xref: /openbmc/linux/kernel/events/core.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @func:	the function to be called
136  * @info:	the function call argument
137  *
138  * Calls the function @func on the remote cpu.
139  *
140  * returns: @func return value or -ENXIO when the cpu is offline
141  */
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
143 {
144 	struct remote_function_call data = {
145 		.p	= NULL,
146 		.func	= func,
147 		.info	= info,
148 		.ret	= -ENXIO, /* No such CPU */
149 	};
150 
151 	smp_call_function_single(cpu, remote_function, &data, 1);
152 
153 	return data.ret;
154 }
155 
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
158 {
159 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160 }
161 
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163 			  struct perf_event_context *ctx)
164 {
165 	raw_spin_lock(&cpuctx->ctx.lock);
166 	if (ctx)
167 		raw_spin_lock(&ctx->lock);
168 }
169 
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171 			    struct perf_event_context *ctx)
172 {
173 	if (ctx)
174 		raw_spin_unlock(&ctx->lock);
175 	raw_spin_unlock(&cpuctx->ctx.lock);
176 }
177 
178 #define TASK_TOMBSTONE ((void *)-1L)
179 
180 static bool is_kernel_event(struct perf_event *event)
181 {
182 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
183 }
184 
185 /*
186  * On task ctx scheduling...
187  *
188  * When !ctx->nr_events a task context will not be scheduled. This means
189  * we can disable the scheduler hooks (for performance) without leaving
190  * pending task ctx state.
191  *
192  * This however results in two special cases:
193  *
194  *  - removing the last event from a task ctx; this is relatively straight
195  *    forward and is done in __perf_remove_from_context.
196  *
197  *  - adding the first event to a task ctx; this is tricky because we cannot
198  *    rely on ctx->is_active and therefore cannot use event_function_call().
199  *    See perf_install_in_context().
200  *
201  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202  */
203 
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205 			struct perf_event_context *, void *);
206 
207 struct event_function_struct {
208 	struct perf_event *event;
209 	event_f func;
210 	void *data;
211 };
212 
213 static int event_function(void *info)
214 {
215 	struct event_function_struct *efs = info;
216 	struct perf_event *event = efs->event;
217 	struct perf_event_context *ctx = event->ctx;
218 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
220 	int ret = 0;
221 
222 	lockdep_assert_irqs_disabled();
223 
224 	perf_ctx_lock(cpuctx, task_ctx);
225 	/*
226 	 * Since we do the IPI call without holding ctx->lock things can have
227 	 * changed, double check we hit the task we set out to hit.
228 	 */
229 	if (ctx->task) {
230 		if (ctx->task != current) {
231 			ret = -ESRCH;
232 			goto unlock;
233 		}
234 
235 		/*
236 		 * We only use event_function_call() on established contexts,
237 		 * and event_function() is only ever called when active (or
238 		 * rather, we'll have bailed in task_function_call() or the
239 		 * above ctx->task != current test), therefore we must have
240 		 * ctx->is_active here.
241 		 */
242 		WARN_ON_ONCE(!ctx->is_active);
243 		/*
244 		 * And since we have ctx->is_active, cpuctx->task_ctx must
245 		 * match.
246 		 */
247 		WARN_ON_ONCE(task_ctx != ctx);
248 	} else {
249 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
250 	}
251 
252 	efs->func(event, cpuctx, ctx, efs->data);
253 unlock:
254 	perf_ctx_unlock(cpuctx, task_ctx);
255 
256 	return ret;
257 }
258 
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
260 {
261 	struct perf_event_context *ctx = event->ctx;
262 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263 	struct event_function_struct efs = {
264 		.event = event,
265 		.func = func,
266 		.data = data,
267 	};
268 
269 	if (!event->parent) {
270 		/*
271 		 * If this is a !child event, we must hold ctx::mutex to
272 		 * stabilize the event->ctx relation. See
273 		 * perf_event_ctx_lock().
274 		 */
275 		lockdep_assert_held(&ctx->mutex);
276 	}
277 
278 	if (!task) {
279 		cpu_function_call(event->cpu, event_function, &efs);
280 		return;
281 	}
282 
283 	if (task == TASK_TOMBSTONE)
284 		return;
285 
286 again:
287 	if (!task_function_call(task, event_function, &efs))
288 		return;
289 
290 	raw_spin_lock_irq(&ctx->lock);
291 	/*
292 	 * Reload the task pointer, it might have been changed by
293 	 * a concurrent perf_event_context_sched_out().
294 	 */
295 	task = ctx->task;
296 	if (task == TASK_TOMBSTONE) {
297 		raw_spin_unlock_irq(&ctx->lock);
298 		return;
299 	}
300 	if (ctx->is_active) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		goto again;
303 	}
304 	func(event, NULL, ctx, data);
305 	raw_spin_unlock_irq(&ctx->lock);
306 }
307 
308 /*
309  * Similar to event_function_call() + event_function(), but hard assumes IRQs
310  * are already disabled and we're on the right CPU.
311  */
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
313 {
314 	struct perf_event_context *ctx = event->ctx;
315 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316 	struct task_struct *task = READ_ONCE(ctx->task);
317 	struct perf_event_context *task_ctx = NULL;
318 
319 	lockdep_assert_irqs_disabled();
320 
321 	if (task) {
322 		if (task == TASK_TOMBSTONE)
323 			return;
324 
325 		task_ctx = ctx;
326 	}
327 
328 	perf_ctx_lock(cpuctx, task_ctx);
329 
330 	task = ctx->task;
331 	if (task == TASK_TOMBSTONE)
332 		goto unlock;
333 
334 	if (task) {
335 		/*
336 		 * We must be either inactive or active and the right task,
337 		 * otherwise we're screwed, since we cannot IPI to somewhere
338 		 * else.
339 		 */
340 		if (ctx->is_active) {
341 			if (WARN_ON_ONCE(task != current))
342 				goto unlock;
343 
344 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345 				goto unlock;
346 		}
347 	} else {
348 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
349 	}
350 
351 	func(event, cpuctx, ctx, data);
352 unlock:
353 	perf_ctx_unlock(cpuctx, task_ctx);
354 }
355 
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357 		       PERF_FLAG_FD_OUTPUT  |\
358 		       PERF_FLAG_PID_CGROUP |\
359 		       PERF_FLAG_FD_CLOEXEC)
360 
361 /*
362  * branch priv levels that need permission checks
363  */
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365 	(PERF_SAMPLE_BRANCH_KERNEL |\
366 	 PERF_SAMPLE_BRANCH_HV)
367 
368 enum event_type_t {
369 	EVENT_FLEXIBLE = 0x1,
370 	EVENT_PINNED = 0x2,
371 	EVENT_TIME = 0x4,
372 	/* see ctx_resched() for details */
373 	EVENT_CPU = 0x8,
374 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375 };
376 
377 /*
378  * perf_sched_events : >0 events exist
379  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380  */
381 
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
387 
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
391 
392 static atomic_t nr_mmap_events __read_mostly;
393 static atomic_t nr_comm_events __read_mostly;
394 static atomic_t nr_namespaces_events __read_mostly;
395 static atomic_t nr_task_events __read_mostly;
396 static atomic_t nr_freq_events __read_mostly;
397 static atomic_t nr_switch_events __read_mostly;
398 static atomic_t nr_ksymbol_events __read_mostly;
399 static atomic_t nr_bpf_events __read_mostly;
400 static atomic_t nr_cgroup_events __read_mostly;
401 static atomic_t nr_text_poke_events __read_mostly;
402 static atomic_t nr_build_id_events __read_mostly;
403 
404 static LIST_HEAD(pmus);
405 static DEFINE_MUTEX(pmus_lock);
406 static struct srcu_struct pmus_srcu;
407 static cpumask_var_t perf_online_mask;
408 static struct kmem_cache *perf_event_cache;
409 
410 /*
411  * perf event paranoia level:
412  *  -1 - not paranoid at all
413  *   0 - disallow raw tracepoint access for unpriv
414  *   1 - disallow cpu events for unpriv
415  *   2 - disallow kernel profiling for unpriv
416  */
417 int sysctl_perf_event_paranoid __read_mostly = 2;
418 
419 /* Minimum for 512 kiB + 1 user control page */
420 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
421 
422 /*
423  * max perf event sample rate
424  */
425 #define DEFAULT_MAX_SAMPLE_RATE		100000
426 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
427 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
428 
429 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
430 
431 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
432 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
433 
434 static int perf_sample_allowed_ns __read_mostly =
435 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
436 
437 static void update_perf_cpu_limits(void)
438 {
439 	u64 tmp = perf_sample_period_ns;
440 
441 	tmp *= sysctl_perf_cpu_time_max_percent;
442 	tmp = div_u64(tmp, 100);
443 	if (!tmp)
444 		tmp = 1;
445 
446 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
447 }
448 
449 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
450 
451 int perf_proc_update_handler(struct ctl_table *table, int write,
452 		void *buffer, size_t *lenp, loff_t *ppos)
453 {
454 	int ret;
455 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
456 	/*
457 	 * If throttling is disabled don't allow the write:
458 	 */
459 	if (write && (perf_cpu == 100 || perf_cpu == 0))
460 		return -EINVAL;
461 
462 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
463 	if (ret || !write)
464 		return ret;
465 
466 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
467 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468 	update_perf_cpu_limits();
469 
470 	return 0;
471 }
472 
473 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
474 
475 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
476 		void *buffer, size_t *lenp, loff_t *ppos)
477 {
478 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
479 
480 	if (ret || !write)
481 		return ret;
482 
483 	if (sysctl_perf_cpu_time_max_percent == 100 ||
484 	    sysctl_perf_cpu_time_max_percent == 0) {
485 		printk(KERN_WARNING
486 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
487 		WRITE_ONCE(perf_sample_allowed_ns, 0);
488 	} else {
489 		update_perf_cpu_limits();
490 	}
491 
492 	return 0;
493 }
494 
495 /*
496  * perf samples are done in some very critical code paths (NMIs).
497  * If they take too much CPU time, the system can lock up and not
498  * get any real work done.  This will drop the sample rate when
499  * we detect that events are taking too long.
500  */
501 #define NR_ACCUMULATED_SAMPLES 128
502 static DEFINE_PER_CPU(u64, running_sample_length);
503 
504 static u64 __report_avg;
505 static u64 __report_allowed;
506 
507 static void perf_duration_warn(struct irq_work *w)
508 {
509 	printk_ratelimited(KERN_INFO
510 		"perf: interrupt took too long (%lld > %lld), lowering "
511 		"kernel.perf_event_max_sample_rate to %d\n",
512 		__report_avg, __report_allowed,
513 		sysctl_perf_event_sample_rate);
514 }
515 
516 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
517 
518 void perf_sample_event_took(u64 sample_len_ns)
519 {
520 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
521 	u64 running_len;
522 	u64 avg_len;
523 	u32 max;
524 
525 	if (max_len == 0)
526 		return;
527 
528 	/* Decay the counter by 1 average sample. */
529 	running_len = __this_cpu_read(running_sample_length);
530 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
531 	running_len += sample_len_ns;
532 	__this_cpu_write(running_sample_length, running_len);
533 
534 	/*
535 	 * Note: this will be biased artifically low until we have
536 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
537 	 * from having to maintain a count.
538 	 */
539 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
540 	if (avg_len <= max_len)
541 		return;
542 
543 	__report_avg = avg_len;
544 	__report_allowed = max_len;
545 
546 	/*
547 	 * Compute a throttle threshold 25% below the current duration.
548 	 */
549 	avg_len += avg_len / 4;
550 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
551 	if (avg_len < max)
552 		max /= (u32)avg_len;
553 	else
554 		max = 1;
555 
556 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
557 	WRITE_ONCE(max_samples_per_tick, max);
558 
559 	sysctl_perf_event_sample_rate = max * HZ;
560 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
561 
562 	if (!irq_work_queue(&perf_duration_work)) {
563 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
564 			     "kernel.perf_event_max_sample_rate to %d\n",
565 			     __report_avg, __report_allowed,
566 			     sysctl_perf_event_sample_rate);
567 	}
568 }
569 
570 static atomic64_t perf_event_id;
571 
572 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
573 			      enum event_type_t event_type);
574 
575 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
576 			     enum event_type_t event_type,
577 			     struct task_struct *task);
578 
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581 
582 void __weak perf_event_print_debug(void)	{ }
583 
584 static inline u64 perf_clock(void)
585 {
586 	return local_clock();
587 }
588 
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591 	return event->clock();
592 }
593 
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615 
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619 	struct perf_event *leader = event->group_leader;
620 
621 	if (leader->state <= PERF_EVENT_STATE_OFF)
622 		return leader->state;
623 
624 	return event->state;
625 }
626 
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630 	enum perf_event_state state = __perf_effective_state(event);
631 	u64 delta = now - event->tstamp;
632 
633 	*enabled = event->total_time_enabled;
634 	if (state >= PERF_EVENT_STATE_INACTIVE)
635 		*enabled += delta;
636 
637 	*running = event->total_time_running;
638 	if (state >= PERF_EVENT_STATE_ACTIVE)
639 		*running += delta;
640 }
641 
642 static void perf_event_update_time(struct perf_event *event)
643 {
644 	u64 now = perf_event_time(event);
645 
646 	__perf_update_times(event, now, &event->total_time_enabled,
647 					&event->total_time_running);
648 	event->tstamp = now;
649 }
650 
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653 	struct perf_event *sibling;
654 
655 	for_each_sibling_event(sibling, leader)
656 		perf_event_update_time(sibling);
657 }
658 
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662 	if (event->state == state)
663 		return;
664 
665 	perf_event_update_time(event);
666 	/*
667 	 * If a group leader gets enabled/disabled all its siblings
668 	 * are affected too.
669 	 */
670 	if ((event->state < 0) ^ (state < 0))
671 		perf_event_update_sibling_time(event);
672 
673 	WRITE_ONCE(event->state, state);
674 }
675 
676 #ifdef CONFIG_CGROUP_PERF
677 
678 static inline bool
679 perf_cgroup_match(struct perf_event *event)
680 {
681 	struct perf_event_context *ctx = event->ctx;
682 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
683 
684 	/* @event doesn't care about cgroup */
685 	if (!event->cgrp)
686 		return true;
687 
688 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
689 	if (!cpuctx->cgrp)
690 		return false;
691 
692 	/*
693 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
694 	 * also enabled for all its descendant cgroups.  If @cpuctx's
695 	 * cgroup is a descendant of @event's (the test covers identity
696 	 * case), it's a match.
697 	 */
698 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
699 				    event->cgrp->css.cgroup);
700 }
701 
702 static inline void perf_detach_cgroup(struct perf_event *event)
703 {
704 	css_put(&event->cgrp->css);
705 	event->cgrp = NULL;
706 }
707 
708 static inline int is_cgroup_event(struct perf_event *event)
709 {
710 	return event->cgrp != NULL;
711 }
712 
713 static inline u64 perf_cgroup_event_time(struct perf_event *event)
714 {
715 	struct perf_cgroup_info *t;
716 
717 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
718 	return t->time;
719 }
720 
721 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
722 {
723 	struct perf_cgroup_info *info;
724 	u64 now;
725 
726 	now = perf_clock();
727 
728 	info = this_cpu_ptr(cgrp->info);
729 
730 	info->time += now - info->timestamp;
731 	info->timestamp = now;
732 }
733 
734 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
735 {
736 	struct perf_cgroup *cgrp = cpuctx->cgrp;
737 	struct cgroup_subsys_state *css;
738 
739 	if (cgrp) {
740 		for (css = &cgrp->css; css; css = css->parent) {
741 			cgrp = container_of(css, struct perf_cgroup, css);
742 			__update_cgrp_time(cgrp);
743 		}
744 	}
745 }
746 
747 static inline void update_cgrp_time_from_event(struct perf_event *event)
748 {
749 	struct perf_cgroup *cgrp;
750 
751 	/*
752 	 * ensure we access cgroup data only when needed and
753 	 * when we know the cgroup is pinned (css_get)
754 	 */
755 	if (!is_cgroup_event(event))
756 		return;
757 
758 	cgrp = perf_cgroup_from_task(current, event->ctx);
759 	/*
760 	 * Do not update time when cgroup is not active
761 	 */
762 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
763 		__update_cgrp_time(event->cgrp);
764 }
765 
766 static inline void
767 perf_cgroup_set_timestamp(struct task_struct *task,
768 			  struct perf_event_context *ctx)
769 {
770 	struct perf_cgroup *cgrp;
771 	struct perf_cgroup_info *info;
772 	struct cgroup_subsys_state *css;
773 
774 	/*
775 	 * ctx->lock held by caller
776 	 * ensure we do not access cgroup data
777 	 * unless we have the cgroup pinned (css_get)
778 	 */
779 	if (!task || !ctx->nr_cgroups)
780 		return;
781 
782 	cgrp = perf_cgroup_from_task(task, ctx);
783 
784 	for (css = &cgrp->css; css; css = css->parent) {
785 		cgrp = container_of(css, struct perf_cgroup, css);
786 		info = this_cpu_ptr(cgrp->info);
787 		info->timestamp = ctx->timestamp;
788 	}
789 }
790 
791 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
792 
793 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
794 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
795 
796 /*
797  * reschedule events based on the cgroup constraint of task.
798  *
799  * mode SWOUT : schedule out everything
800  * mode SWIN : schedule in based on cgroup for next
801  */
802 static void perf_cgroup_switch(struct task_struct *task, int mode)
803 {
804 	struct perf_cpu_context *cpuctx;
805 	struct list_head *list;
806 	unsigned long flags;
807 
808 	/*
809 	 * Disable interrupts and preemption to avoid this CPU's
810 	 * cgrp_cpuctx_entry to change under us.
811 	 */
812 	local_irq_save(flags);
813 
814 	list = this_cpu_ptr(&cgrp_cpuctx_list);
815 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
816 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
817 
818 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
819 		perf_pmu_disable(cpuctx->ctx.pmu);
820 
821 		if (mode & PERF_CGROUP_SWOUT) {
822 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
823 			/*
824 			 * must not be done before ctxswout due
825 			 * to event_filter_match() in event_sched_out()
826 			 */
827 			cpuctx->cgrp = NULL;
828 		}
829 
830 		if (mode & PERF_CGROUP_SWIN) {
831 			WARN_ON_ONCE(cpuctx->cgrp);
832 			/*
833 			 * set cgrp before ctxsw in to allow
834 			 * event_filter_match() to not have to pass
835 			 * task around
836 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
837 			 * because cgorup events are only per-cpu
838 			 */
839 			cpuctx->cgrp = perf_cgroup_from_task(task,
840 							     &cpuctx->ctx);
841 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
842 		}
843 		perf_pmu_enable(cpuctx->ctx.pmu);
844 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
845 	}
846 
847 	local_irq_restore(flags);
848 }
849 
850 static inline void perf_cgroup_sched_out(struct task_struct *task,
851 					 struct task_struct *next)
852 {
853 	struct perf_cgroup *cgrp1;
854 	struct perf_cgroup *cgrp2 = NULL;
855 
856 	rcu_read_lock();
857 	/*
858 	 * we come here when we know perf_cgroup_events > 0
859 	 * we do not need to pass the ctx here because we know
860 	 * we are holding the rcu lock
861 	 */
862 	cgrp1 = perf_cgroup_from_task(task, NULL);
863 	cgrp2 = perf_cgroup_from_task(next, NULL);
864 
865 	/*
866 	 * only schedule out current cgroup events if we know
867 	 * that we are switching to a different cgroup. Otherwise,
868 	 * do no touch the cgroup events.
869 	 */
870 	if (cgrp1 != cgrp2)
871 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
872 
873 	rcu_read_unlock();
874 }
875 
876 static inline void perf_cgroup_sched_in(struct task_struct *prev,
877 					struct task_struct *task)
878 {
879 	struct perf_cgroup *cgrp1;
880 	struct perf_cgroup *cgrp2 = NULL;
881 
882 	rcu_read_lock();
883 	/*
884 	 * we come here when we know perf_cgroup_events > 0
885 	 * we do not need to pass the ctx here because we know
886 	 * we are holding the rcu lock
887 	 */
888 	cgrp1 = perf_cgroup_from_task(task, NULL);
889 	cgrp2 = perf_cgroup_from_task(prev, NULL);
890 
891 	/*
892 	 * only need to schedule in cgroup events if we are changing
893 	 * cgroup during ctxsw. Cgroup events were not scheduled
894 	 * out of ctxsw out if that was not the case.
895 	 */
896 	if (cgrp1 != cgrp2)
897 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
898 
899 	rcu_read_unlock();
900 }
901 
902 static int perf_cgroup_ensure_storage(struct perf_event *event,
903 				struct cgroup_subsys_state *css)
904 {
905 	struct perf_cpu_context *cpuctx;
906 	struct perf_event **storage;
907 	int cpu, heap_size, ret = 0;
908 
909 	/*
910 	 * Allow storage to have sufficent space for an iterator for each
911 	 * possibly nested cgroup plus an iterator for events with no cgroup.
912 	 */
913 	for (heap_size = 1; css; css = css->parent)
914 		heap_size++;
915 
916 	for_each_possible_cpu(cpu) {
917 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
918 		if (heap_size <= cpuctx->heap_size)
919 			continue;
920 
921 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
922 				       GFP_KERNEL, cpu_to_node(cpu));
923 		if (!storage) {
924 			ret = -ENOMEM;
925 			break;
926 		}
927 
928 		raw_spin_lock_irq(&cpuctx->ctx.lock);
929 		if (cpuctx->heap_size < heap_size) {
930 			swap(cpuctx->heap, storage);
931 			if (storage == cpuctx->heap_default)
932 				storage = NULL;
933 			cpuctx->heap_size = heap_size;
934 		}
935 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
936 
937 		kfree(storage);
938 	}
939 
940 	return ret;
941 }
942 
943 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
944 				      struct perf_event_attr *attr,
945 				      struct perf_event *group_leader)
946 {
947 	struct perf_cgroup *cgrp;
948 	struct cgroup_subsys_state *css;
949 	struct fd f = fdget(fd);
950 	int ret = 0;
951 
952 	if (!f.file)
953 		return -EBADF;
954 
955 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
956 					 &perf_event_cgrp_subsys);
957 	if (IS_ERR(css)) {
958 		ret = PTR_ERR(css);
959 		goto out;
960 	}
961 
962 	ret = perf_cgroup_ensure_storage(event, css);
963 	if (ret)
964 		goto out;
965 
966 	cgrp = container_of(css, struct perf_cgroup, css);
967 	event->cgrp = cgrp;
968 
969 	/*
970 	 * all events in a group must monitor
971 	 * the same cgroup because a task belongs
972 	 * to only one perf cgroup at a time
973 	 */
974 	if (group_leader && group_leader->cgrp != cgrp) {
975 		perf_detach_cgroup(event);
976 		ret = -EINVAL;
977 	}
978 out:
979 	fdput(f);
980 	return ret;
981 }
982 
983 static inline void
984 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
985 {
986 	struct perf_cgroup_info *t;
987 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
988 	event->shadow_ctx_time = now - t->timestamp;
989 }
990 
991 static inline void
992 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
993 {
994 	struct perf_cpu_context *cpuctx;
995 
996 	if (!is_cgroup_event(event))
997 		return;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	/*
1006 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1007 	 * matching the event's cgroup, we must do this for every new event,
1008 	 * because if the first would mismatch, the second would not try again
1009 	 * and we would leave cpuctx->cgrp unset.
1010 	 */
1011 	if (ctx->is_active && !cpuctx->cgrp) {
1012 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1013 
1014 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1015 			cpuctx->cgrp = cgrp;
1016 	}
1017 
1018 	if (ctx->nr_cgroups++)
1019 		return;
1020 
1021 	list_add(&cpuctx->cgrp_cpuctx_entry,
1022 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1023 }
1024 
1025 static inline void
1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027 {
1028 	struct perf_cpu_context *cpuctx;
1029 
1030 	if (!is_cgroup_event(event))
1031 		return;
1032 
1033 	/*
1034 	 * Because cgroup events are always per-cpu events,
1035 	 * @ctx == &cpuctx->ctx.
1036 	 */
1037 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1038 
1039 	if (--ctx->nr_cgroups)
1040 		return;
1041 
1042 	if (ctx->is_active && cpuctx->cgrp)
1043 		cpuctx->cgrp = NULL;
1044 
1045 	list_del(&cpuctx->cgrp_cpuctx_entry);
1046 }
1047 
1048 #else /* !CONFIG_CGROUP_PERF */
1049 
1050 static inline bool
1051 perf_cgroup_match(struct perf_event *event)
1052 {
1053 	return true;
1054 }
1055 
1056 static inline void perf_detach_cgroup(struct perf_event *event)
1057 {}
1058 
1059 static inline int is_cgroup_event(struct perf_event *event)
1060 {
1061 	return 0;
1062 }
1063 
1064 static inline void update_cgrp_time_from_event(struct perf_event *event)
1065 {
1066 }
1067 
1068 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1069 {
1070 }
1071 
1072 static inline void perf_cgroup_sched_out(struct task_struct *task,
1073 					 struct task_struct *next)
1074 {
1075 }
1076 
1077 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1078 					struct task_struct *task)
1079 {
1080 }
1081 
1082 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1083 				      struct perf_event_attr *attr,
1084 				      struct perf_event *group_leader)
1085 {
1086 	return -EINVAL;
1087 }
1088 
1089 static inline void
1090 perf_cgroup_set_timestamp(struct task_struct *task,
1091 			  struct perf_event_context *ctx)
1092 {
1093 }
1094 
1095 static inline void
1096 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1097 {
1098 }
1099 
1100 static inline void
1101 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1102 {
1103 }
1104 
1105 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1106 {
1107 	return 0;
1108 }
1109 
1110 static inline void
1111 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114 
1115 static inline void
1116 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 }
1119 #endif
1120 
1121 /*
1122  * set default to be dependent on timer tick just
1123  * like original code
1124  */
1125 #define PERF_CPU_HRTIMER (1000 / HZ)
1126 /*
1127  * function must be called with interrupts disabled
1128  */
1129 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1130 {
1131 	struct perf_cpu_context *cpuctx;
1132 	bool rotations;
1133 
1134 	lockdep_assert_irqs_disabled();
1135 
1136 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1137 	rotations = perf_rotate_context(cpuctx);
1138 
1139 	raw_spin_lock(&cpuctx->hrtimer_lock);
1140 	if (rotations)
1141 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1142 	else
1143 		cpuctx->hrtimer_active = 0;
1144 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1145 
1146 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1147 }
1148 
1149 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1150 {
1151 	struct hrtimer *timer = &cpuctx->hrtimer;
1152 	struct pmu *pmu = cpuctx->ctx.pmu;
1153 	u64 interval;
1154 
1155 	/* no multiplexing needed for SW PMU */
1156 	if (pmu->task_ctx_nr == perf_sw_context)
1157 		return;
1158 
1159 	/*
1160 	 * check default is sane, if not set then force to
1161 	 * default interval (1/tick)
1162 	 */
1163 	interval = pmu->hrtimer_interval_ms;
1164 	if (interval < 1)
1165 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1166 
1167 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1168 
1169 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1170 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1171 	timer->function = perf_mux_hrtimer_handler;
1172 }
1173 
1174 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1175 {
1176 	struct hrtimer *timer = &cpuctx->hrtimer;
1177 	struct pmu *pmu = cpuctx->ctx.pmu;
1178 	unsigned long flags;
1179 
1180 	/* not for SW PMU */
1181 	if (pmu->task_ctx_nr == perf_sw_context)
1182 		return 0;
1183 
1184 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1185 	if (!cpuctx->hrtimer_active) {
1186 		cpuctx->hrtimer_active = 1;
1187 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1188 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1189 	}
1190 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1191 
1192 	return 0;
1193 }
1194 
1195 void perf_pmu_disable(struct pmu *pmu)
1196 {
1197 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1198 	if (!(*count)++)
1199 		pmu->pmu_disable(pmu);
1200 }
1201 
1202 void perf_pmu_enable(struct pmu *pmu)
1203 {
1204 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1205 	if (!--(*count))
1206 		pmu->pmu_enable(pmu);
1207 }
1208 
1209 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1210 
1211 /*
1212  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1213  * perf_event_task_tick() are fully serialized because they're strictly cpu
1214  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1215  * disabled, while perf_event_task_tick is called from IRQ context.
1216  */
1217 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1218 {
1219 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1220 
1221 	lockdep_assert_irqs_disabled();
1222 
1223 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1224 
1225 	list_add(&ctx->active_ctx_list, head);
1226 }
1227 
1228 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1229 {
1230 	lockdep_assert_irqs_disabled();
1231 
1232 	WARN_ON(list_empty(&ctx->active_ctx_list));
1233 
1234 	list_del_init(&ctx->active_ctx_list);
1235 }
1236 
1237 static void get_ctx(struct perf_event_context *ctx)
1238 {
1239 	refcount_inc(&ctx->refcount);
1240 }
1241 
1242 static void *alloc_task_ctx_data(struct pmu *pmu)
1243 {
1244 	if (pmu->task_ctx_cache)
1245 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1246 
1247 	return NULL;
1248 }
1249 
1250 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1251 {
1252 	if (pmu->task_ctx_cache && task_ctx_data)
1253 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1254 }
1255 
1256 static void free_ctx(struct rcu_head *head)
1257 {
1258 	struct perf_event_context *ctx;
1259 
1260 	ctx = container_of(head, struct perf_event_context, rcu_head);
1261 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1262 	kfree(ctx);
1263 }
1264 
1265 static void put_ctx(struct perf_event_context *ctx)
1266 {
1267 	if (refcount_dec_and_test(&ctx->refcount)) {
1268 		if (ctx->parent_ctx)
1269 			put_ctx(ctx->parent_ctx);
1270 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1271 			put_task_struct(ctx->task);
1272 		call_rcu(&ctx->rcu_head, free_ctx);
1273 	}
1274 }
1275 
1276 /*
1277  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1278  * perf_pmu_migrate_context() we need some magic.
1279  *
1280  * Those places that change perf_event::ctx will hold both
1281  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1282  *
1283  * Lock ordering is by mutex address. There are two other sites where
1284  * perf_event_context::mutex nests and those are:
1285  *
1286  *  - perf_event_exit_task_context()	[ child , 0 ]
1287  *      perf_event_exit_event()
1288  *        put_event()			[ parent, 1 ]
1289  *
1290  *  - perf_event_init_context()		[ parent, 0 ]
1291  *      inherit_task_group()
1292  *        inherit_group()
1293  *          inherit_event()
1294  *            perf_event_alloc()
1295  *              perf_init_event()
1296  *                perf_try_init_event()	[ child , 1 ]
1297  *
1298  * While it appears there is an obvious deadlock here -- the parent and child
1299  * nesting levels are inverted between the two. This is in fact safe because
1300  * life-time rules separate them. That is an exiting task cannot fork, and a
1301  * spawning task cannot (yet) exit.
1302  *
1303  * But remember that these are parent<->child context relations, and
1304  * migration does not affect children, therefore these two orderings should not
1305  * interact.
1306  *
1307  * The change in perf_event::ctx does not affect children (as claimed above)
1308  * because the sys_perf_event_open() case will install a new event and break
1309  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1310  * concerned with cpuctx and that doesn't have children.
1311  *
1312  * The places that change perf_event::ctx will issue:
1313  *
1314  *   perf_remove_from_context();
1315  *   synchronize_rcu();
1316  *   perf_install_in_context();
1317  *
1318  * to affect the change. The remove_from_context() + synchronize_rcu() should
1319  * quiesce the event, after which we can install it in the new location. This
1320  * means that only external vectors (perf_fops, prctl) can perturb the event
1321  * while in transit. Therefore all such accessors should also acquire
1322  * perf_event_context::mutex to serialize against this.
