1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * @ctx == &cpuctx->ctx. 955 */ 956 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, 983 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 984 else 985 list_del(cpuctx_entry); 986 } 987 988 #else /* !CONFIG_CGROUP_PERF */ 989 990 static inline bool 991 perf_cgroup_match(struct perf_event *event) 992 { 993 return true; 994 } 995 996 static inline void perf_detach_cgroup(struct perf_event *event) 997 {} 998 999 static inline int is_cgroup_event(struct perf_event *event) 1000 { 1001 return 0; 1002 } 1003 1004 static inline void update_cgrp_time_from_event(struct perf_event *event) 1005 { 1006 } 1007 1008 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1009 { 1010 } 1011 1012 static inline void perf_cgroup_sched_out(struct task_struct *task, 1013 struct task_struct *next) 1014 { 1015 } 1016 1017 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1018 struct task_struct *task) 1019 { 1020 } 1021 1022 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1023 struct perf_event_attr *attr, 1024 struct perf_event *group_leader) 1025 { 1026 return -EINVAL; 1027 } 1028 1029 static inline void 1030 perf_cgroup_set_timestamp(struct task_struct *task, 1031 struct perf_event_context *ctx) 1032 { 1033 } 1034 1035 static inline void 1036 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1037 { 1038 } 1039 1040 static inline void 1041 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1042 { 1043 } 1044 1045 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1046 { 1047 return 0; 1048 } 1049 1050 static inline void 1051 list_update_cgroup_event(struct perf_event *event, 1052 struct perf_event_context *ctx, bool add) 1053 { 1054 } 1055 1056 #endif 1057 1058 /* 1059 * set default to be dependent on timer tick just 1060 * like original code 1061 */ 1062 #define PERF_CPU_HRTIMER (1000 / HZ) 1063 /* 1064 * function must be called with interrupts disabled 1065 */ 1066 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1067 { 1068 struct perf_cpu_context *cpuctx; 1069 bool rotations; 1070 1071 lockdep_assert_irqs_disabled(); 1072 1073 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1074 rotations = perf_rotate_context(cpuctx); 1075 1076 raw_spin_lock(&cpuctx->hrtimer_lock); 1077 if (rotations) 1078 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1079 else 1080 cpuctx->hrtimer_active = 0; 1081 raw_spin_unlock(&cpuctx->hrtimer_lock); 1082 1083 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1084 } 1085 1086 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1087 { 1088 struct hrtimer *timer = &cpuctx->hrtimer; 1089 struct pmu *pmu = cpuctx->ctx.pmu; 1090 u64 interval; 1091 1092 /* no multiplexing needed for SW PMU */ 1093 if (pmu->task_ctx_nr == perf_sw_context) 1094 return; 1095 1096 /* 1097 * check default is sane, if not set then force to 1098 * default interval (1/tick) 1099 */ 1100 interval = pmu->hrtimer_interval_ms; 1101 if (interval < 1) 1102 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1103 1104 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1105 1106 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1107 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1108 timer->function = perf_mux_hrtimer_handler; 1109 } 1110 1111 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1112 { 1113 struct hrtimer *timer = &cpuctx->hrtimer; 1114 struct pmu *pmu = cpuctx->ctx.pmu; 1115 unsigned long flags; 1116 1117 /* not for SW PMU */ 1118 if (pmu->task_ctx_nr == perf_sw_context) 1119 return 0; 1120 1121 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1122 if (!cpuctx->hrtimer_active) { 1123 cpuctx->hrtimer_active = 1; 1124 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1125 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1126 } 1127 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1128 1129 return 0; 1130 } 1131 1132 void perf_pmu_disable(struct pmu *pmu) 1133 { 1134 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1135 if (!(*count)++) 1136 pmu->pmu_disable(pmu); 1137 } 1138 1139 void perf_pmu_enable(struct pmu *pmu) 1140 { 1141 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1142 if (!--(*count)) 1143 pmu->pmu_enable(pmu); 1144 } 1145 1146 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1147 1148 /* 1149 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1150 * perf_event_task_tick() are fully serialized because they're strictly cpu 1151 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1152 * disabled, while perf_event_task_tick is called from IRQ context. 1153 */ 1154 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1155 { 1156 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1157 1158 lockdep_assert_irqs_disabled(); 1159 1160 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1161 1162 list_add(&ctx->active_ctx_list, head); 1163 } 1164 1165 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1166 { 1167 lockdep_assert_irqs_disabled(); 1168 1169 WARN_ON(list_empty(&ctx->active_ctx_list)); 1170 1171 list_del_init(&ctx->active_ctx_list); 1172 } 1173 1174 static void get_ctx(struct perf_event_context *ctx) 1175 { 1176 refcount_inc(&ctx->refcount); 1177 } 1178 1179 static void free_ctx(struct rcu_head *head) 1180 { 1181 struct perf_event_context *ctx; 1182 1183 ctx = container_of(head, struct perf_event_context, rcu_head); 1184 kfree(ctx->task_ctx_data); 1185 kfree(ctx); 1186 } 1187 1188 static void put_ctx(struct perf_event_context *ctx) 1189 { 1190 if (refcount_dec_and_test(&ctx->refcount)) { 1191 if (ctx->parent_ctx) 1192 put_ctx(ctx->parent_ctx); 1193 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1194 put_task_struct(ctx->task); 1195 call_rcu(&ctx->rcu_head, free_ctx); 1196 } 1197 } 1198 1199 /* 1200 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1201 * perf_pmu_migrate_context() we need some magic. 1202 * 1203 * Those places that change perf_event::ctx will hold both 1204 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1205 * 1206 * Lock ordering is by mutex address. There are two other sites where 1207 * perf_event_context::mutex nests and those are: 1208 * 1209 * - perf_event_exit_task_context() [ child , 0 ] 1210 * perf_event_exit_event() 1211 * put_event() [ parent, 1 ] 1212 * 1213 * - perf_event_init_context() [ parent, 0 ] 1214 * inherit_task_group() 1215 * inherit_group() 1216 * inherit_event() 1217 * perf_event_alloc() 1218 * perf_init_event() 1219 * perf_try_init_event() [ child , 1 ] 1220 * 1221 * While it appears there is an obvious deadlock here -- the parent and child 1222 * nesting levels are inverted between the two. This is in fact safe because 1223 * life-time rules separate them. That is an exiting task cannot fork, and a 1224 * spawning task cannot (yet) exit. 1225 * 1226 * But remember that that these are parent<->child context relations, and 1227 * migration does not affect children, therefore these two orderings should not 1228 * interact. 1229 * 1230 * The change in perf_event::ctx does not affect children (as claimed above) 1231 * because the sys_perf_event_open() case will install a new event and break 1232 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1233 * concerned with cpuctx and that doesn't have children. 1234 * 1235 * The places that change perf_event::ctx will issue: 1236 * 1237 * perf_remove_from_context(); 1238 * synchronize_rcu(); 1239 * perf_install_in_context(); 1240 * 1241 * to affect the change. The remove_from_context() + synchronize_rcu() should 1242 * quiesce the event, after which we can install it in the new location. This 1243 * means that only external vectors (perf_fops, prctl) can perturb the event 1244 * while in transit. Therefore all such accessors should also acquire 1245 * perf_event_context::mutex to serialize against this. 1246 * 1247 * However; because event->ctx can change while we're waiting to acquire 1248 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1249 * function. 1250 * 1251 * Lock order: 1252 * cred_guard_mutex 1253 * task_struct::perf_event_mutex 1254 * perf_event_context::mutex 1255 * perf_event::child_mutex; 1256 * perf_event_context::lock 1257 * perf_event::mmap_mutex 1258 * mmap_sem 1259 * perf_addr_filters_head::lock 1260 * 1261 * cpu_hotplug_lock 1262 * pmus_lock 1263 * cpuctx->mutex / perf_event_context::mutex 1264 */ 1265 static struct perf_event_context * 1266 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1267 { 1268 struct perf_event_context *ctx; 1269 1270 again: 1271 rcu_read_lock(); 1272 ctx = READ_ONCE(event->ctx); 1273 if (!refcount_inc_not_zero(&ctx->refcount)) { 1274 rcu_read_unlock(); 1275 goto again; 1276 } 1277 rcu_read_unlock(); 1278 1279 mutex_lock_nested(&ctx->mutex, nesting); 1280 if (event->ctx != ctx) { 1281 mutex_unlock(&ctx->mutex); 1282 put_ctx(ctx); 1283 goto again; 1284 } 1285 1286 return ctx; 1287 } 1288 1289 static inline struct perf_event_context * 1290 perf_event_ctx_lock(struct perf_event *event) 1291 { 1292 return perf_event_ctx_lock_nested(event, 0); 1293 } 1294 1295 static void perf_event_ctx_unlock(struct perf_event *event, 1296 struct perf_event_context *ctx) 1297 { 1298 mutex_unlock(&ctx->mutex); 1299 put_ctx(ctx); 1300 } 1301 1302 /* 1303 * This must be done under the ctx->lock, such as to serialize against 1304 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1305 * calling scheduler related locks and ctx->lock nests inside those. 1306 */ 1307 static __must_check struct perf_event_context * 1308 unclone_ctx(struct perf_event_context *ctx) 1309 { 1310 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1311 1312 lockdep_assert_held(&ctx->lock); 1313 1314 if (parent_ctx) 1315 ctx->parent_ctx = NULL; 1316 ctx->generation++; 1317 1318 return parent_ctx; 1319 } 1320 1321 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1322 enum pid_type type) 1323 { 1324 u32 nr; 1325 /* 1326 * only top level events have the pid namespace they were created in 1327 */ 1328 if (event->parent) 1329 event = event->parent; 1330 1331 nr = __task_pid_nr_ns(p, type, event->ns); 1332 /* avoid -1 if it is idle thread or runs in another ns */ 1333 if (!nr && !pid_alive(p)) 1334 nr = -1; 1335 return nr; 1336 } 1337 1338 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1339 { 1340 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1341 } 1342 1343 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1344 { 1345 return perf_event_pid_type(event, p, PIDTYPE_PID); 1346 } 1347 1348 /* 1349 * If we inherit events we want to return the parent event id 1350 * to userspace. 1351 */ 1352 static u64 primary_event_id(struct perf_event *event) 1353 { 1354 u64 id = event->id; 1355 1356 if (event->parent) 1357 id = event->parent->id; 1358 1359 return id; 1360 } 1361 1362 /* 1363 * Get the perf_event_context for a task and lock it. 1364 * 1365 * This has to cope with with the fact that until it is locked, 1366 * the context could get moved to another task. 1367 */ 1368 static struct perf_event_context * 1369 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1370 { 1371 struct perf_event_context *ctx; 1372 1373 retry: 1374 /* 1375 * One of the few rules of preemptible RCU is that one cannot do 1376 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1377 * part of the read side critical section was irqs-enabled -- see 1378 * rcu_read_unlock_special(). 1379 * 1380 * Since ctx->lock nests under rq->lock we must ensure the entire read 1381 * side critical section has interrupts disabled. 1382 */ 1383 local_irq_save(*flags); 1384 rcu_read_lock(); 1385 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1386 if (ctx) { 1387 /* 1388 * If this context is a clone of another, it might 1389 * get swapped for another underneath us by 1390 * perf_event_task_sched_out, though the 1391 * rcu_read_lock() protects us from any context 1392 * getting freed. Lock the context and check if it 1393 * got swapped before we could get the lock, and retry 1394 * if so. If we locked the right context, then it 1395 * can't get swapped on us any more. 1396 */ 1397 raw_spin_lock(&ctx->lock); 1398 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1399 raw_spin_unlock(&ctx->lock); 1400 rcu_read_unlock(); 1401 local_irq_restore(*flags); 1402 goto retry; 1403 } 1404 1405 if (ctx->task == TASK_TOMBSTONE || 1406 !refcount_inc_not_zero(&ctx->refcount)) { 1407 raw_spin_unlock(&ctx->lock); 1408 ctx = NULL; 1409 } else { 1410 WARN_ON_ONCE(ctx->task != task); 1411 } 1412 } 1413 rcu_read_unlock(); 1414 if (!ctx) 1415 local_irq_restore(*flags); 1416 return ctx; 1417 } 1418 1419 /* 1420 * Get the context for a task and increment its pin_count so it 1421 * can't get swapped to another task. This also increments its 1422 * reference count so that the context can't get freed. 1423 */ 1424 static struct perf_event_context * 1425 perf_pin_task_context(struct task_struct *task, int ctxn) 1426 { 1427 struct perf_event_context *ctx; 1428 unsigned long flags; 1429 1430 ctx = perf_lock_task_context(task, ctxn, &flags); 1431 if (ctx) { 1432 ++ctx->pin_count; 1433 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1434 } 1435 return ctx; 1436 } 1437 1438 static void perf_unpin_context(struct perf_event_context *ctx) 1439 { 1440 unsigned long flags; 1441 1442 raw_spin_lock_irqsave(&ctx->lock, flags); 1443 --ctx->pin_count; 1444 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1445 } 1446 1447 /* 1448 * Update the record of the current time in a context. 1449 */ 1450 static void update_context_time(struct perf_event_context *ctx) 1451 { 1452 u64 now = perf_clock(); 1453 1454 ctx->time += now - ctx->timestamp; 1455 ctx->timestamp = now; 1456 } 1457 1458 static u64 perf_event_time(struct perf_event *event) 1459 { 1460 struct perf_event_context *ctx = event->ctx; 1461 1462 if (is_cgroup_event(event)) 1463 return perf_cgroup_event_time(event); 1464 1465 return ctx ? ctx->time : 0; 1466 } 1467 1468 static enum event_type_t get_event_type(struct perf_event *event) 1469 { 1470 struct perf_event_context *ctx = event->ctx; 1471 enum event_type_t event_type; 1472 1473 lockdep_assert_held(&ctx->lock); 1474 1475 /* 1476 * It's 'group type', really, because if our group leader is 1477 * pinned, so are we. 1478 */ 1479 if (event->group_leader != event) 1480 event = event->group_leader; 1481 1482 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1483 if (!ctx->task) 1484 event_type |= EVENT_CPU; 1485 1486 return event_type; 1487 } 1488 1489 /* 1490 * Helper function to initialize event group nodes. 1491 */ 1492 static void init_event_group(struct perf_event *event) 1493 { 1494 RB_CLEAR_NODE(&event->group_node); 1495 event->group_index = 0; 1496 } 1497 1498 /* 1499 * Extract pinned or flexible groups from the context 1500 * based on event attrs bits. 1501 */ 1502 static struct perf_event_groups * 1503 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1504 { 1505 if (event->attr.pinned) 1506 return &ctx->pinned_groups; 1507 else 1508 return &ctx->flexible_groups; 1509 } 1510 1511 /* 1512 * Helper function to initializes perf_event_group trees. 1513 */ 1514 static void perf_event_groups_init(struct perf_event_groups *groups) 1515 { 1516 groups->tree = RB_ROOT; 1517 groups->index = 0; 1518 } 1519 1520 /* 1521 * Compare function for event groups; 1522 * 1523 * Implements complex key that first sorts by CPU and then by virtual index 1524 * which provides ordering when rotating groups for the same CPU. 1525 */ 1526 static bool 1527 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1528 { 1529 if (left->cpu < right->cpu) 1530 return true; 1531 if (left->cpu > right->cpu) 1532 return false; 1533 1534 if (left->group_index < right->group_index) 1535 return true; 1536 if (left->group_index > right->group_index) 1537 return false; 1538 1539 return false; 1540 } 1541 1542 /* 1543 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1544 * key (see perf_event_groups_less). This places it last inside the CPU 1545 * subtree. 1546 */ 1547 static void 1548 perf_event_groups_insert(struct perf_event_groups *groups, 1549 struct perf_event *event) 1550 { 1551 struct perf_event *node_event; 1552 struct rb_node *parent; 1553 struct rb_node **node; 1554 1555 event->group_index = ++groups->index; 1556 1557 node = &groups->tree.rb_node; 1558 parent = *node; 1559 1560 while (*node) { 1561 parent = *node; 1562 node_event = container_of(*node, struct perf_event, group_node); 1563 1564 if (perf_event_groups_less(event, node_event)) 1565 node = &parent->rb_left; 1566 else 1567 node = &parent->rb_right; 1568 } 1569 1570 rb_link_node(&event->group_node, parent, node); 1571 rb_insert_color(&event->group_node, &groups->tree); 1572 } 1573 1574 /* 1575 * Helper function to insert event into the pinned or flexible groups. 1576 */ 1577 static void 1578 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1579 { 1580 struct perf_event_groups *groups; 1581 1582 groups = get_event_groups(event, ctx); 1583 perf_event_groups_insert(groups, event); 1584 } 1585 1586 /* 1587 * Delete a group from a tree. 1588 */ 1589 static void 1590 perf_event_groups_delete(struct perf_event_groups *groups, 1591 struct perf_event *event) 1592 { 1593 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1594 RB_EMPTY_ROOT(&groups->tree)); 1595 1596 rb_erase(&event->group_node, &groups->tree); 1597 init_event_group(event); 1598 } 1599 1600 /* 1601 * Helper function to delete event from its groups. 1602 */ 1603 static void 1604 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1605 { 1606 struct perf_event_groups *groups; 1607 1608 groups = get_event_groups(event, ctx); 1609 perf_event_groups_delete(groups, event); 1610 } 1611 1612 /* 1613 * Get the leftmost event in the @cpu subtree. 1614 */ 1615 static struct perf_event * 1616 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1617 { 1618 struct perf_event *node_event = NULL, *match = NULL; 1619 struct rb_node *node = groups->tree.rb_node; 1620 1621 while (node) { 1622 node_event = container_of(node, struct perf_event, group_node); 1623 1624 if (cpu < node_event->cpu) { 1625 node = node->rb_left; 1626 } else if (cpu > node_event->cpu) { 1627 node = node->rb_right; 1628 } else { 1629 match = node_event; 1630 node = node->rb_left; 1631 } 1632 } 1633 1634 return match; 1635 } 1636 1637 /* 1638 * Like rb_entry_next_safe() for the @cpu subtree. 1639 */ 1640 static struct perf_event * 1641 perf_event_groups_next(struct perf_event *event) 1642 { 1643 struct perf_event *next; 1644 1645 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1646 if (next && next->cpu == event->cpu) 1647 return next; 1648 1649 return NULL; 1650 } 1651 1652 /* 1653 * Iterate through the whole groups tree. 1654 */ 1655 #define perf_event_groups_for_each(event, groups) \ 1656 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1657 typeof(*event), group_node); event; \ 1658 event = rb_entry_safe(rb_next(&event->group_node), \ 1659 typeof(*event), group_node)) 1660 1661 /* 1662 * Add an event from the lists for its context. 1663 * Must be called with ctx->mutex and ctx->lock held. 1664 */ 1665 static void 1666 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1667 { 1668 lockdep_assert_held(&ctx->lock); 1669 1670 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1671 event->attach_state |= PERF_ATTACH_CONTEXT; 1672 1673 event->tstamp = perf_event_time(event); 1674 1675 /* 1676 * If we're a stand alone event or group leader, we go to the context 1677 * list, group events are kept attached to the group so that 1678 * perf_group_detach can, at all times, locate all siblings. 1679 */ 1680 if (event->group_leader == event) { 1681 event->group_caps = event->event_caps; 1682 add_event_to_groups(event, ctx); 1683 } 1684 1685 list_update_cgroup_event(event, ctx, true); 1686 1687 list_add_rcu(&event->event_entry, &ctx->event_list); 1688 ctx->nr_events++; 1689 if (event->attr.inherit_stat) 1690 ctx->nr_stat++; 1691 1692 ctx->generation++; 1693 } 1694 1695 /* 1696 * Initialize event state based on the perf_event_attr::disabled. 1697 */ 1698 static inline void perf_event__state_init(struct perf_event *event) 1699 { 1700 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1701 PERF_EVENT_STATE_INACTIVE; 1702 } 1703 1704 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1705 { 1706 int entry = sizeof(u64); /* value */ 1707 int size = 0; 1708 int nr = 1; 1709 1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1711 size += sizeof(u64); 1712 1713 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1714 size += sizeof(u64); 1715 1716 if (event->attr.read_format & PERF_FORMAT_ID) 1717 entry += sizeof(u64); 1718 1719 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1720 nr += nr_siblings; 1721 size += sizeof(u64); 1722 } 1723 1724 size += entry * nr; 1725 event->read_size = size; 1726 } 1727 1728 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1729 { 1730 struct perf_sample_data *data; 1731 u16 size = 0; 1732 1733 if (sample_type & PERF_SAMPLE_IP) 1734 size += sizeof(data->ip); 1735 1736 if (sample_type & PERF_SAMPLE_ADDR) 1737 size += sizeof(data->addr); 1738 1739 if (sample_type & PERF_SAMPLE_PERIOD) 1740 size += sizeof(data->period); 1741 1742 if (sample_type & PERF_SAMPLE_WEIGHT) 1743 size += sizeof(data->weight); 1744 1745 if (sample_type & PERF_SAMPLE_READ) 1746 size += event->read_size; 1747 1748 if (sample_type & PERF_SAMPLE_DATA_SRC) 1749 size += sizeof(data->data_src.val); 1750 1751 if (sample_type & PERF_SAMPLE_TRANSACTION) 1752 size += sizeof(data->txn); 1753 1754 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1755 size += sizeof(data->phys_addr); 1756 1757 event->header_size = size; 1758 } 1759 1760 /* 1761 * Called at perf_event creation and when events are attached/detached from a 1762 * group. 1763 */ 1764 static void perf_event__header_size(struct perf_event *event) 1765 { 1766 __perf_event_read_size(event, 1767 event->group_leader->nr_siblings); 1768 __perf_event_header_size(event, event->attr.sample_type); 1769 } 1770 1771 static void perf_event__id_header_size(struct perf_event *event) 1772 { 1773 struct perf_sample_data *data; 1774 u64 sample_type = event->attr.sample_type; 1775 u16 size = 0; 1776 1777 if (sample_type & PERF_SAMPLE_TID) 1778 size += sizeof(data->tid_entry); 1779 1780 if (sample_type & PERF_SAMPLE_TIME) 1781 size += sizeof(data->time); 1782 1783 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1784 size += sizeof(data->id); 1785 1786 if (sample_type & PERF_SAMPLE_ID) 1787 size += sizeof(data->id); 1788 1789 if (sample_type & PERF_SAMPLE_STREAM_ID) 1790 size += sizeof(data->stream_id); 1791 1792 if (sample_type & PERF_SAMPLE_CPU) 1793 size += sizeof(data->cpu_entry); 1794 1795 event->id_header_size = size; 1796 } 1797 1798 static bool perf_event_validate_size(struct perf_event *event) 1799 { 1800 /* 1801 * The values computed here will be over-written when we actually 1802 * attach the event. 1803 */ 1804 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1805 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1806 perf_event__id_header_size(event); 1807 1808 /* 1809 * Sum the lot; should not exceed the 64k limit we have on records. 1810 * Conservative limit to allow for callchains and other variable fields. 1811 */ 1812 if (event->read_size + event->header_size + 1813 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1814 return false; 1815 1816 return true; 1817 } 1818 1819 static void perf_group_attach(struct perf_event *event) 1820 { 1821 struct perf_event *group_leader = event->group_leader, *pos; 1822 1823 lockdep_assert_held(&event->ctx->lock); 1824 1825 /* 1826 * We can have double attach due to group movement in perf_event_open. 1827 */ 1828 if (event->attach_state & PERF_ATTACH_GROUP) 1829 return; 1830 1831 event->attach_state |= PERF_ATTACH_GROUP; 1832 1833 if (group_leader == event) 1834 return; 1835 1836 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1837 1838 group_leader->group_caps &= event->event_caps; 1839 1840 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1841 group_leader->nr_siblings++; 1842 1843 perf_event__header_size(group_leader); 1844 1845 for_each_sibling_event(pos, group_leader) 1846 perf_event__header_size(pos); 1847 } 1848 1849 /* 1850 * Remove an event from the lists for its context. 1851 * Must be called with ctx->mutex and ctx->lock held. 1852 */ 1853 static void 1854 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1855 { 1856 WARN_ON_ONCE(event->ctx != ctx); 1857 lockdep_assert_held(&ctx->lock); 1858 1859 /* 1860 * We can have double detach due to exit/hot-unplug + close. 1861 */ 1862 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1863 return; 1864 1865 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1866 1867 list_update_cgroup_event(event, ctx, false); 1868 1869 ctx->nr_events--; 1870 if (event->attr.inherit_stat) 1871 ctx->nr_stat--; 1872 1873 list_del_rcu(&event->event_entry); 1874 1875 if (event->group_leader == event) 1876 del_event_from_groups(event, ctx); 1877 1878 /* 1879 * If event was in error state, then keep it 1880 * that way, otherwise bogus counts will be 1881 * returned on read(). The only way to get out 1882 * of error state is by explicit re-enabling 1883 * of the event 1884 */ 1885 if (event->state > PERF_EVENT_STATE_OFF) 1886 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1887 1888 ctx->generation++; 1889 } 1890 1891 static int 1892 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 1893 { 1894 if (!has_aux(aux_event)) 1895 return 0; 1896 1897 if (!event->pmu->aux_output_match) 1898 return 0; 1899 1900 return event->pmu->aux_output_match(aux_event); 1901 } 1902 1903 static void put_event(struct perf_event *event); 1904 static void event_sched_out(struct perf_event *event, 1905 struct perf_cpu_context *cpuctx, 1906 struct perf_event_context *ctx); 1907 1908 static void perf_put_aux_event(struct perf_event *event) 1909 { 1910 struct perf_event_context *ctx = event->ctx; 1911 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1912 struct perf_event *iter; 1913 1914 /* 1915 * If event uses aux_event tear down the link 1916 */ 1917 if (event->aux_event) { 1918 iter = event->aux_event; 1919 event->aux_event = NULL; 1920 put_event(iter); 1921 return; 1922 } 1923 1924 /* 1925 * If the event is an aux_event, tear down all links to 1926 * it from other events. 1927 */ 1928 for_each_sibling_event(iter, event->group_leader) { 1929 if (iter->aux_event != event) 1930 continue; 1931 1932 iter->aux_event = NULL; 1933 put_event(event); 1934 1935 /* 1936 * If it's ACTIVE, schedule it out and put it into ERROR 1937 * state so that we don't try to schedule it again. Note 1938 * that perf_event_enable() will clear the ERROR status. 1939 */ 1940 event_sched_out(iter, cpuctx, ctx); 1941 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 1942 } 1943 } 1944 1945 static bool perf_need_aux_event(struct perf_event *event) 1946 { 1947 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 1948 } 1949 1950 static int perf_get_aux_event(struct perf_event *event, 1951 struct perf_event *group_leader) 1952 { 1953 /* 1954 * Our group leader must be an aux event if we want to be 1955 * an aux_output. This way, the aux event will precede its 1956 * aux_output events in the group, and therefore will always 1957 * schedule first. 1958 */ 1959 if (!group_leader) 1960 return 0; 1961 1962 /* 1963 * aux_output and aux_sample_size are mutually exclusive. 1964 */ 1965 if (event->attr.aux_output && event->attr.aux_sample_size) 1966 return 0; 1967 1968 if (event->attr.aux_output && 1969 !perf_aux_output_match(event, group_leader)) 1970 return 0; 1971 1972 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 1973 return 0; 1974 1975 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 1976 return 0; 1977 1978 /* 1979 * Link aux_outputs to their aux event; this is undone in 1980 * perf_group_detach() by perf_put_aux_event(). When the 1981 * group in torn down, the aux_output events loose their 1982 * link to the aux_event and can't schedule any more. 1983 */ 1984 event->aux_event = group_leader; 1985 1986 return 1; 1987 } 1988 1989 static void perf_group_detach(struct perf_event *event) 1990 { 1991 struct perf_event *sibling, *tmp; 1992 struct perf_event_context *ctx = event->ctx; 1993 1994 lockdep_assert_held(&ctx->lock); 1995 1996 /* 1997 * We can have double detach due to exit/hot-unplug + close. 1998 */ 1999 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2000 return; 2001 2002 event->attach_state &= ~PERF_ATTACH_GROUP; 2003 2004 perf_put_aux_event(event); 2005 2006 /* 2007 * If this is a sibling, remove it from its group. 2008 */ 2009 if (event->group_leader != event) { 2010 list_del_init(&event->sibling_list); 2011 event->group_leader->nr_siblings--; 2012 goto out; 2013 } 2014 2015 /* 2016 * If this was a group event with sibling events then 2017 * upgrade the siblings to singleton events by adding them 2018 * to whatever list we are on. 2019 */ 2020 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2021 2022 sibling->group_leader = sibling; 2023 list_del_init(&sibling->sibling_list); 2024 2025 /* Inherit group flags from the previous leader */ 2026 sibling->group_caps = event->group_caps; 2027 2028 if (!RB_EMPTY_NODE(&event->group_node)) { 2029 add_event_to_groups(sibling, event->ctx); 2030 2031 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 2032 struct list_head *list = sibling->attr.pinned ? 2033 &ctx->pinned_active : &ctx->flexible_active; 2034 2035 list_add_tail(&sibling->active_list, list); 2036 } 2037 } 2038 2039 WARN_ON_ONCE(sibling->ctx != event->ctx); 2040 } 2041 2042 out: 2043 perf_event__header_size(event->group_leader); 2044 2045 for_each_sibling_event(tmp, event->group_leader) 2046 perf_event__header_size(tmp); 2047 } 2048 2049 static bool is_orphaned_event(struct perf_event *event) 2050 { 2051 return event->state == PERF_EVENT_STATE_DEAD; 2052 } 2053 2054 static inline int __pmu_filter_match(struct perf_event *event) 2055 { 2056 struct pmu *pmu = event->pmu; 2057 return pmu->filter_match ? pmu->filter_match(event) : 1; 2058 } 2059 2060 /* 2061 * Check whether we should attempt to schedule an event group based on 2062 * PMU-specific filtering. An event group can consist of HW and SW events, 2063 * potentially with a SW leader, so we must check all the filters, to 2064 * determine whether a group is schedulable: 2065 */ 2066 static inline int pmu_filter_match(struct perf_event *event) 2067 { 2068 struct perf_event *sibling; 2069 2070 if (!__pmu_filter_match(event)) 2071 return 0; 2072 2073 for_each_sibling_event(sibling, event) { 2074 if (!__pmu_filter_match(sibling)) 2075 return 0; 2076 } 2077 2078 return 1; 2079 } 2080 2081 static inline int 2082 event_filter_match(struct perf_event *event) 2083 { 2084 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2085 perf_cgroup_match(event) && pmu_filter_match(event); 2086 } 2087 2088 static void 2089 event_sched_out(struct perf_event *event, 2090 struct perf_cpu_context *cpuctx, 2091 struct perf_event_context *ctx) 2092 { 2093 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2094 2095 WARN_ON_ONCE(event->ctx != ctx); 2096 lockdep_assert_held(&ctx->lock); 2097 2098 if (event->state != PERF_EVENT_STATE_ACTIVE) 2099 return; 2100 2101 /* 2102 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2103 * we can schedule events _OUT_ individually through things like 2104 * __perf_remove_from_context(). 2105 */ 2106 list_del_init(&event->active_list); 2107 2108 perf_pmu_disable(event->pmu); 2109 2110 event->pmu->del(event, 0); 2111 event->oncpu = -1; 2112 2113 if (READ_ONCE(event->pending_disable) >= 0) { 2114 WRITE_ONCE(event->pending_disable, -1); 2115 state = PERF_EVENT_STATE_OFF; 2116 } 2117 perf_event_set_state(event, state); 2118 2119 if (!is_software_event(event)) 2120 cpuctx->active_oncpu--; 2121 if (!--ctx->nr_active) 2122 perf_event_ctx_deactivate(ctx); 2123 if (event->attr.freq && event->attr.sample_freq) 2124 ctx->nr_freq--; 2125 if (event->attr.exclusive || !cpuctx->active_oncpu) 2126 cpuctx->exclusive = 0; 2127 2128 perf_pmu_enable(event->pmu); 2129 } 2130 2131 static void 2132 group_sched_out(struct perf_event *group_event, 2133 struct perf_cpu_context *cpuctx, 2134 struct perf_event_context *ctx) 2135 { 2136 struct perf_event *event; 2137 2138 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2139 return; 2140 2141 perf_pmu_disable(ctx->pmu); 2142 2143 event_sched_out(group_event, cpuctx, ctx); 2144 2145 /* 2146 * Schedule out siblings (if any): 2147 */ 2148 for_each_sibling_event(event, group_event) 2149 event_sched_out(event, cpuctx, ctx); 2150 2151 perf_pmu_enable(ctx->pmu); 2152 2153 if (group_event->attr.exclusive) 2154 cpuctx->exclusive = 0; 2155 } 2156 2157 #define DETACH_GROUP 0x01UL 2158 2159 /* 2160 * Cross CPU call to remove a performance event 2161 * 2162 * We disable the event on the hardware level first. After that we 2163 * remove it from the context list. 2164 */ 2165 static void 2166 __perf_remove_from_context(struct perf_event *event, 2167 struct perf_cpu_context *cpuctx, 2168 struct perf_event_context *ctx, 2169 void *info) 2170 { 2171 unsigned long flags = (unsigned long)info; 2172 2173 if (ctx->is_active & EVENT_TIME) { 2174 update_context_time(ctx); 2175 update_cgrp_time_from_cpuctx(cpuctx); 2176 } 2177 2178 event_sched_out(event, cpuctx, ctx); 2179 if (flags & DETACH_GROUP) 2180 perf_group_detach(event); 2181 list_del_event(event, ctx); 2182 2183 if (!ctx->nr_events && ctx->is_active) { 2184 ctx->is_active = 0; 2185 if (ctx->task) { 2186 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2187 cpuctx->task_ctx = NULL; 2188 } 2189 } 2190 } 2191 2192 /* 2193 * Remove the event from a task's (or a CPU's) list of events. 2194 * 2195 * If event->ctx is a cloned context, callers must make sure that 2196 * every task struct that event->ctx->task could possibly point to 2197 * remains valid. This is OK when called from perf_release since 2198 * that only calls us on the top-level context, which can't be a clone. 2199 * When called from perf_event_exit_task, it's OK because the 2200 * context has been detached from its task. 2201 */ 2202 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2203 { 2204 struct perf_event_context *ctx = event->ctx; 2205 2206 lockdep_assert_held(&ctx->mutex); 2207 2208 event_function_call(event, __perf_remove_from_context, (void *)flags); 2209 2210 /* 2211 * The above event_function_call() can NO-OP when it hits 2212 * TASK_TOMBSTONE. In that case we must already have been detached 2213 * from the context (by perf_event_exit_event()) but the grouping 2214 * might still be in-tact. 2215 */ 2216 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2217 if ((flags & DETACH_GROUP) && 2218 (event->attach_state & PERF_ATTACH_GROUP)) { 2219 /* 2220 * Since in that case we cannot possibly be scheduled, simply 2221 * detach now. 2222 */ 2223 raw_spin_lock_irq(&ctx->lock); 2224 perf_group_detach(event); 2225 raw_spin_unlock_irq(&ctx->lock); 2226 } 2227 } 2228 2229 /* 2230 * Cross CPU call to disable a performance event 2231 */ 2232 static void __perf_event_disable(struct perf_event *event, 2233 struct perf_cpu_context *cpuctx, 2234 struct perf_event_context *ctx, 2235 void *info) 2236 { 2237 if (event->state < PERF_EVENT_STATE_INACTIVE) 2238 return; 2239 2240 if (ctx->is_active & EVENT_TIME) { 2241 update_context_time(ctx); 2242 update_cgrp_time_from_event(event); 2243 } 2244 2245 if (event == event->group_leader) 2246 group_sched_out(event, cpuctx, ctx); 2247 else 2248 event_sched_out(event, cpuctx, ctx); 2249 2250 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2251 } 2252 2253 /* 2254 * Disable an event. 2255 * 2256 * If event->ctx is a cloned context, callers must make sure that 2257 * every task struct that event->ctx->task could possibly point to 2258 * remains valid. This condition is satisfied when called through 2259 * perf_event_for_each_child or perf_event_for_each because they 2260 * hold the top-level event's child_mutex, so any descendant that 2261 * goes to exit will block in perf_event_exit_event(). 2262 * 2263 * When called from perf_pending_event it's OK because event->ctx 2264 * is the current context on this CPU and preemption is disabled, 2265 * hence we can't get into perf_event_task_sched_out for this context. 2266 */ 2267 static void _perf_event_disable(struct perf_event *event) 2268 { 2269 struct perf_event_context *ctx = event->ctx; 2270 2271 raw_spin_lock_irq(&ctx->lock); 2272 if (event->state <= PERF_EVENT_STATE_OFF) { 2273 raw_spin_unlock_irq(&ctx->lock); 2274 return; 2275 } 2276 raw_spin_unlock_irq(&ctx->lock); 2277 2278 event_function_call(event, __perf_event_disable, NULL); 2279 } 2280 2281 void perf_event_disable_local(struct perf_event *event) 2282 { 2283 event_function_local(event, __perf_event_disable, NULL); 2284 } 2285 2286 /* 2287 * Strictly speaking kernel users cannot create groups and therefore this 2288 * interface does not need the perf_event_ctx_lock() magic. 2289 */ 2290 void perf_event_disable(struct perf_event *event) 2291 { 2292 struct perf_event_context *ctx; 2293 2294 ctx = perf_event_ctx_lock(event); 2295 _perf_event_disable(event); 2296 perf_event_ctx_unlock(event, ctx); 2297 } 2298 EXPORT_SYMBOL_GPL(perf_event_disable); 2299 2300 void perf_event_disable_inatomic(struct perf_event *event) 2301 { 2302 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2303 /* can fail, see perf_pending_event_disable() */ 2304 irq_work_queue(&event->pending); 2305 } 2306 2307 static void perf_set_shadow_time(struct perf_event *event, 2308 struct perf_event_context *ctx) 2309 { 2310 /* 2311 * use the correct time source for the time snapshot 2312 * 2313 * We could get by without this by leveraging the 2314 * fact that to get to this function, the caller 2315 * has most likely already called update_context_time() 2316 * and update_cgrp_time_xx() and thus both timestamp 2317 * are identical (or very close). Given that tstamp is, 2318 * already adjusted for cgroup, we could say that: 2319 * tstamp - ctx->timestamp 2320 * is equivalent to 2321 * tstamp - cgrp->timestamp. 2322 * 2323 * Then, in perf_output_read(), the calculation would 2324 * work with no changes because: 2325 * - event is guaranteed scheduled in 2326 * - no scheduled out in between 2327 * - thus the timestamp would be the same 2328 * 2329 * But this is a bit hairy. 2330 * 2331 * So instead, we have an explicit cgroup call to remain 2332 * within the time time source all along. We believe it 2333 * is cleaner and simpler to understand. 2334 */ 2335 if (is_cgroup_event(event)) 2336 perf_cgroup_set_shadow_time(event, event->tstamp); 2337 else 2338 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2339 } 2340 2341 #define MAX_INTERRUPTS (~0ULL) 2342 2343 static void perf_log_throttle(struct perf_event *event, int enable); 2344 static void perf_log_itrace_start(struct perf_event *event); 2345 2346 static int 2347 event_sched_in(struct perf_event *event, 2348 struct perf_cpu_context *cpuctx, 2349 struct perf_event_context *ctx) 2350 { 2351 int ret = 0; 2352 2353 lockdep_assert_held(&ctx->lock); 2354 2355 if (event->state <= PERF_EVENT_STATE_OFF) 2356 return 0; 2357 2358 WRITE_ONCE(event->oncpu, smp_processor_id()); 2359 /* 2360 * Order event::oncpu write to happen before the ACTIVE state is 2361 * visible. This allows perf_event_{stop,read}() to observe the correct 2362 * ->oncpu if it sees ACTIVE. 2363 */ 2364 smp_wmb(); 2365 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2366 2367 /* 2368 * Unthrottle events, since we scheduled we might have missed several 2369 * ticks already, also for a heavily scheduling task there is little 2370 * guarantee it'll get a tick in a timely manner. 