnt);
4040 }
4041 
4042 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4043 {
4044 	if ((e1->pmu == e2->pmu) &&
4045 	    (e1->cpu == e2->cpu ||
4046 	     e1->cpu == -1 ||
4047 	     e2->cpu == -1))
4048 		return true;
4049 	return false;
4050 }
4051 
4052 /* Called under the same ctx::mutex as perf_install_in_context() */
4053 static bool exclusive_event_installable(struct perf_event *event,
4054 					struct perf_event_context *ctx)
4055 {
4056 	struct perf_event *iter_event;
4057 	struct pmu *pmu = event->pmu;
4058 
4059 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4060 		return true;
4061 
4062 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4063 		if (exclusive_event_match(iter_event, event))
4064 			return false;
4065 	}
4066 
4067 	return true;
4068 }
4069 
4070 static void perf_addr_filters_splice(struct perf_event *event,
4071 				       struct list_head *head);
4072 
4073 static void _free_event(struct perf_event *event)
4074 {
4075 	irq_work_sync(&event->pending);
4076 
4077 	unaccount_event(event);
4078 
4079 	if (event->rb) {
4080 		/*
4081 		 * Can happen when we close an event with re-directed output.
4082 		 *
4083 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4084 		 * over us; possibly making our ring_buffer_put() the last.
4085 		 */
4086 		mutex_lock(&event->mmap_mutex);
4087 		ring_buffer_attach(event, NULL);
4088 		mutex_unlock(&event->mmap_mutex);
4089 	}
4090 
4091 	if (is_cgroup_event(event))
4092 		perf_detach_cgroup(event);
4093 
4094 	if (!event->parent) {
4095 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4096 			put_callchain_buffers();
4097 	}
4098 
4099 	perf_event_free_bpf_prog(event);
4100 	perf_addr_filters_splice(event, NULL);
4101 	kfree(event->addr_filters_offs);
4102 
4103 	if (event->destroy)
4104 		event->destroy(event);
4105 
4106 	if (event->ctx)
4107 		put_ctx(event->ctx);
4108 
4109 	exclusive_event_destroy(event);
4110 	module_put(event->pmu->module);
4111 
4112 	call_rcu(&event->rcu_head, free_event_rcu);
4113 }
4114 
4115 /*
4116  * Used to free events which have a known refcount of 1, such as in error paths
4117  * where the event isn't exposed yet and inherited events.
4118  */
4119 static void free_event(struct perf_event *event)
4120 {
4121 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4122 				"unexpected event refcount: %ld; ptr=%p\n",
4123 				atomic_long_read(&event->refcount), event)) {
4124 		/* leak to avoid use-after-free */
4125 		return;
4126 	}
4127 
4128 	_free_event(event);
4129 }
4130 
4131 /*
4132  * Remove user event from the owner task.
4133  */
4134 static void perf_remove_from_owner(struct perf_event *event)
4135 {
4136 	struct task_struct *owner;
4137 
4138 	rcu_read_lock();
4139 	/*
4140 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4141 	 * observe !owner it means the list deletion is complete and we can
4142 	 * indeed free this event, otherwise we need to serialize on
4143 	 * owner->perf_event_mutex.
4144 	 */
4145 	owner = READ_ONCE(event->owner);
4146 	if (owner) {
4147 		/*
4148 		 * Since delayed_put_task_struct() also drops the last
4149 		 * task reference we can safely take a new reference
4150 		 * while holding the rcu_read_lock().
4151 		 */
4152 		get_task_struct(owner);
4153 	}
4154 	rcu_read_unlock();
4155 
4156 	if (owner) {
4157 		/*
4158 		 * If we're here through perf_event_exit_task() we're already
4159 		 * holding ctx->mutex which would be an inversion wrt. the
4160 		 * normal lock order.
4161 		 *
4162 		 * However we can safely take this lock because its the child
4163 		 * ctx->mutex.
4164 		 */
4165 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4166 
4167 		/*
4168 		 * We have to re-check the event->owner field, if it is cleared
4169 		 * we raced with perf_event_exit_task(), acquiring the mutex
4170 		 * ensured they're done, and we can proceed with freeing the
4171 		 * event.
4172 		 */
4173 		if (event->owner) {
4174 			list_del_init(&event->owner_entry);
4175 			smp_store_release(&event->owner, NULL);
4176 		}
4177 		mutex_unlock(&owner->perf_event_mutex);
4178 		put_task_struct(owner);
4179 	}
4180 }
4181 
4182 static void put_event(struct perf_event *event)
4183 {
4184 	if (!atomic_long_dec_and_test(&event->refcount))
4185 		return;
4186 
4187 	_free_event(event);
4188 }
4189 
4190 /*
4191  * Kill an event dead; while event:refcount will preserve the event
4192  * object, it will not preserve its functionality. Once the last 'user'
4193  * gives up the object, we'll destroy the thing.
4194  */
4195 int perf_event_release_kernel(struct perf_event *event)
4196 {
4197 	struct perf_event_context *ctx = event->ctx;
4198 	struct perf_event *child, *tmp;
4199 
4200 	/*
4201 	 * If we got here through err_file: fput(event_file); we will not have
4202 	 * attached to a context yet.
4203 	 */
4204 	if (!ctx) {
4205 		WARN_ON_ONCE(event->attach_state &
4206 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4207 		goto no_ctx;
4208 	}
4209 
4210 	if (!is_kernel_event(event))
4211 		perf_remove_from_owner(event);
4212 
4213 	ctx = perf_event_ctx_lock(event);
4214 	WARN_ON_ONCE(ctx->parent_ctx);
4215 	perf_remove_from_context(event, DETACH_GROUP);
4216 
4217 	raw_spin_lock_irq(&ctx->lock);
4218 	/*
4219 	 * Mark this event as STATE_DEAD, there is no external reference to it
4220 	 * anymore.
4221 	 *
4222 	 * Anybody acquiring event->child_mutex after the below loop _must_
4223 	 * also see this, most importantly inherit_event() which will avoid
4224 	 * placing more children on the list.
4225 	 *
4226 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4227 	 * child events.
4228 	 */
4229 	event->state = PERF_EVENT_STATE_DEAD;
4230 	raw_spin_unlock_irq(&ctx->lock);
4231 
4232 	perf_event_ctx_unlock(event, ctx);
4233 
4234 again:
4235 	mutex_lock(&event->child_mutex);
4236 	list_for_each_entry(child, &event->child_list, child_list) {
4237 
4238 		/*
4239 		 * Cannot change, child events are not migrated, see the
4240 		 * comment with perf_event_ctx_lock_nested().
4241 		 */
4242 		ctx = READ_ONCE(child->ctx);
4243 		/*
4244 		 * Since child_mutex nests inside ctx::mutex, we must jump
4245 		 * through hoops. We start by grabbing a reference on the ctx.
4246 		 *
4247 		 * Since the event cannot get freed while we hold the
4248 		 * child_mutex, the context must also exist and have a !0
4249 		 * reference count.
4250 		 */
4251 		get_ctx(ctx);
4252 
4253 		/*
4254 		 * Now that we have a ctx ref, we can drop child_mutex, and
4255 		 * acquire ctx::mutex without fear of it going away. Then we
4256 		 * can re-acquire child_mutex.
4257 		 */
4258 		mutex_unlock(&event->child_mutex);
4259 		mutex_lock(&ctx->mutex);
4260 		mutex_lock(&event->child_mutex);
4261 
4262 		/*
4263 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4264 		 * state, if child is still the first entry, it didn't get freed
4265 		 * and we can continue doing so.
4266 		 */
4267 		tmp = list_first_entry_or_null(&event->child_list,
4268 					       struct perf_event, child_list);
4269 		if (tmp == child) {
4270 			perf_remove_from_context(child, DETACH_GROUP);
4271 			list_del(&child->child_list);
4272 			free_event(child);
4273 			/*
4274 			 * This matches the refcount bump in inherit_event();
4275 			 * this can't be the last reference.
4276 			 */
4277 			put_event(event);
4278 		}
4279 
4280 		mutex_unlock(&event->child_mutex);
4281 		mutex_unlock(&ctx->mutex);
4282 		put_ctx(ctx);
4283 		goto again;
4284 	}
4285 	mutex_unlock(&event->child_mutex);
4286 
4287 no_ctx:
4288 	put_event(event); /* Must be the 'last' reference */
4289 	return 0;
4290 }
4291 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4292 
4293 /*
4294  * Called when the last reference to the file is gone.
4295  */
4296 static int perf_release(struct inode *inode, struct file *file)
4297 {
4298 	perf_event_release_kernel(file->private_data);
4299 	return 0;
4300 }
4301 
4302 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4303 {
4304 	struct perf_event *child;
4305 	u64 total = 0;
4306 
4307 	*enabled = 0;
4308 	*running = 0;
4309 
4310 	mutex_lock(&event->child_mutex);
4311 
4312 	(void)perf_event_read(event, false);
4313 	total += perf_event_count(event);
4314 
4315 	*enabled += event->total_time_enabled +
4316 			atomic64_read(&event->child_total_time_enabled);
4317 	*running += event->total_time_running +
4318 			atomic64_read(&event->child_total_time_running);
4319 
4320 	list_for_each_entry(child, &event->child_list, child_list) {
4321 		(void)perf_event_read(child, false);
4322 		total += perf_event_count(child);
4323 		*enabled += child->total_time_enabled;
4324 		*running += child->total_time_running;
4325 	}
4326 	mutex_unlock(&event->child_mutex);
4327 
4328 	return total;
4329 }
4330 
4331 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4332 {
4333 	struct perf_event_context *ctx;
4334 	u64 count;
4335 
4336 	ctx = perf_event_ctx_lock(event);
4337 	count = __perf_event_read_value(event, enabled, running);
4338 	perf_event_ctx_unlock(event, ctx);
4339 
4340 	return count;
4341 }
4342 EXPORT_SYMBOL_GPL(perf_event_read_value);
4343 
4344 static int __perf_read_group_add(struct perf_event *leader,
4345 					u64 read_format, u64 *values)
4346 {
4347 	struct perf_event_context *ctx = leader->ctx;
4348 	struct perf_event *sub;
4349 	unsigned long flags;
4350 	int n = 1; /* skip @nr */
4351 	int ret;
4352 
4353 	ret = perf_event_read(leader, true);
4354 	if (ret)
4355 		return ret;
4356 
4357 	raw_spin_lock_irqsave(&ctx->lock, flags);
4358 
4359 	/*
4360 	 * Since we co-schedule groups, {enabled,running} times of siblings
4361 	 * will be identical to those of the leader, so we only publish one
4362 	 * set.
4363 	 */
4364 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4365 		values[n++] += leader->total_time_enabled +
4366 			atomic64_read(&leader->child_total_time_enabled);
4367 	}
4368 
4369 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4370 		values[n++] += leader->total_time_running +
4371 			atomic64_read(&leader->child_total_time_running);
4372 	}
4373 
4374 	/*
4375 	 * Write {count,id} tuples for every sibling.
4376 	 */
4377 	values[n++] += perf_event_count(leader);
4378 	if (read_format & PERF_FORMAT_ID)
4379 		values[n++] = primary_event_id(leader);
4380 
4381 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4382 		values[n++] += perf_event_count(sub);
4383 		if (read_format & PERF_FORMAT_ID)
4384 			values[n++] = primary_event_id(sub);
4385 	}
4386 
4387 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4388 	return 0;
4389 }
4390 
4391 static int perf_read_group(struct perf_event *event,
4392 				   u64 read_format, char __user *buf)
4393 {
4394 	struct perf_event *leader = event->group_leader, *child;
4395 	struct perf_event_context *ctx = leader->ctx;
4396 	int ret;
4397 	u64 *values;
4398 
4399 	lockdep_assert_held(&ctx->mutex);
4400 
4401 	values = kzalloc(event->read_size, GFP_KERNEL);
4402 	if (!values)
4403 		return -ENOMEM;
4404 
4405 	values[0] = 1 + leader->nr_siblings;
4406 
4407 	/*
4408 	 * By locking the child_mutex of the leader we effectively
4409 	 * lock the child list of all siblings.. XXX explain how.
4410 	 */
4411 	mutex_lock(&leader->child_mutex);
4412 
4413 	ret = __perf_read_group_add(leader, read_format, values);
4414 	if (ret)
4415 		goto unlock;
4416 
4417 	list_for_each_entry(child, &leader->child_list, child_list) {
4418 		ret = __perf_read_group_add(child, read_format, values);
4419 		if (ret)
4420 			goto unlock;
4421 	}
4422 
4423 	mutex_unlock(&leader->child_mutex);
4424 
4425 	ret = event->read_size;
4426 	if (copy_to_user(buf, values, event->read_size))
4427 		ret = -EFAULT;
4428 	goto out;
4429 
4430 unlock:
4431 	mutex_unlock(&leader->child_mutex);
4432 out:
4433 	kfree(values);
4434 	return ret;
4435 }
4436 
4437 static int perf_read_one(struct perf_event *event,
4438 				 u64 read_format, char __user *buf)
4439 {
4440 	u64 enabled, running;
4441 	u64 values[4];
4442 	int n = 0;
4443 
4444 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4445 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4446 		values[n++] = enabled;
4447 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4448 		values[n++] = running;
4449 	if (read_format & PERF_FORMAT_ID)
4450 		values[n++] = primary_event_id(event);
4451 
4452 	if (copy_to_user(buf, values, n * sizeof(u64)))
4453 		return -EFAULT;
4454 
4455 	return n * sizeof(u64);
4456 }
4457 
4458 static bool is_event_hup(struct perf_event *event)
4459 {
4460 	bool no_children;
4461 
4462 	if (event->state > PERF_EVENT_STATE_EXIT)
4463 		return false;
4464 
4465 	mutex_lock(&event->child_mutex);
4466 	no_children = list_empty(&event->child_list);
4467 	mutex_unlock(&event->child_mutex);
4468 	return no_children;
4469 }
4470 
4471 /*
4472  * Read the performance event - simple non blocking version for now
4473  */
4474 static ssize_t
4475 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4476 {
4477 	u64 read_format = event->attr.read_format;
4478 	int ret;
4479 
4480 	/*
4481 	 * Return end-of-file for a read on a event that is in
4482 	 * error state (i.e. because it was pinned but it couldn't be
4483 	 * scheduled on to the CPU at some point).
4484 	 */
4485 	if (event->state == PERF_EVENT_STATE_ERROR)
4486 		return 0;
4487 
4488 	if (count < event->read_size)
4489 		return -ENOSPC;
4490 
4491 	WARN_ON_ONCE(event->ctx->parent_ctx);
4492 	if (read_format & PERF_FORMAT_GROUP)
4493 		ret = perf_read_group(event, read_format, buf);
4494 	else
4495 		ret = perf_read_one(event, read_format, buf);
4496 
4497 	return ret;
4498 }
4499 
4500 static ssize_t
4501 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4502 {
4503 	struct perf_event *event = file->private_data;
4504 	struct perf_event_context *ctx;
4505 	int ret;
4506 
4507 	ctx = perf_event_ctx_lock(event);
4508 	ret = __perf_read(event, buf, count);
4509 	perf_event_ctx_unlock(event, ctx);
4510 
4511 	return ret;
4512 }
4513 
4514 static unsigned int perf_poll(struct file *file, poll_table *wait)
4515 {
4516 	struct perf_event *event = file->private_data;
4517 	struct ring_buffer *rb;
4518 	unsigned int events = POLLHUP;
4519 
4520 	poll_wait(file, &event->waitq, wait);
4521 
4522 	if (is_event_hup(event))
4523 		return events;
4524 
4525 	/*
4526 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4527 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4528 	 */
4529 	mutex_lock(&event->mmap_mutex);
4530 	rb = event->rb;
4531 	if (rb)
4532 		events = atomic_xchg(&rb->poll, 0);
4533 	mutex_unlock(&event->mmap_mutex);
4534 	return events;
4535 }
4536 
4537 static void _perf_event_reset(struct perf_event *event)
4538 {
4539 	(void)perf_event_read(event, false);
4540 	local64_set(&event->count, 0);
4541 	perf_event_update_userpage(event);
4542 }
4543 
4544 /*
4545  * Holding the top-level event's child_mutex means that any
4546  * descendant process that has inherited this event will block
4547  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4548  * task existence requirements of perf_event_enable/disable.
4549  */
4550 static void perf_event_for_each_child(struct perf_event *event,
4551 					void (*func)(struct perf_event *))
4552 {
4553 	struct perf_event *child;
4554 
4555 	WARN_ON_ONCE(event->ctx->parent_ctx);
4556 
4557 	mutex_lock(&event->child_mutex);
4558 	func(event);
4559 	list_for_each_entry(child, &event->child_list, child_list)
4560 		func(child);
4561 	mutex_unlock(&event->child_mutex);
4562 }
4563 
4564 static void perf_event_for_each(struct perf_event *event,
4565 				  void (*func)(struct perf_event *))
4566 {
4567 	struct perf_event_context *ctx = event->ctx;
4568 	struct perf_event *sibling;
4569 
4570 	lockdep_assert_held(&ctx->mutex);
4571 
4572 	event = event->group_leader;
4573 
4574 	perf_event_for_each_child(event, func);
4575 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4576 		perf_event_for_each_child(sibling, func);
4577 }
4578 
4579 static void __perf_event_period(struct perf_event *event,
4580 				struct perf_cpu_context *cpuctx,
4581 				struct perf_event_context *ctx,
4582 				void *info)
4583 {
4584 	u64 value = *((u64 *)info);
4585 	bool active;
4586 
4587 	if (event->attr.freq) {
4588 		event->attr.sample_freq = value;
4589 	} else {
4590 		event->attr.sample_period = value;
4591 		event->hw.sample_period = value;
4592 	}
4593 
4594 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4595 	if (active) {
4596 		perf_pmu_disable(ctx->pmu);
4597 		/*
4598 		 * We could be throttled; unthrottle now to avoid the tick
4599 		 * trying to unthrottle while we already re-started the event.
4600 		 */
4601 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4602 			event->hw.interrupts = 0;
4603 			perf_log_throttle(event, 1);
4604 		}
4605 		event->pmu->stop(event, PERF_EF_UPDATE);
4606 	}
4607 
4608 	local64_set(&event->hw.period_left, 0);
4609 
4610 	if (active) {
4611 		event->pmu->start(event, PERF_EF_RELOAD);
4612 		perf_pmu_enable(ctx->pmu);
4613 	}
4614 }
4615 
4616 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4617 {
4618 	u64 value;
4619 
4620 	if (!is_sampling_event(event))
4621 		return -EINVAL;
4622 
4623 	if (copy_from_user(&value, arg, sizeof(value)))
4624 		return -EFAULT;
4625 
4626 	if (!value)
4627 		return -EINVAL;
4628 
4629 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4630 		return -EINVAL;
4631 
4632 	event_function_call(event, __perf_event_period, &value);
4633 
4634 	return 0;
4635 }
4636 
4637 static const struct file_operations perf_fops;
4638 
4639 static inline int perf_fget_light(int fd, struct fd *p)
4640 {
4641 	struct fd f = fdget(fd);
4642 	if (!f.file)
4643 		return -EBADF;
4644 
4645 	if (f.file->f_op != &perf_fops) {
4646 		fdput(f);
4647 		return -EBADF;
4648 	}
4649 	*p = f;
4650 	return 0;
4651 }
4652 
4653 static int perf_event_set_output(struct perf_event *event,
4654 				 struct perf_event *output_event);
4655 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4656 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4657 
4658 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4659 {
4660 	void (*func)(struct perf_event *);
4661 	u32 flags = arg;
4662 
4663 	switch (cmd) {
4664 	case PERF_EVENT_IOC_ENABLE:
4665 		func = _perf_event_enable;
4666 		break;
4667 	case PERF_EVENT_IOC_DISABLE:
4668 		func = _perf_event_disable;
4669 		break;
4670 	case PERF_EVENT_IOC_RESET:
4671 		func = _perf_event_reset;
4672 		break;
4673 
4674 	case PERF_EVENT_IOC_REFRESH:
4675 		return _perf_event_refresh(event, arg);
4676 
4677 	case PERF_EVENT_IOC_PERIOD:
4678 		return perf_event_period(event, (u64 __user *)arg);
4679 
4680 	case PERF_EVENT_IOC_ID:
4681 	{
4682 		u64 id = primary_event_id(event);
4683 
4684 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4685 			return -EFAULT;
4686 		return 0;
4687 	}
4688 
4689 	case PERF_EVENT_IOC_SET_OUTPUT:
4690 	{
4691 		int ret;
4692 		if (arg != -1) {
4693 			struct perf_event *output_event;
4694 			struct fd output;
4695 			ret = perf_fget_light(arg, &output);
4696 			if (ret)
4697 				return ret;
4698 			output_event = output.file->private_data;
4699 			ret = perf_event_set_output(event, output_event);
4700 			fdput(output);
4701 		} else {
4702 			ret = perf_event_set_output(event, NULL);
4703 		}
4704 		return ret;
4705 	}
4706 
4707 	case PERF_EVENT_IOC_SET_FILTER:
4708 		return perf_event_set_filter(event, (void __user *)arg);
4709 
4710 	case PERF_EVENT_IOC_SET_BPF:
4711 		return perf_event_set_bpf_prog(event, arg);
4712 
4713 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4714 		struct ring_buffer *rb;
4715 
4716 		rcu_read_lock();
4717 		rb = rcu_dereference(event->rb);
4718 		if (!rb || !rb->nr_pages) {
4719 			rcu_read_unlock();
4720 			return -EINVAL;
4721 		}
4722 		rb_toggle_paused(rb, !!arg);
4723 		rcu_read_unlock();
4724 		return 0;
4725 	}
4726 	default:
4727 		return -ENOTTY;
4728 	}
4729 
4730 	if (flags & PERF_IOC_FLAG_GROUP)
4731 		perf_event_for_each(event, func);
4732 	else
4733 		perf_event_for_each_child(event, func);
4734 
4735 	return 0;
4736 }
4737 
4738 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4739 {
4740 	struct perf_event *event = file->private_data;
4741 	struct perf_event_context *ctx;
4742 	long ret;
4743 
4744 	ctx = perf_event_ctx_lock(event);
4745 	ret = _perf_ioctl(event, cmd, arg);
4746 	perf_event_ctx_unlock(event, ctx);
4747 
4748 	return ret;
4749 }
4750 
4751 #ifdef CONFIG_COMPAT
4752 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4753 				unsigned long arg)
4754 {
4755 	switch (_IOC_NR(cmd)) {
4756 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4757 	case _IOC_NR(PERF_EVENT_IOC_ID):
4758 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4759 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4760 			cmd &= ~IOCSIZE_MASK;
4761 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4762 		}
4763 		break;
4764 	}
4765 	return perf_ioctl(file, cmd, arg);
4766 }
4767 #else
4768 # define perf_compat_ioctl NULL
4769 #endif
4770 
4771 int perf_event_task_enable(void)
4772 {
4773 	struct perf_event_context *ctx;
4774 	struct perf_event *event;
4775 
4776 	mutex_lock(&current->perf_event_mutex);
4777 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4778 		ctx = perf_event_ctx_lock(event);
4779 		perf_event_for_each_child(event, _perf_event_enable);
4780 		perf_event_ctx_unlock(event, ctx);
4781 	}
4782 	mutex_unlock(&current->perf_event_mutex);
4783 
4784 	return 0;
4785 }
4786 
4787 int perf_event_task_disable(void)
4788 {
4789 	struct perf_event_context *ctx;
4790 	struct perf_event *event;
4791 
4792 	mutex_lock(&current->perf_event_mutex);
4793 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4794 		ctx = perf_event_ctx_lock(event);
4795 		perf_event_for_each_child(event, _perf_event_disable);
4796 		perf_event_ctx_unlock(event, ctx);
4797 	}
4798 	mutex_unlock(&current->perf_event_mutex);
4799 
4800 	return 0;
4801 }
4802 
4803 static int perf_event_index(struct perf_event *event)
4804 {
4805 	if (event->hw.state & PERF_HES_STOPPED)
4806 		return 0;
4807 
4808 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4809 		return 0;
4810 
4811 	return event->pmu->event_idx(event);
4812 }
4813 
4814 static void calc_timer_values(struct perf_event *event,
4815 				u64 *now,
4816 				u64 *enabled,
4817 				u64 *running)
4818 {
4819 	u64 ctx_time;
4820 
4821 	*now = perf_clock();
4822 	ctx_time = event->shadow_ctx_time + *now;
4823 	__perf_update_times(event, ctx_time, enabled, running);
4824 }
4825 
4826 static void perf_event_init_userpage(struct perf_event *event)
4827 {
4828 	struct perf_event_mmap_page *userpg;
4829 	struct ring_buffer *rb;
4830 
4831 	rcu_read_lock();
4832 	rb = rcu_dereference(event->rb);
4833 	if (!rb)
4834 		goto unlock;
4835 
4836 	userpg = rb->user_page;
4837 
4838 	/* Allow new userspace to detect that bit 0 is deprecated */
4839 	userpg->cap_bit0_is_deprecated = 1;
4840 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4841 	userpg->data_offset = PAGE_SIZE;
4842 	userpg->data_size = perf_data_size(rb);
4843 
4844 unlock:
4845 	rcu_read_unlock();
4846 }
4847 
4848 void __weak arch_perf_update_userpage(
4849 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4850 {
4851 }
4852 
4853 /*
4854  * Callers need to ensure there can be no nesting of this function, otherwise
4855  * the seqlock logic goes bad. We can not serialize this because the arch
4856  * code calls this from NMI context.
4857  */
4858 void perf_event_update_userpage(struct perf_event *event)
4859 {
4860 	struct perf_event_mmap_page *userpg;
4861 	struct ring_buffer *rb;
4862 	u64 enabled, running, now;
4863 
4864 	rcu_read_lock();
4865 	rb = rcu_dereference(event->rb);
4866 	if (!rb)
4867 		goto unlock;
4868 
4869 	/*
4870 	 * compute total_time_enabled, total_time_running
4871 	 * based on snapshot values taken when the event
4872 	 * was last scheduled in.
4873 	 *
4874 	 * we cannot simply called update_context_time()
4875 	 * because of locking issue as we can be called in
4876 	 * NMI context
4877 	 */
4878 	calc_timer_values(event, &now, &enabled, &running);
4879 
4880 	userpg = rb->user_page;
4881 	/*
4882 	 * Disable preemption so as to not let the corresponding user-space
4883 	 * spin too long if we get preempted.