1323  *
1324  * However; because event->ctx can change while we're waiting to acquire
1325  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1326  * function.
1327  *
1328  * Lock order:
1329  *    exec_update_lock
1330  *	task_struct::perf_event_mutex
1331  *	  perf_event_context::mutex
1332  *	    perf_event::child_mutex;
1333  *	      perf_event_context::lock
1334  *	    perf_event::mmap_mutex
1335  *	    mmap_lock
1336  *	      perf_addr_filters_head::lock
1337  *
1338  *    cpu_hotplug_lock
1339  *      pmus_lock
1340  *	  cpuctx->mutex / perf_event_context::mutex
1341  */
1342 static struct perf_event_context *
1343 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1344 {
1345 	struct perf_event_context *ctx;
1346 
1347 again:
1348 	rcu_read_lock();
1349 	ctx = READ_ONCE(event->ctx);
1350 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1351 		rcu_read_unlock();
1352 		goto again;
1353 	}
1354 	rcu_read_unlock();
1355 
1356 	mutex_lock_nested(&ctx->mutex, nesting);
1357 	if (event->ctx != ctx) {
1358 		mutex_unlock(&ctx->mutex);
1359 		put_ctx(ctx);
1360 		goto again;
1361 	}
1362 
1363 	return ctx;
1364 }
1365 
1366 static inline struct perf_event_context *
1367 perf_event_ctx_lock(struct perf_event *event)
1368 {
1369 	return perf_event_ctx_lock_nested(event, 0);
1370 }
1371 
1372 static void perf_event_ctx_unlock(struct perf_event *event,
1373 				  struct perf_event_context *ctx)
1374 {
1375 	mutex_unlock(&ctx->mutex);
1376 	put_ctx(ctx);
1377 }
1378 
1379 /*
1380  * This must be done under the ctx->lock, such as to serialize against
1381  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1382  * calling scheduler related locks and ctx->lock nests inside those.
1383  */
1384 static __must_check struct perf_event_context *
1385 unclone_ctx(struct perf_event_context *ctx)
1386 {
1387 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1388 
1389 	lockdep_assert_held(&ctx->lock);
1390 
1391 	if (parent_ctx)
1392 		ctx->parent_ctx = NULL;
1393 	ctx->generation++;
1394 
1395 	return parent_ctx;
1396 }
1397 
1398 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1399 				enum pid_type type)
1400 {
1401 	u32 nr;
1402 	/*
1403 	 * only top level events have the pid namespace they were created in
1404 	 */
1405 	if (event->parent)
1406 		event = event->parent;
1407 
1408 	nr = __task_pid_nr_ns(p, type, event->ns);
1409 	/* avoid -1 if it is idle thread or runs in another ns */
1410 	if (!nr && !pid_alive(p))
1411 		nr = -1;
1412 	return nr;
1413 }
1414 
1415 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1416 {
1417 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1418 }
1419 
1420 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1421 {
1422 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1423 }
1424 
1425 /*
1426  * If we inherit events we want to return the parent event id
1427  * to userspace.
1428  */
1429 static u64 primary_event_id(struct perf_event *event)
1430 {
1431 	u64 id = event->id;
1432 
1433 	if (event->parent)
1434 		id = event->parent->id;
1435 
1436 	return id;
1437 }
1438 
1439 /*
1440  * Get the perf_event_context for a task and lock it.
1441  *
1442  * This has to cope with the fact that until it is locked,
1443  * the context could get moved to another task.
1444  */
1445 static struct perf_event_context *
1446 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1447 {
1448 	struct perf_event_context *ctx;
1449 
1450 retry:
1451 	/*
1452 	 * One of the few rules of preemptible RCU is that one cannot do
1453 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1454 	 * part of the read side critical section was irqs-enabled -- see
1455 	 * rcu_read_unlock_special().
1456 	 *
1457 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1458 	 * side critical section has interrupts disabled.
1459 	 */
1460 	local_irq_save(*flags);
1461 	rcu_read_lock();
1462 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1463 	if (ctx) {
1464 		/*
1465 		 * If this context is a clone of another, it might
1466 		 * get swapped for another underneath us by
1467 		 * perf_event_task_sched_out, though the
1468 		 * rcu_read_lock() protects us from any context
1469 		 * getting freed.  Lock the context and check if it
1470 		 * got swapped before we could get the lock, and retry
1471 		 * if so.  If we locked the right context, then it
1472 		 * can't get swapped on us any more.
1473 		 */
1474 		raw_spin_lock(&ctx->lock);
1475 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1476 			raw_spin_unlock(&ctx->lock);
1477 			rcu_read_unlock();
1478 			local_irq_restore(*flags);
1479 			goto retry;
1480 		}
1481 
1482 		if (ctx->task == TASK_TOMBSTONE ||
1483 		    !refcount_inc_not_zero(&ctx->refcount)) {
1484 			raw_spin_unlock(&ctx->lock);
1485 			ctx = NULL;
1486 		} else {
1487 			WARN_ON_ONCE(ctx->task != task);
1488 		}
1489 	}
1490 	rcu_read_unlock();
1491 	if (!ctx)
1492 		local_irq_restore(*flags);
1493 	return ctx;
1494 }
1495 
1496 /*
1497  * Get the context for a task and increment its pin_count so it
1498  * can't get swapped to another task.  This also increments its
1499  * reference count so that the context can't get freed.
1500  */
1501 static struct perf_event_context *
1502 perf_pin_task_context(struct task_struct *task, int ctxn)
1503 {
1504 	struct perf_event_context *ctx;
1505 	unsigned long flags;
1506 
1507 	ctx = perf_lock_task_context(task, ctxn, &flags);
1508 	if (ctx) {
1509 		++ctx->pin_count;
1510 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1511 	}
1512 	return ctx;
1513 }
1514 
1515 static void perf_unpin_context(struct perf_event_context *ctx)
1516 {
1517 	unsigned long flags;
1518 
1519 	raw_spin_lock_irqsave(&ctx->lock, flags);
1520 	--ctx->pin_count;
1521 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1522 }
1523 
1524 /*
1525  * Update the record of the current time in a context.
1526  */
1527 static void update_context_time(struct perf_event_context *ctx)
1528 {
1529 	u64 now = perf_clock();
1530 
1531 	ctx->time += now - ctx->timestamp;
1532 	ctx->timestamp = now;
1533 }
1534 
1535 static u64 perf_event_time(struct perf_event *event)
1536 {
1537 	struct perf_event_context *ctx = event->ctx;
1538 
1539 	if (is_cgroup_event(event))
1540 		return perf_cgroup_event_time(event);
1541 
1542 	return ctx ? ctx->time : 0;
1543 }
1544 
1545 static enum event_type_t get_event_type(struct perf_event *event)
1546 {
1547 	struct perf_event_context *ctx = event->ctx;
1548 	enum event_type_t event_type;
1549 
1550 	lockdep_assert_held(&ctx->lock);
1551 
1552 	/*
1553 	 * It's 'group type', really, because if our group leader is
1554 	 * pinned, so are we.
1555 	 */
1556 	if (event->group_leader != event)
1557 		event = event->group_leader;
1558 
1559 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1560 	if (!ctx->task)
1561 		event_type |= EVENT_CPU;
1562 
1563 	return event_type;
1564 }
1565 
1566 /*
1567  * Helper function to initialize event group nodes.
1568  */
1569 static void init_event_group(struct perf_event *event)
1570 {
1571 	RB_CLEAR_NODE(&event->group_node);
1572 	event->group_index = 0;
1573 }
1574 
1575 /*
1576  * Extract pinned or flexible groups from the context
1577  * based on event attrs bits.
1578  */
1579 static struct perf_event_groups *
1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1581 {
1582 	if (event->attr.pinned)
1583 		return &ctx->pinned_groups;
1584 	else
1585 		return &ctx->flexible_groups;
1586 }
1587 
1588 /*
1589  * Helper function to initializes perf_event_group trees.
1590  */
1591 static void perf_event_groups_init(struct perf_event_groups *groups)
1592 {
1593 	groups->tree = RB_ROOT;
1594 	groups->index = 0;
1595 }
1596 
1597 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1598 {
1599 	struct cgroup *cgroup = NULL;
1600 
1601 #ifdef CONFIG_CGROUP_PERF
1602 	if (event->cgrp)
1603 		cgroup = event->cgrp->css.cgroup;
1604 #endif
1605 
1606 	return cgroup;
1607 }
1608 
1609 /*
1610  * Compare function for event groups;
1611  *
1612  * Implements complex key that first sorts by CPU and then by virtual index
1613  * which provides ordering when rotating groups for the same CPU.
1614  */
1615 static __always_inline int
1616 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1617 		      const u64 left_group_index, const struct perf_event *right)
1618 {
1619 	if (left_cpu < right->cpu)
1620 		return -1;
1621 	if (left_cpu > right->cpu)
1622 		return 1;
1623 
1624 #ifdef CONFIG_CGROUP_PERF
1625 	{
1626 		const struct cgroup *right_cgroup = event_cgroup(right);
1627 
1628 		if (left_cgroup != right_cgroup) {
1629 			if (!left_cgroup) {
1630 				/*
1631 				 * Left has no cgroup but right does, no
1632 				 * cgroups come first.
1633 				 */
1634 				return -1;
1635 			}
1636 			if (!right_cgroup) {
1637 				/*
1638 				 * Right has no cgroup but left does, no
1639 				 * cgroups come first.
1640 				 */
1641 				return 1;
1642 			}
1643 			/* Two dissimilar cgroups, order by id. */
1644 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1645 				return -1;
1646 
1647 			return 1;
1648 		}
1649 	}
1650 #endif
1651 
1652 	if (left_group_index < right->group_index)
1653 		return -1;
1654 	if (left_group_index > right->group_index)
1655 		return 1;
1656 
1657 	return 0;
1658 }
1659 
1660 #define __node_2_pe(node) \
1661 	rb_entry((node), struct perf_event, group_node)
1662 
1663 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1664 {
1665 	struct perf_event *e = __node_2_pe(a);
1666 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1667 				     __node_2_pe(b)) < 0;
1668 }
1669 
1670 struct __group_key {
1671 	int cpu;
1672 	struct cgroup *cgroup;
1673 };
1674 
1675 static inline int __group_cmp(const void *key, const struct rb_node *node)
1676 {
1677 	const struct __group_key *a = key;
1678 	const struct perf_event *b = __node_2_pe(node);
1679 
1680 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1681 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1682 }
1683 
1684 /*
1685  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1686  * key (see perf_event_groups_less). This places it last inside the CPU
1687  * subtree.
1688  */
1689 static void
1690 perf_event_groups_insert(struct perf_event_groups *groups,
1691 			 struct perf_event *event)
1692 {
1693 	event->group_index = ++groups->index;
1694 
1695 	rb_add(&event->group_node, &groups->tree, __group_less);
1696 }
1697 
1698 /*
1699  * Helper function to insert event into the pinned or flexible groups.
1700  */
1701 static void
1702 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1703 {
1704 	struct perf_event_groups *groups;
1705 
1706 	groups = get_event_groups(event, ctx);
1707 	perf_event_groups_insert(groups, event);
1708 }
1709 
1710 /*
1711  * Delete a group from a tree.
1712  */
1713 static void
1714 perf_event_groups_delete(struct perf_event_groups *groups,
1715 			 struct perf_event *event)
1716 {
1717 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1718 		     RB_EMPTY_ROOT(&groups->tree));
1719 
1720 	rb_erase(&event->group_node, &groups->tree);
1721 	init_event_group(event);
1722 }
1723 
1724 /*
1725  * Helper function to delete event from its groups.
1726  */
1727 static void
1728 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1729 {
1730 	struct perf_event_groups *groups;
1731 
1732 	groups = get_event_groups(event, ctx);
1733 	perf_event_groups_delete(groups, event);
1734 }
1735 
1736 /*
1737  * Get the leftmost event in the cpu/cgroup subtree.
1738  */
1739 static struct perf_event *
1740 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1741 			struct cgroup *cgrp)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = cpu,
1745 		.cgroup = cgrp,
1746 	};
1747 	struct rb_node *node;
1748 
1749 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1750 	if (node)
1751 		return __node_2_pe(node);
1752 
1753 	return NULL;
1754 }
1755 
1756 /*
1757  * Like rb_entry_next_safe() for the @cpu subtree.
1758  */
1759 static struct perf_event *
1760 perf_event_groups_next(struct perf_event *event)
1761 {
1762 	struct __group_key key = {
1763 		.cpu = event->cpu,
1764 		.cgroup = event_cgroup(event),
1765 	};
1766 	struct rb_node *next;
1767 
1768 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1769 	if (next)
1770 		return __node_2_pe(next);
1771 
1772 	return NULL;
1773 }
1774 
1775 /*
1776  * Iterate through the whole groups tree.
1777  */
1778 #define perf_event_groups_for_each(event, groups)			\
1779 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1780 				typeof(*event), group_node); event;	\
1781 		event = rb_entry_safe(rb_next(&event->group_node),	\
1782 				typeof(*event), group_node))
1783 
1784 /*
1785  * Add an event from the lists for its context.
1786  * Must be called with ctx->mutex and ctx->lock held.
1787  */
1788 static void
1789 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1790 {
1791 	lockdep_assert_held(&ctx->lock);
1792 
1793 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1794 	event->attach_state |= PERF_ATTACH_CONTEXT;
1795 
1796 	event->tstamp = perf_event_time(event);
1797 
1798 	/*
1799 	 * If we're a stand alone event or group leader, we go to the context
1800 	 * list, group events are kept attached to the group so that
1801 	 * perf_group_detach can, at all times, locate all siblings.
1802 	 */
1803 	if (event->group_leader == event) {
1804 		event->group_caps = event->event_caps;
1805 		add_event_to_groups(event, ctx);
1806 	}
1807 
1808 	list_add_rcu(&event->event_entry, &ctx->event_list);
1809 	ctx->nr_events++;
1810 	if (event->attr.inherit_stat)
1811 		ctx->nr_stat++;
1812 
1813 	if (event->state > PERF_EVENT_STATE_OFF)
1814 		perf_cgroup_event_enable(event, ctx);
1815 
1816 	ctx->generation++;
1817 }
1818 
1819 /*
1820  * Initialize event state based on the perf_event_attr::disabled.
1821  */
1822 static inline void perf_event__state_init(struct perf_event *event)
1823 {
1824 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1825 					      PERF_EVENT_STATE_INACTIVE;
1826 }
1827 
1828 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1829 {
1830 	int entry = sizeof(u64); /* value */
1831 	int size = 0;
1832 	int nr = 1;
1833 
1834 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1835 		size += sizeof(u64);
1836 
1837 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1838 		size += sizeof(u64);
1839 
1840 	if (event->attr.read_format & PERF_FORMAT_ID)
1841 		entry += sizeof(u64);
1842 
1843 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1844 		nr += nr_siblings;
1845 		size += sizeof(u64);
1846 	}
1847 
1848 	size += entry * nr;
1849 	event->read_size = size;
1850 }
1851 
1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1853 {
1854 	struct perf_sample_data *data;
1855 	u16 size = 0;
1856 
1857 	if (sample_type & PERF_SAMPLE_IP)
1858 		size += sizeof(data->ip);
1859 
1860 	if (sample_type & PERF_SAMPLE_ADDR)
1861 		size += sizeof(data->addr);
1862 
1863 	if (sample_type & PERF_SAMPLE_PERIOD)
1864 		size += sizeof(data->period);
1865 
1866 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1867 		size += sizeof(data->weight.full);
1868 
1869 	if (sample_type & PERF_SAMPLE_READ)
1870 		size += event->read_size;
1871 
1872 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1873 		size += sizeof(data->data_src.val);
1874 
1875 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1876 		size += sizeof(data->txn);
1877 
1878 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1879 		size += sizeof(data->phys_addr);
1880 
1881 	if (sample_type & PERF_SAMPLE_CGROUP)
1882 		size += sizeof(data->cgroup);
1883 
1884 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1885 		size += sizeof(data->data_page_size);
1886 
1887 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1888 		size += sizeof(data->code_page_size);
1889 
1890 	event->header_size = size;
1891 }
1892 
1893 /*
1894  * Called at perf_event creation and when events are attached/detached from a
1895  * group.
1896  */
1897 static void perf_event__header_size(struct perf_event *event)
1898 {
1899 	__perf_event_read_size(event,
1900 			       event->group_leader->nr_siblings);
1901 	__perf_event_header_size(event, event->attr.sample_type);
1902 }
1903 
1904 static void perf_event__id_header_size(struct perf_event *event)
1905 {
1906 	struct perf_sample_data *data;
1907 	u64 sample_type = event->attr.sample_type;
1908 	u16 size = 0;
1909 
1910 	if (sample_type & PERF_SAMPLE_TID)
1911 		size += sizeof(data->tid_entry);
1912 
1913 	if (sample_type & PERF_SAMPLE_TIME)
1914 		size += sizeof(data->time);
1915 
1916 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1917 		size += sizeof(data->id);
1918 
1919 	if (sample_type & PERF_SAMPLE_ID)
1920 		size += sizeof(data->id);
1921 
1922 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1923 		size += sizeof(data->stream_id);
1924 
1925 	if (sample_type & PERF_SAMPLE_CPU)
1926 		size += sizeof(data->cpu_entry);
1927 
1928 	event->id_header_size = size;
1929 }
1930 
1931 static bool perf_event_validate_size(struct perf_event *event)
1932 {
1933 	/*
1934 	 * The values computed here will be over-written when we actually
1935 	 * attach the event.
1936 	 */
1937 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1938 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1939 	perf_event__id_header_size(event);
1940 
1941 	/*
1942 	 * Sum the lot; should not exceed the 64k limit we have on records.
1943 	 * Conservative limit to allow for callchains and other variable fields.
1944 	 */
1945 	if (event->read_size + event->header_size +
1946 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1947 		return false;
1948 
1949 	return true;
1950 }
1951 
1952 static void perf_group_attach(struct perf_event *event)
1953 {
1954 	struct perf_event *group_leader = event->group_leader, *pos;
1955 
1956 	lockdep_assert_held(&event->ctx->lock);
1957 
1958 	/*
1959 	 * We can have double attach due to group movement in perf_event_open.
1960 	 */
1961 	if (event->attach_state & PERF_ATTACH_GROUP)
1962 		return;
1963 
1964 	event->attach_state |= PERF_ATTACH_GROUP;
1965 
1966 	if (group_leader == event)
1967 		return;
1968 
1969 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1970 
1971 	group_leader->group_caps &= event->event_caps;
1972 
1973 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1974 	group_leader->nr_siblings++;
1975 
1976 	perf_event__header_size(group_leader);
1977 
1978 	for_each_sibling_event(pos, group_leader)
1979 		perf_event__header_size(pos);
1980 }
1981 
1982 /*
1983  * Remove an event from the lists for its context.
1984  * Must be called with ctx->mutex and ctx->lock held.
1985  */
1986 static void
1987 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1988 {
1989 	WARN_ON_ONCE(event->ctx != ctx);
1990 	lockdep_assert_held(&ctx->lock);
1991 
1992 	/*
1993 	 * We can have double detach due to exit/hot-unplug + close.
1994 	 */
1995 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1996 		return;
1997 
1998 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1999 
2000 	ctx->nr_events--;
2001 	if (event->attr.inherit_stat)
2002 		ctx->nr_stat--;
2003 
2004 	list_del_rcu(&event->event_entry);
2005 
2006 	if (event->group_leader == event)
2007 		del_event_from_groups(event, ctx);
2008 
2009 	/*
2010 	 * If event was in error state, then keep it
2011 	 * that way, otherwise bogus counts will be
2012 	 * returned on read(). The only way to get out
2013 	 * of error state is by explicit re-enabling
2014 	 * of the event
2015 	 */
2016 	if (event->state > PERF_EVENT_STATE_OFF) {
2017 		perf_cgroup_event_disable(event, ctx);
2018 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2019 	}
2020 
2021 	ctx->generation++;
2022 }
2023 
2024 static int
2025 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2026 {
2027 	if (!has_aux(aux_event))
2028 		return 0;
2029 
2030 	if (!event->pmu->aux_output_match)
2031 		return 0;
2032 
2033 	return event->pmu->aux_output_match(aux_event);
2034 }
2035 
2036 static void put_event(struct perf_event *event);
2037 static void event_sched_out(struct perf_event *event,
2038 			    struct perf_cpu_context *cpuctx,
2039 			    struct perf_event_context *ctx);
2040 
2041 static void perf_put_aux_event(struct perf_event *event)
2042 {
2043 	struct perf_event_context *ctx = event->ctx;
2044 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 	struct perf_event *iter;
2046 
2047 	/*
2048 	 * If event uses aux_event tear down the link
2049 	 */
2050 	if (event->aux_event) {
2051 		iter = event->aux_event;
2052 		event->aux_event = NULL;
2053 		put_event(iter);
2054 		return;
2055 	}
2056 
2057 	/*
2058 	 * If the event is an aux_event, tear down all links to
2059 	 * it from other events.
2060 	 */
2061 	for_each_sibling_event(iter, event->group_leader) {
2062 		if (iter->aux_event != event)
2063 			continue;
2064 
2065 		iter->aux_event = NULL;
2066 		put_event(event);
2067 
2068 		/*
2069 		 * If it's ACTIVE, schedule it out and put it into ERROR
2070 		 * state so that we don't try to schedule it again. Note
2071 		 * that perf_event_enable() will clear the ERROR status.
2072 		 */
2073 		event_sched_out(iter, cpuctx, ctx);
2074 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2075 	}
2076 }
2077 
2078 static bool perf_need_aux_event(struct perf_event *event)
2079 {
2080 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2081 }
2082 
2083 static int perf_get_aux_event(struct perf_event *event,
2084 			      struct perf_event *group_leader)
2085 {
2086 	/*
2087 	 * Our group leader must be an aux event if we want to be
2088 	 * an aux_output. This way, the aux event will precede its
2089 	 * aux_output events in the group, and therefore will always
2090 	 * schedule first.
2091 	 */
2092 	if (!group_leader)
2093 		return 0;
2094 
2095 	/*
2096 	 * aux_output and aux_sample_size are mutually exclusive.
2097 	 */
2098 	if (event->attr.aux_output && event->attr.aux_sample_size)
2099 		return 0;
2100 
2101 	if (event->attr.aux_output &&
2102 	    !perf_aux_output_match(event, group_leader))
2103 		return 0;
2104 
2105 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2106 		return 0;
2107 
2108 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2109 		return 0;
2110 
2111 	/*
2112 	 * Link aux_outputs to their aux event; this is undone in
2113 	 * perf_group_detach() by perf_put_aux_event(). When the
2114 	 * group in torn down, the aux_output events loose their
2115 	 * link to the aux_event and can't schedule any more.
2116 	 */
2117 	event->aux_event = group_leader;
2118 
2119 	return 1;
2120 }
2121 
2122 static inline struct list_head *get_event_list(struct perf_event *event)
2123 {
2124 	struct perf_event_context *ctx = event->ctx;
2125 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2126 }
2127 
2128 /*
2129  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2130  * cannot exist on their own, schedule them out and move them into the ERROR
2131  * state. Also see _perf_event_enable(), it will not be able to recover
2132  * this ERROR state.
2133  */
2134 static inline void perf_remove_sibling_event(struct perf_event *event)
2135 {
2136 	struct perf_event_context *ctx = event->ctx;
2137 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2138 
2139 	event_sched_out(event, cpuctx, ctx);
2140 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2141 }
2142 
2143 static void perf_group_detach(struct perf_event *event)
2144 {
2145 	struct perf_event *leader = event->group_leader;
2146 	struct perf_event *sibling, *tmp;
2147 	struct perf_event_context *ctx = event->ctx;
2148 
2149 	lockdep_assert_held(&ctx->lock);
2150 
2151 	/*
2152 	 * We can have double detach due to exit/hot-unplug + close.
2153 	 */
2154 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2155 		return;
2156 
2157 	event->attach_state &= ~PERF_ATTACH_GROUP;
2158 
2159 	perf_put_aux_event(event);
2160 
2161 	/*
2162 	 * If this is a sibling, remove it from its group.
2163 	 */
2164 	if (leader != event) {
2165 		list_del_init(&event->sibling_list);
2166 		event->group_leader->nr_siblings--;
2167 		goto out;
2168 	}
2169 
2170 	/*
2171 	 * If this was a group event with sibling events then
2172 	 * upgrade the siblings to singleton events by adding them
2173 	 * to whatever list we are on.
2174 	 */
2175 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2176 
2177 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2178 			perf_remove_sibling_event(sibling);
2179 
2180 		sibling->group_leader = sibling;
2181 		list_del_init(&sibling->sibling_list);
2182 
2183 		/* Inherit group flags from the previous leader */
2184 		sibling->group_caps = event->group_caps;
2185 
2186 		if (!RB_EMPTY_NODE(&event->group_node)) {
2187 			add_event_to_groups(sibling, event->ctx);
2188 
2189 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2190 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2191 		}
2192 
2193 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2194 	}
2195 
2196 out:
2197 	for_each_sibling_event(tmp, leader)
2198 		perf_event__header_size(tmp);
2199 
2200 	perf_event__header_size(leader);
2201 }
2202 
2203 static void sync_child_event(struct perf_event *child_event);
2204 
2205 static void perf_child_detach(struct perf_event *event)
2206 {
2207 	struct perf_event *parent_event = event->parent;
2208 
2209 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2210 		return;
2211 
2212 	event->attach_state &= ~PERF_ATTACH_CHILD;
2213 
2214 	if (WARN_ON_ONCE(!parent_event))
2215 		return;
2216 
2217 	lockdep_assert_held(&parent_event->child_mutex);
2218 
2219 	sync_child_event(event);
2220 	list_del_init(&event->child_list);
2221 }
2222 
2223 static bool is_orphaned_event(struct perf_event *event)
2224 {
2225 	return event->state == PERF_EVENT_STATE_DEAD;
2226 }
2227 
2228 static inline int __pmu_filter_match(struct perf_event *event)
2229 {
2230 	struct pmu *pmu = event->pmu;
2231 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2232 }
2233 
2234 /*
2235  * Check whether we should attempt to schedule an event group based on
2236  * PMU-specific filtering. An event group can consist of HW and SW events,
2237  * potentially with a SW leader, so we must check all the filters, to
2238  * determine whether a group is schedulable:
2239  */
2240 static inline int pmu_filter_match(struct perf_event *event)
2241 {
2242 	struct perf_event *sibling;
2243 
2244 	if (!__pmu_filter_match(event))
2245 		return 0;
2246 
2247 	for_each_sibling_event(sibling, event) {
2248 		if (!__pmu_filter_match(sibling))
2249 			return 0;
2250 	}
2251 
2252 	return 1;
2253 }
2254 
2255 static inline int
2256 event_filter_match(struct perf_event *event)
2257 {
2258 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2259 	       perf_cgroup_match(event) && pmu_filter_match(event);
2260 }
2261 
2262 static void
2263 event_sched_out(struct perf_event *event,
2264 		  struct perf_cpu_context *cpuctx,
2265 		  struct perf_event_context *ctx)
2266 {
2267 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2268 
2269 	WARN_ON_ONCE(event->ctx != ctx);
2270 	lockdep_assert_held(&ctx->lock);
2271 
2272 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2273 		return;
2274 
2275 	/*
2276 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2277 	 * we can schedule events _OUT_ individually through things like
2278 	 * __perf_remove_from_context().
2279 	 */
2280 	list_del_init(&event->active_list);
2281 
2282 	perf_pmu_disable(event->pmu);
2283 
2284 	event->pmu->del(event, 0);
2285 	event->oncpu = -1;
2286 
2287 	if (READ_ONCE(event->pending_disable) >= 0) {
2288 		WRITE_ONCE(event->pending_disable, -1);
2289 		perf_cgroup_event_disable(event, ctx);
2290 		state = PERF_EVENT_STATE_OFF;
2291 	}
2292 	perf_event_set_state(event, state);
2293 
2294 	if (!is_software_event(event))
2295 		cpuctx->active_oncpu--;
2296 	if (!--ctx->nr_active)
2297 		perf_event_ctx_deactivate(ctx);
2298 	if (event->attr.freq && event->attr.sample_freq)
2299 		ctx->nr_freq--;
2300 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2301 		cpuctx->exclusive = 0;
2302 
2303 	perf_pmu_enable(event->pmu);
2304 }
2305 
2306 static void
2307 group_sched_out(struct perf_event *group_event,
2308 		struct perf_cpu_context *cpuctx,
2309 		struct perf_event_context *ctx)
2310 {
2311 	struct perf_event *event;
2312 
2313 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2314 		return;
2315 
2316 	perf_pmu_disable(ctx->pmu);
2317 
2318 	event_sched_out(group_event, cpuctx, ctx);
2319 
2320 	/*
2321 	 * Schedule out siblings (if any):
2322 	 */
2323 	for_each_sibling_event(event, group_event)
2324 		event_sched_out(event, cpuctx, ctx);
2325 
2326 	perf_pmu_enable(ctx->pmu);
2327 }
2328 
2329 #define DETACH_GROUP	0x01UL
2330 #define DETACH_CHILD	0x02UL
2331 
2332 /*
2333  * Cross CPU call to remove a performance event
2334  *
2335  * We disable the event on the hardware level first. After that we
2336  * remove it from the context list.
2337  */
2338 static void
2339 __perf_remove_from_context(struct perf_event *event,
2340 			   struct perf_cpu_context *cpuctx,
2341 			   struct perf_event_context *ctx,
2342 			   void *info)
2343 {
2344 	unsigned long flags = (unsigned long)info;
2345 
2346 	if (ctx->is_active & EVENT_TIME) {
2347 		update_context_time(ctx);
2348 		update_cgrp_time_from_cpuctx(cpuctx);
2349 	}
2350 
2351 	event_sched_out(event, cpuctx, ctx);
2352 	if (flags & DETACH_GROUP)
2353 		perf_group_detach(event);
2354 	if (flags & DETACH_CHILD)
2355 		perf_child_detach(event);
2356 	list_del_event(event, ctx);
2357 
2358 	if (!ctx->nr_events && ctx->is_active) {
2359 		ctx->is_active = 0;
2360 		ctx->rotate_necessary = 0;
2361 		if (ctx->task) {
2362 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2363 			cpuctx->task_ctx = NULL;
2364 		}
2365 	}
2366 }
2367 
2368 /*
2369  * Remove the event from a task's (or a CPU's) list of events.
2370  *
2371  * If event->ctx is a cloned context, callers must make sure that
2372  * every task struct that event->ctx->task could possibly point to
2373  * remains valid.  This is OK when called from perf_release since
2374  * that only calls us on the top-level context, which can't be a clone.
2375  * When called from perf_event_exit_task, it's OK because the
2376  * context has been detached from its task.
2377  */
2378 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2379 {
2380 	struct perf_event_context *ctx = event->ctx;
2381 
2382 	lockdep_assert_held(&ctx->mutex);
2383 
2384 	/*
2385 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2386 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2387 	 * event_function_call() user.
2388 	 */
2389 	raw_spin_lock_irq(&ctx->lock);
2390 	if (!ctx->is_active) {
2391 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2392 					   ctx, (void *)flags);
2393 		raw_spin_unlock_irq(&ctx->lock);
2394 		return;
2395 	}
2396 	raw_spin_unlock_irq(&ctx->lock);
2397 
2398 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2399 }
2400 
2401 /*
2402  * Cross CPU call to disable a performance event
2403  */
2404 static void __perf_event_disable(struct perf_event *event,
2405 				 struct perf_cpu_context *cpuctx,
2406 				 struct perf_event_context *ctx,
2407 				 void *info)
2408 {
2409 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2410 		return;
2411 
2412 	if (ctx->is_active & EVENT_TIME) {
2413 		update_context_time(ctx);
2414 		update_cgrp_time_from_event(event);
2415 	}
2416 
2417 	if (event == event->group_leader)
2418 		group_sched_out(event, cpuctx, ctx);
2419 	else
2420 		event_sched_out(event, cpuctx, ctx);
2421 
2422 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2423 	perf_cgroup_event_disable(event, ctx);
2424 }
2425 
2426 /*
2427  * Disable an event.