2371 */ 2372 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2373 perf_log_throttle(event, 1); 2374 event->hw.interrupts = 0; 2375 } 2376 2377 perf_pmu_disable(event->pmu); 2378 2379 perf_set_shadow_time(event, ctx); 2380 2381 perf_log_itrace_start(event); 2382 2383 if (event->pmu->add(event, PERF_EF_START)) { 2384 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2385 event->oncpu = -1; 2386 ret = -EAGAIN; 2387 goto out; 2388 } 2389 2390 if (!is_software_event(event)) 2391 cpuctx->active_oncpu++; 2392 if (!ctx->nr_active++) 2393 perf_event_ctx_activate(ctx); 2394 if (event->attr.freq && event->attr.sample_freq) 2395 ctx->nr_freq++; 2396 2397 if (event->attr.exclusive) 2398 cpuctx->exclusive = 1; 2399 2400 out: 2401 perf_pmu_enable(event->pmu); 2402 2403 return ret; 2404 } 2405 2406 static int 2407 group_sched_in(struct perf_event *group_event, 2408 struct perf_cpu_context *cpuctx, 2409 struct perf_event_context *ctx) 2410 { 2411 struct perf_event *event, *partial_group = NULL; 2412 struct pmu *pmu = ctx->pmu; 2413 2414 if (group_event->state == PERF_EVENT_STATE_OFF) 2415 return 0; 2416 2417 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2418 2419 if (event_sched_in(group_event, cpuctx, ctx)) { 2420 pmu->cancel_txn(pmu); 2421 perf_mux_hrtimer_restart(cpuctx); 2422 return -EAGAIN; 2423 } 2424 2425 /* 2426 * Schedule in siblings as one group (if any): 2427 */ 2428 for_each_sibling_event(event, group_event) { 2429 if (event_sched_in(event, cpuctx, ctx)) { 2430 partial_group = event; 2431 goto group_error; 2432 } 2433 } 2434 2435 if (!pmu->commit_txn(pmu)) 2436 return 0; 2437 2438 group_error: 2439 /* 2440 * Groups can be scheduled in as one unit only, so undo any 2441 * partial group before returning: 2442 * The events up to the failed event are scheduled out normally. 2443 */ 2444 for_each_sibling_event(event, group_event) { 2445 if (event == partial_group) 2446 break; 2447 2448 event_sched_out(event, cpuctx, ctx); 2449 } 2450 event_sched_out(group_event, cpuctx, ctx); 2451 2452 pmu->cancel_txn(pmu); 2453 2454 perf_mux_hrtimer_restart(cpuctx); 2455 2456 return -EAGAIN; 2457 } 2458 2459 /* 2460 * Work out whether we can put this event group on the CPU now. 2461 */ 2462 static int group_can_go_on(struct perf_event *event, 2463 struct perf_cpu_context *cpuctx, 2464 int can_add_hw) 2465 { 2466 /* 2467 * Groups consisting entirely of software events can always go on. 2468 */ 2469 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2470 return 1; 2471 /* 2472 * If an exclusive group is already on, no other hardware 2473 * events can go on. 2474 */ 2475 if (cpuctx->exclusive) 2476 return 0; 2477 /* 2478 * If this group is exclusive and there are already 2479 * events on the CPU, it can't go on. 2480 */ 2481 if (event->attr.exclusive && cpuctx->active_oncpu) 2482 return 0; 2483 /* 2484 * Otherwise, try to add it if all previous groups were able 2485 * to go on. 2486 */ 2487 return can_add_hw; 2488 } 2489 2490 static void add_event_to_ctx(struct perf_event *event, 2491 struct perf_event_context *ctx) 2492 { 2493 list_add_event(event, ctx); 2494 perf_group_attach(event); 2495 } 2496 2497 static void ctx_sched_out(struct perf_event_context *ctx, 2498 struct perf_cpu_context *cpuctx, 2499 enum event_type_t event_type); 2500 static void 2501 ctx_sched_in(struct perf_event_context *ctx, 2502 struct perf_cpu_context *cpuctx, 2503 enum event_type_t event_type, 2504 struct task_struct *task); 2505 2506 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2507 struct perf_event_context *ctx, 2508 enum event_type_t event_type) 2509 { 2510 if (!cpuctx->task_ctx) 2511 return; 2512 2513 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2514 return; 2515 2516 ctx_sched_out(ctx, cpuctx, event_type); 2517 } 2518 2519 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2520 struct perf_event_context *ctx, 2521 struct task_struct *task) 2522 { 2523 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2524 if (ctx) 2525 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2526 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2527 if (ctx) 2528 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2529 } 2530 2531 /* 2532 * We want to maintain the following priority of scheduling: 2533 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2534 * - task pinned (EVENT_PINNED) 2535 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2536 * - task flexible (EVENT_FLEXIBLE). 2537 * 2538 * In order to avoid unscheduling and scheduling back in everything every 2539 * time an event is added, only do it for the groups of equal priority and 2540 * below. 2541 * 2542 * This can be called after a batch operation on task events, in which case 2543 * event_type is a bit mask of the types of events involved. For CPU events, 2544 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2545 */ 2546 static void ctx_resched(struct perf_cpu_context *cpuctx, 2547 struct perf_event_context *task_ctx, 2548 enum event_type_t event_type) 2549 { 2550 enum event_type_t ctx_event_type; 2551 bool cpu_event = !!(event_type & EVENT_CPU); 2552 2553 /* 2554 * If pinned groups are involved, flexible groups also need to be 2555 * scheduled out. 2556 */ 2557 if (event_type & EVENT_PINNED) 2558 event_type |= EVENT_FLEXIBLE; 2559 2560 ctx_event_type = event_type & EVENT_ALL; 2561 2562 perf_pmu_disable(cpuctx->ctx.pmu); 2563 if (task_ctx) 2564 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2565 2566 /* 2567 * Decide which cpu ctx groups to schedule out based on the types 2568 * of events that caused rescheduling: 2569 * - EVENT_CPU: schedule out corresponding groups; 2570 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2571 * - otherwise, do nothing more. 2572 */ 2573 if (cpu_event) 2574 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2575 else if (ctx_event_type & EVENT_PINNED) 2576 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2577 2578 perf_event_sched_in(cpuctx, task_ctx, current); 2579 perf_pmu_enable(cpuctx->ctx.pmu); 2580 } 2581 2582 void perf_pmu_resched(struct pmu *pmu) 2583 { 2584 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2585 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2586 2587 perf_ctx_lock(cpuctx, task_ctx); 2588 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2589 perf_ctx_unlock(cpuctx, task_ctx); 2590 } 2591 2592 /* 2593 * Cross CPU call to install and enable a performance event 2594 * 2595 * Very similar to remote_function() + event_function() but cannot assume that 2596 * things like ctx->is_active and cpuctx->task_ctx are set. 2597 */ 2598 static int __perf_install_in_context(void *info) 2599 { 2600 struct perf_event *event = info; 2601 struct perf_event_context *ctx = event->ctx; 2602 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2603 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2604 bool reprogram = true; 2605 int ret = 0; 2606 2607 raw_spin_lock(&cpuctx->ctx.lock); 2608 if (ctx->task) { 2609 raw_spin_lock(&ctx->lock); 2610 task_ctx = ctx; 2611 2612 reprogram = (ctx->task == current); 2613 2614 /* 2615 * If the task is running, it must be running on this CPU, 2616 * otherwise we cannot reprogram things. 2617 * 2618 * If its not running, we don't care, ctx->lock will 2619 * serialize against it becoming runnable. 2620 */ 2621 if (task_curr(ctx->task) && !reprogram) { 2622 ret = -ESRCH; 2623 goto unlock; 2624 } 2625 2626 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2627 } else if (task_ctx) { 2628 raw_spin_lock(&task_ctx->lock); 2629 } 2630 2631 #ifdef CONFIG_CGROUP_PERF 2632 if (is_cgroup_event(event)) { 2633 /* 2634 * If the current cgroup doesn't match the event's 2635 * cgroup, we should not try to schedule it. 2636 */ 2637 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2638 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2639 event->cgrp->css.cgroup); 2640 } 2641 #endif 2642 2643 if (reprogram) { 2644 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2645 add_event_to_ctx(event, ctx); 2646 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2647 } else { 2648 add_event_to_ctx(event, ctx); 2649 } 2650 2651 unlock: 2652 perf_ctx_unlock(cpuctx, task_ctx); 2653 2654 return ret; 2655 } 2656 2657 static bool exclusive_event_installable(struct perf_event *event, 2658 struct perf_event_context *ctx); 2659 2660 /* 2661 * Attach a performance event to a context. 2662 * 2663 * Very similar to event_function_call, see comment there. 2664 */ 2665 static void 2666 perf_install_in_context(struct perf_event_context *ctx, 2667 struct perf_event *event, 2668 int cpu) 2669 { 2670 struct task_struct *task = READ_ONCE(ctx->task); 2671 2672 lockdep_assert_held(&ctx->mutex); 2673 2674 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2675 2676 if (event->cpu != -1) 2677 event->cpu = cpu; 2678 2679 /* 2680 * Ensures that if we can observe event->ctx, both the event and ctx 2681 * will be 'complete'. See perf_iterate_sb_cpu(). 2682 */ 2683 smp_store_release(&event->ctx, ctx); 2684 2685 /* 2686 * perf_event_attr::disabled events will not run and can be initialized 2687 * without IPI. Except when this is the first event for the context, in 2688 * that case we need the magic of the IPI to set ctx->is_active. 2689 * 2690 * The IOC_ENABLE that is sure to follow the creation of a disabled 2691 * event will issue the IPI and reprogram the hardware. 2692 */ 2693 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2694 raw_spin_lock_irq(&ctx->lock); 2695 if (ctx->task == TASK_TOMBSTONE) { 2696 raw_spin_unlock_irq(&ctx->lock); 2697 return; 2698 } 2699 add_event_to_ctx(event, ctx); 2700 raw_spin_unlock_irq(&ctx->lock); 2701 return; 2702 } 2703 2704 if (!task) { 2705 cpu_function_call(cpu, __perf_install_in_context, event); 2706 return; 2707 } 2708 2709 /* 2710 * Should not happen, we validate the ctx is still alive before calling. 2711 */ 2712 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2713 return; 2714 2715 /* 2716 * Installing events is tricky because we cannot rely on ctx->is_active 2717 * to be set in case this is the nr_events 0 -> 1 transition. 2718 * 2719 * Instead we use task_curr(), which tells us if the task is running. 2720 * However, since we use task_curr() outside of rq::lock, we can race 2721 * against the actual state. This means the result can be wrong. 2722 * 2723 * If we get a false positive, we retry, this is harmless. 2724 * 2725 * If we get a false negative, things are complicated. If we are after 2726 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2727 * value must be correct. If we're before, it doesn't matter since 2728 * perf_event_context_sched_in() will program the counter. 2729 * 2730 * However, this hinges on the remote context switch having observed 2731 * our task->perf_event_ctxp[] store, such that it will in fact take 2732 * ctx::lock in perf_event_context_sched_in(). 2733 * 2734 * We do this by task_function_call(), if the IPI fails to hit the task 2735 * we know any future context switch of task must see the 2736 * perf_event_ctpx[] store. 2737 */ 2738 2739 /* 2740 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2741 * task_cpu() load, such that if the IPI then does not find the task 2742 * running, a future context switch of that task must observe the 2743 * store. 2744 */ 2745 smp_mb(); 2746 again: 2747 if (!task_function_call(task, __perf_install_in_context, event)) 2748 return; 2749 2750 raw_spin_lock_irq(&ctx->lock); 2751 task = ctx->task; 2752 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2753 /* 2754 * Cannot happen because we already checked above (which also 2755 * cannot happen), and we hold ctx->mutex, which serializes us 2756 * against perf_event_exit_task_context(). 2757 */ 2758 raw_spin_unlock_irq(&ctx->lock); 2759 return; 2760 } 2761 /* 2762 * If the task is not running, ctx->lock will avoid it becoming so, 2763 * thus we can safely install the event. 2764 */ 2765 if (task_curr(task)) { 2766 raw_spin_unlock_irq(&ctx->lock); 2767 goto again; 2768 } 2769 add_event_to_ctx(event, ctx); 2770 raw_spin_unlock_irq(&ctx->lock); 2771 } 2772 2773 /* 2774 * Cross CPU call to enable a performance event 2775 */ 2776 static void __perf_event_enable(struct perf_event *event, 2777 struct perf_cpu_context *cpuctx, 2778 struct perf_event_context *ctx, 2779 void *info) 2780 { 2781 struct perf_event *leader = event->group_leader; 2782 struct perf_event_context *task_ctx; 2783 2784 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2785 event->state <= PERF_EVENT_STATE_ERROR) 2786 return; 2787 2788 if (ctx->is_active) 2789 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2790 2791 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2792 2793 if (!ctx->is_active) 2794 return; 2795 2796 if (!event_filter_match(event)) { 2797 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2798 return; 2799 } 2800 2801 /* 2802 * If the event is in a group and isn't the group leader, 2803 * then don't put it on unless the group is on. 2804 */ 2805 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2806 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2807 return; 2808 } 2809 2810 task_ctx = cpuctx->task_ctx; 2811 if (ctx->task) 2812 WARN_ON_ONCE(task_ctx != ctx); 2813 2814 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2815 } 2816 2817 /* 2818 * Enable an event. 2819 * 2820 * If event->ctx is a cloned context, callers must make sure that 2821 * every task struct that event->ctx->task could possibly point to 2822 * remains valid. This condition is satisfied when called through 2823 * perf_event_for_each_child or perf_event_for_each as described 2824 * for perf_event_disable. 2825 */ 2826 static void _perf_event_enable(struct perf_event *event) 2827 { 2828 struct perf_event_context *ctx = event->ctx; 2829 2830 raw_spin_lock_irq(&ctx->lock); 2831 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2832 event->state < PERF_EVENT_STATE_ERROR) { 2833 raw_spin_unlock_irq(&ctx->lock); 2834 return; 2835 } 2836 2837 /* 2838 * If the event is in error state, clear that first. 2839 * 2840 * That way, if we see the event in error state below, we know that it 2841 * has gone back into error state, as distinct from the task having 2842 * been scheduled away before the cross-call arrived. 2843 */ 2844 if (event->state == PERF_EVENT_STATE_ERROR) 2845 event->state = PERF_EVENT_STATE_OFF; 2846 raw_spin_unlock_irq(&ctx->lock); 2847 2848 event_function_call(event, __perf_event_enable, NULL); 2849 } 2850 2851 /* 2852 * See perf_event_disable(); 2853 */ 2854 void perf_event_enable(struct perf_event *event) 2855 { 2856 struct perf_event_context *ctx; 2857 2858 ctx = perf_event_ctx_lock(event); 2859 _perf_event_enable(event); 2860 perf_event_ctx_unlock(event, ctx); 2861 } 2862 EXPORT_SYMBOL_GPL(perf_event_enable); 2863 2864 struct stop_event_data { 2865 struct perf_event *event; 2866 unsigned int restart; 2867 }; 2868 2869 static int __perf_event_stop(void *info) 2870 { 2871 struct stop_event_data *sd = info; 2872 struct perf_event *event = sd->event; 2873 2874 /* if it's already INACTIVE, do nothing */ 2875 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2876 return 0; 2877 2878 /* matches smp_wmb() in event_sched_in() */ 2879 smp_rmb(); 2880 2881 /* 2882 * There is a window with interrupts enabled before we get here, 2883 * so we need to check again lest we try to stop another CPU's event. 2884 */ 2885 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2886 return -EAGAIN; 2887 2888 event->pmu->stop(event, PERF_EF_UPDATE); 2889 2890 /* 2891 * May race with the actual stop (through perf_pmu_output_stop()), 2892 * but it is only used for events with AUX ring buffer, and such 2893 * events will refuse to restart because of rb::aux_mmap_count==0, 2894 * see comments in perf_aux_output_begin(). 2895 * 2896 * Since this is happening on an event-local CPU, no trace is lost 2897 * while restarting. 2898 */ 2899 if (sd->restart) 2900 event->pmu->start(event, 0); 2901 2902 return 0; 2903 } 2904 2905 static int perf_event_stop(struct perf_event *event, int restart) 2906 { 2907 struct stop_event_data sd = { 2908 .event = event, 2909 .restart = restart, 2910 }; 2911 int ret = 0; 2912 2913 do { 2914 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2915 return 0; 2916 2917 /* matches smp_wmb() in event_sched_in() */ 2918 smp_rmb(); 2919 2920 /* 2921 * We only want to restart ACTIVE events, so if the event goes 2922 * inactive here (event->oncpu==-1), there's nothing more to do; 2923 * fall through with ret==-ENXIO. 2924 */ 2925 ret = cpu_function_call(READ_ONCE(event->oncpu), 2926 __perf_event_stop, &sd); 2927 } while (ret == -EAGAIN); 2928 2929 return ret; 2930 } 2931 2932 /* 2933 * In order to contain the amount of racy and tricky in the address filter 2934 * configuration management, it is a two part process: 2935 * 2936 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2937 * we update the addresses of corresponding vmas in 2938 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2939 * (p2) when an event is scheduled in (pmu::add), it calls 2940 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2941 * if the generation has changed since the previous call. 2942 * 2943 * If (p1) happens while the event is active, we restart it to force (p2). 2944 * 2945 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2946 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2947 * ioctl; 2948 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2949 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2950 * for reading; 2951 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2952 * of exec. 2953 */ 2954 void perf_event_addr_filters_sync(struct perf_event *event) 2955 { 2956 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2957 2958 if (!has_addr_filter(event)) 2959 return; 2960 2961 raw_spin_lock(&ifh->lock); 2962 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2963 event->pmu->addr_filters_sync(event); 2964 event->hw.addr_filters_gen = event->addr_filters_gen; 2965 } 2966 raw_spin_unlock(&ifh->lock); 2967 } 2968 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2969 2970 static int _perf_event_refresh(struct perf_event *event, int refresh) 2971 { 2972 /* 2973 * not supported on inherited events 2974 */ 2975 if (event->attr.inherit || !is_sampling_event(event)) 2976 return -EINVAL; 2977 2978 atomic_add(refresh, &event->event_limit); 2979 _perf_event_enable(event); 2980 2981 return 0; 2982 } 2983 2984 /* 2985 * See perf_event_disable() 2986 */ 2987 int perf_event_refresh(struct perf_event *event, int refresh) 2988 { 2989 struct perf_event_context *ctx; 2990 int ret; 2991 2992 ctx = perf_event_ctx_lock(event); 2993 ret = _perf_event_refresh(event, refresh); 2994 perf_event_ctx_unlock(event, ctx); 2995 2996 return ret; 2997 } 2998 EXPORT_SYMBOL_GPL(perf_event_refresh); 2999 3000 static int perf_event_modify_breakpoint(struct perf_event *bp, 3001 struct perf_event_attr *attr) 3002 { 3003 int err; 3004 3005 _perf_event_disable(bp); 3006 3007 err = modify_user_hw_breakpoint_check(bp, attr, true); 3008 3009 if (!bp->attr.disabled) 3010 _perf_event_enable(bp); 3011 3012 return err; 3013 } 3014 3015 static int perf_event_modify_attr(struct perf_event *event, 3016 struct perf_event_attr *attr) 3017 { 3018 if (event->attr.type != attr->type) 3019 return -EINVAL; 3020 3021 switch (event->attr.type) { 3022 case PERF_TYPE_BREAKPOINT: 3023 return perf_event_modify_breakpoint(event, attr); 3024 default: 3025 /* Place holder for future additions. */ 3026 return -EOPNOTSUPP; 3027 } 3028 } 3029 3030 static void ctx_sched_out(struct perf_event_context *ctx, 3031 struct perf_cpu_context *cpuctx, 3032 enum event_type_t event_type) 3033 { 3034 struct perf_event *event, *tmp; 3035 int is_active = ctx->is_active; 3036 3037 lockdep_assert_held(&ctx->lock); 3038 3039 if (likely(!ctx->nr_events)) { 3040 /* 3041 * See __perf_remove_from_context(). 3042 */ 3043 WARN_ON_ONCE(ctx->is_active); 3044 if (ctx->task) 3045 WARN_ON_ONCE(cpuctx->task_ctx); 3046 return; 3047 } 3048 3049 ctx->is_active &= ~event_type; 3050 if (!(ctx->is_active & EVENT_ALL)) 3051 ctx->is_active = 0; 3052 3053 if (ctx->task) { 3054 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3055 if (!ctx->is_active) 3056 cpuctx->task_ctx = NULL; 3057 } 3058 3059 /* 3060 * Always update time if it was set; not only when it changes. 3061 * Otherwise we can 'forget' to update time for any but the last 3062 * context we sched out. For example: 3063 * 3064 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3065 * ctx_sched_out(.event_type = EVENT_PINNED) 3066 * 3067 * would only update time for the pinned events. 3068 */ 3069 if (is_active & EVENT_TIME) { 3070 /* update (and stop) ctx time */ 3071 update_context_time(ctx); 3072 update_cgrp_time_from_cpuctx(cpuctx); 3073 } 3074 3075 is_active ^= ctx->is_active; /* changed bits */ 3076 3077 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3078 return; 3079 3080 /* 3081 * If we had been multiplexing, no rotations are necessary, now no events 3082 * are active. 3083 */ 3084 ctx->rotate_necessary = 0; 3085 3086 perf_pmu_disable(ctx->pmu); 3087 if (is_active & EVENT_PINNED) { 3088 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3089 group_sched_out(event, cpuctx, ctx); 3090 } 3091 3092 if (is_active & EVENT_FLEXIBLE) { 3093 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3094 group_sched_out(event, cpuctx, ctx); 3095 } 3096 perf_pmu_enable(ctx->pmu); 3097 } 3098 3099 /* 3100 * Test whether two contexts are equivalent, i.e. whether they have both been 3101 * cloned from the same version of the same context. 3102 * 3103 * Equivalence is measured using a generation number in the context that is 3104 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3105 * and list_del_event(). 3106 */ 3107 static int context_equiv(struct perf_event_context *ctx1, 3108 struct perf_event_context *ctx2) 3109 { 3110 lockdep_assert_held(&ctx1->lock); 3111 lockdep_assert_held(&ctx2->lock); 3112 3113 /* Pinning disables the swap optimization */ 3114 if (ctx1->pin_count || ctx2->pin_count) 3115 return 0; 3116 3117 /* If ctx1 is the parent of ctx2 */ 3118 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3119 return 1; 3120 3121 /* If ctx2 is the parent of ctx1 */ 3122 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3123 return 1; 3124 3125 /* 3126 * If ctx1 and ctx2 have the same parent; we flatten the parent 3127 * hierarchy, see perf_event_init_context(). 3128 */ 3129 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3130 ctx1->parent_gen == ctx2->parent_gen) 3131 return 1; 3132 3133 /* Unmatched */ 3134 return 0; 3135 } 3136 3137 static void __perf_event_sync_stat(struct perf_event *event, 3138 struct perf_event *next_event) 3139 { 3140 u64 value; 3141 3142 if (!event->attr.inherit_stat) 3143 return; 3144 3145 /* 3146 * Update the event value, we cannot use perf_event_read() 3147 * because we're in the middle of a context switch and have IRQs 3148 * disabled, which upsets smp_call_function_single(), however 3149 * we know the event must be on the current CPU, therefore we 3150 * don't need to use it. 3151 */ 3152 if (event->state == PERF_EVENT_STATE_ACTIVE) 3153 event->pmu->read(event); 3154 3155 perf_event_update_time(event); 3156 3157 /* 3158 * In order to keep per-task stats reliable we need to flip the event 3159 * values when we flip the contexts. 3160 */ 3161 value = local64_read(&next_event->count); 3162 value = local64_xchg(&event->count, value); 3163 local64_set(&next_event->count, value); 3164 3165 swap(event->total_time_enabled, next_event->total_time_enabled); 3166 swap(event->total_time_running, next_event->total_time_running); 3167 3168 /* 3169 * Since we swizzled the values, update the user visible data too. 3170 */ 3171 perf_event_update_userpage(event); 3172 perf_event_update_userpage(next_event); 3173 } 3174 3175 static void perf_event_sync_stat(struct perf_event_context *ctx, 3176 struct perf_event_context *next_ctx) 3177 { 3178 struct perf_event *event, *next_event; 3179 3180 if (!ctx->nr_stat) 3181 return; 3182 3183 update_context_time(ctx); 3184 3185 event = list_first_entry(&ctx->event_list, 3186 struct perf_event, event_entry); 3187 3188 next_event = list_first_entry(&next_ctx->event_list, 3189 struct perf_event, event_entry); 3190 3191 while (&event->event_entry != &ctx->event_list && 3192 &next_event->event_entry != &next_ctx->event_list) { 3193 3194 __perf_event_sync_stat(event, next_event); 3195 3196 event = list_next_entry(event, event_entry); 3197 next_event = list_next_entry(next_event, event_entry); 3198 } 3199 } 3200 3201 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3202 struct task_struct *next) 3203 { 3204 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3205 struct perf_event_context *next_ctx; 3206 struct perf_event_context *parent, *next_parent; 3207 struct perf_cpu_context *cpuctx; 3208 int do_switch = 1; 3209 3210 if (likely(!ctx)) 3211 return; 3212 3213 cpuctx = __get_cpu_context(ctx); 3214 if (!cpuctx->task_ctx) 3215 return; 3216 3217 rcu_read_lock(); 3218 next_ctx = next->perf_event_ctxp[ctxn]; 3219 if (!next_ctx) 3220 goto unlock; 3221 3222 parent = rcu_dereference(ctx->parent_ctx); 3223 next_parent = rcu_dereference(next_ctx->parent_ctx); 3224 3225 /* If neither context have a parent context; they cannot be clones. */ 3226 if (!parent && !next_parent) 3227 goto unlock; 3228 3229 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3230 /* 3231 * Looks like the two contexts are clones, so we might be 3232 * able to optimize the context switch. We lock both 3233 * contexts and check that they are clones under the 3234 * lock (including re-checking that neither has been 3235 * uncloned in the meantime). It doesn't matter which 3236 * order we take the locks because no other cpu could 3237 * be trying to lock both of these tasks. 3238 */ 3239 raw_spin_lock(&ctx->lock); 3240 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3241 if (context_equiv(ctx, next_ctx)) { 3242 struct pmu *pmu = ctx->pmu; 3243 3244 WRITE_ONCE(ctx->task, next); 3245 WRITE_ONCE(next_ctx->task, task); 3246 3247 /* 3248 * PMU specific parts of task perf context can require 3249 * additional synchronization. As an example of such 3250 * synchronization see implementation details of Intel 3251 * LBR call stack data profiling; 3252 */ 3253 if (pmu->swap_task_ctx) 3254 pmu->swap_task_ctx(ctx, next_ctx); 3255 else 3256 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3257 3258 /* 3259 * RCU_INIT_POINTER here is safe because we've not 3260 * modified the ctx and the above modification of 3261 * ctx->task and ctx->task_ctx_data are immaterial 3262 * since those values are always verified under 3263 * ctx->lock which we're now holding. 3264 */ 3265 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3266 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3267 3268 do_switch = 0; 3269 3270 perf_event_sync_stat(ctx, next_ctx); 3271 } 3272 raw_spin_unlock(&next_ctx->lock); 3273 raw_spin_unlock(&ctx->lock); 3274 } 3275 unlock: 3276 rcu_read_unlock(); 3277 3278 if (do_switch) { 3279 raw_spin_lock(&ctx->lock); 3280 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3281 raw_spin_unlock(&ctx->lock); 3282 } 3283 } 3284 3285 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3286 3287 void perf_sched_cb_dec(struct pmu *pmu) 3288 { 3289 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3290 3291 this_cpu_dec(perf_sched_cb_usages); 3292 3293 if (!--cpuctx->sched_cb_usage) 3294 list_del(&cpuctx->sched_cb_entry); 3295 } 3296 3297 3298 void perf_sched_cb_inc(struct pmu *pmu) 3299 { 3300 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3301 3302 if (!cpuctx->sched_cb_usage++) 3303 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3304 3305 this_cpu_inc(perf_sched_cb_usages); 3306 } 3307 3308 /* 3309 * This function provides the context switch callback to the lower code 3310 * layer. It is invoked ONLY when the context switch callback is enabled. 3311 * 3312 * This callback is relevant even to per-cpu events; for example multi event 3313 * PEBS requires this to provide PID/TID information. This requires we flush 3314 * all queued PEBS records before we context switch to a new task. 3315 */ 3316 static void perf_pmu_sched_task(struct task_struct *prev, 3317 struct task_struct *next, 3318 bool sched_in) 3319 { 3320 struct perf_cpu_context *cpuctx; 3321 struct pmu *pmu; 3322 3323 if (prev == next) 3324 return; 3325 3326 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3327 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3328 3329 if (WARN_ON_ONCE(!pmu->sched_task)) 3330 continue; 3331 3332 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3333 perf_pmu_disable(pmu); 3334 3335 pmu->sched_task(cpuctx->task_ctx, sched_in); 3336 3337 perf_pmu_enable(pmu); 3338 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3339 } 3340 } 3341 3342 static void perf_event_switch(struct task_struct *task, 3343 struct task_struct *next_prev, bool sched_in); 3344 3345 #define for_each_task_context_nr(ctxn) \ 3346 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3347 3348 /* 3349 * Called from scheduler to remove the events of the current task, 3350 * with interrupts disabled. 3351 * 3352 * We stop each event and update the event value in event->count. 3353 * 3354 * This does not protect us against NMI, but disable() 3355 * sets the disabled bit in the control field of event _before_ 3356 * accessing the event control register. If a NMI hits, then it will 3357 * not restart the event. 3358 */ 3359 void __perf_event_task_sched_out(struct task_struct *task, 3360 struct task_struct *next) 3361 { 3362 int ctxn; 3363 3364 if (__this_cpu_read(perf_sched_cb_usages)) 3365 perf_pmu_sched_task(task, next, false); 3366 3367 if (atomic_read(&nr_switch_events)) 3368 perf_event_switch(task, next, false); 3369 3370 for_each_task_context_nr(ctxn) 3371 perf_event_context_sched_out(task, ctxn, next); 3372 3373 /* 3374 * if cgroup events exist on this CPU, then we need 3375 * to check if we have to switch out PMU state. 3376 * cgroup event are system-wide mode only 3377 */ 3378 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3379 perf_cgroup_sched_out(task, next); 3380 } 3381 3382 /* 3383 * Called with IRQs disabled 3384 */ 3385 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3386 enum event_type_t event_type) 3387 { 3388 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3389 } 3390 3391 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3392 int (*func)(struct perf_event *, void *), void *data) 3393 { 3394 struct perf_event **evt, *evt1, *evt2; 3395 int ret; 3396 3397 evt1 = perf_event_groups_first(groups, -1); 3398 evt2 = perf_event_groups_first(groups, cpu); 3399 3400 while (evt1 || evt2) { 3401 if (evt1 && evt2) { 3402 if (evt1->group_index < evt2->group_index) 3403 evt = &evt1; 3404 else 3405 evt = &evt2; 3406 } else if (evt1) { 3407 evt = &evt1; 3408 } else { 3409 evt = &evt2; 3410 } 3411 3412 ret = func(*evt, data); 3413 if (ret) 3414 return ret; 3415 3416 *evt = perf_event_groups_next(*evt); 3417 } 3418 3419 return 0; 3420 } 3421 3422 struct sched_in_data { 3423 struct perf_event_context *ctx; 3424 struct perf_cpu_context *cpuctx; 3425 int can_add_hw; 3426 }; 3427 3428 static int pinned_sched_in(struct perf_event *event, void *data) 3429 { 3430 struct sched_in_data *sid = data; 3431 3432 if (event->state <= PERF_EVENT_STATE_OFF) 3433 return 0; 3434 3435 if (!event_filter_match(event)) 3436 return 0; 3437 3438 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3439 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3440 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3441 } 3442 3443 /* 3444 * If this pinned group hasn't been scheduled, 3445 * put it in error state. 3446 */ 3447 if (event->state == PERF_EVENT_STATE_INACTIVE) 3448 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3449 3450 return 0; 3451 } 3452 3453 static int flexible_sched_in(struct perf_event *event, void *data) 3454 { 3455 struct sched_in_data *sid = data; 3456 3457 if (event->state <= PERF_EVENT_STATE_OFF) 3458 return 0; 3459 3460 if (!event_filter_match(event)) 3461 return 0; 3462 3463 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3464 int ret = group_sched_in(event, sid->cpuctx, sid->ctx); 3465 if (ret) { 3466 sid->can_add_hw = 0; 3467 sid->ctx->rotate_necessary = 1; 3468 return 0; 3469 } 3470 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3471 } 3472 3473 return 0; 3474 } 3475 3476 static void 3477 ctx_pinned_sched_in(struct perf_event_context *ctx, 3478 struct perf_cpu_context *cpuctx) 3479 { 3480 struct sched_in_data sid = { 3481 .ctx = ctx, 3482 .cpuctx = cpuctx, 3483 .can_add_hw = 1, 3484 }; 3485 3486 visit_groups_merge(&ctx->pinned_groups, 3487 smp_processor_id(), 3488 pinned_sched_in, &sid); 3489 } 3490 3491 static void 3492 ctx_flexible_sched_in(struct perf_event_context *ctx, 3493 struct perf_cpu_context *cpuctx) 3494 { 3495 struct sched_in_data sid = { 3496 .ctx = ctx, 3497 .cpuctx = cpuctx, 3498 .can_add_hw = 1, 3499 }; 3500 3501 visit_groups_merge(&ctx->flexible_groups, 3502 smp_processor_id(), 3503 flexible_sched_in, &sid); 3504 } 3505 3506 static void 3507 ctx_sched_in(struct perf_event_context *ctx, 3508 struct perf_cpu_context *cpuctx, 3509 enum event_type_t event_type, 3510 struct task_struct *task) 3511 { 3512 int is_active = ctx->is_active; 3513 u64 now; 3514 3515 lockdep_assert_held(&ctx->lock); 3516 3517 if (likely(!ctx->nr_events)) 3518 return; 3519 3520 ctx->is_active |= (event_type | EVENT_TIME); 3521 if (ctx->task) { 3522 if (!is_active) 3523 cpuctx->task_ctx = ctx; 3524 else 3525 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3526 } 3527 3528 is_active ^= ctx->is_active; /* changed bits */ 3529 3530 if (is_active & EVENT_TIME) { 3531 /* start ctx time */ 3532 now = perf_clock(); 3533 ctx->timestamp = now; 3534 perf_cgroup_set_timestamp(task, ctx); 3535 } 3536 3537 /* 3538 * First go through the list and put on any pinned groups 3539 * in order to give them the best chance of going on. 3540 */ 3541 if (is_active & EVENT_PINNED) 3542 ctx_pinned_sched_in(ctx, cpuctx); 3543 3544 /* Then walk through the lower prio flexible groups */ 3545 if (is_active & EVENT_FLEXIBLE) 3546 ctx_flexible_sched_in(ctx, cpuctx); 3547 } 3548 3549 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3550 enum event_type_t event_type, 3551 struct task_struct *task) 3552 { 3553 struct perf_event_context *ctx = &cpuctx->ctx; 3554 3555 ctx_sched_in(ctx, cpuctx, event_type, task); 3556 } 3557 3558 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3559 struct task_struct *task) 3560 { 3561 struct perf_cpu_context *cpuctx; 3562 3563 cpuctx = __get_cpu_context(ctx); 3564 if (cpuctx->task_ctx == ctx) 3565 return; 3566 3567 perf_ctx_lock(cpuctx, ctx); 3568 /* 3569 * We must check ctx->nr_events while holding ctx->lock, such 3570 * that we serialize against perf_install_in_context(). 3571 */ 3572 if (!ctx->nr_events) 3573 goto unlock; 3574 3575 perf_pmu_disable(ctx->pmu); 3576 /* 3577 * We want to keep the following priority order: 3578 * cpu pinned (that don't need to move), task pinned, 3579 * cpu flexible, task flexible. 3580 * 3581 * However, if task's ctx is not carrying any pinned 3582 * events, no need to flip the cpuctx's events around. 3583 */ 3584 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3585 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3586 perf_event_sched_in(cpuctx, ctx, task); 3587 perf_pmu_enable(ctx->pmu); 3588 3589 unlock: 3590 perf_ctx_unlock(cpuctx, ctx); 3591 } 3592 3593 /* 3594 * Called from scheduler to add the events of the current task 3595 * with interrupts disabled. 3596 * 3597 * We restore the event value and then enable it. 3598 * 3599 * This does not protect us against NMI, but enable() 3600 * sets the enabled bit in the control field of event _before_ 3601 * accessing the event control register. If a NMI hits, then it will 3602 * keep the event running. 3603 */ 3604 void __perf_event_task_sched_in(struct task_struct *prev, 3605 struct task_struct *task) 3606 { 3607 struct perf_event_context *ctx; 3608 int ctxn; 3609 3610 /* 3611 * If cgroup events exist on this CPU, then we need to check if we have 3612 * to switch in PMU state; cgroup event are system-wide mode only. 3613 * 3614 * Since cgroup events are CPU events, we must schedule these in before 3615 * we schedule in the task events. 3616 */ 3617 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3618 perf_cgroup_sched_in(prev, task); 3619 3620 for_each_task_context_nr(ctxn) { 3621 ctx = task->perf_event_ctxp[ctxn]; 3622 if (likely(!ctx)) 3623 continue; 3624 3625 perf_event_context_sched_in(ctx, task); 3626 } 3627 3628 if (atomic_read(&nr_switch_events)) 3629 perf_event_switch(task, prev, true); 3630 3631 if (__this_cpu_read(perf_sched_cb_usages)) 3632 perf_pmu_sched_task(prev, task, true); 3633 } 3634 3635 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3636 { 3637 u64 frequency = event->attr.sample_freq; 3638 u64 sec = NSEC_PER_SEC; 3639 u64 divisor, dividend; 3640 3641 int count_fls, nsec_fls, frequency_fls, sec_fls; 3642 3643 count_fls = fls64(count); 3644 nsec_fls = fls64(nsec); 3645 frequency_fls = fls64(frequency); 3646 sec_fls = 30; 3647 3648 /* 3649 * We got @count in @nsec, with a target of sample_freq HZ 3650 * the target period becomes: 3651 * 3652 * @count * 10^9 3653 * period = ------------------- 3654 * @nsec * sample_freq 3655 * 3656 */ 3657 3658 /* 3659 * Reduce accuracy by one bit such that @a and @b converge 3660 * to a similar magnitude. 3661 */ 3662 #define REDUCE_FLS(a, b) \ 3663 do { \ 3664 if (a##_fls > b##_fls) { \ 3665 a >>= 1; \ 3666 a##_fls--; \ 3667 } else { \ 3668 b >>= 1; \ 3669 b##_fls--; \ 3670 } \ 3671 } while (0) 3672 3673 /* 3674 * Reduce accuracy until either term fits in a u64, then proceed with 3675 * the other, so that finally we can do a u64/u64 division. 3676 */ 3677 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3678 REDUCE_FLS(nsec, frequency); 3679 REDUCE_FLS(sec, count); 3680 } 3681 3682 if (count_fls + sec_fls > 64) { 3683 divisor = nsec * frequency; 3684 3685 while (count_fls + sec_fls > 64) { 3686 REDUCE_FLS(count, sec); 3687 divisor >>= 1; 3688 } 3689 3690 dividend = count * sec; 3691 } else { 3692 dividend = count * sec; 3693 3694 while (nsec_fls + frequency_fls > 64) { 3695 REDUCE_FLS(nsec, frequency); 3696 dividend >>= 1; 3697 } 3698 3699 divisor = nsec * frequency; 3700 } 3701 3702 if (!divisor) 3703 return dividend; 3704 3705 return div64_u64(dividend, divisor); 3706 } 3707 3708 static DEFINE_PER_CPU(int, perf_throttled_count); 3709 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3710 3711 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3712 { 3713 struct hw_perf_event *hwc = &event->hw; 3714 s64 period, sample_period; 3715 s64 delta; 3716 3717 period = perf_calculate_period(event, nsec, count); 3718 3719 delta = (s64)(period - hwc->sample_period); 3720 delta = (delta + 7) / 8; /* low pass filter */ 3721 3722 sample_period = hwc->sample_period + delta; 3723 3724 if (!sample_period) 3725 sample_period = 1; 3726 3727 hwc->sample_period = sample_period; 3728 3729 if (local64_read(&hwc->period_left) > 8*sample_period) { 3730 if (disable) 3731 event->pmu->stop(event, PERF_EF_UPDATE); 3732 3733 local64_set(&hwc->period_left, 0); 3734 3735 if (disable) 3736 event->pmu->start(event, PERF_EF_RELOAD); 3737 } 3738 } 3739 3740 /* 3741 * combine freq adjustment with unthrottling to avoid two passes over the 3742 * events. At the same time, make sure, having freq events does not change 3743 * the rate of unthrottling as that would introduce bias. 3744 */ 3745 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3746 int needs_unthr) 3747 { 3748 struct perf_event *event; 3749 struct hw_perf_event *hwc; 3750 u64 now, period = TICK_NSEC; 3751 s64 delta; 3752 3753 /* 3754 * only need to iterate over all events iff: 3755 * - context have events in frequency mode (needs freq adjust) 3756 * - there are events to unthrottle on this cpu 3757 */ 3758 if (!