4884 	 */
4885 	preempt_disable();
4886 	++userpg->lock;
4887 	barrier();
4888 	userpg->index = perf_event_index(event);
4889 	userpg->offset = perf_event_count(event);
4890 	if (userpg->index)
4891 		userpg->offset -= local64_read(&event->hw.prev_count);
4892 
4893 	userpg->time_enabled = enabled +
4894 			atomic64_read(&event->child_total_time_enabled);
4895 
4896 	userpg->time_running = running +
4897 			atomic64_read(&event->child_total_time_running);
4898 
4899 	arch_perf_update_userpage(event, userpg, now);
4900 
4901 	barrier();
4902 	++userpg->lock;
4903 	preempt_enable();
4904 unlock:
4905 	rcu_read_unlock();
4906 }
4907 
4908 static int perf_mmap_fault(struct vm_fault *vmf)
4909 {
4910 	struct perf_event *event = vmf->vma->vm_file->private_data;
4911 	struct ring_buffer *rb;
4912 	int ret = VM_FAULT_SIGBUS;
4913 
4914 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4915 		if (vmf->pgoff == 0)
4916 			ret = 0;
4917 		return ret;
4918 	}
4919 
4920 	rcu_read_lock();
4921 	rb = rcu_dereference(event->rb);
4922 	if (!rb)
4923 		goto unlock;
4924 
4925 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4926 		goto unlock;
4927 
4928 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4929 	if (!vmf->page)
4930 		goto unlock;
4931 
4932 	get_page(vmf->page);
4933 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4934 	vmf->page->index   = vmf->pgoff;
4935 
4936 	ret = 0;
4937 unlock:
4938 	rcu_read_unlock();
4939 
4940 	return ret;
4941 }
4942 
4943 static void ring_buffer_attach(struct perf_event *event,
4944 			       struct ring_buffer *rb)
4945 {
4946 	struct ring_buffer *old_rb = NULL;
4947 	unsigned long flags;
4948 
4949 	if (event->rb) {
4950 		/*
4951 		 * Should be impossible, we set this when removing
4952 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4953 		 */
4954 		WARN_ON_ONCE(event->rcu_pending);
4955 
4956 		old_rb = event->rb;
4957 		spin_lock_irqsave(&old_rb->event_lock, flags);
4958 		list_del_rcu(&event->rb_entry);
4959 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4960 
4961 		event->rcu_batches = get_state_synchronize_rcu();
4962 		event->rcu_pending = 1;
4963 	}
4964 
4965 	if (rb) {
4966 		if (event->rcu_pending) {
4967 			cond_synchronize_rcu(event->rcu_batches);
4968 			event->rcu_pending = 0;
4969 		}
4970 
4971 		spin_lock_irqsave(&rb->event_lock, flags);
4972 		list_add_rcu(&event->rb_entry, &rb->event_list);
4973 		spin_unlock_irqrestore(&rb->event_lock, flags);
4974 	}
4975 
4976 	/*
4977 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4978 	 * before swizzling the event::rb pointer; if it's getting
4979 	 * unmapped, its aux_mmap_count will be 0 and it won't
4980 	 * restart. See the comment in __perf_pmu_output_stop().
4981 	 *
4982 	 * Data will inevitably be lost when set_output is done in
4983 	 * mid-air, but then again, whoever does it like this is
4984 	 * not in for the data anyway.
4985 	 */
4986 	if (has_aux(event))
4987 		perf_event_stop(event, 0);
4988 
4989 	rcu_assign_pointer(event->rb, rb);
4990 
4991 	if (old_rb) {
4992 		ring_buffer_put(old_rb);
4993 		/*
4994 		 * Since we detached before setting the new rb, so that we
4995 		 * could attach the new rb, we could have missed a wakeup.
4996 		 * Provide it now.
4997 		 */
4998 		wake_up_all(&event->waitq);
4999 	}
5000 }
5001 
5002 static void ring_buffer_wakeup(struct perf_event *event)
5003 {
5004 	struct ring_buffer *rb;
5005 
5006 	rcu_read_lock();
5007 	rb = rcu_dereference(event->rb);
5008 	if (rb) {
5009 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5010 			wake_up_all(&event->waitq);
5011 	}
5012 	rcu_read_unlock();
5013 }
5014 
5015 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5016 {
5017 	struct ring_buffer *rb;
5018 
5019 	rcu_read_lock();
5020 	rb = rcu_dereference(event->rb);
5021 	if (rb) {
5022 		if (!atomic_inc_not_zero(&rb->refcount))
5023 			rb = NULL;
5024 	}
5025 	rcu_read_unlock();
5026 
5027 	return rb;
5028 }
5029 
5030 void ring_buffer_put(struct ring_buffer *rb)
5031 {
5032 	if (!atomic_dec_and_test(&rb->refcount))
5033 		return;
5034 
5035 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5036 
5037 	call_rcu(&rb->rcu_head, rb_free_rcu);
5038 }
5039 
5040 static void perf_mmap_open(struct vm_area_struct *vma)
5041 {
5042 	struct perf_event *event = vma->vm_file->private_data;
5043 
5044 	atomic_inc(&event->mmap_count);
5045 	atomic_inc(&event->rb->mmap_count);
5046 
5047 	if (vma->vm_pgoff)
5048 		atomic_inc(&event->rb->aux_mmap_count);
5049 
5050 	if (event->pmu->event_mapped)
5051 		event->pmu->event_mapped(event, vma->vm_mm);
5052 }
5053 
5054 static void perf_pmu_output_stop(struct perf_event *event);
5055 
5056 /*
5057  * A buffer can be mmap()ed multiple times; either directly through the same
5058  * event, or through other events by use of perf_event_set_output().
5059  *
5060  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5061  * the buffer here, where we still have a VM context. This means we need
5062  * to detach all events redirecting to us.
5063  */
5064 static void perf_mmap_close(struct vm_area_struct *vma)
5065 {
5066 	struct perf_event *event = vma->vm_file->private_data;
5067 
5068 	struct ring_buffer *rb = ring_buffer_get(event);
5069 	struct user_struct *mmap_user = rb->mmap_user;
5070 	int mmap_locked = rb->mmap_locked;
5071 	unsigned long size = perf_data_size(rb);
5072 
5073 	if (event->pmu->event_unmapped)
5074 		event->pmu->event_unmapped(event, vma->vm_mm);
5075 
5076 	/*
5077 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5078 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5079 	 * serialize with perf_mmap here.
5080 	 */
5081 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5082 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5083 		/*
5084 		 * Stop all AUX events that are writing to this buffer,
5085 		 * so that we can free its AUX pages and corresponding PMU
5086 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5087 		 * they won't start any more (see perf_aux_output_begin()).
5088 		 */
5089 		perf_pmu_output_stop(event);
5090 
5091 		/* now it's safe to free the pages */
5092 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5093 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5094 
5095 		/* this has to be the last one */
5096 		rb_free_aux(rb);
5097 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5098 
5099 		mutex_unlock(&event->mmap_mutex);
5100 	}
5101 
5102 	atomic_dec(&rb->mmap_count);
5103 
5104 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5105 		goto out_put;
5106 
5107 	ring_buffer_attach(event, NULL);
5108 	mutex_unlock(&event->mmap_mutex);
5109 
5110 	/* If there's still other mmap()s of this buffer, we're done. */
5111 	if (atomic_read(&rb->mmap_count))
5112 		goto out_put;
5113 
5114 	/*
5115 	 * No other mmap()s, detach from all other events that might redirect
5116 	 * into the now unreachable buffer. Somewhat complicated by the
5117 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5118 	 */
5119 again:
5120 	rcu_read_lock();
5121 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5122 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5123 			/*
5124 			 * This event is en-route to free_event() which will
5125 			 * detach it and remove it from the list.
5126 			 */
5127 			continue;
5128 		}
5129 		rcu_read_unlock();
5130 
5131 		mutex_lock(&event->mmap_mutex);
5132 		/*
5133 		 * Check we didn't race with perf_event_set_output() which can
5134 		 * swizzle the rb from under us while we were waiting to
5135 		 * acquire mmap_mutex.
5136 		 *
5137 		 * If we find a different rb; ignore this event, a next
5138 		 * iteration will no longer find it on the list. We have to
5139 		 * still restart the iteration to make sure we're not now
5140 		 * iterating the wrong list.
5141 		 */
5142 		if (event->rb == rb)
5143 			ring_buffer_attach(event, NULL);
5144 
5145 		mutex_unlock(&event->mmap_mutex);
5146 		put_event(event);
5147 
5148 		/*
5149 		 * Restart the iteration; either we're on the wrong list or
5150 		 * destroyed its integrity by doing a deletion.
5151 		 */
5152 		goto again;
5153 	}
5154 	rcu_read_unlock();
5155 
5156 	/*
5157 	 * It could be there's still a few 0-ref events on the list; they'll
5158 	 * get cleaned up by free_event() -- they'll also still have their
5159 	 * ref on the rb and will free it whenever they are done with it.
5160 	 *
5161 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5162 	 * undo the VM accounting.
5163 	 */
5164 
5165 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5166 	vma->vm_mm->pinned_vm -= mmap_locked;
5167 	free_uid(mmap_user);
5168 
5169 out_put:
5170 	ring_buffer_put(rb); /* could be last */
5171 }
5172 
5173 static const struct vm_operations_struct perf_mmap_vmops = {
5174 	.open		= perf_mmap_open,
5175 	.close		= perf_mmap_close, /* non mergable */
5176 	.fault		= perf_mmap_fault,
5177 	.page_mkwrite	= perf_mmap_fault,
5178 };
5179 
5180 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5181 {
5182 	struct perf_event *event = file->private_data;
5183 	unsigned long user_locked, user_lock_limit;
5184 	struct user_struct *user = current_user();
5185 	unsigned long locked, lock_limit;
5186 	struct ring_buffer *rb = NULL;
5187 	unsigned long vma_size;
5188 	unsigned long nr_pages;
5189 	long user_extra = 0, extra = 0;
5190 	int ret = 0, flags = 0;
5191 
5192 	/*
5193 	 * Don't allow mmap() of inherited per-task counters. This would
5194 	 * create a performance issue due to all children writing to the
5195 	 * same rb.
5196 	 */
5197 	if (event->cpu == -1 && event->attr.inherit)
5198 		return -EINVAL;
5199 
5200 	if (!(vma->vm_flags & VM_SHARED))
5201 		return -EINVAL;
5202 
5203 	vma_size = vma->vm_end - vma->vm_start;
5204 
5205 	if (vma->vm_pgoff == 0) {
5206 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5207 	} else {
5208 		/*
5209 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5210 		 * mapped, all subsequent mappings should have the same size
5211 		 * and offset. Must be above the normal perf buffer.
5212 		 */
5213 		u64 aux_offset, aux_size;
5214 
5215 		if (!event->rb)
5216 			return -EINVAL;
5217 
5218 		nr_pages = vma_size / PAGE_SIZE;
5219 
5220 		mutex_lock(&event->mmap_mutex);
5221 		ret = -EINVAL;
5222 
5223 		rb = event->rb;
5224 		if (!rb)
5225 			goto aux_unlock;
5226 
5227 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5228 		aux_size = READ_ONCE(rb->user_page->aux_size);
5229 
5230 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5231 			goto aux_unlock;
5232 
5233 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5234 			goto aux_unlock;
5235 
5236 		/* already mapped with a different offset */
5237 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5238 			goto aux_unlock;
5239 
5240 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5241 			goto aux_unlock;
5242 
5243 		/* already mapped with a different size */
5244 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5245 			goto aux_unlock;
5246 
5247 		if (!is_power_of_2(nr_pages))
5248 			goto aux_unlock;
5249 
5250 		if (!atomic_inc_not_zero(&rb->mmap_count))
5251 			goto aux_unlock;
5252 
5253 		if (rb_has_aux(rb)) {
5254 			atomic_inc(&rb->aux_mmap_count);
5255 			ret = 0;
5256 			goto unlock;
5257 		}
5258 
5259 		atomic_set(&rb->aux_mmap_count, 1);
5260 		user_extra = nr_pages;
5261 
5262 		goto accounting;
5263 	}
5264 
5265 	/*
5266 	 * If we have rb pages ensure they're a power-of-two number, so we
5267 	 * can do bitmasks instead of modulo.
5268 	 */
5269 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5270 		return -EINVAL;
5271 
5272 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5273 		return -EINVAL;
5274 
5275 	WARN_ON_ONCE(event->ctx->parent_ctx);
5276 again:
5277 	mutex_lock(&event->mmap_mutex);
5278 	if (event->rb) {
5279 		if (event->rb->nr_pages != nr_pages) {
5280 			ret = -EINVAL;
5281 			goto unlock;
5282 		}
5283 
5284 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5285 			/*
5286 			 * Raced against perf_mmap_close() through
5287 			 * perf_event_set_output(). Try again, hope for better
5288 			 * luck.
5289 			 */
5290 			mutex_unlock(&event->mmap_mutex);
5291 			goto again;
5292 		}
5293 
5294 		goto unlock;
5295 	}
5296 
5297 	user_extra = nr_pages + 1;
5298 
5299 accounting:
5300 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5301 
5302 	/*
5303 	 * Increase the limit linearly with more CPUs:
5304 	 */
5305 	user_lock_limit *= num_online_cpus();
5306 
5307 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5308 
5309 	if (user_locked > user_lock_limit)
5310 		extra = user_locked - user_lock_limit;
5311 
5312 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5313 	lock_limit >>= PAGE_SHIFT;
5314 	locked = vma->vm_mm->pinned_vm + extra;
5315 
5316 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5317 		!capable(CAP_IPC_LOCK)) {
5318 		ret = -EPERM;
5319 		goto unlock;
5320 	}
5321 
5322 	WARN_ON(!rb && event->rb);
5323 
5324 	if (vma->vm_flags & VM_WRITE)
5325 		flags |= RING_BUFFER_WRITABLE;
5326 
5327 	if (!rb) {
5328 		rb = rb_alloc(nr_pages,
5329 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5330 			      event->cpu, flags);
5331 
5332 		if (!rb) {
5333 			ret = -ENOMEM;
5334 			goto unlock;
5335 		}
5336 
5337 		atomic_set(&rb->mmap_count, 1);
5338 		rb->mmap_user = get_current_user();
5339 		rb->mmap_locked = extra;
5340 
5341 		ring_buffer_attach(event, rb);
5342 
5343 		perf_event_init_userpage(event);
5344 		perf_event_update_userpage(event);
5345 	} else {
5346 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5347 				   event->attr.aux_watermark, flags);
5348 		if (!ret)
5349 			rb->aux_mmap_locked = extra;
5350 	}
5351 
5352 unlock:
5353 	if (!ret) {
5354 		atomic_long_add(user_extra, &user->locked_vm);
5355 		vma->vm_mm->pinned_vm += extra;
5356 
5357 		atomic_inc(&event->mmap_count);
5358 	} else if (rb) {
5359 		atomic_dec(&rb->mmap_count);
5360 	}
5361 aux_unlock:
5362 	mutex_unlock(&event->mmap_mutex);
5363 
5364 	/*
5365 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5366 	 * vma.
5367 	 */
5368 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5369 	vma->vm_ops = &perf_mmap_vmops;
5370 
5371 	if (event->pmu->event_mapped)
5372 		event->pmu->event_mapped(event, vma->vm_mm);
5373 
5374 	return ret;
5375 }
5376 
5377 static int perf_fasync(int fd, struct file *filp, int on)
5378 {
5379 	struct inode *inode = file_inode(filp);
5380 	struct perf_event *event = filp->private_data;
5381 	int retval;
5382 
5383 	inode_lock(inode);
5384 	retval = fasync_helper(fd, filp, on, &event->fasync);
5385 	inode_unlock(inode);
5386 
5387 	if (retval < 0)
5388 		return retval;
5389 
5390 	return 0;
5391 }
5392 
5393 static const struct file_operations perf_fops = {
5394 	.llseek			= no_llseek,
5395 	.release		= perf_release,
5396 	.read			= perf_read,
5397 	.poll			= perf_poll,
5398 	.unlocked_ioctl		= perf_ioctl,
5399 	.compat_ioctl		= perf_compat_ioctl,
5400 	.mmap			= perf_mmap,
5401 	.fasync			= perf_fasync,
5402 };
5403 
5404 /*
5405  * Perf event wakeup
5406  *
5407  * If there's data, ensure we set the poll() state and publish everything
5408  * to user-space before waking everybody up.
5409  */
5410 
5411 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5412 {
5413 	/* only the parent has fasync state */
5414 	if (event->parent)
5415 		event = event->parent;
5416 	return &event->fasync;
5417 }
5418 
5419 void perf_event_wakeup(struct perf_event *event)
5420 {
5421 	ring_buffer_wakeup(event);
5422 
5423 	if (event->pending_kill) {
5424 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5425 		event->pending_kill = 0;
5426 	}
5427 }
5428 
5429 static void perf_pending_event(struct irq_work *entry)
5430 {
5431 	struct perf_event *event = container_of(entry,
5432 			struct perf_event, pending);
5433 	int rctx;
5434 
5435 	rctx = perf_swevent_get_recursion_context();
5436 	/*
5437 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5438 	 * and we won't recurse 'further'.
5439 	 */
5440 
5441 	if (event->pending_disable) {
5442 		event->pending_disable = 0;
5443 		perf_event_disable_local(event);
5444 	}
5445 
5446 	if (event->pending_wakeup) {
5447 		event->pending_wakeup = 0;
5448 		perf_event_wakeup(event);
5449 	}
5450 
5451 	if (rctx >= 0)
5452 		perf_swevent_put_recursion_context(rctx);
5453 }
5454 
5455 /*
5456  * We assume there is only KVM supporting the callbacks.
5457  * Later on, we might change it to a list if there is
5458  * another virtualization implementation supporting the callbacks.
5459  */
5460 struct perf_guest_info_callbacks *perf_guest_cbs;
5461 
5462 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5463 {
5464 	perf_guest_cbs = cbs;
5465 	return 0;
5466 }
5467 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5468 
5469 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5470 {
5471 	perf_guest_cbs = NULL;
5472 	return 0;
5473 }
5474 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5475 
5476 static void
5477 perf_output_sample_regs(struct perf_output_handle *handle,
5478 			struct pt_regs *regs, u64 mask)
5479 {
5480 	int bit;
5481 	DECLARE_BITMAP(_mask, 64);
5482 
5483 	bitmap_from_u64(_mask, mask);
5484 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5485 		u64 val;
5486 
5487 		val = perf_reg_value(regs, bit);
5488 		perf_output_put(handle, val);
5489 	}
5490 }
5491 
5492 static void perf_sample_regs_user(struct perf_regs *regs_user,
5493 				  struct pt_regs *regs,
5494 				  struct pt_regs *regs_user_copy)
5495 {
5496 	if (user_mode(regs)) {
5497 		regs_user->abi = perf_reg_abi(current);
5498 		regs_user->regs = regs;
5499 	} else if (current->mm) {
5500 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5501 	} else {
5502 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5503 		regs_user->regs = NULL;
5504 	}
5505 }
5506 
5507 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5508 				  struct pt_regs *regs)
5509 {
5510 	regs_intr->regs = regs;
5511 	regs_intr->abi  = perf_reg_abi(current);
5512 }
5513 
5514 
5515 /*
5516  * Get remaining task size from user stack pointer.
5517  *
5518  * It'd be better to take stack vma map and limit this more
5519  * precisly, but there's no way to get it safely under interrupt,
5520  * so using TASK_SIZE as limit.
5521  */
5522 static u64 perf_ustack_task_size(struct pt_regs *regs)
5523 {
5524 	unsigned long addr = perf_user_stack_pointer(regs);
5525 
5526 	if (!addr || addr >= TASK_SIZE)
5527 		return 0;
5528 
5529 	return TASK_SIZE - addr;
5530 }
5531 
5532 static u16
5533 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5534 			struct pt_regs *regs)
5535 {
5536 	u64 task_size;
5537 
5538 	/* No regs, no stack pointer, no dump. */
5539 	if (!regs)
5540 		return 0;
5541 
5542 	/*
5543 	 * Check if we fit in with the requested stack size into the:
5544 	 * - TASK_SIZE
5545 	 *   If we don't, we limit the size to the TASK_SIZE.
5546 	 *
5547 	 * - remaining sample size
5548 	 *   If we don't, we customize the stack size to
5549 	 *   fit in to the remaining sample size.
5550 	 */
5551 
5552 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5553 	stack_size = min(stack_size, (u16) task_size);
5554 
5555 	/* Current header size plus static size and dynamic size. */
5556 	header_size += 2 * sizeof(u64);
5557 
5558 	/* Do we fit in with the current stack dump size? */
5559 	if ((u16) (header_size + stack_size) < header_size) {
5560 		/*
5561 		 * If we overflow the maximum size for the sample,
5562 		 * we customize the stack dump size to fit in.
5563 		 */
5564 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5565 		stack_size = round_up(stack_size, sizeof(u64));
5566 	}
5567 
5568 	return stack_size;
5569 }
5570 
5571 static void
5572 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5573 			  struct pt_regs *regs)
5574 {
5575 	/* Case of a kernel thread, nothing to dump */
5576 	if (!regs) {
5577 		u64 size = 0;
5578 		perf_output_put(handle, size);
5579 	} else {
5580 		unsigned long sp;
5581 		unsigned int rem;
5582 		u64 dyn_size;
5583 
5584 		/*
5585 		 * We dump:
5586 		 * static size
5587 		 *   - the size requested by user or the best one we can fit
5588 		 *     in to the sample max size
5589 		 * data
5590 		 *   - user stack dump data
5591 		 * dynamic size
5592 		 *   - the actual dumped size
5593 		 */
5594 
5595 		/* Static size. */
5596 		perf_output_put(handle, dump_size);
5597 
5598 		/* Data. */
5599 		sp = perf_user_stack_pointer(regs);
5600 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5601 		dyn_size = dump_size - rem;
5602 
5603 		perf_output_skip(handle, rem);
5604 
5605 		/* Dynamic size. */
5606 		perf_output_put(handle, dyn_size);
5607 	}
5608 }
5609 
5610 static void __perf_event_header__init_id(struct perf_event_header *header,
5611 					 struct perf_sample_data *data,
5612 					 struct perf_event *event)
5613 {
5614 	u64 sample_type = event->attr.sample_type;
5615 
5616 	data->type = sample_type;
5617 	header->size += event->id_header_size;
5618 
5619 	if (sample_type & PERF_SAMPLE_TID) {
5620 		/* namespace issues */
5621 		data->tid_entry.pid = perf_event_pid(event, current);
5622 		data->tid_entry.tid = perf_event_tid(event, current);
5623 	}
5624 
5625 	if (sample_type & PERF_SAMPLE_TIME)
5626 		data->time = perf_event_clock(event);
5627 
5628 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5629 		data->id = primary_event_id(event);
5630 
5631 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5632 		data->stream_id = event->id;
5633 
5634 	if (sample_type & PERF_SAMPLE_CPU) {
5635 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5636 		data->cpu_entry.reserved = 0;
5637 	}
5638 }
5639 
5640 void perf_event_header__init_id(struct perf_event_header *header,
5641 				struct perf_sample_data *data,
5642 				struct perf_event *event)
5643 {
5644 	if (event->attr.sample_id_all)
5645 		__perf_event_header__init_id(header, data, event);
5646 }
5647 
5648 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5649 					   struct perf_sample_data *data)
5650 {
5651 	u64 sample_type = data->type;
5652 
5653 	if (sample_type & PERF_SAMPLE_TID)
5654 		perf_output_put(handle, data->tid_entry);
5655 
5656 	if (sample_type & PERF_SAMPLE_TIME)
5657 		perf_output_put(handle, data->time);
5658 
5659 	if (sample_type & PERF_SAMPLE_ID)
5660 		perf_output_put(handle, data->id);
5661 
5662 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5663 		perf_output_put(handle, data->stream_id);
5664 
5665 	if (sample_type & PERF_SAMPLE_CPU)
5666 		perf_output_put(handle, data->cpu_entry);
5667 
5668 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5669 		perf_output_put(handle, data->id);
5670 }
5671 
5672 void perf_event__output_id_sample(struct perf_event *event,
5673 				  struct perf_output_handle *handle,
5674 				  struct perf_sample_data *sample)
5675 {
5676 	if (event->attr.sample_id_all)
5677 		__perf_event__output_id_sample(handle, sample);
5678 }
5679 
5680 static void perf_output_read_one(struct perf_output_handle *handle,
5681 				 struct perf_event *event,
5682 				 u64 enabled, u64 running)
5683 {
5684 	u64 read_format = event->attr.read_format;
5685 	u64 values[4];
5686 	int n = 0;
5687 
5688 	values[n++] = perf_event_count(event);
5689 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5690 		values[n++] = enabled +
5691 			atomic64_read(&event->child_total_time_enabled);
5692 	}
5693 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5694 		values[n++] = running +
5695 			atomic64_read(&event->child_total_time_running);
5696 	}
5697 	if (read_format & PERF_FORMAT_ID)
5698 		values[n++] = primary_event_id(event);
5699 
5700 	__output_copy(handle, values, n * sizeof(u64));
5701 }
5702 
5703 static void perf_output_read_group(struct perf_output_handle *handle,
5704 			    struct perf_event *event,
5705 			    u64 enabled, u64 running)
5706 {
5707 	struct perf_event *leader = event->group_leader, *sub;
5708 	u64 read_format = event->attr.read_format;
5709 	u64 values[5];
5710 	int n = 0;
5711 
5712 	values[n++] = 1 + leader->nr_siblings;
5713 
5714 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5715 		values[n++] = enabled;
5716 
5717 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5718 		values[n++] = running;
5719 
5720 	if (leader != event)
5721 		leader->pmu->read(leader);
5722 
5723 	values[n++] = perf_event_count(leader);
5724 	if (read_format & PERF_FORMAT_ID)
5725 		values[n++] = primary_event_id(leader);
5726 
5727 	__output_copy(handle, values, n * sizeof(u64));
5728 
5729 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5730 		n = 0;
5731 
5732 		if ((sub != event) &&
5733 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5734 			sub->pmu->read(sub);
5735 
5736 		values[n++] = perf_event_count(sub);
5737 		if (read_format & PERF_FORMAT_ID)
5738 			values[n++] = primary_event_id(sub);
5739 
5740 		__output_copy(handle, values, n * sizeof(u64));
5741 	}
5742 }
5743 
5744 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5745 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5746 
5747 /*
5748  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5749  *
5750  * The problem is that its both hard and excessively expensive to iterate the
5751  * child list, not to mention that its impossible to IPI the children running
5752  * on another CPU, from interrupt/NMI context.
5753  */
5754 static void perf_output_read(struct perf_output_handle *handle,
5755 			     struct perf_event *event)
5756 {
5757 	u64 enabled = 0, running = 0, now;
5758 	u64 read_format = event->attr.read_format;
5759 
5760 	/*
5761 	 * compute total_time_enabled, total_time_running
5762 	 * based on snapshot values taken when the event
5763 	 * was last scheduled in.