2428  *
2429  * If event->ctx is a cloned context, callers must make sure that
2430  * every task struct that event->ctx->task could possibly point to
2431  * remains valid.  This condition is satisfied when called through
2432  * perf_event_for_each_child or perf_event_for_each because they
2433  * hold the top-level event's child_mutex, so any descendant that
2434  * goes to exit will block in perf_event_exit_event().
2435  *
2436  * When called from perf_pending_event it's OK because event->ctx
2437  * is the current context on this CPU and preemption is disabled,
2438  * hence we can't get into perf_event_task_sched_out for this context.
2439  */
2440 static void _perf_event_disable(struct perf_event *event)
2441 {
2442 	struct perf_event_context *ctx = event->ctx;
2443 
2444 	raw_spin_lock_irq(&ctx->lock);
2445 	if (event->state <= PERF_EVENT_STATE_OFF) {
2446 		raw_spin_unlock_irq(&ctx->lock);
2447 		return;
2448 	}
2449 	raw_spin_unlock_irq(&ctx->lock);
2450 
2451 	event_function_call(event, __perf_event_disable, NULL);
2452 }
2453 
2454 void perf_event_disable_local(struct perf_event *event)
2455 {
2456 	event_function_local(event, __perf_event_disable, NULL);
2457 }
2458 
2459 /*
2460  * Strictly speaking kernel users cannot create groups and therefore this
2461  * interface does not need the perf_event_ctx_lock() magic.
2462  */
2463 void perf_event_disable(struct perf_event *event)
2464 {
2465 	struct perf_event_context *ctx;
2466 
2467 	ctx = perf_event_ctx_lock(event);
2468 	_perf_event_disable(event);
2469 	perf_event_ctx_unlock(event, ctx);
2470 }
2471 EXPORT_SYMBOL_GPL(perf_event_disable);
2472 
2473 void perf_event_disable_inatomic(struct perf_event *event)
2474 {
2475 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2476 	/* can fail, see perf_pending_event_disable() */
2477 	irq_work_queue(&event->pending);
2478 }
2479 
2480 static void perf_set_shadow_time(struct perf_event *event,
2481 				 struct perf_event_context *ctx)
2482 {
2483 	/*
2484 	 * use the correct time source for the time snapshot
2485 	 *
2486 	 * We could get by without this by leveraging the
2487 	 * fact that to get to this function, the caller
2488 	 * has most likely already called update_context_time()
2489 	 * and update_cgrp_time_xx() and thus both timestamp
2490 	 * are identical (or very close). Given that tstamp is,
2491 	 * already adjusted for cgroup, we could say that:
2492 	 *    tstamp - ctx->timestamp
2493 	 * is equivalent to
2494 	 *    tstamp - cgrp->timestamp.
2495 	 *
2496 	 * Then, in perf_output_read(), the calculation would
2497 	 * work with no changes because:
2498 	 * - event is guaranteed scheduled in
2499 	 * - no scheduled out in between
2500 	 * - thus the timestamp would be the same
2501 	 *
2502 	 * But this is a bit hairy.
2503 	 *
2504 	 * So instead, we have an explicit cgroup call to remain
2505 	 * within the time source all along. We believe it
2506 	 * is cleaner and simpler to understand.
2507 	 */
2508 	if (is_cgroup_event(event))
2509 		perf_cgroup_set_shadow_time(event, event->tstamp);
2510 	else
2511 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2512 }
2513 
2514 #define MAX_INTERRUPTS (~0ULL)
2515 
2516 static void perf_log_throttle(struct perf_event *event, int enable);
2517 static void perf_log_itrace_start(struct perf_event *event);
2518 
2519 static int
2520 event_sched_in(struct perf_event *event,
2521 		 struct perf_cpu_context *cpuctx,
2522 		 struct perf_event_context *ctx)
2523 {
2524 	int ret = 0;
2525 
2526 	WARN_ON_ONCE(event->ctx != ctx);
2527 
2528 	lockdep_assert_held(&ctx->lock);
2529 
2530 	if (event->state <= PERF_EVENT_STATE_OFF)
2531 		return 0;
2532 
2533 	WRITE_ONCE(event->oncpu, smp_processor_id());
2534 	/*
2535 	 * Order event::oncpu write to happen before the ACTIVE state is
2536 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2537 	 * ->oncpu if it sees ACTIVE.
2538 	 */
2539 	smp_wmb();
2540 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2541 
2542 	/*
2543 	 * Unthrottle events, since we scheduled we might have missed several
2544 	 * ticks already, also for a heavily scheduling task there is little
2545 	 * guarantee it'll get a tick in a timely manner.
2546 	 */
2547 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2548 		perf_log_throttle(event, 1);
2549 		event->hw.interrupts = 0;
2550 	}
2551 
2552 	perf_pmu_disable(event->pmu);
2553 
2554 	perf_set_shadow_time(event, ctx);
2555 
2556 	perf_log_itrace_start(event);
2557 
2558 	if (event->pmu->add(event, PERF_EF_START)) {
2559 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2560 		event->oncpu = -1;
2561 		ret = -EAGAIN;
2562 		goto out;
2563 	}
2564 
2565 	if (!is_software_event(event))
2566 		cpuctx->active_oncpu++;
2567 	if (!ctx->nr_active++)
2568 		perf_event_ctx_activate(ctx);
2569 	if (event->attr.freq && event->attr.sample_freq)
2570 		ctx->nr_freq++;
2571 
2572 	if (event->attr.exclusive)
2573 		cpuctx->exclusive = 1;
2574 
2575 out:
2576 	perf_pmu_enable(event->pmu);
2577 
2578 	return ret;
2579 }
2580 
2581 static int
2582 group_sched_in(struct perf_event *group_event,
2583 	       struct perf_cpu_context *cpuctx,
2584 	       struct perf_event_context *ctx)
2585 {
2586 	struct perf_event *event, *partial_group = NULL;
2587 	struct pmu *pmu = ctx->pmu;
2588 
2589 	if (group_event->state == PERF_EVENT_STATE_OFF)
2590 		return 0;
2591 
2592 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2593 
2594 	if (event_sched_in(group_event, cpuctx, ctx))
2595 		goto error;
2596 
2597 	/*
2598 	 * Schedule in siblings as one group (if any):
2599 	 */
2600 	for_each_sibling_event(event, group_event) {
2601 		if (event_sched_in(event, cpuctx, ctx)) {
2602 			partial_group = event;
2603 			goto group_error;
2604 		}
2605 	}
2606 
2607 	if (!pmu->commit_txn(pmu))
2608 		return 0;
2609 
2610 group_error:
2611 	/*
2612 	 * Groups can be scheduled in as one unit only, so undo any
2613 	 * partial group before returning:
2614 	 * The events up to the failed event are scheduled out normally.
2615 	 */
2616 	for_each_sibling_event(event, group_event) {
2617 		if (event == partial_group)
2618 			break;
2619 
2620 		event_sched_out(event, cpuctx, ctx);
2621 	}
2622 	event_sched_out(group_event, cpuctx, ctx);
2623 
2624 error:
2625 	pmu->cancel_txn(pmu);
2626 	return -EAGAIN;
2627 }
2628 
2629 /*
2630  * Work out whether we can put this event group on the CPU now.
2631  */
2632 static int group_can_go_on(struct perf_event *event,
2633 			   struct perf_cpu_context *cpuctx,
2634 			   int can_add_hw)
2635 {
2636 	/*
2637 	 * Groups consisting entirely of software events can always go on.
2638 	 */
2639 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2640 		return 1;
2641 	/*
2642 	 * If an exclusive group is already on, no other hardware
2643 	 * events can go on.
2644 	 */
2645 	if (cpuctx->exclusive)
2646 		return 0;
2647 	/*
2648 	 * If this group is exclusive and there are already
2649 	 * events on the CPU, it can't go on.
2650 	 */
2651 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2652 		return 0;
2653 	/*
2654 	 * Otherwise, try to add it if all previous groups were able
2655 	 * to go on.
2656 	 */
2657 	return can_add_hw;
2658 }
2659 
2660 static void add_event_to_ctx(struct perf_event *event,
2661 			       struct perf_event_context *ctx)
2662 {
2663 	list_add_event(event, ctx);
2664 	perf_group_attach(event);
2665 }
2666 
2667 static void ctx_sched_out(struct perf_event_context *ctx,
2668 			  struct perf_cpu_context *cpuctx,
2669 			  enum event_type_t event_type);
2670 static void
2671 ctx_sched_in(struct perf_event_context *ctx,
2672 	     struct perf_cpu_context *cpuctx,
2673 	     enum event_type_t event_type,
2674 	     struct task_struct *task);
2675 
2676 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2677 			       struct perf_event_context *ctx,
2678 			       enum event_type_t event_type)
2679 {
2680 	if (!cpuctx->task_ctx)
2681 		return;
2682 
2683 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2684 		return;
2685 
2686 	ctx_sched_out(ctx, cpuctx, event_type);
2687 }
2688 
2689 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2690 				struct perf_event_context *ctx,
2691 				struct task_struct *task)
2692 {
2693 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2694 	if (ctx)
2695 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2696 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2697 	if (ctx)
2698 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2699 }
2700 
2701 /*
2702  * We want to maintain the following priority of scheduling:
2703  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2704  *  - task pinned (EVENT_PINNED)
2705  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2706  *  - task flexible (EVENT_FLEXIBLE).
2707  *
2708  * In order to avoid unscheduling and scheduling back in everything every
2709  * time an event is added, only do it for the groups of equal priority and
2710  * below.
2711  *
2712  * This can be called after a batch operation on task events, in which case
2713  * event_type is a bit mask of the types of events involved. For CPU events,
2714  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2715  */
2716 static void ctx_resched(struct perf_cpu_context *cpuctx,
2717 			struct perf_event_context *task_ctx,
2718 			enum event_type_t event_type)
2719 {
2720 	enum event_type_t ctx_event_type;
2721 	bool cpu_event = !!(event_type & EVENT_CPU);
2722 
2723 	/*
2724 	 * If pinned groups are involved, flexible groups also need to be
2725 	 * scheduled out.
2726 	 */
2727 	if (event_type & EVENT_PINNED)
2728 		event_type |= EVENT_FLEXIBLE;
2729 
2730 	ctx_event_type = event_type & EVENT_ALL;
2731 
2732 	perf_pmu_disable(cpuctx->ctx.pmu);
2733 	if (task_ctx)
2734 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2735 
2736 	/*
2737 	 * Decide which cpu ctx groups to schedule out based on the types
2738 	 * of events that caused rescheduling:
2739 	 *  - EVENT_CPU: schedule out corresponding groups;
2740 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2741 	 *  - otherwise, do nothing more.
2742 	 */
2743 	if (cpu_event)
2744 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2745 	else if (ctx_event_type & EVENT_PINNED)
2746 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2747 
2748 	perf_event_sched_in(cpuctx, task_ctx, current);
2749 	perf_pmu_enable(cpuctx->ctx.pmu);
2750 }
2751 
2752 void perf_pmu_resched(struct pmu *pmu)
2753 {
2754 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2755 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2756 
2757 	perf_ctx_lock(cpuctx, task_ctx);
2758 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2759 	perf_ctx_unlock(cpuctx, task_ctx);
2760 }
2761 
2762 /*
2763  * Cross CPU call to install and enable a performance event
2764  *
2765  * Very similar to remote_function() + event_function() but cannot assume that
2766  * things like ctx->is_active and cpuctx->task_ctx are set.
2767  */
2768 static int  __perf_install_in_context(void *info)
2769 {
2770 	struct perf_event *event = info;
2771 	struct perf_event_context *ctx = event->ctx;
2772 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2773 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2774 	bool reprogram = true;
2775 	int ret = 0;
2776 
2777 	raw_spin_lock(&cpuctx->ctx.lock);
2778 	if (ctx->task) {
2779 		raw_spin_lock(&ctx->lock);
2780 		task_ctx = ctx;
2781 
2782 		reprogram = (ctx->task == current);
2783 
2784 		/*
2785 		 * If the task is running, it must be running on this CPU,
2786 		 * otherwise we cannot reprogram things.
2787 		 *
2788 		 * If its not running, we don't care, ctx->lock will
2789 		 * serialize against it becoming runnable.
2790 		 */
2791 		if (task_curr(ctx->task) && !reprogram) {
2792 			ret = -ESRCH;
2793 			goto unlock;
2794 		}
2795 
2796 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2797 	} else if (task_ctx) {
2798 		raw_spin_lock(&task_ctx->lock);
2799 	}
2800 
2801 #ifdef CONFIG_CGROUP_PERF
2802 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2803 		/*
2804 		 * If the current cgroup doesn't match the event's
2805 		 * cgroup, we should not try to schedule it.
2806 		 */
2807 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2808 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2809 					event->cgrp->css.cgroup);
2810 	}
2811 #endif
2812 
2813 	if (reprogram) {
2814 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2815 		add_event_to_ctx(event, ctx);
2816 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2817 	} else {
2818 		add_event_to_ctx(event, ctx);
2819 	}
2820 
2821 unlock:
2822 	perf_ctx_unlock(cpuctx, task_ctx);
2823 
2824 	return ret;
2825 }
2826 
2827 static bool exclusive_event_installable(struct perf_event *event,
2828 					struct perf_event_context *ctx);
2829 
2830 /*
2831  * Attach a performance event to a context.
2832  *
2833  * Very similar to event_function_call, see comment there.
2834  */
2835 static void
2836 perf_install_in_context(struct perf_event_context *ctx,
2837 			struct perf_event *event,
2838 			int cpu)
2839 {
2840 	struct task_struct *task = READ_ONCE(ctx->task);
2841 
2842 	lockdep_assert_held(&ctx->mutex);
2843 
2844 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2845 
2846 	if (event->cpu != -1)
2847 		event->cpu = cpu;
2848 
2849 	/*
2850 	 * Ensures that if we can observe event->ctx, both the event and ctx
2851 	 * will be 'complete'. See perf_iterate_sb_cpu().
2852 	 */
2853 	smp_store_release(&event->ctx, ctx);
2854 
2855 	/*
2856 	 * perf_event_attr::disabled events will not run and can be initialized
2857 	 * without IPI. Except when this is the first event for the context, in
2858 	 * that case we need the magic of the IPI to set ctx->is_active.
2859 	 *
2860 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2861 	 * event will issue the IPI and reprogram the hardware.
2862 	 */
2863 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2864 		raw_spin_lock_irq(&ctx->lock);
2865 		if (ctx->task == TASK_TOMBSTONE) {
2866 			raw_spin_unlock_irq(&ctx->lock);
2867 			return;
2868 		}
2869 		add_event_to_ctx(event, ctx);
2870 		raw_spin_unlock_irq(&ctx->lock);
2871 		return;
2872 	}
2873 
2874 	if (!task) {
2875 		cpu_function_call(cpu, __perf_install_in_context, event);
2876 		return;
2877 	}
2878 
2879 	/*
2880 	 * Should not happen, we validate the ctx is still alive before calling.
2881 	 */
2882 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2883 		return;
2884 
2885 	/*
2886 	 * Installing events is tricky because we cannot rely on ctx->is_active
2887 	 * to be set in case this is the nr_events 0 -> 1 transition.
2888 	 *
2889 	 * Instead we use task_curr(), which tells us if the task is running.
2890 	 * However, since we use task_curr() outside of rq::lock, we can race
2891 	 * against the actual state. This means the result can be wrong.
2892 	 *
2893 	 * If we get a false positive, we retry, this is harmless.
2894 	 *
2895 	 * If we get a false negative, things are complicated. If we are after
2896 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2897 	 * value must be correct. If we're before, it doesn't matter since
2898 	 * perf_event_context_sched_in() will program the counter.
2899 	 *
2900 	 * However, this hinges on the remote context switch having observed
2901 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2902 	 * ctx::lock in perf_event_context_sched_in().
2903 	 *
2904 	 * We do this by task_function_call(), if the IPI fails to hit the task
2905 	 * we know any future context switch of task must see the
2906 	 * perf_event_ctpx[] store.
2907 	 */
2908 
2909 	/*
2910 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2911 	 * task_cpu() load, such that if the IPI then does not find the task
2912 	 * running, a future context switch of that task must observe the
2913 	 * store.
2914 	 */
2915 	smp_mb();
2916 again:
2917 	if (!task_function_call(task, __perf_install_in_context, event))
2918 		return;
2919 
2920 	raw_spin_lock_irq(&ctx->lock);
2921 	task = ctx->task;
2922 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2923 		/*
2924 		 * Cannot happen because we already checked above (which also
2925 		 * cannot happen), and we hold ctx->mutex, which serializes us
2926 		 * against perf_event_exit_task_context().
2927 		 */
2928 		raw_spin_unlock_irq(&ctx->lock);
2929 		return;
2930 	}
2931 	/*
2932 	 * If the task is not running, ctx->lock will avoid it becoming so,
2933 	 * thus we can safely install the event.
2934 	 */
2935 	if (task_curr(task)) {
2936 		raw_spin_unlock_irq(&ctx->lock);
2937 		goto again;
2938 	}
2939 	add_event_to_ctx(event, ctx);
2940 	raw_spin_unlock_irq(&ctx->lock);
2941 }
2942 
2943 /*
2944  * Cross CPU call to enable a performance event
2945  */
2946 static void __perf_event_enable(struct perf_event *event,
2947 				struct perf_cpu_context *cpuctx,
2948 				struct perf_event_context *ctx,
2949 				void *info)
2950 {
2951 	struct perf_event *leader = event->group_leader;
2952 	struct perf_event_context *task_ctx;
2953 
2954 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2955 	    event->state <= PERF_EVENT_STATE_ERROR)
2956 		return;
2957 
2958 	if (ctx->is_active)
2959 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2960 
2961 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2962 	perf_cgroup_event_enable(event, ctx);
2963 
2964 	if (!ctx->is_active)
2965 		return;
2966 
2967 	if (!event_filter_match(event)) {
2968 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2969 		return;
2970 	}
2971 
2972 	/*
2973 	 * If the event is in a group and isn't the group leader,
2974 	 * then don't put it on unless the group is on.
2975 	 */
2976 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2977 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2978 		return;
2979 	}
2980 
2981 	task_ctx = cpuctx->task_ctx;
2982 	if (ctx->task)
2983 		WARN_ON_ONCE(task_ctx != ctx);
2984 
2985 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2986 }
2987 
2988 /*
2989  * Enable an event.
2990  *
2991  * If event->ctx is a cloned context, callers must make sure that
2992  * every task struct that event->ctx->task could possibly point to
2993  * remains valid.  This condition is satisfied when called through
2994  * perf_event_for_each_child or perf_event_for_each as described
2995  * for perf_event_disable.
2996  */
2997 static void _perf_event_enable(struct perf_event *event)
2998 {
2999 	struct perf_event_context *ctx = event->ctx;
3000 
3001 	raw_spin_lock_irq(&ctx->lock);
3002 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3003 	    event->state <  PERF_EVENT_STATE_ERROR) {
3004 out:
3005 		raw_spin_unlock_irq(&ctx->lock);
3006 		return;
3007 	}
3008 
3009 	/*
3010 	 * If the event is in error state, clear that first.
3011 	 *
3012 	 * That way, if we see the event in error state below, we know that it
3013 	 * has gone back into error state, as distinct from the task having
3014 	 * been scheduled away before the cross-call arrived.
3015 	 */
3016 	if (event->state == PERF_EVENT_STATE_ERROR) {
3017 		/*
3018 		 * Detached SIBLING events cannot leave ERROR state.
3019 		 */
3020 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3021 		    event->group_leader == event)
3022 			goto out;
3023 
3024 		event->state = PERF_EVENT_STATE_OFF;
3025 	}
3026 	raw_spin_unlock_irq(&ctx->lock);
3027 
3028 	event_function_call(event, __perf_event_enable, NULL);
3029 }
3030 
3031 /*
3032  * See perf_event_disable();
3033  */
3034 void perf_event_enable(struct perf_event *event)
3035 {
3036 	struct perf_event_context *ctx;
3037 
3038 	ctx = perf_event_ctx_lock(event);
3039 	_perf_event_enable(event);
3040 	perf_event_ctx_unlock(event, ctx);
3041 }
3042 EXPORT_SYMBOL_GPL(perf_event_enable);
3043 
3044 struct stop_event_data {
3045 	struct perf_event	*event;
3046 	unsigned int		restart;
3047 };
3048 
3049 static int __perf_event_stop(void *info)
3050 {
3051 	struct stop_event_data *sd = info;
3052 	struct perf_event *event = sd->event;
3053 
3054 	/* if it's already INACTIVE, do nothing */
3055 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3056 		return 0;
3057 
3058 	/* matches smp_wmb() in event_sched_in() */
3059 	smp_rmb();
3060 
3061 	/*
3062 	 * There is a window with interrupts enabled before we get here,
3063 	 * so we need to check again lest we try to stop another CPU's event.
3064 	 */
3065 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3066 		return -EAGAIN;
3067 
3068 	event->pmu->stop(event, PERF_EF_UPDATE);
3069 
3070 	/*
3071 	 * May race with the actual stop (through perf_pmu_output_stop()),
3072 	 * but it is only used for events with AUX ring buffer, and such
3073 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3074 	 * see comments in perf_aux_output_begin().
3075 	 *
3076 	 * Since this is happening on an event-local CPU, no trace is lost
3077 	 * while restarting.
3078 	 */
3079 	if (sd->restart)
3080 		event->pmu->start(event, 0);
3081 
3082 	return 0;
3083 }
3084 
3085 static int perf_event_stop(struct perf_event *event, int restart)
3086 {
3087 	struct stop_event_data sd = {
3088 		.event		= event,
3089 		.restart	= restart,
3090 	};
3091 	int ret = 0;
3092 
3093 	do {
3094 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3095 			return 0;
3096 
3097 		/* matches smp_wmb() in event_sched_in() */
3098 		smp_rmb();
3099 
3100 		/*
3101 		 * We only want to restart ACTIVE events, so if the event goes
3102 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3103 		 * fall through with ret==-ENXIO.
3104 		 */
3105 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3106 					__perf_event_stop, &sd);
3107 	} while (ret == -EAGAIN);
3108 
3109 	return ret;
3110 }
3111 
3112 /*
3113  * In order to contain the amount of racy and tricky in the address filter
3114  * configuration management, it is a two part process:
3115  *
3116  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3117  *      we update the addresses of corresponding vmas in
3118  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3119  * (p2) when an event is scheduled in (pmu::add), it calls
3120  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3121  *      if the generation has changed since the previous call.
3122  *
3123  * If (p1) happens while the event is active, we restart it to force (p2).
3124  *
3125  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3126  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3127  *     ioctl;
3128  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3129  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3130  *     for reading;
3131  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3132  *     of exec.
3133  */
3134 void perf_event_addr_filters_sync(struct perf_event *event)
3135 {
3136 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3137 
3138 	if (!has_addr_filter(event))
3139 		return;
3140 
3141 	raw_spin_lock(&ifh->lock);
3142 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3143 		event->pmu->addr_filters_sync(event);
3144 		event->hw.addr_filters_gen = event->addr_filters_gen;
3145 	}
3146 	raw_spin_unlock(&ifh->lock);
3147 }
3148 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3149 
3150 static int _perf_event_refresh(struct perf_event *event, int refresh)
3151 {
3152 	/*
3153 	 * not supported on inherited events
3154 	 */
3155 	if (event->attr.inherit || !is_sampling_event(event))
3156 		return -EINVAL;
3157 
3158 	atomic_add(refresh, &event->event_limit);
3159 	_perf_event_enable(event);
3160 
3161 	return 0;
3162 }
3163 
3164 /*
3165  * See perf_event_disable()
3166  */
3167 int perf_event_refresh(struct perf_event *event, int refresh)
3168 {
3169 	struct perf_event_context *ctx;
3170 	int ret;
3171 
3172 	ctx = perf_event_ctx_lock(event);
3173 	ret = _perf_event_refresh(event, refresh);
3174 	perf_event_ctx_unlock(event, ctx);
3175 
3176 	return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(perf_event_refresh);
3179 
3180 static int perf_event_modify_breakpoint(struct perf_event *bp,
3181 					 struct perf_event_attr *attr)
3182 {
3183 	int err;
3184 
3185 	_perf_event_disable(bp);
3186 
3187 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3188 
3189 	if (!bp->attr.disabled)
3190 		_perf_event_enable(bp);
3191 
3192 	return err;
3193 }
3194 
3195 static int perf_event_modify_attr(struct perf_event *event,
3196 				  struct perf_event_attr *attr)
3197 {
3198 	int (*func)(struct perf_event *, struct perf_event_attr *);
3199 	struct perf_event *child;
3200 	int err;
3201 
3202 	if (event->attr.type != attr->type)
3203 		return -EINVAL;
3204 
3205 	switch (event->attr.type) {
3206 	case PERF_TYPE_BREAKPOINT:
3207 		func = perf_event_modify_breakpoint;
3208 		break;
3209 	default:
3210 		/* Place holder for future additions. */
3211 		return -EOPNOTSUPP;
3212 	}
3213 
3214 	WARN_ON_ONCE(event->ctx->parent_ctx);
3215 
3216 	mutex_lock(&event->child_mutex);
3217 	err = func(event, attr);
3218 	if (err)
3219 		goto out;
3220 	list_for_each_entry(child, &event->child_list, child_list) {
3221 		err = func(child, attr);
3222 		if (err)
3223 			goto out;
3224 	}
3225 out:
3226 	mutex_unlock(&event->child_mutex);
3227 	return err;
3228 }
3229 
3230 static void ctx_sched_out(struct perf_event_context *ctx,
3231 			  struct perf_cpu_context *cpuctx,
3232 			  enum event_type_t event_type)
3233 {
3234 	struct perf_event *event, *tmp;
3235 	int is_active = ctx->is_active;
3236 
3237 	lockdep_assert_held(&ctx->lock);
3238 
3239 	if (likely(!ctx->nr_events)) {
3240 		/*
3241 		 * See __perf_remove_from_context().
3242 		 */
3243 		WARN_ON_ONCE(ctx->is_active);
3244 		if (ctx->task)
3245 			WARN_ON_ONCE(cpuctx->task_ctx);
3246 		return;
3247 	}
3248 
3249 	ctx->is_active &= ~event_type;
3250 	if (!(ctx->is_active & EVENT_ALL))
3251 		ctx->is_active = 0;
3252 
3253 	if (ctx->task) {
3254 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3255 		if (!ctx->is_active)
3256 			cpuctx->task_ctx = NULL;
3257 	}
3258 
3259 	/*
3260 	 * Always update time if it was set; not only when it changes.
3261 	 * Otherwise we can 'forget' to update time for any but the last
3262 	 * context we sched out. For example:
3263 	 *
3264 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3265 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3266 	 *
3267 	 * would only update time for the pinned events.
3268 	 */
3269 	if (is_active & EVENT_TIME) {
3270 		/* update (and stop) ctx time */
3271 		update_context_time(ctx);
3272 		update_cgrp_time_from_cpuctx(cpuctx);
3273 	}
3274 
3275 	is_active ^= ctx->is_active; /* changed bits */
3276 
3277 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3278 		return;
3279 
3280 	perf_pmu_disable(ctx->pmu);
3281 	if (is_active & EVENT_PINNED) {
3282 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3283 			group_sched_out(event, cpuctx, ctx);
3284 	}
3285 
3286 	if (is_active & EVENT_FLEXIBLE) {
3287 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3288 			group_sched_out(event, cpuctx, ctx);
3289 
3290 		/*
3291 		 * Since we cleared EVENT_FLEXIBLE, also clear
3292 		 * rotate_necessary, is will be reset by
3293 		 * ctx_flexible_sched_in() when needed.
3294 		 */
3295 		ctx->rotate_necessary = 0;
3296 	}
3297 	perf_pmu_enable(ctx->pmu);
3298 }
3299 
3300 /*
3301  * Test whether two contexts are equivalent, i.e. whether they have both been
3302  * cloned from the same version of the same context.
3303  *
3304  * Equivalence is measured using a generation number in the context that is
3305  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3306  * and list_del_event().
3307  */
3308 static int context_equiv(struct perf_event_context *ctx1,
3309 			 struct perf_event_context *ctx2)
3310 {
3311 	lockdep_assert_held(&ctx1->lock);
3312 	lockdep_assert_held(&ctx2->lock);
3313 
3314 	/* Pinning disables the swap optimization */
3315 	if (ctx1->pin_count || ctx2->pin_count)
3316 		return 0;
3317 
3318 	/* If ctx1 is the parent of ctx2 */
3319 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3320 		return 1;
3321 
3322 	/* If ctx2 is the parent of ctx1 */
3323 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3324 		return 1;
3325 
3326 	/*
3327 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3328 	 * hierarchy, see perf_event_init_context().
3329 	 */
3330 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3331 			ctx1->parent_gen == ctx2->parent_gen)
3332 		return 1;
3333 
3334 	/* Unmatched */
3335 	return 0;
3336 }
3337 
3338 static void __perf_event_sync_stat(struct perf_event *event,
3339 				     struct perf_event *next_event)
3340 {
3341 	u64 value;
3342 
3343 	if (!event->attr.inherit_stat)
3344 		return;
3345 
3346 	/*
3347 	 * Update the event value, we cannot use perf_event_read()
3348 	 * because we're in the middle of a context switch and have IRQs
3349 	 * disabled, which upsets smp_call_function_single(), however
3350 	 * we know the event must be on the current CPU, therefore we
3351 	 * don't need to use it.
3352 	 */
3353 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3354 		event->pmu->read(event);
3355 
3356 	perf_event_update_time(event);
3357 
3358 	/*
3359 	 * In order to keep per-task stats reliable we need to flip the event
3360 	 * values when we flip the contexts.
3361 	 */
3362 	value = local64_read(&next_event->count);
3363 	value = local64_xchg(&event->count, value);
3364 	local64_set(&next_event->count, value);
3365 
3366 	swap(event->total_time_enabled, next_event->total_time_enabled);
3367 	swap(event->total_time_running, next_event->total_time_running);
3368 
3369 	/*
3370 	 * Since we swizzled the values, update the user visible data too.