(ctx->nr_freq || needs_unthr)) 3759 return; 3760 3761 raw_spin_lock(&ctx->lock); 3762 perf_pmu_disable(ctx->pmu); 3763 3764 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3765 if (event->state != PERF_EVENT_STATE_ACTIVE) 3766 continue; 3767 3768 if (!event_filter_match(event)) 3769 continue; 3770 3771 perf_pmu_disable(event->pmu); 3772 3773 hwc = &event->hw; 3774 3775 if (hwc->interrupts == MAX_INTERRUPTS) { 3776 hwc->interrupts = 0; 3777 perf_log_throttle(event, 1); 3778 event->pmu->start(event, 0); 3779 } 3780 3781 if (!event->attr.freq || !event->attr.sample_freq) 3782 goto next; 3783 3784 /* 3785 * stop the event and update event->count 3786 */ 3787 event->pmu->stop(event, PERF_EF_UPDATE); 3788 3789 now = local64_read(&event->count); 3790 delta = now - hwc->freq_count_stamp; 3791 hwc->freq_count_stamp = now; 3792 3793 /* 3794 * restart the event 3795 * reload only if value has changed 3796 * we have stopped the event so tell that 3797 * to perf_adjust_period() to avoid stopping it 3798 * twice. 3799 */ 3800 if (delta > 0) 3801 perf_adjust_period(event, period, delta, false); 3802 3803 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3804 next: 3805 perf_pmu_enable(event->pmu); 3806 } 3807 3808 perf_pmu_enable(ctx->pmu); 3809 raw_spin_unlock(&ctx->lock); 3810 } 3811 3812 /* 3813 * Move @event to the tail of the @ctx's elegible events. 3814 */ 3815 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3816 { 3817 /* 3818 * Rotate the first entry last of non-pinned groups. Rotation might be 3819 * disabled by the inheritance code. 3820 */ 3821 if (ctx->rotate_disable) 3822 return; 3823 3824 perf_event_groups_delete(&ctx->flexible_groups, event); 3825 perf_event_groups_insert(&ctx->flexible_groups, event); 3826 } 3827 3828 /* pick an event from the flexible_groups to rotate */ 3829 static inline struct perf_event * 3830 ctx_event_to_rotate(struct perf_event_context *ctx) 3831 { 3832 struct perf_event *event; 3833 3834 /* pick the first active flexible event */ 3835 event = list_first_entry_or_null(&ctx->flexible_active, 3836 struct perf_event, active_list); 3837 3838 /* if no active flexible event, pick the first event */ 3839 if (!event) { 3840 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 3841 typeof(*event), group_node); 3842 } 3843 3844 return event; 3845 } 3846 3847 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3848 { 3849 struct perf_event *cpu_event = NULL, *task_event = NULL; 3850 struct perf_event_context *task_ctx = NULL; 3851 int cpu_rotate, task_rotate; 3852 3853 /* 3854 * Since we run this from IRQ context, nobody can install new 3855 * events, thus the event count values are stable. 3856 */ 3857 3858 cpu_rotate = cpuctx->ctx.rotate_necessary; 3859 task_ctx = cpuctx->task_ctx; 3860 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 3861 3862 if (!(cpu_rotate || task_rotate)) 3863 return false; 3864 3865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3866 perf_pmu_disable(cpuctx->ctx.pmu); 3867 3868 if (task_rotate) 3869 task_event = ctx_event_to_rotate(task_ctx); 3870 if (cpu_rotate) 3871 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 3872 3873 /* 3874 * As per the order given at ctx_resched() first 'pop' task flexible 3875 * and then, if needed CPU flexible. 3876 */ 3877 if (task_event || (task_ctx && cpu_event)) 3878 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 3879 if (cpu_event) 3880 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3881 3882 if (task_event) 3883 rotate_ctx(task_ctx, task_event); 3884 if (cpu_event) 3885 rotate_ctx(&cpuctx->ctx, cpu_event); 3886 3887 perf_event_sched_in(cpuctx, task_ctx, current); 3888 3889 perf_pmu_enable(cpuctx->ctx.pmu); 3890 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3891 3892 return true; 3893 } 3894 3895 void perf_event_task_tick(void) 3896 { 3897 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3898 struct perf_event_context *ctx, *tmp; 3899 int throttled; 3900 3901 lockdep_assert_irqs_disabled(); 3902 3903 __this_cpu_inc(perf_throttled_seq); 3904 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3905 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3906 3907 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3908 perf_adjust_freq_unthr_context(ctx, throttled); 3909 } 3910 3911 static int event_enable_on_exec(struct perf_event *event, 3912 struct perf_event_context *ctx) 3913 { 3914 if (!event->attr.enable_on_exec) 3915 return 0; 3916 3917 event->attr.enable_on_exec = 0; 3918 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3919 return 0; 3920 3921 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3922 3923 return 1; 3924 } 3925 3926 /* 3927 * Enable all of a task's events that have been marked enable-on-exec. 3928 * This expects task == current. 3929 */ 3930 static void perf_event_enable_on_exec(int ctxn) 3931 { 3932 struct perf_event_context *ctx, *clone_ctx = NULL; 3933 enum event_type_t event_type = 0; 3934 struct perf_cpu_context *cpuctx; 3935 struct perf_event *event; 3936 unsigned long flags; 3937 int enabled = 0; 3938 3939 local_irq_save(flags); 3940 ctx = current->perf_event_ctxp[ctxn]; 3941 if (!ctx || !ctx->nr_events) 3942 goto out; 3943 3944 cpuctx = __get_cpu_context(ctx); 3945 perf_ctx_lock(cpuctx, ctx); 3946 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3947 list_for_each_entry(event, &ctx->event_list, event_entry) { 3948 enabled |= event_enable_on_exec(event, ctx); 3949 event_type |= get_event_type(event); 3950 } 3951 3952 /* 3953 * Unclone and reschedule this context if we enabled any event. 3954 */ 3955 if (enabled) { 3956 clone_ctx = unclone_ctx(ctx); 3957 ctx_resched(cpuctx, ctx, event_type); 3958 } else { 3959 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3960 } 3961 perf_ctx_unlock(cpuctx, ctx); 3962 3963 out: 3964 local_irq_restore(flags); 3965 3966 if (clone_ctx) 3967 put_ctx(clone_ctx); 3968 } 3969 3970 struct perf_read_data { 3971 struct perf_event *event; 3972 bool group; 3973 int ret; 3974 }; 3975 3976 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3977 { 3978 u16 local_pkg, event_pkg; 3979 3980 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3981 int local_cpu = smp_processor_id(); 3982 3983 event_pkg = topology_physical_package_id(event_cpu); 3984 local_pkg = topology_physical_package_id(local_cpu); 3985 3986 if (event_pkg == local_pkg) 3987 return local_cpu; 3988 } 3989 3990 return event_cpu; 3991 } 3992 3993 /* 3994 * Cross CPU call to read the hardware event 3995 */ 3996 static void __perf_event_read(void *info) 3997 { 3998 struct perf_read_data *data = info; 3999 struct perf_event *sub, *event = data->event; 4000 struct perf_event_context *ctx = event->ctx; 4001 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4002 struct pmu *pmu = event->pmu; 4003 4004 /* 4005 * If this is a task context, we need to check whether it is 4006 * the current task context of this cpu. If not it has been 4007 * scheduled out before the smp call arrived. In that case 4008 * event->count would have been updated to a recent sample 4009 * when the event was scheduled out. 4010 */ 4011 if (ctx->task && cpuctx->task_ctx != ctx) 4012 return; 4013 4014 raw_spin_lock(&ctx->lock); 4015 if (ctx->is_active & EVENT_TIME) { 4016 update_context_time(ctx); 4017 update_cgrp_time_from_event(event); 4018 } 4019 4020 perf_event_update_time(event); 4021 if (data->group) 4022 perf_event_update_sibling_time(event); 4023 4024 if (event->state != PERF_EVENT_STATE_ACTIVE) 4025 goto unlock; 4026 4027 if (!data->group) { 4028 pmu->read(event); 4029 data->ret = 0; 4030 goto unlock; 4031 } 4032 4033 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4034 4035 pmu->read(event); 4036 4037 for_each_sibling_event(sub, event) { 4038 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4039 /* 4040 * Use sibling's PMU rather than @event's since 4041 * sibling could be on different (eg: software) PMU. 4042 */ 4043 sub->pmu->read(sub); 4044 } 4045 } 4046 4047 data->ret = pmu->commit_txn(pmu); 4048 4049 unlock: 4050 raw_spin_unlock(&ctx->lock); 4051 } 4052 4053 static inline u64 perf_event_count(struct perf_event *event) 4054 { 4055 return local64_read(&event->count) + atomic64_read(&event->child_count); 4056 } 4057 4058 /* 4059 * NMI-safe method to read a local event, that is an event that 4060 * is: 4061 * - either for the current task, or for this CPU 4062 * - does not have inherit set, for inherited task events 4063 * will not be local and we cannot read them atomically 4064 * - must not have a pmu::count method 4065 */ 4066 int perf_event_read_local(struct perf_event *event, u64 *value, 4067 u64 *enabled, u64 *running) 4068 { 4069 unsigned long flags; 4070 int ret = 0; 4071 4072 /* 4073 * Disabling interrupts avoids all counter scheduling (context 4074 * switches, timer based rotation and IPIs). 4075 */ 4076 local_irq_save(flags); 4077 4078 /* 4079 * It must not be an event with inherit set, we cannot read 4080 * all child counters from atomic context. 4081 */ 4082 if (event->attr.inherit) { 4083 ret = -EOPNOTSUPP; 4084 goto out; 4085 } 4086 4087 /* If this is a per-task event, it must be for current */ 4088 if ((event->attach_state & PERF_ATTACH_TASK) && 4089 event->hw.target != current) { 4090 ret = -EINVAL; 4091 goto out; 4092 } 4093 4094 /* If this is a per-CPU event, it must be for this CPU */ 4095 if (!(event->attach_state & PERF_ATTACH_TASK) && 4096 event->cpu != smp_processor_id()) { 4097 ret = -EINVAL; 4098 goto out; 4099 } 4100 4101 /* If this is a pinned event it must be running on this CPU */ 4102 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4103 ret = -EBUSY; 4104 goto out; 4105 } 4106 4107 /* 4108 * If the event is currently on this CPU, its either a per-task event, 4109 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4110 * oncpu == -1). 4111 */ 4112 if (event->oncpu == smp_processor_id()) 4113 event->pmu->read(event); 4114 4115 *value = local64_read(&event->count); 4116 if (enabled || running) { 4117 u64 now = event->shadow_ctx_time + perf_clock(); 4118 u64 __enabled, __running; 4119 4120 __perf_update_times(event, now, &__enabled, &__running); 4121 if (enabled) 4122 *enabled = __enabled; 4123 if (running) 4124 *running = __running; 4125 } 4126 out: 4127 local_irq_restore(flags); 4128 4129 return ret; 4130 } 4131 4132 static int perf_event_read(struct perf_event *event, bool group) 4133 { 4134 enum perf_event_state state = READ_ONCE(event->state); 4135 int event_cpu, ret = 0; 4136 4137 /* 4138 * If event is enabled and currently active on a CPU, update the 4139 * value in the event structure: 4140 */ 4141 again: 4142 if (state == PERF_EVENT_STATE_ACTIVE) { 4143 struct perf_read_data data; 4144 4145 /* 4146 * Orders the ->state and ->oncpu loads such that if we see 4147 * ACTIVE we must also see the right ->oncpu. 4148 * 4149 * Matches the smp_wmb() from event_sched_in(). 4150 */ 4151 smp_rmb(); 4152 4153 event_cpu = READ_ONCE(event->oncpu); 4154 if ((unsigned)event_cpu >= nr_cpu_ids) 4155 return 0; 4156 4157 data = (struct perf_read_data){ 4158 .event = event, 4159 .group = group, 4160 .ret = 0, 4161 }; 4162 4163 preempt_disable(); 4164 event_cpu = __perf_event_read_cpu(event, event_cpu); 4165 4166 /* 4167 * Purposely ignore the smp_call_function_single() return 4168 * value. 4169 * 4170 * If event_cpu isn't a valid CPU it means the event got 4171 * scheduled out and that will have updated the event count. 4172 * 4173 * Therefore, either way, we'll have an up-to-date event count 4174 * after this. 4175 */ 4176 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4177 preempt_enable(); 4178 ret = data.ret; 4179 4180 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4181 struct perf_event_context *ctx = event->ctx; 4182 unsigned long flags; 4183 4184 raw_spin_lock_irqsave(&ctx->lock, flags); 4185 state = event->state; 4186 if (state != PERF_EVENT_STATE_INACTIVE) { 4187 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4188 goto again; 4189 } 4190 4191 /* 4192 * May read while context is not active (e.g., thread is 4193 * blocked), in that case we cannot update context time 4194 */ 4195 if (ctx->is_active & EVENT_TIME) { 4196 update_context_time(ctx); 4197 update_cgrp_time_from_event(event); 4198 } 4199 4200 perf_event_update_time(event); 4201 if (group) 4202 perf_event_update_sibling_time(event); 4203 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4204 } 4205 4206 return ret; 4207 } 4208 4209 /* 4210 * Initialize the perf_event context in a task_struct: 4211 */ 4212 static void __perf_event_init_context(struct perf_event_context *ctx) 4213 { 4214 raw_spin_lock_init(&ctx->lock); 4215 mutex_init(&ctx->mutex); 4216 INIT_LIST_HEAD(&ctx->active_ctx_list); 4217 perf_event_groups_init(&ctx->pinned_groups); 4218 perf_event_groups_init(&ctx->flexible_groups); 4219 INIT_LIST_HEAD(&ctx->event_list); 4220 INIT_LIST_HEAD(&ctx->pinned_active); 4221 INIT_LIST_HEAD(&ctx->flexible_active); 4222 refcount_set(&ctx->refcount, 1); 4223 } 4224 4225 static struct perf_event_context * 4226 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4227 { 4228 struct perf_event_context *ctx; 4229 4230 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4231 if (!ctx) 4232 return NULL; 4233 4234 __perf_event_init_context(ctx); 4235 if (task) 4236 ctx->task = get_task_struct(task); 4237 ctx->pmu = pmu; 4238 4239 return ctx; 4240 } 4241 4242 static struct task_struct * 4243 find_lively_task_by_vpid(pid_t vpid) 4244 { 4245 struct task_struct *task; 4246 4247 rcu_read_lock(); 4248 if (!vpid) 4249 task = current; 4250 else 4251 task = find_task_by_vpid(vpid); 4252 if (task) 4253 get_task_struct(task); 4254 rcu_read_unlock(); 4255 4256 if (!task) 4257 return ERR_PTR(-ESRCH); 4258 4259 return task; 4260 } 4261 4262 /* 4263 * Returns a matching context with refcount and pincount. 4264 */ 4265 static struct perf_event_context * 4266 find_get_context(struct pmu *pmu, struct task_struct *task, 4267 struct perf_event *event) 4268 { 4269 struct perf_event_context *ctx, *clone_ctx = NULL; 4270 struct perf_cpu_context *cpuctx; 4271 void *task_ctx_data = NULL; 4272 unsigned long flags; 4273 int ctxn, err; 4274 int cpu = event->cpu; 4275 4276 if (!task) { 4277 /* Must be root to operate on a CPU event: */ 4278 err = perf_allow_cpu(&event->attr); 4279 if (err) 4280 return ERR_PTR(err); 4281 4282 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4283 ctx = &cpuctx->ctx; 4284 get_ctx(ctx); 4285 ++ctx->pin_count; 4286 4287 return ctx; 4288 } 4289 4290 err = -EINVAL; 4291 ctxn = pmu->task_ctx_nr; 4292 if (ctxn < 0) 4293 goto errout; 4294 4295 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4296 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4297 if (!task_ctx_data) { 4298 err = -ENOMEM; 4299 goto errout; 4300 } 4301 } 4302 4303 retry: 4304 ctx = perf_lock_task_context(task, ctxn, &flags); 4305 if (ctx) { 4306 clone_ctx = unclone_ctx(ctx); 4307 ++ctx->pin_count; 4308 4309 if (task_ctx_data && !ctx->task_ctx_data) { 4310 ctx->task_ctx_data = task_ctx_data; 4311 task_ctx_data = NULL; 4312 } 4313 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4314 4315 if (clone_ctx) 4316 put_ctx(clone_ctx); 4317 } else { 4318 ctx = alloc_perf_context(pmu, task); 4319 err = -ENOMEM; 4320 if (!ctx) 4321 goto errout; 4322 4323 if (task_ctx_data) { 4324 ctx->task_ctx_data = task_ctx_data; 4325 task_ctx_data = NULL; 4326 } 4327 4328 err = 0; 4329 mutex_lock(&task->perf_event_mutex); 4330 /* 4331 * If it has already passed perf_event_exit_task(). 4332 * we must see PF_EXITING, it takes this mutex too. 4333 */ 4334 if (task->flags & PF_EXITING) 4335 err = -ESRCH; 4336 else if (task->perf_event_ctxp[ctxn]) 4337 err = -EAGAIN; 4338 else { 4339 get_ctx(ctx); 4340 ++ctx->pin_count; 4341 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4342 } 4343 mutex_unlock(&task->perf_event_mutex); 4344 4345 if (unlikely(err)) { 4346 put_ctx(ctx); 4347 4348 if (err == -EAGAIN) 4349 goto retry; 4350 goto errout; 4351 } 4352 } 4353 4354 kfree(task_ctx_data); 4355 return ctx; 4356 4357 errout: 4358 kfree(task_ctx_data); 4359 return ERR_PTR(err); 4360 } 4361 4362 static void perf_event_free_filter(struct perf_event *event); 4363 static void perf_event_free_bpf_prog(struct perf_event *event); 4364 4365 static void free_event_rcu(struct rcu_head *head) 4366 { 4367 struct perf_event *event; 4368 4369 event = container_of(head, struct perf_event, rcu_head); 4370 if (event->ns) 4371 put_pid_ns(event->ns); 4372 perf_event_free_filter(event); 4373 kfree(event); 4374 } 4375 4376 static void ring_buffer_attach(struct perf_event *event, 4377 struct perf_buffer *rb); 4378 4379 static void detach_sb_event(struct perf_event *event) 4380 { 4381 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4382 4383 raw_spin_lock(&pel->lock); 4384 list_del_rcu(&event->sb_list); 4385 raw_spin_unlock(&pel->lock); 4386 } 4387 4388 static bool is_sb_event(struct perf_event *event) 4389 { 4390 struct perf_event_attr *attr = &event->attr; 4391 4392 if (event->parent) 4393 return false; 4394 4395 if (event->attach_state & PERF_ATTACH_TASK) 4396 return false; 4397 4398 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4399 attr->comm || attr->comm_exec || 4400 attr->task || attr->ksymbol || 4401 attr->context_switch || 4402 attr->bpf_event) 4403 return true; 4404 return false; 4405 } 4406 4407 static void unaccount_pmu_sb_event(struct perf_event *event) 4408 { 4409 if (is_sb_event(event)) 4410 detach_sb_event(event); 4411 } 4412 4413 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4414 { 4415 if (event->parent) 4416 return; 4417 4418 if (is_cgroup_event(event)) 4419 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4420 } 4421 4422 #ifdef CONFIG_NO_HZ_FULL 4423 static DEFINE_SPINLOCK(nr_freq_lock); 4424 #endif 4425 4426 static void unaccount_freq_event_nohz(void) 4427 { 4428 #ifdef CONFIG_NO_HZ_FULL 4429 spin_lock(&nr_freq_lock); 4430 if (atomic_dec_and_test(&nr_freq_events)) 4431 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4432 spin_unlock(&nr_freq_lock); 4433 #endif 4434 } 4435 4436 static void unaccount_freq_event(void) 4437 { 4438 if (tick_nohz_full_enabled()) 4439 unaccount_freq_event_nohz(); 4440 else 4441 atomic_dec(&nr_freq_events); 4442 } 4443 4444 static void unaccount_event(struct perf_event *event) 4445 { 4446 bool dec = false; 4447 4448 if (event->parent) 4449 return; 4450 4451 if (event->attach_state & PERF_ATTACH_TASK) 4452 dec = true; 4453 if (event->attr.mmap || event->attr.mmap_data) 4454 atomic_dec(&nr_mmap_events); 4455 if (event->attr.comm) 4456 atomic_dec(&nr_comm_events); 4457 if (event->attr.namespaces) 4458 atomic_dec(&nr_namespaces_events); 4459 if (event->attr.task) 4460 atomic_dec(&nr_task_events); 4461 if (event->attr.freq) 4462 unaccount_freq_event(); 4463 if (event->attr.context_switch) { 4464 dec = true; 4465 atomic_dec(&nr_switch_events); 4466 } 4467 if (is_cgroup_event(event)) 4468 dec = true; 4469 if (has_branch_stack(event)) 4470 dec = true; 4471 if (event->attr.ksymbol) 4472 atomic_dec(&nr_ksymbol_events); 4473 if (event->attr.bpf_event) 4474 atomic_dec(&nr_bpf_events); 4475 4476 if (dec) { 4477 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4478 schedule_delayed_work(&perf_sched_work, HZ); 4479 } 4480 4481 unaccount_event_cpu(event, event->cpu); 4482 4483 unaccount_pmu_sb_event(event); 4484 } 4485 4486 static void perf_sched_delayed(struct work_struct *work) 4487 { 4488 mutex_lock(&perf_sched_mutex); 4489 if (atomic_dec_and_test(&perf_sched_count)) 4490 static_branch_disable(&perf_sched_events); 4491 mutex_unlock(&perf_sched_mutex); 4492 } 4493 4494 /* 4495 * The following implement mutual exclusion of events on "exclusive" pmus 4496 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4497 * at a time, so we disallow creating events that might conflict, namely: 4498 * 4499 * 1) cpu-wide events in the presence of per-task events, 4500 * 2) per-task events in the presence of cpu-wide events, 4501 * 3) two matching events on the same context. 4502 * 4503 * The former two cases are handled in the allocation path (perf_event_alloc(), 4504 * _free_event()), the latter -- before the first perf_install_in_context(). 4505 */ 4506 static int exclusive_event_init(struct perf_event *event) 4507 { 4508 struct pmu *pmu = event->pmu; 4509 4510 if (!is_exclusive_pmu(pmu)) 4511 return 0; 4512 4513 /* 4514 * Prevent co-existence of per-task and cpu-wide events on the 4515 * same exclusive pmu. 4516 * 4517 * Negative pmu::exclusive_cnt means there are cpu-wide 4518 * events on this "exclusive" pmu, positive means there are 4519 * per-task events. 4520 * 4521 * Since this is called in perf_event_alloc() path, event::ctx 4522 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4523 * to mean "per-task event", because unlike other attach states it 4524 * never gets cleared. 4525 */ 4526 if (event->attach_state & PERF_ATTACH_TASK) { 4527 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4528 return -EBUSY; 4529 } else { 4530 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4531 return -EBUSY; 4532 } 4533 4534 return 0; 4535 } 4536 4537 static void exclusive_event_destroy(struct perf_event *event) 4538 { 4539 struct pmu *pmu = event->pmu; 4540 4541 if (!is_exclusive_pmu(pmu)) 4542 return; 4543 4544 /* see comment in exclusive_event_init() */ 4545 if (event->attach_state & PERF_ATTACH_TASK) 4546 atomic_dec(&pmu->exclusive_cnt); 4547 else 4548 atomic_inc(&pmu->exclusive_cnt); 4549 } 4550 4551 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4552 { 4553 if ((e1->pmu == e2->pmu) && 4554 (e1->cpu == e2->cpu || 4555 e1->cpu == -1 || 4556 e2->cpu == -1)) 4557 return true; 4558 return false; 4559 } 4560 4561 static bool exclusive_event_installable(struct perf_event *event, 4562 struct perf_event_context *ctx) 4563 { 4564 struct perf_event *iter_event; 4565 struct pmu *pmu = event->pmu; 4566 4567 lockdep_assert_held(&ctx->mutex); 4568 4569 if (!is_exclusive_pmu(pmu)) 4570 return true; 4571 4572 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4573 if (exclusive_event_match(iter_event, event)) 4574 return false; 4575 } 4576 4577 return true; 4578 } 4579 4580 static void perf_addr_filters_splice(struct perf_event *event, 4581 struct list_head *head); 4582 4583 static void _free_event(struct perf_event *event) 4584 { 4585 irq_work_sync(&event->pending); 4586 4587 unaccount_event(event); 4588 4589 security_perf_event_free(event); 4590 4591 if (event->rb) { 4592 /* 4593 * Can happen when we close an event with re-directed output. 4594 * 4595 * Since we have a 0 refcount, perf_mmap_close() will skip 4596 * over us; possibly making our ring_buffer_put() the last. 4597 */ 4598 mutex_lock(&event->mmap_mutex); 4599 ring_buffer_attach(event, NULL); 4600 mutex_unlock(&event->mmap_mutex); 4601 } 4602 4603 if (is_cgroup_event(event)) 4604 perf_detach_cgroup(event); 4605 4606 if (!event->parent) { 4607 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4608 put_callchain_buffers(); 4609 } 4610 4611 perf_event_free_bpf_prog(event); 4612 perf_addr_filters_splice(event, NULL); 4613 kfree(event->addr_filter_ranges); 4614 4615 if (event->destroy) 4616 event->destroy(event); 4617 4618 /* 4619 * Must be after ->destroy(), due to uprobe_perf_close() using 4620 * hw.target. 4621 */ 4622 if (event->hw.target) 4623 put_task_struct(event->hw.target); 4624 4625 /* 4626 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4627 * all task references must be cleaned up. 4628 */ 4629 if (event->ctx) 4630 put_ctx(event->ctx); 4631 4632 exclusive_event_destroy(event); 4633 module_put(event->pmu->module); 4634 4635 call_rcu(&event->rcu_head, free_event_rcu); 4636 } 4637 4638 /* 4639 * Used to free events which have a known refcount of 1, such as in error paths 4640 * where the event isn't exposed yet and inherited events. 4641 */ 4642 static void free_event(struct perf_event *event) 4643 { 4644 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4645 "unexpected event refcount: %ld; ptr=%p\n", 4646 atomic_long_read(&event->refcount), event)) { 4647 /* leak to avoid use-after-free */ 4648 return; 4649 } 4650 4651 _free_event(event); 4652 } 4653 4654 /* 4655 * Remove user event from the owner task. 4656 */ 4657 static void perf_remove_from_owner(struct perf_event *event) 4658 { 4659 struct task_struct *owner; 4660 4661 rcu_read_lock(); 4662 /* 4663 * Matches the smp_store_release() in perf_event_exit_task(). If we 4664 * observe !owner it means the list deletion is complete and we can 4665 * indeed free this event, otherwise we need to serialize on 4666 * owner->perf_event_mutex. 4667 */ 4668 owner = READ_ONCE(event->owner); 4669 if (owner) { 4670 /* 4671 * Since delayed_put_task_struct() also drops the last 4672 * task reference we can safely take a new reference 4673 * while holding the rcu_read_lock(). 4674 */ 4675 get_task_struct(owner); 4676 } 4677 rcu_read_unlock(); 4678 4679 if (owner) { 4680 /* 4681 * If we're here through perf_event_exit_task() we're already 4682 * holding ctx->mutex which would be an inversion wrt. the 4683 * normal lock order. 4684 * 4685 * However we can safely take this lock because its the child 4686 * ctx->mutex. 4687 */ 4688 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4689 4690 /* 4691 * We have to re-check the event->owner field, if it is cleared 4692 * we raced with perf_event_exit_task(), acquiring the mutex 4693 * ensured they're done, and we can proceed with freeing the 4694 * event. 4695 */ 4696 if (event->owner) { 4697 list_del_init(&event->owner_entry); 4698 smp_store_release(&event->owner, NULL); 4699 } 4700 mutex_unlock(&owner->perf_event_mutex); 4701 put_task_struct(owner); 4702 } 4703 } 4704 4705 static void put_event(struct perf_event *event) 4706 { 4707 if (!atomic_long_dec_and_test(&event->refcount)) 4708 return; 4709 4710 _free_event(event); 4711 } 4712 4713 /* 4714 * Kill an event dead; while event:refcount will preserve the event 4715 * object, it will not preserve its functionality. Once the last 'user' 4716 * gives up the object, we'll destroy the thing. 4717 */ 4718 int perf_event_release_kernel(struct perf_event *event) 4719 { 4720 struct perf_event_context *ctx = event->ctx; 4721 struct perf_event *child, *tmp; 4722 LIST_HEAD(free_list); 4723 4724 /* 4725 * If we got here through err_file: fput(event_file); we will not have 4726 * attached to a context yet. 4727 */ 4728 if (!ctx) { 4729 WARN_ON_ONCE(event->attach_state & 4730 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4731 goto no_ctx; 4732 } 4733 4734 if (!is_kernel_event(event)) 4735 perf_remove_from_owner(event); 4736 4737 ctx = perf_event_ctx_lock(event); 4738 WARN_ON_ONCE(ctx->parent_ctx); 4739 perf_remove_from_context(event, DETACH_GROUP); 4740 4741 raw_spin_lock_irq(&ctx->lock); 4742 /* 4743 * Mark this event as STATE_DEAD, there is no external reference to it 4744 * anymore. 4745 * 4746 * Anybody acquiring event->child_mutex after the below loop _must_ 4747 * also see this, most importantly inherit_event() which will avoid 4748 * placing more children on the list. 4749 * 4750 * Thus this guarantees that we will in fact observe and kill _ALL_ 4751 * child events. 4752 */ 4753 event->state = PERF_EVENT_STATE_DEAD; 4754 raw_spin_unlock_irq(&ctx->lock); 4755 4756 perf_event_ctx_unlock(event, ctx); 4757 4758 again: 4759 mutex_lock(&event->child_mutex); 4760 list_for_each_entry(child, &event->child_list, child_list) { 4761 4762 /* 4763 * Cannot change, child events are not migrated, see the 4764 * comment with perf_event_ctx_lock_nested(). 4765 */ 4766 ctx = READ_ONCE(child->ctx); 4767 /* 4768 * Since child_mutex nests inside ctx::mutex, we must jump 4769 * through hoops. We start by grabbing a reference on the ctx. 4770 * 4771 * Since the event cannot get freed while we hold the 4772 * child_mutex, the context must also exist and have a !0 4773 * reference count. 4774 */ 4775 get_ctx(ctx); 4776 4777 /* 4778 * Now that we have a ctx ref, we can drop child_mutex, and 4779 * acquire ctx::mutex without fear of it going away. Then we 4780 * can re-acquire child_mutex. 4781 */ 4782 mutex_unlock(&event->child_mutex); 4783 mutex_lock(&ctx->mutex); 4784 mutex_lock(&event->child_mutex); 4785 4786 /* 4787 * Now that we hold ctx::mutex and child_mutex, revalidate our 4788 * state, if child is still the first entry, it didn't get freed 4789 * and we can continue doing so. 4790 */ 4791 tmp = list_first_entry_or_null(&event->child_list, 4792 struct perf_event, child_list); 4793 if (tmp == child) { 4794 perf_remove_from_context(child, DETACH_GROUP); 4795 list_move(&child->child_list, &free_list); 4796 /* 4797 * This matches the refcount bump in inherit_event(); 4798 * this can't be the last reference. 4799 */ 4800 put_event(event); 4801 } 4802 4803 mutex_unlock(&event->child_mutex); 4804 mutex_unlock(&ctx->mutex); 4805 put_ctx(ctx); 4806 goto again; 4807 } 4808 mutex_unlock(&event->child_mutex); 4809 4810 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4811 void *var = &child->ctx->refcount; 4812 4813 list_del(&child->child_list); 4814 free_event(child); 4815 4816 /* 4817 * Wake any perf_event_free_task() waiting for this event to be 4818 * freed. 4819 */ 4820 smp_mb(); /* pairs with wait_var_event() */ 4821 wake_up_var(var); 4822 } 4823 4824 no_ctx: 4825 put_event(event); /* Must be the 'last' reference */ 4826 return 0; 4827 } 4828 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4829 4830 /* 4831 * Called when the last reference to the file is gone. 4832 */ 4833 static int perf_release(struct inode *inode, struct file *file) 4834 { 4835 perf_event_release_kernel(file->private_data); 4836 return 0; 4837 } 4838 4839 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4840 { 4841 struct perf_event *child; 4842 u64 total = 0; 4843 4844 *enabled = 0; 4845 *running = 0; 4846 4847 mutex_lock(&event->child_mutex); 4848 4849 (void)perf_event_read(event, false); 4850 total += perf_event_count(event); 4851 4852 *enabled += event->total_time_enabled + 4853 atomic64_read(&event->child_total_time_enabled); 4854 *running += event->total_time_running + 4855 atomic64_read(&event->child_total_time_running); 4856 4857 list_for_each_entry(child, &event->child_list, child_list) { 4858 (void)perf_event_read(child, false); 4859 total += perf_event_count(child); 4860 *enabled += child->total_time_enabled; 4861 *running += child->total_time_running; 4862 } 4863 mutex_unlock(&event->child_mutex); 4864 4865 return total; 4866 } 4867 4868 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4869 { 4870 struct perf_event_context *ctx; 4871 u64 count; 4872 4873 ctx = perf_event_ctx_lock(event); 4874 count = __perf_event_read_value(event, enabled, running); 4875 perf_event_ctx_unlock(event, ctx); 4876 4877 return count; 4878 } 4879 EXPORT_SYMBOL_GPL(perf_event_read_value); 4880 4881 static int __perf_read_group_add(struct perf_event *leader, 4882 u64 read_format, u64 *values) 4883 { 4884 struct perf_event_context *ctx = leader->ctx; 4885 struct perf_event *sub; 4886 unsigned long flags; 4887 int n = 1; /* skip @nr */ 4888 int ret; 4889 4890 ret = perf_event_read(leader, true); 4891 if (ret) 4892 return ret; 4893 4894 raw_spin_lock_irqsave(&ctx->lock, flags); 4895 4896 /* 4897 * Since we co-schedule groups, {enabled,running} times of siblings 4898 * will be identical to those of the leader, so we only publish one 4899 * set. 4900 */ 4901 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4902 values[n++] += leader->total_time_enabled + 4903 atomic64_read(&leader->child_total_time_enabled); 4904 } 4905 4906 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4907 values[n++] += leader->total_time_running + 4908 atomic64_read(&leader->child_total_time_running); 4909 } 4910 4911 /* 4912 * Write {count,id} tuples for every sibling. 4913 */ 4914 values[n++] += perf_event_count(leader); 4915 if (read_format & PERF_FORMAT_ID) 4916 values[n++] = primary_event_id(leader); 4917 4918 for_each_sibling_event(sub, leader) { 4919 values[n++] += perf_event_count(sub); 4920 if (read_format & PERF_FORMAT_ID) 4921 values[n++] = primary_event_id(sub); 4922 } 4923 4924 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4925 return 0; 4926 } 4927 4928 static int perf_read_group(struct perf_event *event, 4929 u64 read_format, char __user *buf) 4930 { 4931 struct perf_event *leader = event->group_leader, *child; 4932 struct perf_event_context *ctx = leader->ctx; 4933 int ret; 4934 u64 *values; 4935 4936 lockdep_assert_held(&ctx->mutex); 4937 4938 values = kzalloc(event->read_size, GFP_KERNEL); 4939 if (!values) 4940 return -ENOMEM; 4941 4942 values[0] = 1 + leader->nr_siblings; 4943 4944 /* 4945 * By locking the child_mutex of the leader we effectively 4946 * lock the child list of all siblings.. XXX explain how. 4947 */ 4948 mutex_lock(&leader->child_mutex); 4949 4950 ret = __perf_read_group_add(leader, read_format, values); 4951 if (ret) 4952 goto unlock; 4953 4954 list_for_each_entry(child, &leader->child_list, child_list) { 4955 ret = __perf_read_group_add(child, read_format, values); 4956 if (ret) 4957 goto unlock; 4958 } 4959 4960 mutex_unlock(&leader->child_mutex); 4961 4962 ret = event->read_size; 4963 if (copy_to_user(buf, values, event->read_size)) 4964 ret = -EFAULT; 4965 goto out; 4966 4967 unlock: 4968 mutex_unlock(&leader->child_mutex); 4969 out: 4970 kfree(values); 4971 return ret; 4972 } 4973 4974 static int perf_read_one(struct perf_event *event, 4975 u64 read_format, char __user *buf) 4976 { 4977 u64 enabled, running; 4978 u64 values[4]; 4979 int n = 0; 4980 4981 values[n++] = __perf_event_read_value(event, &enabled, &running); 4982 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4983 values[n++] = enabled; 4984 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4985 values[n++] = running; 4986 if (read_format & PERF_FORMAT_ID) 4987 values[n++] = primary_event_id(event); 4988 4989 if (copy_to_user(buf, values, n * sizeof(u64))) 4990 return -EFAULT; 4991 4992 return n * sizeof(u64); 4993 } 4994 4995 static bool is_event_hup(struct perf_event *event) 4996 { 4997 bool no_children; 4998 4999 if (event->state > PERF_EVENT_STATE_EXIT) 5000 return false; 5001 5002 mutex_lock(&event->child_mutex); 5003 no_children = list_empty(&event->child_list); 5004 mutex_unlock(&event->child_mutex); 5005 return no_children; 5006 } 5007 5008 /* 5009 * Read the performance event - simple non blocking version for now 5010 */ 5011 static ssize_t 5012 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5013 { 5014 u64 read_format = event->attr.read_format; 5015 int ret; 5016 5017 /* 5018 * Return end-of-file for a read on an event that is in 5019 * error state (i.e. because it was pinned but it couldn't be 5020 * scheduled on to the CPU at some point). 5021 */ 5022 if (event->state == PERF_EVENT_STATE_ERROR) 5023 return 0; 5024 5025 if (count < event->read_size) 5026 return -ENOSPC; 5027 5028 WARN_ON_ONCE(event->ctx->parent_ctx); 5029 if (read_format & PERF_FORMAT_GROUP) 5030 ret = perf_read_group(event, read_format, buf); 5031 else 5032 ret = perf_read_one(event, read_format, buf); 5033 5034 return ret; 5035 } 5036 5037 static ssize_t 5038 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5039 { 5040 struct perf_event *event = file->private_data; 5041 struct perf_event_context *ctx; 5042 int ret; 5043 5044 ret = security_perf_event_read(event); 5045 if (ret) 5046 return ret; 5047 5048 ctx = perf_event_ctx_lock(event); 5049 ret = __perf_read(event, buf, count); 5050 perf_event_ctx_unlock(event, ctx); 5051 5052 return ret; 5053 } 5054 5055 static __poll_t perf_poll(struct file *file, poll_table *wait) 5056 { 5057 struct perf_event *event = file->private_data; 5058 struct perf_buffer *rb; 5059 __poll_t events = EPOLLHUP; 5060 5061 poll_wait(file, &event->waitq, wait); 5062 5063 if (is_event_hup(event)) 5064 return events; 5065 5066 /* 5067 * Pin the event->rb by taking event->mmap_mutex; otherwise 5068 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5069 */ 5070 mutex_lock(&event->mmap_mutex); 5071 rb = event->rb; 5072 if (rb) 5073 events = atomic_xchg(&rb->poll, 0); 5074 mutex_unlock(&event->mmap_mutex); 5075 return events; 5076 } 5077 5078 static void _perf_event_reset(struct perf_event *event) 5079 { 5080 (void)perf_event_read(event, false); 5081 local64_set(&event->count, 0); 5082 perf_event_update_userpage(event); 5083 } 5084 5085 /* Assume it's not an event with inherit set. */ 5086 u64 perf_event_pause(struct perf_event *event, bool reset) 5087 { 5088 struct perf_event_context *ctx; 5089 u64 count; 5090 5091 ctx = perf_event_ctx_lock(event); 5092 WARN_ON_ONCE(event->attr.inherit); 5093 _perf_event_disable(event); 5094 count = local64_read(&event->count); 5095 if (reset) 5096 local64_set(&event->count, 0); 5097 perf_event_ctx_unlock(event, ctx); 5098 5099 return count; 5100 } 5101 EXPORT_SYMBOL_GPL(perf_event_pause); 5102 5103 /* 5104 * Holding the top-level event's child_mutex means that any 5105 * descendant process that has inherited this event will block 5106 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5107 * task existence requirements of perf_event_enable/disable. 5108 */ 5109 static void perf_event_for_each_child(struct perf_event *event, 5110 void (*func)(struct perf_event *)) 5111 { 5112 struct perf_event *child; 5113 5114 WARN_ON_ONCE(event->ctx->parent_ctx); 5115 5116 mutex_lock(&event->child_mutex); 5117 func(event); 5118 list_for_each_entry(child, &event->child_list, child_list) 5119 func(child); 5120 mutex_unlock(&event->child_mutex); 5121 } 5122 5123 static void perf_event_for_each(struct perf_event *event, 5124 void (*func)(struct perf_event *)) 5125 { 5126 struct perf_event_context *ctx = event->ctx; 5127 struct perf_event *sibling; 5128 5129 lockdep_assert_held(&ctx->mutex); 5130 5131 event = event->group_leader; 5132 5133 perf_event_for_each_child(event, func); 5134 for_each_sibling_event(sibling, event) 5135 perf_event_for_each_child(sibling, func); 5136 } 5137 5138 static void __perf_event_period(struct perf_event *event, 5139 struct perf_cpu_context *cpuctx, 5140 struct perf_event_context *ctx, 5141 void *info) 5142 { 5143 u64 value = *((u64 *)info); 5144 bool active; 5145 5146 if (event->attr.freq) { 5147 event->attr.sample_freq = value; 5148 } else { 5149 event->attr.sample_period = value; 5150 event->hw.sample_period = value; 5151 } 5152 5153 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5154 if (active) { 5155 perf_pmu_disable(ctx->pmu); 5156 /* 5157 * We could be throttled; unthrottle now to avoid the tick 5158 * trying to unthrottle while we already re-started the event. 