5764 	 *
5765 	 * we cannot simply called update_context_time()
5766 	 * because of locking issue as we are called in
5767 	 * NMI context
5768 	 */
5769 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5770 		calc_timer_values(event, &now, &enabled, &running);
5771 
5772 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5773 		perf_output_read_group(handle, event, enabled, running);
5774 	else
5775 		perf_output_read_one(handle, event, enabled, running);
5776 }
5777 
5778 void perf_output_sample(struct perf_output_handle *handle,
5779 			struct perf_event_header *header,
5780 			struct perf_sample_data *data,
5781 			struct perf_event *event)
5782 {
5783 	u64 sample_type = data->type;
5784 
5785 	perf_output_put(handle, *header);
5786 
5787 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5788 		perf_output_put(handle, data->id);
5789 
5790 	if (sample_type & PERF_SAMPLE_IP)
5791 		perf_output_put(handle, data->ip);
5792 
5793 	if (sample_type & PERF_SAMPLE_TID)
5794 		perf_output_put(handle, data->tid_entry);
5795 
5796 	if (sample_type & PERF_SAMPLE_TIME)
5797 		perf_output_put(handle, data->time);
5798 
5799 	if (sample_type & PERF_SAMPLE_ADDR)
5800 		perf_output_put(handle, data->addr);
5801 
5802 	if (sample_type & PERF_SAMPLE_ID)
5803 		perf_output_put(handle, data->id);
5804 
5805 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5806 		perf_output_put(handle, data->stream_id);
5807 
5808 	if (sample_type & PERF_SAMPLE_CPU)
5809 		perf_output_put(handle, data->cpu_entry);
5810 
5811 	if (sample_type & PERF_SAMPLE_PERIOD)
5812 		perf_output_put(handle, data->period);
5813 
5814 	if (sample_type & PERF_SAMPLE_READ)
5815 		perf_output_read(handle, event);
5816 
5817 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5818 		if (data->callchain) {
5819 			int size = 1;
5820 
5821 			if (data->callchain)
5822 				size += data->callchain->nr;
5823 
5824 			size *= sizeof(u64);
5825 
5826 			__output_copy(handle, data->callchain, size);
5827 		} else {
5828 			u64 nr = 0;
5829 			perf_output_put(handle, nr);
5830 		}
5831 	}
5832 
5833 	if (sample_type & PERF_SAMPLE_RAW) {
5834 		struct perf_raw_record *raw = data->raw;
5835 
5836 		if (raw) {
5837 			struct perf_raw_frag *frag = &raw->frag;
5838 
5839 			perf_output_put(handle, raw->size);
5840 			do {
5841 				if (frag->copy) {
5842 					__output_custom(handle, frag->copy,
5843 							frag->data, frag->size);
5844 				} else {
5845 					__output_copy(handle, frag->data,
5846 						      frag->size);
5847 				}
5848 				if (perf_raw_frag_last(frag))
5849 					break;
5850 				frag = frag->next;
5851 			} while (1);
5852 			if (frag->pad)
5853 				__output_skip(handle, NULL, frag->pad);
5854 		} else {
5855 			struct {
5856 				u32	size;
5857 				u32	data;
5858 			} raw = {
5859 				.size = sizeof(u32),
5860 				.data = 0,
5861 			};
5862 			perf_output_put(handle, raw);
5863 		}
5864 	}
5865 
5866 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5867 		if (data->br_stack) {
5868 			size_t size;
5869 
5870 			size = data->br_stack->nr
5871 			     * sizeof(struct perf_branch_entry);
5872 
5873 			perf_output_put(handle, data->br_stack->nr);
5874 			perf_output_copy(handle, data->br_stack->entries, size);
5875 		} else {
5876 			/*
5877 			 * we always store at least the value of nr
5878 			 */
5879 			u64 nr = 0;
5880 			perf_output_put(handle, nr);
5881 		}
5882 	}
5883 
5884 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5885 		u64 abi = data->regs_user.abi;
5886 
5887 		/*
5888 		 * If there are no regs to dump, notice it through
5889 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5890 		 */
5891 		perf_output_put(handle, abi);
5892 
5893 		if (abi) {
5894 			u64 mask = event->attr.sample_regs_user;
5895 			perf_output_sample_regs(handle,
5896 						data->regs_user.regs,
5897 						mask);
5898 		}
5899 	}
5900 
5901 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5902 		perf_output_sample_ustack(handle,
5903 					  data->stack_user_size,
5904 					  data->regs_user.regs);
5905 	}
5906 
5907 	if (sample_type & PERF_SAMPLE_WEIGHT)
5908 		perf_output_put(handle, data->weight);
5909 
5910 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5911 		perf_output_put(handle, data->data_src.val);
5912 
5913 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5914 		perf_output_put(handle, data->txn);
5915 
5916 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5917 		u64 abi = data->regs_intr.abi;
5918 		/*
5919 		 * If there are no regs to dump, notice it through
5920 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5921 		 */
5922 		perf_output_put(handle, abi);
5923 
5924 		if (abi) {
5925 			u64 mask = event->attr.sample_regs_intr;
5926 
5927 			perf_output_sample_regs(handle,
5928 						data->regs_intr.regs,
5929 						mask);
5930 		}
5931 	}
5932 
5933 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5934 		perf_output_put(handle, data->phys_addr);
5935 
5936 	if (!event->attr.watermark) {
5937 		int wakeup_events = event->attr.wakeup_events;
5938 
5939 		if (wakeup_events) {
5940 			struct ring_buffer *rb = handle->rb;
5941 			int events = local_inc_return(&rb->events);
5942 
5943 			if (events >= wakeup_events) {
5944 				local_sub(wakeup_events, &rb->events);
5945 				local_inc(&rb->wakeup);
5946 			}
5947 		}
5948 	}
5949 }
5950 
5951 static u64 perf_virt_to_phys(u64 virt)
5952 {
5953 	u64 phys_addr = 0;
5954 	struct page *p = NULL;
5955 
5956 	if (!virt)
5957 		return 0;
5958 
5959 	if (virt >= TASK_SIZE) {
5960 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
5961 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
5962 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
5963 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5964 	} else {
5965 		/*
5966 		 * Walking the pages tables for user address.
5967 		 * Interrupts are disabled, so it prevents any tear down
5968 		 * of the page tables.
5969 		 * Try IRQ-safe __get_user_pages_fast first.
5970 		 * If failed, leave phys_addr as 0.
5971 		 */
5972 		if ((current->mm != NULL) &&
5973 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5974 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5975 
5976 		if (p)
5977 			put_page(p);
5978 	}
5979 
5980 	return phys_addr;
5981 }
5982 
5983 void perf_prepare_sample(struct perf_event_header *header,
5984 			 struct perf_sample_data *data,
5985 			 struct perf_event *event,
5986 			 struct pt_regs *regs)
5987 {
5988 	u64 sample_type = event->attr.sample_type;
5989 
5990 	header->type = PERF_RECORD_SAMPLE;
5991 	header->size = sizeof(*header) + event->header_size;
5992 
5993 	header->misc = 0;
5994 	header->misc |= perf_misc_flags(regs);
5995 
5996 	__perf_event_header__init_id(header, data, event);
5997 
5998 	if (sample_type & PERF_SAMPLE_IP)
5999 		data->ip = perf_instruction_pointer(regs);
6000 
6001 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6002 		int size = 1;
6003 
6004 		data->callchain = perf_callchain(event, regs);
6005 
6006 		if (data->callchain)
6007 			size += data->callchain->nr;
6008 
6009 		header->size += size * sizeof(u64);
6010 	}
6011 
6012 	if (sample_type & PERF_SAMPLE_RAW) {
6013 		struct perf_raw_record *raw = data->raw;
6014 		int size;
6015 
6016 		if (raw) {
6017 			struct perf_raw_frag *frag = &raw->frag;
6018 			u32 sum = 0;
6019 
6020 			do {
6021 				sum += frag->size;
6022 				if (perf_raw_frag_last(frag))
6023 					break;
6024 				frag = frag->next;
6025 			} while (1);
6026 
6027 			size = round_up(sum + sizeof(u32), sizeof(u64));
6028 			raw->size = size - sizeof(u32);
6029 			frag->pad = raw->size - sum;
6030 		} else {
6031 			size = sizeof(u64);
6032 		}
6033 
6034 		header->size += size;
6035 	}
6036 
6037 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6038 		int size = sizeof(u64); /* nr */
6039 		if (data->br_stack) {
6040 			size += data->br_stack->nr
6041 			      * sizeof(struct perf_branch_entry);
6042 		}
6043 		header->size += size;
6044 	}
6045 
6046 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6047 		perf_sample_regs_user(&data->regs_user, regs,
6048 				      &data->regs_user_copy);
6049 
6050 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6051 		/* regs dump ABI info */
6052 		int size = sizeof(u64);
6053 
6054 		if (data->regs_user.regs) {
6055 			u64 mask = event->attr.sample_regs_user;
6056 			size += hweight64(mask) * sizeof(u64);
6057 		}
6058 
6059 		header->size += size;
6060 	}
6061 
6062 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6063 		/*
6064 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6065 		 * processed as the last one or have additional check added
6066 		 * in case new sample type is added, because we could eat
6067 		 * up the rest of the sample size.
6068 		 */
6069 		u16 stack_size = event->attr.sample_stack_user;
6070 		u16 size = sizeof(u64);
6071 
6072 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6073 						     data->regs_user.regs);
6074 
6075 		/*
6076 		 * If there is something to dump, add space for the dump
6077 		 * itself and for the field that tells the dynamic size,
6078 		 * which is how many have been actually dumped.
6079 		 */
6080 		if (stack_size)
6081 			size += sizeof(u64) + stack_size;
6082 
6083 		data->stack_user_size = stack_size;
6084 		header->size += size;
6085 	}
6086 
6087 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6088 		/* regs dump ABI info */
6089 		int size = sizeof(u64);
6090 
6091 		perf_sample_regs_intr(&data->regs_intr, regs);
6092 
6093 		if (data->regs_intr.regs) {
6094 			u64 mask = event->attr.sample_regs_intr;
6095 
6096 			size += hweight64(mask) * sizeof(u64);
6097 		}
6098 
6099 		header->size += size;
6100 	}
6101 
6102 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6103 		data->phys_addr = perf_virt_to_phys(data->addr);
6104 }
6105 
6106 static void __always_inline
6107 __perf_event_output(struct perf_event *event,
6108 		    struct perf_sample_data *data,
6109 		    struct pt_regs *regs,
6110 		    int (*output_begin)(struct perf_output_handle *,
6111 					struct perf_event *,
6112 					unsigned int))
6113 {
6114 	struct perf_output_handle handle;
6115 	struct perf_event_header header;
6116 
6117 	/* protect the callchain buffers */
6118 	rcu_read_lock();
6119 
6120 	perf_prepare_sample(&header, data, event, regs);
6121 
6122 	if (output_begin(&handle, event, header.size))
6123 		goto exit;
6124 
6125 	perf_output_sample(&handle, &header, data, event);
6126 
6127 	perf_output_end(&handle);
6128 
6129 exit:
6130 	rcu_read_unlock();
6131 }
6132 
6133 void
6134 perf_event_output_forward(struct perf_event *event,
6135 			 struct perf_sample_data *data,
6136 			 struct pt_regs *regs)
6137 {
6138 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6139 }
6140 
6141 void
6142 perf_event_output_backward(struct perf_event *event,
6143 			   struct perf_sample_data *data,
6144 			   struct pt_regs *regs)
6145 {
6146 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6147 }
6148 
6149 void
6150 perf_event_output(struct perf_event *event,
6151 		  struct perf_sample_data *data,
6152 		  struct pt_regs *regs)
6153 {
6154 	__perf_event_output(event, data, regs, perf_output_begin);
6155 }
6156 
6157 /*
6158  * read event_id
6159  */
6160 
6161 struct perf_read_event {
6162 	struct perf_event_header	header;
6163 
6164 	u32				pid;
6165 	u32				tid;
6166 };
6167 
6168 static void
6169 perf_event_read_event(struct perf_event *event,
6170 			struct task_struct *task)
6171 {
6172 	struct perf_output_handle handle;
6173 	struct perf_sample_data sample;
6174 	struct perf_read_event read_event = {
6175 		.header = {
6176 			.type = PERF_RECORD_READ,
6177 			.misc = 0,
6178 			.size = sizeof(read_event) + event->read_size,
6179 		},
6180 		.pid = perf_event_pid(event, task),
6181 		.tid = perf_event_tid(event, task),
6182 	};
6183 	int ret;
6184 
6185 	perf_event_header__init_id(&read_event.header, &sample, event);
6186 	ret = perf_output_begin(&handle, event, read_event.header.size);
6187 	if (ret)
6188 		return;
6189 
6190 	perf_output_put(&handle, read_event);
6191 	perf_output_read(&handle, event);
6192 	perf_event__output_id_sample(event, &handle, &sample);
6193 
6194 	perf_output_end(&handle);
6195 }
6196 
6197 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6198 
6199 static void
6200 perf_iterate_ctx(struct perf_event_context *ctx,
6201 		   perf_iterate_f output,
6202 		   void *data, bool all)
6203 {
6204 	struct perf_event *event;
6205 
6206 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6207 		if (!all) {
6208 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6209 				continue;
6210 			if (!event_filter_match(event))
6211 				continue;
6212 		}
6213 
6214 		output(event, data);
6215 	}
6216 }
6217 
6218 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6219 {
6220 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6221 	struct perf_event *event;
6222 
6223 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6224 		/*
6225 		 * Skip events that are not fully formed yet; ensure that
6226 		 * if we observe event->ctx, both event and ctx will be
6227 		 * complete enough. See perf_install_in_context().
6228 		 */
6229 		if (!smp_load_acquire(&event->ctx))
6230 			continue;
6231 
6232 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6233 			continue;
6234 		if (!event_filter_match(event))
6235 			continue;
6236 		output(event, data);
6237 	}
6238 }
6239 
6240 /*
6241  * Iterate all events that need to receive side-band events.
6242  *
6243  * For new callers; ensure that account_pmu_sb_event() includes
6244  * your event, otherwise it might not get delivered.
6245  */
6246 static void
6247 perf_iterate_sb(perf_iterate_f output, void *data,
6248 	       struct perf_event_context *task_ctx)
6249 {
6250 	struct perf_event_context *ctx;
6251 	int ctxn;
6252 
6253 	rcu_read_lock();
6254 	preempt_disable();
6255 
6256 	/*
6257 	 * If we have task_ctx != NULL we only notify the task context itself.
6258 	 * The task_ctx is set only for EXIT events before releasing task
6259 	 * context.
6260 	 */
6261 	if (task_ctx) {
6262 		perf_iterate_ctx(task_ctx, output, data, false);
6263 		goto done;
6264 	}
6265 
6266 	perf_iterate_sb_cpu(output, data);
6267 
6268 	for_each_task_context_nr(ctxn) {
6269 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6270 		if (ctx)
6271 			perf_iterate_ctx(ctx, output, data, false);
6272 	}
6273 done:
6274 	preempt_enable();
6275 	rcu_read_unlock();
6276 }
6277 
6278 /*
6279  * Clear all file-based filters at exec, they'll have to be
6280  * re-instated when/if these objects are mmapped again.
6281  */
6282 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6283 {
6284 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6285 	struct perf_addr_filter *filter;
6286 	unsigned int restart = 0, count = 0;
6287 	unsigned long flags;
6288 
6289 	if (!has_addr_filter(event))
6290 		return;
6291 
6292 	raw_spin_lock_irqsave(&ifh->lock, flags);
6293 	list_for_each_entry(filter, &ifh->list, entry) {
6294 		if (filter->inode) {
6295 			event->addr_filters_offs[count] = 0;
6296 			restart++;
6297 		}
6298 
6299 		count++;
6300 	}
6301 
6302 	if (restart)
6303 		event->addr_filters_gen++;
6304 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6305 
6306 	if (restart)
6307 		perf_event_stop(event, 1);
6308 }
6309 
6310 void perf_event_exec(void)
6311 {
6312 	struct perf_event_context *ctx;
6313 	int ctxn;
6314 
6315 	rcu_read_lock();
6316 	for_each_task_context_nr(ctxn) {
6317 		ctx = current->perf_event_ctxp[ctxn];
6318 		if (!ctx)
6319 			continue;
6320 
6321 		perf_event_enable_on_exec(ctxn);
6322 
6323 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6324 				   true);
6325 	}
6326 	rcu_read_unlock();
6327 }
6328 
6329 struct remote_output {
6330 	struct ring_buffer	*rb;
6331 	int			err;
6332 };
6333 
6334 static void __perf_event_output_stop(struct perf_event *event, void *data)
6335 {
6336 	struct perf_event *parent = event->parent;
6337 	struct remote_output *ro = data;
6338 	struct ring_buffer *rb = ro->rb;
6339 	struct stop_event_data sd = {
6340 		.event	= event,
6341 	};
6342 
6343 	if (!has_aux(event))
6344 		return;
6345 
6346 	if (!parent)
6347 		parent = event;
6348 
6349 	/*
6350 	 * In case of inheritance, it will be the parent that links to the
6351 	 * ring-buffer, but it will be the child that's actually using it.
6352 	 *
6353 	 * We are using event::rb to determine if the event should be stopped,
6354 	 * however this may race with ring_buffer_attach() (through set_output),
6355 	 * which will make us skip the event that actually needs to be stopped.
6356 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6357 	 * its rb pointer.
6358 	 */
6359 	if (rcu_dereference(parent->rb) == rb)
6360 		ro->err = __perf_event_stop(&sd);
6361 }
6362 
6363 static int __perf_pmu_output_stop(void *info)
6364 {
6365 	struct perf_event *event = info;
6366 	struct pmu *pmu = event->pmu;
6367 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6368 	struct remote_output ro = {
6369 		.rb	= event->rb,
6370 	};
6371 
6372 	rcu_read_lock();
6373 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6374 	if (cpuctx->task_ctx)
6375 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6376 				   &ro, false);
6377 	rcu_read_unlock();
6378 
6379 	return ro.err;
6380 }
6381 
6382 static void perf_pmu_output_stop(struct perf_event *event)
6383 {
6384 	struct perf_event *iter;
6385 	int err, cpu;
6386 
6387 restart:
6388 	rcu_read_lock();
6389 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6390 		/*
6391 		 * For per-CPU events, we need to make sure that neither they
6392 		 * nor their children are running; for cpu==-1 events it's
6393 		 * sufficient to stop the event itself if it's active, since
6394 		 * it can't have children.
6395 		 */
6396 		cpu = iter->cpu;
6397 		if (cpu == -1)
6398 			cpu = READ_ONCE(iter->oncpu);
6399 
6400 		if (cpu == -1)
6401 			continue;
6402 
6403 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6404 		if (err == -EAGAIN) {
6405 			rcu_read_unlock();
6406 			goto restart;
6407 		}
6408 	}
6409 	rcu_read_unlock();
6410 }
6411 
6412 /*
6413  * task tracking -- fork/exit
6414  *
6415  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6416  */
6417 
6418 struct perf_task_event {
6419 	struct task_struct		*task;
6420 	struct perf_event_context	*task_ctx;
6421 
6422 	struct {
6423 		struct perf_event_header	header;
6424 
6425 		u32				pid;
6426 		u32				ppid;
6427 		u32				tid;
6428 		u32				ptid;
6429 		u64				time;
6430 	} event_id;
6431 };
6432 
6433 static int perf_event_task_match(struct perf_event *event)
6434 {
6435 	return event->attr.comm  || event->attr.mmap ||
6436 	       event->attr.mmap2 || event->attr.mmap_data ||
6437 	       event->attr.task;
6438 }
6439 
6440 static void perf_event_task_output(struct perf_event *event,
6441 				   void *data)
6442 {
6443 	struct perf_task_event *task_event = data;
6444 	struct perf_output_handle handle;
6445 	struct perf_sample_data	sample;
6446 	struct task_struct *task = task_event->task;
6447 	int ret, size = task_event->event_id.header.size;
6448 
6449 	if (!perf_event_task_match(event))
6450 		return;
6451 
6452 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6453 
6454 	ret = perf_output_begin(&handle, event,
6455 				task_event->event_id.header.size);
6456 	if (ret)
6457 		goto out;
6458 
6459 	task_event->event_id.pid = perf_event_pid(event, task);
6460 	task_event->event_id.ppid = perf_event_pid(event, current);
6461 
6462 	task_event->event_id.tid = perf_event_tid(event, task);
6463 	task_event->event_id.ptid = perf_event_tid(event, current);
6464 
6465 	task_event->event_id.time = perf_event_clock(event);
6466 
6467 	perf_output_put(&handle, task_event->event_id);
6468 
6469 	perf_event__output_id_sample(event, &handle, &sample);
6470 
6471 	perf_output_end(&handle);
6472 out:
6473 	task_event->event_id.header.size = size;
6474 }
6475 
6476 static void perf_event_task(struct task_struct *task,
6477 			      struct perf_event_context *task_ctx,
6478 			      int new)
6479 {
6480 	struct perf_task_event task_event;
6481 
6482 	if (!atomic_read(&nr_comm_events) &&
6483 	    !atomic_read(&nr_mmap_events) &&
6484 	    !atomic_read(&nr_task_events))
6485 		return;
6486 
6487 	task_event = (struct perf_task_event){
6488 		.task	  = task,
6489 		.task_ctx = task_ctx,
6490 		.event_id    = {
6491 			.header = {
6492 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6493 				.misc = 0,
6494 				.size = sizeof(task_event.event_id),
6495 			},
6496 			/* .pid  */
6497 			/* .ppid */
6498 			/* .tid  */
6499 			/* .ptid */
6500 			/* .time */
6501 		},
6502 	};
6503 
6504 	perf_iterate_sb(perf_event_task_output,
6505 		       &task_event,
6506 		       task_ctx);
6507 }
6508 
6509 void perf_event_fork(struct task_struct *task)
6510 {
6511 	perf_event_task(task, NULL, 1);
6512 	perf_event_namespaces(task);
6513 }
6514 
6515 /*
6516  * comm tracking
6517  */
6518 
6519 struct perf_comm_event {
6520 	struct task_struct	*task;
6521 	char			*comm;
6522 	int			comm_size;
6523 
6524 	struct {
6525 		struct perf_event_header	header;
6526 
6527 		u32				pid;
6528 		u32				tid;
6529 	} event_id;
6530 };
6531 
6532 static int perf_event_comm_match(struct perf_event *event)
6533 {
6534 	return event->attr.comm;
6535 }
6536 
6537 static void perf_event_comm_output(struct perf_event *event,
6538 				   void *data)
6539 {
6540 	struct perf_comm_event *comm_event = data;
6541 	struct perf_output_handle handle;
6542 	struct perf_sample_data sample;
6543 	int size = comm_event->event_id.header.size;
6544 	int ret;
6545 
6546 	if (!perf_event_comm_match(event))
6547 		return;
6548 
6549 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6550 	ret = perf_output_begin(&handle, event,
6551 				comm_event->event_id.header.size);
6552 
6553 	if (ret)
6554 		goto out;
6555 
6556 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6557 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6558 
6559 	perf_output_put(&handle, comm_event->event_id);
6560 	__output_copy(&handle, comm_event->comm,
6561 				   comm_event->comm_size);
6562 
6563 	perf_event__output_id_sample(event, &handle, &sample);
6564 
6565 	perf_output_end(&handle);
6566 out:
6567 	comm_event->event_id.header.size = size;
6568 }
6569 
6570 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6571 {
6572 	char comm[TASK_COMM_LEN];
6573 	unsigned int size;
6574 
6575 	memset(comm, 0, sizeof(comm));
6576 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6577 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6578 
6579 	comm_event->comm = comm;
6580 	comm_event->comm_size = size;
6581 
6582 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6583 
6584 	perf_iterate_sb(perf_event_comm_output,
6585 		       comm_event,
6586 		       NULL);
6587 }
6588 
6589 void perf_event_comm(struct task_struct *task, bool exec)
6590 {
6591 	struct perf_comm_event comm_event;
6592 
6593 	if (!atomic_read(&nr_comm_events))
6594 		return;
6595 
6596 	comm_event = (struct perf_comm_event){
6597 		.task	= task,
6598 		/* .comm      */
6599 		/* .comm_size */
6600 		.event_id  = {
6601 			.header = {
6602 				.type = PERF_RECORD_COMM,
6603 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6604 				/* .size */
6605 			},
6606 			/* .pid */
6607 			/* .tid */
6608 		},
6609 	};
6610 
6611 	perf_event_comm_event(&comm_event);
6612 }
6613 
6614 /*
6615  * namespaces tracking
6616  */
6617 
6618 struct perf_namespaces_event {
6619 	struct task_struct		*task;
6620 
6621 	struct {
6622 		struct perf_event_header	header;
6623 
6624 		u32				pid;
6625 		u32				tid;
6626 		u64				nr_namespaces;
6627 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6628 	} event_id;
6629 };
6630 
6631 static int perf_event_namespaces_match(struct perf_event *event)
6632 {
6633 	return event->attr.namespaces;
6634 }
6635 
6636 static void perf_event_namespaces_output(struct perf_event *event,
6637 					 void *data)
6638 {
6639 	struct perf_namespaces_event *namespaces_event = data;
6640 	struct perf_output_handle handle;
6641 	struct perf_sample_data sample;
6642 	int ret;
6643 
6644 	if (!perf_event_namespaces_match(event))
6645 		return;
6646 
6647 	perf_event_header__init_id(&namespaces_event->event_id.header,
6648 				   &sample, event);
6649 	ret = perf_output_begin(&handle, event,
6650 				namespaces_event->event_id.header.size);
6651 	if (ret)
6652 		return;
6653 
6654 	namespaces_event->event_id.pid = perf_event_pid(event,
6655 							namespaces_event->task);
6656 	namespaces_event->event_id.tid = perf_event_tid(event,
6657 							namespaces_event->task);
6658 
6659 	perf_output_put(&handle, namespaces_event->event_id);
6660 
6661 	perf_event__output_id_sample(event, &handle, &sample);
6662 
6663 	perf_output_end(&handle);
6664 }
6665 
6666 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6667 				   struct task_struct *task,
6668 				   const struct proc_ns_operations *ns_ops)
6669 {
6670 	struct path ns_path;
6671 	struct inode *ns_inode;
6672 	void *error;
6673 
6674 	error = ns_get_path(&ns_path, task, ns_ops);
6675 	if (!error) {
6676 		ns_inode = ns_path.dentry->d_inode;
6677 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6678 		ns_link_info->ino = ns_inode->i_ino;
6679 		path_put(&ns_path);
6680 	}
6681 }
6682 
6683 void perf_event_namespaces(struct task_struct *task)
6684 {
6685 	struct perf_namespaces_event namespaces_event;
6686 	struct perf_ns_link_info *ns_link_info;
6687 
6688 	if (!atomic_read(&nr_namespaces_events))
6689 		return;
6690 
6691 	namespaces_event = (struct perf_namespaces_event){
6692 		.task	= task,
6693 		.event_id  = {
6694 			.header = {
6695 				.type = PERF_RECORD_NAMESPACES,
6696 				.misc = 0,
6697 				.size = sizeof(namespaces_event.event_id),
6698 			},
6699 			/* .pid */
6700 			/* .tid */
6701 			.nr_namespaces = NR_NAMESPACES,
6702 			/* .link_info[NR_NAMESPACES] */
6703 		},
6704 	};
6705 
6706 	ns_link_info = namespaces_event.event_id.link_info;
6707 
6708 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6709 			       task, &mntns_operations);
6710 
6711 #ifdef CONFIG_USER_NS
6712 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6713 			       task, &userns_operations);
6714 #endif
6715 #ifdef CONFIG_NET_NS
6716 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6717 			       task, &netns_operations);
6718 #endif
6719 #ifdef CONFIG_UTS_NS
6720 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6721 			       task, &utsns_operations);
6722 #endif
6723 #ifdef CONFIG_IPC_NS
6724 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6725 			       task, &ipcns_operations);
6726 #endif
6727 #ifdef CONFIG_PID_NS
6728 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6729 			       task, &pidns_operations);
6730 #endif
6731 #ifdef CONFIG_CGROUPS
6732 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6733 			       task, &cgroupns_operations);
6734 #endif
6735 
6736 	perf_iterate_sb(perf_event_namespaces_output,
6737 			&namespaces_event,
6738 			NULL);
6739 }
6740 
6741 /*
6742  * mmap tracking
6743  */
6744 
6745 struct perf_mmap_event {
6746 	struct vm_area_struct	*vma;
6747 
6748 	const char		*file_name;
6749 	int			file_size;
6750 	int			maj, min;
6751 	u64			ino;
6752 	u64			ino_generation;
6753 	u32			prot, flags;
6754 
6755 	struct {
6756 		struct perf_event_header	header;
6757 
6758 		u32				pid;
6759 		u32				tid;
6760 		u64				start;
6761 		u64				len;
6762 		u64				pgoff;
6763 	} event_id;
6764 };
6765 
6766 static int perf_event_mmap_match(struct perf_event *event,
6767 				 void *data)
6768 {
6769 	struct perf_mmap_event *mmap_event = data;
6770 	struct vm_area_struct *vma = mmap_event->vma;
6771 	int executable = vma->vm_flags & VM_EXEC;
6772 
6773 	return (!executable && event->attr.mmap_data) ||
6774 	       (executable && (event->attr.mmap || event->attr.mmap2));
6775 }
6776 
6777 static void perf_event_mmap_output(struct perf_event *event,
6778 				   void *data)
6779 {
6780 	struct perf_mmap_event *mmap_event = data;
6781 	struct perf_output_handle handle;
6782 	struct perf_sample_data sample;
6783 	int size = mmap_event->event_id.header.size;
6784 	int ret;
6785 
6786 	if (!perf_event_mmap_match(event, data))
6787 		return;
6788 
6789 	if (event->attr.mmap2) {
6790 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6791 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6792 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6793 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6794 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6795 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6796 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6797 	}
6798 
6799 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6800 	ret = perf_output_begin(&handle, event,
6801 				mmap_event->event_id.header.size);
6802 	if (ret)
6803 		goto out;
6804 
6805 	mmap_event->event_id.pid = perf_event_pid(event, current);
6806 	mmap_event->event_id.tid = perf_event_tid(event, current);
6807 
6808 	perf_output_put(&handle, mmap_event->event_id);
6809 
6810 	if (event->attr.mmap2) {
6811 		perf_output_put(&handle, mmap_event->maj);
6812 		perf_output_put(&handle, mmap_event->min);
6813 		perf_output_put(&handle, mmap_event->ino);
6814 		perf_output_put(&handle, mmap_event->ino_generation);
6815 		perf_output_put(&handle, mmap_event->prot);
6816 		perf_output_put(&handle, mmap_event->flags);
6817 	}
6818 
6819 	__output_copy(&handle, mmap_event->file_name,
6820 				   mmap_event->file_size);
6821 
6822 	perf_event__output_id_sample(event, &handle, &sample);
6823 
6824 	perf_output_end(&handle);
6825 out:
6826 	mmap_event->event_id.header.size = size;
6827 }
6828 
6829 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6830 {
6831 	struct vm_area_struct *vma = mmap_event->vma;
6832 	struct file *file = vma->vm_file;
6833 	int maj = 0, min = 0;
6834 	u64 ino = 0, gen = 0;
6835 	u32 prot = 0, flags = 0;
6836 	unsigned int size;
6837 	char tmp[16];
6838 	char *buf = NULL;
6839 	char *name;
6840 
6841 	if (vma->vm_flags & VM_READ)
6842 		prot |= PROT_READ;
6843 	if (vma->vm_flags & VM_WRITE)
6844 		prot |= PROT_WRITE;
6845 	if (vma->vm_flags & VM_EXEC)
6846 		prot |= PROT_EXEC;
6847 
6848 	if (vma->vm_flags & VM_MAYSHARE)
6849 		flags = MAP_SHARED;
6850 	else
6851 		flags = MAP_PRIVATE;
6852 
6853 	if (vma->vm_flags & VM_DENYWRITE)
6854 		flags |= MAP_DENYWRITE;
6855 	if (vma->vm_flags & VM_MAYEXEC)
6856 		flags |= MAP_EXECUTABLE;
6857 	if (vma->vm_flags & VM_LOCKED)
6858 		flags |= MAP_LOCKED;
6859 	if (vma->vm_flags & VM_HUGETLB)
6860 		flags |= MAP_HUGETLB;
6861 
6862 	if (file) {
6863 		struct inode *inode;
6864 		dev_t dev;
6865 
6866 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6867 		if (!buf) {
6868 			name = "//enomem";
6869 			goto cpy_name;
6870 		}
6871 		/*
6872 		 * d_path() works from the end of the rb backwards, so we
6873 		 * need to add enough zero bytes after the string to handle
6874 		 * the 64bit alignment we do later.