3371 	 */
3372 	perf_event_update_userpage(event);
3373 	perf_event_update_userpage(next_event);
3374 }
3375 
3376 static void perf_event_sync_stat(struct perf_event_context *ctx,
3377 				   struct perf_event_context *next_ctx)
3378 {
3379 	struct perf_event *event, *next_event;
3380 
3381 	if (!ctx->nr_stat)
3382 		return;
3383 
3384 	update_context_time(ctx);
3385 
3386 	event = list_first_entry(&ctx->event_list,
3387 				   struct perf_event, event_entry);
3388 
3389 	next_event = list_first_entry(&next_ctx->event_list,
3390 					struct perf_event, event_entry);
3391 
3392 	while (&event->event_entry != &ctx->event_list &&
3393 	       &next_event->event_entry != &next_ctx->event_list) {
3394 
3395 		__perf_event_sync_stat(event, next_event);
3396 
3397 		event = list_next_entry(event, event_entry);
3398 		next_event = list_next_entry(next_event, event_entry);
3399 	}
3400 }
3401 
3402 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3403 					 struct task_struct *next)
3404 {
3405 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3406 	struct perf_event_context *next_ctx;
3407 	struct perf_event_context *parent, *next_parent;
3408 	struct perf_cpu_context *cpuctx;
3409 	int do_switch = 1;
3410 	struct pmu *pmu;
3411 
3412 	if (likely(!ctx))
3413 		return;
3414 
3415 	pmu = ctx->pmu;
3416 	cpuctx = __get_cpu_context(ctx);
3417 	if (!cpuctx->task_ctx)
3418 		return;
3419 
3420 	rcu_read_lock();
3421 	next_ctx = next->perf_event_ctxp[ctxn];
3422 	if (!next_ctx)
3423 		goto unlock;
3424 
3425 	parent = rcu_dereference(ctx->parent_ctx);
3426 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3427 
3428 	/* If neither context have a parent context; they cannot be clones. */
3429 	if (!parent && !next_parent)
3430 		goto unlock;
3431 
3432 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3433 		/*
3434 		 * Looks like the two contexts are clones, so we might be
3435 		 * able to optimize the context switch.  We lock both
3436 		 * contexts and check that they are clones under the
3437 		 * lock (including re-checking that neither has been
3438 		 * uncloned in the meantime).  It doesn't matter which
3439 		 * order we take the locks because no other cpu could
3440 		 * be trying to lock both of these tasks.
3441 		 */
3442 		raw_spin_lock(&ctx->lock);
3443 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3444 		if (context_equiv(ctx, next_ctx)) {
3445 
3446 			WRITE_ONCE(ctx->task, next);
3447 			WRITE_ONCE(next_ctx->task, task);
3448 
3449 			perf_pmu_disable(pmu);
3450 
3451 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3452 				pmu->sched_task(ctx, false);
3453 
3454 			/*
3455 			 * PMU specific parts of task perf context can require
3456 			 * additional synchronization. As an example of such
3457 			 * synchronization see implementation details of Intel
3458 			 * LBR call stack data profiling;
3459 			 */
3460 			if (pmu->swap_task_ctx)
3461 				pmu->swap_task_ctx(ctx, next_ctx);
3462 			else
3463 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3464 
3465 			perf_pmu_enable(pmu);
3466 
3467 			/*
3468 			 * RCU_INIT_POINTER here is safe because we've not
3469 			 * modified the ctx and the above modification of
3470 			 * ctx->task and ctx->task_ctx_data are immaterial
3471 			 * since those values are always verified under
3472 			 * ctx->lock which we're now holding.
3473 			 */
3474 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3475 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3476 
3477 			do_switch = 0;
3478 
3479 			perf_event_sync_stat(ctx, next_ctx);
3480 		}
3481 		raw_spin_unlock(&next_ctx->lock);
3482 		raw_spin_unlock(&ctx->lock);
3483 	}
3484 unlock:
3485 	rcu_read_unlock();
3486 
3487 	if (do_switch) {
3488 		raw_spin_lock(&ctx->lock);
3489 		perf_pmu_disable(pmu);
3490 
3491 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3492 			pmu->sched_task(ctx, false);
3493 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3494 
3495 		perf_pmu_enable(pmu);
3496 		raw_spin_unlock(&ctx->lock);
3497 	}
3498 }
3499 
3500 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3501 
3502 void perf_sched_cb_dec(struct pmu *pmu)
3503 {
3504 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3505 
3506 	this_cpu_dec(perf_sched_cb_usages);
3507 
3508 	if (!--cpuctx->sched_cb_usage)
3509 		list_del(&cpuctx->sched_cb_entry);
3510 }
3511 
3512 
3513 void perf_sched_cb_inc(struct pmu *pmu)
3514 {
3515 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3516 
3517 	if (!cpuctx->sched_cb_usage++)
3518 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3519 
3520 	this_cpu_inc(perf_sched_cb_usages);
3521 }
3522 
3523 /*
3524  * This function provides the context switch callback to the lower code
3525  * layer. It is invoked ONLY when the context switch callback is enabled.
3526  *
3527  * This callback is relevant even to per-cpu events; for example multi event
3528  * PEBS requires this to provide PID/TID information. This requires we flush
3529  * all queued PEBS records before we context switch to a new task.
3530  */
3531 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3532 {
3533 	struct pmu *pmu;
3534 
3535 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3536 
3537 	if (WARN_ON_ONCE(!pmu->sched_task))
3538 		return;
3539 
3540 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3541 	perf_pmu_disable(pmu);
3542 
3543 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3544 
3545 	perf_pmu_enable(pmu);
3546 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3547 }
3548 
3549 static void perf_pmu_sched_task(struct task_struct *prev,
3550 				struct task_struct *next,
3551 				bool sched_in)
3552 {
3553 	struct perf_cpu_context *cpuctx;
3554 
3555 	if (prev == next)
3556 		return;
3557 
3558 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3559 		/* will be handled in perf_event_context_sched_in/out */
3560 		if (cpuctx->task_ctx)
3561 			continue;
3562 
3563 		__perf_pmu_sched_task(cpuctx, sched_in);
3564 	}
3565 }
3566 
3567 static void perf_event_switch(struct task_struct *task,
3568 			      struct task_struct *next_prev, bool sched_in);
3569 
3570 #define for_each_task_context_nr(ctxn)					\
3571 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3572 
3573 /*
3574  * Called from scheduler to remove the events of the current task,
3575  * with interrupts disabled.
3576  *
3577  * We stop each event and update the event value in event->count.
3578  *
3579  * This does not protect us against NMI, but disable()
3580  * sets the disabled bit in the control field of event _before_
3581  * accessing the event control register. If a NMI hits, then it will
3582  * not restart the event.
3583  */
3584 void __perf_event_task_sched_out(struct task_struct *task,
3585 				 struct task_struct *next)
3586 {
3587 	int ctxn;
3588 
3589 	if (__this_cpu_read(perf_sched_cb_usages))
3590 		perf_pmu_sched_task(task, next, false);
3591 
3592 	if (atomic_read(&nr_switch_events))
3593 		perf_event_switch(task, next, false);
3594 
3595 	for_each_task_context_nr(ctxn)
3596 		perf_event_context_sched_out(task, ctxn, next);
3597 
3598 	/*
3599 	 * if cgroup events exist on this CPU, then we need
3600 	 * to check if we have to switch out PMU state.
3601 	 * cgroup event are system-wide mode only
3602 	 */
3603 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3604 		perf_cgroup_sched_out(task, next);
3605 }
3606 
3607 /*
3608  * Called with IRQs disabled
3609  */
3610 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3611 			      enum event_type_t event_type)
3612 {
3613 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3614 }
3615 
3616 static bool perf_less_group_idx(const void *l, const void *r)
3617 {
3618 	const struct perf_event *le = *(const struct perf_event **)l;
3619 	const struct perf_event *re = *(const struct perf_event **)r;
3620 
3621 	return le->group_index < re->group_index;
3622 }
3623 
3624 static void swap_ptr(void *l, void *r)
3625 {
3626 	void **lp = l, **rp = r;
3627 
3628 	swap(*lp, *rp);
3629 }
3630 
3631 static const struct min_heap_callbacks perf_min_heap = {
3632 	.elem_size = sizeof(struct perf_event *),
3633 	.less = perf_less_group_idx,
3634 	.swp = swap_ptr,
3635 };
3636 
3637 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3638 {
3639 	struct perf_event **itrs = heap->data;
3640 
3641 	if (event) {
3642 		itrs[heap->nr] = event;
3643 		heap->nr++;
3644 	}
3645 }
3646 
3647 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3648 				struct perf_event_groups *groups, int cpu,
3649 				int (*func)(struct perf_event *, void *),
3650 				void *data)
3651 {
3652 #ifdef CONFIG_CGROUP_PERF
3653 	struct cgroup_subsys_state *css = NULL;
3654 #endif
3655 	/* Space for per CPU and/or any CPU event iterators. */
3656 	struct perf_event *itrs[2];
3657 	struct min_heap event_heap;
3658 	struct perf_event **evt;
3659 	int ret;
3660 
3661 	if (cpuctx) {
3662 		event_heap = (struct min_heap){
3663 			.data = cpuctx->heap,
3664 			.nr = 0,
3665 			.size = cpuctx->heap_size,
3666 		};
3667 
3668 		lockdep_assert_held(&cpuctx->ctx.lock);
3669 
3670 #ifdef CONFIG_CGROUP_PERF
3671 		if (cpuctx->cgrp)
3672 			css = &cpuctx->cgrp->css;
3673 #endif
3674 	} else {
3675 		event_heap = (struct min_heap){
3676 			.data = itrs,
3677 			.nr = 0,
3678 			.size = ARRAY_SIZE(itrs),
3679 		};
3680 		/* Events not within a CPU context may be on any CPU. */
3681 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3682 	}
3683 	evt = event_heap.data;
3684 
3685 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3686 
3687 #ifdef CONFIG_CGROUP_PERF
3688 	for (; css; css = css->parent)
3689 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3690 #endif
3691 
3692 	min_heapify_all(&event_heap, &perf_min_heap);
3693 
3694 	while (event_heap.nr) {
3695 		ret = func(*evt, data);
3696 		if (ret)
3697 			return ret;
3698 
3699 		*evt = perf_event_groups_next(*evt);
3700 		if (*evt)
3701 			min_heapify(&event_heap, 0, &perf_min_heap);
3702 		else
3703 			min_heap_pop(&event_heap, &perf_min_heap);
3704 	}
3705 
3706 	return 0;
3707 }
3708 
3709 static int merge_sched_in(struct perf_event *event, void *data)
3710 {
3711 	struct perf_event_context *ctx = event->ctx;
3712 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3713 	int *can_add_hw = data;
3714 
3715 	if (event->state <= PERF_EVENT_STATE_OFF)
3716 		return 0;
3717 
3718 	if (!event_filter_match(event))
3719 		return 0;
3720 
3721 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3722 		if (!group_sched_in(event, cpuctx, ctx))
3723 			list_add_tail(&event->active_list, get_event_list(event));
3724 	}
3725 
3726 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3727 		if (event->attr.pinned) {
3728 			perf_cgroup_event_disable(event, ctx);
3729 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3730 		}
3731 
3732 		*can_add_hw = 0;
3733 		ctx->rotate_necessary = 1;
3734 		perf_mux_hrtimer_restart(cpuctx);
3735 	}
3736 
3737 	return 0;
3738 }
3739 
3740 static void
3741 ctx_pinned_sched_in(struct perf_event_context *ctx,
3742 		    struct perf_cpu_context *cpuctx)
3743 {
3744 	int can_add_hw = 1;
3745 
3746 	if (ctx != &cpuctx->ctx)
3747 		cpuctx = NULL;
3748 
3749 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3750 			   smp_processor_id(),
3751 			   merge_sched_in, &can_add_hw);
3752 }
3753 
3754 static void
3755 ctx_flexible_sched_in(struct perf_event_context *ctx,
3756 		      struct perf_cpu_context *cpuctx)
3757 {
3758 	int can_add_hw = 1;
3759 
3760 	if (ctx != &cpuctx->ctx)
3761 		cpuctx = NULL;
3762 
3763 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3764 			   smp_processor_id(),
3765 			   merge_sched_in, &can_add_hw);
3766 }
3767 
3768 static void
3769 ctx_sched_in(struct perf_event_context *ctx,
3770 	     struct perf_cpu_context *cpuctx,
3771 	     enum event_type_t event_type,
3772 	     struct task_struct *task)
3773 {
3774 	int is_active = ctx->is_active;
3775 	u64 now;
3776 
3777 	lockdep_assert_held(&ctx->lock);
3778 
3779 	if (likely(!ctx->nr_events))
3780 		return;
3781 
3782 	ctx->is_active |= (event_type | EVENT_TIME);
3783 	if (ctx->task) {
3784 		if (!is_active)
3785 			cpuctx->task_ctx = ctx;
3786 		else
3787 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3788 	}
3789 
3790 	is_active ^= ctx->is_active; /* changed bits */
3791 
3792 	if (is_active & EVENT_TIME) {
3793 		/* start ctx time */
3794 		now = perf_clock();
3795 		ctx->timestamp = now;
3796 		perf_cgroup_set_timestamp(task, ctx);
3797 	}
3798 
3799 	/*
3800 	 * First go through the list and put on any pinned groups
3801 	 * in order to give them the best chance of going on.
3802 	 */
3803 	if (is_active & EVENT_PINNED)
3804 		ctx_pinned_sched_in(ctx, cpuctx);
3805 
3806 	/* Then walk through the lower prio flexible groups */
3807 	if (is_active & EVENT_FLEXIBLE)
3808 		ctx_flexible_sched_in(ctx, cpuctx);
3809 }
3810 
3811 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3812 			     enum event_type_t event_type,
3813 			     struct task_struct *task)
3814 {
3815 	struct perf_event_context *ctx = &cpuctx->ctx;
3816 
3817 	ctx_sched_in(ctx, cpuctx, event_type, task);
3818 }
3819 
3820 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3821 					struct task_struct *task)
3822 {
3823 	struct perf_cpu_context *cpuctx;
3824 	struct pmu *pmu = ctx->pmu;
3825 
3826 	cpuctx = __get_cpu_context(ctx);
3827 	if (cpuctx->task_ctx == ctx) {
3828 		if (cpuctx->sched_cb_usage)
3829 			__perf_pmu_sched_task(cpuctx, true);
3830 		return;
3831 	}
3832 
3833 	perf_ctx_lock(cpuctx, ctx);
3834 	/*
3835 	 * We must check ctx->nr_events while holding ctx->lock, such
3836 	 * that we serialize against perf_install_in_context().
3837 	 */
3838 	if (!ctx->nr_events)
3839 		goto unlock;
3840 
3841 	perf_pmu_disable(pmu);
3842 	/*
3843 	 * We want to keep the following priority order:
3844 	 * cpu pinned (that don't need to move), task pinned,
3845 	 * cpu flexible, task flexible.
3846 	 *
3847 	 * However, if task's ctx is not carrying any pinned
3848 	 * events, no need to flip the cpuctx's events around.
3849 	 */
3850 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3851 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3852 	perf_event_sched_in(cpuctx, ctx, task);
3853 
3854 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3855 		pmu->sched_task(cpuctx->task_ctx, true);
3856 
3857 	perf_pmu_enable(pmu);
3858 
3859 unlock:
3860 	perf_ctx_unlock(cpuctx, ctx);
3861 }
3862 
3863 /*
3864  * Called from scheduler to add the events of the current task
3865  * with interrupts disabled.
3866  *
3867  * We restore the event value and then enable it.
3868  *
3869  * This does not protect us against NMI, but enable()
3870  * sets the enabled bit in the control field of event _before_
3871  * accessing the event control register. If a NMI hits, then it will
3872  * keep the event running.
3873  */
3874 void __perf_event_task_sched_in(struct task_struct *prev,
3875 				struct task_struct *task)
3876 {
3877 	struct perf_event_context *ctx;
3878 	int ctxn;
3879 
3880 	/*
3881 	 * If cgroup events exist on this CPU, then we need to check if we have
3882 	 * to switch in PMU state; cgroup event are system-wide mode only.
3883 	 *
3884 	 * Since cgroup events are CPU events, we must schedule these in before
3885 	 * we schedule in the task events.
3886 	 */
3887 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3888 		perf_cgroup_sched_in(prev, task);
3889 
3890 	for_each_task_context_nr(ctxn) {
3891 		ctx = task->perf_event_ctxp[ctxn];
3892 		if (likely(!ctx))
3893 			continue;
3894 
3895 		perf_event_context_sched_in(ctx, task);
3896 	}
3897 
3898 	if (atomic_read(&nr_switch_events))
3899 		perf_event_switch(task, prev, true);
3900 
3901 	if (__this_cpu_read(perf_sched_cb_usages))
3902 		perf_pmu_sched_task(prev, task, true);
3903 }
3904 
3905 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3906 {
3907 	u64 frequency = event->attr.sample_freq;
3908 	u64 sec = NSEC_PER_SEC;
3909 	u64 divisor, dividend;
3910 
3911 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3912 
3913 	count_fls = fls64(count);
3914 	nsec_fls = fls64(nsec);
3915 	frequency_fls = fls64(frequency);
3916 	sec_fls = 30;
3917 
3918 	/*
3919 	 * We got @count in @nsec, with a target of sample_freq HZ
3920 	 * the target period becomes:
3921 	 *
3922 	 *             @count * 10^9
3923 	 * period = -------------------
3924 	 *          @nsec * sample_freq
3925 	 *
3926 	 */
3927 
3928 	/*
3929 	 * Reduce accuracy by one bit such that @a and @b converge
3930 	 * to a similar magnitude.
3931 	 */
3932 #define REDUCE_FLS(a, b)		\
3933 do {					\
3934 	if (a##_fls > b##_fls) {	\
3935 		a >>= 1;		\
3936 		a##_fls--;		\
3937 	} else {			\
3938 		b >>= 1;		\
3939 		b##_fls--;		\
3940 	}				\
3941 } while (0)
3942 
3943 	/*
3944 	 * Reduce accuracy until either term fits in a u64, then proceed with
3945 	 * the other, so that finally we can do a u64/u64 division.
3946 	 */
3947 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3948 		REDUCE_FLS(nsec, frequency);
3949 		REDUCE_FLS(sec, count);
3950 	}
3951 
3952 	if (count_fls + sec_fls > 64) {
3953 		divisor = nsec * frequency;
3954 
3955 		while (count_fls + sec_fls > 64) {
3956 			REDUCE_FLS(count, sec);
3957 			divisor >>= 1;
3958 		}
3959 
3960 		dividend = count * sec;
3961 	} else {
3962 		dividend = count * sec;
3963 
3964 		while (nsec_fls + frequency_fls > 64) {
3965 			REDUCE_FLS(nsec, frequency);
3966 			dividend >>= 1;
3967 		}
3968 
3969 		divisor = nsec * frequency;
3970 	}
3971 
3972 	if (!divisor)
3973 		return dividend;
3974 
3975 	return div64_u64(dividend, divisor);
3976 }
3977 
3978 static DEFINE_PER_CPU(int, perf_throttled_count);
3979 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3980 
3981 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3982 {
3983 	struct hw_perf_event *hwc = &event->hw;
3984 	s64 period, sample_period;
3985 	s64 delta;
3986 
3987 	period = perf_calculate_period(event, nsec, count);
3988 
3989 	delta = (s64)(period - hwc->sample_period);
3990 	delta = (delta + 7) / 8; /* low pass filter */
3991 
3992 	sample_period = hwc->sample_period + delta;
3993 
3994 	if (!sample_period)
3995 		sample_period = 1;
3996 
3997 	hwc->sample_period = sample_period;
3998 
3999 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4000 		if (disable)
4001 			event->pmu->stop(event, PERF_EF_UPDATE);
4002 
4003 		local64_set(&hwc->period_left, 0);
4004 
4005 		if (disable)
4006 			event->pmu->start(event, PERF_EF_RELOAD);
4007 	}
4008 }
4009 
4010 /*
4011  * combine freq adjustment with unthrottling to avoid two passes over the
4012  * events. At the same time, make sure, having freq events does not change
4013  * the rate of unthrottling as that would introduce bias.
4014  */
4015 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4016 					   int needs_unthr)
4017 {
4018 	struct perf_event *event;
4019 	struct hw_perf_event *hwc;
4020 	u64 now, period = TICK_NSEC;
4021 	s64 delta;
4022 
4023 	/*
4024 	 * only need to iterate over all events iff:
4025 	 * - context have events in frequency mode (needs freq adjust)
4026 	 * - there are events to unthrottle on this cpu
4027 	 */
4028 	if (!(ctx->nr_freq || needs_unthr))
4029 		return;
4030 
4031 	raw_spin_lock(&ctx->lock);
4032 	perf_pmu_disable(ctx->pmu);
4033 
4034 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4035 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4036 			continue;
4037 
4038 		if (!event_filter_match(event))
4039 			continue;
4040 
4041 		perf_pmu_disable(event->pmu);
4042 
4043 		hwc = &event->hw;
4044 
4045 		if (hwc->interrupts == MAX_INTERRUPTS) {
4046 			hwc->interrupts = 0;
4047 			perf_log_throttle(event, 1);
4048 			event->pmu->start(event, 0);
4049 		}
4050 
4051 		if (!event->attr.freq || !event->attr.sample_freq)
4052 			goto next;
4053 
4054 		/*
4055 		 * stop the event and update event->count
4056 		 */
4057 		event->pmu->stop(event, PERF_EF_UPDATE);
4058 
4059 		now = local64_read(&event->count);
4060 		delta = now - hwc->freq_count_stamp;
4061 		hwc->freq_count_stamp = now;
4062 
4063 		/*
4064 		 * restart the event
4065 		 * reload only if value has changed
4066 		 * we have stopped the event so tell that
4067 		 * to perf_adjust_period() to avoid stopping it
4068 		 * twice.
4069 		 */
4070 		if (delta > 0)
4071 			perf_adjust_period(event, period, delta, false);
4072 
4073 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4074 	next:
4075 		perf_pmu_enable(event->pmu);
4076 	}
4077 
4078 	perf_pmu_enable(ctx->pmu);
4079 	raw_spin_unlock(&ctx->lock);
4080 }
4081 
4082 /*
4083  * Move @event to the tail of the @ctx's elegible events.
4084  */
4085 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4086 {
4087 	/*
4088 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4089 	 * disabled by the inheritance code.
4090 	 */
4091 	if (ctx->rotate_disable)
4092 		return;
4093 
4094 	perf_event_groups_delete(&ctx->flexible_groups, event);
4095 	perf_event_groups_insert(&ctx->flexible_groups, event);
4096 }
4097 
4098 /* pick an event from the flexible_groups to rotate */
4099 static inline struct perf_event *
4100 ctx_event_to_rotate(struct perf_event_context *ctx)
4101 {
4102 	struct perf_event *event;
4103 
4104 	/* pick the first active flexible event */
4105 	event = list_first_entry_or_null(&ctx->flexible_active,
4106 					 struct perf_event, active_list);
4107 
4108 	/* if no active flexible event, pick the first event */
4109 	if (!event) {
4110 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4111 				      typeof(*event), group_node);
4112 	}
4113 
4114 	/*
4115 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4116 	 * finds there are unschedulable events, it will set it again.
4117 	 */
4118 	ctx->rotate_necessary = 0;
4119 
4120 	return event;
4121 }
4122 
4123 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4124 {
4125 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4126 	struct perf_event_context *task_ctx = NULL;
4127 	int cpu_rotate, task_rotate;
4128 
4129 	/*
4130 	 * Since we run this from IRQ context, nobody can install new
4131 	 * events, thus the event count values are stable.
4132 	 */
4133 
4134 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4135 	task_ctx = cpuctx->task_ctx;
4136 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4137 
4138 	if (!(cpu_rotate || task_rotate))
4139 		return false;
4140 
4141 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4142 	perf_pmu_disable(cpuctx->ctx.pmu);
4143 
4144 	if (task_rotate)
4145 		task_event = ctx_event_to_rotate(task_ctx);
4146 	if (cpu_rotate)
4147 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4148 
4149 	/*
4150 	 * As per the order given at ctx_resched() first 'pop' task flexible
4151 	 * and then, if needed CPU flexible.
4152 	 */
4153 	if (task_event || (task_ctx && cpu_event))
4154 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4155 	if (cpu_event)
4156 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4157 
4158 	if (task_event)
4159 		rotate_ctx(task_ctx, task_event);
4160 	if (cpu_event)
4161 		rotate_ctx(&cpuctx->ctx, cpu_event);
4162 
4163 	perf_event_sched_in(cpuctx, task_ctx, current);
4164 
4165 	perf_pmu_enable(cpuctx->ctx.pmu);
4166 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4167 
4168 	return true;
4169 }
4170 
4171 void perf_event_task_tick(void)
4172 {
4173 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4174 	struct perf_event_context *ctx, *tmp;
4175 	int throttled;
4176 
4177 	lockdep_assert_irqs_disabled();
4178 
4179 	__this_cpu_inc(perf_throttled_seq);
4180 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4181 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4182 
4183 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4184 		perf_adjust_freq_unthr_context(ctx, throttled);
4185 }
4186 
4187 static int event_enable_on_exec(struct perf_event *event,
4188 				struct perf_event_context *ctx)
4189 {
4190 	if (!event->attr.enable_on_exec)
4191 		return 0;
4192 
4193 	event->attr.enable_on_exec = 0;
4194 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4195 		return 0;
4196 
4197 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4198 
4199 	return 1;
4200 }
4201 
4202 /*
4203  * Enable all of a task's events that have been marked enable-on-exec.
4204  * This expects task == current.
4205  */
4206 static void perf_event_enable_on_exec(int ctxn)
4207 {
4208 	struct perf_event_context *ctx, *clone_ctx = NULL;
4209 	enum event_type_t event_type = 0;
4210 	struct perf_cpu_context *cpuctx;
4211 	struct perf_event *event;
4212 	unsigned long flags;
4213 	int enabled = 0;
4214 
4215 	local_irq_save(flags);
4216 	ctx = current->perf_event_ctxp[ctxn];
4217 	if (!ctx || !ctx->nr_events)
4218 		goto out;
4219 
4220 	cpuctx = __get_cpu_context(ctx);
4221 	perf_ctx_lock(cpuctx, ctx);
4222 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4223 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4224 		enabled |= event_enable_on_exec(event, ctx);
4225 		event_type |= get_event_type(event);
4226 	}
4227 
4228 	/*
4229 	 * Unclone and reschedule this context if we enabled any event.
4230 	 */
4231 	if (enabled) {
4232 		clone_ctx = unclone_ctx(ctx);
4233 		ctx_resched(cpuctx, ctx, event_type);
4234 	} else {
4235 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4236 	}
4237 	perf_ctx_unlock(cpuctx, ctx);
4238 
4239 out:
4240 	local_irq_restore(flags);
4241 
4242 	if (clone_ctx)
4243 		put_ctx(clone_ctx);
4244 }
4245 
4246 static void perf_remove_from_owner(struct perf_event *event);
4247 static void perf_event_exit_event(struct perf_event *event,
4248 				  struct perf_event_context *ctx);
4249 
4250 /*
4251  * Removes all events from the current task that have been marked
4252  * remove-on-exec, and feeds their values back to parent events.
4253  */
4254 static void perf_event_remove_on_exec(int ctxn)
4255 {
4256 	struct perf_event_context *ctx, *clone_ctx = NULL;
4257 	struct perf_event *event, *next;
4258 	LIST_HEAD(free_list);
4259 	unsigned long flags;
4260 	bool modified = false;
4261 
4262 	ctx = perf_pin_task_context(current, ctxn);
4263 	if (!ctx)
4264 		return;
4265 
4266 	mutex_lock(&ctx->mutex);
4267 
4268 	if (WARN_ON_ONCE(ctx->task != current))
4269 		goto unlock;
4270 
4271 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4272 		if (!event->attr.remove_on_exec)
4273 			continue;
4274 
4275 		if (!is_kernel_event(event))
4276 			perf_remove_from_owner(event);
4277 
4278 		modified = true;
4279 
4280 		perf_event_exit_event(event, ctx);
4281 	}
4282 
4283 	raw_spin_lock_irqsave(&ctx->lock, flags);
4284 	if (modified)
4285 		clone_ctx = unclone_ctx(ctx);
4286 	--ctx->pin_count;
4287 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4288 
4289 unlock:
4290 	mutex_unlock(&ctx->mutex);
4291 
4292 	put_ctx(ctx);
4293 	if (clone_ctx)
4294 		put_ctx(clone_ctx);
4295 }
4296 
4297 struct perf_read_data {
4298 	struct perf_event *event;
4299 	bool group;
4300 	int ret;
4301 };
4302 
4303 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4304 {
4305 	u16 local_pkg, event_pkg;
4306 
4307 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4308 		int local_cpu = smp_processor_id();
4309 
4310 		event_pkg = topology_physical_package_id(event_cpu);
4311 		local_pkg = topology_physical_package_id(local_cpu);
4312 
4313 		if (event_pkg == local_pkg)
4314 			return local_cpu;
4315 	}
4316 
4317 	return event_cpu;
4318 }
4319 
4320 /*
4321  * Cross CPU call to read the hardware event
4322  */
4323 static void __perf_event_read(void *info)
4324 {
4325 	struct perf_read_data *data = info;
4326 	struct perf_event *sub, *event = data->event;
4327 	struct perf_event_context *ctx = event->ctx;
4328 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4329 	struct pmu *pmu = event->pmu;
4330 
4331 	/*
4332 	 * If this is a task context, we need to check whether it is
4333 	 * the current task context of this cpu.  If not it has been
4334 	 * scheduled out before the smp call arrived.  In that case
4335 	 * event->count would have been updated to a recent sample
4336 	 * when the event was scheduled out.
4337 	 */
4338 	if (ctx->task && cpuctx->task_ctx != ctx)
4339 		return;
4340 
4341 	raw_spin_lock(&ctx->lock);
4342 	if (ctx->is_active & EVENT_TIME) {
4343 		update_context_time(ctx);
4344 		update_cgrp_time_from_event(event);
4345 	}
4346 
4347 	perf_event_update_time(event);
4348 	if (data->group)
4349 		perf_event_update_sibling_time(event);
4350 
4351 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4352 		goto unlock;
4353 
4354 	if (!data->group) {
4355 		pmu->read(event);
4356 		data->ret = 0;
4357 		goto unlock;
4358 	}
4359 
4360 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4361 
4362 	pmu->read(event);
4363 
4364 	for_each_sibling_event(sub, event) {
4365 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4366 			/*
4367 			 * Use sibling's PMU rather than @event's since
4368 			 * sibling could be on different (eg: software) PMU.
4369 			 */
4370 			sub->pmu->read(sub);
4371 		}
4372 	}
4373 
4374 	data->ret = pmu->commit_txn(pmu);
4375 
4376 unlock:
4377 	raw_spin_unlock(&ctx->lock);
4378 }
4379 
4380 static inline u64 perf_event_count(struct perf_event *event)
4381 {
4382 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4383 }
4384 
4385 /*
4386  * NMI-safe method to read a local event, that is an event that
4387  * is:
4388  *   - either for the current task, or for this CPU
4389  *   - does not have inherit set, for inherited task events
4390  *     will not be local and we cannot read them atomically
4391  *   - must not have a pmu::count method
4392  */
4393 int perf_event_read_local(struct perf_event *event, u64 *value,
4394 			  u64 *enabled, u64 *running)
4395 {
4396 	unsigned long flags;
4397 	int ret = 0;
4398 
4399 	/*
4400 	 * Disabling interrupts avoids all counter scheduling (context
4401 	 * switches, timer based rotation and IPIs).
4402 	 */
4403 	local_irq_save(flags);
4404 
4405 	/*
4406 	 * It must not be an event with inherit set, we cannot read
4407 	 * all child counters from atomic context.
4408 	 */
4409 	if (event->attr.inherit) {
4410 		ret = -EOPNOTSUPP;
4411 		goto out;
4412 	}
4413 
4414 	/* If this is a per-task event, it must be for current */
4415 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4416 	    event->hw.target != current) {
4417 		ret = -EINVAL;
4418 		goto out;
4419 	}
4420 
4421 	/* If this is a per-CPU event, it must be for this CPU */
4422 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4423 	    event->cpu != smp_processor_id()) {
4424 		ret = -EINVAL;
4425 		goto out;
4426 	}
4427 
4428 	/* If this is a pinned event it must be running on this CPU */
4429 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4430 		ret = -EBUSY;
4431 		goto out;
4432 	}
4433 
4434 	/*
4435 	 * If the event is currently on this CPU, its either a per-task event,
4436 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4437 	 * oncpu == -1).