5159 */ 5160 if (event->hw.interrupts == MAX_INTERRUPTS) { 5161 event->hw.interrupts = 0; 5162 perf_log_throttle(event, 1); 5163 } 5164 event->pmu->stop(event, PERF_EF_UPDATE); 5165 } 5166 5167 local64_set(&event->hw.period_left, 0); 5168 5169 if (active) { 5170 event->pmu->start(event, PERF_EF_RELOAD); 5171 perf_pmu_enable(ctx->pmu); 5172 } 5173 } 5174 5175 static int perf_event_check_period(struct perf_event *event, u64 value) 5176 { 5177 return event->pmu->check_period(event, value); 5178 } 5179 5180 static int _perf_event_period(struct perf_event *event, u64 value) 5181 { 5182 if (!is_sampling_event(event)) 5183 return -EINVAL; 5184 5185 if (!value) 5186 return -EINVAL; 5187 5188 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5189 return -EINVAL; 5190 5191 if (perf_event_check_period(event, value)) 5192 return -EINVAL; 5193 5194 if (!event->attr.freq && (value & (1ULL << 63))) 5195 return -EINVAL; 5196 5197 event_function_call(event, __perf_event_period, &value); 5198 5199 return 0; 5200 } 5201 5202 int perf_event_period(struct perf_event *event, u64 value) 5203 { 5204 struct perf_event_context *ctx; 5205 int ret; 5206 5207 ctx = perf_event_ctx_lock(event); 5208 ret = _perf_event_period(event, value); 5209 perf_event_ctx_unlock(event, ctx); 5210 5211 return ret; 5212 } 5213 EXPORT_SYMBOL_GPL(perf_event_period); 5214 5215 static const struct file_operations perf_fops; 5216 5217 static inline int perf_fget_light(int fd, struct fd *p) 5218 { 5219 struct fd f = fdget(fd); 5220 if (!f.file) 5221 return -EBADF; 5222 5223 if (f.file->f_op != &perf_fops) { 5224 fdput(f); 5225 return -EBADF; 5226 } 5227 *p = f; 5228 return 0; 5229 } 5230 5231 static int perf_event_set_output(struct perf_event *event, 5232 struct perf_event *output_event); 5233 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5234 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5235 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5236 struct perf_event_attr *attr); 5237 5238 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5239 { 5240 void (*func)(struct perf_event *); 5241 u32 flags = arg; 5242 5243 switch (cmd) { 5244 case PERF_EVENT_IOC_ENABLE: 5245 func = _perf_event_enable; 5246 break; 5247 case PERF_EVENT_IOC_DISABLE: 5248 func = _perf_event_disable; 5249 break; 5250 case PERF_EVENT_IOC_RESET: 5251 func = _perf_event_reset; 5252 break; 5253 5254 case PERF_EVENT_IOC_REFRESH: 5255 return _perf_event_refresh(event, arg); 5256 5257 case PERF_EVENT_IOC_PERIOD: 5258 { 5259 u64 value; 5260 5261 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5262 return -EFAULT; 5263 5264 return _perf_event_period(event, value); 5265 } 5266 case PERF_EVENT_IOC_ID: 5267 { 5268 u64 id = primary_event_id(event); 5269 5270 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5271 return -EFAULT; 5272 return 0; 5273 } 5274 5275 case PERF_EVENT_IOC_SET_OUTPUT: 5276 { 5277 int ret; 5278 if (arg != -1) { 5279 struct perf_event *output_event; 5280 struct fd output; 5281 ret = perf_fget_light(arg, &output); 5282 if (ret) 5283 return ret; 5284 output_event = output.file->private_data; 5285 ret = perf_event_set_output(event, output_event); 5286 fdput(output); 5287 } else { 5288 ret = perf_event_set_output(event, NULL); 5289 } 5290 return ret; 5291 } 5292 5293 case PERF_EVENT_IOC_SET_FILTER: 5294 return perf_event_set_filter(event, (void __user *)arg); 5295 5296 case PERF_EVENT_IOC_SET_BPF: 5297 return perf_event_set_bpf_prog(event, arg); 5298 5299 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5300 struct perf_buffer *rb; 5301 5302 rcu_read_lock(); 5303 rb = rcu_dereference(event->rb); 5304 if (!rb || !rb->nr_pages) { 5305 rcu_read_unlock(); 5306 return -EINVAL; 5307 } 5308 rb_toggle_paused(rb, !!arg); 5309 rcu_read_unlock(); 5310 return 0; 5311 } 5312 5313 case PERF_EVENT_IOC_QUERY_BPF: 5314 return perf_event_query_prog_array(event, (void __user *)arg); 5315 5316 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5317 struct perf_event_attr new_attr; 5318 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5319 &new_attr); 5320 5321 if (err) 5322 return err; 5323 5324 return perf_event_modify_attr(event, &new_attr); 5325 } 5326 default: 5327 return -ENOTTY; 5328 } 5329 5330 if (flags & PERF_IOC_FLAG_GROUP) 5331 perf_event_for_each(event, func); 5332 else 5333 perf_event_for_each_child(event, func); 5334 5335 return 0; 5336 } 5337 5338 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5339 { 5340 struct perf_event *event = file->private_data; 5341 struct perf_event_context *ctx; 5342 long ret; 5343 5344 /* Treat ioctl like writes as it is likely a mutating operation. */ 5345 ret = security_perf_event_write(event); 5346 if (ret) 5347 return ret; 5348 5349 ctx = perf_event_ctx_lock(event); 5350 ret = _perf_ioctl(event, cmd, arg); 5351 perf_event_ctx_unlock(event, ctx); 5352 5353 return ret; 5354 } 5355 5356 #ifdef CONFIG_COMPAT 5357 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5358 unsigned long arg) 5359 { 5360 switch (_IOC_NR(cmd)) { 5361 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5362 case _IOC_NR(PERF_EVENT_IOC_ID): 5363 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5364 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5365 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5366 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5367 cmd &= ~IOCSIZE_MASK; 5368 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5369 } 5370 break; 5371 } 5372 return perf_ioctl(file, cmd, arg); 5373 } 5374 #else 5375 # define perf_compat_ioctl NULL 5376 #endif 5377 5378 int perf_event_task_enable(void) 5379 { 5380 struct perf_event_context *ctx; 5381 struct perf_event *event; 5382 5383 mutex_lock(¤t->perf_event_mutex); 5384 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5385 ctx = perf_event_ctx_lock(event); 5386 perf_event_for_each_child(event, _perf_event_enable); 5387 perf_event_ctx_unlock(event, ctx); 5388 } 5389 mutex_unlock(¤t->perf_event_mutex); 5390 5391 return 0; 5392 } 5393 5394 int perf_event_task_disable(void) 5395 { 5396 struct perf_event_context *ctx; 5397 struct perf_event *event; 5398 5399 mutex_lock(¤t->perf_event_mutex); 5400 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5401 ctx = perf_event_ctx_lock(event); 5402 perf_event_for_each_child(event, _perf_event_disable); 5403 perf_event_ctx_unlock(event, ctx); 5404 } 5405 mutex_unlock(¤t->perf_event_mutex); 5406 5407 return 0; 5408 } 5409 5410 static int perf_event_index(struct perf_event *event) 5411 { 5412 if (event->hw.state & PERF_HES_STOPPED) 5413 return 0; 5414 5415 if (event->state != PERF_EVENT_STATE_ACTIVE) 5416 return 0; 5417 5418 return event->pmu->event_idx(event); 5419 } 5420 5421 static void calc_timer_values(struct perf_event *event, 5422 u64 *now, 5423 u64 *enabled, 5424 u64 *running) 5425 { 5426 u64 ctx_time; 5427 5428 *now = perf_clock(); 5429 ctx_time = event->shadow_ctx_time + *now; 5430 __perf_update_times(event, ctx_time, enabled, running); 5431 } 5432 5433 static void perf_event_init_userpage(struct perf_event *event) 5434 { 5435 struct perf_event_mmap_page *userpg; 5436 struct perf_buffer *rb; 5437 5438 rcu_read_lock(); 5439 rb = rcu_dereference(event->rb); 5440 if (!rb) 5441 goto unlock; 5442 5443 userpg = rb->user_page; 5444 5445 /* Allow new userspace to detect that bit 0 is deprecated */ 5446 userpg->cap_bit0_is_deprecated = 1; 5447 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5448 userpg->data_offset = PAGE_SIZE; 5449 userpg->data_size = perf_data_size(rb); 5450 5451 unlock: 5452 rcu_read_unlock(); 5453 } 5454 5455 void __weak arch_perf_update_userpage( 5456 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5457 { 5458 } 5459 5460 /* 5461 * Callers need to ensure there can be no nesting of this function, otherwise 5462 * the seqlock logic goes bad. We can not serialize this because the arch 5463 * code calls this from NMI context. 5464 */ 5465 void perf_event_update_userpage(struct perf_event *event) 5466 { 5467 struct perf_event_mmap_page *userpg; 5468 struct perf_buffer *rb; 5469 u64 enabled, running, now; 5470 5471 rcu_read_lock(); 5472 rb = rcu_dereference(event->rb); 5473 if (!rb) 5474 goto unlock; 5475 5476 /* 5477 * compute total_time_enabled, total_time_running 5478 * based on snapshot values taken when the event 5479 * was last scheduled in. 5480 * 5481 * we cannot simply called update_context_time() 5482 * because of locking issue as we can be called in 5483 * NMI context 5484 */ 5485 calc_timer_values(event, &now, &enabled, &running); 5486 5487 userpg = rb->user_page; 5488 /* 5489 * Disable preemption to guarantee consistent time stamps are stored to 5490 * the user page. 5491 */ 5492 preempt_disable(); 5493 ++userpg->lock; 5494 barrier(); 5495 userpg->index = perf_event_index(event); 5496 userpg->offset = perf_event_count(event); 5497 if (userpg->index) 5498 userpg->offset -= local64_read(&event->hw.prev_count); 5499 5500 userpg->time_enabled = enabled + 5501 atomic64_read(&event->child_total_time_enabled); 5502 5503 userpg->time_running = running + 5504 atomic64_read(&event->child_total_time_running); 5505 5506 arch_perf_update_userpage(event, userpg, now); 5507 5508 barrier(); 5509 ++userpg->lock; 5510 preempt_enable(); 5511 unlock: 5512 rcu_read_unlock(); 5513 } 5514 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5515 5516 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5517 { 5518 struct perf_event *event = vmf->vma->vm_file->private_data; 5519 struct perf_buffer *rb; 5520 vm_fault_t ret = VM_FAULT_SIGBUS; 5521 5522 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5523 if (vmf->pgoff == 0) 5524 ret = 0; 5525 return ret; 5526 } 5527 5528 rcu_read_lock(); 5529 rb = rcu_dereference(event->rb); 5530 if (!rb) 5531 goto unlock; 5532 5533 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5534 goto unlock; 5535 5536 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5537 if (!vmf->page) 5538 goto unlock; 5539 5540 get_page(vmf->page); 5541 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5542 vmf->page->index = vmf->pgoff; 5543 5544 ret = 0; 5545 unlock: 5546 rcu_read_unlock(); 5547 5548 return ret; 5549 } 5550 5551 static void ring_buffer_attach(struct perf_event *event, 5552 struct perf_buffer *rb) 5553 { 5554 struct perf_buffer *old_rb = NULL; 5555 unsigned long flags; 5556 5557 if (event->rb) { 5558 /* 5559 * Should be impossible, we set this when removing 5560 * event->rb_entry and wait/clear when adding event->rb_entry. 5561 */ 5562 WARN_ON_ONCE(event->rcu_pending); 5563 5564 old_rb = event->rb; 5565 spin_lock_irqsave(&old_rb->event_lock, flags); 5566 list_del_rcu(&event->rb_entry); 5567 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5568 5569 event->rcu_batches = get_state_synchronize_rcu(); 5570 event->rcu_pending = 1; 5571 } 5572 5573 if (rb) { 5574 if (event->rcu_pending) { 5575 cond_synchronize_rcu(event->rcu_batches); 5576 event->rcu_pending = 0; 5577 } 5578 5579 spin_lock_irqsave(&rb->event_lock, flags); 5580 list_add_rcu(&event->rb_entry, &rb->event_list); 5581 spin_unlock_irqrestore(&rb->event_lock, flags); 5582 } 5583 5584 /* 5585 * Avoid racing with perf_mmap_close(AUX): stop the event 5586 * before swizzling the event::rb pointer; if it's getting 5587 * unmapped, its aux_mmap_count will be 0 and it won't 5588 * restart. See the comment in __perf_pmu_output_stop(). 5589 * 5590 * Data will inevitably be lost when set_output is done in 5591 * mid-air, but then again, whoever does it like this is 5592 * not in for the data anyway. 5593 */ 5594 if (has_aux(event)) 5595 perf_event_stop(event, 0); 5596 5597 rcu_assign_pointer(event->rb, rb); 5598 5599 if (old_rb) { 5600 ring_buffer_put(old_rb); 5601 /* 5602 * Since we detached before setting the new rb, so that we 5603 * could attach the new rb, we could have missed a wakeup. 5604 * Provide it now. 5605 */ 5606 wake_up_all(&event->waitq); 5607 } 5608 } 5609 5610 static void ring_buffer_wakeup(struct perf_event *event) 5611 { 5612 struct perf_buffer *rb; 5613 5614 rcu_read_lock(); 5615 rb = rcu_dereference(event->rb); 5616 if (rb) { 5617 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5618 wake_up_all(&event->waitq); 5619 } 5620 rcu_read_unlock(); 5621 } 5622 5623 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5624 { 5625 struct perf_buffer *rb; 5626 5627 rcu_read_lock(); 5628 rb = rcu_dereference(event->rb); 5629 if (rb) { 5630 if (!refcount_inc_not_zero(&rb->refcount)) 5631 rb = NULL; 5632 } 5633 rcu_read_unlock(); 5634 5635 return rb; 5636 } 5637 5638 void ring_buffer_put(struct perf_buffer *rb) 5639 { 5640 if (!refcount_dec_and_test(&rb->refcount)) 5641 return; 5642 5643 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5644 5645 call_rcu(&rb->rcu_head, rb_free_rcu); 5646 } 5647 5648 static void perf_mmap_open(struct vm_area_struct *vma) 5649 { 5650 struct perf_event *event = vma->vm_file->private_data; 5651 5652 atomic_inc(&event->mmap_count); 5653 atomic_inc(&event->rb->mmap_count); 5654 5655 if (vma->vm_pgoff) 5656 atomic_inc(&event->rb->aux_mmap_count); 5657 5658 if (event->pmu->event_mapped) 5659 event->pmu->event_mapped(event, vma->vm_mm); 5660 } 5661 5662 static void perf_pmu_output_stop(struct perf_event *event); 5663 5664 /* 5665 * A buffer can be mmap()ed multiple times; either directly through the same 5666 * event, or through other events by use of perf_event_set_output(). 5667 * 5668 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5669 * the buffer here, where we still have a VM context. This means we need 5670 * to detach all events redirecting to us. 5671 */ 5672 static void perf_mmap_close(struct vm_area_struct *vma) 5673 { 5674 struct perf_event *event = vma->vm_file->private_data; 5675 5676 struct perf_buffer *rb = ring_buffer_get(event); 5677 struct user_struct *mmap_user = rb->mmap_user; 5678 int mmap_locked = rb->mmap_locked; 5679 unsigned long size = perf_data_size(rb); 5680 5681 if (event->pmu->event_unmapped) 5682 event->pmu->event_unmapped(event, vma->vm_mm); 5683 5684 /* 5685 * rb->aux_mmap_count will always drop before rb->mmap_count and 5686 * event->mmap_count, so it is ok to use event->mmap_mutex to 5687 * serialize with perf_mmap here. 5688 */ 5689 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5690 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5691 /* 5692 * Stop all AUX events that are writing to this buffer, 5693 * so that we can free its AUX pages and corresponding PMU 5694 * data. Note that after rb::aux_mmap_count dropped to zero, 5695 * they won't start any more (see perf_aux_output_begin()). 5696 */ 5697 perf_pmu_output_stop(event); 5698 5699 /* now it's safe to free the pages */ 5700 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5701 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5702 5703 /* this has to be the last one */ 5704 rb_free_aux(rb); 5705 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5706 5707 mutex_unlock(&event->mmap_mutex); 5708 } 5709 5710 atomic_dec(&rb->mmap_count); 5711 5712 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5713 goto out_put; 5714 5715 ring_buffer_attach(event, NULL); 5716 mutex_unlock(&event->mmap_mutex); 5717 5718 /* If there's still other mmap()s of this buffer, we're done. */ 5719 if (atomic_read(&rb->mmap_count)) 5720 goto out_put; 5721 5722 /* 5723 * No other mmap()s, detach from all other events that might redirect 5724 * into the now unreachable buffer. Somewhat complicated by the 5725 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5726 */ 5727 again: 5728 rcu_read_lock(); 5729 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5730 if (!atomic_long_inc_not_zero(&event->refcount)) { 5731 /* 5732 * This event is en-route to free_event() which will 5733 * detach it and remove it from the list. 5734 */ 5735 continue; 5736 } 5737 rcu_read_unlock(); 5738 5739 mutex_lock(&event->mmap_mutex); 5740 /* 5741 * Check we didn't race with perf_event_set_output() which can 5742 * swizzle the rb from under us while we were waiting to 5743 * acquire mmap_mutex. 5744 * 5745 * If we find a different rb; ignore this event, a next 5746 * iteration will no longer find it on the list. We have to 5747 * still restart the iteration to make sure we're not now 5748 * iterating the wrong list. 5749 */ 5750 if (event->rb == rb) 5751 ring_buffer_attach(event, NULL); 5752 5753 mutex_unlock(&event->mmap_mutex); 5754 put_event(event); 5755 5756 /* 5757 * Restart the iteration; either we're on the wrong list or 5758 * destroyed its integrity by doing a deletion. 5759 */ 5760 goto again; 5761 } 5762 rcu_read_unlock(); 5763 5764 /* 5765 * It could be there's still a few 0-ref events on the list; they'll 5766 * get cleaned up by free_event() -- they'll also still have their 5767 * ref on the rb and will free it whenever they are done with it. 5768 * 5769 * Aside from that, this buffer is 'fully' detached and unmapped, 5770 * undo the VM accounting. 5771 */ 5772 5773 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5774 &mmap_user->locked_vm); 5775 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5776 free_uid(mmap_user); 5777 5778 out_put: 5779 ring_buffer_put(rb); /* could be last */ 5780 } 5781 5782 static const struct vm_operations_struct perf_mmap_vmops = { 5783 .open = perf_mmap_open, 5784 .close = perf_mmap_close, /* non mergeable */ 5785 .fault = perf_mmap_fault, 5786 .page_mkwrite = perf_mmap_fault, 5787 }; 5788 5789 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5790 { 5791 struct perf_event *event = file->private_data; 5792 unsigned long user_locked, user_lock_limit; 5793 struct user_struct *user = current_user(); 5794 struct perf_buffer *rb = NULL; 5795 unsigned long locked, lock_limit; 5796 unsigned long vma_size; 5797 unsigned long nr_pages; 5798 long user_extra = 0, extra = 0; 5799 int ret = 0, flags = 0; 5800 5801 /* 5802 * Don't allow mmap() of inherited per-task counters. This would 5803 * create a performance issue due to all children writing to the 5804 * same rb. 5805 */ 5806 if (event->cpu == -1 && event->attr.inherit) 5807 return -EINVAL; 5808 5809 if (!(vma->vm_flags & VM_SHARED)) 5810 return -EINVAL; 5811 5812 ret = security_perf_event_read(event); 5813 if (ret) 5814 return ret; 5815 5816 vma_size = vma->vm_end - vma->vm_start; 5817 5818 if (vma->vm_pgoff == 0) { 5819 nr_pages = (vma_size / PAGE_SIZE) - 1; 5820 } else { 5821 /* 5822 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5823 * mapped, all subsequent mappings should have the same size 5824 * and offset. Must be above the normal perf buffer. 5825 */ 5826 u64 aux_offset, aux_size; 5827 5828 if (!event->rb) 5829 return -EINVAL; 5830 5831 nr_pages = vma_size / PAGE_SIZE; 5832 5833 mutex_lock(&event->mmap_mutex); 5834 ret = -EINVAL; 5835 5836 rb = event->rb; 5837 if (!rb) 5838 goto aux_unlock; 5839 5840 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5841 aux_size = READ_ONCE(rb->user_page->aux_size); 5842 5843 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5844 goto aux_unlock; 5845 5846 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5847 goto aux_unlock; 5848 5849 /* already mapped with a different offset */ 5850 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5851 goto aux_unlock; 5852 5853 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5854 goto aux_unlock; 5855 5856 /* already mapped with a different size */ 5857 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5858 goto aux_unlock; 5859 5860 if (!is_power_of_2(nr_pages)) 5861 goto aux_unlock; 5862 5863 if (!atomic_inc_not_zero(&rb->mmap_count)) 5864 goto aux_unlock; 5865 5866 if (rb_has_aux(rb)) { 5867 atomic_inc(&rb->aux_mmap_count); 5868 ret = 0; 5869 goto unlock; 5870 } 5871 5872 atomic_set(&rb->aux_mmap_count, 1); 5873 user_extra = nr_pages; 5874 5875 goto accounting; 5876 } 5877 5878 /* 5879 * If we have rb pages ensure they're a power-of-two number, so we 5880 * can do bitmasks instead of modulo. 5881 */ 5882 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5883 return -EINVAL; 5884 5885 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5886 return -EINVAL; 5887 5888 WARN_ON_ONCE(event->ctx->parent_ctx); 5889 again: 5890 mutex_lock(&event->mmap_mutex); 5891 if (event->rb) { 5892 if (event->rb->nr_pages != nr_pages) { 5893 ret = -EINVAL; 5894 goto unlock; 5895 } 5896 5897 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5898 /* 5899 * Raced against perf_mmap_close() through 5900 * perf_event_set_output(). Try again, hope for better 5901 * luck. 5902 */ 5903 mutex_unlock(&event->mmap_mutex); 5904 goto again; 5905 } 5906 5907 goto unlock; 5908 } 5909 5910 user_extra = nr_pages + 1; 5911 5912 accounting: 5913 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5914 5915 /* 5916 * Increase the limit linearly with more CPUs: 5917 */ 5918 user_lock_limit *= num_online_cpus(); 5919 5920 user_locked = atomic_long_read(&user->locked_vm); 5921 5922 /* 5923 * sysctl_perf_event_mlock may have changed, so that 5924 * user->locked_vm > user_lock_limit 5925 */ 5926 if (user_locked > user_lock_limit) 5927 user_locked = user_lock_limit; 5928 user_locked += user_extra; 5929 5930 if (user_locked > user_lock_limit) { 5931 /* 5932 * charge locked_vm until it hits user_lock_limit; 5933 * charge the rest from pinned_vm 5934 */ 5935 extra = user_locked - user_lock_limit; 5936 user_extra -= extra; 5937 } 5938 5939 lock_limit = rlimit(RLIMIT_MEMLOCK); 5940 lock_limit >>= PAGE_SHIFT; 5941 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5942 5943 if ((locked > lock_limit) && perf_is_paranoid() && 5944 !capable(CAP_IPC_LOCK)) { 5945 ret = -EPERM; 5946 goto unlock; 5947 } 5948 5949 WARN_ON(!rb && event->rb); 5950 5951 if (vma->vm_flags & VM_WRITE) 5952 flags |= RING_BUFFER_WRITABLE; 5953 5954 if (!rb) { 5955 rb = rb_alloc(nr_pages, 5956 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5957 event->cpu, flags); 5958 5959 if (!rb) { 5960 ret = -ENOMEM; 5961 goto unlock; 5962 } 5963 5964 atomic_set(&rb->mmap_count, 1); 5965 rb->mmap_user = get_current_user(); 5966 rb->mmap_locked = extra; 5967 5968 ring_buffer_attach(event, rb); 5969 5970 perf_event_init_userpage(event); 5971 perf_event_update_userpage(event); 5972 } else { 5973 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5974 event->attr.aux_watermark, flags); 5975 if (!ret) 5976 rb->aux_mmap_locked = extra; 5977 } 5978 5979 unlock: 5980 if (!ret) { 5981 atomic_long_add(user_extra, &user->locked_vm); 5982 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5983 5984 atomic_inc(&event->mmap_count); 5985 } else if (rb) { 5986 atomic_dec(&rb->mmap_count); 5987 } 5988 aux_unlock: 5989 mutex_unlock(&event->mmap_mutex); 5990 5991 /* 5992 * Since pinned accounting is per vm we cannot allow fork() to copy our 5993 * vma. 5994 */ 5995 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5996 vma->vm_ops = &perf_mmap_vmops; 5997 5998 if (event->pmu->event_mapped) 5999 event->pmu->event_mapped(event, vma->vm_mm); 6000 6001 return ret; 6002 } 6003 6004 static int perf_fasync(int fd, struct file *filp, int on) 6005 { 6006 struct inode *inode = file_inode(filp); 6007 struct perf_event *event = filp->private_data; 6008 int retval; 6009 6010 inode_lock(inode); 6011 retval = fasync_helper(fd, filp, on, &event->fasync); 6012 inode_unlock(inode); 6013 6014 if (retval < 0) 6015 return retval; 6016 6017 return 0; 6018 } 6019 6020 static const struct file_operations perf_fops = { 6021 .llseek = no_llseek, 6022 .release = perf_release, 6023 .read = perf_read, 6024 .poll = perf_poll, 6025 .unlocked_ioctl = perf_ioctl, 6026 .compat_ioctl = perf_compat_ioctl, 6027 .mmap = perf_mmap, 6028 .fasync = perf_fasync, 6029 }; 6030 6031 /* 6032 * Perf event wakeup 6033 * 6034 * If there's data, ensure we set the poll() state and publish everything 6035 * to user-space before waking everybody up. 6036 */ 6037 6038 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6039 { 6040 /* only the parent has fasync state */ 6041 if (event->parent) 6042 event = event->parent; 6043 return &event->fasync; 6044 } 6045 6046 void perf_event_wakeup(struct perf_event *event) 6047 { 6048 ring_buffer_wakeup(event); 6049 6050 if (event->pending_kill) { 6051 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6052 event->pending_kill = 0; 6053 } 6054 } 6055 6056 static void perf_pending_event_disable(struct perf_event *event) 6057 { 6058 int cpu = READ_ONCE(event->pending_disable); 6059 6060 if (cpu < 0) 6061 return; 6062 6063 if (cpu == smp_processor_id()) { 6064 WRITE_ONCE(event->pending_disable, -1); 6065 perf_event_disable_local(event); 6066 return; 6067 } 6068 6069 /* 6070 * CPU-A CPU-B 6071 * 6072 * perf_event_disable_inatomic() 6073 * @pending_disable = CPU-A; 6074 * irq_work_queue(); 6075 * 6076 * sched-out 6077 * @pending_disable = -1; 6078 * 6079 * sched-in 6080 * perf_event_disable_inatomic() 6081 * @pending_disable = CPU-B; 6082 * irq_work_queue(); // FAILS 6083 * 6084 * irq_work_run() 6085 * perf_pending_event() 6086 * 6087 * But the event runs on CPU-B and wants disabling there. 6088 */ 6089 irq_work_queue_on(&event->pending, cpu); 6090 } 6091 6092 static void perf_pending_event(struct irq_work *entry) 6093 { 6094 struct perf_event *event = container_of(entry, struct perf_event, pending); 6095 int rctx; 6096 6097 rctx = perf_swevent_get_recursion_context(); 6098 /* 6099 * If we 'fail' here, that's OK, it means recursion is already disabled 6100 * and we won't recurse 'further'. 6101 */ 6102 6103 perf_pending_event_disable(event); 6104 6105 if (event->pending_wakeup) { 6106 event->pending_wakeup = 0; 6107 perf_event_wakeup(event); 6108 } 6109 6110 if (rctx >= 0) 6111 perf_swevent_put_recursion_context(rctx); 6112 } 6113 6114 /* 6115 * We assume there is only KVM supporting the callbacks. 6116 * Later on, we might change it to a list if there is 6117 * another virtualization implementation supporting the callbacks. 6118 */ 6119 struct perf_guest_info_callbacks *perf_guest_cbs; 6120 6121 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6122 { 6123 perf_guest_cbs = cbs; 6124 return 0; 6125 } 6126 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6127 6128 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6129 { 6130 perf_guest_cbs = NULL; 6131 return 0; 6132 } 6133 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6134 6135 static void 6136 perf_output_sample_regs(struct perf_output_handle *handle, 6137 struct pt_regs *regs, u64 mask) 6138 { 6139 int bit; 6140 DECLARE_BITMAP(_mask, 64); 6141 6142 bitmap_from_u64(_mask, mask); 6143 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6144 u64 val; 6145 6146 val = perf_reg_value(regs, bit); 6147 perf_output_put(handle, val); 6148 } 6149 } 6150 6151 static void perf_sample_regs_user(struct perf_regs *regs_user, 6152 struct pt_regs *regs, 6153 struct pt_regs *regs_user_copy) 6154 { 6155 if (user_mode(regs)) { 6156 regs_user->abi = perf_reg_abi(current); 6157 regs_user->regs = regs; 6158 } else if (!(current->flags & PF_KTHREAD)) { 6159 perf_get_regs_user(regs_user, regs, regs_user_copy); 6160 } else { 6161 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6162 regs_user->regs = NULL; 6163 } 6164 } 6165 6166 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6167 struct pt_regs *regs) 6168 { 6169 regs_intr->regs = regs; 6170 regs_intr->abi = perf_reg_abi(current); 6171 } 6172 6173 6174 /* 6175 * Get remaining task size from user stack pointer. 6176 * 6177 * It'd be better to take stack vma map and limit this more 6178 * precisely, but there's no way to get it safely under interrupt, 6179 * so using TASK_SIZE as limit. 6180 */ 6181 static u64 perf_ustack_task_size(struct pt_regs *regs) 6182 { 6183 unsigned long addr = perf_user_stack_pointer(regs); 6184 6185 if (!addr || addr >= TASK_SIZE) 6186 return 0; 6187 6188 return TASK_SIZE - addr; 6189 } 6190 6191 static u16 6192 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6193 struct pt_regs *regs) 6194 { 6195 u64 task_size; 6196 6197 /* No regs, no stack pointer, no dump. */ 6198 if (!regs) 6199 return 0; 6200 6201 /* 6202 * Check if we fit in with the requested stack size into the: 6203 * - TASK_SIZE 6204 * If we don't, we limit the size to the TASK_SIZE. 6205 * 6206 * - remaining sample size 6207 * If we don't, we customize the stack size to 6208 * fit in to the remaining sample size. 6209 */ 6210 6211 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6212 stack_size = min(stack_size, (u16) task_size); 6213 6214 /* Current header size plus static size and dynamic size. */ 6215 header_size += 2 * sizeof(u64); 6216 6217 /* Do we fit in with the current stack dump size? */ 6218 if ((u16) (header_size + stack_size) < header_size) { 6219 /* 6220 * If we overflow the maximum size for the sample, 6221 * we customize the stack dump size to fit in. 6222 */ 6223 stack_size = USHRT_MAX - header_size - sizeof(u64); 6224 stack_size = round_up(stack_size, sizeof(u64)); 6225 } 6226 6227 return stack_size; 6228 } 6229 6230 static void 6231 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6232 struct pt_regs *regs) 6233 { 6234 /* Case of a kernel thread, nothing to dump */ 6235 if (!regs) { 6236 u64 size = 0; 6237 perf_output_put(handle, size); 6238 } else { 6239 unsigned long sp; 6240 unsigned int rem; 6241 u64 dyn_size; 6242 mm_segment_t fs; 6243 6244 /* 6245 * We dump: 6246 * static size 6247 * - the size requested by user or the best one we can fit 6248 * in to the sample max size 6249 * data 6250 * - user stack dump data 6251 * dynamic size 6252 * - the actual dumped size 6253 */ 6254 6255 /* Static size. */ 6256 perf_output_put(handle, dump_size); 6257 6258 /* Data. */ 6259 sp = perf_user_stack_pointer(regs); 6260 fs = get_fs(); 6261 set_fs(USER_DS); 6262 rem = __output_copy_user(handle, (void *) sp, dump_size); 6263 set_fs(fs); 6264 dyn_size = dump_size - rem; 6265 6266 perf_output_skip(handle, rem); 6267 6268 /* Dynamic size. */ 6269 perf_output_put(handle, dyn_size); 6270 } 6271 } 6272 6273 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6274 struct perf_sample_data *data, 6275 size_t size) 6276 { 6277 struct perf_event *sampler = event->aux_event; 6278 struct perf_buffer *rb; 6279 6280 data->aux_size = 0; 6281 6282 if (!sampler) 6283 goto out; 6284 6285 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6286 goto out; 6287 6288 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6289 goto out; 6290 6291 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6292 if (!rb) 6293 goto out; 6294 6295 /* 6296 * If this is an NMI hit inside sampling code, don't take 6297 * the sample. See also perf_aux_sample_output(). 6298 */ 6299 if (READ_ONCE(rb->aux_in_sampling)) { 6300 data->aux_size = 0; 6301 } else { 6302 size = min_t(size_t, size, perf_aux_size(rb)); 6303 data->aux_size = ALIGN(size, sizeof(u64)); 6304 } 6305 ring_buffer_put(rb); 6306 6307 out: 6308 return data->aux_size; 6309 } 6310 6311 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6312 struct perf_event *event, 6313 struct perf_output_handle *handle, 6314 unsigned long size) 6315 { 6316 unsigned long flags; 6317 long ret; 6318 6319 /* 6320 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6321 * paths. If we start calling them in NMI context, they may race with 6322 * the IRQ ones, that is, for example, re-starting an event that's just 6323 * been stopped, which is why we're using a separate callback that 6324 * doesn't change the event state. 6325 * 6326 * IRQs need to be disabled to prevent IPIs from racing with us. 6327 */ 6328 local_irq_save(flags); 6329 /* 6330 * Guard against NMI hits inside the critical section; 6331 * see also perf_prepare_sample_aux(). 6332 */ 6333 WRITE_ONCE(rb->aux_in_sampling, 1); 6334 barrier(); 6335 6336 ret = event->pmu->snapshot_aux(event, handle, size); 6337 6338 barrier(); 6339 WRITE_ONCE(rb->aux_in_sampling, 0); 6340 local_irq_restore(flags); 6341 6342 return ret; 6343 } 6344 6345 static void perf_aux_sample_output(struct perf_event *event, 6346 struct perf_output_handle *handle, 6347 struct perf_sample_data *data) 6348 { 6349 struct perf_event *sampler = event->aux_event; 6350 struct perf_buffer *rb; 6351 unsigned long pad; 6352 long size; 6353 6354 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6355 return; 6356 6357 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6358 if (!rb) 6359 return; 6360 6361 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6362 6363 /* 6364 * An error here means that perf_output_copy() failed (returned a 6365 * non-zero surplus that it didn't copy), which in its current 6366 * enlightened implementation is not possible. If that changes, we'd 6367 * like to know. 6368 */ 6369 if (WARN_ON_ONCE(size < 0)) 6370 goto out_put; 6371 6372 /* 6373 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6374 * perf_prepare_sample_aux(), so should not be more than that. 6375 */ 6376 pad = data->aux_size - size; 6377 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6378 pad = 8; 6379 6380 if (pad) { 6381 u64 zero = 0; 6382 perf_output_copy(handle, &zero, pad); 6383 } 6384 6385 out_put: 6386 ring_buffer_put(rb); 6387 } 6388 6389 static void __perf_event_header__init_id(struct perf_event_header *header, 6390 struct perf_sample_data *data, 6391 struct perf_event *event) 6392 { 6393 u64 sample_type = event->attr.sample_type; 6394 6395 data->type = sample_type; 6396 header->size += event->id_header_size; 6397 6398 if (sample_type & PERF_SAMPLE_TID) { 6399 /* namespace issues */ 6400 data->tid_entry.pid = perf_event_pid(event, current); 6401 data->tid_entry.tid = perf_event_tid(event, current); 6402 } 6403 6404 if (sample_type & PERF_SAMPLE_TIME) 6405 data->time = perf_event_clock(event); 6406 6407 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6408 data->id = primary_event_id(event); 6409 6410 if (sample_type & PERF_SAMPLE_STREAM_ID) 6411 data->stream_id = event->id; 6412 6413 if (sample_type & PERF_SAMPLE_CPU) { 6414 data->cpu_entry.cpu = raw_smp_processor_id(); 6415 data->cpu_entry.reserved = 0; 6416 } 6417 } 6418 6419 void perf_event_header__init_id(struct perf_event_header *header, 6420 struct perf_sample_data *data, 6421 struct perf_event *event) 6422 { 6423 if (event->attr.sample_id_all) 6424 __perf_event_header__init_id(header, data, event); 6425 } 6426 6427 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6428 struct perf_sample_data *data) 6429 { 6430 u64 sample_type = data->type; 6431 6432 if (sample_type & PERF_SAMPLE_TID) 6433 perf_output_put(handle, data->tid_entry); 6434 6435 if (sample_type & PERF_SAMPLE_TIME) 6436 perf_output_put(handle, data->time); 6437 6438 if (sample_type & PERF_SAMPLE_ID) 6439 perf_output_put(handle, data->id); 6440 6441 if (sample_type & PERF_SAMPLE_STREAM_ID) 6442 perf_output_put(handle, data->stream_id); 6443 6444 if (sample_type & PERF_SAMPLE_CPU) 6445 perf_output_put(handle, data->cpu_entry); 6446 6447 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6448 perf_output_put(handle, data->id); 6449 } 6450 6451 void perf_event__output_id_sample(struct perf_event *event, 6452 struct perf_output_handle *handle, 6453 struct perf_sample_data *sample) 6454 { 6455 if (event->attr.sample_id_all) 6456 __perf_event__output_id_sample(handle, sample); 6457 } 6458 6459 static void perf_output_read_one(struct perf_output_handle *handle, 6460 struct perf_event *event, 6461 u64 enabled, u64 running) 6462 { 6463 u64 read_format = event->attr.read_format; 6464 u64 values[4]; 6465 int n = 0; 6466 6467 values[n++] = perf_event_count(event); 6468 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6469 values[n++] = enabled + 6470 atomic64_read(&event->child_total_time_enabled); 6471 } 6472 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6473 values[n++] = running + 6474 atomic64_read(&event->child_total_time_running); 6475 } 6476 if (read_format & PERF_FORMAT_ID) 6477 values[n++] = primary_event_id(event); 6478 6479 __output_copy(handle, values, n * sizeof(u64)); 6480 } 6481 6482 static void perf_output_read_group(struct perf_output_handle *handle, 6483 struct perf_event *event, 6484 u64 enabled, u64 running) 6485 { 6486 struct perf_event *leader = event->group_leader, *sub; 6487 u64 read_format = event->attr.read_format; 6488 u64 values[5]; 6489 int n = 0; 6490 6491 values[n++] = 1 + leader->nr_siblings; 6492 6493 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6494 values[n++] = enabled; 6495 6496 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6497 values[n++] = running; 6498 6499 if ((leader != event) && 6500 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6501 leader->pmu->read(leader); 6502 6503 values[n++] = perf_event_count(leader); 6504 if (read_format & PERF_FORMAT_ID) 6505 values[n++] = primary_event_id(leader); 6506 6507 __output_copy(handle, values, n * sizeof(u64)); 6508 6509 for_each_sibling_event(sub, leader) { 6510 n = 0; 6511 6512 if ((sub != event) && 6513 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6514 sub->pmu->read(sub); 6515 6516 values[n++] = perf_event_count(sub); 6517 if (read_format & PERF_FORMAT_ID) 6518 values[n++] = primary_event_id(sub); 6519 6520 __output_copy(handle, values, n * sizeof(u64)); 6521 } 6522 } 6523 6524 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6525 PERF_FORMAT_TOTAL_TIME_RUNNING) 6526 6527 /* 6528 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6529 * 6530 * The problem is that its both hard and excessively expensive to iterate the 6531 * child list, not to mention that its impossible to IPI the children running 6532 * on another CPU, from interrupt/NMI context. 6533 */ 6534 static void perf_output_read(struct perf_output_handle *handle, 6535 struct perf_event *event) 6536 { 6537 u64 enabled = 0, running = 0, now; 6538 u64 read_format = event->attr.read_format; 6539 6540 /* 6541 * compute total_time_enabled, total_time_running 6542 * based on snapshot values taken when the event 6543 * was last scheduled in. 6544 * 6545 * we cannot simply called update_context_time() 6546 * because of locking issue as we are called in 6547 * NMI context 6548 */ 6549 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6550 calc_timer_values(event, &now, &enabled, &running); 6551 6552 if (event->attr.read_format & PERF_FORMAT_GROUP) 6553 perf_output_read_group(handle, event, enabled, running); 6554 else 6555 perf_output_read_one(handle, event, enabled, running); 6556 } 6557 6558 void perf_output_sample(struct perf_output_handle *handle, 6559 struct perf_event_header *header, 6560 struct perf_sample_data *data, 6561 struct perf_event *event) 6562 { 6563 u64 sample_type = data->type; 6564 6565 perf_output_put(handle, *header); 6566 6567 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6568 perf_output_put(handle, data->id); 6569 6570 if (sample_type & PERF_SAMPLE_IP) 6571 perf_output_put(handle, data->ip); 6572 6573 if (sample_type & PERF_SAMPLE_TID) 6574 perf_output_put(handle, data->tid_entry); 6575 6576 if (sample_type & PERF_SAMPLE_TIME) 6577 perf_output_put(handle, data->time); 6578 6579 if (sample_type & PERF_SAMPLE_ADDR) 6580 perf_output_put(handle, data->addr); 6581 6582 if (sample_type & PERF_SAMPLE_ID) 6583 perf_output_put(handle, data->id); 6584 6585 if (sample_type & PERF_SAMPLE_STREAM_ID) 6586 perf_output_put(handle, data->stream_id); 6587 6588 if (sample_type & PERF_SAMPLE_CPU) 6589 perf_output_put(handle, data->cpu_entry); 6590 6591 if (sample_type & PERF_SAMPLE_PERIOD) 6592 perf_output_put(handle, data->period); 6593 6594 if (sample_type & PERF_SAMPLE_READ) 6595 perf_output_read(handle, event); 6596 6597 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6598 int size = 1; 6599 6600 size += data->callchain->nr; 6601 size *= sizeof(u64); 6602 __output_copy(handle, data->callchain, size); 6603 } 6604 6605 if (sample_type & PERF_SAMPLE_RAW) { 6606 struct perf_raw_record *raw = data->raw; 6607 6608 if (raw) { 6609 struct perf_raw_frag *frag = &raw->frag; 6610 6611 perf_output_put(handle, raw->size); 6612 do { 6613 if (frag->copy) { 6614 __output_custom(handle, frag->copy, 6615 frag->data, frag->size); 6616 } else { 6617 __output_copy(handle, frag->data, 6618 frag->size); 6619 } 6620 if (perf_raw_frag_last(frag)) 6621 break; 6622 frag = frag->next; 6623 } while (1); 6624 if (frag->pad) 6625 __output_skip(handle, NULL, frag->pad); 6626 } else { 6627 struct { 6628 u32 size; 6629 u32 data; 6630 } raw = { 6631 .size = sizeof(u32), 6632 .data = 0, 6633 }; 6634 perf_output_put(handle, raw); 6635 } 6636 } 6637 6638 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6639 if (data->br_stack) { 6640 size_t size; 6641 6642 size = data->br_stack->nr 6643 * sizeof(struct perf_branch_entry); 6644 6645 perf_output_put(handle, data->br_stack->nr); 6646 perf_output_copy(handle, data->br_stack->entries, size); 6647 } else { 6648 /* 6649 * we always store at least the value of nr 6650 */ 6651 u64 nr = 0; 6652 perf_output_put(handle, nr); 6653 } 6654 } 6655 6656 if (sample_type & PERF_SAMPLE_REGS_USER) { 6657 u64 abi = data->regs_user.abi; 6658 6659 /* 6660 * If there are no regs to dump, notice it through 6661 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6662 */ 6663 perf_output_put(handle, abi); 6664 6665 if (abi) { 6666 u64 mask = event->attr.sample_regs_user; 6667 perf_output_sample_regs(handle, 6668 data->regs_user.regs, 6669 mask); 6670 } 6671 } 6672 6673 if (sample_type & PERF_SAMPLE_STACK_USER) { 6674 perf_output_sample_ustack(handle, 6675 data->stack_user_size, 6676 data->regs_user.regs); 6677 } 6678 6679 if (sample_type & PERF_SAMPLE_WEIGHT) 6680 perf_output_put(handle, data->weight); 6681 6682 if (sample_type & PERF_SAMPLE_DATA_SRC) 6683 perf_output_put(handle, data->data_src.val); 6684 6685 if (sample_type & PERF_SAMPLE_TRANSACTION) 6686 perf_output_put(handle, data->txn); 6687 6688 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6689 u64 abi = data->regs_intr.abi; 6690 /* 6691 * If there are no regs to dump, notice it through 6692 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6693 */ 6694 perf_output_put(handle, abi); 6695 6696 if (abi) { 6697 u64 mask = event->attr.sample_regs_intr; 6698 6699 perf_output_sample_regs(handle, 6700 data->regs_intr.regs, 6701 mask); 6702 } 6703 } 6704 6705 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6706 perf_output_put(handle, data->phys_addr); 6707 6708 if (sample_type & PERF_SAMPLE_AUX) { 6709 perf_output_put(handle, data->aux_size); 6710 6711 if (data->aux_size) 6712 perf_aux_sample_output(event, handle, data); 6713 } 6714 6715 if (!event->attr.watermark) { 6716 int wakeup_events = event->attr.wakeup_events; 6717 6718 if (wakeup_events) { 6719 struct perf_buffer *rb = handle->rb; 6720 int events = local_inc_return(&rb->events); 6721 6722 if (events >= wakeup_events) { 6723 local_sub(wakeup_events, &rb->events); 6724 local_inc(&rb->wakeup); 6725 } 6726 } 6727 } 6728 } 6729 6730 static u64 perf_virt_to_phys(u64 virt) 6731 { 6732 u64 phys_addr = 0; 6733 struct page *p = NULL; 6734 6735 if (!virt) 6736 return 0; 6737 6738 if (virt >= TASK_SIZE) { 6739 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6740 if (virt_addr_valid((void *)(uintptr_t)virt) && 6741 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6742 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6743 } else { 6744 /* 6745 * Walking the pages tables for user address. 