6875 		 */
6876 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6877 		if (IS_ERR(name)) {
6878 			name = "//toolong";
6879 			goto cpy_name;
6880 		}
6881 		inode = file_inode(vma->vm_file);
6882 		dev = inode->i_sb->s_dev;
6883 		ino = inode->i_ino;
6884 		gen = inode->i_generation;
6885 		maj = MAJOR(dev);
6886 		min = MINOR(dev);
6887 
6888 		goto got_name;
6889 	} else {
6890 		if (vma->vm_ops && vma->vm_ops->name) {
6891 			name = (char *) vma->vm_ops->name(vma);
6892 			if (name)
6893 				goto cpy_name;
6894 		}
6895 
6896 		name = (char *)arch_vma_name(vma);
6897 		if (name)
6898 			goto cpy_name;
6899 
6900 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6901 				vma->vm_end >= vma->vm_mm->brk) {
6902 			name = "[heap]";
6903 			goto cpy_name;
6904 		}
6905 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6906 				vma->vm_end >= vma->vm_mm->start_stack) {
6907 			name = "[stack]";
6908 			goto cpy_name;
6909 		}
6910 
6911 		name = "//anon";
6912 		goto cpy_name;
6913 	}
6914 
6915 cpy_name:
6916 	strlcpy(tmp, name, sizeof(tmp));
6917 	name = tmp;
6918 got_name:
6919 	/*
6920 	 * Since our buffer works in 8 byte units we need to align our string
6921 	 * size to a multiple of 8. However, we must guarantee the tail end is
6922 	 * zero'd out to avoid leaking random bits to userspace.
6923 	 */
6924 	size = strlen(name)+1;
6925 	while (!IS_ALIGNED(size, sizeof(u64)))
6926 		name[size++] = '\0';
6927 
6928 	mmap_event->file_name = name;
6929 	mmap_event->file_size = size;
6930 	mmap_event->maj = maj;
6931 	mmap_event->min = min;
6932 	mmap_event->ino = ino;
6933 	mmap_event->ino_generation = gen;
6934 	mmap_event->prot = prot;
6935 	mmap_event->flags = flags;
6936 
6937 	if (!(vma->vm_flags & VM_EXEC))
6938 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6939 
6940 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6941 
6942 	perf_iterate_sb(perf_event_mmap_output,
6943 		       mmap_event,
6944 		       NULL);
6945 
6946 	kfree(buf);
6947 }
6948 
6949 /*
6950  * Check whether inode and address range match filter criteria.
6951  */
6952 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6953 				     struct file *file, unsigned long offset,
6954 				     unsigned long size)
6955 {
6956 	if (filter->inode != file_inode(file))
6957 		return false;
6958 
6959 	if (filter->offset > offset + size)
6960 		return false;
6961 
6962 	if (filter->offset + filter->size < offset)
6963 		return false;
6964 
6965 	return true;
6966 }
6967 
6968 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6969 {
6970 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6971 	struct vm_area_struct *vma = data;
6972 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6973 	struct file *file = vma->vm_file;
6974 	struct perf_addr_filter *filter;
6975 	unsigned int restart = 0, count = 0;
6976 
6977 	if (!has_addr_filter(event))
6978 		return;
6979 
6980 	if (!file)
6981 		return;
6982 
6983 	raw_spin_lock_irqsave(&ifh->lock, flags);
6984 	list_for_each_entry(filter, &ifh->list, entry) {
6985 		if (perf_addr_filter_match(filter, file, off,
6986 					     vma->vm_end - vma->vm_start)) {
6987 			event->addr_filters_offs[count] = vma->vm_start;
6988 			restart++;
6989 		}
6990 
6991 		count++;
6992 	}
6993 
6994 	if (restart)
6995 		event->addr_filters_gen++;
6996 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6997 
6998 	if (restart)
6999 		perf_event_stop(event, 1);
7000 }
7001 
7002 /*
7003  * Adjust all task's events' filters to the new vma
7004  */
7005 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7006 {
7007 	struct perf_event_context *ctx;
7008 	int ctxn;
7009 
7010 	/*
7011 	 * Data tracing isn't supported yet and as such there is no need
7012 	 * to keep track of anything that isn't related to executable code:
7013 	 */
7014 	if (!(vma->vm_flags & VM_EXEC))
7015 		return;
7016 
7017 	rcu_read_lock();
7018 	for_each_task_context_nr(ctxn) {
7019 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7020 		if (!ctx)
7021 			continue;
7022 
7023 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7024 	}
7025 	rcu_read_unlock();
7026 }
7027 
7028 void perf_event_mmap(struct vm_area_struct *vma)
7029 {
7030 	struct perf_mmap_event mmap_event;
7031 
7032 	if (!atomic_read(&nr_mmap_events))
7033 		return;
7034 
7035 	mmap_event = (struct perf_mmap_event){
7036 		.vma	= vma,
7037 		/* .file_name */
7038 		/* .file_size */
7039 		.event_id  = {
7040 			.header = {
7041 				.type = PERF_RECORD_MMAP,
7042 				.misc = PERF_RECORD_MISC_USER,
7043 				/* .size */
7044 			},
7045 			/* .pid */
7046 			/* .tid */
7047 			.start  = vma->vm_start,
7048 			.len    = vma->vm_end - vma->vm_start,
7049 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7050 		},
7051 		/* .maj (attr_mmap2 only) */
7052 		/* .min (attr_mmap2 only) */
7053 		/* .ino (attr_mmap2 only) */
7054 		/* .ino_generation (attr_mmap2 only) */
7055 		/* .prot (attr_mmap2 only) */
7056 		/* .flags (attr_mmap2 only) */
7057 	};
7058 
7059 	perf_addr_filters_adjust(vma);
7060 	perf_event_mmap_event(&mmap_event);
7061 }
7062 
7063 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7064 			  unsigned long size, u64 flags)
7065 {
7066 	struct perf_output_handle handle;
7067 	struct perf_sample_data sample;
7068 	struct perf_aux_event {
7069 		struct perf_event_header	header;
7070 		u64				offset;
7071 		u64				size;
7072 		u64				flags;
7073 	} rec = {
7074 		.header = {
7075 			.type = PERF_RECORD_AUX,
7076 			.misc = 0,
7077 			.size = sizeof(rec),
7078 		},
7079 		.offset		= head,
7080 		.size		= size,
7081 		.flags		= flags,
7082 	};
7083 	int ret;
7084 
7085 	perf_event_header__init_id(&rec.header, &sample, event);
7086 	ret = perf_output_begin(&handle, event, rec.header.size);
7087 
7088 	if (ret)
7089 		return;
7090 
7091 	perf_output_put(&handle, rec);
7092 	perf_event__output_id_sample(event, &handle, &sample);
7093 
7094 	perf_output_end(&handle);
7095 }
7096 
7097 /*
7098  * Lost/dropped samples logging
7099  */
7100 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7101 {
7102 	struct perf_output_handle handle;
7103 	struct perf_sample_data sample;
7104 	int ret;
7105 
7106 	struct {
7107 		struct perf_event_header	header;
7108 		u64				lost;
7109 	} lost_samples_event = {
7110 		.header = {
7111 			.type = PERF_RECORD_LOST_SAMPLES,
7112 			.misc = 0,
7113 			.size = sizeof(lost_samples_event),
7114 		},
7115 		.lost		= lost,
7116 	};
7117 
7118 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7119 
7120 	ret = perf_output_begin(&handle, event,
7121 				lost_samples_event.header.size);
7122 	if (ret)
7123 		return;
7124 
7125 	perf_output_put(&handle, lost_samples_event);
7126 	perf_event__output_id_sample(event, &handle, &sample);
7127 	perf_output_end(&handle);
7128 }
7129 
7130 /*
7131  * context_switch tracking
7132  */
7133 
7134 struct perf_switch_event {
7135 	struct task_struct	*task;
7136 	struct task_struct	*next_prev;
7137 
7138 	struct {
7139 		struct perf_event_header	header;
7140 		u32				next_prev_pid;
7141 		u32				next_prev_tid;
7142 	} event_id;
7143 };
7144 
7145 static int perf_event_switch_match(struct perf_event *event)
7146 {
7147 	return event->attr.context_switch;
7148 }
7149 
7150 static void perf_event_switch_output(struct perf_event *event, void *data)
7151 {
7152 	struct perf_switch_event *se = data;
7153 	struct perf_output_handle handle;
7154 	struct perf_sample_data sample;
7155 	int ret;
7156 
7157 	if (!perf_event_switch_match(event))
7158 		return;
7159 
7160 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7161 	if (event->ctx->task) {
7162 		se->event_id.header.type = PERF_RECORD_SWITCH;
7163 		se->event_id.header.size = sizeof(se->event_id.header);
7164 	} else {
7165 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7166 		se->event_id.header.size = sizeof(se->event_id);
7167 		se->event_id.next_prev_pid =
7168 					perf_event_pid(event, se->next_prev);
7169 		se->event_id.next_prev_tid =
7170 					perf_event_tid(event, se->next_prev);
7171 	}
7172 
7173 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7174 
7175 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7176 	if (ret)
7177 		return;
7178 
7179 	if (event->ctx->task)
7180 		perf_output_put(&handle, se->event_id.header);
7181 	else
7182 		perf_output_put(&handle, se->event_id);
7183 
7184 	perf_event__output_id_sample(event, &handle, &sample);
7185 
7186 	perf_output_end(&handle);
7187 }
7188 
7189 static void perf_event_switch(struct task_struct *task,
7190 			      struct task_struct *next_prev, bool sched_in)
7191 {
7192 	struct perf_switch_event switch_event;
7193 
7194 	/* N.B. caller checks nr_switch_events != 0 */
7195 
7196 	switch_event = (struct perf_switch_event){
7197 		.task		= task,
7198 		.next_prev	= next_prev,
7199 		.event_id	= {
7200 			.header = {
7201 				/* .type */
7202 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7203 				/* .size */
7204 			},
7205 			/* .next_prev_pid */
7206 			/* .next_prev_tid */
7207 		},
7208 	};
7209 
7210 	perf_iterate_sb(perf_event_switch_output,
7211 		       &switch_event,
7212 		       NULL);
7213 }
7214 
7215 /*
7216  * IRQ throttle logging
7217  */
7218 
7219 static void perf_log_throttle(struct perf_event *event, int enable)
7220 {
7221 	struct perf_output_handle handle;
7222 	struct perf_sample_data sample;
7223 	int ret;
7224 
7225 	struct {
7226 		struct perf_event_header	header;
7227 		u64				time;
7228 		u64				id;
7229 		u64				stream_id;
7230 	} throttle_event = {
7231 		.header = {
7232 			.type = PERF_RECORD_THROTTLE,
7233 			.misc = 0,
7234 			.size = sizeof(throttle_event),
7235 		},
7236 		.time		= perf_event_clock(event),
7237 		.id		= primary_event_id(event),
7238 		.stream_id	= event->id,
7239 	};
7240 
7241 	if (enable)
7242 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7243 
7244 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7245 
7246 	ret = perf_output_begin(&handle, event,
7247 				throttle_event.header.size);
7248 	if (ret)
7249 		return;
7250 
7251 	perf_output_put(&handle, throttle_event);
7252 	perf_event__output_id_sample(event, &handle, &sample);
7253 	perf_output_end(&handle);
7254 }
7255 
7256 void perf_event_itrace_started(struct perf_event *event)
7257 {
7258 	event->attach_state |= PERF_ATTACH_ITRACE;
7259 }
7260 
7261 static void perf_log_itrace_start(struct perf_event *event)
7262 {
7263 	struct perf_output_handle handle;
7264 	struct perf_sample_data sample;
7265 	struct perf_aux_event {
7266 		struct perf_event_header        header;
7267 		u32				pid;
7268 		u32				tid;
7269 	} rec;
7270 	int ret;
7271 
7272 	if (event->parent)
7273 		event = event->parent;
7274 
7275 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7276 	    event->attach_state & PERF_ATTACH_ITRACE)
7277 		return;
7278 
7279 	rec.header.type	= PERF_RECORD_ITRACE_START;
7280 	rec.header.misc	= 0;
7281 	rec.header.size	= sizeof(rec);
7282 	rec.pid	= perf_event_pid(event, current);
7283 	rec.tid	= perf_event_tid(event, current);
7284 
7285 	perf_event_header__init_id(&rec.header, &sample, event);
7286 	ret = perf_output_begin(&handle, event, rec.header.size);
7287 
7288 	if (ret)
7289 		return;
7290 
7291 	perf_output_put(&handle, rec);
7292 	perf_event__output_id_sample(event, &handle, &sample);
7293 
7294 	perf_output_end(&handle);
7295 }
7296 
7297 static int
7298 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7299 {
7300 	struct hw_perf_event *hwc = &event->hw;
7301 	int ret = 0;
7302 	u64 seq;
7303 
7304 	seq = __this_cpu_read(perf_throttled_seq);
7305 	if (seq != hwc->interrupts_seq) {
7306 		hwc->interrupts_seq = seq;
7307 		hwc->interrupts = 1;
7308 	} else {
7309 		hwc->interrupts++;
7310 		if (unlikely(throttle
7311 			     && hwc->interrupts >= max_samples_per_tick)) {
7312 			__this_cpu_inc(perf_throttled_count);
7313 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7314 			hwc->interrupts = MAX_INTERRUPTS;
7315 			perf_log_throttle(event, 0);
7316 			ret = 1;
7317 		}
7318 	}
7319 
7320 	if (event->attr.freq) {
7321 		u64 now = perf_clock();
7322 		s64 delta = now - hwc->freq_time_stamp;
7323 
7324 		hwc->freq_time_stamp = now;
7325 
7326 		if (delta > 0 && delta < 2*TICK_NSEC)
7327 			perf_adjust_period(event, delta, hwc->last_period, true);
7328 	}
7329 
7330 	return ret;
7331 }
7332 
7333 int perf_event_account_interrupt(struct perf_event *event)
7334 {
7335 	return __perf_event_account_interrupt(event, 1);
7336 }
7337 
7338 /*
7339  * Generic event overflow handling, sampling.
7340  */
7341 
7342 static int __perf_event_overflow(struct perf_event *event,
7343 				   int throttle, struct perf_sample_data *data,
7344 				   struct pt_regs *regs)
7345 {
7346 	int events = atomic_read(&event->event_limit);
7347 	int ret = 0;
7348 
7349 	/*
7350 	 * Non-sampling counters might still use the PMI to fold short
7351 	 * hardware counters, ignore those.
7352 	 */
7353 	if (unlikely(!is_sampling_event(event)))
7354 		return 0;
7355 
7356 	ret = __perf_event_account_interrupt(event, throttle);
7357 
7358 	/*
7359 	 * XXX event_limit might not quite work as expected on inherited
7360 	 * events
7361 	 */
7362 
7363 	event->pending_kill = POLL_IN;
7364 	if (events && atomic_dec_and_test(&event->event_limit)) {
7365 		ret = 1;
7366 		event->pending_kill = POLL_HUP;
7367 
7368 		perf_event_disable_inatomic(event);
7369 	}
7370 
7371 	READ_ONCE(event->overflow_handler)(event, data, regs);
7372 
7373 	if (*perf_event_fasync(event) && event->pending_kill) {
7374 		event->pending_wakeup = 1;
7375 		irq_work_queue(&event->pending);
7376 	}
7377 
7378 	return ret;
7379 }
7380 
7381 int perf_event_overflow(struct perf_event *event,
7382 			  struct perf_sample_data *data,
7383 			  struct pt_regs *regs)
7384 {
7385 	return __perf_event_overflow(event, 1, data, regs);
7386 }
7387 
7388 /*
7389  * Generic software event infrastructure
7390  */
7391 
7392 struct swevent_htable {
7393 	struct swevent_hlist		*swevent_hlist;
7394 	struct mutex			hlist_mutex;
7395 	int				hlist_refcount;
7396 
7397 	/* Recursion avoidance in each contexts */
7398 	int				recursion[PERF_NR_CONTEXTS];
7399 };
7400 
7401 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7402 
7403 /*
7404  * We directly increment event->count and keep a second value in
7405  * event->hw.period_left to count intervals. This period event
7406  * is kept in the range [-sample_period, 0] so that we can use the
7407  * sign as trigger.
7408  */
7409 
7410 u64 perf_swevent_set_period(struct perf_event *event)
7411 {
7412 	struct hw_perf_event *hwc = &event->hw;
7413 	u64 period = hwc->last_period;
7414 	u64 nr, offset;
7415 	s64 old, val;
7416 
7417 	hwc->last_period = hwc->sample_period;
7418 
7419 again:
7420 	old = val = local64_read(&hwc->period_left);
7421 	if (val < 0)
7422 		return 0;
7423 
7424 	nr = div64_u64(period + val, period);
7425 	offset = nr * period;
7426 	val -= offset;
7427 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7428 		goto again;
7429 
7430 	return nr;
7431 }
7432 
7433 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7434 				    struct perf_sample_data *data,
7435 				    struct pt_regs *regs)
7436 {
7437 	struct hw_perf_event *hwc = &event->hw;
7438 	int throttle = 0;
7439 
7440 	if (!overflow)
7441 		overflow = perf_swevent_set_period(event);
7442 
7443 	if (hwc->interrupts == MAX_INTERRUPTS)
7444 		return;
7445 
7446 	for (; overflow; overflow--) {
7447 		if (__perf_event_overflow(event, throttle,
7448 					    data, regs)) {
7449 			/*
7450 			 * We inhibit the overflow from happening when
7451 			 * hwc->interrupts == MAX_INTERRUPTS.
7452 			 */
7453 			break;
7454 		}
7455 		throttle = 1;
7456 	}
7457 }
7458 
7459 static void perf_swevent_event(struct perf_event *event, u64 nr,
7460 			       struct perf_sample_data *data,
7461 			       struct pt_regs *regs)
7462 {
7463 	struct hw_perf_event *hwc = &event->hw;
7464 
7465 	local64_add(nr, &event->count);
7466 
7467 	if (!regs)
7468 		return;
7469 
7470 	if (!is_sampling_event(event))
7471 		return;
7472 
7473 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7474 		data->period = nr;
7475 		return perf_swevent_overflow(event, 1, data, regs);
7476 	} else
7477 		data->period = event->hw.last_period;
7478 
7479 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7480 		return perf_swevent_overflow(event, 1, data, regs);
7481 
7482 	if (local64_add_negative(nr, &hwc->period_left))
7483 		return;
7484 
7485 	perf_swevent_overflow(event, 0, data, regs);
7486 }
7487 
7488 static int perf_exclude_event(struct perf_event *event,
7489 			      struct pt_regs *regs)
7490 {
7491 	if (event->hw.state & PERF_HES_STOPPED)
7492 		return 1;
7493 
7494 	if (regs) {
7495 		if (event->attr.exclude_user && user_mode(regs))
7496 			return 1;
7497 
7498 		if (event->attr.exclude_kernel && !user_mode(regs))
7499 			return 1;
7500 	}
7501 
7502 	return 0;
7503 }
7504 
7505 static int perf_swevent_match(struct perf_event *event,
7506 				enum perf_type_id type,
7507 				u32 event_id,
7508 				struct perf_sample_data *data,
7509 				struct pt_regs *regs)
7510 {
7511 	if (event->attr.type != type)
7512 		return 0;
7513 
7514 	if (event->attr.config != event_id)
7515 		return 0;
7516 
7517 	if (perf_exclude_event(event, regs))
7518 		return 0;
7519 
7520 	return 1;
7521 }
7522 
7523 static inline u64 swevent_hash(u64 type, u32 event_id)
7524 {
7525 	u64 val = event_id | (type << 32);
7526 
7527 	return hash_64(val, SWEVENT_HLIST_BITS);
7528 }
7529 
7530 static inline struct hlist_head *
7531 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7532 {
7533 	u64 hash = swevent_hash(type, event_id);
7534 
7535 	return &hlist->heads[hash];
7536 }
7537 
7538 /* For the read side: events when they trigger */
7539 static inline struct hlist_head *
7540 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7541 {
7542 	struct swevent_hlist *hlist;
7543 
7544 	hlist = rcu_dereference(swhash->swevent_hlist);
7545 	if (!hlist)
7546 		return NULL;
7547 
7548 	return __find_swevent_head(hlist, type, event_id);
7549 }
7550 
7551 /* For the event head insertion and removal in the hlist */
7552 static inline struct hlist_head *
7553 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7554 {
7555 	struct swevent_hlist *hlist;
7556 	u32 event_id = event->attr.config;
7557 	u64 type = event->attr.type;
7558 
7559 	/*
7560 	 * Event scheduling is always serialized against hlist allocation
7561 	 * and release. Which makes the protected version suitable here.
7562 	 * The context lock guarantees that.