4438 	 */
4439 	if (event->oncpu == smp_processor_id())
4440 		event->pmu->read(event);
4441 
4442 	*value = local64_read(&event->count);
4443 	if (enabled || running) {
4444 		u64 now = event->shadow_ctx_time + perf_clock();
4445 		u64 __enabled, __running;
4446 
4447 		__perf_update_times(event, now, &__enabled, &__running);
4448 		if (enabled)
4449 			*enabled = __enabled;
4450 		if (running)
4451 			*running = __running;
4452 	}
4453 out:
4454 	local_irq_restore(flags);
4455 
4456 	return ret;
4457 }
4458 
4459 static int perf_event_read(struct perf_event *event, bool group)
4460 {
4461 	enum perf_event_state state = READ_ONCE(event->state);
4462 	int event_cpu, ret = 0;
4463 
4464 	/*
4465 	 * If event is enabled and currently active on a CPU, update the
4466 	 * value in the event structure:
4467 	 */
4468 again:
4469 	if (state == PERF_EVENT_STATE_ACTIVE) {
4470 		struct perf_read_data data;
4471 
4472 		/*
4473 		 * Orders the ->state and ->oncpu loads such that if we see
4474 		 * ACTIVE we must also see the right ->oncpu.
4475 		 *
4476 		 * Matches the smp_wmb() from event_sched_in().
4477 		 */
4478 		smp_rmb();
4479 
4480 		event_cpu = READ_ONCE(event->oncpu);
4481 		if ((unsigned)event_cpu >= nr_cpu_ids)
4482 			return 0;
4483 
4484 		data = (struct perf_read_data){
4485 			.event = event,
4486 			.group = group,
4487 			.ret = 0,
4488 		};
4489 
4490 		preempt_disable();
4491 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4492 
4493 		/*
4494 		 * Purposely ignore the smp_call_function_single() return
4495 		 * value.
4496 		 *
4497 		 * If event_cpu isn't a valid CPU it means the event got
4498 		 * scheduled out and that will have updated the event count.
4499 		 *
4500 		 * Therefore, either way, we'll have an up-to-date event count
4501 		 * after this.
4502 		 */
4503 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4504 		preempt_enable();
4505 		ret = data.ret;
4506 
4507 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4508 		struct perf_event_context *ctx = event->ctx;
4509 		unsigned long flags;
4510 
4511 		raw_spin_lock_irqsave(&ctx->lock, flags);
4512 		state = event->state;
4513 		if (state != PERF_EVENT_STATE_INACTIVE) {
4514 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4515 			goto again;
4516 		}
4517 
4518 		/*
4519 		 * May read while context is not active (e.g., thread is
4520 		 * blocked), in that case we cannot update context time
4521 		 */
4522 		if (ctx->is_active & EVENT_TIME) {
4523 			update_context_time(ctx);
4524 			update_cgrp_time_from_event(event);
4525 		}
4526 
4527 		perf_event_update_time(event);
4528 		if (group)
4529 			perf_event_update_sibling_time(event);
4530 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4531 	}
4532 
4533 	return ret;
4534 }
4535 
4536 /*
4537  * Initialize the perf_event context in a task_struct:
4538  */
4539 static void __perf_event_init_context(struct perf_event_context *ctx)
4540 {
4541 	raw_spin_lock_init(&ctx->lock);
4542 	mutex_init(&ctx->mutex);
4543 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4544 	perf_event_groups_init(&ctx->pinned_groups);
4545 	perf_event_groups_init(&ctx->flexible_groups);
4546 	INIT_LIST_HEAD(&ctx->event_list);
4547 	INIT_LIST_HEAD(&ctx->pinned_active);
4548 	INIT_LIST_HEAD(&ctx->flexible_active);
4549 	refcount_set(&ctx->refcount, 1);
4550 }
4551 
4552 static struct perf_event_context *
4553 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4554 {
4555 	struct perf_event_context *ctx;
4556 
4557 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4558 	if (!ctx)
4559 		return NULL;
4560 
4561 	__perf_event_init_context(ctx);
4562 	if (task)
4563 		ctx->task = get_task_struct(task);
4564 	ctx->pmu = pmu;
4565 
4566 	return ctx;
4567 }
4568 
4569 static struct task_struct *
4570 find_lively_task_by_vpid(pid_t vpid)
4571 {
4572 	struct task_struct *task;
4573 
4574 	rcu_read_lock();
4575 	if (!vpid)
4576 		task = current;
4577 	else
4578 		task = find_task_by_vpid(vpid);
4579 	if (task)
4580 		get_task_struct(task);
4581 	rcu_read_unlock();
4582 
4583 	if (!task)
4584 		return ERR_PTR(-ESRCH);
4585 
4586 	return task;
4587 }
4588 
4589 /*
4590  * Returns a matching context with refcount and pincount.
4591  */
4592 static struct perf_event_context *
4593 find_get_context(struct pmu *pmu, struct task_struct *task,
4594 		struct perf_event *event)
4595 {
4596 	struct perf_event_context *ctx, *clone_ctx = NULL;
4597 	struct perf_cpu_context *cpuctx;
4598 	void *task_ctx_data = NULL;
4599 	unsigned long flags;
4600 	int ctxn, err;
4601 	int cpu = event->cpu;
4602 
4603 	if (!task) {
4604 		/* Must be root to operate on a CPU event: */
4605 		err = perf_allow_cpu(&event->attr);
4606 		if (err)
4607 			return ERR_PTR(err);
4608 
4609 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4610 		ctx = &cpuctx->ctx;
4611 		get_ctx(ctx);
4612 		++ctx->pin_count;
4613 
4614 		return ctx;
4615 	}
4616 
4617 	err = -EINVAL;
4618 	ctxn = pmu->task_ctx_nr;
4619 	if (ctxn < 0)
4620 		goto errout;
4621 
4622 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4623 		task_ctx_data = alloc_task_ctx_data(pmu);
4624 		if (!task_ctx_data) {
4625 			err = -ENOMEM;
4626 			goto errout;
4627 		}
4628 	}
4629 
4630 retry:
4631 	ctx = perf_lock_task_context(task, ctxn, &flags);
4632 	if (ctx) {
4633 		clone_ctx = unclone_ctx(ctx);
4634 		++ctx->pin_count;
4635 
4636 		if (task_ctx_data && !ctx->task_ctx_data) {
4637 			ctx->task_ctx_data = task_ctx_data;
4638 			task_ctx_data = NULL;
4639 		}
4640 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4641 
4642 		if (clone_ctx)
4643 			put_ctx(clone_ctx);
4644 	} else {
4645 		ctx = alloc_perf_context(pmu, task);
4646 		err = -ENOMEM;
4647 		if (!ctx)
4648 			goto errout;
4649 
4650 		if (task_ctx_data) {
4651 			ctx->task_ctx_data = task_ctx_data;
4652 			task_ctx_data = NULL;
4653 		}
4654 
4655 		err = 0;
4656 		mutex_lock(&task->perf_event_mutex);
4657 		/*
4658 		 * If it has already passed perf_event_exit_task().
4659 		 * we must see PF_EXITING, it takes this mutex too.
4660 		 */
4661 		if (task->flags & PF_EXITING)
4662 			err = -ESRCH;
4663 		else if (task->perf_event_ctxp[ctxn])
4664 			err = -EAGAIN;
4665 		else {
4666 			get_ctx(ctx);
4667 			++ctx->pin_count;
4668 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4669 		}
4670 		mutex_unlock(&task->perf_event_mutex);
4671 
4672 		if (unlikely(err)) {
4673 			put_ctx(ctx);
4674 
4675 			if (err == -EAGAIN)
4676 				goto retry;
4677 			goto errout;
4678 		}
4679 	}
4680 
4681 	free_task_ctx_data(pmu, task_ctx_data);
4682 	return ctx;
4683 
4684 errout:
4685 	free_task_ctx_data(pmu, task_ctx_data);
4686 	return ERR_PTR(err);
4687 }
4688 
4689 static void perf_event_free_filter(struct perf_event *event);
4690 static void perf_event_free_bpf_prog(struct perf_event *event);
4691 
4692 static void free_event_rcu(struct rcu_head *head)
4693 {
4694 	struct perf_event *event;
4695 
4696 	event = container_of(head, struct perf_event, rcu_head);
4697 	if (event->ns)
4698 		put_pid_ns(event->ns);
4699 	perf_event_free_filter(event);
4700 	kmem_cache_free(perf_event_cache, event);
4701 }
4702 
4703 static void ring_buffer_attach(struct perf_event *event,
4704 			       struct perf_buffer *rb);
4705 
4706 static void detach_sb_event(struct perf_event *event)
4707 {
4708 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4709 
4710 	raw_spin_lock(&pel->lock);
4711 	list_del_rcu(&event->sb_list);
4712 	raw_spin_unlock(&pel->lock);
4713 }
4714 
4715 static bool is_sb_event(struct perf_event *event)
4716 {
4717 	struct perf_event_attr *attr = &event->attr;
4718 
4719 	if (event->parent)
4720 		return false;
4721 
4722 	if (event->attach_state & PERF_ATTACH_TASK)
4723 		return false;
4724 
4725 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4726 	    attr->comm || attr->comm_exec ||
4727 	    attr->task || attr->ksymbol ||
4728 	    attr->context_switch || attr->text_poke ||
4729 	    attr->bpf_event)
4730 		return true;
4731 	return false;
4732 }
4733 
4734 static void unaccount_pmu_sb_event(struct perf_event *event)
4735 {
4736 	if (is_sb_event(event))
4737 		detach_sb_event(event);
4738 }
4739 
4740 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4741 {
4742 	if (event->parent)
4743 		return;
4744 
4745 	if (is_cgroup_event(event))
4746 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4747 }
4748 
4749 #ifdef CONFIG_NO_HZ_FULL
4750 static DEFINE_SPINLOCK(nr_freq_lock);
4751 #endif
4752 
4753 static void unaccount_freq_event_nohz(void)
4754 {
4755 #ifdef CONFIG_NO_HZ_FULL
4756 	spin_lock(&nr_freq_lock);
4757 	if (atomic_dec_and_test(&nr_freq_events))
4758 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4759 	spin_unlock(&nr_freq_lock);
4760 #endif
4761 }
4762 
4763 static void unaccount_freq_event(void)
4764 {
4765 	if (tick_nohz_full_enabled())
4766 		unaccount_freq_event_nohz();
4767 	else
4768 		atomic_dec(&nr_freq_events);
4769 }
4770 
4771 static void unaccount_event(struct perf_event *event)
4772 {
4773 	bool dec = false;
4774 
4775 	if (event->parent)
4776 		return;
4777 
4778 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4779 		dec = true;
4780 	if (event->attr.mmap || event->attr.mmap_data)
4781 		atomic_dec(&nr_mmap_events);
4782 	if (event->attr.build_id)
4783 		atomic_dec(&nr_build_id_events);
4784 	if (event->attr.comm)
4785 		atomic_dec(&nr_comm_events);
4786 	if (event->attr.namespaces)
4787 		atomic_dec(&nr_namespaces_events);
4788 	if (event->attr.cgroup)
4789 		atomic_dec(&nr_cgroup_events);
4790 	if (event->attr.task)
4791 		atomic_dec(&nr_task_events);
4792 	if (event->attr.freq)
4793 		unaccount_freq_event();
4794 	if (event->attr.context_switch) {
4795 		dec = true;
4796 		atomic_dec(&nr_switch_events);
4797 	}
4798 	if (is_cgroup_event(event))
4799 		dec = true;
4800 	if (has_branch_stack(event))
4801 		dec = true;
4802 	if (event->attr.ksymbol)
4803 		atomic_dec(&nr_ksymbol_events);
4804 	if (event->attr.bpf_event)
4805 		atomic_dec(&nr_bpf_events);
4806 	if (event->attr.text_poke)
4807 		atomic_dec(&nr_text_poke_events);
4808 
4809 	if (dec) {
4810 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4811 			schedule_delayed_work(&perf_sched_work, HZ);
4812 	}
4813 
4814 	unaccount_event_cpu(event, event->cpu);
4815 
4816 	unaccount_pmu_sb_event(event);
4817 }
4818 
4819 static void perf_sched_delayed(struct work_struct *work)
4820 {
4821 	mutex_lock(&perf_sched_mutex);
4822 	if (atomic_dec_and_test(&perf_sched_count))
4823 		static_branch_disable(&perf_sched_events);
4824 	mutex_unlock(&perf_sched_mutex);
4825 }
4826 
4827 /*
4828  * The following implement mutual exclusion of events on "exclusive" pmus
4829  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4830  * at a time, so we disallow creating events that might conflict, namely:
4831  *
4832  *  1) cpu-wide events in the presence of per-task events,
4833  *  2) per-task events in the presence of cpu-wide events,
4834  *  3) two matching events on the same context.
4835  *
4836  * The former two cases are handled in the allocation path (perf_event_alloc(),
4837  * _free_event()), the latter -- before the first perf_install_in_context().
4838  */
4839 static int exclusive_event_init(struct perf_event *event)
4840 {
4841 	struct pmu *pmu = event->pmu;
4842 
4843 	if (!is_exclusive_pmu(pmu))
4844 		return 0;
4845 
4846 	/*
4847 	 * Prevent co-existence of per-task and cpu-wide events on the
4848 	 * same exclusive pmu.
4849 	 *
4850 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4851 	 * events on this "exclusive" pmu, positive means there are
4852 	 * per-task events.
4853 	 *
4854 	 * Since this is called in perf_event_alloc() path, event::ctx
4855 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4856 	 * to mean "per-task event", because unlike other attach states it
4857 	 * never gets cleared.
4858 	 */
4859 	if (event->attach_state & PERF_ATTACH_TASK) {
4860 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4861 			return -EBUSY;
4862 	} else {
4863 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4864 			return -EBUSY;
4865 	}
4866 
4867 	return 0;
4868 }
4869 
4870 static void exclusive_event_destroy(struct perf_event *event)
4871 {
4872 	struct pmu *pmu = event->pmu;
4873 
4874 	if (!is_exclusive_pmu(pmu))
4875 		return;
4876 
4877 	/* see comment in exclusive_event_init() */
4878 	if (event->attach_state & PERF_ATTACH_TASK)
4879 		atomic_dec(&pmu->exclusive_cnt);
4880 	else
4881 		atomic_inc(&pmu->exclusive_cnt);
4882 }
4883 
4884 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4885 {
4886 	if ((e1->pmu == e2->pmu) &&
4887 	    (e1->cpu == e2->cpu ||
4888 	     e1->cpu == -1 ||
4889 	     e2->cpu == -1))
4890 		return true;
4891 	return false;
4892 }
4893 
4894 static bool exclusive_event_installable(struct perf_event *event,
4895 					struct perf_event_context *ctx)
4896 {
4897 	struct perf_event *iter_event;
4898 	struct pmu *pmu = event->pmu;
4899 
4900 	lockdep_assert_held(&ctx->mutex);
4901 
4902 	if (!is_exclusive_pmu(pmu))
4903 		return true;
4904 
4905 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4906 		if (exclusive_event_match(iter_event, event))
4907 			return false;
4908 	}
4909 
4910 	return true;
4911 }
4912 
4913 static void perf_addr_filters_splice(struct perf_event *event,
4914 				       struct list_head *head);
4915 
4916 static void _free_event(struct perf_event *event)
4917 {
4918 	irq_work_sync(&event->pending);
4919 
4920 	unaccount_event(event);
4921 
4922 	security_perf_event_free(event);
4923 
4924 	if (event->rb) {
4925 		/*
4926 		 * Can happen when we close an event with re-directed output.
4927 		 *
4928 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4929 		 * over us; possibly making our ring_buffer_put() the last.
4930 		 */
4931 		mutex_lock(&event->mmap_mutex);
4932 		ring_buffer_attach(event, NULL);
4933 		mutex_unlock(&event->mmap_mutex);
4934 	}
4935 
4936 	if (is_cgroup_event(event))
4937 		perf_detach_cgroup(event);
4938 
4939 	if (!event->parent) {
4940 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4941 			put_callchain_buffers();
4942 	}
4943 
4944 	perf_event_free_bpf_prog(event);
4945 	perf_addr_filters_splice(event, NULL);
4946 	kfree(event->addr_filter_ranges);
4947 
4948 	if (event->destroy)
4949 		event->destroy(event);
4950 
4951 	/*
4952 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4953 	 * hw.target.
4954 	 */
4955 	if (event->hw.target)
4956 		put_task_struct(event->hw.target);
4957 
4958 	/*
4959 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4960 	 * all task references must be cleaned up.
4961 	 */
4962 	if (event->ctx)
4963 		put_ctx(event->ctx);
4964 
4965 	exclusive_event_destroy(event);
4966 	module_put(event->pmu->module);
4967 
4968 	call_rcu(&event->rcu_head, free_event_rcu);
4969 }
4970 
4971 /*
4972  * Used to free events which have a known refcount of 1, such as in error paths
4973  * where the event isn't exposed yet and inherited events.
4974  */
4975 static void free_event(struct perf_event *event)
4976 {
4977 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4978 				"unexpected event refcount: %ld; ptr=%p\n",
4979 				atomic_long_read(&event->refcount), event)) {
4980 		/* leak to avoid use-after-free */
4981 		return;
4982 	}
4983 
4984 	_free_event(event);
4985 }
4986 
4987 /*
4988  * Remove user event from the owner task.
4989  */
4990 static void perf_remove_from_owner(struct perf_event *event)
4991 {
4992 	struct task_struct *owner;
4993 
4994 	rcu_read_lock();
4995 	/*
4996 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4997 	 * observe !owner it means the list deletion is complete and we can
4998 	 * indeed free this event, otherwise we need to serialize on
4999 	 * owner->perf_event_mutex.
5000 	 */
5001 	owner = READ_ONCE(event->owner);
5002 	if (owner) {
5003 		/*
5004 		 * Since delayed_put_task_struct() also drops the last
5005 		 * task reference we can safely take a new reference
5006 		 * while holding the rcu_read_lock().
5007 		 */
5008 		get_task_struct(owner);
5009 	}
5010 	rcu_read_unlock();
5011 
5012 	if (owner) {
5013 		/*
5014 		 * If we're here through perf_event_exit_task() we're already
5015 		 * holding ctx->mutex which would be an inversion wrt. the
5016 		 * normal lock order.
5017 		 *
5018 		 * However we can safely take this lock because its the child
5019 		 * ctx->mutex.
5020 		 */
5021 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5022 
5023 		/*
5024 		 * We have to re-check the event->owner field, if it is cleared
5025 		 * we raced with perf_event_exit_task(), acquiring the mutex
5026 		 * ensured they're done, and we can proceed with freeing the
5027 		 * event.
5028 		 */
5029 		if (event->owner) {
5030 			list_del_init(&event->owner_entry);
5031 			smp_store_release(&event->owner, NULL);
5032 		}
5033 		mutex_unlock(&owner->perf_event_mutex);
5034 		put_task_struct(owner);
5035 	}
5036 }
5037 
5038 static void put_event(struct perf_event *event)
5039 {
5040 	if (!atomic_long_dec_and_test(&event->refcount))
5041 		return;
5042 
5043 	_free_event(event);
5044 }
5045 
5046 /*
5047  * Kill an event dead; while event:refcount will preserve the event
5048  * object, it will not preserve its functionality. Once the last 'user'
5049  * gives up the object, we'll destroy the thing.
5050  */
5051 int perf_event_release_kernel(struct perf_event *event)
5052 {
5053 	struct perf_event_context *ctx = event->ctx;
5054 	struct perf_event *child, *tmp;
5055 	LIST_HEAD(free_list);
5056 
5057 	/*
5058 	 * If we got here through err_file: fput(event_file); we will not have
5059 	 * attached to a context yet.
5060 	 */
5061 	if (!ctx) {
5062 		WARN_ON_ONCE(event->attach_state &
5063 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5064 		goto no_ctx;
5065 	}
5066 
5067 	if (!is_kernel_event(event))
5068 		perf_remove_from_owner(event);
5069 
5070 	ctx = perf_event_ctx_lock(event);
5071 	WARN_ON_ONCE(ctx->parent_ctx);
5072 	perf_remove_from_context(event, DETACH_GROUP);
5073 
5074 	raw_spin_lock_irq(&ctx->lock);
5075 	/*
5076 	 * Mark this event as STATE_DEAD, there is no external reference to it
5077 	 * anymore.
5078 	 *
5079 	 * Anybody acquiring event->child_mutex after the below loop _must_
5080 	 * also see this, most importantly inherit_event() which will avoid
5081 	 * placing more children on the list.
5082 	 *
5083 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5084 	 * child events.
5085 	 */
5086 	event->state = PERF_EVENT_STATE_DEAD;
5087 	raw_spin_unlock_irq(&ctx->lock);
5088 
5089 	perf_event_ctx_unlock(event, ctx);
5090 
5091 again:
5092 	mutex_lock(&event->child_mutex);
5093 	list_for_each_entry(child, &event->child_list, child_list) {
5094 
5095 		/*
5096 		 * Cannot change, child events are not migrated, see the
5097 		 * comment with perf_event_ctx_lock_nested().
5098 		 */
5099 		ctx = READ_ONCE(child->ctx);
5100 		/*
5101 		 * Since child_mutex nests inside ctx::mutex, we must jump
5102 		 * through hoops. We start by grabbing a reference on the ctx.
5103 		 *
5104 		 * Since the event cannot get freed while we hold the
5105 		 * child_mutex, the context must also exist and have a !0
5106 		 * reference count.
5107 		 */
5108 		get_ctx(ctx);
5109 
5110 		/*
5111 		 * Now that we have a ctx ref, we can drop child_mutex, and
5112 		 * acquire ctx::mutex without fear of it going away. Then we
5113 		 * can re-acquire child_mutex.
5114 		 */
5115 		mutex_unlock(&event->child_mutex);
5116 		mutex_lock(&ctx->mutex);
5117 		mutex_lock(&event->child_mutex);
5118 
5119 		/*
5120 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5121 		 * state, if child is still the first entry, it didn't get freed
5122 		 * and we can continue doing so.
5123 		 */
5124 		tmp = list_first_entry_or_null(&event->child_list,
5125 					       struct perf_event, child_list);
5126 		if (tmp == child) {
5127 			perf_remove_from_context(child, DETACH_GROUP);
5128 			list_move(&child->child_list, &free_list);
5129 			/*
5130 			 * This matches the refcount bump in inherit_event();
5131 			 * this can't be the last reference.
5132 			 */
5133 			put_event(event);
5134 		}
5135 
5136 		mutex_unlock(&event->child_mutex);
5137 		mutex_unlock(&ctx->mutex);
5138 		put_ctx(ctx);
5139 		goto again;
5140 	}
5141 	mutex_unlock(&event->child_mutex);
5142 
5143 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5144 		void *var = &child->ctx->refcount;
5145 
5146 		list_del(&child->child_list);
5147 		free_event(child);
5148 
5149 		/*
5150 		 * Wake any perf_event_free_task() waiting for this event to be
5151 		 * freed.
5152 		 */
5153 		smp_mb(); /* pairs with wait_var_event() */
5154 		wake_up_var(var);
5155 	}
5156 
5157 no_ctx:
5158 	put_event(event); /* Must be the 'last' reference */
5159 	return 0;
5160 }
5161 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5162 
5163 /*
5164  * Called when the last reference to the file is gone.
5165  */
5166 static int perf_release(struct inode *inode, struct file *file)
5167 {
5168 	perf_event_release_kernel(file->private_data);
5169 	return 0;
5170 }
5171 
5172 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5173 {
5174 	struct perf_event *child;
5175 	u64 total = 0;
5176 
5177 	*enabled = 0;
5178 	*running = 0;
5179 
5180 	mutex_lock(&event->child_mutex);
5181 
5182 	(void)perf_event_read(event, false);
5183 	total += perf_event_count(event);
5184 
5185 	*enabled += event->total_time_enabled +
5186 			atomic64_read(&event->child_total_time_enabled);
5187 	*running += event->total_time_running +
5188 			atomic64_read(&event->child_total_time_running);
5189 
5190 	list_for_each_entry(child, &event->child_list, child_list) {
5191 		(void)perf_event_read(child, false);
5192 		total += perf_event_count(child);
5193 		*enabled += child->total_time_enabled;
5194 		*running += child->total_time_running;
5195 	}
5196 	mutex_unlock(&event->child_mutex);
5197 
5198 	return total;
5199 }
5200 
5201 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5202 {
5203 	struct perf_event_context *ctx;
5204 	u64 count;
5205 
5206 	ctx = perf_event_ctx_lock(event);
5207 	count = __perf_event_read_value(event, enabled, running);
5208 	perf_event_ctx_unlock(event, ctx);
5209 
5210 	return count;
5211 }
5212 EXPORT_SYMBOL_GPL(perf_event_read_value);
5213 
5214 static int __perf_read_group_add(struct perf_event *leader,
5215 					u64 read_format, u64 *values)
5216 {
5217 	struct perf_event_context *ctx = leader->ctx;
5218 	struct perf_event *sub;
5219 	unsigned long flags;
5220 	int n = 1; /* skip @nr */
5221 	int ret;
5222 
5223 	ret = perf_event_read(leader, true);
5224 	if (ret)
5225 		return ret;
5226 
5227 	raw_spin_lock_irqsave(&ctx->lock, flags);
5228 
5229 	/*
5230 	 * Since we co-schedule groups, {enabled,running} times of siblings
5231 	 * will be identical to those of the leader, so we only publish one
5232 	 * set.
5233 	 */
5234 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5235 		values[n++] += leader->total_time_enabled +
5236 			atomic64_read(&leader->child_total_time_enabled);
5237 	}
5238 
5239 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5240 		values[n++] += leader->total_time_running +
5241 			atomic64_read(&leader->child_total_time_running);
5242 	}
5243 
5244 	/*
5245 	 * Write {count,id} tuples for every sibling.
5246 	 */
5247 	values[n++] += perf_event_count(leader);
5248 	if (read_format & PERF_FORMAT_ID)
5249 		values[n++] = primary_event_id(leader);
5250 
5251 	for_each_sibling_event(sub, leader) {
5252 		values[n++] += perf_event_count(sub);
5253 		if (read_format & PERF_FORMAT_ID)
5254 			values[n++] = primary_event_id(sub);
5255 	}
5256 
5257 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5258 	return 0;
5259 }
5260 
5261 static int perf_read_group(struct perf_event *event,
5262 				   u64 read_format, char __user *buf)
5263 {
5264 	struct perf_event *leader = event->group_leader, *child;
5265 	struct perf_event_context *ctx = leader->ctx;
5266 	int ret;
5267 	u64 *values;
5268 
5269 	lockdep_assert_held(&ctx->mutex);
5270 
5271 	values = kzalloc(event->read_size, GFP_KERNEL);
5272 	if (!values)
5273 		return -ENOMEM;
5274 
5275 	values[0] = 1 + leader->nr_siblings;
5276 
5277 	/*
5278 	 * By locking the child_mutex of the leader we effectively
5279 	 * lock the child list of all siblings.. XXX explain how.
5280 	 */
5281 	mutex_lock(&leader->child_mutex);
5282 
5283 	ret = __perf_read_group_add(leader, read_format, values);
5284 	if (ret)
5285 		goto unlock;
5286 
5287 	list_for_each_entry(child, &leader->child_list, child_list) {
5288 		ret = __perf_read_group_add(child, read_format, values);
5289 		if (ret)
5290 			goto unlock;
5291 	}
5292 
5293 	mutex_unlock(&leader->child_mutex);
5294 
5295 	ret = event->read_size;
5296 	if (copy_to_user(buf, values, event->read_size))
5297 		ret = -EFAULT;
5298 	goto out;
5299 
5300 unlock:
5301 	mutex_unlock(&leader->child_mutex);
5302 out:
5303 	kfree(values);
5304 	return ret;
5305 }
5306 
5307 static int perf_read_one(struct perf_event *event,
5308 				 u64 read_format, char __user *buf)
5309 {
5310 	u64 enabled, running;
5311 	u64 values[4];
5312 	int n = 0;
5313 
5314 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5315 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5316 		values[n++] = enabled;
5317 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5318 		values[n++] = running;
5319 	if (read_format & PERF_FORMAT_ID)
5320 		values[n++] = primary_event_id(event);
5321 
5322 	if (copy_to_user(buf, values, n * sizeof(u64)))
5323 		return -EFAULT;
5324 
5325 	return n * sizeof(u64);
5326 }
5327 
5328 static bool is_event_hup(struct perf_event *event)
5329 {
5330 	bool no_children;
5331 
5332 	if (event->state > PERF_EVENT_STATE_EXIT)
5333 		return false;
5334 
5335 	mutex_lock(&event->child_mutex);
5336 	no_children = list_empty(&event->child_list);
5337 	mutex_unlock(&event->child_mutex);
5338 	return no_children;
5339 }
5340 
5341 /*
5342  * Read the performance event - simple non blocking version for now
5343  */
5344 static ssize_t
5345 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5346 {
5347 	u64 read_format = event->attr.read_format;
5348 	int ret;
5349 
5350 	/*
5351 	 * Return end-of-file for a read on an event that is in
5352 	 * error state (i.e. because it was pinned but it couldn't be
5353 	 * scheduled on to the CPU at some point).
5354 	 */
5355 	if (event->state == PERF_EVENT_STATE_ERROR)
5356 		return 0;
5357 
5358 	if (count < event->read_size)
5359 		return -ENOSPC;
5360 
5361 	WARN_ON_ONCE(event->ctx->parent_ctx);
5362 	if (read_format & PERF_FORMAT_GROUP)
5363 		ret = perf_read_group(event, read_format, buf);
5364 	else
5365 		ret = perf_read_one(event, read_format, buf);
5366 
5367 	return ret;
5368 }
5369 
5370 static ssize_t
5371 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5372 {
5373 	struct perf_event *event = file->private_data;
5374 	struct perf_event_context *ctx;
5375 	int ret;
5376 
5377 	ret = security_perf_event_read(event);
5378 	if (ret)
5379 		return ret;
5380 
5381 	ctx = perf_event_ctx_lock(event);
5382 	ret = __perf_read(event, buf, count);
5383 	perf_event_ctx_unlock(event, ctx);
5384 
5385 	return ret;
5386 }
5387 
5388 static __poll_t perf_poll(struct file *file, poll_table *wait)
5389 {
5390 	struct perf_event *event = file->private_data;
5391 	struct perf_buffer *rb;
5392 	__poll_t events = EPOLLHUP;
5393 
5394 	poll_wait(file, &event->waitq, wait);
5395 
5396 	if (is_event_hup(event))
5397 		return events;
5398 
5399 	/*
5400 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5401 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5402 	 */
5403 	mutex_lock(&event->mmap_mutex);
5404 	rb = event->rb;
5405 	if (rb)
5406 		events = atomic_xchg(&rb->poll, 0);
5407 	mutex_unlock(&event->mmap_mutex);
5408 	return events;
5409 }
5410 
5411 static void _perf_event_reset(struct perf_event *event)
5412 {
5413 	(void)perf_event_read(event, false);
5414 	local64_set(&event->count, 0);
5415 	perf_event_update_userpage(event);
5416 }
5417 
5418 /* Assume it's not an event with inherit set. */
5419 u64 perf_event_pause(struct perf_event *event, bool reset)
5420 {
5421 	struct perf_event_context *ctx;
5422 	u64 count;
5423 
5424 	ctx = perf_event_ctx_lock(event);
5425 	WARN_ON_ONCE(event->attr.inherit);
5426 	_perf_event_disable(event);
5427 	count = local64_read(&event->count);
5428 	if (reset)
5429 		local64_set(&event->count, 0);
5430 	perf_event_ctx_unlock(event, ctx);
5431 
5432 	return count;
5433 }
5434 EXPORT_SYMBOL_GPL(perf_event_pause);
5435 
5436 /*
5437  * Holding the top-level event's child_mutex means that any
5438  * descendant process that has inherited this event will block
5439  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5440  * task existence requirements of perf_event_enable/disable.