6746 * Interrupts are disabled, so it prevents any tear down 6747 * of the page tables. 6748 * Try IRQ-safe __get_user_pages_fast first. 6749 * If failed, leave phys_addr as 0. 6750 */ 6751 if ((current->mm != NULL) && 6752 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6753 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6754 6755 if (p) 6756 put_page(p); 6757 } 6758 6759 return phys_addr; 6760 } 6761 6762 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6763 6764 struct perf_callchain_entry * 6765 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6766 { 6767 bool kernel = !event->attr.exclude_callchain_kernel; 6768 bool user = !event->attr.exclude_callchain_user; 6769 /* Disallow cross-task user callchains. */ 6770 bool crosstask = event->ctx->task && event->ctx->task != current; 6771 const u32 max_stack = event->attr.sample_max_stack; 6772 struct perf_callchain_entry *callchain; 6773 6774 if (!kernel && !user) 6775 return &__empty_callchain; 6776 6777 callchain = get_perf_callchain(regs, 0, kernel, user, 6778 max_stack, crosstask, true); 6779 return callchain ?: &__empty_callchain; 6780 } 6781 6782 void perf_prepare_sample(struct perf_event_header *header, 6783 struct perf_sample_data *data, 6784 struct perf_event *event, 6785 struct pt_regs *regs) 6786 { 6787 u64 sample_type = event->attr.sample_type; 6788 6789 header->type = PERF_RECORD_SAMPLE; 6790 header->size = sizeof(*header) + event->header_size; 6791 6792 header->misc = 0; 6793 header->misc |= perf_misc_flags(regs); 6794 6795 __perf_event_header__init_id(header, data, event); 6796 6797 if (sample_type & PERF_SAMPLE_IP) 6798 data->ip = perf_instruction_pointer(regs); 6799 6800 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6801 int size = 1; 6802 6803 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6804 data->callchain = perf_callchain(event, regs); 6805 6806 size += data->callchain->nr; 6807 6808 header->size += size * sizeof(u64); 6809 } 6810 6811 if (sample_type & PERF_SAMPLE_RAW) { 6812 struct perf_raw_record *raw = data->raw; 6813 int size; 6814 6815 if (raw) { 6816 struct perf_raw_frag *frag = &raw->frag; 6817 u32 sum = 0; 6818 6819 do { 6820 sum += frag->size; 6821 if (perf_raw_frag_last(frag)) 6822 break; 6823 frag = frag->next; 6824 } while (1); 6825 6826 size = round_up(sum + sizeof(u32), sizeof(u64)); 6827 raw->size = size - sizeof(u32); 6828 frag->pad = raw->size - sum; 6829 } else { 6830 size = sizeof(u64); 6831 } 6832 6833 header->size += size; 6834 } 6835 6836 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6837 int size = sizeof(u64); /* nr */ 6838 if (data->br_stack) { 6839 size += data->br_stack->nr 6840 * sizeof(struct perf_branch_entry); 6841 } 6842 header->size += size; 6843 } 6844 6845 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6846 perf_sample_regs_user(&data->regs_user, regs, 6847 &data->regs_user_copy); 6848 6849 if (sample_type & PERF_SAMPLE_REGS_USER) { 6850 /* regs dump ABI info */ 6851 int size = sizeof(u64); 6852 6853 if (data->regs_user.regs) { 6854 u64 mask = event->attr.sample_regs_user; 6855 size += hweight64(mask) * sizeof(u64); 6856 } 6857 6858 header->size += size; 6859 } 6860 6861 if (sample_type & PERF_SAMPLE_STACK_USER) { 6862 /* 6863 * Either we need PERF_SAMPLE_STACK_USER bit to be always 6864 * processed as the last one or have additional check added 6865 * in case new sample type is added, because we could eat 6866 * up the rest of the sample size. 6867 */ 6868 u16 stack_size = event->attr.sample_stack_user; 6869 u16 size = sizeof(u64); 6870 6871 stack_size = perf_sample_ustack_size(stack_size, header->size, 6872 data->regs_user.regs); 6873 6874 /* 6875 * If there is something to dump, add space for the dump 6876 * itself and for the field that tells the dynamic size, 6877 * which is how many have been actually dumped. 6878 */ 6879 if (stack_size) 6880 size += sizeof(u64) + stack_size; 6881 6882 data->stack_user_size = stack_size; 6883 header->size += size; 6884 } 6885 6886 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6887 /* regs dump ABI info */ 6888 int size = sizeof(u64); 6889 6890 perf_sample_regs_intr(&data->regs_intr, regs); 6891 6892 if (data->regs_intr.regs) { 6893 u64 mask = event->attr.sample_regs_intr; 6894 6895 size += hweight64(mask) * sizeof(u64); 6896 } 6897 6898 header->size += size; 6899 } 6900 6901 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6902 data->phys_addr = perf_virt_to_phys(data->addr); 6903 6904 if (sample_type & PERF_SAMPLE_AUX) { 6905 u64 size; 6906 6907 header->size += sizeof(u64); /* size */ 6908 6909 /* 6910 * Given the 16bit nature of header::size, an AUX sample can 6911 * easily overflow it, what with all the preceding sample bits. 6912 * Make sure this doesn't happen by using up to U16_MAX bytes 6913 * per sample in total (rounded down to 8 byte boundary). 6914 */ 6915 size = min_t(size_t, U16_MAX - header->size, 6916 event->attr.aux_sample_size); 6917 size = rounddown(size, 8); 6918 size = perf_prepare_sample_aux(event, data, size); 6919 6920 WARN_ON_ONCE(size + header->size > U16_MAX); 6921 header->size += size; 6922 } 6923 /* 6924 * If you're adding more sample types here, you likely need to do 6925 * something about the overflowing header::size, like repurpose the 6926 * lowest 3 bits of size, which should be always zero at the moment. 6927 * This raises a more important question, do we really need 512k sized 6928 * samples and why, so good argumentation is in order for whatever you 6929 * do here next. 6930 */ 6931 WARN_ON_ONCE(header->size & 7); 6932 } 6933 6934 static __always_inline int 6935 __perf_event_output(struct perf_event *event, 6936 struct perf_sample_data *data, 6937 struct pt_regs *regs, 6938 int (*output_begin)(struct perf_output_handle *, 6939 struct perf_event *, 6940 unsigned int)) 6941 { 6942 struct perf_output_handle handle; 6943 struct perf_event_header header; 6944 int err; 6945 6946 /* protect the callchain buffers */ 6947 rcu_read_lock(); 6948 6949 perf_prepare_sample(&header, data, event, regs); 6950 6951 err = output_begin(&handle, event, header.size); 6952 if (err) 6953 goto exit; 6954 6955 perf_output_sample(&handle, &header, data, event); 6956 6957 perf_output_end(&handle); 6958 6959 exit: 6960 rcu_read_unlock(); 6961 return err; 6962 } 6963 6964 void 6965 perf_event_output_forward(struct perf_event *event, 6966 struct perf_sample_data *data, 6967 struct pt_regs *regs) 6968 { 6969 __perf_event_output(event, data, regs, perf_output_begin_forward); 6970 } 6971 6972 void 6973 perf_event_output_backward(struct perf_event *event, 6974 struct perf_sample_data *data, 6975 struct pt_regs *regs) 6976 { 6977 __perf_event_output(event, data, regs, perf_output_begin_backward); 6978 } 6979 6980 int 6981 perf_event_output(struct perf_event *event, 6982 struct perf_sample_data *data, 6983 struct pt_regs *regs) 6984 { 6985 return __perf_event_output(event, data, regs, perf_output_begin); 6986 } 6987 6988 /* 6989 * read event_id 6990 */ 6991 6992 struct perf_read_event { 6993 struct perf_event_header header; 6994 6995 u32 pid; 6996 u32 tid; 6997 }; 6998 6999 static void 7000 perf_event_read_event(struct perf_event *event, 7001 struct task_struct *task) 7002 { 7003 struct perf_output_handle handle; 7004 struct perf_sample_data sample; 7005 struct perf_read_event read_event = { 7006 .header = { 7007 .type = PERF_RECORD_READ, 7008 .misc = 0, 7009 .size = sizeof(read_event) + event->read_size, 7010 }, 7011 .pid = perf_event_pid(event, task), 7012 .tid = perf_event_tid(event, task), 7013 }; 7014 int ret; 7015 7016 perf_event_header__init_id(&read_event.header, &sample, event); 7017 ret = perf_output_begin(&handle, event, read_event.header.size); 7018 if (ret) 7019 return; 7020 7021 perf_output_put(&handle, read_event); 7022 perf_output_read(&handle, event); 7023 perf_event__output_id_sample(event, &handle, &sample); 7024 7025 perf_output_end(&handle); 7026 } 7027 7028 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7029 7030 static void 7031 perf_iterate_ctx(struct perf_event_context *ctx, 7032 perf_iterate_f output, 7033 void *data, bool all) 7034 { 7035 struct perf_event *event; 7036 7037 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7038 if (!all) { 7039 if (event->state < PERF_EVENT_STATE_INACTIVE) 7040 continue; 7041 if (!event_filter_match(event)) 7042 continue; 7043 } 7044 7045 output(event, data); 7046 } 7047 } 7048 7049 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7050 { 7051 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7052 struct perf_event *event; 7053 7054 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7055 /* 7056 * Skip events that are not fully formed yet; ensure that 7057 * if we observe event->ctx, both event and ctx will be 7058 * complete enough. See perf_install_in_context(). 7059 */ 7060 if (!smp_load_acquire(&event->ctx)) 7061 continue; 7062 7063 if (event->state < PERF_EVENT_STATE_INACTIVE) 7064 continue; 7065 if (!event_filter_match(event)) 7066 continue; 7067 output(event, data); 7068 } 7069 } 7070 7071 /* 7072 * Iterate all events that need to receive side-band events. 7073 * 7074 * For new callers; ensure that account_pmu_sb_event() includes 7075 * your event, otherwise it might not get delivered. 7076 */ 7077 static void 7078 perf_iterate_sb(perf_iterate_f output, void *data, 7079 struct perf_event_context *task_ctx) 7080 { 7081 struct perf_event_context *ctx; 7082 int ctxn; 7083 7084 rcu_read_lock(); 7085 preempt_disable(); 7086 7087 /* 7088 * If we have task_ctx != NULL we only notify the task context itself. 7089 * The task_ctx is set only for EXIT events before releasing task 7090 * context. 7091 */ 7092 if (task_ctx) { 7093 perf_iterate_ctx(task_ctx, output, data, false); 7094 goto done; 7095 } 7096 7097 perf_iterate_sb_cpu(output, data); 7098 7099 for_each_task_context_nr(ctxn) { 7100 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7101 if (ctx) 7102 perf_iterate_ctx(ctx, output, data, false); 7103 } 7104 done: 7105 preempt_enable(); 7106 rcu_read_unlock(); 7107 } 7108 7109 /* 7110 * Clear all file-based filters at exec, they'll have to be 7111 * re-instated when/if these objects are mmapped again. 7112 */ 7113 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7114 { 7115 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7116 struct perf_addr_filter *filter; 7117 unsigned int restart = 0, count = 0; 7118 unsigned long flags; 7119 7120 if (!has_addr_filter(event)) 7121 return; 7122 7123 raw_spin_lock_irqsave(&ifh->lock, flags); 7124 list_for_each_entry(filter, &ifh->list, entry) { 7125 if (filter->path.dentry) { 7126 event->addr_filter_ranges[count].start = 0; 7127 event->addr_filter_ranges[count].size = 0; 7128 restart++; 7129 } 7130 7131 count++; 7132 } 7133 7134 if (restart) 7135 event->addr_filters_gen++; 7136 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7137 7138 if (restart) 7139 perf_event_stop(event, 1); 7140 } 7141 7142 void perf_event_exec(void) 7143 { 7144 struct perf_event_context *ctx; 7145 int ctxn; 7146 7147 rcu_read_lock(); 7148 for_each_task_context_nr(ctxn) { 7149 ctx = current->perf_event_ctxp[ctxn]; 7150 if (!ctx) 7151 continue; 7152 7153 perf_event_enable_on_exec(ctxn); 7154 7155 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7156 true); 7157 } 7158 rcu_read_unlock(); 7159 } 7160 7161 struct remote_output { 7162 struct perf_buffer *rb; 7163 int err; 7164 }; 7165 7166 static void __perf_event_output_stop(struct perf_event *event, void *data) 7167 { 7168 struct perf_event *parent = event->parent; 7169 struct remote_output *ro = data; 7170 struct perf_buffer *rb = ro->rb; 7171 struct stop_event_data sd = { 7172 .event = event, 7173 }; 7174 7175 if (!has_aux(event)) 7176 return; 7177 7178 if (!parent) 7179 parent = event; 7180 7181 /* 7182 * In case of inheritance, it will be the parent that links to the 7183 * ring-buffer, but it will be the child that's actually using it. 7184 * 7185 * We are using event::rb to determine if the event should be stopped, 7186 * however this may race with ring_buffer_attach() (through set_output), 7187 * which will make us skip the event that actually needs to be stopped. 7188 * So ring_buffer_attach() has to stop an aux event before re-assigning 7189 * its rb pointer. 7190 */ 7191 if (rcu_dereference(parent->rb) == rb) 7192 ro->err = __perf_event_stop(&sd); 7193 } 7194 7195 static int __perf_pmu_output_stop(void *info) 7196 { 7197 struct perf_event *event = info; 7198 struct pmu *pmu = event->ctx->pmu; 7199 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7200 struct remote_output ro = { 7201 .rb = event->rb, 7202 }; 7203 7204 rcu_read_lock(); 7205 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7206 if (cpuctx->task_ctx) 7207 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7208 &ro, false); 7209 rcu_read_unlock(); 7210 7211 return ro.err; 7212 } 7213 7214 static void perf_pmu_output_stop(struct perf_event *event) 7215 { 7216 struct perf_event *iter; 7217 int err, cpu; 7218 7219 restart: 7220 rcu_read_lock(); 7221 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7222 /* 7223 * For per-CPU events, we need to make sure that neither they 7224 * nor their children are running; for cpu==-1 events it's 7225 * sufficient to stop the event itself if it's active, since 7226 * it can't have children. 7227 */ 7228 cpu = iter->cpu; 7229 if (cpu == -1) 7230 cpu = READ_ONCE(iter->oncpu); 7231 7232 if (cpu == -1) 7233 continue; 7234 7235 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7236 if (err == -EAGAIN) { 7237 rcu_read_unlock(); 7238 goto restart; 7239 } 7240 } 7241 rcu_read_unlock(); 7242 } 7243 7244 /* 7245 * task tracking -- fork/exit 7246 * 7247 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7248 */ 7249 7250 struct perf_task_event { 7251 struct task_struct *task; 7252 struct perf_event_context *task_ctx; 7253 7254 struct { 7255 struct perf_event_header header; 7256 7257 u32 pid; 7258 u32 ppid; 7259 u32 tid; 7260 u32 ptid; 7261 u64 time; 7262 } event_id; 7263 }; 7264 7265 static int perf_event_task_match(struct perf_event *event) 7266 { 7267 return event->attr.comm || event->attr.mmap || 7268 event->attr.mmap2 || event->attr.mmap_data || 7269 event->attr.task; 7270 } 7271 7272 static void perf_event_task_output(struct perf_event *event, 7273 void *data) 7274 { 7275 struct perf_task_event *task_event = data; 7276 struct perf_output_handle handle; 7277 struct perf_sample_data sample; 7278 struct task_struct *task = task_event->task; 7279 int ret, size = task_event->event_id.header.size; 7280 7281 if (!perf_event_task_match(event)) 7282 return; 7283 7284 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7285 7286 ret = perf_output_begin(&handle, event, 7287 task_event->event_id.header.size); 7288 if (ret) 7289 goto out; 7290 7291 task_event->event_id.pid = perf_event_pid(event, task); 7292 task_event->event_id.ppid = perf_event_pid(event, current); 7293 7294 task_event->event_id.tid = perf_event_tid(event, task); 7295 task_event->event_id.ptid = perf_event_tid(event, current); 7296 7297 task_event->event_id.time = perf_event_clock(event); 7298 7299 perf_output_put(&handle, task_event->event_id); 7300 7301 perf_event__output_id_sample(event, &handle, &sample); 7302 7303 perf_output_end(&handle); 7304 out: 7305 task_event->event_id.header.size = size; 7306 } 7307 7308 static void perf_event_task(struct task_struct *task, 7309 struct perf_event_context *task_ctx, 7310 int new) 7311 { 7312 struct perf_task_event task_event; 7313 7314 if (!atomic_read(&nr_comm_events) && 7315 !atomic_read(&nr_mmap_events) && 7316 !atomic_read(&nr_task_events)) 7317 return; 7318 7319 task_event = (struct perf_task_event){ 7320 .task = task, 7321 .task_ctx = task_ctx, 7322 .event_id = { 7323 .header = { 7324 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7325 .misc = 0, 7326 .size = sizeof(task_event.event_id), 7327 }, 7328 /* .pid */ 7329 /* .ppid */ 7330 /* .tid */ 7331 /* .ptid */ 7332 /* .time */ 7333 }, 7334 }; 7335 7336 perf_iterate_sb(perf_event_task_output, 7337 &task_event, 7338 task_ctx); 7339 } 7340 7341 void perf_event_fork(struct task_struct *task) 7342 { 7343 perf_event_task(task, NULL, 1); 7344 perf_event_namespaces(task); 7345 } 7346 7347 /* 7348 * comm tracking 7349 */ 7350 7351 struct perf_comm_event { 7352 struct task_struct *task; 7353 char *comm; 7354 int comm_size; 7355 7356 struct { 7357 struct perf_event_header header; 7358 7359 u32 pid; 7360 u32 tid; 7361 } event_id; 7362 }; 7363 7364 static int perf_event_comm_match(struct perf_event *event) 7365 { 7366 return event->attr.comm; 7367 } 7368 7369 static void perf_event_comm_output(struct perf_event *event, 7370 void *data) 7371 { 7372 struct perf_comm_event *comm_event = data; 7373 struct perf_output_handle handle; 7374 struct perf_sample_data sample; 7375 int size = comm_event->event_id.header.size; 7376 int ret; 7377 7378 if (!perf_event_comm_match(event)) 7379 return; 7380 7381 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7382 ret = perf_output_begin(&handle, event, 7383 comm_event->event_id.header.size); 7384 7385 if (ret) 7386 goto out; 7387 7388 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7389 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7390 7391 perf_output_put(&handle, comm_event->event_id); 7392 __output_copy(&handle, comm_event->comm, 7393 comm_event->comm_size); 7394 7395 perf_event__output_id_sample(event, &handle, &sample); 7396 7397 perf_output_end(&handle); 7398 out: 7399 comm_event->event_id.header.size = size; 7400 } 7401 7402 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7403 { 7404 char comm[TASK_COMM_LEN]; 7405 unsigned int size; 7406 7407 memset(comm, 0, sizeof(comm)); 7408 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7409 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7410 7411 comm_event->comm = comm; 7412 comm_event->comm_size = size; 7413 7414 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7415 7416 perf_iterate_sb(perf_event_comm_output, 7417 comm_event, 7418 NULL); 7419 } 7420 7421 void perf_event_comm(struct task_struct *task, bool exec) 7422 { 7423 struct perf_comm_event comm_event; 7424 7425 if (!atomic_read(&nr_comm_events)) 7426 return; 7427 7428 comm_event = (struct perf_comm_event){ 7429 .task = task, 7430 /* .comm */ 7431 /* .comm_size */ 7432 .event_id = { 7433 .header = { 7434 .type = PERF_RECORD_COMM, 7435 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7436 /* .size */ 7437 }, 7438 /* .pid */ 7439 /* .tid */ 7440 }, 7441 }; 7442 7443 perf_event_comm_event(&comm_event); 7444 } 7445 7446 /* 7447 * namespaces tracking 7448 */ 7449 7450 struct perf_namespaces_event { 7451 struct task_struct *task; 7452 7453 struct { 7454 struct perf_event_header header; 7455 7456 u32 pid; 7457 u32 tid; 7458 u64 nr_namespaces; 7459 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7460 } event_id; 7461 }; 7462 7463 static int perf_event_namespaces_match(struct perf_event *event) 7464 { 7465 return event->attr.namespaces; 7466 } 7467 7468 static void perf_event_namespaces_output(struct perf_event *event, 7469 void *data) 7470 { 7471 struct perf_namespaces_event *namespaces_event = data; 7472 struct perf_output_handle handle; 7473 struct perf_sample_data sample; 7474 u16 header_size = namespaces_event->event_id.header.size; 7475 int ret; 7476 7477 if (!perf_event_namespaces_match(event)) 7478 return; 7479 7480 perf_event_header__init_id(&namespaces_event->event_id.header, 7481 &sample, event); 7482 ret = perf_output_begin(&handle, event, 7483 namespaces_event->event_id.header.size); 7484 if (ret) 7485 goto out; 7486 7487 namespaces_event->event_id.pid = perf_event_pid(event, 7488 namespaces_event->task); 7489 namespaces_event->event_id.tid = perf_event_tid(event, 7490 namespaces_event->task); 7491 7492 perf_output_put(&handle, namespaces_event->event_id); 7493 7494 perf_event__output_id_sample(event, &handle, &sample); 7495 7496 perf_output_end(&handle); 7497 out: 7498 namespaces_event->event_id.header.size = header_size; 7499 } 7500 7501 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7502 struct task_struct *task, 7503 const struct proc_ns_operations *ns_ops) 7504 { 7505 struct path ns_path; 7506 struct inode *ns_inode; 7507 int error; 7508 7509 error = ns_get_path(&ns_path, task, ns_ops); 7510 if (!error) { 7511 ns_inode = ns_path.dentry->d_inode; 7512 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7513 ns_link_info->ino = ns_inode->i_ino; 7514 path_put(&ns_path); 7515 } 7516 } 7517 7518 void perf_event_namespaces(struct task_struct *task) 7519 { 7520 struct perf_namespaces_event namespaces_event; 7521 struct perf_ns_link_info *ns_link_info; 7522 7523 if (!atomic_read(&nr_namespaces_events)) 7524 return; 7525 7526 namespaces_event = (struct perf_namespaces_event){ 7527 .task = task, 7528 .event_id = { 7529 .header = { 7530 .type = PERF_RECORD_NAMESPACES, 7531 .misc = 0, 7532 .size = sizeof(namespaces_event.event_id), 7533 }, 7534 /* .pid */ 7535 /* .tid */ 7536 .nr_namespaces = NR_NAMESPACES, 7537 /* .link_info[NR_NAMESPACES] */ 7538 }, 7539 }; 7540 7541 ns_link_info = namespaces_event.event_id.link_info; 7542 7543 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7544 task, &mntns_operations); 7545 7546 #ifdef CONFIG_USER_NS 7547 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7548 task, &userns_operations); 7549 #endif 7550 #ifdef CONFIG_NET_NS 7551 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7552 task, &netns_operations); 7553 #endif 7554 #ifdef CONFIG_UTS_NS 7555 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7556 task, &utsns_operations); 7557 #endif 7558 #ifdef CONFIG_IPC_NS 7559 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7560 task, &ipcns_operations); 7561 #endif 7562 #ifdef CONFIG_PID_NS 7563 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7564 task, &pidns_operations); 7565 #endif 7566 #ifdef CONFIG_CGROUPS 7567 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7568 task, &cgroupns_operations); 7569 #endif 7570 7571 perf_iterate_sb(perf_event_namespaces_output, 7572 &namespaces_event, 7573 NULL); 7574 } 7575 7576 /* 7577 * mmap tracking 7578 */ 7579 7580 struct perf_mmap_event { 7581 struct vm_area_struct *vma; 7582 7583 const char *file_name; 7584 int file_size; 7585 int maj, min; 7586 u64 ino; 7587 u64 ino_generation; 7588 u32 prot, flags; 7589 7590 struct { 7591 struct perf_event_header header; 7592 7593 u32 pid; 7594 u32 tid; 7595 u64 start; 7596 u64 len; 7597 u64 pgoff; 7598 } event_id; 7599 }; 7600 7601 static int perf_event_mmap_match(struct perf_event *event, 7602 void *data) 7603 { 7604 struct perf_mmap_event *mmap_event = data; 7605 struct vm_area_struct *vma = mmap_event->vma; 7606 int executable = vma->vm_flags & VM_EXEC; 7607 7608 return (!executable && event->attr.mmap_data) || 7609 (executable && (event->attr.mmap || event->attr.mmap2)); 7610 } 7611 7612 static void perf_event_mmap_output(struct perf_event *event, 7613 void *data) 7614 { 7615 struct perf_mmap_event *mmap_event = data; 7616 struct perf_output_handle handle; 7617 struct perf_sample_data sample; 7618 int size = mmap_event->event_id.header.size; 7619 u32 type = mmap_event->event_id.header.type; 7620 int ret; 7621 7622 if (!perf_event_mmap_match(event, data)) 7623 return; 7624 7625 if (event->attr.mmap2) { 7626 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7627 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7628 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7629 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7630 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7631 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7632 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7633 } 7634 7635 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7636 ret = perf_output_begin(&handle, event, 7637 mmap_event->event_id.header.size); 7638 if (ret) 7639 goto out; 7640 7641 mmap_event->event_id.pid = perf_event_pid(event, current); 7642 mmap_event->event_id.tid = perf_event_tid(event, current); 7643 7644 perf_output_put(&handle, mmap_event->event_id); 7645 7646 if (event->attr.mmap2) { 7647 perf_output_put(&handle, mmap_event->maj); 7648 perf_output_put(&handle, mmap_event->min); 7649 perf_output_put(&handle, mmap_event->ino); 7650 perf_output_put(&handle, mmap_event->ino_generation); 7651 perf_output_put(&handle, mmap_event->prot); 7652 perf_output_put(&handle, mmap_event->flags); 7653 } 7654 7655 __output_copy(&handle, mmap_event->file_name, 7656 mmap_event->file_size); 7657 7658 perf_event__output_id_sample(event, &handle, &sample); 7659 7660 perf_output_end(&handle); 7661 out: 7662 mmap_event->event_id.header.size = size; 7663 mmap_event->event_id.header.type = type; 7664 } 7665 7666 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7667 { 7668 struct vm_area_struct *vma = mmap_event->vma; 7669 struct file *file = vma->vm_file; 7670 int maj = 0, min = 0; 7671 u64 ino = 0, gen = 0; 7672 u32 prot = 0, flags = 0; 7673 unsigned int size; 7674 char tmp[16]; 7675 char *buf = NULL; 7676 char *name; 7677 7678 if (vma->vm_flags & VM_READ) 7679 prot |= PROT_READ; 7680 if (vma->vm_flags & VM_WRITE) 7681 prot |= PROT_WRITE; 7682 if (vma->vm_flags & VM_EXEC) 7683 prot |= PROT_EXEC; 7684 7685 if (vma->vm_flags & VM_MAYSHARE) 7686 flags = MAP_SHARED; 7687 else 7688 flags = MAP_PRIVATE; 7689 7690 if (vma->vm_flags & VM_DENYWRITE) 7691 flags |= MAP_DENYWRITE; 7692 if (vma->vm_flags & VM_MAYEXEC) 7693 flags |= MAP_EXECUTABLE; 7694 if (vma->vm_flags & VM_LOCKED) 7695 flags |= MAP_LOCKED; 7696 if (vma->vm_flags & VM_HUGETLB) 7697 flags |= MAP_HUGETLB; 7698 7699 if (file) { 7700 struct inode *inode; 7701 dev_t dev; 7702 7703 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7704 if (!buf) { 7705 name = "//enomem"; 7706 goto cpy_name; 7707 } 7708 /* 7709 * d_path() works from the end of the rb backwards, so we 7710 * need to add enough zero bytes after the string to handle 7711 * the 64bit alignment we do later. 7712 */ 7713 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7714 if (IS_ERR(name)) { 7715 name = "//toolong"; 7716 goto cpy_name; 7717 } 7718 inode = file_inode(vma->vm_file); 7719 dev = inode->i_sb->s_dev; 7720 ino = inode->i_ino; 7721 gen = inode->i_generation; 7722 maj = MAJOR(dev); 7723 min = MINOR(dev); 7724 7725 goto got_name; 7726 } else { 7727 if (vma->vm_ops && vma->vm_ops->name) { 7728 name = (char *) vma->vm_ops->name(vma); 7729 if (name) 7730 goto cpy_name; 7731 } 7732 7733 name = (char *)arch_vma_name(vma); 7734 if (name) 7735 goto cpy_name; 7736 7737 if (vma->vm_start <= vma->vm_mm->start_brk && 7738 vma->vm_end >= vma->vm_mm->brk) { 7739 name = "[heap]"; 7740 goto cpy_name; 7741 } 7742 if (vma->vm_start <= vma->vm_mm->start_stack && 7743 vma->vm_end >= vma->vm_mm->start_stack) { 7744 name = "[stack]"; 7745 goto cpy_name; 7746 } 7747 7748 name = "//anon"; 7749 goto cpy_name; 7750 } 7751 7752 cpy_name: 7753 strlcpy(tmp, name, sizeof(tmp)); 7754 name = tmp; 7755 got_name: 7756 /* 7757 * Since our buffer works in 8 byte units we need to align our string 7758 * size to a multiple of 8. However, we must guarantee the tail end is 7759 * zero'd out to avoid leaking random bits to userspace. 7760 */ 7761 size = strlen(name)+1; 7762 while (!IS_ALIGNED(size, sizeof(u64))) 7763 name[size++] = '\0'; 7764 7765 mmap_event->file_name = name; 7766 mmap_event->file_size = size; 7767 mmap_event->maj = maj; 7768 mmap_event->min = min; 7769 mmap_event->ino = ino; 7770 mmap_event->ino_generation = gen; 7771 mmap_event->prot = prot; 7772 mmap_event->flags = flags; 7773 7774 if (!(vma->vm_flags & VM_EXEC)) 7775 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7776 7777 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7778 7779 perf_iterate_sb(perf_event_mmap_output, 7780 mmap_event, 7781 NULL); 7782 7783 kfree(buf); 7784 } 7785 7786 /* 7787 * Check whether inode and address range match filter criteria. 7788 */ 7789 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7790 struct file *file, unsigned long offset, 7791 unsigned long size) 7792 { 7793 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7794 if (!filter->path.dentry) 7795 return false; 7796 7797 if (d_inode(filter->path.dentry) != file_inode(file)) 7798 return false; 7799 7800 if (filter->offset > offset + size) 7801 return false; 7802 7803 if (filter->offset + filter->size < offset) 7804 return false; 7805 7806 return true; 7807 } 7808 7809 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7810 struct vm_area_struct *vma, 7811 struct perf_addr_filter_range *fr) 7812 { 7813 unsigned long vma_size = vma->vm_end - vma->vm_start; 7814 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7815 struct file *file = vma->vm_file; 7816 7817 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7818 return false; 7819 7820 if (filter->offset < off) { 7821 fr->start = vma->vm_start; 7822 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7823 } else { 7824 fr->start = vma->vm_start + filter->offset - off; 7825 fr->size = min(vma->vm_end - fr->start, filter->size); 7826 } 7827 7828 return true; 7829 } 7830 7831 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7832 { 7833 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7834 struct vm_area_struct *vma = data; 7835 struct perf_addr_filter *filter; 7836 unsigned int restart = 0, count = 0; 7837 unsigned long flags; 7838 7839 if (!has_addr_filter(event)) 7840 return; 7841 7842 if (!vma->vm_file) 7843 return; 7844 7845 raw_spin_lock_irqsave(&ifh->lock, flags); 7846 list_for_each_entry(filter, &ifh->list, entry) { 7847 if (perf_addr_filter_vma_adjust(filter, vma, 7848 &event->addr_filter_ranges[count])) 7849 restart++; 7850 7851 count++; 7852 } 7853 7854 if (restart) 7855 event->addr_filters_gen++; 7856 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7857 7858 if (restart) 7859 perf_event_stop(event, 1); 7860 } 7861 7862 /* 7863 * Adjust all task's events' filters to the new vma 7864 */ 7865 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7866 { 7867 struct perf_event_context *ctx; 7868 int ctxn; 7869 7870 /* 7871 * Data tracing isn't supported yet and as such there is no need 7872 * to keep track of anything that isn't related to executable code: 7873 */ 7874 if (!(vma->vm_flags & VM_EXEC)) 7875 return; 7876 7877 rcu_read_lock(); 7878 for_each_task_context_nr(ctxn) { 7879 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7880 if (!ctx) 7881 continue; 7882 7883 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7884 } 7885 rcu_read_unlock(); 7886 } 7887 7888 void perf_event_mmap(struct vm_area_struct *vma) 7889 { 7890 struct perf_mmap_event mmap_event; 7891 7892 if (!atomic_read(&nr_mmap_events)) 7893 return; 7894 7895 mmap_event = (struct perf_mmap_event){ 7896 .vma = vma, 7897 /* .file_name */ 7898 /* .file_size */ 7899 .event_id = { 7900 .header = { 7901 .type = PERF_RECORD_MMAP, 7902 .misc = PERF_RECORD_MISC_USER, 7903 /* .size */ 7904 }, 7905 /* .pid */ 7906 /* .tid */ 7907 .start = vma->vm_start, 7908 .len = vma->vm_end - vma->vm_start, 7909 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7910 }, 7911 /* .maj (attr_mmap2 only) */ 7912 /* .min (attr_mmap2 only) */ 7913 /* .ino (attr_mmap2 only) */ 7914 /* .ino_generation (attr_mmap2 only) */ 7915 /* .prot (attr_mmap2 only) */ 7916 /* .flags (attr_mmap2 only) */ 7917 }; 7918 7919 perf_addr_filters_adjust(vma); 7920 perf_event_mmap_event(&mmap_event); 7921 } 7922 7923 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7924 unsigned long size, u64 flags) 7925 { 7926 struct perf_output_handle handle; 7927 struct perf_sample_data sample; 7928 struct perf_aux_event { 7929 struct perf_event_header header; 7930 u64 offset; 7931 u64 size; 7932 u64 flags; 7933 } rec = { 7934 .header = { 7935 .type = PERF_RECORD_AUX, 7936 .misc = 0, 7937 .size = sizeof(rec), 7938 }, 7939 .offset = head, 7940 .size = size, 7941 .flags = flags, 7942 }; 7943 int ret; 7944 7945 perf_event_header__init_id(&rec.header, &sample, event); 7946 ret = perf_output_begin(&handle, event, rec.header.size); 7947 7948 if (ret) 7949 return; 7950 7951 perf_output_put(&handle, rec); 7952 perf_event__output_id_sample(event, &handle, &sample); 7953 7954 perf_output_end(&handle); 7955 } 7956 7957 /* 7958 * Lost/dropped samples logging 7959 */ 7960 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7961 { 7962 struct perf_output_handle handle; 7963 struct perf_sample_data sample; 7964 int ret; 7965 7966 struct { 7967 struct perf_event_header header; 7968 u64 lost; 7969 } lost_samples_event = { 7970 .header = { 7971 .type = PERF_RECORD_LOST_SAMPLES, 7972 .misc = 0, 7973 .size = sizeof(lost_samples_event), 7974 }, 7975 .lost = lost, 7976 }; 7977 7978 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7979 7980 ret = perf_output_begin(&handle, event, 7981 lost_samples_event.header.size); 7982 if (ret) 7983 return; 7984 7985 perf_output_put(&handle, lost_samples_event); 7986 perf_event__output_id_sample(event, &handle, &sample); 7987 perf_output_end(&handle); 7988 } 7989 7990 /* 7991 * context_switch tracking 7992 */ 7993 7994 struct perf_switch_event { 7995 struct task_struct *task; 7996 struct task_struct *next_prev; 7997 7998 struct { 7999 struct perf_event_header header; 8000 u32 next_prev_pid; 8001 u32 next_prev_tid; 8002 } event_id; 8003 }; 8004 8005 static int perf_event_switch_match(struct perf_event *event) 8006 { 8007 return event->attr.context_switch; 8008 } 8009 8010 static void perf_event_switch_output(struct perf_event *event, void *data) 8011 { 8012 struct perf_switch_event *se = data; 8013 struct perf_output_handle handle; 8014 struct perf_sample_data sample; 8015 int ret; 8016 8017 if (!perf_event_switch_match(event)) 8018 return; 8019 8020 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8021 if (event->ctx->task) { 8022 se->event_id.header.type = PERF_RECORD_SWITCH; 8023 se->event_id.header.size = sizeof(se->event_id.header); 8024 } else { 8025 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8026 se->event_id.header.size = sizeof(se->event_id); 8027 se->event_id.next_prev_pid = 8028 perf_event_pid(event, se->next_prev); 8029 se->event_id.next_prev_tid = 8030 perf_event_tid(event, se->next_prev); 8031 } 8032 8033 perf_event_header__init_id(&se->event_id.header, &sample, event); 8034 8035 ret = perf_output_begin(&handle, event, se->event_id.header.size); 8036 if (ret) 8037 return; 8038 8039 if (event->ctx->task) 8040 perf_output_put(&handle, se->event_id.header); 8041 else 8042 perf_output_put(&handle, se->event_id); 8043 8044 perf_event__output_id_sample(event, &handle, &sample); 8045 8046 perf_output_end(&handle); 8047 } 8048 8049 static void perf_event_switch(struct task_struct *task, 8050 struct task_struct *next_prev, bool sched_in) 8051 { 8052 struct perf_switch_event switch_event; 8053 8054 /* N.B. caller checks nr_switch_events != 0 */ 8055 8056 switch_event = (struct perf_switch_event){ 8057 .task = task, 8058 .next_prev = next_prev, 8059 .event_id = { 8060 .header = { 8061 /* .type */ 8062 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8063 /* .size */ 8064 }, 8065 /* .next_prev_pid */ 8066 /* .next_prev_tid */ 8067 }, 8068 }; 8069 8070 if (!sched_in && task->state == TASK_RUNNING) 8071 switch_event.event_id.header.misc |= 8072 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8073 8074 perf_iterate_sb(perf_event_switch_output, 8075 &switch_event, 8076 NULL); 8077 } 8078 8079 /* 8080 * IRQ throttle logging 8081 */ 8082 8083 static void perf_log_throttle(struct perf_event *event, int enable) 8084 { 8085 struct perf_output_handle handle; 8086 struct perf_sample_data sample; 8087 int ret; 8088 8089 struct { 8090 struct perf_event_header header; 8091 u64 time; 8092 u64 id; 8093 u64 stream_id; 8094 } throttle_event = { 8095 .header = { 8096 .type = PERF_RECORD_THROTTLE, 8097 .misc = 0, 8098 .size = sizeof(throttle_event), 8099 }, 8100 .time = perf_event_clock(event), 8101 .id = primary_event_id(event), 8102 .stream_id = event->id, 8103 }; 8104 8105 if (enable) 8106 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8107 8108 perf_event_header__init_id(&throttle_event.header, &sample, event); 8109 8110 ret = perf_output_begin(&handle, event, 8111 throttle_event.header.size); 8112 if (ret) 8113 return; 8114 8115 perf_output_put(&handle, throttle_event); 8116 perf_event__output_id_sample(event, &handle, &sample); 8117 perf_output_end(&handle); 8118 } 8119 8120 /* 8121 * ksymbol register/unregister tracking 8122 */ 8123 8124 struct perf_ksymbol_event { 8125 const char *name; 8126 int name_len; 8127 struct { 8128 struct perf_event_header header; 8129 u64 addr; 8130 u32 len; 8131 u16 ksym_type; 8132 u16 flags; 8133 } event_id; 8134 }; 8135 8136 static int perf_event_ksymbol_match(struct perf_event *event) 8137 { 8138 return event->attr.ksymbol; 8139 } 8140 8141 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8142 { 8143 struct perf_ksymbol_event *ksymbol_event = data; 8144 struct perf_output_handle handle; 8145 struct perf_sample_data sample; 8146 int ret; 8147 8148 if (!perf_event_ksymbol_match(event)) 8149 return; 8150 8151 perf_event_header__init_id(&ksymbol_event->event_id.header, 8152 &sample, event); 8153 ret = perf_output_begin(&handle, event, 8154 ksymbol_event->event_id.header.size); 8155 if (ret) 8156 return; 8157 8158 perf_output_put(&handle, ksymbol_event->event_id); 8159 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8160 perf_event__output_id_sample(event, &handle, &sample); 8161 8162 perf_output_end(&handle); 8163 } 8164 8165 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8166 const char *sym) 8167 { 8168 struct perf_ksymbol_event ksymbol_event; 8169 char name[KSYM_NAME_LEN]; 8170 u16 flags = 0; 8171 int name_len; 8172 8173 if (!atomic_read(&nr_ksymbol_events)) 8174 return; 8175 8176 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8177 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8178 goto err; 8179 8180 strlcpy(name, sym, KSYM_NAME_LEN); 8181 name_len = strlen(name) + 1; 8182 while (!IS_ALIGNED(name_len, sizeof(u64))) 8183 name[name_len++] = '\0'; 8184 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8185 8186 if (unregister) 8187 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8188 8189 ksymbol_event = (struct perf_ksymbol_event){ 8190 .name = name, 8191 .name_len = name_len, 8192 .event_id = { 8193 .header = { 8194 .type = PERF_RECORD_KSYMBOL, 8195 .size = sizeof(ksymbol_event.event_id) + 8196 name_len, 8197 }, 8198 .addr = addr, 8199 .len = len, 8200 .ksym_type = ksym_type, 8201 .flags = flags, 8202 }, 8203 }; 8204 8205 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8206 return; 8207 err: 8208 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8209 } 8210 8211 /* 8212 * bpf program load/unload tracking 8213 */ 8214 8215 struct perf_bpf_event { 8216 struct bpf_prog *prog; 8217 struct { 8218 struct perf_event_header header; 8219 u16 type; 8220 u16 flags; 8221 u32 id; 8222 u8 tag[BPF_TAG_SIZE]; 8223 } event_id; 8224 }; 8225 8226 static int perf_event_bpf_match(struct perf_event *event) 8227 { 8228 return event->attr.bpf_event; 8229 } 8230 8231 static void perf_event_bpf_output(struct perf_event *event, void *data) 8232 { 8233 struct perf_bpf_event *bpf_event = data; 8234 struct perf_output_handle handle; 8235 struct perf_sample_data sample; 8236 int ret; 8237 8238 if (!perf_event_bpf_match(event)) 8239 return; 8240 8241 perf_event_header__init_id(&bpf_event->event_id.header, 8242 &sample, event); 8243 ret = perf_output_begin(&handle, event, 8244 bpf_event->event_id.header.size); 8245 if (ret) 8246 return; 8247 8248 perf_output_put(&handle, bpf_event->event_id); 8249 perf_event__output_id_sample(event, &handle, &sample); 8250 8251 perf_output_end(&handle); 8252 } 8253 8254 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8255 enum perf_bpf_event_type type) 8256 { 8257 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8258 char sym[KSYM_NAME_LEN]; 8259 int i; 8260 8261 if (prog->aux->func_cnt == 0) { 8262 bpf_get_prog_name(prog, sym); 8263 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8264 (u64)(unsigned long)prog->bpf_func, 8265 prog->jited_len, unregister, sym); 8266 } else { 8267 for (i = 0; i < prog->aux->func_cnt; i++) { 8268 struct bpf_prog *subprog = prog->aux->func[i]; 8269 8270 bpf_get_prog_name(subprog, sym); 8271 perf_event_ksymbol( 8272 PERF_RECORD_KSYMBOL_TYPE_BPF, 8273 (u64)(unsigned long)subprog->bpf_func, 8274 subprog->jited_len, unregister, sym); 8275 } 8276 } 8277 } 8278 8279 void perf_event_bpf_event(struct bpf_prog *prog, 8280 enum perf_bpf_event_type type, 8281 u16 flags) 8282 { 8283 struct perf_bpf_event bpf_event; 8284 8285 if (type <= PERF_BPF_EVENT_UNKNOWN || 8286 type >= PERF_BPF_EVENT_MAX) 8287 return; 8288 8289 switch (type) { 8290 case PERF_BPF_EVENT_PROG_LOAD: 8291 case PERF_BPF_EVENT_PROG_UNLOAD: 8292 if (atomic_read(&nr_ksymbol_events)) 8293 perf_event_bpf_emit_ksymbols(prog, type); 8294 break; 8295 default: 8296 break; 8297 } 8298 8299 if (!atomic_read(&nr_bpf_events)) 8300 return; 8301 8302 bpf_event = (struct perf_bpf_event){ 8303 .prog = prog, 8304 .event_id = { 8305 .header = { 8306 .type = PERF_RECORD_BPF_EVENT, 8307 .size = sizeof(bpf_event.event_id), 8308 }, 8309 .type = type, 8310 .flags = flags, 8311 .id = prog->aux->id, 8312 }, 8313 }; 8314 8315 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8316 8317 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8318 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8319 } 8320 8321 void perf_event_itrace_started(struct perf_event *event) 8322 { 8323 event->attach_state |= PERF_ATTACH_ITRACE; 8324 } 8325 8326 static void perf_log_itrace_start(struct perf_event *event) 8327 { 8328 struct perf_output_handle handle; 8329 struct perf_sample_data sample; 8330 struct perf_aux_event { 8331 struct perf_event_header header; 8332 u32 pid; 8333 u32 tid; 8334 } rec; 8335 int ret; 8336 8337 if (event->parent) 8338 event = event->parent; 8339 8340 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8341 event->attach_state & PERF_ATTACH_ITRACE) 8342 return; 8343 8344 rec.header.type = PERF_RECORD_ITRACE_START; 8345 rec.header.misc = 0; 8346 rec.header.size = sizeof(rec); 8347 rec.pid = perf_event_pid(event, current); 8348 rec.tid = perf_event_tid(event, current); 8349 8350 perf_event_header__init_id(&rec.header, &sample, event); 8351 ret = perf_output_begin(&handle, event, rec.header.size); 8352 8353 if (ret) 8354 return; 8355 8356 perf_output_put(&handle, rec); 8357 perf_event__output_id_sample(event, &handle, &sample); 8358 8359 perf_output_end(&handle); 8360 } 8361 8362 static int 8363 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8364 { 8365 struct hw_perf_event *hwc = &event->hw; 8366 int ret = 0; 8367 u64 seq; 8368 8369 seq = __this_cpu_read(perf_throttled_seq); 8370 if (seq != hwc->interrupts_seq) { 8371 hwc->interrupts_seq = seq; 8372 hwc->interrupts = 1; 8373 } else { 8374 hwc->interrupts++; 8375 if (unlikely(throttle 8376 && hwc->interrupts >= max_samples_per_tick)) { 8377 __this_cpu_inc(perf_throttled_count); 8378 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8379 hwc->interrupts = MAX_INTERRUPTS; 8380 perf_log_throttle(event, 0); 8381 ret = 1; 8382 } 8383 } 8384 8385 if (event->attr.freq) { 8386 u64 now = perf_clock(); 8387 s64 delta = now - hwc->freq_time_stamp; 8388 8389 hwc->freq_time_stamp = now; 8390 8391 if (delta > 0 && delta < 2*TICK_NSEC) 8392 perf_adjust_period(event, delta, hwc->last_period, true); 8393 } 8394 8395 return ret; 8396 } 8397 8398 int perf_event_account_interrupt(struct perf_event *event) 8399 { 8400 return __perf_event_account_interrupt(event, 1); 8401 } 8402 8403 /* 8404 * Generic event overflow handling, sampling. 