7563 	 */
7564 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7565 					  lockdep_is_held(&event->ctx->lock));
7566 	if (!hlist)
7567 		return NULL;
7568 
7569 	return __find_swevent_head(hlist, type, event_id);
7570 }
7571 
7572 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7573 				    u64 nr,
7574 				    struct perf_sample_data *data,
7575 				    struct pt_regs *regs)
7576 {
7577 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7578 	struct perf_event *event;
7579 	struct hlist_head *head;
7580 
7581 	rcu_read_lock();
7582 	head = find_swevent_head_rcu(swhash, type, event_id);
7583 	if (!head)
7584 		goto end;
7585 
7586 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7587 		if (perf_swevent_match(event, type, event_id, data, regs))
7588 			perf_swevent_event(event, nr, data, regs);
7589 	}
7590 end:
7591 	rcu_read_unlock();
7592 }
7593 
7594 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7595 
7596 int perf_swevent_get_recursion_context(void)
7597 {
7598 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7599 
7600 	return get_recursion_context(swhash->recursion);
7601 }
7602 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7603 
7604 void perf_swevent_put_recursion_context(int rctx)
7605 {
7606 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7607 
7608 	put_recursion_context(swhash->recursion, rctx);
7609 }
7610 
7611 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7612 {
7613 	struct perf_sample_data data;
7614 
7615 	if (WARN_ON_ONCE(!regs))
7616 		return;
7617 
7618 	perf_sample_data_init(&data, addr, 0);
7619 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7620 }
7621 
7622 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7623 {
7624 	int rctx;
7625 
7626 	preempt_disable_notrace();
7627 	rctx = perf_swevent_get_recursion_context();
7628 	if (unlikely(rctx < 0))
7629 		goto fail;
7630 
7631 	___perf_sw_event(event_id, nr, regs, addr);
7632 
7633 	perf_swevent_put_recursion_context(rctx);
7634 fail:
7635 	preempt_enable_notrace();
7636 }
7637 
7638 static void perf_swevent_read(struct perf_event *event)
7639 {
7640 }
7641 
7642 static int perf_swevent_add(struct perf_event *event, int flags)
7643 {
7644 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7645 	struct hw_perf_event *hwc = &event->hw;
7646 	struct hlist_head *head;
7647 
7648 	if (is_sampling_event(event)) {
7649 		hwc->last_period = hwc->sample_period;
7650 		perf_swevent_set_period(event);
7651 	}
7652 
7653 	hwc->state = !(flags & PERF_EF_START);
7654 
7655 	head = find_swevent_head(swhash, event);
7656 	if (WARN_ON_ONCE(!head))
7657 		return -EINVAL;
7658 
7659 	hlist_add_head_rcu(&event->hlist_entry, head);
7660 	perf_event_update_userpage(event);
7661 
7662 	return 0;
7663 }
7664 
7665 static void perf_swevent_del(struct perf_event *event, int flags)
7666 {
7667 	hlist_del_rcu(&event->hlist_entry);
7668 }
7669 
7670 static void perf_swevent_start(struct perf_event *event, int flags)
7671 {
7672 	event->hw.state = 0;
7673 }
7674 
7675 static void perf_swevent_stop(struct perf_event *event, int flags)
7676 {
7677 	event->hw.state = PERF_HES_STOPPED;
7678 }
7679 
7680 /* Deref the hlist from the update side */
7681 static inline struct swevent_hlist *
7682 swevent_hlist_deref(struct swevent_htable *swhash)
7683 {
7684 	return rcu_dereference_protected(swhash->swevent_hlist,
7685 					 lockdep_is_held(&swhash->hlist_mutex));
7686 }
7687 
7688 static void swevent_hlist_release(struct swevent_htable *swhash)
7689 {
7690 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7691 
7692 	if (!hlist)
7693 		return;
7694 
7695 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7696 	kfree_rcu(hlist, rcu_head);
7697 }
7698 
7699 static void swevent_hlist_put_cpu(int cpu)
7700 {
7701 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7702 
7703 	mutex_lock(&swhash->hlist_mutex);
7704 
7705 	if (!--swhash->hlist_refcount)
7706 		swevent_hlist_release(swhash);
7707 
7708 	mutex_unlock(&swhash->hlist_mutex);
7709 }
7710 
7711 static void swevent_hlist_put(void)
7712 {
7713 	int cpu;
7714 
7715 	for_each_possible_cpu(cpu)
7716 		swevent_hlist_put_cpu(cpu);
7717 }
7718 
7719 static int swevent_hlist_get_cpu(int cpu)
7720 {
7721 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7722 	int err = 0;
7723 
7724 	mutex_lock(&swhash->hlist_mutex);
7725 	if (!swevent_hlist_deref(swhash) &&
7726 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7727 		struct swevent_hlist *hlist;
7728 
7729 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7730 		if (!hlist) {
7731 			err = -ENOMEM;
7732 			goto exit;
7733 		}
7734 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7735 	}
7736 	swhash->hlist_refcount++;
7737 exit:
7738 	mutex_unlock(&swhash->hlist_mutex);
7739 
7740 	return err;
7741 }
7742 
7743 static int swevent_hlist_get(void)
7744 {
7745 	int err, cpu, failed_cpu;
7746 
7747 	mutex_lock(&pmus_lock);
7748 	for_each_possible_cpu(cpu) {
7749 		err = swevent_hlist_get_cpu(cpu);
7750 		if (err) {
7751 			failed_cpu = cpu;
7752 			goto fail;
7753 		}
7754 	}
7755 	mutex_unlock(&pmus_lock);
7756 	return 0;
7757 fail:
7758 	for_each_possible_cpu(cpu) {
7759 		if (cpu == failed_cpu)
7760 			break;
7761 		swevent_hlist_put_cpu(cpu);
7762 	}
7763 	mutex_unlock(&pmus_lock);
7764 	return err;
7765 }
7766 
7767 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7768 
7769 static void sw_perf_event_destroy(struct perf_event *event)
7770 {
7771 	u64 event_id = event->attr.config;
7772 
7773 	WARN_ON(event->parent);
7774 
7775 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7776 	swevent_hlist_put();
7777 }
7778 
7779 static int perf_swevent_init(struct perf_event *event)
7780 {
7781 	u64 event_id = event->attr.config;
7782 
7783 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7784 		return -ENOENT;
7785 
7786 	/*
7787 	 * no branch sampling for software events
7788 	 */
7789 	if (has_branch_stack(event))
7790 		return -EOPNOTSUPP;
7791 
7792 	switch (event_id) {
7793 	case PERF_COUNT_SW_CPU_CLOCK:
7794 	case PERF_COUNT_SW_TASK_CLOCK:
7795 		return -ENOENT;
7796 
7797 	default:
7798 		break;
7799 	}
7800 
7801 	if (event_id >= PERF_COUNT_SW_MAX)
7802 		return -ENOENT;
7803 
7804 	if (!event->parent) {
7805 		int err;
7806 
7807 		err = swevent_hlist_get();
7808 		if (err)
7809 			return err;
7810 
7811 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7812 		event->destroy = sw_perf_event_destroy;
7813 	}
7814 
7815 	return 0;
7816 }
7817 
7818 static struct pmu perf_swevent = {
7819 	.task_ctx_nr	= perf_sw_context,
7820 
7821 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7822 
7823 	.event_init	= perf_swevent_init,
7824 	.add		= perf_swevent_add,
7825 	.del		= perf_swevent_del,
7826 	.start		= perf_swevent_start,
7827 	.stop		= perf_swevent_stop,
7828 	.read		= perf_swevent_read,
7829 };
7830 
7831 #ifdef CONFIG_EVENT_TRACING
7832 
7833 static int perf_tp_filter_match(struct perf_event *event,
7834 				struct perf_sample_data *data)
7835 {
7836 	void *record = data->raw->frag.data;
7837 
7838 	/* only top level events have filters set */
7839 	if (event->parent)
7840 		event = event->parent;
7841 
7842 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7843 		return 1;
7844 	return 0;
7845 }
7846 
7847 static int perf_tp_event_match(struct perf_event *event,
7848 				struct perf_sample_data *data,
7849 				struct pt_regs *regs)
7850 {
7851 	if (event->hw.state & PERF_HES_STOPPED)
7852 		return 0;
7853 	/*
7854 	 * All tracepoints are from kernel-space.
7855 	 */
7856 	if (event->attr.exclude_kernel)
7857 		return 0;
7858 
7859 	if (!perf_tp_filter_match(event, data))
7860 		return 0;
7861 
7862 	return 1;
7863 }
7864 
7865 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7866 			       struct trace_event_call *call, u64 count,
7867 			       struct pt_regs *regs, struct hlist_head *head,
7868 			       struct task_struct *task)
7869 {
7870 	if (bpf_prog_array_valid(call)) {
7871 		*(struct pt_regs **)raw_data = regs;
7872 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7873 			perf_swevent_put_recursion_context(rctx);
7874 			return;
7875 		}
7876 	}
7877 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7878 		      rctx, task);
7879 }
7880 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7881 
7882 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7883 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7884 		   struct task_struct *task)
7885 {
7886 	struct perf_sample_data data;
7887 	struct perf_event *event;
7888 
7889 	struct perf_raw_record raw = {
7890 		.frag = {
7891 			.size = entry_size,
7892 			.data = record,
7893 		},
7894 	};
7895 
7896 	perf_sample_data_init(&data, 0, 0);
7897 	data.raw = &raw;
7898 
7899 	perf_trace_buf_update(record, event_type);
7900 
7901 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7902 		if (perf_tp_event_match(event, &data, regs))
7903 			perf_swevent_event(event, count, &data, regs);
7904 	}
7905 
7906 	/*
7907 	 * If we got specified a target task, also iterate its context and
7908 	 * deliver this event there too.
7909 	 */
7910 	if (task && task != current) {
7911 		struct perf_event_context *ctx;
7912 		struct trace_entry *entry = record;
7913 
7914 		rcu_read_lock();
7915 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7916 		if (!ctx)
7917 			goto unlock;
7918 
7919 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7920 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7921 				continue;
7922 			if (event->attr.config != entry->type)
7923 				continue;
7924 			if (perf_tp_event_match(event, &data, regs))
7925 				perf_swevent_event(event, count, &data, regs);
7926 		}
7927 unlock:
7928 		rcu_read_unlock();
7929 	}
7930 
7931 	perf_swevent_put_recursion_context(rctx);
7932 }
7933 EXPORT_SYMBOL_GPL(perf_tp_event);
7934 
7935 static void tp_perf_event_destroy(struct perf_event *event)
7936 {
7937 	perf_trace_destroy(event);
7938 }
7939 
7940 static int perf_tp_event_init(struct perf_event *event)
7941 {
7942 	int err;
7943 
7944 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7945 		return -ENOENT;
7946 
7947 	/*
7948 	 * no branch sampling for tracepoint events
7949 	 */
7950 	if (has_branch_stack(event))
7951 		return -EOPNOTSUPP;
7952 
7953 	err = perf_trace_init(event);
7954 	if (err)
7955 		return err;
7956 
7957 	event->destroy = tp_perf_event_destroy;
7958 
7959 	return 0;
7960 }
7961 
7962 static struct pmu perf_tracepoint = {
7963 	.task_ctx_nr	= perf_sw_context,
7964 
7965 	.event_init	= perf_tp_event_init,
7966 	.add		= perf_trace_add,
7967 	.del		= perf_trace_del,
7968 	.start		= perf_swevent_start,
7969 	.stop		= perf_swevent_stop,
7970 	.read		= perf_swevent_read,
7971 };
7972 
7973 static inline void perf_tp_register(void)
7974 {
7975 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7976 }
7977 
7978 static void perf_event_free_filter(struct perf_event *event)
7979 {
7980 	ftrace_profile_free_filter(event);
7981 }
7982 
7983 #ifdef CONFIG_BPF_SYSCALL
7984 static void bpf_overflow_handler(struct perf_event *event,
7985 				 struct perf_sample_data *data,
7986 				 struct pt_regs *regs)
7987 {
7988 	struct bpf_perf_event_data_kern ctx = {
7989 		.data = data,
7990 		.regs = regs,
7991 		.event = event,
7992 	};
7993 	int ret = 0;
7994 
7995 	preempt_disable();
7996 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7997 		goto out;
7998 	rcu_read_lock();
7999 	ret = BPF_PROG_RUN(event->prog, &ctx);
8000 	rcu_read_unlock();
8001 out:
8002 	__this_cpu_dec(bpf_prog_active);
8003 	preempt_enable();
8004 	if (!ret)
8005 		return;
8006 
8007 	event->orig_overflow_handler(event, data, regs);
8008 }
8009 
8010 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8011 {
8012 	struct bpf_prog *prog;
8013 
8014 	if (event->overflow_handler_context)
8015 		/* hw breakpoint or kernel counter */
8016 		return -EINVAL;
8017 
8018 	if (event->prog)
8019 		return -EEXIST;
8020 
8021 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8022 	if (IS_ERR(prog))
8023 		return PTR_ERR(prog);
8024 
8025 	event->prog = prog;
8026 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8027 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8028 	return 0;
8029 }
8030 
8031 static void perf_event_free_bpf_handler(struct perf_event *event)
8032 {
8033 	struct bpf_prog *prog = event->prog;
8034 
8035 	if (!prog)
8036 		return;
8037 
8038 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8039 	event->prog = NULL;
8040 	bpf_prog_put(prog);
8041 }
8042 #else
8043 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8044 {
8045 	return -EOPNOTSUPP;
8046 }
8047 static void perf_event_free_bpf_handler(struct perf_event *event)
8048 {
8049 }
8050 #endif
8051 
8052 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8053 {
8054 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8055 	struct bpf_prog *prog;
8056 	int ret;
8057 
8058 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8059 		return perf_event_set_bpf_handler(event, prog_fd);
8060 
8061 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8062 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8063 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8064 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8065 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8066 		return -EINVAL;
8067 
8068 	prog = bpf_prog_get(prog_fd);
8069 	if (IS_ERR(prog))
8070 		return PTR_ERR(prog);
8071 
8072 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8073 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8074 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8075 		/* valid fd, but invalid bpf program type */
8076 		bpf_prog_put(prog);
8077 		return -EINVAL;
8078 	}
8079 
8080 	if (is_tracepoint || is_syscall_tp) {
8081 		int off = trace_event_get_offsets(event->tp_event);
8082 
8083 		if (prog->aux->max_ctx_offset > off) {
8084 			bpf_prog_put(prog);
8085 			return -EACCES;
8086 		}
8087 	}
8088 
8089 	ret = perf_event_attach_bpf_prog(event, prog);
8090 	if (ret)
8091 		bpf_prog_put(prog);
8092 	return ret;
8093 }
8094 
8095 static void perf_event_free_bpf_prog(struct perf_event *event)
8096 {
8097 	if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8098 		perf_event_free_bpf_handler(event);
8099 		return;
8100 	}
8101 	perf_event_detach_bpf_prog(event);
8102 }
8103 
8104 #else
8105 
8106 static inline void perf_tp_register(void)
8107 {
8108 }
8109 
8110 static void perf_event_free_filter(struct perf_event *event)
8111 {
8112 }
8113 
8114 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8115 {
8116 	return -ENOENT;
8117 }
8118 
8119 static void perf_event_free_bpf_prog(struct perf_event *event)
8120 {
8121 }
8122 #endif /* CONFIG_EVENT_TRACING */
8123 
8124 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8125 void perf_bp_event(struct perf_event *bp, void *data)
8126 {
8127 	struct perf_sample_data sample;
8128 	struct pt_regs *regs = data;
8129 
8130 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8131 
8132 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8133 		perf_swevent_event(bp, 1, &sample, regs);
8134 }
8135 #endif
8136 
8137 /*
8138  * Allocate a new address filter
8139  */
8140 static struct perf_addr_filter *
8141 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8142 {
8143 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8144 	struct perf_addr_filter *filter;
8145 
8146 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8147 	if (!filter)
8148 		return NULL;
8149 
8150 	INIT_LIST_HEAD(&filter->entry);
8151 	list_add_tail(&filter->entry, filters);
8152 
8153 	return filter;
8154 }
8155 
8156 static void free_filters_list(struct list_head *filters)
8157 {
8158 	struct perf_addr_filter *filter, *iter;
8159 
8160 	list_for_each_entry_safe(filter, iter, filters, entry) {
8161 		if (filter->inode)
8162 			iput(filter->inode);
8163 		list_del(&filter->entry);
8164 		kfree(filter);
8165 	}
8166 }
8167 
8168 /*
8169  * Free existing address filters and optionally install new ones
8170  */
8171 static void perf_addr_filters_splice(struct perf_event *event,
8172 				     struct list_head *head)
8173 {
8174 	unsigned long flags;
8175 	LIST_HEAD(list);
8176 
8177 	if (!has_addr_filter(event))
8178 		return;
8179 
8180 	/* don't bother with children, they don't have their own filters */
8181 	if (event->parent)
8182 		return;
8183 
8184 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8185 
8186 	list_splice_init(&event->addr_filters.list, &list);
8187 	if (head)
8188 		list_splice(head, &event->addr_filters.list);
8189 
8190 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8191 
8192 	free_filters_list(&list);
8193 }
8194 
8195 /*
8196  * Scan through mm's vmas and see if one of them matches the
8197  * @filter; if so, adjust filter's address range.
8198  * Called with mm::mmap_sem down for reading.
8199  */
8200 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8201 					    struct mm_struct *mm)
8202 {
8203 	struct vm_area_struct *vma;
8204 
8205 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8206 		struct file *file = vma->vm_file;
8207 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8208 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8209 
8210 		if (!file)
8211 			continue;
8212 
8213 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8214 			continue;
8215 
8216 		return vma->vm_start;
8217 	}
8218 
8219 	return 0;
8220 }
8221 
8222 /*
8223  * Update event's address range filters based on the
8224  * task's existing mappings, if any.
8225  */
8226 static void perf_event_addr_filters_apply(struct perf_event *event)
8227 {
8228 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8229 	struct task_struct *task = READ_ONCE(event->ctx->task);
8230 	struct perf_addr_filter *filter;
8231 	struct mm_struct *mm = NULL;
8232 	unsigned int count = 0;
8233 	unsigned long flags;
8234 
8235 	/*
8236 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8237 	 * will stop on the parent's child_mutex that our caller is also holding
8238 	 */
8239 	if (task == TASK_TOMBSTONE)
8240 		return;
8241 
8242 	if (!ifh->nr_file_filters)
8243 		return;
8244 
8245 	mm = get_task_mm(event->ctx->task);
8246 	if (!mm)
8247 		goto restart;
8248 
8249 	down_read(&mm->mmap_sem);
8250 
8251 	raw_spin_lock_irqsave(&ifh->lock, flags);
8252 	list_for_each_entry(filter, &ifh->list, entry) {
8253 		event->addr_filters_offs[count] = 0;
8254 
8255 		/*
8256 		 * Adjust base offset if the filter is associated to a binary
8257 		 * that needs to be mapped:
8258 		 */
8259 		if (filter->inode)
8260 			event->addr_filters_offs[count] =
8261 				perf_addr_filter_apply(filter, mm);
8262 
8263 		count++;
8264 	}
8265 
8266 	event->addr_filters_gen++;
8267 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8268 
8269 	up_read(&mm->mmap_sem);
8270 
8271 	mmput(mm);
8272 
8273 restart:
8274 	perf_event_stop(event, 1);
8275 }
8276 
8277 /*
8278  * Address range filtering: limiting the data to certain
8279  * instruction address ranges. Filters are ioctl()ed to us from
8280  * userspace as ascii strings.
8281  *
8282  * Filter string format:
8283  *
8284  * ACTION RANGE_SPEC
8285  * where ACTION is one of the
8286  *  * "filter": limit the trace to this region
8287  *  * "start": start tracing from this address
8288  *  * "stop": stop tracing at this address/region;
8289  * RANGE_SPEC is
8290  *  * for kernel addresses: <start address>[/<size>]
8291  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8292  *
8293  * if <size> is not specified, the range is treated as a single address.
8294  */
8295 enum {
8296 	IF_ACT_NONE = -1,
8297 	IF_ACT_FILTER,
8298 	IF_ACT_START,
8299 	IF_ACT_STOP,
8300 	IF_SRC_FILE,
8301 	IF_SRC_KERNEL,
8302 	IF_SRC_FILEADDR,
8303 	IF_SRC_KERNELADDR,
8304 };
8305 
8306 enum {
8307 	IF_STATE_ACTION = 0,
8308 	IF_STATE_SOURCE,
8309 	IF_STATE_END,
8310 };
8311 
8312 static const match_table_t if_tokens = {
8313 	{ IF_ACT_FILTER,	"filter" },
8314 	{ IF_ACT_START,		"start" },
8315 	{ IF_ACT_STOP,		"stop" },
8316 	{ IF_SRC_FILE,		"%u/%u@%s" },
8317 	{ IF_SRC_KERNEL,	"%u/%u" },
8318 	{ IF_SRC_FILEADDR,	"%u@%s" },
8319 	{ IF_SRC_KERNELADDR,	"%u" },
8320 	{ IF_ACT_NONE,		NULL },
8321 };
8322 
8323 /*
8324  * Address filter string parser
8325  */
8326 static int
8327 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8328 			     struct list_head *filters)
8329 {
8330 	struct perf_addr_filter *filter = NULL;
8331 	char *start, *orig, *filename = NULL;
8332 	struct path path;
8333 	substring_t args[MAX_OPT_ARGS];
8334 	int state = IF_STATE_ACTION, token;
8335 	unsigned int kernel = 0;
8336 	int ret = -EINVAL;
8337 
8338 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8339 	if (!fstr)
8340 		return -ENOMEM;
8341 
8342 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8343 		ret = -EINVAL;
8344 
8345 		if (!*start)
8346 			continue;
8347 
8348 		/* filter definition begins */
8349 		if (state == IF_STATE_ACTION) {
8350 			filter = perf_addr_filter_new(event, filters);
8351 			if (!filter)
8352 				goto fail;
8353 		}
8354 
8355 		token = match_token(start, if_tokens, args);
8356 		switch (token) {
8357 		case IF_ACT_FILTER:
8358 		case IF_ACT_START:
8359 			filter->filter = 1;
8360 
8361 		case IF_ACT_STOP:
8362 			if (state != IF_STATE_ACTION)
8363 				goto fail;
8364 
8365 			state = IF_STATE_SOURCE;
8366 			break;
8367 
8368 		case IF_SRC_KERNELADDR:
8369 		case IF_SRC_KERNEL:
8370 			kernel = 1;
8371 
8372 		case IF_SRC_FILEADDR:
8373 		case IF_SRC_FILE:
8374 			if (state != IF_STATE_SOURCE)
8375 				goto fail;
8376 
8377 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8378 				filter->range = 1;
8379 
8380 			*args[0].to = 0;
8381 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8382 			if (ret)
8383 				goto fail;
8384 
8385 			if (filter->range) {
8386 				*args[1].to = 0;
8387 				ret = kstrtoul(args[1].from, 0, &filter->size);
8388 				if (ret)
8389 					goto fail;
8390 			}
8391 
8392 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8393 				int fpos = filter->range ? 2 : 1;
8394 
8395 				filename = match_strdup(&args[fpos]);
8396 				if (!filename) {
8397 					ret = -ENOMEM;
8398 					goto fail;
8399 				}
8400 			}
8401 
8402 			state = IF_STATE_END;
8403 			break;
8404 
8405 		default:
8406 			goto fail;
8407 		}
8408 
8409 		/*
8410 		 * Filter definition is fully parsed, validate and install it.
8411 		 * Make sure that it doesn't contradict itself or the event's
8412 		 * attribute.
8413 		 */
8414 		if (state == IF_STATE_END) {
8415 			ret = -EINVAL;
8416 			if (kernel && event->attr.exclude_kernel)
8417 				goto fail;
8418 
8419 			if (!kernel) {
8420 				if (!filename)
8421 					goto fail;
8422 
8423 				/*
8424 				 * For now, we only support file-based filters
8425 				 * in per-task events; doing so for CPU-wide
8426 				 * events requires additional context switching
8427 				 * trickery, since same object code will be
8428 				 * mapped at different virtual addresses in
8429 				 * different processes.
8430 				 */
8431 				ret = -EOPNOTSUPP;
8432 				if (!event->ctx->task)
8433 					goto fail_free_name;
8434 
8435 				/* look up the path and grab its inode */
8436 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8437 				if (ret)
8438 					goto fail_free_name;
8439 
8440 				filter->inode = igrab(d_inode(path.dentry));
8441 				path_put(&path);
8442 				kfree(filename);
8443 				filename = NULL;
8444 
8445 				ret = -EINVAL;
8446 				if (!filter->inode ||
8447 				    !S_ISREG(filter->inode->i_mode))
8448 					/* free_filters_list() will iput() */
8449 					goto fail;
8450 
8451 				event->addr_filters.nr_file_filters++;
8452 			}
8453 
8454 			/* ready to consume more filters */
8455 			state = IF_STATE_ACTION;
8456 			filter = NULL;
8457 		}
8458 	}
8459 
8460 	if (state != IF_STATE_ACTION)
8461 		goto fail;
8462 
8463 	kfree(orig);
8464 
8465 	return 0;
8466 
8467 fail_free_name:
8468 	kfree(filename);
8469 fail:
8470 	free_filters_list(filters);
8471 	kfree(orig);
8472 
8473 	return ret;
8474 }
8475 
8476 static int
8477 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8478 {
8479 	LIST_HEAD(filters);
8480 	int ret;
8481 
8482 	/*
8483 	 * Since this is called in perf_ioctl() path, we're already holding
8484 	 * ctx::mutex.
8485 	 */
8486 	lockdep_assert_held(&event->ctx->mutex);
8487 
8488 	if (WARN_ON_ONCE(event->parent))
8489 		return -EINVAL;
8490 
8491 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8492 	if (ret)
8493 		goto fail_clear_files;
8494 
8495 	ret = event->pmu->addr_filters_validate(&filters);
8496 	if (ret)
8497 		goto fail_free_filters;
8498 
8499 	/* remove existing filters, if any */
8500 	perf_addr_filters_splice(event, &filters);
8501 
8502 	/* install new filters */
8503 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8504 
8505 	return ret;
8506 
8507 fail_free_filters:
8508 	free_filters_list(&filters);
8509 
8510 fail_clear_files:
8511 	event->addr_filters.nr_file_filters = 0;
8512 
8513 	return ret;
8514 }
8515 
8516 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8517 {
8518 	char *filter_str;
8519 	int ret = -EINVAL;
8520 
8521 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8522 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8523 	    !has_addr_filter(event))
8524 		return -EINVAL;
8525 
8526 	filter_str = strndup_user(arg, PAGE_SIZE);
8527 	if (IS_ERR(filter_str))
8528 		return PTR_ERR(filter_str);
8529 
8530 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8531 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8532 		ret = ftrace_profile_set_filter(event, event->attr.config,
8533 						filter_str);
8534 	else if (has_addr_filter(event))
8535 		ret = perf_event_set_addr_filter(event, filter_str);
8536 
8537 	kfree(filter_str);
8538 	return ret;
8539 }
8540 
8541 /*
8542  * hrtimer based swevent callback
8543  */
8544 
8545 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8546 {
8547 	enum hrtimer_restart ret = HRTIMER_RESTART;
8548 	struct perf_sample_data data;
8549 	struct pt_regs *regs;
8550 	struct perf_event *event;
8551 	u64 period;
8552 
8553 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8554 
8555 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8556 		return HRTIMER_NORESTART;
8557 
8558 	event->pmu->read(event);
8559 
8560 	perf_sample_data_init(&data, 0, event->hw.last_period);
8561 	regs = get_irq_regs();
8562 
8563 	if (regs && !perf_exclude_event(event, regs)) {
8564 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8565 			if (__perf_event_overflow(event, 1, &data, regs))
8566 				ret = HRTIMER_NORESTART;
8567 	}
8568 
8569 	period = max_t(u64, 10000, event->hw.sample_period);
8570 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8571 
8572 	return ret;
8573 }
8574 
8575 static void perf_swevent_start_hrtimer(struct perf_event *event)
8576 {
8577 	struct hw_perf_event *hwc = &event->hw;
8578 	s64 period;
8579 
8580 	if (!is_sampling_event(event))
8581 		return;
8582 
8583 	period = local64_read(&hwc->period_left);
8584 	if (period) {
8585 		if (period < 0)
8586 			period = 10000;
8587 
8588 		local64_set(&hwc->period_left, 0);
8589 	} else {
8590 		period = max_t(u64, 10000, hwc->sample_period);
8591 	}
8592 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8593 		      HRTIMER_MODE_REL_PINNED);
8594 }
8595 
8596 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8597 {
8598 	struct hw_perf_event *hwc = &event->hw;
8599 
8600 	if (is_sampling_event(event)) {
8601 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8602 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8603 
8604 		hrtimer_cancel(&hwc->hrtimer);
8605 	}
8606 }
8607 
8608 static void perf_swevent_init_hrtimer(struct perf_event *event)
8609 {
8610 	struct hw_perf_event *hwc = &event->hw;
8611 
8612 	if (!is_sampling_event(event))
8613 		return;
8614 
8615 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8616 	hwc->hrtimer.function = perf_swevent_hrtimer;
8617 
8618 	/*
8619 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8620 	 * mapping and avoid the whole period adjust feedback stuff.