5441  */
5442 static void perf_event_for_each_child(struct perf_event *event,
5443 					void (*func)(struct perf_event *))
5444 {
5445 	struct perf_event *child;
5446 
5447 	WARN_ON_ONCE(event->ctx->parent_ctx);
5448 
5449 	mutex_lock(&event->child_mutex);
5450 	func(event);
5451 	list_for_each_entry(child, &event->child_list, child_list)
5452 		func(child);
5453 	mutex_unlock(&event->child_mutex);
5454 }
5455 
5456 static void perf_event_for_each(struct perf_event *event,
5457 				  void (*func)(struct perf_event *))
5458 {
5459 	struct perf_event_context *ctx = event->ctx;
5460 	struct perf_event *sibling;
5461 
5462 	lockdep_assert_held(&ctx->mutex);
5463 
5464 	event = event->group_leader;
5465 
5466 	perf_event_for_each_child(event, func);
5467 	for_each_sibling_event(sibling, event)
5468 		perf_event_for_each_child(sibling, func);
5469 }
5470 
5471 static void __perf_event_period(struct perf_event *event,
5472 				struct perf_cpu_context *cpuctx,
5473 				struct perf_event_context *ctx,
5474 				void *info)
5475 {
5476 	u64 value = *((u64 *)info);
5477 	bool active;
5478 
5479 	if (event->attr.freq) {
5480 		event->attr.sample_freq = value;
5481 	} else {
5482 		event->attr.sample_period = value;
5483 		event->hw.sample_period = value;
5484 	}
5485 
5486 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5487 	if (active) {
5488 		perf_pmu_disable(ctx->pmu);
5489 		/*
5490 		 * We could be throttled; unthrottle now to avoid the tick
5491 		 * trying to unthrottle while we already re-started the event.
5492 		 */
5493 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5494 			event->hw.interrupts = 0;
5495 			perf_log_throttle(event, 1);
5496 		}
5497 		event->pmu->stop(event, PERF_EF_UPDATE);
5498 	}
5499 
5500 	local64_set(&event->hw.period_left, 0);
5501 
5502 	if (active) {
5503 		event->pmu->start(event, PERF_EF_RELOAD);
5504 		perf_pmu_enable(ctx->pmu);
5505 	}
5506 }
5507 
5508 static int perf_event_check_period(struct perf_event *event, u64 value)
5509 {
5510 	return event->pmu->check_period(event, value);
5511 }
5512 
5513 static int _perf_event_period(struct perf_event *event, u64 value)
5514 {
5515 	if (!is_sampling_event(event))
5516 		return -EINVAL;
5517 
5518 	if (!value)
5519 		return -EINVAL;
5520 
5521 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5522 		return -EINVAL;
5523 
5524 	if (perf_event_check_period(event, value))
5525 		return -EINVAL;
5526 
5527 	if (!event->attr.freq && (value & (1ULL << 63)))
5528 		return -EINVAL;
5529 
5530 	event_function_call(event, __perf_event_period, &value);
5531 
5532 	return 0;
5533 }
5534 
5535 int perf_event_period(struct perf_event *event, u64 value)
5536 {
5537 	struct perf_event_context *ctx;
5538 	int ret;
5539 
5540 	ctx = perf_event_ctx_lock(event);
5541 	ret = _perf_event_period(event, value);
5542 	perf_event_ctx_unlock(event, ctx);
5543 
5544 	return ret;
5545 }
5546 EXPORT_SYMBOL_GPL(perf_event_period);
5547 
5548 static const struct file_operations perf_fops;
5549 
5550 static inline int perf_fget_light(int fd, struct fd *p)
5551 {
5552 	struct fd f = fdget(fd);
5553 	if (!f.file)
5554 		return -EBADF;
5555 
5556 	if (f.file->f_op != &perf_fops) {
5557 		fdput(f);
5558 		return -EBADF;
5559 	}
5560 	*p = f;
5561 	return 0;
5562 }
5563 
5564 static int perf_event_set_output(struct perf_event *event,
5565 				 struct perf_event *output_event);
5566 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5567 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5568 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5569 			  struct perf_event_attr *attr);
5570 
5571 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5572 {
5573 	void (*func)(struct perf_event *);
5574 	u32 flags = arg;
5575 
5576 	switch (cmd) {
5577 	case PERF_EVENT_IOC_ENABLE:
5578 		func = _perf_event_enable;
5579 		break;
5580 	case PERF_EVENT_IOC_DISABLE:
5581 		func = _perf_event_disable;
5582 		break;
5583 	case PERF_EVENT_IOC_RESET:
5584 		func = _perf_event_reset;
5585 		break;
5586 
5587 	case PERF_EVENT_IOC_REFRESH:
5588 		return _perf_event_refresh(event, arg);
5589 
5590 	case PERF_EVENT_IOC_PERIOD:
5591 	{
5592 		u64 value;
5593 
5594 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5595 			return -EFAULT;
5596 
5597 		return _perf_event_period(event, value);
5598 	}
5599 	case PERF_EVENT_IOC_ID:
5600 	{
5601 		u64 id = primary_event_id(event);
5602 
5603 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5604 			return -EFAULT;
5605 		return 0;
5606 	}
5607 
5608 	case PERF_EVENT_IOC_SET_OUTPUT:
5609 	{
5610 		int ret;
5611 		if (arg != -1) {
5612 			struct perf_event *output_event;
5613 			struct fd output;
5614 			ret = perf_fget_light(arg, &output);
5615 			if (ret)
5616 				return ret;
5617 			output_event = output.file->private_data;
5618 			ret = perf_event_set_output(event, output_event);
5619 			fdput(output);
5620 		} else {
5621 			ret = perf_event_set_output(event, NULL);
5622 		}
5623 		return ret;
5624 	}
5625 
5626 	case PERF_EVENT_IOC_SET_FILTER:
5627 		return perf_event_set_filter(event, (void __user *)arg);
5628 
5629 	case PERF_EVENT_IOC_SET_BPF:
5630 		return perf_event_set_bpf_prog(event, arg);
5631 
5632 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5633 		struct perf_buffer *rb;
5634 
5635 		rcu_read_lock();
5636 		rb = rcu_dereference(event->rb);
5637 		if (!rb || !rb->nr_pages) {
5638 			rcu_read_unlock();
5639 			return -EINVAL;
5640 		}
5641 		rb_toggle_paused(rb, !!arg);
5642 		rcu_read_unlock();
5643 		return 0;
5644 	}
5645 
5646 	case PERF_EVENT_IOC_QUERY_BPF:
5647 		return perf_event_query_prog_array(event, (void __user *)arg);
5648 
5649 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5650 		struct perf_event_attr new_attr;
5651 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5652 					 &new_attr);
5653 
5654 		if (err)
5655 			return err;
5656 
5657 		return perf_event_modify_attr(event,  &new_attr);
5658 	}
5659 	default:
5660 		return -ENOTTY;
5661 	}
5662 
5663 	if (flags & PERF_IOC_FLAG_GROUP)
5664 		perf_event_for_each(event, func);
5665 	else
5666 		perf_event_for_each_child(event, func);
5667 
5668 	return 0;
5669 }
5670 
5671 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5672 {
5673 	struct perf_event *event = file->private_data;
5674 	struct perf_event_context *ctx;
5675 	long ret;
5676 
5677 	/* Treat ioctl like writes as it is likely a mutating operation. */
5678 	ret = security_perf_event_write(event);
5679 	if (ret)
5680 		return ret;
5681 
5682 	ctx = perf_event_ctx_lock(event);
5683 	ret = _perf_ioctl(event, cmd, arg);
5684 	perf_event_ctx_unlock(event, ctx);
5685 
5686 	return ret;
5687 }
5688 
5689 #ifdef CONFIG_COMPAT
5690 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5691 				unsigned long arg)
5692 {
5693 	switch (_IOC_NR(cmd)) {
5694 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5695 	case _IOC_NR(PERF_EVENT_IOC_ID):
5696 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5697 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5698 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5699 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5700 			cmd &= ~IOCSIZE_MASK;
5701 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5702 		}
5703 		break;
5704 	}
5705 	return perf_ioctl(file, cmd, arg);
5706 }
5707 #else
5708 # define perf_compat_ioctl NULL
5709 #endif
5710 
5711 int perf_event_task_enable(void)
5712 {
5713 	struct perf_event_context *ctx;
5714 	struct perf_event *event;
5715 
5716 	mutex_lock(&current->perf_event_mutex);
5717 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5718 		ctx = perf_event_ctx_lock(event);
5719 		perf_event_for_each_child(event, _perf_event_enable);
5720 		perf_event_ctx_unlock(event, ctx);
5721 	}
5722 	mutex_unlock(&current->perf_event_mutex);
5723 
5724 	return 0;
5725 }
5726 
5727 int perf_event_task_disable(void)
5728 {
5729 	struct perf_event_context *ctx;
5730 	struct perf_event *event;
5731 
5732 	mutex_lock(&current->perf_event_mutex);
5733 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5734 		ctx = perf_event_ctx_lock(event);
5735 		perf_event_for_each_child(event, _perf_event_disable);
5736 		perf_event_ctx_unlock(event, ctx);
5737 	}
5738 	mutex_unlock(&current->perf_event_mutex);
5739 
5740 	return 0;
5741 }
5742 
5743 static int perf_event_index(struct perf_event *event)
5744 {
5745 	if (event->hw.state & PERF_HES_STOPPED)
5746 		return 0;
5747 
5748 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5749 		return 0;
5750 
5751 	return event->pmu->event_idx(event);
5752 }
5753 
5754 static void calc_timer_values(struct perf_event *event,
5755 				u64 *now,
5756 				u64 *enabled,
5757 				u64 *running)
5758 {
5759 	u64 ctx_time;
5760 
5761 	*now = perf_clock();
5762 	ctx_time = event->shadow_ctx_time + *now;
5763 	__perf_update_times(event, ctx_time, enabled, running);
5764 }
5765 
5766 static void perf_event_init_userpage(struct perf_event *event)
5767 {
5768 	struct perf_event_mmap_page *userpg;
5769 	struct perf_buffer *rb;
5770 
5771 	rcu_read_lock();
5772 	rb = rcu_dereference(event->rb);
5773 	if (!rb)
5774 		goto unlock;
5775 
5776 	userpg = rb->user_page;
5777 
5778 	/* Allow new userspace to detect that bit 0 is deprecated */
5779 	userpg->cap_bit0_is_deprecated = 1;
5780 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5781 	userpg->data_offset = PAGE_SIZE;
5782 	userpg->data_size = perf_data_size(rb);
5783 
5784 unlock:
5785 	rcu_read_unlock();
5786 }
5787 
5788 void __weak arch_perf_update_userpage(
5789 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5790 {
5791 }
5792 
5793 /*
5794  * Callers need to ensure there can be no nesting of this function, otherwise
5795  * the seqlock logic goes bad. We can not serialize this because the arch
5796  * code calls this from NMI context.
5797  */
5798 void perf_event_update_userpage(struct perf_event *event)
5799 {
5800 	struct perf_event_mmap_page *userpg;
5801 	struct perf_buffer *rb;
5802 	u64 enabled, running, now;
5803 
5804 	rcu_read_lock();
5805 	rb = rcu_dereference(event->rb);
5806 	if (!rb)
5807 		goto unlock;
5808 
5809 	/*
5810 	 * compute total_time_enabled, total_time_running
5811 	 * based on snapshot values taken when the event
5812 	 * was last scheduled in.
5813 	 *
5814 	 * we cannot simply called update_context_time()
5815 	 * because of locking issue as we can be called in
5816 	 * NMI context
5817 	 */
5818 	calc_timer_values(event, &now, &enabled, &running);
5819 
5820 	userpg = rb->user_page;
5821 	/*
5822 	 * Disable preemption to guarantee consistent time stamps are stored to
5823 	 * the user page.
5824 	 */
5825 	preempt_disable();
5826 	++userpg->lock;
5827 	barrier();
5828 	userpg->index = perf_event_index(event);
5829 	userpg->offset = perf_event_count(event);
5830 	if (userpg->index)
5831 		userpg->offset -= local64_read(&event->hw.prev_count);
5832 
5833 	userpg->time_enabled = enabled +
5834 			atomic64_read(&event->child_total_time_enabled);
5835 
5836 	userpg->time_running = running +
5837 			atomic64_read(&event->child_total_time_running);
5838 
5839 	arch_perf_update_userpage(event, userpg, now);
5840 
5841 	barrier();
5842 	++userpg->lock;
5843 	preempt_enable();
5844 unlock:
5845 	rcu_read_unlock();
5846 }
5847 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5848 
5849 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5850 {
5851 	struct perf_event *event = vmf->vma->vm_file->private_data;
5852 	struct perf_buffer *rb;
5853 	vm_fault_t ret = VM_FAULT_SIGBUS;
5854 
5855 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5856 		if (vmf->pgoff == 0)
5857 			ret = 0;
5858 		return ret;
5859 	}
5860 
5861 	rcu_read_lock();
5862 	rb = rcu_dereference(event->rb);
5863 	if (!rb)
5864 		goto unlock;
5865 
5866 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5867 		goto unlock;
5868 
5869 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5870 	if (!vmf->page)
5871 		goto unlock;
5872 
5873 	get_page(vmf->page);
5874 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5875 	vmf->page->index   = vmf->pgoff;
5876 
5877 	ret = 0;
5878 unlock:
5879 	rcu_read_unlock();
5880 
5881 	return ret;
5882 }
5883 
5884 static void ring_buffer_attach(struct perf_event *event,
5885 			       struct perf_buffer *rb)
5886 {
5887 	struct perf_buffer *old_rb = NULL;
5888 	unsigned long flags;
5889 
5890 	if (event->rb) {
5891 		/*
5892 		 * Should be impossible, we set this when removing
5893 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5894 		 */
5895 		WARN_ON_ONCE(event->rcu_pending);
5896 
5897 		old_rb = event->rb;
5898 		spin_lock_irqsave(&old_rb->event_lock, flags);
5899 		list_del_rcu(&event->rb_entry);
5900 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5901 
5902 		event->rcu_batches = get_state_synchronize_rcu();
5903 		event->rcu_pending = 1;
5904 	}
5905 
5906 	if (rb) {
5907 		if (event->rcu_pending) {
5908 			cond_synchronize_rcu(event->rcu_batches);
5909 			event->rcu_pending = 0;
5910 		}
5911 
5912 		spin_lock_irqsave(&rb->event_lock, flags);
5913 		list_add_rcu(&event->rb_entry, &rb->event_list);
5914 		spin_unlock_irqrestore(&rb->event_lock, flags);
5915 	}
5916 
5917 	/*
5918 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5919 	 * before swizzling the event::rb pointer; if it's getting
5920 	 * unmapped, its aux_mmap_count will be 0 and it won't
5921 	 * restart. See the comment in __perf_pmu_output_stop().
5922 	 *
5923 	 * Data will inevitably be lost when set_output is done in
5924 	 * mid-air, but then again, whoever does it like this is
5925 	 * not in for the data anyway.
5926 	 */
5927 	if (has_aux(event))
5928 		perf_event_stop(event, 0);
5929 
5930 	rcu_assign_pointer(event->rb, rb);
5931 
5932 	if (old_rb) {
5933 		ring_buffer_put(old_rb);
5934 		/*
5935 		 * Since we detached before setting the new rb, so that we
5936 		 * could attach the new rb, we could have missed a wakeup.
5937 		 * Provide it now.
5938 		 */
5939 		wake_up_all(&event->waitq);
5940 	}
5941 }
5942 
5943 static void ring_buffer_wakeup(struct perf_event *event)
5944 {
5945 	struct perf_buffer *rb;
5946 
5947 	rcu_read_lock();
5948 	rb = rcu_dereference(event->rb);
5949 	if (rb) {
5950 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5951 			wake_up_all(&event->waitq);
5952 	}
5953 	rcu_read_unlock();
5954 }
5955 
5956 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5957 {
5958 	struct perf_buffer *rb;
5959 
5960 	rcu_read_lock();
5961 	rb = rcu_dereference(event->rb);
5962 	if (rb) {
5963 		if (!refcount_inc_not_zero(&rb->refcount))
5964 			rb = NULL;
5965 	}
5966 	rcu_read_unlock();
5967 
5968 	return rb;
5969 }
5970 
5971 void ring_buffer_put(struct perf_buffer *rb)
5972 {
5973 	if (!refcount_dec_and_test(&rb->refcount))
5974 		return;
5975 
5976 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5977 
5978 	call_rcu(&rb->rcu_head, rb_free_rcu);
5979 }
5980 
5981 static void perf_mmap_open(struct vm_area_struct *vma)
5982 {
5983 	struct perf_event *event = vma->vm_file->private_data;
5984 
5985 	atomic_inc(&event->mmap_count);
5986 	atomic_inc(&event->rb->mmap_count);
5987 
5988 	if (vma->vm_pgoff)
5989 		atomic_inc(&event->rb->aux_mmap_count);
5990 
5991 	if (event->pmu->event_mapped)
5992 		event->pmu->event_mapped(event, vma->vm_mm);
5993 }
5994 
5995 static void perf_pmu_output_stop(struct perf_event *event);
5996 
5997 /*
5998  * A buffer can be mmap()ed multiple times; either directly through the same
5999  * event, or through other events by use of perf_event_set_output().
6000  *
6001  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6002  * the buffer here, where we still have a VM context. This means we need
6003  * to detach all events redirecting to us.
6004  */
6005 static void perf_mmap_close(struct vm_area_struct *vma)
6006 {
6007 	struct perf_event *event = vma->vm_file->private_data;
6008 	struct perf_buffer *rb = ring_buffer_get(event);
6009 	struct user_struct *mmap_user = rb->mmap_user;
6010 	int mmap_locked = rb->mmap_locked;
6011 	unsigned long size = perf_data_size(rb);
6012 	bool detach_rest = false;
6013 
6014 	if (event->pmu->event_unmapped)
6015 		event->pmu->event_unmapped(event, vma->vm_mm);
6016 
6017 	/*
6018 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6019 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6020 	 * serialize with perf_mmap here.
6021 	 */
6022 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6023 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6024 		/*
6025 		 * Stop all AUX events that are writing to this buffer,
6026 		 * so that we can free its AUX pages and corresponding PMU
6027 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6028 		 * they won't start any more (see perf_aux_output_begin()).
6029 		 */
6030 		perf_pmu_output_stop(event);
6031 
6032 		/* now it's safe to free the pages */
6033 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6034 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6035 
6036 		/* this has to be the last one */
6037 		rb_free_aux(rb);
6038 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6039 
6040 		mutex_unlock(&event->mmap_mutex);
6041 	}
6042 
6043 	if (atomic_dec_and_test(&rb->mmap_count))
6044 		detach_rest = true;
6045 
6046 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6047 		goto out_put;
6048 
6049 	ring_buffer_attach(event, NULL);
6050 	mutex_unlock(&event->mmap_mutex);
6051 
6052 	/* If there's still other mmap()s of this buffer, we're done. */
6053 	if (!detach_rest)
6054 		goto out_put;
6055 
6056 	/*
6057 	 * No other mmap()s, detach from all other events that might redirect
6058 	 * into the now unreachable buffer. Somewhat complicated by the
6059 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6060 	 */
6061 again:
6062 	rcu_read_lock();
6063 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6064 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6065 			/*
6066 			 * This event is en-route to free_event() which will
6067 			 * detach it and remove it from the list.
6068 			 */
6069 			continue;
6070 		}
6071 		rcu_read_unlock();
6072 
6073 		mutex_lock(&event->mmap_mutex);
6074 		/*
6075 		 * Check we didn't race with perf_event_set_output() which can
6076 		 * swizzle the rb from under us while we were waiting to
6077 		 * acquire mmap_mutex.
6078 		 *
6079 		 * If we find a different rb; ignore this event, a next
6080 		 * iteration will no longer find it on the list. We have to
6081 		 * still restart the iteration to make sure we're not now
6082 		 * iterating the wrong list.
6083 		 */
6084 		if (event->rb == rb)
6085 			ring_buffer_attach(event, NULL);
6086 
6087 		mutex_unlock(&event->mmap_mutex);
6088 		put_event(event);
6089 
6090 		/*
6091 		 * Restart the iteration; either we're on the wrong list or
6092 		 * destroyed its integrity by doing a deletion.
6093 		 */
6094 		goto again;
6095 	}
6096 	rcu_read_unlock();
6097 
6098 	/*
6099 	 * It could be there's still a few 0-ref events on the list; they'll
6100 	 * get cleaned up by free_event() -- they'll also still have their
6101 	 * ref on the rb and will free it whenever they are done with it.
6102 	 *
6103 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6104 	 * undo the VM accounting.
6105 	 */
6106 
6107 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6108 			&mmap_user->locked_vm);
6109 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6110 	free_uid(mmap_user);
6111 
6112 out_put:
6113 	ring_buffer_put(rb); /* could be last */
6114 }
6115 
6116 static const struct vm_operations_struct perf_mmap_vmops = {
6117 	.open		= perf_mmap_open,
6118 	.close		= perf_mmap_close, /* non mergeable */
6119 	.fault		= perf_mmap_fault,
6120 	.page_mkwrite	= perf_mmap_fault,
6121 };
6122 
6123 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6124 {
6125 	struct perf_event *event = file->private_data;
6126 	unsigned long user_locked, user_lock_limit;
6127 	struct user_struct *user = current_user();
6128 	struct perf_buffer *rb = NULL;
6129 	unsigned long locked, lock_limit;
6130 	unsigned long vma_size;
6131 	unsigned long nr_pages;
6132 	long user_extra = 0, extra = 0;
6133 	int ret = 0, flags = 0;
6134 
6135 	/*
6136 	 * Don't allow mmap() of inherited per-task counters. This would
6137 	 * create a performance issue due to all children writing to the
6138 	 * same rb.
6139 	 */
6140 	if (event->cpu == -1 && event->attr.inherit)
6141 		return -EINVAL;
6142 
6143 	if (!(vma->vm_flags & VM_SHARED))
6144 		return -EINVAL;
6145 
6146 	ret = security_perf_event_read(event);
6147 	if (ret)
6148 		return ret;
6149 
6150 	vma_size = vma->vm_end - vma->vm_start;
6151 
6152 	if (vma->vm_pgoff == 0) {
6153 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6154 	} else {
6155 		/*
6156 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6157 		 * mapped, all subsequent mappings should have the same size
6158 		 * and offset. Must be above the normal perf buffer.
6159 		 */
6160 		u64 aux_offset, aux_size;
6161 
6162 		if (!event->rb)
6163 			return -EINVAL;
6164 
6165 		nr_pages = vma_size / PAGE_SIZE;
6166 
6167 		mutex_lock(&event->mmap_mutex);
6168 		ret = -EINVAL;
6169 
6170 		rb = event->rb;
6171 		if (!rb)
6172 			goto aux_unlock;
6173 
6174 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6175 		aux_size = READ_ONCE(rb->user_page->aux_size);
6176 
6177 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6178 			goto aux_unlock;
6179 
6180 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6181 			goto aux_unlock;
6182 
6183 		/* already mapped with a different offset */
6184 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6185 			goto aux_unlock;
6186 
6187 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6188 			goto aux_unlock;
6189 
6190 		/* already mapped with a different size */
6191 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6192 			goto aux_unlock;
6193 
6194 		if (!is_power_of_2(nr_pages))
6195 			goto aux_unlock;
6196 
6197 		if (!atomic_inc_not_zero(&rb->mmap_count))
6198 			goto aux_unlock;
6199 
6200 		if (rb_has_aux(rb)) {
6201 			atomic_inc(&rb->aux_mmap_count);
6202 			ret = 0;
6203 			goto unlock;
6204 		}
6205 
6206 		atomic_set(&rb->aux_mmap_count, 1);
6207 		user_extra = nr_pages;
6208 
6209 		goto accounting;
6210 	}
6211 
6212 	/*
6213 	 * If we have rb pages ensure they're a power-of-two number, so we
6214 	 * can do bitmasks instead of modulo.
6215 	 */
6216 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6217 		return -EINVAL;
6218 
6219 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6220 		return -EINVAL;
6221 
6222 	WARN_ON_ONCE(event->ctx->parent_ctx);
6223 again:
6224 	mutex_lock(&event->mmap_mutex);
6225 	if (event->rb) {
6226 		if (event->rb->nr_pages != nr_pages) {
6227 			ret = -EINVAL;
6228 			goto unlock;
6229 		}
6230 
6231 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6232 			/*
6233 			 * Raced against perf_mmap_close() through
6234 			 * perf_event_set_output(). Try again, hope for better
6235 			 * luck.
6236 			 */
6237 			mutex_unlock(&event->mmap_mutex);
6238 			goto again;
6239 		}
6240 
6241 		goto unlock;
6242 	}
6243 
6244 	user_extra = nr_pages + 1;
6245 
6246 accounting:
6247 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6248 
6249 	/*
6250 	 * Increase the limit linearly with more CPUs:
6251 	 */
6252 	user_lock_limit *= num_online_cpus();
6253 
6254 	user_locked = atomic_long_read(&user->locked_vm);
6255 
6256 	/*
6257 	 * sysctl_perf_event_mlock may have changed, so that
6258 	 *     user->locked_vm > user_lock_limit
6259 	 */
6260 	if (user_locked > user_lock_limit)
6261 		user_locked = user_lock_limit;
6262 	user_locked += user_extra;
6263 
6264 	if (user_locked > user_lock_limit) {
6265 		/*
6266 		 * charge locked_vm until it hits user_lock_limit;
6267 		 * charge the rest from pinned_vm
6268 		 */
6269 		extra = user_locked - user_lock_limit;
6270 		user_extra -= extra;
6271 	}
6272 
6273 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6274 	lock_limit >>= PAGE_SHIFT;
6275 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6276 
6277 	if ((locked > lock_limit) && perf_is_paranoid() &&
6278 		!capable(CAP_IPC_LOCK)) {
6279 		ret = -EPERM;
6280 		goto unlock;
6281 	}
6282 
6283 	WARN_ON(!rb && event->rb);
6284 
6285 	if (vma->vm_flags & VM_WRITE)
6286 		flags |= RING_BUFFER_WRITABLE;
6287 
6288 	if (!rb) {
6289 		rb = rb_alloc(nr_pages,
6290 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6291 			      event->cpu, flags);
6292 
6293 		if (!rb) {
6294 			ret = -ENOMEM;
6295 			goto unlock;
6296 		}
6297 
6298 		atomic_set(&rb->mmap_count, 1);
6299 		rb->mmap_user = get_current_user();
6300 		rb->mmap_locked = extra;
6301 
6302 		ring_buffer_attach(event, rb);
6303 
6304 		perf_event_init_userpage(event);
6305 		perf_event_update_userpage(event);
6306 	} else {
6307 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6308 				   event->attr.aux_watermark, flags);
6309 		if (!ret)
6310 			rb->aux_mmap_locked = extra;
6311 	}
6312 
6313 unlock:
6314 	if (!ret) {
6315 		atomic_long_add(user_extra, &user->locked_vm);
6316 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6317 
6318 		atomic_inc(&event->mmap_count);
6319 	} else if (rb) {
6320 		atomic_dec(&rb->mmap_count);
6321 	}
6322 aux_unlock:
6323 	mutex_unlock(&event->mmap_mutex);
6324 
6325 	/*
6326 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6327 	 * vma.
6328 	 */
6329 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6330 	vma->vm_ops = &perf_mmap_vmops;
6331 
6332 	if (event->pmu->event_mapped)
6333 		event->pmu->event_mapped(event, vma->vm_mm);
6334 
6335 	return ret;
6336 }
6337 
6338 static int perf_fasync(int fd, struct file *filp, int on)
6339 {
6340 	struct inode *inode = file_inode(filp);
6341 	struct perf_event *event = filp->private_data;
6342 	int retval;
6343 
6344 	inode_lock(inode);
6345 	retval = fasync_helper(fd, filp, on, &event->fasync);
6346 	inode_unlock(inode);
6347 
6348 	if (retval < 0)
6349 		return retval;
6350 
6351 	return 0;
6352 }
6353 
6354 static const struct file_operations perf_fops = {
6355 	.llseek			= no_llseek,
6356 	.release		= perf_release,
6357 	.read			= perf_read,
6358 	.poll			= perf_poll,
6359 	.unlocked_ioctl		= perf_ioctl,
6360 	.compat_ioctl		= perf_compat_ioctl,
6361 	.mmap			= perf_mmap,
6362 	.fasync			= perf_fasync,
6363 };
6364 
6365 /*
6366  * Perf event wakeup
6367  *
6368  * If there's data, ensure we set the poll() state and publish everything
6369  * to user-space before waking everybody up.
6370  */
6371 
6372 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6373 {
6374 	/* only the parent has fasync state */
6375 	if (event->parent)
6376 		event = event->parent;
6377 	return &event->fasync;
6378 }
6379 
6380 void perf_event_wakeup(struct perf_event *event)
6381 {
6382 	ring_buffer_wakeup(event);
6383 
6384 	if (event->pending_kill) {
6385 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6386 		event->pending_kill = 0;
6387 	}
6388 }
6389 
6390 static void perf_sigtrap(struct perf_event *event)
6391 {
6392 	/*
6393 	 * We'd expect this to only occur if the irq_work is delayed and either
6394 	 * ctx->task or current has changed in the meantime. This can be the
6395 	 * case on architectures that do not implement arch_irq_work_raise().
6396 	 */
6397 	if (WARN_ON_ONCE(event->ctx->task != current))
6398 		return;
6399 
6400 	/*
6401 	 * perf_pending_event() can race with the task exiting.
6402 	 */
6403 	if (current->flags & PF_EXITING)
6404 		return;
6405 
6406 	force_sig_perf((void __user *)event->pending_addr,
6407 		       event->attr.type, event->attr.sig_data);
6408 }
6409 
6410 static void perf_pending_event_disable(struct perf_event *event)
6411 {
6412 	int cpu = READ_ONCE(event->pending_disable);
6413 
6414 	if (cpu < 0)
6415 		return;
6416 
6417 	if (cpu == smp_processor_id()) {
6418 		WRITE_ONCE(event->pending_disable, -1);
6419 
6420 		if (event->attr.sigtrap) {
6421 			perf_sigtrap(event);
6422 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6423 			return;
6424 		}
6425 
6426 		perf_event_disable_local(event);
6427 		return;
6428 	}
6429 
6430 	/*
6431 	 *  CPU-A			CPU-B
6432 	 *
6433 	 *  perf_event_disable_inatomic()
6434 	 *    @pending_disable = CPU-A;
6435 	 *    irq_work_queue();
6436 	 *
6437 	 *  sched-out
6438 	 *    @pending_disable = -1;
6439 	 *
6440 	 *				sched-in
6441 	 *				perf_event_disable_inatomic()
6442 	 *				  @pending_disable = CPU-B;
6443 	 *				  irq_work_queue(); // FAILS
6444 	 *
6445 	 *  irq_work_run()
6446 	 *    perf_pending_event()
6447 	 *
6448 	 * But the event runs on CPU-B and wants disabling there.
6449 	 */
6450 	irq_work_queue_on(&event->pending, cpu);
6451 }
6452 
6453 static void perf_pending_event(struct irq_work *entry)
6454 {
6455 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6456 	int rctx;
6457 
6458 	rctx = perf_swevent_get_recursion_context();
6459 	/*
6460 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6461 	 * and we won't recurse 'further'.