8405 */ 8406 8407 static int __perf_event_overflow(struct perf_event *event, 8408 int throttle, struct perf_sample_data *data, 8409 struct pt_regs *regs) 8410 { 8411 int events = atomic_read(&event->event_limit); 8412 int ret = 0; 8413 8414 /* 8415 * Non-sampling counters might still use the PMI to fold short 8416 * hardware counters, ignore those. 8417 */ 8418 if (unlikely(!is_sampling_event(event))) 8419 return 0; 8420 8421 ret = __perf_event_account_interrupt(event, throttle); 8422 8423 /* 8424 * XXX event_limit might not quite work as expected on inherited 8425 * events 8426 */ 8427 8428 event->pending_kill = POLL_IN; 8429 if (events && atomic_dec_and_test(&event->event_limit)) { 8430 ret = 1; 8431 event->pending_kill = POLL_HUP; 8432 8433 perf_event_disable_inatomic(event); 8434 } 8435 8436 READ_ONCE(event->overflow_handler)(event, data, regs); 8437 8438 if (*perf_event_fasync(event) && event->pending_kill) { 8439 event->pending_wakeup = 1; 8440 irq_work_queue(&event->pending); 8441 } 8442 8443 return ret; 8444 } 8445 8446 int perf_event_overflow(struct perf_event *event, 8447 struct perf_sample_data *data, 8448 struct pt_regs *regs) 8449 { 8450 return __perf_event_overflow(event, 1, data, regs); 8451 } 8452 8453 /* 8454 * Generic software event infrastructure 8455 */ 8456 8457 struct swevent_htable { 8458 struct swevent_hlist *swevent_hlist; 8459 struct mutex hlist_mutex; 8460 int hlist_refcount; 8461 8462 /* Recursion avoidance in each contexts */ 8463 int recursion[PERF_NR_CONTEXTS]; 8464 }; 8465 8466 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8467 8468 /* 8469 * We directly increment event->count and keep a second value in 8470 * event->hw.period_left to count intervals. This period event 8471 * is kept in the range [-sample_period, 0] so that we can use the 8472 * sign as trigger. 8473 */ 8474 8475 u64 perf_swevent_set_period(struct perf_event *event) 8476 { 8477 struct hw_perf_event *hwc = &event->hw; 8478 u64 period = hwc->last_period; 8479 u64 nr, offset; 8480 s64 old, val; 8481 8482 hwc->last_period = hwc->sample_period; 8483 8484 again: 8485 old = val = local64_read(&hwc->period_left); 8486 if (val < 0) 8487 return 0; 8488 8489 nr = div64_u64(period + val, period); 8490 offset = nr * period; 8491 val -= offset; 8492 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8493 goto again; 8494 8495 return nr; 8496 } 8497 8498 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8499 struct perf_sample_data *data, 8500 struct pt_regs *regs) 8501 { 8502 struct hw_perf_event *hwc = &event->hw; 8503 int throttle = 0; 8504 8505 if (!overflow) 8506 overflow = perf_swevent_set_period(event); 8507 8508 if (hwc->interrupts == MAX_INTERRUPTS) 8509 return; 8510 8511 for (; overflow; overflow--) { 8512 if (__perf_event_overflow(event, throttle, 8513 data, regs)) { 8514 /* 8515 * We inhibit the overflow from happening when 8516 * hwc->interrupts == MAX_INTERRUPTS. 8517 */ 8518 break; 8519 } 8520 throttle = 1; 8521 } 8522 } 8523 8524 static void perf_swevent_event(struct perf_event *event, u64 nr, 8525 struct perf_sample_data *data, 8526 struct pt_regs *regs) 8527 { 8528 struct hw_perf_event *hwc = &event->hw; 8529 8530 local64_add(nr, &event->count); 8531 8532 if (!regs) 8533 return; 8534 8535 if (!is_sampling_event(event)) 8536 return; 8537 8538 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8539 data->period = nr; 8540 return perf_swevent_overflow(event, 1, data, regs); 8541 } else 8542 data->period = event->hw.last_period; 8543 8544 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8545 return perf_swevent_overflow(event, 1, data, regs); 8546 8547 if (local64_add_negative(nr, &hwc->period_left)) 8548 return; 8549 8550 perf_swevent_overflow(event, 0, data, regs); 8551 } 8552 8553 static int perf_exclude_event(struct perf_event *event, 8554 struct pt_regs *regs) 8555 { 8556 if (event->hw.state & PERF_HES_STOPPED) 8557 return 1; 8558 8559 if (regs) { 8560 if (event->attr.exclude_user && user_mode(regs)) 8561 return 1; 8562 8563 if (event->attr.exclude_kernel && !user_mode(regs)) 8564 return 1; 8565 } 8566 8567 return 0; 8568 } 8569 8570 static int perf_swevent_match(struct perf_event *event, 8571 enum perf_type_id type, 8572 u32 event_id, 8573 struct perf_sample_data *data, 8574 struct pt_regs *regs) 8575 { 8576 if (event->attr.type != type) 8577 return 0; 8578 8579 if (event->attr.config != event_id) 8580 return 0; 8581 8582 if (perf_exclude_event(event, regs)) 8583 return 0; 8584 8585 return 1; 8586 } 8587 8588 static inline u64 swevent_hash(u64 type, u32 event_id) 8589 { 8590 u64 val = event_id | (type << 32); 8591 8592 return hash_64(val, SWEVENT_HLIST_BITS); 8593 } 8594 8595 static inline struct hlist_head * 8596 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8597 { 8598 u64 hash = swevent_hash(type, event_id); 8599 8600 return &hlist->heads[hash]; 8601 } 8602 8603 /* For the read side: events when they trigger */ 8604 static inline struct hlist_head * 8605 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8606 { 8607 struct swevent_hlist *hlist; 8608 8609 hlist = rcu_dereference(swhash->swevent_hlist); 8610 if (!hlist) 8611 return NULL; 8612 8613 return __find_swevent_head(hlist, type, event_id); 8614 } 8615 8616 /* For the event head insertion and removal in the hlist */ 8617 static inline struct hlist_head * 8618 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8619 { 8620 struct swevent_hlist *hlist; 8621 u32 event_id = event->attr.config; 8622 u64 type = event->attr.type; 8623 8624 /* 8625 * Event scheduling is always serialized against hlist allocation 8626 * and release. Which makes the protected version suitable here. 8627 * The context lock guarantees that. 8628 */ 8629 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8630 lockdep_is_held(&event->ctx->lock)); 8631 if (!hlist) 8632 return NULL; 8633 8634 return __find_swevent_head(hlist, type, event_id); 8635 } 8636 8637 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8638 u64 nr, 8639 struct perf_sample_data *data, 8640 struct pt_regs *regs) 8641 { 8642 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8643 struct perf_event *event; 8644 struct hlist_head *head; 8645 8646 rcu_read_lock(); 8647 head = find_swevent_head_rcu(swhash, type, event_id); 8648 if (!head) 8649 goto end; 8650 8651 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8652 if (perf_swevent_match(event, type, event_id, data, regs)) 8653 perf_swevent_event(event, nr, data, regs); 8654 } 8655 end: 8656 rcu_read_unlock(); 8657 } 8658 8659 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8660 8661 int perf_swevent_get_recursion_context(void) 8662 { 8663 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8664 8665 return get_recursion_context(swhash->recursion); 8666 } 8667 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8668 8669 void perf_swevent_put_recursion_context(int rctx) 8670 { 8671 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8672 8673 put_recursion_context(swhash->recursion, rctx); 8674 } 8675 8676 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8677 { 8678 struct perf_sample_data data; 8679 8680 if (WARN_ON_ONCE(!regs)) 8681 return; 8682 8683 perf_sample_data_init(&data, addr, 0); 8684 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8685 } 8686 8687 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8688 { 8689 int rctx; 8690 8691 preempt_disable_notrace(); 8692 rctx = perf_swevent_get_recursion_context(); 8693 if (unlikely(rctx < 0)) 8694 goto fail; 8695 8696 ___perf_sw_event(event_id, nr, regs, addr); 8697 8698 perf_swevent_put_recursion_context(rctx); 8699 fail: 8700 preempt_enable_notrace(); 8701 } 8702 8703 static void perf_swevent_read(struct perf_event *event) 8704 { 8705 } 8706 8707 static int perf_swevent_add(struct perf_event *event, int flags) 8708 { 8709 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8710 struct hw_perf_event *hwc = &event->hw; 8711 struct hlist_head *head; 8712 8713 if (is_sampling_event(event)) { 8714 hwc->last_period = hwc->sample_period; 8715 perf_swevent_set_period(event); 8716 } 8717 8718 hwc->state = !(flags & PERF_EF_START); 8719 8720 head = find_swevent_head(swhash, event); 8721 if (WARN_ON_ONCE(!head)) 8722 return -EINVAL; 8723 8724 hlist_add_head_rcu(&event->hlist_entry, head); 8725 perf_event_update_userpage(event); 8726 8727 return 0; 8728 } 8729 8730 static void perf_swevent_del(struct perf_event *event, int flags) 8731 { 8732 hlist_del_rcu(&event->hlist_entry); 8733 } 8734 8735 static void perf_swevent_start(struct perf_event *event, int flags) 8736 { 8737 event->hw.state = 0; 8738 } 8739 8740 static void perf_swevent_stop(struct perf_event *event, int flags) 8741 { 8742 event->hw.state = PERF_HES_STOPPED; 8743 } 8744 8745 /* Deref the hlist from the update side */ 8746 static inline struct swevent_hlist * 8747 swevent_hlist_deref(struct swevent_htable *swhash) 8748 { 8749 return rcu_dereference_protected(swhash->swevent_hlist, 8750 lockdep_is_held(&swhash->hlist_mutex)); 8751 } 8752 8753 static void swevent_hlist_release(struct swevent_htable *swhash) 8754 { 8755 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8756 8757 if (!hlist) 8758 return; 8759 8760 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8761 kfree_rcu(hlist, rcu_head); 8762 } 8763 8764 static void swevent_hlist_put_cpu(int cpu) 8765 { 8766 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8767 8768 mutex_lock(&swhash->hlist_mutex); 8769 8770 if (!--swhash->hlist_refcount) 8771 swevent_hlist_release(swhash); 8772 8773 mutex_unlock(&swhash->hlist_mutex); 8774 } 8775 8776 static void swevent_hlist_put(void) 8777 { 8778 int cpu; 8779 8780 for_each_possible_cpu(cpu) 8781 swevent_hlist_put_cpu(cpu); 8782 } 8783 8784 static int swevent_hlist_get_cpu(int cpu) 8785 { 8786 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8787 int err = 0; 8788 8789 mutex_lock(&swhash->hlist_mutex); 8790 if (!swevent_hlist_deref(swhash) && 8791 cpumask_test_cpu(cpu, perf_online_mask)) { 8792 struct swevent_hlist *hlist; 8793 8794 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8795 if (!hlist) { 8796 err = -ENOMEM; 8797 goto exit; 8798 } 8799 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8800 } 8801 swhash->hlist_refcount++; 8802 exit: 8803 mutex_unlock(&swhash->hlist_mutex); 8804 8805 return err; 8806 } 8807 8808 static int swevent_hlist_get(void) 8809 { 8810 int err, cpu, failed_cpu; 8811 8812 mutex_lock(&pmus_lock); 8813 for_each_possible_cpu(cpu) { 8814 err = swevent_hlist_get_cpu(cpu); 8815 if (err) { 8816 failed_cpu = cpu; 8817 goto fail; 8818 } 8819 } 8820 mutex_unlock(&pmus_lock); 8821 return 0; 8822 fail: 8823 for_each_possible_cpu(cpu) { 8824 if (cpu == failed_cpu) 8825 break; 8826 swevent_hlist_put_cpu(cpu); 8827 } 8828 mutex_unlock(&pmus_lock); 8829 return err; 8830 } 8831 8832 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8833 8834 static void sw_perf_event_destroy(struct perf_event *event) 8835 { 8836 u64 event_id = event->attr.config; 8837 8838 WARN_ON(event->parent); 8839 8840 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8841 swevent_hlist_put(); 8842 } 8843 8844 static int perf_swevent_init(struct perf_event *event) 8845 { 8846 u64 event_id = event->attr.config; 8847 8848 if (event->attr.type != PERF_TYPE_SOFTWARE) 8849 return -ENOENT; 8850 8851 /* 8852 * no branch sampling for software events 8853 */ 8854 if (has_branch_stack(event)) 8855 return -EOPNOTSUPP; 8856 8857 switch (event_id) { 8858 case PERF_COUNT_SW_CPU_CLOCK: 8859 case PERF_COUNT_SW_TASK_CLOCK: 8860 return -ENOENT; 8861 8862 default: 8863 break; 8864 } 8865 8866 if (event_id >= PERF_COUNT_SW_MAX) 8867 return -ENOENT; 8868 8869 if (!event->parent) { 8870 int err; 8871 8872 err = swevent_hlist_get(); 8873 if (err) 8874 return err; 8875 8876 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8877 event->destroy = sw_perf_event_destroy; 8878 } 8879 8880 return 0; 8881 } 8882 8883 static struct pmu perf_swevent = { 8884 .task_ctx_nr = perf_sw_context, 8885 8886 .capabilities = PERF_PMU_CAP_NO_NMI, 8887 8888 .event_init = perf_swevent_init, 8889 .add = perf_swevent_add, 8890 .del = perf_swevent_del, 8891 .start = perf_swevent_start, 8892 .stop = perf_swevent_stop, 8893 .read = perf_swevent_read, 8894 }; 8895 8896 #ifdef CONFIG_EVENT_TRACING 8897 8898 static int perf_tp_filter_match(struct perf_event *event, 8899 struct perf_sample_data *data) 8900 { 8901 void *record = data->raw->frag.data; 8902 8903 /* only top level events have filters set */ 8904 if (event->parent) 8905 event = event->parent; 8906 8907 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8908 return 1; 8909 return 0; 8910 } 8911 8912 static int perf_tp_event_match(struct perf_event *event, 8913 struct perf_sample_data *data, 8914 struct pt_regs *regs) 8915 { 8916 if (event->hw.state & PERF_HES_STOPPED) 8917 return 0; 8918 /* 8919 * If exclude_kernel, only trace user-space tracepoints (uprobes) 8920 */ 8921 if (event->attr.exclude_kernel && !user_mode(regs)) 8922 return 0; 8923 8924 if (!perf_tp_filter_match(event, data)) 8925 return 0; 8926 8927 return 1; 8928 } 8929 8930 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8931 struct trace_event_call *call, u64 count, 8932 struct pt_regs *regs, struct hlist_head *head, 8933 struct task_struct *task) 8934 { 8935 if (bpf_prog_array_valid(call)) { 8936 *(struct pt_regs **)raw_data = regs; 8937 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8938 perf_swevent_put_recursion_context(rctx); 8939 return; 8940 } 8941 } 8942 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8943 rctx, task); 8944 } 8945 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8946 8947 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8948 struct pt_regs *regs, struct hlist_head *head, int rctx, 8949 struct task_struct *task) 8950 { 8951 struct perf_sample_data data; 8952 struct perf_event *event; 8953 8954 struct perf_raw_record raw = { 8955 .frag = { 8956 .size = entry_size, 8957 .data = record, 8958 }, 8959 }; 8960 8961 perf_sample_data_init(&data, 0, 0); 8962 data.raw = &raw; 8963 8964 perf_trace_buf_update(record, event_type); 8965 8966 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8967 if (perf_tp_event_match(event, &data, regs)) 8968 perf_swevent_event(event, count, &data, regs); 8969 } 8970 8971 /* 8972 * If we got specified a target task, also iterate its context and 8973 * deliver this event there too. 8974 */ 8975 if (task && task != current) { 8976 struct perf_event_context *ctx; 8977 struct trace_entry *entry = record; 8978 8979 rcu_read_lock(); 8980 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8981 if (!ctx) 8982 goto unlock; 8983 8984 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8985 if (event->cpu != smp_processor_id()) 8986 continue; 8987 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8988 continue; 8989 if (event->attr.config != entry->type) 8990 continue; 8991 if (perf_tp_event_match(event, &data, regs)) 8992 perf_swevent_event(event, count, &data, regs); 8993 } 8994 unlock: 8995 rcu_read_unlock(); 8996 } 8997 8998 perf_swevent_put_recursion_context(rctx); 8999 } 9000 EXPORT_SYMBOL_GPL(perf_tp_event); 9001 9002 static void tp_perf_event_destroy(struct perf_event *event) 9003 { 9004 perf_trace_destroy(event); 9005 } 9006 9007 static int perf_tp_event_init(struct perf_event *event) 9008 { 9009 int err; 9010 9011 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9012 return -ENOENT; 9013 9014 /* 9015 * no branch sampling for tracepoint events 9016 */ 9017 if (has_branch_stack(event)) 9018 return -EOPNOTSUPP; 9019 9020 err = perf_trace_init(event); 9021 if (err) 9022 return err; 9023 9024 event->destroy = tp_perf_event_destroy; 9025 9026 return 0; 9027 } 9028 9029 static struct pmu perf_tracepoint = { 9030 .task_ctx_nr = perf_sw_context, 9031 9032 .event_init = perf_tp_event_init, 9033 .add = perf_trace_add, 9034 .del = perf_trace_del, 9035 .start = perf_swevent_start, 9036 .stop = perf_swevent_stop, 9037 .read = perf_swevent_read, 9038 }; 9039 9040 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9041 /* 9042 * Flags in config, used by dynamic PMU kprobe and uprobe 9043 * The flags should match following PMU_FORMAT_ATTR(). 9044 * 9045 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9046 * if not set, create kprobe/uprobe 9047 * 9048 * The following values specify a reference counter (or semaphore in the 9049 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9050 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9051 * 9052 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9053 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9054 */ 9055 enum perf_probe_config { 9056 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9057 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9058 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9059 }; 9060 9061 PMU_FORMAT_ATTR(retprobe, "config:0"); 9062 #endif 9063 9064 #ifdef CONFIG_KPROBE_EVENTS 9065 static struct attribute *kprobe_attrs[] = { 9066 &format_attr_retprobe.attr, 9067 NULL, 9068 }; 9069 9070 static struct attribute_group kprobe_format_group = { 9071 .name = "format", 9072 .attrs = kprobe_attrs, 9073 }; 9074 9075 static const struct attribute_group *kprobe_attr_groups[] = { 9076 &kprobe_format_group, 9077 NULL, 9078 }; 9079 9080 static int perf_kprobe_event_init(struct perf_event *event); 9081 static struct pmu perf_kprobe = { 9082 .task_ctx_nr = perf_sw_context, 9083 .event_init = perf_kprobe_event_init, 9084 .add = perf_trace_add, 9085 .del = perf_trace_del, 9086 .start = perf_swevent_start, 9087 .stop = perf_swevent_stop, 9088 .read = perf_swevent_read, 9089 .attr_groups = kprobe_attr_groups, 9090 }; 9091 9092 static int perf_kprobe_event_init(struct perf_event *event) 9093 { 9094 int err; 9095 bool is_retprobe; 9096 9097 if (event->attr.type != perf_kprobe.type) 9098 return -ENOENT; 9099 9100 if (!capable(CAP_SYS_ADMIN)) 9101 return -EACCES; 9102 9103 /* 9104 * no branch sampling for probe events 9105 */ 9106 if (has_branch_stack(event)) 9107 return -EOPNOTSUPP; 9108 9109 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9110 err = perf_kprobe_init(event, is_retprobe); 9111 if (err) 9112 return err; 9113 9114 event->destroy = perf_kprobe_destroy; 9115 9116 return 0; 9117 } 9118 #endif /* CONFIG_KPROBE_EVENTS */ 9119 9120 #ifdef CONFIG_UPROBE_EVENTS 9121 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9122 9123 static struct attribute *uprobe_attrs[] = { 9124 &format_attr_retprobe.attr, 9125 &format_attr_ref_ctr_offset.attr, 9126 NULL, 9127 }; 9128 9129 static struct attribute_group uprobe_format_group = { 9130 .name = "format", 9131 .attrs = uprobe_attrs, 9132 }; 9133 9134 static const struct attribute_group *uprobe_attr_groups[] = { 9135 &uprobe_format_group, 9136 NULL, 9137 }; 9138 9139 static int perf_uprobe_event_init(struct perf_event *event); 9140 static struct pmu perf_uprobe = { 9141 .task_ctx_nr = perf_sw_context, 9142 .event_init = perf_uprobe_event_init, 9143 .add = perf_trace_add, 9144 .del = perf_trace_del, 9145 .start = perf_swevent_start, 9146 .stop = perf_swevent_stop, 9147 .read = perf_swevent_read, 9148 .attr_groups = uprobe_attr_groups, 9149 }; 9150 9151 static int perf_uprobe_event_init(struct perf_event *event) 9152 { 9153 int err; 9154 unsigned long ref_ctr_offset; 9155 bool is_retprobe; 9156 9157 if (event->attr.type != perf_uprobe.type) 9158 return -ENOENT; 9159 9160 if (!capable(CAP_SYS_ADMIN)) 9161 return -EACCES; 9162 9163 /* 9164 * no branch sampling for probe events 9165 */ 9166 if (has_branch_stack(event)) 9167 return -EOPNOTSUPP; 9168 9169 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9170 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9171 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9172 if (err) 9173 return err; 9174 9175 event->destroy = perf_uprobe_destroy; 9176 9177 return 0; 9178 } 9179 #endif /* CONFIG_UPROBE_EVENTS */ 9180 9181 static inline void perf_tp_register(void) 9182 { 9183 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9184 #ifdef CONFIG_KPROBE_EVENTS 9185 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9186 #endif 9187 #ifdef CONFIG_UPROBE_EVENTS 9188 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9189 #endif 9190 } 9191 9192 static void perf_event_free_filter(struct perf_event *event) 9193 { 9194 ftrace_profile_free_filter(event); 9195 } 9196 9197 #ifdef CONFIG_BPF_SYSCALL 9198 static void bpf_overflow_handler(struct perf_event *event, 9199 struct perf_sample_data *data, 9200 struct pt_regs *regs) 9201 { 9202 struct bpf_perf_event_data_kern ctx = { 9203 .data = data, 9204 .event = event, 9205 }; 9206 int ret = 0; 9207 9208 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9209 preempt_disable(); 9210 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9211 goto out; 9212 rcu_read_lock(); 9213 ret = BPF_PROG_RUN(event->prog, &ctx); 9214 rcu_read_unlock(); 9215 out: 9216 __this_cpu_dec(bpf_prog_active); 9217 preempt_enable(); 9218 if (!ret) 9219 return; 9220 9221 event->orig_overflow_handler(event, data, regs); 9222 } 9223 9224 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9225 { 9226 struct bpf_prog *prog; 9227 9228 if (event->overflow_handler_context) 9229 /* hw breakpoint or kernel counter */ 9230 return -EINVAL; 9231 9232 if (event->prog) 9233 return -EEXIST; 9234 9235 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9236 if (IS_ERR(prog)) 9237 return PTR_ERR(prog); 9238 9239 event->prog = prog; 9240 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9241 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9242 return 0; 9243 } 9244 9245 static void perf_event_free_bpf_handler(struct perf_event *event) 9246 { 9247 struct bpf_prog *prog = event->prog; 9248 9249 if (!prog) 9250 return; 9251 9252 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9253 event->prog = NULL; 9254 bpf_prog_put(prog); 9255 } 9256 #else 9257 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9258 { 9259 return -EOPNOTSUPP; 9260 } 9261 static void perf_event_free_bpf_handler(struct perf_event *event) 9262 { 9263 } 9264 #endif 9265 9266 /* 9267 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9268 * with perf_event_open() 9269 */ 9270 static inline bool perf_event_is_tracing(struct perf_event *event) 9271 { 9272 if (event->pmu == &perf_tracepoint) 9273 return true; 9274 #ifdef CONFIG_KPROBE_EVENTS 9275 if (event->pmu == &perf_kprobe) 9276 return true; 9277 #endif 9278 #ifdef CONFIG_UPROBE_EVENTS 9279 if (event->pmu == &perf_uprobe) 9280 return true; 9281 #endif 9282 return false; 9283 } 9284 9285 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9286 { 9287 bool is_kprobe, is_tracepoint, is_syscall_tp; 9288 struct bpf_prog *prog; 9289 int ret; 9290 9291 if (!perf_event_is_tracing(event)) 9292 return perf_event_set_bpf_handler(event, prog_fd); 9293 9294 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9295 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9296 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9297 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9298 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9299 return -EINVAL; 9300 9301 prog = bpf_prog_get(prog_fd); 9302 if (IS_ERR(prog)) 9303 return PTR_ERR(prog); 9304 9305 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9306 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9307 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9308 /* valid fd, but invalid bpf program type */ 9309 bpf_prog_put(prog); 9310 return -EINVAL; 9311 } 9312 9313 /* Kprobe override only works for kprobes, not uprobes. */ 9314 if (prog->kprobe_override && 9315 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9316 bpf_prog_put(prog); 9317 return -EINVAL; 9318 } 9319 9320 if (is_tracepoint || is_syscall_tp) { 9321 int off = trace_event_get_offsets(event->tp_event); 9322 9323 if (prog->aux->max_ctx_offset > off) { 9324 bpf_prog_put(prog); 9325 return -EACCES; 9326 } 9327 } 9328 9329 ret = perf_event_attach_bpf_prog(event, prog); 9330 if (ret) 9331 bpf_prog_put(prog); 9332 return ret; 9333 } 9334 9335 static void perf_event_free_bpf_prog(struct perf_event *event) 9336 { 9337 if (!perf_event_is_tracing(event)) { 9338 perf_event_free_bpf_handler(event); 9339 return; 9340 } 9341 perf_event_detach_bpf_prog(event); 9342 } 9343 9344 #else 9345 9346 static inline void perf_tp_register(void) 9347 { 9348 } 9349 9350 static void perf_event_free_filter(struct perf_event *event) 9351 { 9352 } 9353 9354 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9355 { 9356 return -ENOENT; 9357 } 9358 9359 static void perf_event_free_bpf_prog(struct perf_event *event) 9360 { 9361 } 9362 #endif /* CONFIG_EVENT_TRACING */ 9363 9364 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9365 void perf_bp_event(struct perf_event *bp, void *data) 9366 { 9367 struct perf_sample_data sample; 9368 struct pt_regs *regs = data; 9369 9370 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9371 9372 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9373 perf_swevent_event(bp, 1, &sample, regs); 9374 } 9375 #endif 9376 9377 /* 9378 * Allocate a new address filter 9379 */ 9380 static struct perf_addr_filter * 9381 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9382 { 9383 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9384 struct perf_addr_filter *filter; 9385 9386 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9387 if (!filter) 9388 return NULL; 9389 9390 INIT_LIST_HEAD(&filter->entry); 9391 list_add_tail(&filter->entry, filters); 9392 9393 return filter; 9394 } 9395 9396 static void free_filters_list(struct list_head *filters) 9397 { 9398 struct perf_addr_filter *filter, *iter; 9399 9400 list_for_each_entry_safe(filter, iter, filters, entry) { 9401 path_put(&filter->path); 9402 list_del(&filter->entry); 9403 kfree(filter); 9404 } 9405 } 9406 9407 /* 9408 * Free existing address filters and optionally install new ones 9409 */ 9410 static void perf_addr_filters_splice(struct perf_event *event, 9411 struct list_head *head) 9412 { 9413 unsigned long flags; 9414 LIST_HEAD(list); 9415 9416 if (!has_addr_filter(event)) 9417 return; 9418 9419 /* don't bother with children, they don't have their own filters */ 9420 if (event->parent) 9421 return; 9422 9423 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9424 9425 list_splice_init(&event->addr_filters.list, &list); 9426 if (head) 9427 list_splice(head, &event->addr_filters.list); 9428 9429 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9430 9431 free_filters_list(&list); 9432 } 9433 9434 /* 9435 * Scan through mm's vmas and see if one of them matches the 9436 * @filter; if so, adjust filter's address range. 9437 * Called with mm::mmap_sem down for reading. 9438 */ 9439 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9440 struct mm_struct *mm, 9441 struct perf_addr_filter_range *fr) 9442 { 9443 struct vm_area_struct *vma; 9444 9445 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9446 if (!vma->vm_file) 9447 continue; 9448 9449 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9450 return; 9451 } 9452 } 9453 9454 /* 9455 * Update event's address range filters based on the 9456 * task's existing mappings, if any. 9457 */ 9458 static void perf_event_addr_filters_apply(struct perf_event *event) 9459 { 9460 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9461 struct task_struct *task = READ_ONCE(event->ctx->task); 9462 struct perf_addr_filter *filter; 9463 struct mm_struct *mm = NULL; 9464 unsigned int count = 0; 9465 unsigned long flags; 9466 9467 /* 9468 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9469 * will stop on the parent's child_mutex that our caller is also holding 9470 */ 9471 if (task == TASK_TOMBSTONE) 9472 return; 9473 9474 if (ifh->nr_file_filters) { 9475 mm = get_task_mm(event->ctx->task); 9476 if (!mm) 9477 goto restart; 9478 9479 down_read(&mm->mmap_sem); 9480 } 9481 9482 raw_spin_lock_irqsave(&ifh->lock, flags); 9483 list_for_each_entry(filter, &ifh->list, entry) { 9484 if (filter->path.dentry) { 9485 /* 9486 * Adjust base offset if the filter is associated to a 9487 * binary that needs to be mapped: 9488 */ 9489 event->addr_filter_ranges[count].start = 0; 9490 event->addr_filter_ranges[count].size = 0; 9491 9492 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9493 } else { 9494 event->addr_filter_ranges[count].start = filter->offset; 9495 event->addr_filter_ranges[count].size = filter->size; 9496 } 9497 9498 count++; 9499 } 9500 9501 event->addr_filters_gen++; 9502 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9503 9504 if (ifh->nr_file_filters) { 9505 up_read(&mm->mmap_sem); 9506 9507 mmput(mm); 9508 } 9509 9510 restart: 9511 perf_event_stop(event, 1); 9512 } 9513 9514 /* 9515 * Address range filtering: limiting the data to certain 9516 * instruction address ranges. Filters are ioctl()ed to us from 9517 * userspace as ascii strings. 9518 * 9519 * Filter string format: 9520 * 9521 * ACTION RANGE_SPEC 9522 * where ACTION is one of the 9523 * * "filter": limit the trace to this region 9524 * * "start": start tracing from this address 9525 * * "stop": stop tracing at this address/region; 9526 * RANGE_SPEC is 9527 * * for kernel addresses: <start address>[/<size>] 9528 * * for object files: <start address>[/<size>]@</path/to/object/file> 9529 * 9530 * if <size> is not specified or is zero, the range is treated as a single 9531 * address; not valid for ACTION=="filter". 9532 */ 9533 enum { 9534 IF_ACT_NONE = -1, 9535 IF_ACT_FILTER, 9536 IF_ACT_START, 9537 IF_ACT_STOP, 9538 IF_SRC_FILE, 9539 IF_SRC_KERNEL, 9540 IF_SRC_FILEADDR, 9541 IF_SRC_KERNELADDR, 9542 }; 9543 9544 enum { 9545 IF_STATE_ACTION = 0, 9546 IF_STATE_SOURCE, 9547 IF_STATE_END, 9548 }; 9549 9550 static const match_table_t if_tokens = { 9551 { IF_ACT_FILTER, "filter" }, 9552 { IF_ACT_START, "start" }, 9553 { IF_ACT_STOP, "stop" }, 9554 { IF_SRC_FILE, "%u/%u@%s" }, 9555 { IF_SRC_KERNEL, "%u/%u" }, 9556 { IF_SRC_FILEADDR, "%u@%s" }, 9557 { IF_SRC_KERNELADDR, "%u" }, 9558 { IF_ACT_NONE, NULL }, 9559 }; 9560 9561 /* 9562 * Address filter string parser 9563 */ 9564 static int 9565 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9566 struct list_head *filters) 9567 { 9568 struct perf_addr_filter *filter = NULL; 9569 char *start, *orig, *filename = NULL; 9570 substring_t args[MAX_OPT_ARGS]; 9571 int state = IF_STATE_ACTION, token; 9572 unsigned int kernel = 0; 9573 int ret = -EINVAL; 9574 9575 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9576 if (!fstr) 9577 return -ENOMEM; 9578 9579 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9580 static const enum perf_addr_filter_action_t actions[] = { 9581 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9582 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9583 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9584 }; 9585 ret = -EINVAL; 9586 9587 if (!*start) 9588 continue; 9589 9590 /* filter definition begins */ 9591 if (state == IF_STATE_ACTION) { 9592 filter = perf_addr_filter_new(event, filters); 9593 if (!filter) 9594 goto fail; 9595 } 9596 9597 token = match_token(start, if_tokens, args); 9598 switch (token) { 9599 case IF_ACT_FILTER: 9600 case IF_ACT_START: 9601 case IF_ACT_STOP: 9602 if (state != IF_STATE_ACTION) 9603 goto fail; 9604 9605 filter->action = actions[token]; 9606 state = IF_STATE_SOURCE; 9607 break; 9608 9609 case IF_SRC_KERNELADDR: 9610 case IF_SRC_KERNEL: 9611 kernel = 1; 9612 /* fall through */ 9613 9614 case IF_SRC_FILEADDR: 9615 case IF_SRC_FILE: 9616 if (state != IF_STATE_SOURCE) 9617 goto fail; 9618 9619 *args[0].to = 0; 9620 ret = kstrtoul(args[0].from, 0, &filter->offset); 9621 if (ret) 9622 goto fail; 9623 9624 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9625 *args[1].to = 0; 9626 ret = kstrtoul(args[1].from, 0, &filter->size); 9627 if (ret) 9628 goto fail; 9629 } 9630 9631 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9632 int fpos = token == IF_SRC_FILE ? 2 : 1; 9633 9634 filename = match_strdup(&args[fpos]); 9635 if (!filename) { 9636 ret = -ENOMEM; 9637 goto fail; 9638 } 9639 } 9640 9641 state = IF_STATE_END; 9642 break; 9643 9644 default: 9645 goto fail; 9646 } 9647 9648 /* 9649 * Filter definition is fully parsed, validate and install it. 9650 * Make sure that it doesn't contradict itself or the event's 9651 * attribute. 9652 */ 9653 if (state == IF_STATE_END) { 9654 ret = -EINVAL; 9655 if (kernel && event->attr.exclude_kernel) 9656 goto fail; 9657 9658 /* 9659 * ACTION "filter" must have a non-zero length region 9660 * specified. 9661 */ 9662 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9663 !filter->size) 9664 goto fail; 9665 9666 if (!kernel) { 9667 if (!filename) 9668 goto fail; 9669 9670 /* 9671 * For now, we only support file-based filters 9672 * in per-task events; doing so for CPU-wide 9673 * events requires additional context switching 9674 * trickery, since same object code will be 9675 * mapped at different virtual addresses in 9676 * different processes. 9677 */ 9678 ret = -EOPNOTSUPP; 9679 if (!event->ctx->task) 9680 goto fail_free_name; 9681 9682 /* look up the path and grab its inode */ 9683 ret = kern_path(filename, LOOKUP_FOLLOW, 9684 &filter->path); 9685 if (ret) 9686 goto fail_free_name; 9687 9688 kfree(filename); 9689 filename = NULL; 9690 9691 ret = -EINVAL; 9692 if (!filter->path.dentry || 9693 !S_ISREG(d_inode(filter->path.dentry) 9694 ->i_mode)) 9695 goto fail; 9696 9697 event->addr_filters.nr_file_filters++; 9698 } 9699 9700 /* ready to consume more filters */ 9701 state = IF_STATE_ACTION; 9702 filter = NULL; 9703 } 9704 } 9705 9706 if (state != IF_STATE_ACTION) 9707 goto fail; 9708 9709 kfree(orig); 9710 9711 return 0; 9712 9713 fail_free_name: 9714 kfree(filename); 9715 fail: 9716 free_filters_list(filters); 9717 kfree(orig); 9718 9719 return ret; 9720 } 9721 9722 static int 9723 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9724 { 9725 LIST_HEAD(filters); 9726 int ret; 9727 9728 /* 9729 * Since this is called in perf_ioctl() path, we're already holding 9730 * ctx::mutex. 9731 */ 9732 lockdep_assert_held(&event->ctx->mutex); 9733 9734 if (WARN_ON_ONCE(event->parent)) 9735 return -EINVAL; 9736 9737 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9738 if (ret) 9739 goto fail_clear_files; 9740 9741 ret = event->pmu->addr_filters_validate(&filters); 9742 if (ret) 9743 goto fail_free_filters; 9744 9745 /* remove existing filters, if any */ 9746 perf_addr_filters_splice(event, &filters); 9747 9748 /* install new filters */ 9749 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9750 9751 return ret; 9752 9753 fail_free_filters: 9754 free_filters_list(&filters); 9755 9756 fail_clear_files: 9757 event->addr_filters.nr_file_filters = 0; 9758 9759 return ret; 9760 } 9761 9762 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9763 { 9764 int ret = -EINVAL; 9765 char *filter_str; 9766 9767 filter_str = strndup_user(arg, PAGE_SIZE); 9768 if (IS_ERR(filter_str)) 9769 return PTR_ERR(filter_str); 9770 9771 #ifdef CONFIG_EVENT_TRACING 9772 if (perf_event_is_tracing(event)) { 9773 struct perf_event_context *ctx = event->ctx; 9774 9775 /* 9776 * Beware, here be dragons!! 