8621 	 */
8622 	if (event->attr.freq) {
8623 		long freq = event->attr.sample_freq;
8624 
8625 		event->attr.sample_period = NSEC_PER_SEC / freq;
8626 		hwc->sample_period = event->attr.sample_period;
8627 		local64_set(&hwc->period_left, hwc->sample_period);
8628 		hwc->last_period = hwc->sample_period;
8629 		event->attr.freq = 0;
8630 	}
8631 }
8632 
8633 /*
8634  * Software event: cpu wall time clock
8635  */
8636 
8637 static void cpu_clock_event_update(struct perf_event *event)
8638 {
8639 	s64 prev;
8640 	u64 now;
8641 
8642 	now = local_clock();
8643 	prev = local64_xchg(&event->hw.prev_count, now);
8644 	local64_add(now - prev, &event->count);
8645 }
8646 
8647 static void cpu_clock_event_start(struct perf_event *event, int flags)
8648 {
8649 	local64_set(&event->hw.prev_count, local_clock());
8650 	perf_swevent_start_hrtimer(event);
8651 }
8652 
8653 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8654 {
8655 	perf_swevent_cancel_hrtimer(event);
8656 	cpu_clock_event_update(event);
8657 }
8658 
8659 static int cpu_clock_event_add(struct perf_event *event, int flags)
8660 {
8661 	if (flags & PERF_EF_START)
8662 		cpu_clock_event_start(event, flags);
8663 	perf_event_update_userpage(event);
8664 
8665 	return 0;
8666 }
8667 
8668 static void cpu_clock_event_del(struct perf_event *event, int flags)
8669 {
8670 	cpu_clock_event_stop(event, flags);
8671 }
8672 
8673 static void cpu_clock_event_read(struct perf_event *event)
8674 {
8675 	cpu_clock_event_update(event);
8676 }
8677 
8678 static int cpu_clock_event_init(struct perf_event *event)
8679 {
8680 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8681 		return -ENOENT;
8682 
8683 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8684 		return -ENOENT;
8685 
8686 	/*
8687 	 * no branch sampling for software events
8688 	 */
8689 	if (has_branch_stack(event))
8690 		return -EOPNOTSUPP;
8691 
8692 	perf_swevent_init_hrtimer(event);
8693 
8694 	return 0;
8695 }
8696 
8697 static struct pmu perf_cpu_clock = {
8698 	.task_ctx_nr	= perf_sw_context,
8699 
8700 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8701 
8702 	.event_init	= cpu_clock_event_init,
8703 	.add		= cpu_clock_event_add,
8704 	.del		= cpu_clock_event_del,
8705 	.start		= cpu_clock_event_start,
8706 	.stop		= cpu_clock_event_stop,
8707 	.read		= cpu_clock_event_read,
8708 };
8709 
8710 /*
8711  * Software event: task time clock
8712  */
8713 
8714 static void task_clock_event_update(struct perf_event *event, u64 now)
8715 {
8716 	u64 prev;
8717 	s64 delta;
8718 
8719 	prev = local64_xchg(&event->hw.prev_count, now);
8720 	delta = now - prev;
8721 	local64_add(delta, &event->count);
8722 }
8723 
8724 static void task_clock_event_start(struct perf_event *event, int flags)
8725 {
8726 	local64_set(&event->hw.prev_count, event->ctx->time);
8727 	perf_swevent_start_hrtimer(event);
8728 }
8729 
8730 static void task_clock_event_stop(struct perf_event *event, int flags)
8731 {
8732 	perf_swevent_cancel_hrtimer(event);
8733 	task_clock_event_update(event, event->ctx->time);
8734 }
8735 
8736 static int task_clock_event_add(struct perf_event *event, int flags)
8737 {
8738 	if (flags & PERF_EF_START)
8739 		task_clock_event_start(event, flags);
8740 	perf_event_update_userpage(event);
8741 
8742 	return 0;
8743 }
8744 
8745 static void task_clock_event_del(struct perf_event *event, int flags)
8746 {
8747 	task_clock_event_stop(event, PERF_EF_UPDATE);
8748 }
8749 
8750 static void task_clock_event_read(struct perf_event *event)
8751 {
8752 	u64 now = perf_clock();
8753 	u64 delta = now - event->ctx->timestamp;
8754 	u64 time = event->ctx->time + delta;
8755 
8756 	task_clock_event_update(event, time);
8757 }
8758 
8759 static int task_clock_event_init(struct perf_event *event)
8760 {
8761 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8762 		return -ENOENT;
8763 
8764 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8765 		return -ENOENT;
8766 
8767 	/*
8768 	 * no branch sampling for software events
8769 	 */
8770 	if (has_branch_stack(event))
8771 		return -EOPNOTSUPP;
8772 
8773 	perf_swevent_init_hrtimer(event);
8774 
8775 	return 0;
8776 }
8777 
8778 static struct pmu perf_task_clock = {
8779 	.task_ctx_nr	= perf_sw_context,
8780 
8781 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8782 
8783 	.event_init	= task_clock_event_init,
8784 	.add		= task_clock_event_add,
8785 	.del		= task_clock_event_del,
8786 	.start		= task_clock_event_start,
8787 	.stop		= task_clock_event_stop,
8788 	.read		= task_clock_event_read,
8789 };
8790 
8791 static void perf_pmu_nop_void(struct pmu *pmu)
8792 {
8793 }
8794 
8795 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8796 {
8797 }
8798 
8799 static int perf_pmu_nop_int(struct pmu *pmu)
8800 {
8801 	return 0;
8802 }
8803 
8804 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8805 
8806 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8807 {
8808 	__this_cpu_write(nop_txn_flags, flags);
8809 
8810 	if (flags & ~PERF_PMU_TXN_ADD)
8811 		return;
8812 
8813 	perf_pmu_disable(pmu);
8814 }
8815 
8816 static int perf_pmu_commit_txn(struct pmu *pmu)
8817 {
8818 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8819 
8820 	__this_cpu_write(nop_txn_flags, 0);
8821 
8822 	if (flags & ~PERF_PMU_TXN_ADD)
8823 		return 0;
8824 
8825 	perf_pmu_enable(pmu);
8826 	return 0;
8827 }
8828 
8829 static void perf_pmu_cancel_txn(struct pmu *pmu)
8830 {
8831 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8832 
8833 	__this_cpu_write(nop_txn_flags, 0);
8834 
8835 	if (flags & ~PERF_PMU_TXN_ADD)
8836 		return;
8837 
8838 	perf_pmu_enable(pmu);
8839 }
8840 
8841 static int perf_event_idx_default(struct perf_event *event)
8842 {
8843 	return 0;
8844 }
8845 
8846 /*
8847  * Ensures all contexts with the same task_ctx_nr have the same
8848  * pmu_cpu_context too.
8849  */
8850 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8851 {
8852 	struct pmu *pmu;
8853 
8854 	if (ctxn < 0)
8855 		return NULL;
8856 
8857 	list_for_each_entry(pmu, &pmus, entry) {
8858 		if (pmu->task_ctx_nr == ctxn)
8859 			return pmu->pmu_cpu_context;
8860 	}
8861 
8862 	return NULL;
8863 }
8864 
8865 static void free_pmu_context(struct pmu *pmu)
8866 {
8867 	/*
8868 	 * Static contexts such as perf_sw_context have a global lifetime
8869 	 * and may be shared between different PMUs. Avoid freeing them
8870 	 * when a single PMU is going away.
8871 	 */
8872 	if (pmu->task_ctx_nr > perf_invalid_context)
8873 		return;
8874 
8875 	mutex_lock(&pmus_lock);
8876 	free_percpu(pmu->pmu_cpu_context);
8877 	mutex_unlock(&pmus_lock);
8878 }
8879 
8880 /*
8881  * Let userspace know that this PMU supports address range filtering:
8882  */
8883 static ssize_t nr_addr_filters_show(struct device *dev,
8884 				    struct device_attribute *attr,
8885 				    char *page)
8886 {
8887 	struct pmu *pmu = dev_get_drvdata(dev);
8888 
8889 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8890 }
8891 DEVICE_ATTR_RO(nr_addr_filters);
8892 
8893 static struct idr pmu_idr;
8894 
8895 static ssize_t
8896 type_show(struct device *dev, struct device_attribute *attr, char *page)
8897 {
8898 	struct pmu *pmu = dev_get_drvdata(dev);
8899 
8900 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8901 }
8902 static DEVICE_ATTR_RO(type);
8903 
8904 static ssize_t
8905 perf_event_mux_interval_ms_show(struct device *dev,
8906 				struct device_attribute *attr,
8907 				char *page)
8908 {
8909 	struct pmu *pmu = dev_get_drvdata(dev);
8910 
8911 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8912 }
8913 
8914 static DEFINE_MUTEX(mux_interval_mutex);
8915 
8916 static ssize_t
8917 perf_event_mux_interval_ms_store(struct device *dev,
8918 				 struct device_attribute *attr,
8919 				 const char *buf, size_t count)
8920 {
8921 	struct pmu *pmu = dev_get_drvdata(dev);
8922 	int timer, cpu, ret;
8923 
8924 	ret = kstrtoint(buf, 0, &timer);
8925 	if (ret)
8926 		return ret;
8927 
8928 	if (timer < 1)
8929 		return -EINVAL;
8930 
8931 	/* same value, noting to do */
8932 	if (timer == pmu->hrtimer_interval_ms)
8933 		return count;
8934 
8935 	mutex_lock(&mux_interval_mutex);
8936 	pmu->hrtimer_interval_ms = timer;
8937 
8938 	/* update all cpuctx for this PMU */
8939 	cpus_read_lock();
8940 	for_each_online_cpu(cpu) {
8941 		struct perf_cpu_context *cpuctx;
8942 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8943 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8944 
8945 		cpu_function_call(cpu,
8946 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8947 	}
8948 	cpus_read_unlock();
8949 	mutex_unlock(&mux_interval_mutex);
8950 
8951 	return count;
8952 }
8953 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8954 
8955 static struct attribute *pmu_dev_attrs[] = {
8956 	&dev_attr_type.attr,
8957 	&dev_attr_perf_event_mux_interval_ms.attr,
8958 	NULL,
8959 };
8960 ATTRIBUTE_GROUPS(pmu_dev);
8961 
8962 static int pmu_bus_running;
8963 static struct bus_type pmu_bus = {
8964 	.name		= "event_source",
8965 	.dev_groups	= pmu_dev_groups,
8966 };
8967 
8968 static void pmu_dev_release(struct device *dev)
8969 {
8970 	kfree(dev);
8971 }
8972 
8973 static int pmu_dev_alloc(struct pmu *pmu)
8974 {
8975 	int ret = -ENOMEM;
8976 
8977 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8978 	if (!pmu->dev)
8979 		goto out;
8980 
8981 	pmu->dev->groups = pmu->attr_groups;
8982 	device_initialize(pmu->dev);
8983 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8984 	if (ret)
8985 		goto free_dev;
8986 
8987 	dev_set_drvdata(pmu->dev, pmu);
8988 	pmu->dev->bus = &pmu_bus;
8989 	pmu->dev->release = pmu_dev_release;
8990 	ret = device_add(pmu->dev);
8991 	if (ret)
8992 		goto free_dev;
8993 
8994 	/* For PMUs with address filters, throw in an extra attribute: */
8995 	if (pmu->nr_addr_filters)
8996 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8997 
8998 	if (ret)
8999 		goto del_dev;
9000 
9001 out:
9002 	return ret;
9003 
9004 del_dev:
9005 	device_del(pmu->dev);
9006 
9007 free_dev:
9008 	put_device(pmu->dev);
9009 	goto out;
9010 }
9011 
9012 static struct lock_class_key cpuctx_mutex;
9013 static struct lock_class_key cpuctx_lock;
9014 
9015 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9016 {
9017 	int cpu, ret;
9018 
9019 	mutex_lock(&pmus_lock);
9020 	ret = -ENOMEM;
9021 	pmu->pmu_disable_count = alloc_percpu(int);
9022 	if (!pmu->pmu_disable_count)
9023 		goto unlock;
9024 
9025 	pmu->type = -1;
9026 	if (!name)
9027 		goto skip_type;
9028 	pmu->name = name;
9029 
9030 	if (type < 0) {
9031 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9032 		if (type < 0) {
9033 			ret = type;
9034 			goto free_pdc;
9035 		}
9036 	}
9037 	pmu->type = type;
9038 
9039 	if (pmu_bus_running) {
9040 		ret = pmu_dev_alloc(pmu);
9041 		if (ret)
9042 			goto free_idr;
9043 	}
9044 
9045 skip_type:
9046 	if (pmu->task_ctx_nr == perf_hw_context) {
9047 		static int hw_context_taken = 0;
9048 
9049 		/*
9050 		 * Other than systems with heterogeneous CPUs, it never makes
9051 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9052 		 * uncore must use perf_invalid_context.
9053 		 */
9054 		if (WARN_ON_ONCE(hw_context_taken &&
9055 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9056 			pmu->task_ctx_nr = perf_invalid_context;
9057 
9058 		hw_context_taken = 1;
9059 	}
9060 
9061 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9062 	if (pmu->pmu_cpu_context)
9063 		goto got_cpu_context;
9064 
9065 	ret = -ENOMEM;
9066 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9067 	if (!pmu->pmu_cpu_context)
9068 		goto free_dev;
9069 
9070 	for_each_possible_cpu(cpu) {
9071 		struct perf_cpu_context *cpuctx;
9072 
9073 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9074 		__perf_event_init_context(&cpuctx->ctx);
9075 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9076 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9077 		cpuctx->ctx.pmu = pmu;
9078 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9079 
9080 		__perf_mux_hrtimer_init(cpuctx, cpu);
9081 	}
9082 
9083 got_cpu_context:
9084 	if (!pmu->start_txn) {
9085 		if (pmu->pmu_enable) {
9086 			/*
9087 			 * If we have pmu_enable/pmu_disable calls, install
9088 			 * transaction stubs that use that to try and batch
9089 			 * hardware accesses.
9090 			 */
9091 			pmu->start_txn  = perf_pmu_start_txn;
9092 			pmu->commit_txn = perf_pmu_commit_txn;
9093 			pmu->cancel_txn = perf_pmu_cancel_txn;
9094 		} else {
9095 			pmu->start_txn  = perf_pmu_nop_txn;
9096 			pmu->commit_txn = perf_pmu_nop_int;
9097 			pmu->cancel_txn = perf_pmu_nop_void;
9098 		}
9099 	}
9100 
9101 	if (!pmu->pmu_enable) {
9102 		pmu->pmu_enable  = perf_pmu_nop_void;
9103 		pmu->pmu_disable = perf_pmu_nop_void;
9104 	}
9105 
9106 	if (!pmu->event_idx)
9107 		pmu->event_idx = perf_event_idx_default;
9108 
9109 	list_add_rcu(&pmu->entry, &pmus);
9110 	atomic_set(&pmu->exclusive_cnt, 0);
9111 	ret = 0;
9112 unlock:
9113 	mutex_unlock(&pmus_lock);
9114 
9115 	return ret;
9116 
9117 free_dev:
9118 	device_del(pmu->dev);
9119 	put_device(pmu->dev);
9120 
9121 free_idr:
9122 	if (pmu->type >= PERF_TYPE_MAX)
9123 		idr_remove(&pmu_idr, pmu->type);
9124 
9125 free_pdc:
9126 	free_percpu(pmu->pmu_disable_count);
9127 	goto unlock;
9128 }
9129 EXPORT_SYMBOL_GPL(perf_pmu_register);
9130 
9131 void perf_pmu_unregister(struct pmu *pmu)
9132 {
9133 	int remove_device;
9134 
9135 	mutex_lock(&pmus_lock);
9136 	remove_device = pmu_bus_running;
9137 	list_del_rcu(&pmu->entry);
9138 	mutex_unlock(&pmus_lock);
9139 
9140 	/*
9141 	 * We dereference the pmu list under both SRCU and regular RCU, so
9142 	 * synchronize against both of those.
9143 	 */
9144 	synchronize_srcu(&pmus_srcu);
9145 	synchronize_rcu();
9146 
9147 	free_percpu(pmu->pmu_disable_count);
9148 	if (pmu->type >= PERF_TYPE_MAX)
9149 		idr_remove(&pmu_idr, pmu->type);
9150 	if (remove_device) {
9151 		if (pmu->nr_addr_filters)
9152 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9153 		device_del(pmu->dev);
9154 		put_device(pmu->dev);
9155 	}
9156 	free_pmu_context(pmu);
9157 }
9158 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9159 
9160 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9161 {
9162 	struct perf_event_context *ctx = NULL;
9163 	int ret;
9164 
9165 	if (!try_module_get(pmu->module))
9166 		return -ENODEV;
9167 
9168 	if (event->group_leader != event) {
9169 		/*
9170 		 * This ctx->mutex can nest when we're called through
9171 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9172 		 */
9173 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9174 						 SINGLE_DEPTH_NESTING);
9175 		BUG_ON(!ctx);
9176 	}
9177 
9178 	event->pmu = pmu;
9179 	ret = pmu->event_init(event);
9180 
9181 	if (ctx)
9182 		perf_event_ctx_unlock(event->group_leader, ctx);
9183 
9184 	if (ret)
9185 		module_put(pmu->module);
9186 
9187 	return ret;
9188 }
9189 
9190 static struct pmu *perf_init_event(struct perf_event *event)
9191 {
9192 	struct pmu *pmu;
9193 	int idx;
9194 	int ret;
9195 
9196 	idx = srcu_read_lock(&pmus_srcu);
9197 
9198 	/* Try parent's PMU first: */
9199 	if (event->parent && event->parent->pmu) {
9200 		pmu = event->parent->pmu;
9201 		ret = perf_try_init_event(pmu, event);
9202 		if (!ret)
9203 			goto unlock;
9204 	}
9205 
9206 	rcu_read_lock();
9207 	pmu = idr_find(&pmu_idr, event->attr.type);
9208 	rcu_read_unlock();
9209 	if (pmu) {
9210 		ret = perf_try_init_event(pmu, event);
9211 		if (ret)
9212 			pmu = ERR_PTR(ret);
9213 		goto unlock;
9214 	}
9215 
9216 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9217 		ret = perf_try_init_event(pmu, event);
9218 		if (!ret)
9219 			goto unlock;
9220 
9221 		if (ret != -ENOENT) {
9222 			pmu = ERR_PTR(ret);
9223 			goto unlock;
9224 		}
9225 	}
9226 	pmu = ERR_PTR(-ENOENT);
9227 unlock:
9228 	srcu_read_unlock(&pmus_srcu, idx);
9229 
9230 	return pmu;
9231 }
9232 
9233 static void attach_sb_event(struct perf_event *event)
9234 {
9235 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9236 
9237 	raw_spin_lock(&pel->lock);
9238 	list_add_rcu(&event->sb_list, &pel->list);
9239 	raw_spin_unlock(&pel->lock);
9240 }
9241 
9242 /*
9243  * We keep a list of all !task (and therefore per-cpu) events
9244  * that need to receive side-band records.
9245  *
9246  * This avoids having to scan all the various PMU per-cpu contexts
9247  * looking for them.
9248  */
9249 static void account_pmu_sb_event(struct perf_event *event)
9250 {
9251 	if (is_sb_event(event))
9252 		attach_sb_event(event);
9253 }
9254 
9255 static void account_event_cpu(struct perf_event *event, int cpu)
9256 {
9257 	if (event->parent)
9258 		return;
9259 
9260 	if (is_cgroup_event(event))
9261 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9262 }
9263 
9264 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9265 static void account_freq_event_nohz(void)
9266 {
9267 #ifdef CONFIG_NO_HZ_FULL
9268 	/* Lock so we don't race with concurrent unaccount */
9269 	spin_lock(&nr_freq_lock);
9270 	if (atomic_inc_return(&nr_freq_events) == 1)
9271 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9272 	spin_unlock(&nr_freq_lock);
9273 #endif
9274 }
9275 
9276 static void account_freq_event(void)
9277 {
9278 	if (tick_nohz_full_enabled())
9279 		account_freq_event_nohz();
9280 	else
9281 		atomic_inc(&nr_freq_events);
9282 }
9283 
9284 
9285 static void account_event(struct perf_event *event)
9286 {
9287 	bool inc = false;
9288 
9289 	if (event->parent)
9290 		return;
9291 
9292 	if (event->attach_state & PERF_ATTACH_TASK)
9293 		inc = true;
9294 	if (event->attr.mmap || event->attr.mmap_data)
9295 		atomic_inc(&nr_mmap_events);
9296 	if (event->attr.comm)
9297 		atomic_inc(&nr_comm_events);
9298 	if (event->attr.namespaces)
9299 		atomic_inc(&nr_namespaces_events);
9300 	if (event->attr.task)
9301 		atomic_inc(&nr_task_events);
9302 	if (event->attr.freq)
9303 		account_freq_event();
9304 	if (event->attr.context_switch) {
9305 		atomic_inc(&nr_switch_events);
9306 		inc = true;
9307 	}
9308 	if (has_branch_stack(event))
9309 		inc = true;
9310 	if (is_cgroup_event(event))
9311 		inc = true;
9312 
9313 	if (inc) {
9314 		/*
9315 		 * We need the mutex here because static_branch_enable()
9316 		 * must complete *before* the perf_sched_count increment
9317 		 * becomes visible.
9318 		 */
9319 		if (atomic_inc_not_zero(&perf_sched_count))
9320 			goto enabled;
9321 
9322 		mutex_lock(&perf_sched_mutex);
9323 		if (!atomic_read(&perf_sched_count)) {
9324 			static_branch_enable(&perf_sched_events);
9325 			/*
9326 			 * Guarantee that all CPUs observe they key change and
9327 			 * call the perf scheduling hooks before proceeding to
9328 			 * install events that need them.
9329 			 */
9330 			synchronize_sched();
9331 		}
9332 		/*
9333 		 * Now that we have waited for the sync_sched(), allow further
9334 		 * increments to by-pass the mutex.
9335 		 */
9336 		atomic_inc(&perf_sched_count);
9337 		mutex_unlock(&perf_sched_mutex);
9338 	}
9339 enabled:
9340 
9341 	account_event_cpu(event, event->cpu);
9342 
9343 	account_pmu_sb_event(event);
9344 }
9345 
9346 /*
9347  * Allocate and initialize a event structure
9348  */
9349 static struct perf_event *
9350 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9351 		 struct task_struct *task,
9352 		 struct perf_event *group_leader,
9353 		 struct perf_event *parent_event,
9354 		 perf_overflow_handler_t overflow_handler,
9355 		 void *context, int cgroup_fd)
9356 {
9357 	struct pmu *pmu;
9358 	struct perf_event *event;
9359 	struct hw_perf_event *hwc;
9360 	long err = -EINVAL;
9361 
9362 	if ((unsigned)cpu >= nr_cpu_ids) {
9363 		if (!task || cpu != -1)
9364 			return ERR_PTR(-EINVAL);
9365 	}
9366 
9367 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9368 	if (!event)
9369 		return ERR_PTR(-ENOMEM);
9370 
9371 	/*
9372 	 * Single events are their own group leaders, with an
9373 	 * empty sibling list:
9374 	 */
9375 	if (!group_leader)
9376 		group_leader = event;
9377 
9378 	mutex_init(&event->child_mutex);
9379 	INIT_LIST_HEAD(&event->child_list);
9380 
9381 	INIT_LIST_HEAD(&event->group_entry);
9382 	INIT_LIST_HEAD(&event->event_entry);
9383 	INIT_LIST_HEAD(&event->sibling_list);
9384 	INIT_LIST_HEAD(&event->rb_entry);
9385 	INIT_LIST_HEAD(&event->active_entry);
9386 	INIT_LIST_HEAD(&event->addr_filters.list);
9387 	INIT_HLIST_NODE(&event->hlist_entry);
9388 
9389 
9390 	init_waitqueue_head(&event->waitq);
9391 	init_irq_work(&event->pending, perf_pending_event);
9392 
9393 	mutex_init(&event->mmap_mutex);
9394 	raw_spin_lock_init(&event->addr_filters.lock);
9395 
9396 	atomic_long_set(&event->refcount, 1);
9397 	event->cpu		= cpu;
9398 	event->attr		= *attr;
9399 	event->group_leader	= group_leader;
9400 	event->pmu		= NULL;
9401 	event->oncpu		= -1;
9402 
9403 	event->parent		= parent_event;
9404 
9405 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9406 	event->id		= atomic64_inc_return(&perf_event_id);
9407 
9408 	event->state		= PERF_EVENT_STATE_INACTIVE;
9409 
9410 	if (task) {
9411 		event->attach_state = PERF_ATTACH_TASK;
9412 		/*
9413 		 * XXX pmu::event_init needs to know what task to account to
9414 		 * and we cannot use the ctx information because we need the
9415 		 * pmu before we get a ctx.
9416 		 */
9417 		event->hw.target = task;
9418 	}
9419 
9420 	event->clock = &local_clock;
9421 	if (parent_event)
9422 		event->clock = parent_event->clock;
9423 
9424 	if (!overflow_handler && parent_event) {
9425 		overflow_handler = parent_event->overflow_handler;
9426 		context = parent_event->overflow_handler_context;
9427 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9428 		if (overflow_handler == bpf_overflow_handler) {
9429 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9430 
9431 			if (IS_ERR(prog)) {
9432 				err = PTR_ERR(prog);
9433 				goto err_ns;
9434 			}
9435 			event->prog = prog;
9436 			event->orig_overflow_handler =
9437 				parent_event->orig_overflow_handler;
9438 		}
9439 #endif
9440 	}
9441 
9442 	if (overflow_handler) {
9443 		event->overflow_handler	= overflow_handler;
9444 		event->overflow_handler_context = context;
9445 	} else if (is_write_backward(event)){
9446 		event->overflow_handler = perf_event_output_backward;
9447 		event->overflow_handler_context = NULL;
9448 	} else {
9449 		event->overflow_handler = perf_event_output_forward;
9450 		event->overflow_handler_context = NULL;
9451 	}
9452 
9453 	perf_event__state_init(event);
9454 
9455 	pmu = NULL;
9456 
9457 	hwc = &event->hw;
9458 	hwc->sample_period = attr->sample_period;
9459 	if (attr->freq && attr->sample_freq)
9460 		hwc->sample_period = 1;
9461 	hwc->last_period = hwc->sample_period;
9462 
9463 	local64_set(&hwc->period_left, hwc->sample_period);
9464 
9465 	/*
9466 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9467 	 * See perf_output_read().