6462 	 */
6463 
6464 	perf_pending_event_disable(event);
6465 
6466 	if (event->pending_wakeup) {
6467 		event->pending_wakeup = 0;
6468 		perf_event_wakeup(event);
6469 	}
6470 
6471 	if (rctx >= 0)
6472 		perf_swevent_put_recursion_context(rctx);
6473 }
6474 
6475 /*
6476  * We assume there is only KVM supporting the callbacks.
6477  * Later on, we might change it to a list if there is
6478  * another virtualization implementation supporting the callbacks.
6479  */
6480 struct perf_guest_info_callbacks *perf_guest_cbs;
6481 
6482 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6483 {
6484 	perf_guest_cbs = cbs;
6485 	return 0;
6486 }
6487 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6488 
6489 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6490 {
6491 	perf_guest_cbs = NULL;
6492 	return 0;
6493 }
6494 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6495 
6496 static void
6497 perf_output_sample_regs(struct perf_output_handle *handle,
6498 			struct pt_regs *regs, u64 mask)
6499 {
6500 	int bit;
6501 	DECLARE_BITMAP(_mask, 64);
6502 
6503 	bitmap_from_u64(_mask, mask);
6504 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6505 		u64 val;
6506 
6507 		val = perf_reg_value(regs, bit);
6508 		perf_output_put(handle, val);
6509 	}
6510 }
6511 
6512 static void perf_sample_regs_user(struct perf_regs *regs_user,
6513 				  struct pt_regs *regs)
6514 {
6515 	if (user_mode(regs)) {
6516 		regs_user->abi = perf_reg_abi(current);
6517 		regs_user->regs = regs;
6518 	} else if (!(current->flags & PF_KTHREAD)) {
6519 		perf_get_regs_user(regs_user, regs);
6520 	} else {
6521 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6522 		regs_user->regs = NULL;
6523 	}
6524 }
6525 
6526 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6527 				  struct pt_regs *regs)
6528 {
6529 	regs_intr->regs = regs;
6530 	regs_intr->abi  = perf_reg_abi(current);
6531 }
6532 
6533 
6534 /*
6535  * Get remaining task size from user stack pointer.
6536  *
6537  * It'd be better to take stack vma map and limit this more
6538  * precisely, but there's no way to get it safely under interrupt,
6539  * so using TASK_SIZE as limit.
6540  */
6541 static u64 perf_ustack_task_size(struct pt_regs *regs)
6542 {
6543 	unsigned long addr = perf_user_stack_pointer(regs);
6544 
6545 	if (!addr || addr >= TASK_SIZE)
6546 		return 0;
6547 
6548 	return TASK_SIZE - addr;
6549 }
6550 
6551 static u16
6552 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6553 			struct pt_regs *regs)
6554 {
6555 	u64 task_size;
6556 
6557 	/* No regs, no stack pointer, no dump. */
6558 	if (!regs)
6559 		return 0;
6560 
6561 	/*
6562 	 * Check if we fit in with the requested stack size into the:
6563 	 * - TASK_SIZE
6564 	 *   If we don't, we limit the size to the TASK_SIZE.
6565 	 *
6566 	 * - remaining sample size
6567 	 *   If we don't, we customize the stack size to
6568 	 *   fit in to the remaining sample size.
6569 	 */
6570 
6571 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6572 	stack_size = min(stack_size, (u16) task_size);
6573 
6574 	/* Current header size plus static size and dynamic size. */
6575 	header_size += 2 * sizeof(u64);
6576 
6577 	/* Do we fit in with the current stack dump size? */
6578 	if ((u16) (header_size + stack_size) < header_size) {
6579 		/*
6580 		 * If we overflow the maximum size for the sample,
6581 		 * we customize the stack dump size to fit in.
6582 		 */
6583 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6584 		stack_size = round_up(stack_size, sizeof(u64));
6585 	}
6586 
6587 	return stack_size;
6588 }
6589 
6590 static void
6591 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6592 			  struct pt_regs *regs)
6593 {
6594 	/* Case of a kernel thread, nothing to dump */
6595 	if (!regs) {
6596 		u64 size = 0;
6597 		perf_output_put(handle, size);
6598 	} else {
6599 		unsigned long sp;
6600 		unsigned int rem;
6601 		u64 dyn_size;
6602 		mm_segment_t fs;
6603 
6604 		/*
6605 		 * We dump:
6606 		 * static size
6607 		 *   - the size requested by user or the best one we can fit
6608 		 *     in to the sample max size
6609 		 * data
6610 		 *   - user stack dump data
6611 		 * dynamic size
6612 		 *   - the actual dumped size
6613 		 */
6614 
6615 		/* Static size. */
6616 		perf_output_put(handle, dump_size);
6617 
6618 		/* Data. */
6619 		sp = perf_user_stack_pointer(regs);
6620 		fs = force_uaccess_begin();
6621 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6622 		force_uaccess_end(fs);
6623 		dyn_size = dump_size - rem;
6624 
6625 		perf_output_skip(handle, rem);
6626 
6627 		/* Dynamic size. */
6628 		perf_output_put(handle, dyn_size);
6629 	}
6630 }
6631 
6632 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6633 					  struct perf_sample_data *data,
6634 					  size_t size)
6635 {
6636 	struct perf_event *sampler = event->aux_event;
6637 	struct perf_buffer *rb;
6638 
6639 	data->aux_size = 0;
6640 
6641 	if (!sampler)
6642 		goto out;
6643 
6644 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6645 		goto out;
6646 
6647 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6648 		goto out;
6649 
6650 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6651 	if (!rb)
6652 		goto out;
6653 
6654 	/*
6655 	 * If this is an NMI hit inside sampling code, don't take
6656 	 * the sample. See also perf_aux_sample_output().
6657 	 */
6658 	if (READ_ONCE(rb->aux_in_sampling)) {
6659 		data->aux_size = 0;
6660 	} else {
6661 		size = min_t(size_t, size, perf_aux_size(rb));
6662 		data->aux_size = ALIGN(size, sizeof(u64));
6663 	}
6664 	ring_buffer_put(rb);
6665 
6666 out:
6667 	return data->aux_size;
6668 }
6669 
6670 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6671 			   struct perf_event *event,
6672 			   struct perf_output_handle *handle,
6673 			   unsigned long size)
6674 {
6675 	unsigned long flags;
6676 	long ret;
6677 
6678 	/*
6679 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6680 	 * paths. If we start calling them in NMI context, they may race with
6681 	 * the IRQ ones, that is, for example, re-starting an event that's just
6682 	 * been stopped, which is why we're using a separate callback that
6683 	 * doesn't change the event state.
6684 	 *
6685 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6686 	 */
6687 	local_irq_save(flags);
6688 	/*
6689 	 * Guard against NMI hits inside the critical section;
6690 	 * see also perf_prepare_sample_aux().
6691 	 */
6692 	WRITE_ONCE(rb->aux_in_sampling, 1);
6693 	barrier();
6694 
6695 	ret = event->pmu->snapshot_aux(event, handle, size);
6696 
6697 	barrier();
6698 	WRITE_ONCE(rb->aux_in_sampling, 0);
6699 	local_irq_restore(flags);
6700 
6701 	return ret;
6702 }
6703 
6704 static void perf_aux_sample_output(struct perf_event *event,
6705 				   struct perf_output_handle *handle,
6706 				   struct perf_sample_data *data)
6707 {
6708 	struct perf_event *sampler = event->aux_event;
6709 	struct perf_buffer *rb;
6710 	unsigned long pad;
6711 	long size;
6712 
6713 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6714 		return;
6715 
6716 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6717 	if (!rb)
6718 		return;
6719 
6720 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6721 
6722 	/*
6723 	 * An error here means that perf_output_copy() failed (returned a
6724 	 * non-zero surplus that it didn't copy), which in its current
6725 	 * enlightened implementation is not possible. If that changes, we'd
6726 	 * like to know.
6727 	 */
6728 	if (WARN_ON_ONCE(size < 0))
6729 		goto out_put;
6730 
6731 	/*
6732 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6733 	 * perf_prepare_sample_aux(), so should not be more than that.
6734 	 */
6735 	pad = data->aux_size - size;
6736 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6737 		pad = 8;
6738 
6739 	if (pad) {
6740 		u64 zero = 0;
6741 		perf_output_copy(handle, &zero, pad);
6742 	}
6743 
6744 out_put:
6745 	ring_buffer_put(rb);
6746 }
6747 
6748 static void __perf_event_header__init_id(struct perf_event_header *header,
6749 					 struct perf_sample_data *data,
6750 					 struct perf_event *event)
6751 {
6752 	u64 sample_type = event->attr.sample_type;
6753 
6754 	data->type = sample_type;
6755 	header->size += event->id_header_size;
6756 
6757 	if (sample_type & PERF_SAMPLE_TID) {
6758 		/* namespace issues */
6759 		data->tid_entry.pid = perf_event_pid(event, current);
6760 		data->tid_entry.tid = perf_event_tid(event, current);
6761 	}
6762 
6763 	if (sample_type & PERF_SAMPLE_TIME)
6764 		data->time = perf_event_clock(event);
6765 
6766 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6767 		data->id = primary_event_id(event);
6768 
6769 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6770 		data->stream_id = event->id;
6771 
6772 	if (sample_type & PERF_SAMPLE_CPU) {
6773 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6774 		data->cpu_entry.reserved = 0;
6775 	}
6776 }
6777 
6778 void perf_event_header__init_id(struct perf_event_header *header,
6779 				struct perf_sample_data *data,
6780 				struct perf_event *event)
6781 {
6782 	if (event->attr.sample_id_all)
6783 		__perf_event_header__init_id(header, data, event);
6784 }
6785 
6786 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6787 					   struct perf_sample_data *data)
6788 {
6789 	u64 sample_type = data->type;
6790 
6791 	if (sample_type & PERF_SAMPLE_TID)
6792 		perf_output_put(handle, data->tid_entry);
6793 
6794 	if (sample_type & PERF_SAMPLE_TIME)
6795 		perf_output_put(handle, data->time);
6796 
6797 	if (sample_type & PERF_SAMPLE_ID)
6798 		perf_output_put(handle, data->id);
6799 
6800 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6801 		perf_output_put(handle, data->stream_id);
6802 
6803 	if (sample_type & PERF_SAMPLE_CPU)
6804 		perf_output_put(handle, data->cpu_entry);
6805 
6806 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6807 		perf_output_put(handle, data->id);
6808 }
6809 
6810 void perf_event__output_id_sample(struct perf_event *event,
6811 				  struct perf_output_handle *handle,
6812 				  struct perf_sample_data *sample)
6813 {
6814 	if (event->attr.sample_id_all)
6815 		__perf_event__output_id_sample(handle, sample);
6816 }
6817 
6818 static void perf_output_read_one(struct perf_output_handle *handle,
6819 				 struct perf_event *event,
6820 				 u64 enabled, u64 running)
6821 {
6822 	u64 read_format = event->attr.read_format;
6823 	u64 values[4];
6824 	int n = 0;
6825 
6826 	values[n++] = perf_event_count(event);
6827 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6828 		values[n++] = enabled +
6829 			atomic64_read(&event->child_total_time_enabled);
6830 	}
6831 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6832 		values[n++] = running +
6833 			atomic64_read(&event->child_total_time_running);
6834 	}
6835 	if (read_format & PERF_FORMAT_ID)
6836 		values[n++] = primary_event_id(event);
6837 
6838 	__output_copy(handle, values, n * sizeof(u64));
6839 }
6840 
6841 static void perf_output_read_group(struct perf_output_handle *handle,
6842 			    struct perf_event *event,
6843 			    u64 enabled, u64 running)
6844 {
6845 	struct perf_event *leader = event->group_leader, *sub;
6846 	u64 read_format = event->attr.read_format;
6847 	u64 values[5];
6848 	int n = 0;
6849 
6850 	values[n++] = 1 + leader->nr_siblings;
6851 
6852 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6853 		values[n++] = enabled;
6854 
6855 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6856 		values[n++] = running;
6857 
6858 	if ((leader != event) &&
6859 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6860 		leader->pmu->read(leader);
6861 
6862 	values[n++] = perf_event_count(leader);
6863 	if (read_format & PERF_FORMAT_ID)
6864 		values[n++] = primary_event_id(leader);
6865 
6866 	__output_copy(handle, values, n * sizeof(u64));
6867 
6868 	for_each_sibling_event(sub, leader) {
6869 		n = 0;
6870 
6871 		if ((sub != event) &&
6872 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6873 			sub->pmu->read(sub);
6874 
6875 		values[n++] = perf_event_count(sub);
6876 		if (read_format & PERF_FORMAT_ID)
6877 			values[n++] = primary_event_id(sub);
6878 
6879 		__output_copy(handle, values, n * sizeof(u64));
6880 	}
6881 }
6882 
6883 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6884 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6885 
6886 /*
6887  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6888  *
6889  * The problem is that its both hard and excessively expensive to iterate the
6890  * child list, not to mention that its impossible to IPI the children running
6891  * on another CPU, from interrupt/NMI context.
6892  */
6893 static void perf_output_read(struct perf_output_handle *handle,
6894 			     struct perf_event *event)
6895 {
6896 	u64 enabled = 0, running = 0, now;
6897 	u64 read_format = event->attr.read_format;
6898 
6899 	/*
6900 	 * compute total_time_enabled, total_time_running
6901 	 * based on snapshot values taken when the event
6902 	 * was last scheduled in.
6903 	 *
6904 	 * we cannot simply called update_context_time()
6905 	 * because of locking issue as we are called in
6906 	 * NMI context
6907 	 */
6908 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6909 		calc_timer_values(event, &now, &enabled, &running);
6910 
6911 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6912 		perf_output_read_group(handle, event, enabled, running);
6913 	else
6914 		perf_output_read_one(handle, event, enabled, running);
6915 }
6916 
6917 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6918 {
6919 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6920 }
6921 
6922 void perf_output_sample(struct perf_output_handle *handle,
6923 			struct perf_event_header *header,
6924 			struct perf_sample_data *data,
6925 			struct perf_event *event)
6926 {
6927 	u64 sample_type = data->type;
6928 
6929 	perf_output_put(handle, *header);
6930 
6931 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6932 		perf_output_put(handle, data->id);
6933 
6934 	if (sample_type & PERF_SAMPLE_IP)
6935 		perf_output_put(handle, data->ip);
6936 
6937 	if (sample_type & PERF_SAMPLE_TID)
6938 		perf_output_put(handle, data->tid_entry);
6939 
6940 	if (sample_type & PERF_SAMPLE_TIME)
6941 		perf_output_put(handle, data->time);
6942 
6943 	if (sample_type & PERF_SAMPLE_ADDR)
6944 		perf_output_put(handle, data->addr);
6945 
6946 	if (sample_type & PERF_SAMPLE_ID)
6947 		perf_output_put(handle, data->id);
6948 
6949 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6950 		perf_output_put(handle, data->stream_id);
6951 
6952 	if (sample_type & PERF_SAMPLE_CPU)
6953 		perf_output_put(handle, data->cpu_entry);
6954 
6955 	if (sample_type & PERF_SAMPLE_PERIOD)
6956 		perf_output_put(handle, data->period);
6957 
6958 	if (sample_type & PERF_SAMPLE_READ)
6959 		perf_output_read(handle, event);
6960 
6961 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6962 		int size = 1;
6963 
6964 		size += data->callchain->nr;
6965 		size *= sizeof(u64);
6966 		__output_copy(handle, data->callchain, size);
6967 	}
6968 
6969 	if (sample_type & PERF_SAMPLE_RAW) {
6970 		struct perf_raw_record *raw = data->raw;
6971 
6972 		if (raw) {
6973 			struct perf_raw_frag *frag = &raw->frag;
6974 
6975 			perf_output_put(handle, raw->size);
6976 			do {
6977 				if (frag->copy) {
6978 					__output_custom(handle, frag->copy,
6979 							frag->data, frag->size);
6980 				} else {
6981 					__output_copy(handle, frag->data,
6982 						      frag->size);
6983 				}
6984 				if (perf_raw_frag_last(frag))
6985 					break;
6986 				frag = frag->next;
6987 			} while (1);
6988 			if (frag->pad)
6989 				__output_skip(handle, NULL, frag->pad);
6990 		} else {
6991 			struct {
6992 				u32	size;
6993 				u32	data;
6994 			} raw = {
6995 				.size = sizeof(u32),
6996 				.data = 0,
6997 			};
6998 			perf_output_put(handle, raw);
6999 		}
7000 	}
7001 
7002 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7003 		if (data->br_stack) {
7004 			size_t size;
7005 
7006 			size = data->br_stack->nr
7007 			     * sizeof(struct perf_branch_entry);
7008 
7009 			perf_output_put(handle, data->br_stack->nr);
7010 			if (perf_sample_save_hw_index(event))
7011 				perf_output_put(handle, data->br_stack->hw_idx);
7012 			perf_output_copy(handle, data->br_stack->entries, size);
7013 		} else {
7014 			/*
7015 			 * we always store at least the value of nr
7016 			 */
7017 			u64 nr = 0;
7018 			perf_output_put(handle, nr);
7019 		}
7020 	}
7021 
7022 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7023 		u64 abi = data->regs_user.abi;
7024 
7025 		/*
7026 		 * If there are no regs to dump, notice it through
7027 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7028 		 */
7029 		perf_output_put(handle, abi);
7030 
7031 		if (abi) {
7032 			u64 mask = event->attr.sample_regs_user;
7033 			perf_output_sample_regs(handle,
7034 						data->regs_user.regs,
7035 						mask);
7036 		}
7037 	}
7038 
7039 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7040 		perf_output_sample_ustack(handle,
7041 					  data->stack_user_size,
7042 					  data->regs_user.regs);
7043 	}
7044 
7045 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7046 		perf_output_put(handle, data->weight.full);
7047 
7048 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7049 		perf_output_put(handle, data->data_src.val);
7050 
7051 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7052 		perf_output_put(handle, data->txn);
7053 
7054 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7055 		u64 abi = data->regs_intr.abi;
7056 		/*
7057 		 * If there are no regs to dump, notice it through
7058 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7059 		 */
7060 		perf_output_put(handle, abi);
7061 
7062 		if (abi) {
7063 			u64 mask = event->attr.sample_regs_intr;
7064 
7065 			perf_output_sample_regs(handle,
7066 						data->regs_intr.regs,
7067 						mask);
7068 		}
7069 	}
7070 
7071 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7072 		perf_output_put(handle, data->phys_addr);
7073 
7074 	if (sample_type & PERF_SAMPLE_CGROUP)
7075 		perf_output_put(handle, data->cgroup);
7076 
7077 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7078 		perf_output_put(handle, data->data_page_size);
7079 
7080 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7081 		perf_output_put(handle, data->code_page_size);
7082 
7083 	if (sample_type & PERF_SAMPLE_AUX) {
7084 		perf_output_put(handle, data->aux_size);
7085 
7086 		if (data->aux_size)
7087 			perf_aux_sample_output(event, handle, data);
7088 	}
7089 
7090 	if (!event->attr.watermark) {
7091 		int wakeup_events = event->attr.wakeup_events;
7092 
7093 		if (wakeup_events) {
7094 			struct perf_buffer *rb = handle->rb;
7095 			int events = local_inc_return(&rb->events);
7096 
7097 			if (events >= wakeup_events) {
7098 				local_sub(wakeup_events, &rb->events);
7099 				local_inc(&rb->wakeup);
7100 			}
7101 		}
7102 	}
7103 }
7104 
7105 static u64 perf_virt_to_phys(u64 virt)
7106 {
7107 	u64 phys_addr = 0;
7108 	struct page *p = NULL;
7109 
7110 	if (!virt)
7111 		return 0;
7112 
7113 	if (virt >= TASK_SIZE) {
7114 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7115 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7116 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7117 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7118 	} else {
7119 		/*
7120 		 * Walking the pages tables for user address.
7121 		 * Interrupts are disabled, so it prevents any tear down
7122 		 * of the page tables.
7123 		 * Try IRQ-safe get_user_page_fast_only first.
7124 		 * If failed, leave phys_addr as 0.
7125 		 */
7126 		if (current->mm != NULL) {
7127 			pagefault_disable();
7128 			if (get_user_page_fast_only(virt, 0, &p))
7129 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7130 			pagefault_enable();
7131 		}
7132 
7133 		if (p)
7134 			put_page(p);
7135 	}
7136 
7137 	return phys_addr;
7138 }
7139 
7140 /*
7141  * Return the pagetable size of a given virtual address.
7142  */
7143 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7144 {
7145 	u64 size = 0;
7146 
7147 #ifdef CONFIG_HAVE_FAST_GUP
7148 	pgd_t *pgdp, pgd;
7149 	p4d_t *p4dp, p4d;
7150 	pud_t *pudp, pud;
7151 	pmd_t *pmdp, pmd;
7152 	pte_t *ptep, pte;
7153 
7154 	pgdp = pgd_offset(mm, addr);
7155 	pgd = READ_ONCE(*pgdp);
7156 	if (pgd_none(pgd))
7157 		return 0;
7158 
7159 	if (pgd_leaf(pgd))
7160 		return pgd_leaf_size(pgd);
7161 
7162 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7163 	p4d = READ_ONCE(*p4dp);
7164 	if (!p4d_present(p4d))
7165 		return 0;
7166 
7167 	if (p4d_leaf(p4d))
7168 		return p4d_leaf_size(p4d);
7169 
7170 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7171 	pud = READ_ONCE(*pudp);
7172 	if (!pud_present(pud))
7173 		return 0;
7174 
7175 	if (pud_leaf(pud))
7176 		return pud_leaf_size(pud);
7177 
7178 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7179 	pmd = READ_ONCE(*pmdp);
7180 	if (!pmd_present(pmd))
7181 		return 0;
7182 
7183 	if (pmd_leaf(pmd))
7184 		return pmd_leaf_size(pmd);
7185 
7186 	ptep = pte_offset_map(&pmd, addr);
7187 	pte = ptep_get_lockless(ptep);
7188 	if (pte_present(pte))
7189 		size = pte_leaf_size(pte);
7190 	pte_unmap(ptep);
7191 #endif /* CONFIG_HAVE_FAST_GUP */
7192 
7193 	return size;
7194 }
7195 
7196 static u64 perf_get_page_size(unsigned long addr)
7197 {
7198 	struct mm_struct *mm;
7199 	unsigned long flags;
7200 	u64 size;
7201 
7202 	if (!addr)
7203 		return 0;
7204 
7205 	/*
7206 	 * Software page-table walkers must disable IRQs,
7207 	 * which prevents any tear down of the page tables.
7208 	 */
7209 	local_irq_save(flags);
7210 
7211 	mm = current->mm;
7212 	if (!mm) {
7213 		/*
7214 		 * For kernel threads and the like, use init_mm so that
7215 		 * we can find kernel memory.
7216 		 */
7217 		mm = &init_mm;
7218 	}
7219 
7220 	size = perf_get_pgtable_size(mm, addr);
7221 
7222 	local_irq_restore(flags);
7223 
7224 	return size;
7225 }
7226 
7227 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7228 
7229 struct perf_callchain_entry *
7230 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7231 {
7232 	bool kernel = !event->attr.exclude_callchain_kernel;
7233 	bool user   = !event->attr.exclude_callchain_user;
7234 	/* Disallow cross-task user callchains. */
7235 	bool crosstask = event->ctx->task && event->ctx->task != current;
7236 	const u32 max_stack = event->attr.sample_max_stack;
7237 	struct perf_callchain_entry *callchain;
7238 
7239 	if (!kernel && !user)
7240 		return &__empty_callchain;
7241 
7242 	callchain = get_perf_callchain(regs, 0, kernel, user,
7243 				       max_stack, crosstask, true);
7244 	return callchain ?: &__empty_callchain;
7245 }
7246 
7247 void perf_prepare_sample(struct perf_event_header *header,
7248 			 struct perf_sample_data *data,
7249 			 struct perf_event *event,
7250 			 struct pt_regs *regs)
7251 {
7252 	u64 sample_type = event->attr.sample_type;
7253 
7254 	header->type = PERF_RECORD_SAMPLE;
7255 	header->size = sizeof(*header) + event->header_size;
7256 
7257 	header->misc = 0;
7258 	header->misc |= perf_misc_flags(regs);
7259 
7260 	__perf_event_header__init_id(header, data, event);
7261 
7262 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7263 		data->ip = perf_instruction_pointer(regs);
7264 
7265 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7266 		int size = 1;
7267 
7268 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7269 			data->callchain = perf_callchain(event, regs);
7270 
7271 		size += data->callchain->nr;
7272 
7273 		header->size += size * sizeof(u64);
7274 	}
7275 
7276 	if (sample_type & PERF_SAMPLE_RAW) {
7277 		struct perf_raw_record *raw = data->raw;
7278 		int size;
7279 
7280 		if (raw) {
7281 			struct perf_raw_frag *frag = &raw->frag;
7282 			u32 sum = 0;
7283 
7284 			do {
7285 				sum += frag->size;
7286 				if (perf_raw_frag_last(frag))
7287 					break;
7288 				frag = frag->next;
7289 			} while (1);
7290 
7291 			size = round_up(sum + sizeof(u32), sizeof(u64));
7292 			raw->size = size - sizeof(u32);
7293 			frag->pad = raw->size - sum;
7294 		} else {
7295 			size = sizeof(u64);
7296 		}
7297 
7298 		header->size += size;
7299 	}
7300 
7301 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7302 		int size = sizeof(u64); /* nr */
7303 		if (data->br_stack) {
7304 			if (perf_sample_save_hw_index(event))
7305 				size += sizeof(u64);
7306 
7307 			size += data->br_stack->nr
7308 			      * sizeof(struct perf_branch_entry);
7309 		}
7310 		header->size += size;
7311 	}
7312 
7313 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7314 		perf_sample_regs_user(&data->regs_user, regs);
7315 
7316 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7317 		/* regs dump ABI info */
7318 		int size = sizeof(u64);
7319 
7320 		if (data->regs_user.regs) {
7321 			u64 mask = event->attr.sample_regs_user;
7322 			size += hweight64(mask) * sizeof(u64);
7323 		}
7324 
7325 		header->size += size;
7326 	}
7327 
7328 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7329 		/*
7330 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7331 		 * processed as the last one or have additional check added
7332 		 * in case new sample type is added, because we could eat
7333 		 * up the rest of the sample size.
7334 		 */
7335 		u16 stack_size = event->attr.sample_stack_user;
7336 		u16 size = sizeof(u64);
7337 
7338 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7339 						     data->regs_user.regs);
7340 
7341 		/*
7342 		 * If there is something to dump, add space for the dump
7343 		 * itself and for the field that tells the dynamic size,
7344 		 * which is how many have been actually dumped.
7345 		 */
7346 		if (stack_size)
7347 			size += sizeof(u64) + stack_size;
7348 
7349 		data->stack_user_size = stack_size;
7350 		header->size += size;
7351 	}
7352 
7353 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7354 		/* regs dump ABI info */
7355 		int size = sizeof(u64);
7356 
7357 		perf_sample_regs_intr(&data->regs_intr, regs);
7358 
7359 		if (data->regs_intr.regs) {
7360 			u64 mask = event->attr.sample_regs_intr;
7361 
7362 			size += hweight64(mask) * sizeof(u64);
7363 		}
7364 
7365 		header->size += size;
7366 	}
7367 
7368 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7369 		data->phys_addr = perf_virt_to_phys(data->addr);
7370 
7371 #ifdef CONFIG_CGROUP_PERF
7372 	if (sample_type & PERF_SAMPLE_CGROUP) {
7373 		struct cgroup *cgrp;
7374 
7375 		/* protected by RCU */
7376 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7377 		data->cgroup = cgroup_id(cgrp);
7378 	}
7379 #endif
7380 
7381 	/*
7382 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7383 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7384 	 * but the value will not dump to the userspace.
7385 	 */
7386 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7387 		data->data_page_size = perf_get_page_size(data->addr);
7388 
7389 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7390 		data->code_page_size = perf_get_page_size(data->ip);
7391 
7392 	if (sample_type & PERF_SAMPLE_AUX) {
7393 		u64 size;
7394 
7395 		header->size += sizeof(u64); /* size */
7396 
7397 		/*
7398 		 * Given the 16bit nature of header::size, an AUX sample can
7399 		 * easily overflow it, what with all the preceding sample bits.
7400 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7401 		 * per sample in total (rounded down to 8 byte boundary).
7402 		 */
7403 		size = min_t(size_t, U16_MAX - header->size,
7404 			     event->attr.aux_sample_size);
7405 		size = rounddown(size, 8);
7406 		size = perf_prepare_sample_aux(event, data, size);
7407 
7408 		WARN_ON_ONCE(size + header->size > U16_MAX);
7409 		header->size += size;
7410 	}
7411 	/*
7412 	 * If you're adding more sample types here, you likely need to do
7413 	 * something about the overflowing header::size, like repurpose the
7414 	 * lowest 3 bits of size, which should be always zero at the moment.
7415 	 * This raises a more important question, do we really need 512k sized
7416 	 * samples and why, so good argumentation is in order for whatever you
7417 	 * do here next.
7418 	 */
7419 	WARN_ON_ONCE(header->size & 7);
7420 }
7421 
7422 static __always_inline int
7423 __perf_event_output(struct perf_event *event,
7424 		    struct perf_sample_data *data,
7425 		    struct pt_regs *regs,
7426 		    int (*output_begin)(struct perf_output_handle *,
7427 					struct perf_sample_data *,
7428 					struct perf_event *,
7429 					unsigned int))
7430 {
7431 	struct perf_output_handle handle;
7432 	struct perf_event_header header;
7433 	int err;
7434 
7435 	/* protect the callchain buffers */
7436 	rcu_read_lock();
7437 
7438 	perf_prepare_sample(&header, data, event, regs);
7439 
7440 	err = output_begin(&handle, data, event, header.size);
7441 	if (err)
7442 		goto exit;
7443 
7444 	perf_output_sample(&handle, &header, data, event);
7445 
7446 	perf_output_end(&handle);
7447 
7448 exit:
7449 	rcu_read_unlock();
7450 	return err;
7451 }
7452 
7453 void
7454 perf_event_output_forward(struct perf_event *event,
7455 			 struct perf_sample_data *data,
7456 			 struct pt_regs *regs)
7457 {
7458 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7459 }
7460 
7461 void
7462 perf_event_output_backward(struct perf_event *event,
7463 			   struct perf_sample_data *data,
7464 			   struct pt_regs *regs)
7465 {
7466 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7467 }
7468 
7469 int
7470 perf_event_output(struct perf_event *event,
7471 		  struct perf_sample_data *data,
7472 		  struct pt_regs *regs)
7473 {
7474 	return __perf_event_output(event, data, regs, perf_output_begin);
7475 }
7476 
7477 /*
7478  * read event_id
7479  */
7480 
7481 struct perf_read_event {
7482 	struct perf_event_header	header;
7483 
7484 	u32				pid;
7485 	u32				tid;
7486 };
7487 
7488 static void
7489 perf_event_read_event(struct perf_event *event,
7490 			struct task_struct *task)
7491 {
7492 	struct perf_output_handle handle;
7493 	struct perf_sample_data sample;
7494 	struct perf_read_event read_event = {
7495 		.header = {
7496 			.type = PERF_RECORD_READ,
7497 			.misc = 0,
7498 			.size = sizeof(read_event) + event->read_size,
7499 		},
7500 		.pid = perf_event_pid(event, task),
7501 		.tid = perf_event_tid(event, task),
7502 	};
7503 	int ret;
7504 
7505 	perf_event_header__init_id(&read_event.header, &sample, event);
7506 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7507 	if (ret)
7508 		return;
7509 
7510 	perf_output_put(&handle, read_event);
7511 	perf_output_read(&handle, event);
7512 	perf_event__output_id_sample(event, &handle, &sample);
7513 
7514 	perf_output_end(&handle);
7515 }
7516 
7517 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7518 
7519 static void
7520 perf_iterate_ctx(struct perf_event_context *ctx,
7521 		   perf_iterate_f output,
7522 		   void *data, bool all)
7523 {
7524 	struct perf_event *event;
7525 
7526 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7527 		if (!all) {
7528 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7529 				continue;
7530 			if (!event_filter_match(event))
7531 				continue;
7532 		}
7533 
7534 		output(event, data);
7535 	}
7536 }
7537 
7538 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7539 {
7540 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7541 	struct perf_event *event;
7542 
7543 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7544 		/*
7545 		 * Skip events that are not fully formed yet; ensure that
7546 		 * if we observe event->ctx, both event and ctx will be
7547 		 * complete enough. See perf_install_in_context().