9777 * 9778 * the tracepoint muck will deadlock against ctx->mutex, but 9779 * the tracepoint stuff does not actually need it. So 9780 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9781 * already have a reference on ctx. 9782 * 9783 * This can result in event getting moved to a different ctx, 9784 * but that does not affect the tracepoint state. 9785 */ 9786 mutex_unlock(&ctx->mutex); 9787 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9788 mutex_lock(&ctx->mutex); 9789 } else 9790 #endif 9791 if (has_addr_filter(event)) 9792 ret = perf_event_set_addr_filter(event, filter_str); 9793 9794 kfree(filter_str); 9795 return ret; 9796 } 9797 9798 /* 9799 * hrtimer based swevent callback 9800 */ 9801 9802 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9803 { 9804 enum hrtimer_restart ret = HRTIMER_RESTART; 9805 struct perf_sample_data data; 9806 struct pt_regs *regs; 9807 struct perf_event *event; 9808 u64 period; 9809 9810 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9811 9812 if (event->state != PERF_EVENT_STATE_ACTIVE) 9813 return HRTIMER_NORESTART; 9814 9815 event->pmu->read(event); 9816 9817 perf_sample_data_init(&data, 0, event->hw.last_period); 9818 regs = get_irq_regs(); 9819 9820 if (regs && !perf_exclude_event(event, regs)) { 9821 if (!(event->attr.exclude_idle && is_idle_task(current))) 9822 if (__perf_event_overflow(event, 1, &data, regs)) 9823 ret = HRTIMER_NORESTART; 9824 } 9825 9826 period = max_t(u64, 10000, event->hw.sample_period); 9827 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9828 9829 return ret; 9830 } 9831 9832 static void perf_swevent_start_hrtimer(struct perf_event *event) 9833 { 9834 struct hw_perf_event *hwc = &event->hw; 9835 s64 period; 9836 9837 if (!is_sampling_event(event)) 9838 return; 9839 9840 period = local64_read(&hwc->period_left); 9841 if (period) { 9842 if (period < 0) 9843 period = 10000; 9844 9845 local64_set(&hwc->period_left, 0); 9846 } else { 9847 period = max_t(u64, 10000, hwc->sample_period); 9848 } 9849 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9850 HRTIMER_MODE_REL_PINNED_HARD); 9851 } 9852 9853 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9854 { 9855 struct hw_perf_event *hwc = &event->hw; 9856 9857 if (is_sampling_event(event)) { 9858 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9859 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9860 9861 hrtimer_cancel(&hwc->hrtimer); 9862 } 9863 } 9864 9865 static void perf_swevent_init_hrtimer(struct perf_event *event) 9866 { 9867 struct hw_perf_event *hwc = &event->hw; 9868 9869 if (!is_sampling_event(event)) 9870 return; 9871 9872 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 9873 hwc->hrtimer.function = perf_swevent_hrtimer; 9874 9875 /* 9876 * Since hrtimers have a fixed rate, we can do a static freq->period 9877 * mapping and avoid the whole period adjust feedback stuff. 9878 */ 9879 if (event->attr.freq) { 9880 long freq = event->attr.sample_freq; 9881 9882 event->attr.sample_period = NSEC_PER_SEC / freq; 9883 hwc->sample_period = event->attr.sample_period; 9884 local64_set(&hwc->period_left, hwc->sample_period); 9885 hwc->last_period = hwc->sample_period; 9886 event->attr.freq = 0; 9887 } 9888 } 9889 9890 /* 9891 * Software event: cpu wall time clock 9892 */ 9893 9894 static void cpu_clock_event_update(struct perf_event *event) 9895 { 9896 s64 prev; 9897 u64 now; 9898 9899 now = local_clock(); 9900 prev = local64_xchg(&event->hw.prev_count, now); 9901 local64_add(now - prev, &event->count); 9902 } 9903 9904 static void cpu_clock_event_start(struct perf_event *event, int flags) 9905 { 9906 local64_set(&event->hw.prev_count, local_clock()); 9907 perf_swevent_start_hrtimer(event); 9908 } 9909 9910 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9911 { 9912 perf_swevent_cancel_hrtimer(event); 9913 cpu_clock_event_update(event); 9914 } 9915 9916 static int cpu_clock_event_add(struct perf_event *event, int flags) 9917 { 9918 if (flags & PERF_EF_START) 9919 cpu_clock_event_start(event, flags); 9920 perf_event_update_userpage(event); 9921 9922 return 0; 9923 } 9924 9925 static void cpu_clock_event_del(struct perf_event *event, int flags) 9926 { 9927 cpu_clock_event_stop(event, flags); 9928 } 9929 9930 static void cpu_clock_event_read(struct perf_event *event) 9931 { 9932 cpu_clock_event_update(event); 9933 } 9934 9935 static int cpu_clock_event_init(struct perf_event *event) 9936 { 9937 if (event->attr.type != PERF_TYPE_SOFTWARE) 9938 return -ENOENT; 9939 9940 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9941 return -ENOENT; 9942 9943 /* 9944 * no branch sampling for software events 9945 */ 9946 if (has_branch_stack(event)) 9947 return -EOPNOTSUPP; 9948 9949 perf_swevent_init_hrtimer(event); 9950 9951 return 0; 9952 } 9953 9954 static struct pmu perf_cpu_clock = { 9955 .task_ctx_nr = perf_sw_context, 9956 9957 .capabilities = PERF_PMU_CAP_NO_NMI, 9958 9959 .event_init = cpu_clock_event_init, 9960 .add = cpu_clock_event_add, 9961 .del = cpu_clock_event_del, 9962 .start = cpu_clock_event_start, 9963 .stop = cpu_clock_event_stop, 9964 .read = cpu_clock_event_read, 9965 }; 9966 9967 /* 9968 * Software event: task time clock 9969 */ 9970 9971 static void task_clock_event_update(struct perf_event *event, u64 now) 9972 { 9973 u64 prev; 9974 s64 delta; 9975 9976 prev = local64_xchg(&event->hw.prev_count, now); 9977 delta = now - prev; 9978 local64_add(delta, &event->count); 9979 } 9980 9981 static void task_clock_event_start(struct perf_event *event, int flags) 9982 { 9983 local64_set(&event->hw.prev_count, event->ctx->time); 9984 perf_swevent_start_hrtimer(event); 9985 } 9986 9987 static void task_clock_event_stop(struct perf_event *event, int flags) 9988 { 9989 perf_swevent_cancel_hrtimer(event); 9990 task_clock_event_update(event, event->ctx->time); 9991 } 9992 9993 static int task_clock_event_add(struct perf_event *event, int flags) 9994 { 9995 if (flags & PERF_EF_START) 9996 task_clock_event_start(event, flags); 9997 perf_event_update_userpage(event); 9998 9999 return 0; 10000 } 10001 10002 static void task_clock_event_del(struct perf_event *event, int flags) 10003 { 10004 task_clock_event_stop(event, PERF_EF_UPDATE); 10005 } 10006 10007 static void task_clock_event_read(struct perf_event *event) 10008 { 10009 u64 now = perf_clock(); 10010 u64 delta = now - event->ctx->timestamp; 10011 u64 time = event->ctx->time + delta; 10012 10013 task_clock_event_update(event, time); 10014 } 10015 10016 static int task_clock_event_init(struct perf_event *event) 10017 { 10018 if (event->attr.type != PERF_TYPE_SOFTWARE) 10019 return -ENOENT; 10020 10021 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10022 return -ENOENT; 10023 10024 /* 10025 * no branch sampling for software events 10026 */ 10027 if (has_branch_stack(event)) 10028 return -EOPNOTSUPP; 10029 10030 perf_swevent_init_hrtimer(event); 10031 10032 return 0; 10033 } 10034 10035 static struct pmu perf_task_clock = { 10036 .task_ctx_nr = perf_sw_context, 10037 10038 .capabilities = PERF_PMU_CAP_NO_NMI, 10039 10040 .event_init = task_clock_event_init, 10041 .add = task_clock_event_add, 10042 .del = task_clock_event_del, 10043 .start = task_clock_event_start, 10044 .stop = task_clock_event_stop, 10045 .read = task_clock_event_read, 10046 }; 10047 10048 static void perf_pmu_nop_void(struct pmu *pmu) 10049 { 10050 } 10051 10052 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10053 { 10054 } 10055 10056 static int perf_pmu_nop_int(struct pmu *pmu) 10057 { 10058 return 0; 10059 } 10060 10061 static int perf_event_nop_int(struct perf_event *event, u64 value) 10062 { 10063 return 0; 10064 } 10065 10066 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10067 10068 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10069 { 10070 __this_cpu_write(nop_txn_flags, flags); 10071 10072 if (flags & ~PERF_PMU_TXN_ADD) 10073 return; 10074 10075 perf_pmu_disable(pmu); 10076 } 10077 10078 static int perf_pmu_commit_txn(struct pmu *pmu) 10079 { 10080 unsigned int flags = __this_cpu_read(nop_txn_flags); 10081 10082 __this_cpu_write(nop_txn_flags, 0); 10083 10084 if (flags & ~PERF_PMU_TXN_ADD) 10085 return 0; 10086 10087 perf_pmu_enable(pmu); 10088 return 0; 10089 } 10090 10091 static void perf_pmu_cancel_txn(struct pmu *pmu) 10092 { 10093 unsigned int flags = __this_cpu_read(nop_txn_flags); 10094 10095 __this_cpu_write(nop_txn_flags, 0); 10096 10097 if (flags & ~PERF_PMU_TXN_ADD) 10098 return; 10099 10100 perf_pmu_enable(pmu); 10101 } 10102 10103 static int perf_event_idx_default(struct perf_event *event) 10104 { 10105 return 0; 10106 } 10107 10108 /* 10109 * Ensures all contexts with the same task_ctx_nr have the same 10110 * pmu_cpu_context too. 10111 */ 10112 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10113 { 10114 struct pmu *pmu; 10115 10116 if (ctxn < 0) 10117 return NULL; 10118 10119 list_for_each_entry(pmu, &pmus, entry) { 10120 if (pmu->task_ctx_nr == ctxn) 10121 return pmu->pmu_cpu_context; 10122 } 10123 10124 return NULL; 10125 } 10126 10127 static void free_pmu_context(struct pmu *pmu) 10128 { 10129 /* 10130 * Static contexts such as perf_sw_context have a global lifetime 10131 * and may be shared between different PMUs. Avoid freeing them 10132 * when a single PMU is going away. 10133 */ 10134 if (pmu->task_ctx_nr > perf_invalid_context) 10135 return; 10136 10137 free_percpu(pmu->pmu_cpu_context); 10138 } 10139 10140 /* 10141 * Let userspace know that this PMU supports address range filtering: 10142 */ 10143 static ssize_t nr_addr_filters_show(struct device *dev, 10144 struct device_attribute *attr, 10145 char *page) 10146 { 10147 struct pmu *pmu = dev_get_drvdata(dev); 10148 10149 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10150 } 10151 DEVICE_ATTR_RO(nr_addr_filters); 10152 10153 static struct idr pmu_idr; 10154 10155 static ssize_t 10156 type_show(struct device *dev, struct device_attribute *attr, char *page) 10157 { 10158 struct pmu *pmu = dev_get_drvdata(dev); 10159 10160 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10161 } 10162 static DEVICE_ATTR_RO(type); 10163 10164 static ssize_t 10165 perf_event_mux_interval_ms_show(struct device *dev, 10166 struct device_attribute *attr, 10167 char *page) 10168 { 10169 struct pmu *pmu = dev_get_drvdata(dev); 10170 10171 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10172 } 10173 10174 static DEFINE_MUTEX(mux_interval_mutex); 10175 10176 static ssize_t 10177 perf_event_mux_interval_ms_store(struct device *dev, 10178 struct device_attribute *attr, 10179 const char *buf, size_t count) 10180 { 10181 struct pmu *pmu = dev_get_drvdata(dev); 10182 int timer, cpu, ret; 10183 10184 ret = kstrtoint(buf, 0, &timer); 10185 if (ret) 10186 return ret; 10187 10188 if (timer < 1) 10189 return -EINVAL; 10190 10191 /* same value, noting to do */ 10192 if (timer == pmu->hrtimer_interval_ms) 10193 return count; 10194 10195 mutex_lock(&mux_interval_mutex); 10196 pmu->hrtimer_interval_ms = timer; 10197 10198 /* update all cpuctx for this PMU */ 10199 cpus_read_lock(); 10200 for_each_online_cpu(cpu) { 10201 struct perf_cpu_context *cpuctx; 10202 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10203 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10204 10205 cpu_function_call(cpu, 10206 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10207 } 10208 cpus_read_unlock(); 10209 mutex_unlock(&mux_interval_mutex); 10210 10211 return count; 10212 } 10213 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10214 10215 static struct attribute *pmu_dev_attrs[] = { 10216 &dev_attr_type.attr, 10217 &dev_attr_perf_event_mux_interval_ms.attr, 10218 NULL, 10219 }; 10220 ATTRIBUTE_GROUPS(pmu_dev); 10221 10222 static int pmu_bus_running; 10223 static struct bus_type pmu_bus = { 10224 .name = "event_source", 10225 .dev_groups = pmu_dev_groups, 10226 }; 10227 10228 static void pmu_dev_release(struct device *dev) 10229 { 10230 kfree(dev); 10231 } 10232 10233 static int pmu_dev_alloc(struct pmu *pmu) 10234 { 10235 int ret = -ENOMEM; 10236 10237 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10238 if (!pmu->dev) 10239 goto out; 10240 10241 pmu->dev->groups = pmu->attr_groups; 10242 device_initialize(pmu->dev); 10243 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10244 if (ret) 10245 goto free_dev; 10246 10247 dev_set_drvdata(pmu->dev, pmu); 10248 pmu->dev->bus = &pmu_bus; 10249 pmu->dev->release = pmu_dev_release; 10250 ret = device_add(pmu->dev); 10251 if (ret) 10252 goto free_dev; 10253 10254 /* For PMUs with address filters, throw in an extra attribute: */ 10255 if (pmu->nr_addr_filters) 10256 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10257 10258 if (ret) 10259 goto del_dev; 10260 10261 if (pmu->attr_update) 10262 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10263 10264 if (ret) 10265 goto del_dev; 10266 10267 out: 10268 return ret; 10269 10270 del_dev: 10271 device_del(pmu->dev); 10272 10273 free_dev: 10274 put_device(pmu->dev); 10275 goto out; 10276 } 10277 10278 static struct lock_class_key cpuctx_mutex; 10279 static struct lock_class_key cpuctx_lock; 10280 10281 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10282 { 10283 int cpu, ret, max = PERF_TYPE_MAX; 10284 10285 mutex_lock(&pmus_lock); 10286 ret = -ENOMEM; 10287 pmu->pmu_disable_count = alloc_percpu(int); 10288 if (!pmu->pmu_disable_count) 10289 goto unlock; 10290 10291 pmu->type = -1; 10292 if (!name) 10293 goto skip_type; 10294 pmu->name = name; 10295 10296 if (type != PERF_TYPE_SOFTWARE) { 10297 if (type >= 0) 10298 max = type; 10299 10300 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10301 if (ret < 0) 10302 goto free_pdc; 10303 10304 WARN_ON(type >= 0 && ret != type); 10305 10306 type = ret; 10307 } 10308 pmu->type = type; 10309 10310 if (pmu_bus_running) { 10311 ret = pmu_dev_alloc(pmu); 10312 if (ret) 10313 goto free_idr; 10314 } 10315 10316 skip_type: 10317 if (pmu->task_ctx_nr == perf_hw_context) { 10318 static int hw_context_taken = 0; 10319 10320 /* 10321 * Other than systems with heterogeneous CPUs, it never makes 10322 * sense for two PMUs to share perf_hw_context. PMUs which are 10323 * uncore must use perf_invalid_context. 10324 */ 10325 if (WARN_ON_ONCE(hw_context_taken && 10326 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10327 pmu->task_ctx_nr = perf_invalid_context; 10328 10329 hw_context_taken = 1; 10330 } 10331 10332 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10333 if (pmu->pmu_cpu_context) 10334 goto got_cpu_context; 10335 10336 ret = -ENOMEM; 10337 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10338 if (!pmu->pmu_cpu_context) 10339 goto free_dev; 10340 10341 for_each_possible_cpu(cpu) { 10342 struct perf_cpu_context *cpuctx; 10343 10344 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10345 __perf_event_init_context(&cpuctx->ctx); 10346 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10347 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10348 cpuctx->ctx.pmu = pmu; 10349 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10350 10351 __perf_mux_hrtimer_init(cpuctx, cpu); 10352 } 10353 10354 got_cpu_context: 10355 if (!pmu->start_txn) { 10356 if (pmu->pmu_enable) { 10357 /* 10358 * If we have pmu_enable/pmu_disable calls, install 10359 * transaction stubs that use that to try and batch 10360 * hardware accesses. 10361 */ 10362 pmu->start_txn = perf_pmu_start_txn; 10363 pmu->commit_txn = perf_pmu_commit_txn; 10364 pmu->cancel_txn = perf_pmu_cancel_txn; 10365 } else { 10366 pmu->start_txn = perf_pmu_nop_txn; 10367 pmu->commit_txn = perf_pmu_nop_int; 10368 pmu->cancel_txn = perf_pmu_nop_void; 10369 } 10370 } 10371 10372 if (!pmu->pmu_enable) { 10373 pmu->pmu_enable = perf_pmu_nop_void; 10374 pmu->pmu_disable = perf_pmu_nop_void; 10375 } 10376 10377 if (!pmu->check_period) 10378 pmu->check_period = perf_event_nop_int; 10379 10380 if (!pmu->event_idx) 10381 pmu->event_idx = perf_event_idx_default; 10382 10383 /* 10384 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10385 * since these cannot be in the IDR. This way the linear search 10386 * is fast, provided a valid software event is provided. 10387 */ 10388 if (type == PERF_TYPE_SOFTWARE || !name) 10389 list_add_rcu(&pmu->entry, &pmus); 10390 else 10391 list_add_tail_rcu(&pmu->entry, &pmus); 10392 10393 atomic_set(&pmu->exclusive_cnt, 0); 10394 ret = 0; 10395 unlock: 10396 mutex_unlock(&pmus_lock); 10397 10398 return ret; 10399 10400 free_dev: 10401 device_del(pmu->dev); 10402 put_device(pmu->dev); 10403 10404 free_idr: 10405 if (pmu->type != PERF_TYPE_SOFTWARE) 10406 idr_remove(&pmu_idr, pmu->type); 10407 10408 free_pdc: 10409 free_percpu(pmu->pmu_disable_count); 10410 goto unlock; 10411 } 10412 EXPORT_SYMBOL_GPL(perf_pmu_register); 10413 10414 void perf_pmu_unregister(struct pmu *pmu) 10415 { 10416 mutex_lock(&pmus_lock); 10417 list_del_rcu(&pmu->entry); 10418 10419 /* 10420 * We dereference the pmu list under both SRCU and regular RCU, so 10421 * synchronize against both of those. 10422 */ 10423 synchronize_srcu(&pmus_srcu); 10424 synchronize_rcu(); 10425 10426 free_percpu(pmu->pmu_disable_count); 10427 if (pmu->type != PERF_TYPE_SOFTWARE) 10428 idr_remove(&pmu_idr, pmu->type); 10429 if (pmu_bus_running) { 10430 if (pmu->nr_addr_filters) 10431 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10432 device_del(pmu->dev); 10433 put_device(pmu->dev); 10434 } 10435 free_pmu_context(pmu); 10436 mutex_unlock(&pmus_lock); 10437 } 10438 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10439 10440 static inline bool has_extended_regs(struct perf_event *event) 10441 { 10442 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10443 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10444 } 10445 10446 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10447 { 10448 struct perf_event_context *ctx = NULL; 10449 int ret; 10450 10451 if (!try_module_get(pmu->module)) 10452 return -ENODEV; 10453 10454 /* 10455 * A number of pmu->event_init() methods iterate the sibling_list to, 10456 * for example, validate if the group fits on the PMU. Therefore, 10457 * if this is a sibling event, acquire the ctx->mutex to protect 10458 * the sibling_list. 10459 */ 10460 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10461 /* 10462 * This ctx->mutex can nest when we're called through 10463 * inheritance. See the perf_event_ctx_lock_nested() comment. 10464 */ 10465 ctx = perf_event_ctx_lock_nested(event->group_leader, 10466 SINGLE_DEPTH_NESTING); 10467 BUG_ON(!ctx); 10468 } 10469 10470 event->pmu = pmu; 10471 ret = pmu->event_init(event); 10472 10473 if (ctx) 10474 perf_event_ctx_unlock(event->group_leader, ctx); 10475 10476 if (!ret) { 10477 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10478 has_extended_regs(event)) 10479 ret = -EOPNOTSUPP; 10480 10481 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10482 event_has_any_exclude_flag(event)) 10483 ret = -EINVAL; 10484 10485 if (ret && event->destroy) 10486 event->destroy(event); 10487 } 10488 10489 if (ret) 10490 module_put(pmu->module); 10491 10492 return ret; 10493 } 10494 10495 static struct pmu *perf_init_event(struct perf_event *event) 10496 { 10497 int idx, type, ret; 10498 struct pmu *pmu; 10499 10500 idx = srcu_read_lock(&pmus_srcu); 10501 10502 /* Try parent's PMU first: */ 10503 if (event->parent && event->parent->pmu) { 10504 pmu = event->parent->pmu; 10505 ret = perf_try_init_event(pmu, event); 10506 if (!ret) 10507 goto unlock; 10508 } 10509 10510 /* 10511 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 10512 * are often aliases for PERF_TYPE_RAW. 10513 */ 10514 type = event->attr.type; 10515 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 10516 type = PERF_TYPE_RAW; 10517 10518 again: 10519 rcu_read_lock(); 10520 pmu = idr_find(&pmu_idr, type); 10521 rcu_read_unlock(); 10522 if (pmu) { 10523 ret = perf_try_init_event(pmu, event); 10524 if (ret == -ENOENT && event->attr.type != type) { 10525 type = event->attr.type; 10526 goto again; 10527 } 10528 10529 if (ret) 10530 pmu = ERR_PTR(ret); 10531 10532 goto unlock; 10533 } 10534 10535 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 10536 ret = perf_try_init_event(pmu, event); 10537 if (!ret) 10538 goto unlock; 10539 10540 if (ret != -ENOENT) { 10541 pmu = ERR_PTR(ret); 10542 goto unlock; 10543 } 10544 } 10545 pmu = ERR_PTR(-ENOENT); 10546 unlock: 10547 srcu_read_unlock(&pmus_srcu, idx); 10548 10549 return pmu; 10550 } 10551 10552 static void attach_sb_event(struct perf_event *event) 10553 { 10554 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10555 10556 raw_spin_lock(&pel->lock); 10557 list_add_rcu(&event->sb_list, &pel->list); 10558 raw_spin_unlock(&pel->lock); 10559 } 10560 10561 /* 10562 * We keep a list of all !task (and therefore per-cpu) events 10563 * that need to receive side-band records. 10564 * 10565 * This avoids having to scan all the various PMU per-cpu contexts 10566 * looking for them. 10567 */ 10568 static void account_pmu_sb_event(struct perf_event *event) 10569 { 10570 if (is_sb_event(event)) 10571 attach_sb_event(event); 10572 } 10573 10574 static void account_event_cpu(struct perf_event *event, int cpu) 10575 { 10576 if (event->parent) 10577 return; 10578 10579 if (is_cgroup_event(event)) 10580 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10581 } 10582 10583 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10584 static void account_freq_event_nohz(void) 10585 { 10586 #ifdef CONFIG_NO_HZ_FULL 10587 /* Lock so we don't race with concurrent unaccount */ 10588 spin_lock(&nr_freq_lock); 10589 if (atomic_inc_return(&nr_freq_events) == 1) 10590 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10591 spin_unlock(&nr_freq_lock); 10592 #endif 10593 } 10594 10595 static void account_freq_event(void) 10596 { 10597 if (tick_nohz_full_enabled()) 10598 account_freq_event_nohz(); 10599 else 10600 atomic_inc(&nr_freq_events); 10601 } 10602 10603 10604 static void account_event(struct perf_event *event) 10605 { 10606 bool inc = false; 10607 10608 if (event->parent) 10609 return; 10610 10611 if (event->attach_state & PERF_ATTACH_TASK) 10612 inc = true; 10613 if (event->attr.mmap || event->attr.mmap_data) 10614 atomic_inc(&nr_mmap_events); 10615 if (event->attr.comm) 10616 atomic_inc(&nr_comm_events); 10617 if (event->attr.namespaces) 10618 atomic_inc(&nr_namespaces_events); 10619 if (event->attr.task) 10620 atomic_inc(&nr_task_events); 10621 if (event->attr.freq) 10622 account_freq_event(); 10623 if (event->attr.context_switch) { 10624 atomic_inc(&nr_switch_events); 10625 inc = true; 10626 } 10627 if (has_branch_stack(event)) 10628 inc = true; 10629 if (is_cgroup_event(event)) 10630 inc = true; 10631 if (event->attr.ksymbol) 10632 atomic_inc(&nr_ksymbol_events); 10633 if (event->attr.bpf_event) 10634 atomic_inc(&nr_bpf_events); 10635 10636 if (inc) { 10637 /* 10638 * We need the mutex here because static_branch_enable() 10639 * must complete *before* the perf_sched_count increment 10640 * becomes visible. 10641 */ 10642 if (atomic_inc_not_zero(&perf_sched_count)) 10643 goto enabled; 10644 10645 mutex_lock(&perf_sched_mutex); 10646 if (!atomic_read(&perf_sched_count)) { 10647 static_branch_enable(&perf_sched_events); 10648 /* 10649 * Guarantee that all CPUs observe they key change and 10650 * call the perf scheduling hooks before proceeding to 10651 * install events that need them. 10652 */ 10653 synchronize_rcu(); 10654 } 10655 /* 10656 * Now that we have waited for the sync_sched(), allow further 10657 * increments to by-pass the mutex. 10658 */ 10659 atomic_inc(&perf_sched_count); 10660 mutex_unlock(&perf_sched_mutex); 10661 } 10662 enabled: 10663 10664 account_event_cpu(event, event->cpu); 10665 10666 account_pmu_sb_event(event); 10667 } 10668 10669 /* 10670 * Allocate and initialize an event structure 10671 */ 10672 static struct perf_event * 10673 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10674 struct task_struct *task, 10675 struct perf_event *group_leader, 10676 struct perf_event *parent_event, 10677 perf_overflow_handler_t overflow_handler, 10678 void *context, int cgroup_fd) 10679 { 10680 struct pmu *pmu; 10681 struct perf_event *event; 10682 struct hw_perf_event *hwc; 10683 long err = -EINVAL; 10684 10685 if ((unsigned)cpu >= nr_cpu_ids) { 10686 if (!task || cpu != -1) 10687 return ERR_PTR(-EINVAL); 10688 } 10689 10690 event = kzalloc(sizeof(*event), GFP_KERNEL); 10691 if (!event) 10692 return ERR_PTR(-ENOMEM); 10693 10694 /* 10695 * Single events are their own group leaders, with an 10696 * empty sibling list: 10697 */ 10698 if (!group_leader) 10699 group_leader = event; 10700 10701 mutex_init(&event->child_mutex); 10702 INIT_LIST_HEAD(&event->child_list); 10703 10704 INIT_LIST_HEAD(&event->event_entry); 10705 INIT_LIST_HEAD(&event->sibling_list); 10706 INIT_LIST_HEAD(&event->active_list); 10707 init_event_group(event); 10708 INIT_LIST_HEAD(&event->rb_entry); 10709 INIT_LIST_HEAD(&event->active_entry); 10710 INIT_LIST_HEAD(&event->addr_filters.list); 10711 INIT_HLIST_NODE(&event->hlist_entry); 10712 10713 10714 init_waitqueue_head(&event->waitq); 10715 event->pending_disable = -1; 10716 init_irq_work(&event->pending, perf_pending_event); 10717 10718 mutex_init(&event->mmap_mutex); 10719 raw_spin_lock_init(&event->addr_filters.lock); 10720 10721 atomic_long_set(&event->refcount, 1); 10722 event->cpu = cpu; 10723 event->attr = *attr; 10724 event->group_leader = group_leader; 10725 event->pmu = NULL; 10726 event->oncpu = -1; 10727 10728 event->parent = parent_event; 10729 10730 event->ns = get_pid_ns(task_active_pid_ns(current)); 10731 event->id = atomic64_inc_return(&perf_event_id); 10732 10733 event->state = PERF_EVENT_STATE_INACTIVE; 10734 10735 if (task) { 10736 event->attach_state = PERF_ATTACH_TASK; 10737 /* 10738 * XXX pmu::event_init needs to know what task to account to 10739 * and we cannot use the ctx information because we need the 10740 * pmu before we get a ctx. 10741 */ 10742 event->hw.target = get_task_struct(task); 10743 } 10744 10745 event->clock = &local_clock; 10746 if (parent_event) 10747 event->clock = parent_event->clock; 10748 10749 if (!overflow_handler && parent_event) { 10750 overflow_handler = parent_event->overflow_handler; 10751 context = parent_event->overflow_handler_context; 10752 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10753 if (overflow_handler == bpf_overflow_handler) { 10754 struct bpf_prog *prog = parent_event->prog; 10755 10756 bpf_prog_inc(prog); 10757 event->prog = prog; 10758 event->orig_overflow_handler = 10759 parent_event->orig_overflow_handler; 10760 } 10761 #endif 10762 } 10763 10764 if (overflow_handler) { 10765 event->overflow_handler = overflow_handler; 10766 event->overflow_handler_context = context; 10767 } else if (is_write_backward(event)){ 10768 event->overflow_handler = perf_event_output_backward; 10769 event->overflow_handler_context = NULL; 10770 } else { 10771 event->overflow_handler = perf_event_output_forward; 10772 event->overflow_handler_context = NULL; 10773 } 10774 10775 perf_event__state_init(event); 10776 10777 pmu = NULL; 10778 10779 hwc = &event->hw; 10780 hwc->sample_period = attr->sample_period; 10781 if (attr->freq && attr->sample_freq) 10782 hwc->sample_period = 1; 10783 hwc->last_period = hwc->sample_period; 10784 10785 local64_set(&hwc->period_left, hwc->sample_period); 10786 10787 /* 10788 * We currently do not support PERF_SAMPLE_READ on inherited events. 10789 * See perf_output_read(). 10790 */ 10791 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10792 goto err_ns; 10793 10794 if (!has_branch_stack(event)) 10795 event->attr.branch_sample_type = 0; 10796 10797 if (cgroup_fd != -1) { 10798 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10799 if (err) 10800 goto err_ns; 10801 } 10802 10803 pmu = perf_init_event(event); 10804 if (IS_ERR(pmu)) { 10805 err = PTR_ERR(pmu); 10806 goto err_ns; 10807 } 10808 10809 /* 10810 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 10811 * be different on other CPUs in the uncore mask. 10812 */ 10813 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 10814 err = -EINVAL; 10815 goto err_pmu; 10816 } 10817 10818 if (event->attr.aux_output && 10819 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 10820 err = -EOPNOTSUPP; 10821 goto err_pmu; 10822 } 10823 10824 err = exclusive_event_init(event); 10825 if (err) 10826 goto err_pmu; 10827 10828 if (has_addr_filter(event)) { 10829 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10830 sizeof(struct perf_addr_filter_range), 10831 GFP_KERNEL); 10832 if (!event->addr_filter_ranges) { 10833 err = -ENOMEM; 10834 goto err_per_task; 10835 } 10836 10837 /* 10838 * Clone the parent's vma offsets: they are valid until exec() 10839 * even if the mm is not shared with the parent. 10840 */ 10841 if (event->parent) { 10842 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10843 10844 raw_spin_lock_irq(&ifh->lock); 10845 memcpy(event->addr_filter_ranges, 10846 event->parent->addr_filter_ranges, 10847 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10848 raw_spin_unlock_irq(&ifh->lock); 10849 } 10850 10851 /* force hw sync on the address filters */ 10852 event->addr_filters_gen = 1; 10853 } 10854 10855 if (!event->parent) { 10856 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10857 err = get_callchain_buffers(attr->sample_max_stack); 10858 if (err) 10859 goto err_addr_filters; 10860 } 10861 } 10862 10863 err = security_perf_event_alloc(event); 10864 if (err) 10865 goto err_callchain_buffer; 10866 10867 /* symmetric to unaccount_event() in _free_event() */ 10868 account_event(event); 10869 10870 return event; 10871 10872 err_callchain_buffer: 10873 if (!event->parent) { 10874 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 10875 put_callchain_buffers(); 10876 } 10877 err_addr_filters: 10878 kfree(event->addr_filter_ranges); 10879 10880 err_per_task: 10881 exclusive_event_destroy(event); 10882 10883 err_pmu: 10884 if (event->destroy) 10885 event->destroy(event); 10886 module_put(pmu->module); 10887 err_ns: 10888 if (is_cgroup_event(event)) 10889 perf_detach_cgroup(event); 10890 if (event->ns) 10891 put_pid_ns(event->ns); 10892 if (event->hw.target) 10893 put_task_struct(event->hw.target); 10894 kfree(event); 10895 10896 return ERR_PTR(err); 10897 } 10898 10899 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10900 struct perf_event_attr *attr) 10901 { 10902 u32 size; 10903 int ret; 10904 10905 /* Zero the full structure, so that a short copy will be nice. */ 10906 memset(attr, 0, sizeof(*attr)); 10907 10908 ret = get_user(size, &uattr->size); 10909 if (ret) 10910 return ret; 10911 10912 /* ABI compatibility quirk: */ 10913 if (!size) 10914 size = PERF_ATTR_SIZE_VER0; 10915 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 10916 goto err_size; 10917 10918 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 10919 if (ret) { 10920 if (ret == -E2BIG) 10921 goto err_size; 10922 return ret; 10923 } 10924 10925 attr->size = size; 10926 10927 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 10928 return -EINVAL; 10929 10930 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10931 return -EINVAL; 10932 10933 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10934 return -EINVAL; 10935 10936 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10937 u64 mask = attr->branch_sample_type; 10938 10939 /* only using defined bits */ 10940 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10941 return -EINVAL; 10942 10943 /* at least one branch bit must be set */ 10944 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10945 return -EINVAL; 10946 10947 /* propagate priv level, when not set for branch */ 10948 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10949 10950 /* exclude_kernel checked on syscall entry */ 10951 if (!attr->exclude_kernel) 10952 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10953 10954 if (!attr->exclude_user) 10955 mask |= PERF_SAMPLE_BRANCH_USER; 10956 10957 if (!attr->exclude_hv) 10958 mask |= PERF_SAMPLE_BRANCH_HV; 10959 /* 10960 * adjust user setting (for HW filter setup) 10961 */ 10962 attr->branch_sample_type = mask; 10963 } 10964 /* privileged levels capture (kernel, hv): check permissions */ 10965 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 10966 ret = perf_allow_kernel(attr); 10967 if (ret) 10968 return ret; 10969 } 10970 } 10971 10972 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10973 ret = perf_reg_validate(attr->sample_regs_user); 10974 if (ret) 10975 return ret; 10976 } 10977 10978 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10979 if (!arch_perf_have_user_stack_dump()) 10980 return -ENOSYS; 10981 10982 /* 10983 * We have __u32 type for the size, but so far 10984 * we can only use __u16 as maximum due to the 10985 * __u16 sample size limit. 10986 */ 10987 if (attr->sample_stack_user >= USHRT_MAX) 10988 return -EINVAL; 10989 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10990 return -EINVAL; 10991 } 10992 10993 if (!attr->sample_max_stack) 10994 attr->sample_max_stack = sysctl_perf_event_max_stack; 10995 10996 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10997 ret = perf_reg_validate(attr->sample_regs_intr); 10998 out: 10999 return ret; 11000 11001 err_size: 11002 put_user(sizeof(*attr), &uattr->size); 11003 ret = -E2BIG; 11004 goto out; 11005 } 11006 11007 static int 11008 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11009 { 11010 struct perf_buffer *rb = NULL; 11011 int ret = -EINVAL; 11012 11013 if (!output_event) 11014 goto set; 11015 11016 /* don't allow circular references */ 11017 if (event == output_event) 11018 goto out; 11019 11020 /* 11021 * Don't allow cross-cpu buffers 11022 */ 11023 if (output_event->cpu != event->cpu) 11024 goto out; 11025 11026 /* 11027 * If its not a per-cpu rb, it must be the same task. 11028 */ 11029 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11030 goto out; 11031 11032 /* 11033 * Mixing clocks in the same buffer is trouble you don't need. 11034 */ 11035 if (output_event->clock != event->clock) 11036 goto out; 11037 11038 /* 11039 * Either writing ring buffer from beginning or from end. 11040 * Mixing is not allowed. 11041 */ 11042 if (is_write_backward(output_event) != is_write_backward(event)) 11043 goto out; 11044 11045 /* 11046 * If both events generate aux data, they must be on the same PMU 11047 */ 11048 if (has_aux(event) && has_aux(output_event) && 11049 event->pmu != output_event->pmu) 11050 goto out; 11051 11052 set: 11053 mutex_lock(&event->mmap_mutex); 11054 /* Can't redirect output if we've got an active mmap() */ 11055 if (atomic_read(&event->mmap_count)) 11056 goto unlock; 11057 11058 if (output_event) { 11059 /* get the rb we want to redirect to */ 11060 rb = ring_buffer_get(output_event); 11061 if (!rb) 11062 goto unlock; 11063 } 11064 11065 ring_buffer_attach(event, rb); 11066 11067 ret = 0; 11068 unlock: 11069 mutex_unlock(&event->mmap_mutex); 11070 11071 out: 11072 return ret; 11073 } 11074 11075 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11076 { 11077 if (b < a) 11078 swap(a, b); 11079 11080 mutex_lock(a); 11081 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11082 } 11083 11084 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11085 { 11086 bool nmi_safe = false; 11087 11088 switch (clk_id) { 11089 case CLOCK_MONOTONIC: 11090 event->clock = &ktime_get_mono_fast_ns; 11091 nmi_safe = true; 11092 break; 11093 11094 case CLOCK_MONOTONIC_RAW: 11095 event->clock = &ktime_get_raw_fast_ns; 11096 nmi_safe = true; 11097 break; 11098 11099 case CLOCK_REALTIME: 11100 event->clock = &ktime_get_real_ns; 11101 break; 11102 11103 case CLOCK_BOOTTIME: 11104 event->clock = &ktime_get_boottime_ns; 11105 break; 11106 11107 case CLOCK_TAI: 11108 event->clock = &ktime_get_clocktai_ns; 11109 break; 11110 11111 default: 11112 return -EINVAL; 11113 } 11114 11115 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11116 return -EINVAL; 11117 11118 return 0; 11119 } 11120 11121 /* 11122 * Variation on perf_event_ctx_lock_nested(), except we take two context 11123 * mutexes. 11124 */ 11125 static struct perf_event_context * 11126 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11127 struct perf_event_context *ctx) 11128 { 11129 struct perf_event_context *gctx; 11130 11131 again: 11132 rcu_read_lock(); 11133 gctx = READ_ONCE(group_leader->ctx); 11134 if (!refcount_inc_not_zero(&gctx->refcount)) { 11135 rcu_read_unlock(); 11136 goto again; 11137 } 11138 rcu_read_unlock(); 11139 11140 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11141 11142 if (group_leader->ctx != gctx) { 11143 mutex_unlock(&ctx->mutex); 11144 mutex_unlock(&gctx->mutex); 11145 put_ctx(gctx); 11146 goto again; 11147 } 11148 11149 return gctx; 11150 } 11151 11152 /** 11153 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11154 * 11155 * @attr_uptr: event_id type attributes for monitoring/sampling 11156 * @pid: target pid 11157 * @cpu: target cpu 11158 * @group_fd: group leader event fd 11159 */ 11160 SYSCALL_DEFINE5(perf_event_open, 11161 struct perf_event_attr __user *, attr_uptr, 11162 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11163 { 11164 struct perf_event *group_leader = NULL, *output_event = NULL; 11165 struct perf_event *event, *sibling; 11166 struct perf_event_attr attr; 11167 struct perf_event_context *ctx, *uninitialized_var(gctx); 11168 struct file *event_file = NULL; 11169 struct fd group = {NULL, 0}; 11170 struct task_struct *task = NULL; 11171 struct pmu *pmu; 11172 int event_fd; 11173 int move_group = 0; 11174 int err; 11175 int f_flags = O_RDWR; 11176 int cgroup_fd = -1; 11177 11178 /* for future expandability... */ 11179 if (flags & ~PERF_FLAG_ALL) 11180 return -EINVAL; 11181 11182 /* Do we allow access to perf_event_open(2) ? */ 11183 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11184 if (err) 11185 return err; 11186 11187 err = perf_copy_attr(attr_uptr, &attr); 11188 if (err) 11189 return err; 11190 11191 if (!attr.exclude_kernel) { 11192 err = perf_allow_kernel(&attr); 11193 if (err) 11194 return err; 11195 } 11196 11197 if (attr.namespaces) { 11198 if (!capable(CAP_SYS_ADMIN)) 11199 return -EACCES; 11200 } 11201 11202 if (attr.freq) { 11203 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11204 return -EINVAL; 11205 } else { 11206 if (attr.sample_period & (1ULL << 63)) 11207 return -EINVAL; 11208 } 11209 11210 /* Only privileged users can get physical addresses */ 11211 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11212 err = perf_allow_kernel(&attr); 11213 if (err) 11214 return err; 11215 } 11216 11217 err = security_locked_down(LOCKDOWN_PERF); 11218 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11219 /* REGS_INTR can leak data, lockdown must prevent this */ 11220 return err; 11221 11222 err = 0; 11223 11224 /* 11225 * In cgroup mode, the pid argument is used to pass the fd 11226 * opened to the cgroup directory in cgroupfs. The cpu argument 11227 * designates the cpu on which to monitor threads from that 11228 * cgroup. 11229 */ 11230 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11231 return -EINVAL; 11232 11233 if (flags & PERF_FLAG_FD_CLOEXEC) 11234 f_flags |= O_CLOEXEC; 11235 11236 event_fd = get_unused_fd_flags(f_flags); 11237 if (event_fd < 0) 11238 return event_fd; 11239 11240 if (group_fd != -1) { 11241 err = perf_fget_light(group_fd, &group); 11242 if (err) 11243 goto err_fd; 11244 group_leader = group.file->private_data; 11245 if (flags & PERF_FLAG_FD_OUTPUT) 11246 output_event = group_leader; 11247 if (flags & PERF_FLAG_FD_NO_GROUP) 11248 group_leader = NULL; 11249 } 11250 11251 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11252 task = find_lively_task_by_vpid(pid); 11253 if (IS_ERR(task)) { 11254 err = PTR_ERR(task); 11255 goto err_group_fd; 11256 } 11257 } 11258 11259 if (task && group_leader && 11260 group_leader->attr.inherit != attr.inherit) { 11261 err = -EINVAL; 11262 goto err_task; 11263 } 11264 11265 if (task) { 11266 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 11267 if (err) 11268 goto err_task; 11269 11270 /* 11271 * Reuse ptrace permission checks for now. 11272 * 11273 * We must hold cred_guard_mutex across this and any potential 11274 * perf_install_in_context() call for this new event to 11275 * serialize against exec() altering our credentials (and the 11276 * perf_event_exit_task() that could imply). 