9468 	 */
9469 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9470 		goto err_ns;
9471 
9472 	if (!has_branch_stack(event))
9473 		event->attr.branch_sample_type = 0;
9474 
9475 	if (cgroup_fd != -1) {
9476 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9477 		if (err)
9478 			goto err_ns;
9479 	}
9480 
9481 	pmu = perf_init_event(event);
9482 	if (IS_ERR(pmu)) {
9483 		err = PTR_ERR(pmu);
9484 		goto err_ns;
9485 	}
9486 
9487 	err = exclusive_event_init(event);
9488 	if (err)
9489 		goto err_pmu;
9490 
9491 	if (has_addr_filter(event)) {
9492 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9493 						   sizeof(unsigned long),
9494 						   GFP_KERNEL);
9495 		if (!event->addr_filters_offs) {
9496 			err = -ENOMEM;
9497 			goto err_per_task;
9498 		}
9499 
9500 		/* force hw sync on the address filters */
9501 		event->addr_filters_gen = 1;
9502 	}
9503 
9504 	if (!event->parent) {
9505 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9506 			err = get_callchain_buffers(attr->sample_max_stack);
9507 			if (err)
9508 				goto err_addr_filters;
9509 		}
9510 	}
9511 
9512 	/* symmetric to unaccount_event() in _free_event() */
9513 	account_event(event);
9514 
9515 	return event;
9516 
9517 err_addr_filters:
9518 	kfree(event->addr_filters_offs);
9519 
9520 err_per_task:
9521 	exclusive_event_destroy(event);
9522 
9523 err_pmu:
9524 	if (event->destroy)
9525 		event->destroy(event);
9526 	module_put(pmu->module);
9527 err_ns:
9528 	if (is_cgroup_event(event))
9529 		perf_detach_cgroup(event);
9530 	if (event->ns)
9531 		put_pid_ns(event->ns);
9532 	kfree(event);
9533 
9534 	return ERR_PTR(err);
9535 }
9536 
9537 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9538 			  struct perf_event_attr *attr)
9539 {
9540 	u32 size;
9541 	int ret;
9542 
9543 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9544 		return -EFAULT;
9545 
9546 	/*
9547 	 * zero the full structure, so that a short copy will be nice.
9548 	 */
9549 	memset(attr, 0, sizeof(*attr));
9550 
9551 	ret = get_user(size, &uattr->size);
9552 	if (ret)
9553 		return ret;
9554 
9555 	if (size > PAGE_SIZE)	/* silly large */
9556 		goto err_size;
9557 
9558 	if (!size)		/* abi compat */
9559 		size = PERF_ATTR_SIZE_VER0;
9560 
9561 	if (size < PERF_ATTR_SIZE_VER0)
9562 		goto err_size;
9563 
9564 	/*
9565 	 * If we're handed a bigger struct than we know of,
9566 	 * ensure all the unknown bits are 0 - i.e. new
9567 	 * user-space does not rely on any kernel feature
9568 	 * extensions we dont know about yet.
9569 	 */
9570 	if (size > sizeof(*attr)) {
9571 		unsigned char __user *addr;
9572 		unsigned char __user *end;
9573 		unsigned char val;
9574 
9575 		addr = (void __user *)uattr + sizeof(*attr);
9576 		end  = (void __user *)uattr + size;
9577 
9578 		for (; addr < end; addr++) {
9579 			ret = get_user(val, addr);
9580 			if (ret)
9581 				return ret;
9582 			if (val)
9583 				goto err_size;
9584 		}
9585 		size = sizeof(*attr);
9586 	}
9587 
9588 	ret = copy_from_user(attr, uattr, size);
9589 	if (ret)
9590 		return -EFAULT;
9591 
9592 	attr->size = size;
9593 
9594 	if (attr->__reserved_1)
9595 		return -EINVAL;
9596 
9597 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9598 		return -EINVAL;
9599 
9600 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9601 		return -EINVAL;
9602 
9603 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9604 		u64 mask = attr->branch_sample_type;
9605 
9606 		/* only using defined bits */
9607 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9608 			return -EINVAL;
9609 
9610 		/* at least one branch bit must be set */
9611 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9612 			return -EINVAL;
9613 
9614 		/* propagate priv level, when not set for branch */
9615 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9616 
9617 			/* exclude_kernel checked on syscall entry */
9618 			if (!attr->exclude_kernel)
9619 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9620 
9621 			if (!attr->exclude_user)
9622 				mask |= PERF_SAMPLE_BRANCH_USER;
9623 
9624 			if (!attr->exclude_hv)
9625 				mask |= PERF_SAMPLE_BRANCH_HV;
9626 			/*
9627 			 * adjust user setting (for HW filter setup)
9628 			 */
9629 			attr->branch_sample_type = mask;
9630 		}
9631 		/* privileged levels capture (kernel, hv): check permissions */
9632 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9633 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9634 			return -EACCES;
9635 	}
9636 
9637 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9638 		ret = perf_reg_validate(attr->sample_regs_user);
9639 		if (ret)
9640 			return ret;
9641 	}
9642 
9643 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9644 		if (!arch_perf_have_user_stack_dump())
9645 			return -ENOSYS;
9646 
9647 		/*
9648 		 * We have __u32 type for the size, but so far
9649 		 * we can only use __u16 as maximum due to the
9650 		 * __u16 sample size limit.
9651 		 */
9652 		if (attr->sample_stack_user >= USHRT_MAX)
9653 			ret = -EINVAL;
9654 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9655 			ret = -EINVAL;
9656 	}
9657 
9658 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9659 		ret = perf_reg_validate(attr->sample_regs_intr);
9660 out:
9661 	return ret;
9662 
9663 err_size:
9664 	put_user(sizeof(*attr), &uattr->size);
9665 	ret = -E2BIG;
9666 	goto out;
9667 }
9668 
9669 static int
9670 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9671 {
9672 	struct ring_buffer *rb = NULL;
9673 	int ret = -EINVAL;
9674 
9675 	if (!output_event)
9676 		goto set;
9677 
9678 	/* don't allow circular references */
9679 	if (event == output_event)
9680 		goto out;
9681 
9682 	/*
9683 	 * Don't allow cross-cpu buffers
9684 	 */
9685 	if (output_event->cpu != event->cpu)
9686 		goto out;
9687 
9688 	/*
9689 	 * If its not a per-cpu rb, it must be the same task.
9690 	 */
9691 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9692 		goto out;
9693 
9694 	/*
9695 	 * Mixing clocks in the same buffer is trouble you don't need.
9696 	 */
9697 	if (output_event->clock != event->clock)
9698 		goto out;
9699 
9700 	/*
9701 	 * Either writing ring buffer from beginning or from end.
9702 	 * Mixing is not allowed.
9703 	 */
9704 	if (is_write_backward(output_event) != is_write_backward(event))
9705 		goto out;
9706 
9707 	/*
9708 	 * If both events generate aux data, they must be on the same PMU
9709 	 */
9710 	if (has_aux(event) && has_aux(output_event) &&
9711 	    event->pmu != output_event->pmu)
9712 		goto out;
9713 
9714 set:
9715 	mutex_lock(&event->mmap_mutex);
9716 	/* Can't redirect output if we've got an active mmap() */
9717 	if (atomic_read(&event->mmap_count))
9718 		goto unlock;
9719 
9720 	if (output_event) {
9721 		/* get the rb we want to redirect to */
9722 		rb = ring_buffer_get(output_event);
9723 		if (!rb)
9724 			goto unlock;
9725 	}
9726 
9727 	ring_buffer_attach(event, rb);
9728 
9729 	ret = 0;
9730 unlock:
9731 	mutex_unlock(&event->mmap_mutex);
9732 
9733 out:
9734 	return ret;
9735 }
9736 
9737 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9738 {
9739 	if (b < a)
9740 		swap(a, b);
9741 
9742 	mutex_lock(a);
9743 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9744 }
9745 
9746 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9747 {
9748 	bool nmi_safe = false;
9749 
9750 	switch (clk_id) {
9751 	case CLOCK_MONOTONIC:
9752 		event->clock = &ktime_get_mono_fast_ns;
9753 		nmi_safe = true;
9754 		break;
9755 
9756 	case CLOCK_MONOTONIC_RAW:
9757 		event->clock = &ktime_get_raw_fast_ns;
9758 		nmi_safe = true;
9759 		break;
9760 
9761 	case CLOCK_REALTIME:
9762 		event->clock = &ktime_get_real_ns;
9763 		break;
9764 
9765 	case CLOCK_BOOTTIME:
9766 		event->clock = &ktime_get_boot_ns;
9767 		break;
9768 
9769 	case CLOCK_TAI:
9770 		event->clock = &ktime_get_tai_ns;
9771 		break;
9772 
9773 	default:
9774 		return -EINVAL;
9775 	}
9776 
9777 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9778 		return -EINVAL;
9779 
9780 	return 0;
9781 }
9782 
9783 /*
9784  * Variation on perf_event_ctx_lock_nested(), except we take two context
9785  * mutexes.
9786  */
9787 static struct perf_event_context *
9788 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9789 			     struct perf_event_context *ctx)
9790 {
9791 	struct perf_event_context *gctx;
9792 
9793 again:
9794 	rcu_read_lock();
9795 	gctx = READ_ONCE(group_leader->ctx);
9796 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9797 		rcu_read_unlock();
9798 		goto again;
9799 	}
9800 	rcu_read_unlock();
9801 
9802 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9803 
9804 	if (group_leader->ctx != gctx) {
9805 		mutex_unlock(&ctx->mutex);
9806 		mutex_unlock(&gctx->mutex);
9807 		put_ctx(gctx);
9808 		goto again;
9809 	}
9810 
9811 	return gctx;
9812 }
9813 
9814 /**
9815  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9816  *
9817  * @attr_uptr:	event_id type attributes for monitoring/sampling
9818  * @pid:		target pid
9819  * @cpu:		target cpu
9820  * @group_fd:		group leader event fd
9821  */
9822 SYSCALL_DEFINE5(perf_event_open,
9823 		struct perf_event_attr __user *, attr_uptr,
9824 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9825 {
9826 	struct perf_event *group_leader = NULL, *output_event = NULL;
9827 	struct perf_event *event, *sibling;
9828 	struct perf_event_attr attr;
9829 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9830 	struct file *event_file = NULL;
9831 	struct fd group = {NULL, 0};
9832 	struct task_struct *task = NULL;
9833 	struct pmu *pmu;
9834 	int event_fd;
9835 	int move_group = 0;
9836 	int err;
9837 	int f_flags = O_RDWR;
9838 	int cgroup_fd = -1;
9839 
9840 	/* for future expandability... */
9841 	if (flags & ~PERF_FLAG_ALL)
9842 		return -EINVAL;
9843 
9844 	err = perf_copy_attr(attr_uptr, &attr);
9845 	if (err)
9846 		return err;
9847 
9848 	if (!attr.exclude_kernel) {
9849 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9850 			return -EACCES;
9851 	}
9852 
9853 	if (attr.namespaces) {
9854 		if (!capable(CAP_SYS_ADMIN))
9855 			return -EACCES;
9856 	}
9857 
9858 	if (attr.freq) {
9859 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9860 			return -EINVAL;
9861 	} else {
9862 		if (attr.sample_period & (1ULL << 63))
9863 			return -EINVAL;
9864 	}
9865 
9866 	/* Only privileged users can get physical addresses */
9867 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9868 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9869 		return -EACCES;
9870 
9871 	if (!attr.sample_max_stack)
9872 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9873 
9874 	/*
9875 	 * In cgroup mode, the pid argument is used to pass the fd
9876 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9877 	 * designates the cpu on which to monitor threads from that
9878 	 * cgroup.
9879 	 */
9880 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9881 		return -EINVAL;
9882 
9883 	if (flags & PERF_FLAG_FD_CLOEXEC)
9884 		f_flags |= O_CLOEXEC;
9885 
9886 	event_fd = get_unused_fd_flags(f_flags);
9887 	if (event_fd < 0)
9888 		return event_fd;
9889 
9890 	if (group_fd != -1) {
9891 		err = perf_fget_light(group_fd, &group);
9892 		if (err)
9893 			goto err_fd;
9894 		group_leader = group.file->private_data;
9895 		if (flags & PERF_FLAG_FD_OUTPUT)
9896 			output_event = group_leader;
9897 		if (flags & PERF_FLAG_FD_NO_GROUP)
9898 			group_leader = NULL;
9899 	}
9900 
9901 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9902 		task = find_lively_task_by_vpid(pid);
9903 		if (IS_ERR(task)) {
9904 			err = PTR_ERR(task);
9905 			goto err_group_fd;
9906 		}
9907 	}
9908 
9909 	if (task && group_leader &&
9910 	    group_leader->attr.inherit != attr.inherit) {
9911 		err = -EINVAL;
9912 		goto err_task;
9913 	}
9914 
9915 	if (task) {
9916 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9917 		if (err)
9918 			goto err_task;
9919 
9920 		/*
9921 		 * Reuse ptrace permission checks for now.
9922 		 *
9923 		 * We must hold cred_guard_mutex across this and any potential
9924 		 * perf_install_in_context() call for this new event to
9925 		 * serialize against exec() altering our credentials (and the
9926 		 * perf_event_exit_task() that could imply).
9927 		 */
9928 		err = -EACCES;
9929 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9930 			goto err_cred;
9931 	}
9932 
9933 	if (flags & PERF_FLAG_PID_CGROUP)
9934 		cgroup_fd = pid;
9935 
9936 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9937 				 NULL, NULL, cgroup_fd);
9938 	if (IS_ERR(event)) {
9939 		err = PTR_ERR(event);
9940 		goto err_cred;
9941 	}
9942 
9943 	if (is_sampling_event(event)) {
9944 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9945 			err = -EOPNOTSUPP;
9946 			goto err_alloc;
9947 		}
9948 	}
9949 
9950 	/*
9951 	 * Special case software events and allow them to be part of
9952 	 * any hardware group.
9953 	 */
9954 	pmu = event->pmu;
9955 
9956 	if (attr.use_clockid) {
9957 		err = perf_event_set_clock(event, attr.clockid);
9958 		if (err)
9959 			goto err_alloc;
9960 	}
9961 
9962 	if (pmu->task_ctx_nr == perf_sw_context)
9963 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9964 
9965 	if (group_leader &&
9966 	    (is_software_event(event) != is_software_event(group_leader))) {
9967 		if (is_software_event(event)) {
9968 			/*
9969 			 * If event and group_leader are not both a software
9970 			 * event, and event is, then group leader is not.
9971 			 *
9972 			 * Allow the addition of software events to !software
9973 			 * groups, this is safe because software events never
9974 			 * fail to schedule.
9975 			 */
9976 			pmu = group_leader->pmu;
9977 		} else if (is_software_event(group_leader) &&
9978 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9979 			/*
9980 			 * In case the group is a pure software group, and we
9981 			 * try to add a hardware event, move the whole group to
9982 			 * the hardware context.
9983 			 */
9984 			move_group = 1;
9985 		}
9986 	}
9987 
9988 	/*
9989 	 * Get the target context (task or percpu):
9990 	 */
9991 	ctx = find_get_context(pmu, task, event);
9992 	if (IS_ERR(ctx)) {
9993 		err = PTR_ERR(ctx);
9994 		goto err_alloc;
9995 	}
9996 
9997 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9998 		err = -EBUSY;
9999 		goto err_context;
10000 	}
10001 
10002 	/*
10003 	 * Look up the group leader (we will attach this event to it):
10004 	 */
10005 	if (group_leader) {
10006 		err = -EINVAL;
10007 
10008 		/*
10009 		 * Do not allow a recursive hierarchy (this new sibling
10010 		 * becoming part of another group-sibling):
10011 		 */
10012 		if (group_leader->group_leader != group_leader)
10013 			goto err_context;
10014 
10015 		/* All events in a group should have the same clock */
10016 		if (group_leader->clock != event->clock)
10017 			goto err_context;
10018 
10019 		/*
10020 		 * Make sure we're both events for the same CPU;
10021 		 * grouping events for different CPUs is broken; since
10022 		 * you can never concurrently schedule them anyhow.
10023 		 */
10024 		if (group_leader->cpu != event->cpu)
10025 			goto err_context;
10026 
10027 		/*
10028 		 * Make sure we're both on the same task, or both
10029 		 * per-CPU events.
10030 		 */
10031 		if (group_leader->ctx->task != ctx->task)
10032 			goto err_context;
10033 
10034 		/*
10035 		 * Do not allow to attach to a group in a different task
10036 		 * or CPU context. If we're moving SW events, we'll fix
10037 		 * this up later, so allow that.
10038 		 */
10039 		if (!move_group && group_leader->ctx != ctx)
10040 			goto err_context;
10041 
10042 		/*
10043 		 * Only a group leader can be exclusive or pinned
10044 		 */
10045 		if (attr.exclusive || attr.pinned)
10046 			goto err_context;
10047 	}
10048 
10049 	if (output_event) {
10050 		err = perf_event_set_output(event, output_event);
10051 		if (err)
10052 			goto err_context;
10053 	}
10054 
10055 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10056 					f_flags);
10057 	if (IS_ERR(event_file)) {
10058 		err = PTR_ERR(event_file);
10059 		event_file = NULL;
10060 		goto err_context;
10061 	}
10062 
10063 	if (move_group) {
10064 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10065 
10066 		if (gctx->task == TASK_TOMBSTONE) {
10067 			err = -ESRCH;
10068 			goto err_locked;
10069 		}
10070 
10071 		/*
10072 		 * Check if we raced against another sys_perf_event_open() call
10073 		 * moving the software group underneath us.
10074 		 */
10075 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10076 			/*
10077 			 * If someone moved the group out from under us, check
10078 			 * if this new event wound up on the same ctx, if so
10079 			 * its the regular !move_group case, otherwise fail.
10080 			 */
10081 			if (gctx != ctx) {
10082 				err = -EINVAL;
10083 				goto err_locked;
10084 			} else {
10085 				perf_event_ctx_unlock(group_leader, gctx);
10086 				move_group = 0;
10087 			}
10088 		}
10089 	} else {
10090 		mutex_lock(&ctx->mutex);
10091 	}
10092 
10093 	if (ctx->task == TASK_TOMBSTONE) {
10094 		err = -ESRCH;
10095 		goto err_locked;
10096 	}
10097 
10098 	if (!perf_event_validate_size(event)) {
10099 		err = -E2BIG;
10100 		goto err_locked;
10101 	}
10102 
10103 	if (!task) {
10104 		/*
10105 		 * Check if the @cpu we're creating an event for is online.
10106 		 *
10107 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10108 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10109 		 */
10110 		struct perf_cpu_context *cpuctx =
10111 			container_of(ctx, struct perf_cpu_context, ctx);
10112 
10113 		if (!cpuctx->online) {
10114 			err = -ENODEV;
10115 			goto err_locked;
10116 		}
10117 	}
10118 
10119 
10120 	/*
10121 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10122 	 * because we need to serialize with concurrent event creation.
10123 	 */
10124 	if (!exclusive_event_installable(event, ctx)) {
10125 		/* exclusive and group stuff are assumed mutually exclusive */
10126 		WARN_ON_ONCE(move_group);
10127 
10128 		err = -EBUSY;
10129 		goto err_locked;
10130 	}
10131 
10132 	WARN_ON_ONCE(ctx->parent_ctx);
10133 
10134 	/*
10135 	 * This is the point on no return; we cannot fail hereafter. This is
10136 	 * where we start modifying current state.
10137 	 */
10138 
10139 	if (move_group) {
10140 		/*
10141 		 * See perf_event_ctx_lock() for comments on the details
10142 		 * of swizzling perf_event::ctx.
10143 		 */
10144 		perf_remove_from_context(group_leader, 0);
10145 		put_ctx(gctx);
10146 
10147 		list_for_each_entry(sibling, &group_leader->sibling_list,
10148 				    group_entry) {
10149 			perf_remove_from_context(sibling, 0);
10150 			put_ctx(gctx);
10151 		}
10152 
10153 		/*
10154 		 * Wait for everybody to stop referencing the events through
10155 		 * the old lists, before installing it on new lists.
10156 		 */
10157 		synchronize_rcu();
10158 
10159 		/*
10160 		 * Install the group siblings before the group leader.
10161 		 *
10162 		 * Because a group leader will try and install the entire group
10163 		 * (through the sibling list, which is still in-tact), we can
10164 		 * end up with siblings installed in the wrong context.
10165 		 *
10166 		 * By installing siblings first we NO-OP because they're not
10167 		 * reachable through the group lists.
10168 		 */
10169 		list_for_each_entry(sibling, &group_leader->sibling_list,
10170 				    group_entry) {
10171 			perf_event__state_init(sibling);
10172 			perf_install_in_context(ctx, sibling, sibling->cpu);
10173 			get_ctx(ctx);
10174 		}
10175 
10176 		/*
10177 		 * Removing from the context ends up with disabled
10178 		 * event. What we want here is event in the initial
10179 		 * startup state, ready to be add into new context.
10180 		 */
10181 		perf_event__state_init(group_leader);
10182 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10183 		get_ctx(ctx);
10184 	}
10185 
10186 	/*
10187 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10188 	 * that we're serialized against further additions and before
10189 	 * perf_install_in_context() which is the point the event is active and
10190 	 * can use these values.
10191 	 */
10192 	perf_event__header_size(event);
10193 	perf_event__id_header_size(event);
10194 
10195 	event->owner = current;
10196 
10197 	perf_install_in_context(ctx, event, event->cpu);
10198 	perf_unpin_context(ctx);
10199 
10200 	if (move_group)
10201 		perf_event_ctx_unlock(group_leader, gctx);
10202 	mutex_unlock(&ctx->mutex);
10203 
10204 	if (task) {
10205 		mutex_unlock(&task->signal->cred_guard_mutex);
10206 		put_task_struct(task);
10207 	}
10208 
10209 	mutex_lock(&current->perf_event_mutex);
10210 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10211 	mutex_unlock(&current->perf_event_mutex);
10212 
10213 	/*
10214 	 * Drop the reference on the group_event after placing the
10215 	 * new event on the sibling_list. This ensures destruction
10216 	 * of the group leader will find the pointer to itself in
10217 	 * perf_group_detach().
10218 	 */
10219 	fdput(group);
10220 	fd_install(event_fd, event_file);
10221 	return event_fd;
10222 
10223 err_locked:
10224 	if (move_group)
10225 		perf_event_ctx_unlock(group_leader, gctx);
10226 	mutex_unlock(&ctx->mutex);
10227 /* err_file: */
10228 	fput(event_file);
10229 err_context:
10230 	perf_unpin_context(ctx);
10231 	put_ctx(ctx);
10232 err_alloc:
10233 	/*
10234 	 * If event_file is set, the fput() above will have called ->release()
10235 	 * and that will take care of freeing the event.
10236 	 */
10237 	if (!event_file)
10238 		free_event(event);
10239 err_cred:
10240 	if (task)
10241 		mutex_unlock(&task->signal->cred_guard_mutex);
10242 err_task:
10243 	if (task)
10244 		put_task_struct(task);
10245 err_group_fd:
10246 	fdput(group);
10247 err_fd:
10248 	put_unused_fd(event_fd);
10249 	return err;
10250 }
10251 
10252 /**
10253  * perf_event_create_kernel_counter
10254  *
10255  * @attr: attributes of the counter to create
10256  * @cpu: cpu in which the counter is bound
10257  * @task: task to profile (NULL for percpu)
10258  */
10259 struct perf_event *
10260 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10261 				 struct task_struct *task,
10262 				 perf_overflow_handler_t overflow_handler,
10263 				 void *context)
10264 {
10265 	struct perf_event_context *ctx;
10266 	struct perf_event *event;
10267 	int err;
10268 
10269 	/*
10270 	 * Get the target context (task or percpu):
10271 	 */
10272 
10273 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10274 				 overflow_handler, context, -1);
10275 	if (IS_ERR(event)) {
10276 		err = PTR_ERR(event);
10277 		goto err;
10278 	}
10279 
10280 	/* Mark owner so we could distinguish it from user events. */
10281 	event->owner = TASK_TOMBSTONE;
10282 
10283 	ctx = find_get_context(event->pmu, task, event);
10284 	if (IS_ERR(ctx)) {
10285 		err = PTR_ERR(ctx);
10286 		goto err_free;
10287 	}
10288 
10289 	WARN_ON_ONCE(ctx->parent_ctx);
10290 	mutex_lock(&ctx->mutex);
10291 	if (ctx->task == TASK_TOMBSTONE) {
10292 		err = -ESRCH;
10293 		goto err_unlock;
10294 	}
10295 
10296 	if (!task) {
10297 		/*
10298 		 * Check if the @cpu we're creating an event for is online.
10299 		 *
10300 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10301 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10302 		 */
10303 		struct perf_cpu_context *cpuctx =
10304 			container_of(ctx, struct perf_cpu_context, ctx);
10305 		if (!cpuctx->online) {
10306 			err = -ENODEV;
10307 			goto err_unlock;
10308 		}
10309 	}
10310 
10311 	if (!exclusive_event_installable(event, ctx)) {
10312 		err = -EBUSY;
10313 		goto err_unlock;
10314 	}
10315 
10316 	perf_install_in_context(ctx, event, cpu);
10317 	perf_unpin_context(ctx);
10318 	mutex_unlock(&ctx->mutex);
10319 
10320 	return event;
10321 
10322 err_unlock:
10323 	mutex_unlock(&ctx->mutex);
10324 	perf_unpin_context(ctx);
10325 	put_ctx(ctx);
10326 err_free:
10327 	free_event(event);
10328 err:
10329 	return ERR_PTR(err);
10330 }
10331 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10332 
10333 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10334 {
10335 	struct perf_event_context *src_ctx;
10336 	struct perf_event_context *dst_ctx;
10337 	struct perf_event *event, *tmp;
10338 	LIST_HEAD(events);
10339 
10340 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10341 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10342 
10343 	/*
10344 	 * See perf_event_ctx_lock() for comments on the details
10345 	 * of swizzling perf_event::ctx.
10346 	 */
10347 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10348 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10349 				 event_entry) {
10350 		perf_remove_from_context(event, 0);
10351 		unaccount_event_cpu(event, src_cpu);
10352 		put_ctx(src_ctx);
10353 		list_add(&event->migrate_entry, &events);
10354 	}
10355 
10356 	/*
10357 	 * Wait for the events to quiesce before re-instating them.
10358 	 */
10359 	synchronize_rcu();
10360 
10361 	/*
10362 	 * Re-instate events in 2 passes.
10363 	 *
10364 	 * Skip over group leaders and only install siblings on this first
10365 	 * pass, siblings will not get enabled without a leader, however a
10366 	 * leader will enable its siblings, even if those are still on the old
10367 	 * context.
10368 	 */
10369 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10370 		if (event->group_leader == event)
10371 			continue;
10372 
10373 		list_del(&event->migrate_entry);
10374 		if (event->state >= PERF_EVENT_STATE_OFF)
10375 			event->state = PERF_EVENT_STATE_INACTIVE;
10376 		account_event_cpu(event, dst_cpu);
10377 		perf_install_in_context(dst_ctx, event, dst_cpu);
10378 		get_ctx(dst_ctx);
10379 	}
10380 
10381 	/*
10382 	 * Once all the siblings are setup properly, install the group leaders
10383 	 * to make it go.
10384 	 */
10385 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10386 		list_del(&event->migrate_entry);
10387 		if (event->state >= PERF_EVENT_STATE_OFF)
10388 			event->state = PERF_EVENT_STATE_INACTIVE;
10389 		account_event_cpu(event, dst_cpu);
10390 		perf_install_in_context(dst_ctx, event, dst_cpu);
10391 		get_ctx(dst_ctx);
10392 	}
10393 	mutex_unlock(&dst_ctx->mutex);
10394 	mutex_unlock(&src_ctx->mutex);
10395 }
10396 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10397 
10398 static void sync_child_event(struct perf_event *child_event,
10399 			       struct task_struct *child)
10400 {
10401 	struct perf_event *parent_event = child_event->parent;
10402 	u64 child_val;
10403 
10404 	if (child_event->attr.inherit_stat)
10405 		perf_event_read_event(child_event, child);
10406 
10407 	child_val = perf_event_count(child_event);
10408 
10409 	/*
10410 	 * Add back the child's count to the parent's count:
10411 	 */
10412 	atomic64_add(child_val, &parent_event->child_count);
10413 	atomic64_add(child_event->total_time_enabled,
10414 		     &parent_event->child_total_time_enabled);
10415 	atomic64_add(child_event->total_time_running,
10416 		     &parent_event->child_total_time_running);
10417 }
10418 
10419 static void
10420 perf_event_exit_event(struct perf_event *child_event,
10421 		      struct perf_event_context *child_ctx,
10422 		      struct task_struct *child)
10423 {
10424 	struct perf_event *parent_event = child_event->parent;
10425 
10426 	/*
10427 	 * Do not destroy the 'original' grouping; because of the context
10428 	 * switch optimization the original events could've ended up in a
10429 	 * random child task.
10430 	 *
10431 	 * If we were to destroy the original group, all group related
10432 	 * operations would cease to function properly after this random
10433 	 * child dies.
10434 	 *
10435 	 * Do destroy all inherited groups, we don't care about those
10436 	 * and being thorough is better.
10437 	 */
10438 	raw_spin_lock_irq(&child_ctx->lock);
10439 	WARN_ON_ONCE(child_ctx->is_active);
10440 
10441 	if (parent_event)
10442 		perf_group_detach(child_event);
10443 	list_del_event(child_event, child_ctx);
10444 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10445 	raw_spin_unlock_irq(&child_ctx->lock);
10446 
10447 	/*
10448 	 * Parent events are governed by their filedesc, retain them.
10449 	 */
10450 	if (!parent_event) {
10451 		perf_event_wakeup(child_event);
10452 		return;
10453 	}
10454 	/*
10455 	 * Child events can be cleaned up.
10456 	 */
10457 
10458 	sync_child_event(child_event, child);
10459 
10460 	/*
10461 	 * Remove this event from the parent's list
10462 	 */
10463 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10464 	mutex_lock(&parent_event->child_mutex);
10465 	list_del_init(&child_event->child_list);
10466 	mutex_unlock(&parent_event->child_mutex);
10467 
10468 	/*
10469 	 * Kick perf_poll() for is_event_hup().
10470 	 */
10471 	perf_event_wakeup(parent_event);
10472 	free_event(child_event);
10473 	put_event(parent_event);
10474 }
10475 
10476 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10477 {
10478 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10479 	struct perf_event *child_event, *next;
10480 
10481 	WARN_ON_ONCE(child != current);
10482 
10483 	child_ctx = perf_pin_task_context(child, ctxn);
10484 	if (!child_ctx)
10485 		return;
10486 
10487 	/*
10488 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10489 	 * ctx::mutex over the entire thing. This serializes against almost
10490 	 * everything that wants to access the ctx.
10491 	 *
10492 	 * The exception is sys_perf_event_open() /
10493 	 * perf_event_create_kernel_count() which does find_get_context()
10494 	 * without ctx::mutex (it cannot because of the move_group double mutex
10495 	 * lock thing). See the comments in perf_install_in_context().
10496 	 */
10497 	mutex_lock(&child_ctx->mutex);
10498 
10499 	/*
10500 	 * In a single ctx::lock section, de-schedule the events and detach the
10501 	 * context from the task such that we cannot ever get it scheduled back
10502 	 * in.
10503 	 */
10504 	raw_spin_lock_irq(&child_ctx->lock);
10505 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10506 
10507 	/*
10508 	 * Now that the context is inactive, destroy the task <-> ctx relation
10509 	 * and mark the context dead.
10510 	 */
10511 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10512 	put_ctx(child_ctx); /* cannot be last */
10513 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10514 	put_task_struct(current); /* cannot be last */
10515 
10516 	clone_ctx = unclone_ctx(child_ctx);
10517 	raw_spin_unlock_irq(&child_ctx->lock);
10518 
10519 	if (clone_ctx)
10520 		put_ctx(clone_ctx);
10521 
10522 	/*
10523 	 * Report the task dead after unscheduling the events so that we
10524 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10525 	 * get a few PERF_RECORD_READ events.
10526 	 */
10527 	perf_event_task(child, child_ctx, 0);
10528 
10529 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10530 		perf_event_exit_event(child_event, child_ctx, child);
10531 
10532 	mutex_unlock(&child_ctx->mutex);
10533 
10534 	put_ctx(child_ctx);
10535 }
10536 
10537 /*
10538  * When a child task exits, feed back event values to parent events.
10539  *
10540  * Can be called with cred_guard_mutex held when called from
10541  * install_exec_creds().
10542  */
10543 void perf_event_exit_task(struct task_struct *child)
10544 {
10545 	struct perf_event *event, *tmp;
10546 	int ctxn;
10547 
10548 	mutex_lock(&child->perf_event_mutex);
10549 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10550 				 owner_entry) {
10551 		list_del_init(&event->owner_entry);
10552 
10553 		/*
10554 		 * Ensure the list deletion is visible before we clear
10555 		 * the owner, closes a race against perf_release() where
10556 		 * we need to serialize on the owner->perf_event_mutex.
10557 		 */
10558 		smp_store_release(&event->owner, NULL);
10559 	}
10560 	mutex_unlock(&child->perf_event_mutex);
10561 
10562 	for_each_task_context_nr(ctxn)
10563 		perf_event_exit_task_context(child, ctxn);
10564 
10565 	/*
10566 	 * The perf_event_exit_task_context calls perf_event_task
10567 	 * with child's task_ctx, which generates EXIT events for
10568 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10569 	 * At this point we need to send EXIT events to cpu contexts.
10570 	 */
10571 	perf_event_task(child, NULL, 0);
10572 }
10573 
10574 static void perf_free_event(struct perf_event *event,
10575 			    struct perf_event_context *ctx)
10576 {
10577 	struct perf_event *parent = event->parent;
10578 
10579 	if (WARN_ON_ONCE(!parent))
10580 		return;
10581 
10582 	mutex_lock(&parent->child_mutex);
10583 	list_del_init(&event->child_list);
10584 	mutex_unlock(&parent->child_mutex);
10585 
10586 	put_event(parent);
10587 
10588 	raw_spin_lock_irq(&ctx->lock);
10589 	perf_group_detach(event);
10590 	list_del_event(event, ctx);
10591 	raw_spin_unlock_irq(&ctx->lock);
10592 	free_event(event);
10593 }
10594 
10595 /*
10596  * Free an unexposed, unused context as created by inheritance by
10597  * perf_event_init_task below, used by fork() in case of fail.
10598  *
10599  * Not all locks are strictly required, but take them anyway to be nice and
10600  * help out with the lockdep assertions.
10601  */
10602 void perf_event_free_task(struct task_struct *task)
10603 {
10604 	struct perf_event_context *ctx;
10605 	struct perf_event *event, *tmp;
10606 	int ctxn;
10607 
10608 	for_each_task_context_nr(ctxn) {
10609 		ctx = task->perf_event_ctxp[ctxn];
10610 		if (!ctx)
10611 			continue;
10612 
10613 		mutex_lock(&ctx->mutex);
10614 		raw_spin_lock_irq(&ctx->lock);
10615 		/*
10616 		 * Destroy the task <-> ctx relation and mark the context dead.
10617 		 *
10618 		 * This is important because even though the task hasn't been
10619 		 * exposed yet the context has been (through child_list).
10620 		 */
10621 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10622 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10623 		put_task_struct(task); /* cannot be last */
10624 		raw_spin_unlock_irq(&ctx->lock);
10625 
10626 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10627 			perf_free_event(event, ctx);
10628 
10629 		mutex_unlock(&ctx->mutex);
10630 		put_ctx(ctx);
10631 	}
10632 }
10633 
10634 void perf_event_delayed_put(struct task_struct *task)
10635 {
10636 	int ctxn;
10637 
10638 	for_each_task_context_nr(ctxn)
10639 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10640 }
10641 
10642 struct file *perf_event_get(unsigned int fd)
10643 {
10644 	struct file *file;
10645 
10646 	file = fget_raw(fd);
10647 	if (!file)
10648 		return ERR_PTR(-EBADF);
10649 
10650 	if (file->f_op != &perf_fops) {
10651 		fput(file);
10652 		return ERR_PTR(-EBADF);
10653 	}
10654 
10655 	return file;
10656 }
10657 
10658 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10659 {
10660 	if (!event)
10661 		return ERR_PTR(-EINVAL);
10662 
10663 	return &event->attr;
10664 }
10665 
10666 /*
10667  * Inherit a event from parent task to child task.
10668  *
10669  * Returns:
10670  *  - valid pointer on success
10671  *  - NULL for orphaned events
10672  *  - IS_ERR() on error
10673  */
10674 static struct perf_event *
10675 inherit_event(struct perf_event *parent_event,
10676 	      struct task_struct *parent,
10677 	      struct perf_event_context *parent_ctx,
10678 	      struct task_struct *child,
10679 	      struct perf_event *group_leader,
10680 	      struct perf_event_context *child_ctx)
10681 {
10682 	enum perf_event_state parent_state = parent_event->state;
10683 	struct perf_event *child_event;
10684 	unsigned long flags;
10685 
10686 	/*
10687 	 * Instead of creating recursive hierarchies of events,
10688 	 * we link inherited events back to the original parent,
10689 	 * which has a filp for sure, which we use as the reference
10690 	 * count:
10691 	 */
10692 	if (parent_event->parent)
10693 		parent_event = parent_event->parent;
10694 
10695 	child_event = perf_event_alloc(&parent_event->attr,
10696 					   parent_event->cpu,
10697 					   child,
10698 					   group_leader, parent_event,
10699 					   NULL, NULL, -1);
10700 	if (IS_ERR(child_event))
10701 		return child_event;
10702 
10703 	/*
10704 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10705 	 * must be under the same lock in order to serialize against
10706 	 * perf_event_release_kernel(), such that either we must observe
10707 	 * is_orphaned_event() or they will observe us on the child_list.
10708 	 */
10709 	mutex_lock(&parent_event->child_mutex);
10710 	if (is_orphaned_event(parent_event) ||
10711 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10712 		mutex_unlock(&parent_event->child_mutex);
10713 		free_event(child_event);
10714 		return NULL;
10715 	}
10716 
10717 	get_ctx(child_ctx);
10718 
10719 	/*
10720 	 * Make the child state follow the state of the parent event,
10721 	 * not its attr.disabled bit.  We hold the parent's mutex,
10722 	 * so we won't race with perf_event_{en, dis}able_family.
10723 	 */
10724 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10725 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10726 	else
10727 		child_event->state = PERF_EVENT_STATE_OFF;
10728 
10729 	if (parent_event->attr.freq) {
10730 		u64 sample_period = parent_event->hw.sample_period;
10731 		struct hw_perf_event *hwc = &child_event->hw;
10732 
10733 		hwc->sample_period = sample_period;
10734 		hwc->last_period   = sample_period;
10735 
10736 		local64_set(&hwc->period_left, sample_period);
10737 	}
10738 
10739 	child_event->ctx = child_ctx;
10740 	child_event->overflow_handler = parent_event->overflow_handler;
10741 	child_event->overflow_handler_context
10742 		= parent_event->overflow_handler_context;
10743 
10744 	/*
10745 	 * Precalculate sample_data sizes
10746 	 */
10747 	perf_event__header_size(child_event);
10748 	perf_event__id_header_size(child_event);
10749 
10750 	/*
10751 	 * Link it up in the child's context:
10752 	 */
10753 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10754 	add_event_to_ctx(child_event, child_ctx);
10755 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10756 
10757 	/*
10758 	 * Link this into the parent event's child list
10759 	 */
10760 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10761 	mutex_unlock(&parent_event->child_mutex);
10762 
10763 	return child_event;
10764 }
10765 
10766 /*
10767  * Inherits an event group.
10768  *
10769  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10770  * This matches with perf_event_release_kernel() removing all child events.
10771  *
10772  * Returns:
10773  *  - 0 on success
10774  *  - <0 on error
10775  */
10776 static int inherit_group(struct perf_event *parent_event,
10777 	      struct task_struct *parent,
10778 	      struct perf_event_context *parent_ctx,
10779 	      struct task_struct *child,
10780 	      struct perf_event_context *child_ctx)
10781 {
10782 	struct perf_event *leader;
10783 	struct perf_event *sub;
10784 	struct perf_event *child_ctr;
10785 
10786 	leader = inherit_event(parent_event, parent, parent_ctx,
10787 				 child, NULL, child_ctx);
10788 	if (IS_ERR(leader))
10789 		return PTR_ERR(leader);
10790 	/*
10791 	 * @leader can be NULL here because of is_orphaned_event(). In this
10792 	 * case inherit_event() will create individual events, similar to what
10793 	 * perf_group_detach() would do anyway.
10794 	 */
10795 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10796 		child_ctr = inherit_event(sub, parent, parent_ctx,
10797 					    child, leader, child_ctx);
10798 		if (IS_ERR(child_ctr))
10799 			return PTR_ERR(child_ctr);
10800 	}
10801 	return 0;
10802 }
10803 
10804 /*
10805  * Creates the child task context and tries to inherit the event-group.
10806  *
10807  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10808  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10809  * consistent with perf_event_release_kernel() removing all child events.
10810  *
10811  * Returns:
10812  *  - 0 on success
10813  *  - <0 on error
10814  */
10815 static int
10816 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10817 		   struct perf_event_context *parent_ctx,
10818 		   struct task_struct *child, int ctxn,
10819 		   int *inherited_all)
10820 {
10821 	int ret;
10822 	struct perf_event_context *child_ctx;
10823 
10824 	if (!event->attr.inherit) {
10825 		*inherited_all = 0;
10826 		return 0;
10827 	}
10828 
10829 	child_ctx = child->perf_event_ctxp[ctxn];
10830 	if (!child_ctx) {
10831 		/*
10832 		 * This is executed from the parent task context, so
10833 		 * inherit events that have been marked for cloning.
10834 		 * First allocate and initialize a context for the
10835 		 * child.
10836 		 */
10837 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10838 		if (!child_ctx)
10839 			return -ENOMEM;
10840 
10841 		child->perf_event_ctxp[ctxn] = child_ctx;
10842 	}
10843 
10844 	ret = inherit_group(event, parent, parent_ctx,
10845 			    child, child_ctx);
10846 
10847 	if (ret)
10848 		*inherited_all = 0;
10849 
10850 	return ret;
10851 }
10852 
10853 /*
10854  * Initialize the perf_event context in task_struct
10855  */
10856 static int perf_event_init_context(struct task_struct *child, int ctxn)
10857 {
10858 	struct perf_event_context *child_ctx, *parent_ctx;
10859 	struct perf_event_context *cloned_ctx;
10860 	struct perf_event *event;
10861 	struct task_struct *parent = current;
10862 	int inherited_all = 1;
10863 	unsigned long flags;
10864 	int ret = 0;
10865 
10866 	if (likely(!parent->perf_event_ctxp[ctxn]))
10867 		return 0;
10868 
10869 	/*
10870 	 * If the parent's context is a clone, pin it so it won't get
10871 	 * swapped under us.
10872 	 */
10873 	parent_ctx = perf_pin_task_context(parent, ctxn);
10874 	if (!parent_ctx)
10875 		return 0;
10876 
10877 	/*
10878 	 * No need to check if parent_ctx != NULL here; since we saw
10879 	 * it non-NULL earlier, the only reason for it to become NULL
10880 	 * is if we exit, and since we're currently in the middle of
10881 	 * a fork we can't be exiting at the same time.
10882 	 */
10883 
10884 	/*
10885 	 * Lock the parent list. No need to lock the child - not PID
10886 	 * hashed yet and not running, so nobody can access it.
10887 	 */
10888 	mutex_lock(&parent_ctx->mutex);
10889 
10890 	/*
10891 	 * We dont have to disable NMIs - we are only looking at
10892 	 * the list, not manipulating it:
10893 	 */
10894 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10895 		ret = inherit_task_group(event, parent, parent_ctx,
10896 					 child, ctxn, &inherited_all);
10897 		if (ret)
10898 			goto out_unlock;
10899 	}
10900 
10901 	/*
10902 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10903 	 * to allocations, but we need to prevent rotation because
10904 	 * rotate_ctx() will change the list from interrupt context.
10905 	 */
10906 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10907 	parent_ctx->rotate_disable = 1;
10908 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10909 
10910 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10911 		ret = inherit_task_group(event, parent, parent_ctx,
10912 					 child, ctxn, &inherited_all);
10913 		if (ret)
10914 			goto out_unlock;
10915 	}
10916 
10917 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10918 	parent_ctx->rotate_disable = 0;
10919 
10920 	child_ctx = child->perf_event_ctxp[ctxn];
10921 
10922 	if (child_ctx && inherited_all) {
10923 		/*
10924 		 * Mark the child context as a clone of the parent
10925 		 * context, or of whatever the parent is a clone of.
10926 		 *
10927 		 * Note that if the parent is a clone, the holding of
10928 		 * parent_ctx->lock avoids it from being uncloned.
10929 		 */
10930 		cloned_ctx = parent_ctx->parent_ctx;
10931 		if (cloned_ctx) {
10932 			child_ctx->parent_ctx = cloned_ctx;
10933 			child_ctx->parent_gen = parent_ctx->parent_gen;
10934 		} else {
10935 			child_ctx->parent_ctx = parent_ctx;
10936 			child_ctx->parent_gen = parent_ctx->generation;
10937 		}
10938 		get_ctx(child_ctx->parent_ctx);
10939 	}
10940 
10941 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10942 out_unlock:
10943 	mutex_unlock(&parent_ctx->mutex);
10944 
10945 	perf_unpin_context(parent_ctx);
10946 	put_ctx(parent_ctx);
10947 
10948 	return ret;
10949 }
10950 
10951 /*
10952  * Initialize the perf_event context in task_struct
10953  */
10954 int perf_event_init_task(struct task_struct *child)
10955 {
10956 	int ctxn, ret;
10957 
10958 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10959 	mutex_init(&child->perf_event_mutex);
10960 	INIT_LIST_HEAD(&child->perf_event_list);
10961 
10962 	for_each_task_context_nr(ctxn) {
10963 		ret = perf_event_init_context(child, ctxn);
10964 		if (ret) {
10965 			perf_event_free_task(child);
10966 			return ret;
10967 		}
10968 	}
10969 
10970 	return 0;
10971 }
10972 
10973 static void __init perf_event_init_all_cpus(void)
10974 {
10975 	struct swevent_htable *swhash;
10976 	int cpu;
10977 
10978 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10979 
10980 	for_each_possible_cpu(cpu) {
10981 		swhash = &per_cpu(swevent_htable, cpu);
10982 		mutex_init(&swhash->hlist_mutex);
10983 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10984 
10985 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10986 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10987 
10988 #ifdef CONFIG_CGROUP_PERF
10989 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10990 #endif
10991 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10992 	}
10993 }
10994 
10995 void perf_swevent_init_cpu(unsigned int cpu)
10996 {
10997 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10998 
10999 	mutex_lock(&swhash->hlist_mutex);
11000 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11001 		struct swevent_hlist *hlist;
11002 
11003 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11004 		WARN_ON(!hlist);
11005 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11006 	}
11007 	mutex_unlock(&swhash->hlist_mutex);
11008 }
11009 
11010 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11011 static void __perf_event_exit_context(void *__info)
11012 {
11013 	struct perf_event_context *ctx = __info;
11014 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11015 	struct perf_event *event;
11016 
11017 	raw_spin_lock(&ctx->lock);
11018 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11019 	list_for_each_entry(event, &ctx->event_list, event_entry)
11020 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11021 	raw_spin_unlock(&ctx->lock);
11022 }
11023 
11024 static void perf_event_exit_cpu_context(int cpu)
11025 {
11026 	struct perf_cpu_context *cpuctx;
11027 	struct perf_event_context *ctx;
11028 	struct pmu *pmu;
11029 
11030 	mutex_lock(&pmus_lock);
11031 	list_for_each_entry(pmu, &pmus, entry) {
11032 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11033 		ctx = &cpuctx->ctx;
11034 
11035 		mutex_lock(&ctx->mutex);
11036 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11037 		cpuctx->online = 0;
11038 		mutex_unlock(&ctx->mutex);
11039 	}
11040 	cpumask_clear_cpu(cpu, perf_online_mask);
11041 	mutex_unlock(&pmus_lock);
11042 }
11043 #else
11044 
11045 static void perf_event_exit_cpu_context(int cpu) { }
11046 
11047 #endif
11048 
11049 int perf_event_init_cpu(unsigned int cpu)
11050 {
11051 	struct perf_cpu_context *cpuctx;
11052 	struct perf_event_context *ctx;
11053 	struct pmu *pmu;
11054 
11055 	perf_swevent_init_cpu(cpu);
11056 
11057 	mutex_lock(&pmus_lock);
11058 	cpumask_set_cpu(cpu, perf_online_mask);
11059 	list_for_each_entry(pmu, &pmus, entry) {
11060 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11061 		ctx = &cpuctx->ctx;
11062 
11063 		mutex_lock(&ctx->mutex);
11064 		cpuctx->online = 1;
11065 		mutex_unlock(&ctx->mutex);
11066 	}
11067 	mutex_unlock(&pmus_lock);
11068 
11069 	return 0;
11070 }
11071 
11072 int perf_event_exit_cpu(unsigned int cpu)
11073 {
11074 	perf_event_exit_cpu_context(cpu);
11075 	return 0;
11076 }
11077 
11078 static int
11079 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11080 {
11081 	int cpu;
11082 
11083 	for_each_online_cpu(cpu)
11084 		perf_event_exit_cpu(cpu);
11085 
11086 	return NOTIFY_OK;
11087 }
11088 
11089 /*
11090  * Run the perf reboot notifier at the very last possible moment so that
11091  * the generic watchdog code runs as long as possible.
11092  */
11093 static struct notifier_block perf_reboot_notifier = {
11094 	.notifier_call = perf_reboot,
11095 	.priority = INT_MIN,
11096 };
11097 
11098 void __init perf_event_init(void)
11099 {
11100 	int ret;
11101 
11102 	idr_init(&pmu_idr);
11103 
11104 	perf_event_init_all_cpus();
11105 	init_srcu_struct(&pmus_srcu);
11106 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11107 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11108 	perf_pmu_register(&perf_task_clock, NULL, -1);
11109 	perf_tp_register();
11110 	perf_event_init_cpu(smp_processor_id());
11111 	register_reboot_notifier(&perf_reboot_notifier);
11112 
11113 	ret = init_hw_breakpoint();
11114 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11115 
11116 	/*
11117 	 * Build time assertion that we keep the data_head at the intended
11118 	 * location.  IOW, validation we got the __reserved[] size right.
11119 	 */
11120 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11121 		     != 1024);
11122 }
11123 
11124 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11125 			      char *page)
11126 {
11127 	struct perf_pmu_events_attr *pmu_attr =
11128 		container_of(attr, struct perf_pmu_events_attr, attr);
11129 
11130 	if (pmu_attr->event_str)
11131 		return sprintf(page, "%s\n", pmu_attr->event_str);
11132 
11133 	return 0;
11134 }
11135 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11136 
11137 static int __init perf_event_sysfs_init(void)
11138 {
11139 	struct pmu *pmu;
11140 	int ret;
11141 
11142 	mutex_lock(&pmus_lock);
11143 
11144 	ret = bus_register(&pmu_bus);
11145 	if (ret)
11146 		goto unlock;
11147 
11148 	list_for_each_entry(pmu, &pmus, entry) {
11149 		if (!pmu->name || pmu->type < 0)
11150 			continue;
11151 
11152 		ret = pmu_dev_alloc(pmu);
11153 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11154 	}
11155 	pmu_bus_running = 1;
11156 	ret = 0;
11157 
11158 unlock:
11159 	mutex_unlock(&pmus_lock);
11160 
11161 	return ret;
11162 }
11163 device_initcall(perf_event_sysfs_init);
11164 
11165 #ifdef CONFIG_CGROUP_PERF
11166 static struct cgroup_subsys_state *
11167 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11168 {
11169 	struct perf_cgroup *jc;
11170 
11171 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11172 	if (!jc)
11173 		return ERR_PTR(-ENOMEM);
11174 
11175 	jc->info = alloc_percpu(struct perf_cgroup_info);
11176 	if (!jc->info) {
11177 		kfree(jc);
11178 		return ERR_PTR(-ENOMEM);
11179 	}
11180 
11181 	return &jc->css;
11182 }
11183 
11184 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11185 {
11186 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11187 
11188 	free_percpu(jc->info);
11189 	kfree(jc);
11190 }
11191 
11192 static int __perf_cgroup_move(void *info)
11193 {
11194 	struct task_struct *task = info;
11195 	rcu_read_lock();
11196 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11197 	rcu_read_unlock();
11198 	return 0;
11199 }
11200 
11201 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11202 {
11203 	struct task_struct *task;
11204 	struct cgroup_subsys_state *css;
11205 
11206 	cgroup_taskset_for_each(task, css, tset)
11207 		task_function_call(task, __perf_cgroup_move, task);
11208 }
11209 
11210 struct cgroup_subsys perf_event_cgrp_subsys = {
11211 	.css_alloc	= perf_cgroup_css_alloc,
11212 	.css_free	= perf_cgroup_css_free,
11213 	.attach		= perf_cgroup_attach,
11214 	/*
11215 	 * Implicitly enable on dfl hierarchy so that perf events can
11216 	 * always be filtered by cgroup2 path as long as perf_event
11217 	 * controller is not mounted on a legacy hierarchy.
11218 	 */
11219 	.implicit_on_dfl = true,
11220 	.threaded	= true,
11221 };
11222 #endif /* CONFIG_CGROUP_PERF */
11223