11277 */ 11278 err = -EACCES; 11279 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11280 goto err_cred; 11281 } 11282 11283 if (flags & PERF_FLAG_PID_CGROUP) 11284 cgroup_fd = pid; 11285 11286 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11287 NULL, NULL, cgroup_fd); 11288 if (IS_ERR(event)) { 11289 err = PTR_ERR(event); 11290 goto err_cred; 11291 } 11292 11293 if (is_sampling_event(event)) { 11294 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11295 err = -EOPNOTSUPP; 11296 goto err_alloc; 11297 } 11298 } 11299 11300 /* 11301 * Special case software events and allow them to be part of 11302 * any hardware group. 11303 */ 11304 pmu = event->pmu; 11305 11306 if (attr.use_clockid) { 11307 err = perf_event_set_clock(event, attr.clockid); 11308 if (err) 11309 goto err_alloc; 11310 } 11311 11312 if (pmu->task_ctx_nr == perf_sw_context) 11313 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11314 11315 if (group_leader) { 11316 if (is_software_event(event) && 11317 !in_software_context(group_leader)) { 11318 /* 11319 * If the event is a sw event, but the group_leader 11320 * is on hw context. 11321 * 11322 * Allow the addition of software events to hw 11323 * groups, this is safe because software events 11324 * never fail to schedule. 11325 */ 11326 pmu = group_leader->ctx->pmu; 11327 } else if (!is_software_event(event) && 11328 is_software_event(group_leader) && 11329 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11330 /* 11331 * In case the group is a pure software group, and we 11332 * try to add a hardware event, move the whole group to 11333 * the hardware context. 11334 */ 11335 move_group = 1; 11336 } 11337 } 11338 11339 /* 11340 * Get the target context (task or percpu): 11341 */ 11342 ctx = find_get_context(pmu, task, event); 11343 if (IS_ERR(ctx)) { 11344 err = PTR_ERR(ctx); 11345 goto err_alloc; 11346 } 11347 11348 /* 11349 * Look up the group leader (we will attach this event to it): 11350 */ 11351 if (group_leader) { 11352 err = -EINVAL; 11353 11354 /* 11355 * Do not allow a recursive hierarchy (this new sibling 11356 * becoming part of another group-sibling): 11357 */ 11358 if (group_leader->group_leader != group_leader) 11359 goto err_context; 11360 11361 /* All events in a group should have the same clock */ 11362 if (group_leader->clock != event->clock) 11363 goto err_context; 11364 11365 /* 11366 * Make sure we're both events for the same CPU; 11367 * grouping events for different CPUs is broken; since 11368 * you can never concurrently schedule them anyhow. 11369 */ 11370 if (group_leader->cpu != event->cpu) 11371 goto err_context; 11372 11373 /* 11374 * Make sure we're both on the same task, or both 11375 * per-CPU events. 11376 */ 11377 if (group_leader->ctx->task != ctx->task) 11378 goto err_context; 11379 11380 /* 11381 * Do not allow to attach to a group in a different task 11382 * or CPU context. If we're moving SW events, we'll fix 11383 * this up later, so allow that. 11384 */ 11385 if (!move_group && group_leader->ctx != ctx) 11386 goto err_context; 11387 11388 /* 11389 * Only a group leader can be exclusive or pinned 11390 */ 11391 if (attr.exclusive || attr.pinned) 11392 goto err_context; 11393 } 11394 11395 if (output_event) { 11396 err = perf_event_set_output(event, output_event); 11397 if (err) 11398 goto err_context; 11399 } 11400 11401 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11402 f_flags); 11403 if (IS_ERR(event_file)) { 11404 err = PTR_ERR(event_file); 11405 event_file = NULL; 11406 goto err_context; 11407 } 11408 11409 if (move_group) { 11410 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11411 11412 if (gctx->task == TASK_TOMBSTONE) { 11413 err = -ESRCH; 11414 goto err_locked; 11415 } 11416 11417 /* 11418 * Check if we raced against another sys_perf_event_open() call 11419 * moving the software group underneath us. 11420 */ 11421 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11422 /* 11423 * If someone moved the group out from under us, check 11424 * if this new event wound up on the same ctx, if so 11425 * its the regular !move_group case, otherwise fail. 11426 */ 11427 if (gctx != ctx) { 11428 err = -EINVAL; 11429 goto err_locked; 11430 } else { 11431 perf_event_ctx_unlock(group_leader, gctx); 11432 move_group = 0; 11433 } 11434 } 11435 11436 /* 11437 * Failure to create exclusive events returns -EBUSY. 11438 */ 11439 err = -EBUSY; 11440 if (!exclusive_event_installable(group_leader, ctx)) 11441 goto err_locked; 11442 11443 for_each_sibling_event(sibling, group_leader) { 11444 if (!exclusive_event_installable(sibling, ctx)) 11445 goto err_locked; 11446 } 11447 } else { 11448 mutex_lock(&ctx->mutex); 11449 } 11450 11451 if (ctx->task == TASK_TOMBSTONE) { 11452 err = -ESRCH; 11453 goto err_locked; 11454 } 11455 11456 if (!perf_event_validate_size(event)) { 11457 err = -E2BIG; 11458 goto err_locked; 11459 } 11460 11461 if (!task) { 11462 /* 11463 * Check if the @cpu we're creating an event for is online. 11464 * 11465 * We use the perf_cpu_context::ctx::mutex to serialize against 11466 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11467 */ 11468 struct perf_cpu_context *cpuctx = 11469 container_of(ctx, struct perf_cpu_context, ctx); 11470 11471 if (!cpuctx->online) { 11472 err = -ENODEV; 11473 goto err_locked; 11474 } 11475 } 11476 11477 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 11478 err = -EINVAL; 11479 goto err_locked; 11480 } 11481 11482 /* 11483 * Must be under the same ctx::mutex as perf_install_in_context(), 11484 * because we need to serialize with concurrent event creation. 11485 */ 11486 if (!exclusive_event_installable(event, ctx)) { 11487 err = -EBUSY; 11488 goto err_locked; 11489 } 11490 11491 WARN_ON_ONCE(ctx->parent_ctx); 11492 11493 /* 11494 * This is the point on no return; we cannot fail hereafter. This is 11495 * where we start modifying current state. 11496 */ 11497 11498 if (move_group) { 11499 /* 11500 * See perf_event_ctx_lock() for comments on the details 11501 * of swizzling perf_event::ctx. 11502 */ 11503 perf_remove_from_context(group_leader, 0); 11504 put_ctx(gctx); 11505 11506 for_each_sibling_event(sibling, group_leader) { 11507 perf_remove_from_context(sibling, 0); 11508 put_ctx(gctx); 11509 } 11510 11511 /* 11512 * Wait for everybody to stop referencing the events through 11513 * the old lists, before installing it on new lists. 11514 */ 11515 synchronize_rcu(); 11516 11517 /* 11518 * Install the group siblings before the group leader. 11519 * 11520 * Because a group leader will try and install the entire group 11521 * (through the sibling list, which is still in-tact), we can 11522 * end up with siblings installed in the wrong context. 11523 * 11524 * By installing siblings first we NO-OP because they're not 11525 * reachable through the group lists. 11526 */ 11527 for_each_sibling_event(sibling, group_leader) { 11528 perf_event__state_init(sibling); 11529 perf_install_in_context(ctx, sibling, sibling->cpu); 11530 get_ctx(ctx); 11531 } 11532 11533 /* 11534 * Removing from the context ends up with disabled 11535 * event. What we want here is event in the initial 11536 * startup state, ready to be add into new context. 11537 */ 11538 perf_event__state_init(group_leader); 11539 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11540 get_ctx(ctx); 11541 } 11542 11543 /* 11544 * Precalculate sample_data sizes; do while holding ctx::mutex such 11545 * that we're serialized against further additions and before 11546 * perf_install_in_context() which is the point the event is active and 11547 * can use these values. 11548 */ 11549 perf_event__header_size(event); 11550 perf_event__id_header_size(event); 11551 11552 event->owner = current; 11553 11554 perf_install_in_context(ctx, event, event->cpu); 11555 perf_unpin_context(ctx); 11556 11557 if (move_group) 11558 perf_event_ctx_unlock(group_leader, gctx); 11559 mutex_unlock(&ctx->mutex); 11560 11561 if (task) { 11562 mutex_unlock(&task->signal->cred_guard_mutex); 11563 put_task_struct(task); 11564 } 11565 11566 mutex_lock(¤t->perf_event_mutex); 11567 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11568 mutex_unlock(¤t->perf_event_mutex); 11569 11570 /* 11571 * Drop the reference on the group_event after placing the 11572 * new event on the sibling_list. This ensures destruction 11573 * of the group leader will find the pointer to itself in 11574 * perf_group_detach(). 11575 */ 11576 fdput(group); 11577 fd_install(event_fd, event_file); 11578 return event_fd; 11579 11580 err_locked: 11581 if (move_group) 11582 perf_event_ctx_unlock(group_leader, gctx); 11583 mutex_unlock(&ctx->mutex); 11584 /* err_file: */ 11585 fput(event_file); 11586 err_context: 11587 perf_unpin_context(ctx); 11588 put_ctx(ctx); 11589 err_alloc: 11590 /* 11591 * If event_file is set, the fput() above will have called ->release() 11592 * and that will take care of freeing the event. 11593 */ 11594 if (!event_file) 11595 free_event(event); 11596 err_cred: 11597 if (task) 11598 mutex_unlock(&task->signal->cred_guard_mutex); 11599 err_task: 11600 if (task) 11601 put_task_struct(task); 11602 err_group_fd: 11603 fdput(group); 11604 err_fd: 11605 put_unused_fd(event_fd); 11606 return err; 11607 } 11608 11609 /** 11610 * perf_event_create_kernel_counter 11611 * 11612 * @attr: attributes of the counter to create 11613 * @cpu: cpu in which the counter is bound 11614 * @task: task to profile (NULL for percpu) 11615 */ 11616 struct perf_event * 11617 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11618 struct task_struct *task, 11619 perf_overflow_handler_t overflow_handler, 11620 void *context) 11621 { 11622 struct perf_event_context *ctx; 11623 struct perf_event *event; 11624 int err; 11625 11626 /* 11627 * Grouping is not supported for kernel events, neither is 'AUX', 11628 * make sure the caller's intentions are adjusted. 11629 */ 11630 if (attr->aux_output) 11631 return ERR_PTR(-EINVAL); 11632 11633 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11634 overflow_handler, context, -1); 11635 if (IS_ERR(event)) { 11636 err = PTR_ERR(event); 11637 goto err; 11638 } 11639 11640 /* Mark owner so we could distinguish it from user events. */ 11641 event->owner = TASK_TOMBSTONE; 11642 11643 /* 11644 * Get the target context (task or percpu): 11645 */ 11646 ctx = find_get_context(event->pmu, task, event); 11647 if (IS_ERR(ctx)) { 11648 err = PTR_ERR(ctx); 11649 goto err_free; 11650 } 11651 11652 WARN_ON_ONCE(ctx->parent_ctx); 11653 mutex_lock(&ctx->mutex); 11654 if (ctx->task == TASK_TOMBSTONE) { 11655 err = -ESRCH; 11656 goto err_unlock; 11657 } 11658 11659 if (!task) { 11660 /* 11661 * Check if the @cpu we're creating an event for is online. 11662 * 11663 * We use the perf_cpu_context::ctx::mutex to serialize against 11664 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11665 */ 11666 struct perf_cpu_context *cpuctx = 11667 container_of(ctx, struct perf_cpu_context, ctx); 11668 if (!cpuctx->online) { 11669 err = -ENODEV; 11670 goto err_unlock; 11671 } 11672 } 11673 11674 if (!exclusive_event_installable(event, ctx)) { 11675 err = -EBUSY; 11676 goto err_unlock; 11677 } 11678 11679 perf_install_in_context(ctx, event, event->cpu); 11680 perf_unpin_context(ctx); 11681 mutex_unlock(&ctx->mutex); 11682 11683 return event; 11684 11685 err_unlock: 11686 mutex_unlock(&ctx->mutex); 11687 perf_unpin_context(ctx); 11688 put_ctx(ctx); 11689 err_free: 11690 free_event(event); 11691 err: 11692 return ERR_PTR(err); 11693 } 11694 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11695 11696 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11697 { 11698 struct perf_event_context *src_ctx; 11699 struct perf_event_context *dst_ctx; 11700 struct perf_event *event, *tmp; 11701 LIST_HEAD(events); 11702 11703 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11704 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11705 11706 /* 11707 * See perf_event_ctx_lock() for comments on the details 11708 * of swizzling perf_event::ctx. 11709 */ 11710 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11711 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11712 event_entry) { 11713 perf_remove_from_context(event, 0); 11714 unaccount_event_cpu(event, src_cpu); 11715 put_ctx(src_ctx); 11716 list_add(&event->migrate_entry, &events); 11717 } 11718 11719 /* 11720 * Wait for the events to quiesce before re-instating them. 11721 */ 11722 synchronize_rcu(); 11723 11724 /* 11725 * Re-instate events in 2 passes. 11726 * 11727 * Skip over group leaders and only install siblings on this first 11728 * pass, siblings will not get enabled without a leader, however a 11729 * leader will enable its siblings, even if those are still on the old 11730 * context. 11731 */ 11732 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11733 if (event->group_leader == event) 11734 continue; 11735 11736 list_del(&event->migrate_entry); 11737 if (event->state >= PERF_EVENT_STATE_OFF) 11738 event->state = PERF_EVENT_STATE_INACTIVE; 11739 account_event_cpu(event, dst_cpu); 11740 perf_install_in_context(dst_ctx, event, dst_cpu); 11741 get_ctx(dst_ctx); 11742 } 11743 11744 /* 11745 * Once all the siblings are setup properly, install the group leaders 11746 * to make it go. 11747 */ 11748 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11749 list_del(&event->migrate_entry); 11750 if (event->state >= PERF_EVENT_STATE_OFF) 11751 event->state = PERF_EVENT_STATE_INACTIVE; 11752 account_event_cpu(event, dst_cpu); 11753 perf_install_in_context(dst_ctx, event, dst_cpu); 11754 get_ctx(dst_ctx); 11755 } 11756 mutex_unlock(&dst_ctx->mutex); 11757 mutex_unlock(&src_ctx->mutex); 11758 } 11759 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11760 11761 static void sync_child_event(struct perf_event *child_event, 11762 struct task_struct *child) 11763 { 11764 struct perf_event *parent_event = child_event->parent; 11765 u64 child_val; 11766 11767 if (child_event->attr.inherit_stat) 11768 perf_event_read_event(child_event, child); 11769 11770 child_val = perf_event_count(child_event); 11771 11772 /* 11773 * Add back the child's count to the parent's count: 11774 */ 11775 atomic64_add(child_val, &parent_event->child_count); 11776 atomic64_add(child_event->total_time_enabled, 11777 &parent_event->child_total_time_enabled); 11778 atomic64_add(child_event->total_time_running, 11779 &parent_event->child_total_time_running); 11780 } 11781 11782 static void 11783 perf_event_exit_event(struct perf_event *child_event, 11784 struct perf_event_context *child_ctx, 11785 struct task_struct *child) 11786 { 11787 struct perf_event *parent_event = child_event->parent; 11788 11789 /* 11790 * Do not destroy the 'original' grouping; because of the context 11791 * switch optimization the original events could've ended up in a 11792 * random child task. 11793 * 11794 * If we were to destroy the original group, all group related 11795 * operations would cease to function properly after this random 11796 * child dies. 11797 * 11798 * Do destroy all inherited groups, we don't care about those 11799 * and being thorough is better. 11800 */ 11801 raw_spin_lock_irq(&child_ctx->lock); 11802 WARN_ON_ONCE(child_ctx->is_active); 11803 11804 if (parent_event) 11805 perf_group_detach(child_event); 11806 list_del_event(child_event, child_ctx); 11807 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11808 raw_spin_unlock_irq(&child_ctx->lock); 11809 11810 /* 11811 * Parent events are governed by their filedesc, retain them. 11812 */ 11813 if (!parent_event) { 11814 perf_event_wakeup(child_event); 11815 return; 11816 } 11817 /* 11818 * Child events can be cleaned up. 11819 */ 11820 11821 sync_child_event(child_event, child); 11822 11823 /* 11824 * Remove this event from the parent's list 11825 */ 11826 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11827 mutex_lock(&parent_event->child_mutex); 11828 list_del_init(&child_event->child_list); 11829 mutex_unlock(&parent_event->child_mutex); 11830 11831 /* 11832 * Kick perf_poll() for is_event_hup(). 11833 */ 11834 perf_event_wakeup(parent_event); 11835 free_event(child_event); 11836 put_event(parent_event); 11837 } 11838 11839 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11840 { 11841 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11842 struct perf_event *child_event, *next; 11843 11844 WARN_ON_ONCE(child != current); 11845 11846 child_ctx = perf_pin_task_context(child, ctxn); 11847 if (!child_ctx) 11848 return; 11849 11850 /* 11851 * In order to reduce the amount of tricky in ctx tear-down, we hold 11852 * ctx::mutex over the entire thing. This serializes against almost 11853 * everything that wants to access the ctx. 11854 * 11855 * The exception is sys_perf_event_open() / 11856 * perf_event_create_kernel_count() which does find_get_context() 11857 * without ctx::mutex (it cannot because of the move_group double mutex 11858 * lock thing). See the comments in perf_install_in_context(). 11859 */ 11860 mutex_lock(&child_ctx->mutex); 11861 11862 /* 11863 * In a single ctx::lock section, de-schedule the events and detach the 11864 * context from the task such that we cannot ever get it scheduled back 11865 * in. 11866 */ 11867 raw_spin_lock_irq(&child_ctx->lock); 11868 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11869 11870 /* 11871 * Now that the context is inactive, destroy the task <-> ctx relation 11872 * and mark the context dead. 11873 */ 11874 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11875 put_ctx(child_ctx); /* cannot be last */ 11876 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11877 put_task_struct(current); /* cannot be last */ 11878 11879 clone_ctx = unclone_ctx(child_ctx); 11880 raw_spin_unlock_irq(&child_ctx->lock); 11881 11882 if (clone_ctx) 11883 put_ctx(clone_ctx); 11884 11885 /* 11886 * Report the task dead after unscheduling the events so that we 11887 * won't get any samples after PERF_RECORD_EXIT. We can however still 11888 * get a few PERF_RECORD_READ events. 11889 */ 11890 perf_event_task(child, child_ctx, 0); 11891 11892 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11893 perf_event_exit_event(child_event, child_ctx, child); 11894 11895 mutex_unlock(&child_ctx->mutex); 11896 11897 put_ctx(child_ctx); 11898 } 11899 11900 /* 11901 * When a child task exits, feed back event values to parent events. 11902 * 11903 * Can be called with cred_guard_mutex held when called from 11904 * install_exec_creds(). 11905 */ 11906 void perf_event_exit_task(struct task_struct *child) 11907 { 11908 struct perf_event *event, *tmp; 11909 int ctxn; 11910 11911 mutex_lock(&child->perf_event_mutex); 11912 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11913 owner_entry) { 11914 list_del_init(&event->owner_entry); 11915 11916 /* 11917 * Ensure the list deletion is visible before we clear 11918 * the owner, closes a race against perf_release() where 11919 * we need to serialize on the owner->perf_event_mutex. 11920 */ 11921 smp_store_release(&event->owner, NULL); 11922 } 11923 mutex_unlock(&child->perf_event_mutex); 11924 11925 for_each_task_context_nr(ctxn) 11926 perf_event_exit_task_context(child, ctxn); 11927 11928 /* 11929 * The perf_event_exit_task_context calls perf_event_task 11930 * with child's task_ctx, which generates EXIT events for 11931 * child contexts and sets child->perf_event_ctxp[] to NULL. 11932 * At this point we need to send EXIT events to cpu contexts. 11933 */ 11934 perf_event_task(child, NULL, 0); 11935 } 11936 11937 static void perf_free_event(struct perf_event *event, 11938 struct perf_event_context *ctx) 11939 { 11940 struct perf_event *parent = event->parent; 11941 11942 if (WARN_ON_ONCE(!parent)) 11943 return; 11944 11945 mutex_lock(&parent->child_mutex); 11946 list_del_init(&event->child_list); 11947 mutex_unlock(&parent->child_mutex); 11948 11949 put_event(parent); 11950 11951 raw_spin_lock_irq(&ctx->lock); 11952 perf_group_detach(event); 11953 list_del_event(event, ctx); 11954 raw_spin_unlock_irq(&ctx->lock); 11955 free_event(event); 11956 } 11957 11958 /* 11959 * Free a context as created by inheritance by perf_event_init_task() below, 11960 * used by fork() in case of fail. 11961 * 11962 * Even though the task has never lived, the context and events have been 11963 * exposed through the child_list, so we must take care tearing it all down. 11964 */ 11965 void perf_event_free_task(struct task_struct *task) 11966 { 11967 struct perf_event_context *ctx; 11968 struct perf_event *event, *tmp; 11969 int ctxn; 11970 11971 for_each_task_context_nr(ctxn) { 11972 ctx = task->perf_event_ctxp[ctxn]; 11973 if (!ctx) 11974 continue; 11975 11976 mutex_lock(&ctx->mutex); 11977 raw_spin_lock_irq(&ctx->lock); 11978 /* 11979 * Destroy the task <-> ctx relation and mark the context dead. 11980 * 11981 * This is important because even though the task hasn't been 11982 * exposed yet the context has been (through child_list). 11983 */ 11984 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11985 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11986 put_task_struct(task); /* cannot be last */ 11987 raw_spin_unlock_irq(&ctx->lock); 11988 11989 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11990 perf_free_event(event, ctx); 11991 11992 mutex_unlock(&ctx->mutex); 11993 11994 /* 11995 * perf_event_release_kernel() could've stolen some of our 11996 * child events and still have them on its free_list. In that 11997 * case we must wait for these events to have been freed (in 11998 * particular all their references to this task must've been 11999 * dropped). 12000 * 12001 * Without this copy_process() will unconditionally free this 12002 * task (irrespective of its reference count) and 12003 * _free_event()'s put_task_struct(event->hw.target) will be a 12004 * use-after-free. 12005 * 12006 * Wait for all events to drop their context reference. 12007 */ 12008 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12009 put_ctx(ctx); /* must be last */ 12010 } 12011 } 12012 12013 void perf_event_delayed_put(struct task_struct *task) 12014 { 12015 int ctxn; 12016 12017 for_each_task_context_nr(ctxn) 12018 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12019 } 12020 12021 struct file *perf_event_get(unsigned int fd) 12022 { 12023 struct file *file = fget(fd); 12024 if (!file) 12025 return ERR_PTR(-EBADF); 12026 12027 if (file->f_op != &perf_fops) { 12028 fput(file); 12029 return ERR_PTR(-EBADF); 12030 } 12031 12032 return file; 12033 } 12034 12035 const struct perf_event *perf_get_event(struct file *file) 12036 { 12037 if (file->f_op != &perf_fops) 12038 return ERR_PTR(-EINVAL); 12039 12040 return file->private_data; 12041 } 12042 12043 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12044 { 12045 if (!event) 12046 return ERR_PTR(-EINVAL); 12047 12048 return &event->attr; 12049 } 12050 12051 /* 12052 * Inherit an event from parent task to child task. 12053 * 12054 * Returns: 12055 * - valid pointer on success 12056 * - NULL for orphaned events 12057 * - IS_ERR() on error 12058 */ 12059 static struct perf_event * 12060 inherit_event(struct perf_event *parent_event, 12061 struct task_struct *parent, 12062 struct perf_event_context *parent_ctx, 12063 struct task_struct *child, 12064 struct perf_event *group_leader, 12065 struct perf_event_context *child_ctx) 12066 { 12067 enum perf_event_state parent_state = parent_event->state; 12068 struct perf_event *child_event; 12069 unsigned long flags; 12070 12071 /* 12072 * Instead of creating recursive hierarchies of events, 12073 * we link inherited events back to the original parent, 12074 * which has a filp for sure, which we use as the reference 12075 * count: 12076 */ 12077 if (parent_event->parent) 12078 parent_event = parent_event->parent; 12079 12080 child_event = perf_event_alloc(&parent_event->attr, 12081 parent_event->cpu, 12082 child, 12083 group_leader, parent_event, 12084 NULL, NULL, -1); 12085 if (IS_ERR(child_event)) 12086 return child_event; 12087 12088 12089 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12090 !child_ctx->task_ctx_data) { 12091 struct pmu *pmu = child_event->pmu; 12092 12093 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 12094 GFP_KERNEL); 12095 if (!child_ctx->task_ctx_data) { 12096 free_event(child_event); 12097 return ERR_PTR(-ENOMEM); 12098 } 12099 } 12100 12101 /* 12102 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12103 * must be under the same lock in order to serialize against 12104 * perf_event_release_kernel(), such that either we must observe 12105 * is_orphaned_event() or they will observe us on the child_list. 12106 */ 12107 mutex_lock(&parent_event->child_mutex); 12108 if (is_orphaned_event(parent_event) || 12109 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12110 mutex_unlock(&parent_event->child_mutex); 12111 /* task_ctx_data is freed with child_ctx */ 12112 free_event(child_event); 12113 return NULL; 12114 } 12115 12116 get_ctx(child_ctx); 12117 12118 /* 12119 * Make the child state follow the state of the parent event, 12120 * not its attr.disabled bit. We hold the parent's mutex, 12121 * so we won't race with perf_event_{en, dis}able_family. 12122 */ 12123 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12124 child_event->state = PERF_EVENT_STATE_INACTIVE; 12125 else 12126 child_event->state = PERF_EVENT_STATE_OFF; 12127 12128 if (parent_event->attr.freq) { 12129 u64 sample_period = parent_event->hw.sample_period; 12130 struct hw_perf_event *hwc = &child_event->hw; 12131 12132 hwc->sample_period = sample_period; 12133 hwc->last_period = sample_period; 12134 12135 local64_set(&hwc->period_left, sample_period); 12136 } 12137 12138 child_event->ctx = child_ctx; 12139 child_event->overflow_handler = parent_event->overflow_handler; 12140 child_event->overflow_handler_context 12141 = parent_event->overflow_handler_context; 12142 12143 /* 12144 * Precalculate sample_data sizes 12145 */ 12146 perf_event__header_size(child_event); 12147 perf_event__id_header_size(child_event); 12148 12149 /* 12150 * Link it up in the child's context: 12151 */ 12152 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12153 add_event_to_ctx(child_event, child_ctx); 12154 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12155 12156 /* 12157 * Link this into the parent event's child list 12158 */ 12159 list_add_tail(&child_event->child_list, &parent_event->child_list); 12160 mutex_unlock(&parent_event->child_mutex); 12161 12162 return child_event; 12163 } 12164 12165 /* 12166 * Inherits an event group. 12167 * 12168 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12169 * This matches with perf_event_release_kernel() removing all child events. 12170 * 12171 * Returns: 12172 * - 0 on success 12173 * - <0 on error 12174 */ 12175 static int inherit_group(struct perf_event *parent_event, 12176 struct task_struct *parent, 12177 struct perf_event_context *parent_ctx, 12178 struct task_struct *child, 12179 struct perf_event_context *child_ctx) 12180 { 12181 struct perf_event *leader; 12182 struct perf_event *sub; 12183 struct perf_event *child_ctr; 12184 12185 leader = inherit_event(parent_event, parent, parent_ctx, 12186 child, NULL, child_ctx); 12187 if (IS_ERR(leader)) 12188 return PTR_ERR(leader); 12189 /* 12190 * @leader can be NULL here because of is_orphaned_event(). In this 12191 * case inherit_event() will create individual events, similar to what 12192 * perf_group_detach() would do anyway. 12193 */ 12194 for_each_sibling_event(sub, parent_event) { 12195 child_ctr = inherit_event(sub, parent, parent_ctx, 12196 child, leader, child_ctx); 12197 if (IS_ERR(child_ctr)) 12198 return PTR_ERR(child_ctr); 12199 12200 if (sub->aux_event == parent_event && child_ctr && 12201 !perf_get_aux_event(child_ctr, leader)) 12202 return -EINVAL; 12203 } 12204 return 0; 12205 } 12206 12207 /* 12208 * Creates the child task context and tries to inherit the event-group. 12209 * 12210 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12211 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12212 * consistent with perf_event_release_kernel() removing all child events. 12213 * 12214 * Returns: 12215 * - 0 on success 12216 * - <0 on error 12217 */ 12218 static int 12219 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12220 struct perf_event_context *parent_ctx, 12221 struct task_struct *child, int ctxn, 12222 int *inherited_all) 12223 { 12224 int ret; 12225 struct perf_event_context *child_ctx; 12226 12227 if (!event->attr.inherit) { 12228 *inherited_all = 0; 12229 return 0; 12230 } 12231 12232 child_ctx = child->perf_event_ctxp[ctxn]; 12233 if (!child_ctx) { 12234 /* 12235 * This is executed from the parent task context, so 12236 * inherit events that have been marked for cloning. 12237 * First allocate and initialize a context for the 12238 * child. 12239 */ 12240 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12241 if (!child_ctx) 12242 return -ENOMEM; 12243 12244 child->perf_event_ctxp[ctxn] = child_ctx; 12245 } 12246 12247 ret = inherit_group(event, parent, parent_ctx, 12248 child, child_ctx); 12249 12250 if (ret) 12251 *inherited_all = 0; 12252 12253 return ret; 12254 } 12255 12256 /* 12257 * Initialize the perf_event context in task_struct 12258 */ 12259 static int perf_event_init_context(struct task_struct *child, int ctxn) 12260 { 12261 struct perf_event_context *child_ctx, *parent_ctx; 12262 struct perf_event_context *cloned_ctx; 12263 struct perf_event *event; 12264 struct task_struct *parent = current; 12265 int inherited_all = 1; 12266 unsigned long flags; 12267 int ret = 0; 12268 12269 if (likely(!parent->perf_event_ctxp[ctxn])) 12270 return 0; 12271 12272 /* 12273 * If the parent's context is a clone, pin it so it won't get 12274 * swapped under us. 12275 */ 12276 parent_ctx = perf_pin_task_context(parent, ctxn); 12277 if (!parent_ctx) 12278 return 0; 12279 12280 /* 12281 * No need to check if parent_ctx != NULL here; since we saw 12282 * it non-NULL earlier, the only reason for it to become NULL 12283 * is if we exit, and since we're currently in the middle of 12284 * a fork we can't be exiting at the same time. 12285 */ 12286 12287 /* 12288 * Lock the parent list. No need to lock the child - not PID 12289 * hashed yet and not running, so nobody can access it. 12290 */ 12291 mutex_lock(&parent_ctx->mutex); 12292 12293 /* 12294 * We dont have to disable NMIs - we are only looking at 12295 * the list, not manipulating it: 12296 */ 12297 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12298 ret = inherit_task_group(event, parent, parent_ctx, 12299 child, ctxn, &inherited_all); 12300 if (ret) 12301 goto out_unlock; 12302 } 12303 12304 /* 12305 * We can't hold ctx->lock when iterating the ->flexible_group list due 12306 * to allocations, but we need to prevent rotation because 12307 * rotate_ctx() will change the list from interrupt context. 12308 */ 12309 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12310 parent_ctx->rotate_disable = 1; 12311 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12312 12313 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12314 ret = inherit_task_group(event, parent, parent_ctx, 12315 child, ctxn, &inherited_all); 12316 if (ret) 12317 goto out_unlock; 12318 } 12319 12320 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12321 parent_ctx->rotate_disable = 0; 12322 12323 child_ctx = child->perf_event_ctxp[ctxn]; 12324 12325 if (child_ctx && inherited_all) { 12326 /* 12327 * Mark the child context as a clone of the parent 12328 * context, or of whatever the parent is a clone of. 12329 * 12330 * Note that if the parent is a clone, the holding of 12331 * parent_ctx->lock avoids it from being uncloned. 12332 */ 12333 cloned_ctx = parent_ctx->parent_ctx; 12334 if (cloned_ctx) { 12335 child_ctx->parent_ctx = cloned_ctx; 12336 child_ctx->parent_gen = parent_ctx->parent_gen; 12337 } else { 12338 child_ctx->parent_ctx = parent_ctx; 12339 child_ctx->parent_gen = parent_ctx->generation; 12340 } 12341 get_ctx(child_ctx->parent_ctx); 12342 } 12343 12344 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12345 out_unlock: 12346 mutex_unlock(&parent_ctx->mutex); 12347 12348 perf_unpin_context(parent_ctx); 12349 put_ctx(parent_ctx); 12350 12351 return ret; 12352 } 12353 12354 /* 12355 * Initialize the perf_event context in task_struct 12356 */ 12357 int perf_event_init_task(struct task_struct *child) 12358 { 12359 int ctxn, ret; 12360 12361 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12362 mutex_init(&child->perf_event_mutex); 12363 INIT_LIST_HEAD(&child->perf_event_list); 12364 12365 for_each_task_context_nr(ctxn) { 12366 ret = perf_event_init_context(child, ctxn); 12367 if (ret) { 12368 perf_event_free_task(child); 12369 return ret; 12370 } 12371 } 12372 12373 return 0; 12374 } 12375 12376 static void __init perf_event_init_all_cpus(void) 12377 { 12378 struct swevent_htable *swhash; 12379 int cpu; 12380 12381 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12382 12383 for_each_possible_cpu(cpu) { 12384 swhash = &per_cpu(swevent_htable, cpu); 12385 mutex_init(&swhash->hlist_mutex); 12386 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12387 12388 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12389 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12390 12391 #ifdef CONFIG_CGROUP_PERF 12392 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12393 #endif 12394 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12395 } 12396 } 12397 12398 static void perf_swevent_init_cpu(unsigned int cpu) 12399 { 12400 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12401 12402 mutex_lock(&swhash->hlist_mutex); 12403 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12404 struct swevent_hlist *hlist; 12405 12406 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12407 WARN_ON(!hlist); 12408 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12409 } 12410 mutex_unlock(&swhash->hlist_mutex); 12411 } 12412 12413 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12414 static void __perf_event_exit_context(void *__info) 12415 { 12416 struct perf_event_context *ctx = __info; 12417 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12418 struct perf_event *event; 12419 12420 raw_spin_lock(&ctx->lock); 12421 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12422 list_for_each_entry(event, &ctx->event_list, event_entry) 12423 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12424 raw_spin_unlock(&ctx->lock); 12425 } 12426 12427 static void perf_event_exit_cpu_context(int cpu) 12428 { 12429 struct perf_cpu_context *cpuctx; 12430 struct perf_event_context *ctx; 12431 struct pmu *pmu; 12432 12433 mutex_lock(&pmus_lock); 12434 list_for_each_entry(pmu, &pmus, entry) { 12435 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12436 ctx = &cpuctx->ctx; 12437 12438 mutex_lock(&ctx->mutex); 12439 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12440 cpuctx->online = 0; 12441 mutex_unlock(&ctx->mutex); 12442 } 12443 cpumask_clear_cpu(cpu, perf_online_mask); 12444 mutex_unlock(&pmus_lock); 12445 } 12446 #else 12447 12448 static void perf_event_exit_cpu_context(int cpu) { } 12449 12450 #endif 12451 12452 int perf_event_init_cpu(unsigned int cpu) 12453 { 12454 struct perf_cpu_context *cpuctx; 12455 struct perf_event_context *ctx; 12456 struct pmu *pmu; 12457 12458 perf_swevent_init_cpu(cpu); 12459 12460 mutex_lock(&pmus_lock); 12461 cpumask_set_cpu(cpu, perf_online_mask); 12462 list_for_each_entry(pmu, &pmus, entry) { 12463 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12464 ctx = &cpuctx->ctx; 12465 12466 mutex_lock(&ctx->mutex); 12467 cpuctx->online = 1; 12468 mutex_unlock(&ctx->mutex); 12469 } 12470 mutex_unlock(&pmus_lock); 12471 12472 return 0; 12473 } 12474 12475 int perf_event_exit_cpu(unsigned int cpu) 12476 { 12477 perf_event_exit_cpu_context(cpu); 12478 return 0; 12479 } 12480 12481 static int 12482 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12483 { 12484 int cpu; 12485 12486 for_each_online_cpu(cpu) 12487 perf_event_exit_cpu(cpu); 12488 12489 return NOTIFY_OK; 12490 } 12491 12492 /* 12493 * Run the perf reboot notifier at the very last possible moment so that 12494 * the generic watchdog code runs as long as possible. 12495 */ 12496 static struct notifier_block perf_reboot_notifier = { 12497 .notifier_call = perf_reboot, 12498 .priority = INT_MIN, 12499 }; 12500 12501 void __init perf_event_init(void) 12502 { 12503 int ret; 12504 12505 idr_init(&pmu_idr); 12506 12507 perf_event_init_all_cpus(); 12508 init_srcu_struct(&pmus_srcu); 12509 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12510 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12511 perf_pmu_register(&perf_task_clock, NULL, -1); 12512 perf_tp_register(); 12513 perf_event_init_cpu(smp_processor_id()); 12514 register_reboot_notifier(&perf_reboot_notifier); 12515 12516 ret = init_hw_breakpoint(); 12517 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12518 12519 /* 12520 * Build time assertion that we keep the data_head at the intended 12521 * location. IOW, validation we got the __reserved[] size right. 12522 */ 12523 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12524 != 1024); 12525 } 12526 12527 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12528 char *page) 12529 { 12530 struct perf_pmu_events_attr *pmu_attr = 12531 container_of(attr, struct perf_pmu_events_attr, attr); 12532 12533 if (pmu_attr->event_str) 12534 return sprintf(page, "%s\n", pmu_attr->event_str); 12535 12536 return 0; 12537 } 12538 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12539 12540 static int __init perf_event_sysfs_init(void) 12541 { 12542 struct pmu *pmu; 12543 int ret; 12544 12545 mutex_lock(&pmus_lock); 12546 12547 ret = bus_register(&pmu_bus); 12548 if (ret) 12549 goto unlock; 12550 12551 list_for_each_entry(pmu, &pmus, entry) { 12552 if (!pmu->name || pmu->type < 0) 12553 continue; 12554 12555 ret = pmu_dev_alloc(pmu); 12556 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12557 } 12558 pmu_bus_running = 1; 12559 ret = 0; 12560 12561 unlock: 12562 mutex_unlock(&pmus_lock); 12563 12564 return ret; 12565 } 12566 device_initcall(perf_event_sysfs_init); 12567 12568 #ifdef CONFIG_CGROUP_PERF 12569 static struct cgroup_subsys_state * 12570 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12571 { 12572 struct perf_cgroup *jc; 12573 12574 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12575 if (!jc) 12576 return ERR_PTR(-ENOMEM); 12577 12578 jc->info = alloc_percpu(struct perf_cgroup_info); 12579 if (!jc->info) { 12580 kfree(jc); 12581 return ERR_PTR(-ENOMEM); 12582 } 12583 12584 return &jc->css; 12585 } 12586 12587 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12588 { 12589 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12590 12591 free_percpu(jc->info); 12592 kfree(jc); 12593 } 12594 12595 static int __perf_cgroup_move(void *info) 12596 { 12597 struct task_struct *task = info; 12598 rcu_read_lock(); 12599 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12600 rcu_read_unlock(); 12601 return 0; 12602 } 12603 12604 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12605 { 12606 struct task_struct *task; 12607 struct cgroup_subsys_state *css; 12608 12609 cgroup_taskset_for_each(task, css, tset) 12610 task_function_call(task, __perf_cgroup_move, task); 12611 } 12612 12613 struct cgroup_subsys perf_event_cgrp_subsys = { 12614 .css_alloc = perf_cgroup_css_alloc, 12615 .css_free = perf_cgroup_css_free, 12616 .attach = perf_cgroup_attach, 12617 /* 12618 * Implicitly enable on dfl hierarchy so that perf events can 12619 * always be filtered by cgroup2 path as long as perf_event 12620 * controller is not mounted on a legacy hierarchy. 12621 */ 12622 .implicit_on_dfl = true, 12623 .threaded = true, 12624 }; 12625 #endif /* CONFIG_CGROUP_PERF */ 12626