7548 		 */
7549 		if (!smp_load_acquire(&event->ctx))
7550 			continue;
7551 
7552 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7553 			continue;
7554 		if (!event_filter_match(event))
7555 			continue;
7556 		output(event, data);
7557 	}
7558 }
7559 
7560 /*
7561  * Iterate all events that need to receive side-band events.
7562  *
7563  * For new callers; ensure that account_pmu_sb_event() includes
7564  * your event, otherwise it might not get delivered.
7565  */
7566 static void
7567 perf_iterate_sb(perf_iterate_f output, void *data,
7568 	       struct perf_event_context *task_ctx)
7569 {
7570 	struct perf_event_context *ctx;
7571 	int ctxn;
7572 
7573 	rcu_read_lock();
7574 	preempt_disable();
7575 
7576 	/*
7577 	 * If we have task_ctx != NULL we only notify the task context itself.
7578 	 * The task_ctx is set only for EXIT events before releasing task
7579 	 * context.
7580 	 */
7581 	if (task_ctx) {
7582 		perf_iterate_ctx(task_ctx, output, data, false);
7583 		goto done;
7584 	}
7585 
7586 	perf_iterate_sb_cpu(output, data);
7587 
7588 	for_each_task_context_nr(ctxn) {
7589 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7590 		if (ctx)
7591 			perf_iterate_ctx(ctx, output, data, false);
7592 	}
7593 done:
7594 	preempt_enable();
7595 	rcu_read_unlock();
7596 }
7597 
7598 /*
7599  * Clear all file-based filters at exec, they'll have to be
7600  * re-instated when/if these objects are mmapped again.
7601  */
7602 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7603 {
7604 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7605 	struct perf_addr_filter *filter;
7606 	unsigned int restart = 0, count = 0;
7607 	unsigned long flags;
7608 
7609 	if (!has_addr_filter(event))
7610 		return;
7611 
7612 	raw_spin_lock_irqsave(&ifh->lock, flags);
7613 	list_for_each_entry(filter, &ifh->list, entry) {
7614 		if (filter->path.dentry) {
7615 			event->addr_filter_ranges[count].start = 0;
7616 			event->addr_filter_ranges[count].size = 0;
7617 			restart++;
7618 		}
7619 
7620 		count++;
7621 	}
7622 
7623 	if (restart)
7624 		event->addr_filters_gen++;
7625 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7626 
7627 	if (restart)
7628 		perf_event_stop(event, 1);
7629 }
7630 
7631 void perf_event_exec(void)
7632 {
7633 	struct perf_event_context *ctx;
7634 	int ctxn;
7635 
7636 	for_each_task_context_nr(ctxn) {
7637 		perf_event_enable_on_exec(ctxn);
7638 		perf_event_remove_on_exec(ctxn);
7639 
7640 		rcu_read_lock();
7641 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7642 		if (ctx) {
7643 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7644 					 NULL, true);
7645 		}
7646 		rcu_read_unlock();
7647 	}
7648 }
7649 
7650 struct remote_output {
7651 	struct perf_buffer	*rb;
7652 	int			err;
7653 };
7654 
7655 static void __perf_event_output_stop(struct perf_event *event, void *data)
7656 {
7657 	struct perf_event *parent = event->parent;
7658 	struct remote_output *ro = data;
7659 	struct perf_buffer *rb = ro->rb;
7660 	struct stop_event_data sd = {
7661 		.event	= event,
7662 	};
7663 
7664 	if (!has_aux(event))
7665 		return;
7666 
7667 	if (!parent)
7668 		parent = event;
7669 
7670 	/*
7671 	 * In case of inheritance, it will be the parent that links to the
7672 	 * ring-buffer, but it will be the child that's actually using it.
7673 	 *
7674 	 * We are using event::rb to determine if the event should be stopped,
7675 	 * however this may race with ring_buffer_attach() (through set_output),
7676 	 * which will make us skip the event that actually needs to be stopped.
7677 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7678 	 * its rb pointer.
7679 	 */
7680 	if (rcu_dereference(parent->rb) == rb)
7681 		ro->err = __perf_event_stop(&sd);
7682 }
7683 
7684 static int __perf_pmu_output_stop(void *info)
7685 {
7686 	struct perf_event *event = info;
7687 	struct pmu *pmu = event->ctx->pmu;
7688 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7689 	struct remote_output ro = {
7690 		.rb	= event->rb,
7691 	};
7692 
7693 	rcu_read_lock();
7694 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7695 	if (cpuctx->task_ctx)
7696 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7697 				   &ro, false);
7698 	rcu_read_unlock();
7699 
7700 	return ro.err;
7701 }
7702 
7703 static void perf_pmu_output_stop(struct perf_event *event)
7704 {
7705 	struct perf_event *iter;
7706 	int err, cpu;
7707 
7708 restart:
7709 	rcu_read_lock();
7710 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7711 		/*
7712 		 * For per-CPU events, we need to make sure that neither they
7713 		 * nor their children are running; for cpu==-1 events it's
7714 		 * sufficient to stop the event itself if it's active, since
7715 		 * it can't have children.
7716 		 */
7717 		cpu = iter->cpu;
7718 		if (cpu == -1)
7719 			cpu = READ_ONCE(iter->oncpu);
7720 
7721 		if (cpu == -1)
7722 			continue;
7723 
7724 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7725 		if (err == -EAGAIN) {
7726 			rcu_read_unlock();
7727 			goto restart;
7728 		}
7729 	}
7730 	rcu_read_unlock();
7731 }
7732 
7733 /*
7734  * task tracking -- fork/exit
7735  *
7736  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7737  */
7738 
7739 struct perf_task_event {
7740 	struct task_struct		*task;
7741 	struct perf_event_context	*task_ctx;
7742 
7743 	struct {
7744 		struct perf_event_header	header;
7745 
7746 		u32				pid;
7747 		u32				ppid;
7748 		u32				tid;
7749 		u32				ptid;
7750 		u64				time;
7751 	} event_id;
7752 };
7753 
7754 static int perf_event_task_match(struct perf_event *event)
7755 {
7756 	return event->attr.comm  || event->attr.mmap ||
7757 	       event->attr.mmap2 || event->attr.mmap_data ||
7758 	       event->attr.task;
7759 }
7760 
7761 static void perf_event_task_output(struct perf_event *event,
7762 				   void *data)
7763 {
7764 	struct perf_task_event *task_event = data;
7765 	struct perf_output_handle handle;
7766 	struct perf_sample_data	sample;
7767 	struct task_struct *task = task_event->task;
7768 	int ret, size = task_event->event_id.header.size;
7769 
7770 	if (!perf_event_task_match(event))
7771 		return;
7772 
7773 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7774 
7775 	ret = perf_output_begin(&handle, &sample, event,
7776 				task_event->event_id.header.size);
7777 	if (ret)
7778 		goto out;
7779 
7780 	task_event->event_id.pid = perf_event_pid(event, task);
7781 	task_event->event_id.tid = perf_event_tid(event, task);
7782 
7783 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7784 		task_event->event_id.ppid = perf_event_pid(event,
7785 							task->real_parent);
7786 		task_event->event_id.ptid = perf_event_pid(event,
7787 							task->real_parent);
7788 	} else {  /* PERF_RECORD_FORK */
7789 		task_event->event_id.ppid = perf_event_pid(event, current);
7790 		task_event->event_id.ptid = perf_event_tid(event, current);
7791 	}
7792 
7793 	task_event->event_id.time = perf_event_clock(event);
7794 
7795 	perf_output_put(&handle, task_event->event_id);
7796 
7797 	perf_event__output_id_sample(event, &handle, &sample);
7798 
7799 	perf_output_end(&handle);
7800 out:
7801 	task_event->event_id.header.size = size;
7802 }
7803 
7804 static void perf_event_task(struct task_struct *task,
7805 			      struct perf_event_context *task_ctx,
7806 			      int new)
7807 {
7808 	struct perf_task_event task_event;
7809 
7810 	if (!atomic_read(&nr_comm_events) &&
7811 	    !atomic_read(&nr_mmap_events) &&
7812 	    !atomic_read(&nr_task_events))
7813 		return;
7814 
7815 	task_event = (struct perf_task_event){
7816 		.task	  = task,
7817 		.task_ctx = task_ctx,
7818 		.event_id    = {
7819 			.header = {
7820 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7821 				.misc = 0,
7822 				.size = sizeof(task_event.event_id),
7823 			},
7824 			/* .pid  */
7825 			/* .ppid */
7826 			/* .tid  */
7827 			/* .ptid */
7828 			/* .time */
7829 		},
7830 	};
7831 
7832 	perf_iterate_sb(perf_event_task_output,
7833 		       &task_event,
7834 		       task_ctx);
7835 }
7836 
7837 void perf_event_fork(struct task_struct *task)
7838 {
7839 	perf_event_task(task, NULL, 1);
7840 	perf_event_namespaces(task);
7841 }
7842 
7843 /*
7844  * comm tracking
7845  */
7846 
7847 struct perf_comm_event {
7848 	struct task_struct	*task;
7849 	char			*comm;
7850 	int			comm_size;
7851 
7852 	struct {
7853 		struct perf_event_header	header;
7854 
7855 		u32				pid;
7856 		u32				tid;
7857 	} event_id;
7858 };
7859 
7860 static int perf_event_comm_match(struct perf_event *event)
7861 {
7862 	return event->attr.comm;
7863 }
7864 
7865 static void perf_event_comm_output(struct perf_event *event,
7866 				   void *data)
7867 {
7868 	struct perf_comm_event *comm_event = data;
7869 	struct perf_output_handle handle;
7870 	struct perf_sample_data sample;
7871 	int size = comm_event->event_id.header.size;
7872 	int ret;
7873 
7874 	if (!perf_event_comm_match(event))
7875 		return;
7876 
7877 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7878 	ret = perf_output_begin(&handle, &sample, event,
7879 				comm_event->event_id.header.size);
7880 
7881 	if (ret)
7882 		goto out;
7883 
7884 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7885 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7886 
7887 	perf_output_put(&handle, comm_event->event_id);
7888 	__output_copy(&handle, comm_event->comm,
7889 				   comm_event->comm_size);
7890 
7891 	perf_event__output_id_sample(event, &handle, &sample);
7892 
7893 	perf_output_end(&handle);
7894 out:
7895 	comm_event->event_id.header.size = size;
7896 }
7897 
7898 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7899 {
7900 	char comm[TASK_COMM_LEN];
7901 	unsigned int size;
7902 
7903 	memset(comm, 0, sizeof(comm));
7904 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7905 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7906 
7907 	comm_event->comm = comm;
7908 	comm_event->comm_size = size;
7909 
7910 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7911 
7912 	perf_iterate_sb(perf_event_comm_output,
7913 		       comm_event,
7914 		       NULL);
7915 }
7916 
7917 void perf_event_comm(struct task_struct *task, bool exec)
7918 {
7919 	struct perf_comm_event comm_event;
7920 
7921 	if (!atomic_read(&nr_comm_events))
7922 		return;
7923 
7924 	comm_event = (struct perf_comm_event){
7925 		.task	= task,
7926 		/* .comm      */
7927 		/* .comm_size */
7928 		.event_id  = {
7929 			.header = {
7930 				.type = PERF_RECORD_COMM,
7931 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7932 				/* .size */
7933 			},
7934 			/* .pid */
7935 			/* .tid */
7936 		},
7937 	};
7938 
7939 	perf_event_comm_event(&comm_event);
7940 }
7941 
7942 /*
7943  * namespaces tracking
7944  */
7945 
7946 struct perf_namespaces_event {
7947 	struct task_struct		*task;
7948 
7949 	struct {
7950 		struct perf_event_header	header;
7951 
7952 		u32				pid;
7953 		u32				tid;
7954 		u64				nr_namespaces;
7955 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7956 	} event_id;
7957 };
7958 
7959 static int perf_event_namespaces_match(struct perf_event *event)
7960 {
7961 	return event->attr.namespaces;
7962 }
7963 
7964 static void perf_event_namespaces_output(struct perf_event *event,
7965 					 void *data)
7966 {
7967 	struct perf_namespaces_event *namespaces_event = data;
7968 	struct perf_output_handle handle;
7969 	struct perf_sample_data sample;
7970 	u16 header_size = namespaces_event->event_id.header.size;
7971 	int ret;
7972 
7973 	if (!perf_event_namespaces_match(event))
7974 		return;
7975 
7976 	perf_event_header__init_id(&namespaces_event->event_id.header,
7977 				   &sample, event);
7978 	ret = perf_output_begin(&handle, &sample, event,
7979 				namespaces_event->event_id.header.size);
7980 	if (ret)
7981 		goto out;
7982 
7983 	namespaces_event->event_id.pid = perf_event_pid(event,
7984 							namespaces_event->task);
7985 	namespaces_event->event_id.tid = perf_event_tid(event,
7986 							namespaces_event->task);
7987 
7988 	perf_output_put(&handle, namespaces_event->event_id);
7989 
7990 	perf_event__output_id_sample(event, &handle, &sample);
7991 
7992 	perf_output_end(&handle);
7993 out:
7994 	namespaces_event->event_id.header.size = header_size;
7995 }
7996 
7997 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7998 				   struct task_struct *task,
7999 				   const struct proc_ns_operations *ns_ops)
8000 {
8001 	struct path ns_path;
8002 	struct inode *ns_inode;
8003 	int error;
8004 
8005 	error = ns_get_path(&ns_path, task, ns_ops);
8006 	if (!error) {
8007 		ns_inode = ns_path.dentry->d_inode;
8008 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8009 		ns_link_info->ino = ns_inode->i_ino;
8010 		path_put(&ns_path);
8011 	}
8012 }
8013 
8014 void perf_event_namespaces(struct task_struct *task)
8015 {
8016 	struct perf_namespaces_event namespaces_event;
8017 	struct perf_ns_link_info *ns_link_info;
8018 
8019 	if (!atomic_read(&nr_namespaces_events))
8020 		return;
8021 
8022 	namespaces_event = (struct perf_namespaces_event){
8023 		.task	= task,
8024 		.event_id  = {
8025 			.header = {
8026 				.type = PERF_RECORD_NAMESPACES,
8027 				.misc = 0,
8028 				.size = sizeof(namespaces_event.event_id),
8029 			},
8030 			/* .pid */
8031 			/* .tid */
8032 			.nr_namespaces = NR_NAMESPACES,
8033 			/* .link_info[NR_NAMESPACES] */
8034 		},
8035 	};
8036 
8037 	ns_link_info = namespaces_event.event_id.link_info;
8038 
8039 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8040 			       task, &mntns_operations);
8041 
8042 #ifdef CONFIG_USER_NS
8043 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8044 			       task, &userns_operations);
8045 #endif
8046 #ifdef CONFIG_NET_NS
8047 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8048 			       task, &netns_operations);
8049 #endif
8050 #ifdef CONFIG_UTS_NS
8051 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8052 			       task, &utsns_operations);
8053 #endif
8054 #ifdef CONFIG_IPC_NS
8055 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8056 			       task, &ipcns_operations);
8057 #endif
8058 #ifdef CONFIG_PID_NS
8059 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8060 			       task, &pidns_operations);
8061 #endif
8062 #ifdef CONFIG_CGROUPS
8063 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8064 			       task, &cgroupns_operations);
8065 #endif
8066 
8067 	perf_iterate_sb(perf_event_namespaces_output,
8068 			&namespaces_event,
8069 			NULL);
8070 }
8071 
8072 /*
8073  * cgroup tracking
8074  */
8075 #ifdef CONFIG_CGROUP_PERF
8076 
8077 struct perf_cgroup_event {
8078 	char				*path;
8079 	int				path_size;
8080 	struct {
8081 		struct perf_event_header	header;
8082 		u64				id;
8083 		char				path[];
8084 	} event_id;
8085 };
8086 
8087 static int perf_event_cgroup_match(struct perf_event *event)
8088 {
8089 	return event->attr.cgroup;
8090 }
8091 
8092 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8093 {
8094 	struct perf_cgroup_event *cgroup_event = data;
8095 	struct perf_output_handle handle;
8096 	struct perf_sample_data sample;
8097 	u16 header_size = cgroup_event->event_id.header.size;
8098 	int ret;
8099 
8100 	if (!perf_event_cgroup_match(event))
8101 		return;
8102 
8103 	perf_event_header__init_id(&cgroup_event->event_id.header,
8104 				   &sample, event);
8105 	ret = perf_output_begin(&handle, &sample, event,
8106 				cgroup_event->event_id.header.size);
8107 	if (ret)
8108 		goto out;
8109 
8110 	perf_output_put(&handle, cgroup_event->event_id);
8111 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8112 
8113 	perf_event__output_id_sample(event, &handle, &sample);
8114 
8115 	perf_output_end(&handle);
8116 out:
8117 	cgroup_event->event_id.header.size = header_size;
8118 }
8119 
8120 static void perf_event_cgroup(struct cgroup *cgrp)
8121 {
8122 	struct perf_cgroup_event cgroup_event;
8123 	char path_enomem[16] = "//enomem";
8124 	char *pathname;
8125 	size_t size;
8126 
8127 	if (!atomic_read(&nr_cgroup_events))
8128 		return;
8129 
8130 	cgroup_event = (struct perf_cgroup_event){
8131 		.event_id  = {
8132 			.header = {
8133 				.type = PERF_RECORD_CGROUP,
8134 				.misc = 0,
8135 				.size = sizeof(cgroup_event.event_id),
8136 			},
8137 			.id = cgroup_id(cgrp),
8138 		},
8139 	};
8140 
8141 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8142 	if (pathname == NULL) {
8143 		cgroup_event.path = path_enomem;
8144 	} else {
8145 		/* just to be sure to have enough space for alignment */
8146 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8147 		cgroup_event.path = pathname;
8148 	}
8149 
8150 	/*
8151 	 * Since our buffer works in 8 byte units we need to align our string
8152 	 * size to a multiple of 8. However, we must guarantee the tail end is
8153 	 * zero'd out to avoid leaking random bits to userspace.
8154 	 */
8155 	size = strlen(cgroup_event.path) + 1;
8156 	while (!IS_ALIGNED(size, sizeof(u64)))
8157 		cgroup_event.path[size++] = '\0';
8158 
8159 	cgroup_event.event_id.header.size += size;
8160 	cgroup_event.path_size = size;
8161 
8162 	perf_iterate_sb(perf_event_cgroup_output,
8163 			&cgroup_event,
8164 			NULL);
8165 
8166 	kfree(pathname);
8167 }
8168 
8169 #endif
8170 
8171 /*
8172  * mmap tracking
8173  */
8174 
8175 struct perf_mmap_event {
8176 	struct vm_area_struct	*vma;
8177 
8178 	const char		*file_name;
8179 	int			file_size;
8180 	int			maj, min;
8181 	u64			ino;
8182 	u64			ino_generation;
8183 	u32			prot, flags;
8184 	u8			build_id[BUILD_ID_SIZE_MAX];
8185 	u32			build_id_size;
8186 
8187 	struct {
8188 		struct perf_event_header	header;
8189 
8190 		u32				pid;
8191 		u32				tid;
8192 		u64				start;
8193 		u64				len;
8194 		u64				pgoff;
8195 	} event_id;
8196 };
8197 
8198 static int perf_event_mmap_match(struct perf_event *event,
8199 				 void *data)
8200 {
8201 	struct perf_mmap_event *mmap_event = data;
8202 	struct vm_area_struct *vma = mmap_event->vma;
8203 	int executable = vma->vm_flags & VM_EXEC;
8204 
8205 	return (!executable && event->attr.mmap_data) ||
8206 	       (executable && (event->attr.mmap || event->attr.mmap2));
8207 }
8208 
8209 static void perf_event_mmap_output(struct perf_event *event,
8210 				   void *data)
8211 {
8212 	struct perf_mmap_event *mmap_event = data;
8213 	struct perf_output_handle handle;
8214 	struct perf_sample_data sample;
8215 	int size = mmap_event->event_id.header.size;
8216 	u32 type = mmap_event->event_id.header.type;
8217 	bool use_build_id;
8218 	int ret;
8219 
8220 	if (!perf_event_mmap_match(event, data))
8221 		return;
8222 
8223 	if (event->attr.mmap2) {
8224 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8225 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8226 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8227 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8228 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8229 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8230 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8231 	}
8232 
8233 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8234 	ret = perf_output_begin(&handle, &sample, event,
8235 				mmap_event->event_id.header.size);
8236 	if (ret)
8237 		goto out;
8238 
8239 	mmap_event->event_id.pid = perf_event_pid(event, current);
8240 	mmap_event->event_id.tid = perf_event_tid(event, current);
8241 
8242 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8243 
8244 	if (event->attr.mmap2 && use_build_id)
8245 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8246 
8247 	perf_output_put(&handle, mmap_event->event_id);
8248 
8249 	if (event->attr.mmap2) {
8250 		if (use_build_id) {
8251 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8252 
8253 			__output_copy(&handle, size, 4);
8254 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8255 		} else {
8256 			perf_output_put(&handle, mmap_event->maj);
8257 			perf_output_put(&handle, mmap_event->min);
8258 			perf_output_put(&handle, mmap_event->ino);
8259 			perf_output_put(&handle, mmap_event->ino_generation);
8260 		}
8261 		perf_output_put(&handle, mmap_event->prot);
8262 		perf_output_put(&handle, mmap_event->flags);
8263 	}
8264 
8265 	__output_copy(&handle, mmap_event->file_name,
8266 				   mmap_event->file_size);
8267 
8268 	perf_event__output_id_sample(event, &handle, &sample);
8269 
8270 	perf_output_end(&handle);
8271 out:
8272 	mmap_event->event_id.header.size = size;
8273 	mmap_event->event_id.header.type = type;
8274 }
8275 
8276 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8277 {
8278 	struct vm_area_struct *vma = mmap_event->vma;
8279 	struct file *file = vma->vm_file;
8280 	int maj = 0, min = 0;
8281 	u64 ino = 0, gen = 0;
8282 	u32 prot = 0, flags = 0;
8283 	unsigned int size;
8284 	char tmp[16];
8285 	char *buf = NULL;
8286 	char *name;
8287 
8288 	if (vma->vm_flags & VM_READ)
8289 		prot |= PROT_READ;
8290 	if (vma->vm_flags & VM_WRITE)
8291 		prot |= PROT_WRITE;
8292 	if (vma->vm_flags & VM_EXEC)
8293 		prot |= PROT_EXEC;
8294 
8295 	if (vma->vm_flags & VM_MAYSHARE)
8296 		flags = MAP_SHARED;
8297 	else
8298 		flags = MAP_PRIVATE;
8299 
8300 	if (vma->vm_flags & VM_DENYWRITE)
8301 		flags |= MAP_DENYWRITE;
8302 	if (vma->vm_flags & VM_MAYEXEC)
8303 		flags |= MAP_EXECUTABLE;
8304 	if (vma->vm_flags & VM_LOCKED)
8305 		flags |= MAP_LOCKED;
8306 	if (is_vm_hugetlb_page(vma))
8307 		flags |= MAP_HUGETLB;
8308 
8309 	if (file) {
8310 		struct inode *inode;
8311 		dev_t dev;
8312 
8313 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8314 		if (!buf) {
8315 			name = "//enomem";
8316 			goto cpy_name;
8317 		}
8318 		/*
8319 		 * d_path() works from the end of the rb backwards, so we
8320 		 * need to add enough zero bytes after the string to handle
8321 		 * the 64bit alignment we do later.
8322 		 */
8323 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8324 		if (IS_ERR(name)) {
8325 			name = "//toolong";
8326 			goto cpy_name;
8327 		}
8328 		inode = file_inode(vma->vm_file);
8329 		dev = inode->i_sb->s_dev;
8330 		ino = inode->i_ino;
8331 		gen = inode->i_generation;
8332 		maj = MAJOR(dev);
8333 		min = MINOR(dev);
8334 
8335 		goto got_name;
8336 	} else {
8337 		if (vma->vm_ops && vma->vm_ops->name) {
8338 			name = (char *) vma->vm_ops->name(vma);
8339 			if (name)
8340 				goto cpy_name;
8341 		}
8342 
8343 		name = (char *)arch_vma_name(vma);
8344 		if (name)
8345 			goto cpy_name;
8346 
8347 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8348 				vma->vm_end >= vma->vm_mm->brk) {
8349 			name = "[heap]";
8350 			goto cpy_name;
8351 		}
8352 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8353 				vma->vm_end >= vma->vm_mm->start_stack) {
8354 			name = "[stack]";
8355 			goto cpy_name;
8356 		}
8357 
8358 		name = "//anon";
8359 		goto cpy_name;
8360 	}
8361 
8362 cpy_name:
8363 	strlcpy(tmp, name, sizeof(tmp));
8364 	name = tmp;
8365 got_name:
8366 	/*
8367 	 * Since our buffer works in 8 byte units we need to align our string
8368 	 * size to a multiple of 8. However, we must guarantee the tail end is
8369 	 * zero'd out to avoid leaking random bits to userspace.
8370 	 */
8371 	size = strlen(name)+1;
8372 	while (!IS_ALIGNED(size, sizeof(u64)))
8373 		name[size++] = '\0';
8374 
8375 	mmap_event->file_name = name;
8376 	mmap_event->file_size = size;
8377 	mmap_event->maj = maj;
8378 	mmap_event->min = min;
8379 	mmap_event->ino = ino;
8380 	mmap_event->ino_generation = gen;
8381 	mmap_event->prot = prot;
8382 	mmap_event->flags = flags;
8383 
8384 	if (!(vma->vm_flags & VM_EXEC))
8385 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8386 
8387 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8388 
8389 	if (atomic_read(&nr_build_id_events))
8390 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8391 
8392 	perf_iterate_sb(perf_event_mmap_output,
8393 		       mmap_event,
8394 		       NULL);
8395 
8396 	kfree(buf);
8397 }
8398 
8399 /*
8400  * Check whether inode and address range match filter criteria.
8401  */
8402 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8403 				     struct file *file, unsigned long offset,
8404 				     unsigned long size)
8405 {
8406 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8407 	if (!filter->path.dentry)
8408 		return false;
8409 
8410 	if (d_inode(filter->path.dentry) != file_inode(file))
8411 		return false;
8412 
8413 	if (filter->offset > offset + size)
8414 		return false;
8415 
8416 	if (filter->offset + filter->size < offset)
8417 		return false;
8418 
8419 	return true;
8420 }
8421 
8422 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8423 					struct vm_area_struct *vma,
8424 					struct perf_addr_filter_range *fr)
8425 {
8426 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8427 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8428 	struct file *file = vma->vm_file;
8429 
8430 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8431 		return false;
8432 
8433 	if (filter->offset < off) {
8434 		fr->start = vma->vm_start;
8435 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8436 	} else {
8437 		fr->start = vma->vm_start + filter->offset - off;
8438 		fr->size = min(vma->vm_end - fr->start, filter->size);
8439 	}
8440 
8441 	return true;
8442 }
8443 
8444 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8445 {
8446 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8447 	struct vm_area_struct *vma = data;
8448 	struct perf_addr_filter *filter;
8449 	unsigned int restart = 0, count = 0;
8450 	unsigned long flags;
8451 
8452 	if (!has_addr_filter(event))
8453 		return;
8454 
8455 	if (!vma->vm_file)
8456 		return;
8457 
8458 	raw_spin_lock_irqsave(&ifh->lock, flags);
8459 	list_for_each_entry(filter, &ifh->list, entry) {
8460 		if (perf_addr_filter_vma_adjust(filter, vma,
8461 						&event->addr_filter_ranges[count]))
8462 			restart++;
8463 
8464 		count++;
8465 	}
8466 
8467 	if (restart)
8468 		event->addr_filters_gen++;
8469 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8470 
8471 	if (restart)
8472 		perf_event_stop(event, 1);
8473 }
8474 
8475 /*
8476  * Adjust all task's events' filters to the new vma
8477  */
8478 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8479 {
8480 	struct perf_event_context *ctx;
8481 	int ctxn;
8482 
8483 	/*
8484 	 * Data tracing isn't supported yet and as such there is no need
8485 	 * to keep track of anything that isn't related to executable code:
8486 	 */
8487 	if (!(vma->vm_flags & VM_EXEC))
8488 		return;
8489 
8490 	rcu_read_lock();
8491 	for_each_task_context_nr(ctxn) {
8492 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8493 		if (!ctx)
8494 			continue;
8495 
8496 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8497 	}
8498 	rcu_read_unlock();
8499 }
8500 
8501 void perf_event_mmap(struct vm_area_struct *vma)
8502 {
8503 	struct perf_mmap_event mmap_event;
8504 
8505 	if (!atomic_read(&nr_mmap_events))
8506 		return;
8507 
8508 	mmap_event = (struct perf_mmap_event){
8509 		.vma	= vma,
8510 		/* .file_name */
8511 		/* .file_size */
8512 		.event_id  = {
8513 			.header = {
8514 				.type = PERF_RECORD_MMAP,
8515 				.misc = PERF_RECORD_MISC_USER,
8516 				/* .size */
8517 			},
8518 			/* .pid */
8519 			/* .tid */
8520 			.start  = vma->vm_start,
8521 			.len    = vma->vm_end - vma->vm_start,
8522 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8523 		},
8524 		/* .maj (attr_mmap2 only) */
8525 		/* .min (attr_mmap2 only) */
8526 		/* .ino (attr_mmap2 only) */
8527 		/* .ino_generation (attr_mmap2 only) */
8528 		/* .prot (attr_mmap2 only) */
8529 		/* .flags (attr_mmap2 only) */
8530 	};
8531 
8532 	perf_addr_filters_adjust(vma);
8533 	perf_event_mmap_event(&mmap_event);
8534 }
8535 
8536 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8537 			  unsigned long size, u64 flags)
8538 {
8539 	struct perf_output_handle handle;
8540 	struct perf_sample_data sample;
8541 	struct perf_aux_event {
8542 		struct perf_event_header	header;
8543 		u64				offset;
8544 		u64				size;
8545 		u64				flags;
8546 	} rec = {
8547 		.header = {
8548 			.type = PERF_RECORD_AUX,
8549 			.misc = 0,
8550 			.size = sizeof(rec),
8551 		},
8552 		.offset		= head,
8553 		.size		= size,
8554 		.flags		= flags,
8555 	};
8556 	int ret;
8557 
8558 	perf_event_header__init_id(&rec.header, &sample, event);
8559 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8560 
8561 	if (ret)
8562 		return;
8563 
8564 	perf_output_put(&handle, rec);
8565 	perf_event__output_id_sample(event, &handle, &sample);
8566 
8567 	perf_output_end(&handle);
8568 }
8569 
8570 /*
8571  * Lost/dropped samples logging
8572  */
8573 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8574 {
8575 	struct perf_output_handle handle;
8576 	struct perf_sample_data sample;
8577 	int ret;
8578 
8579 	struct {
8580 		struct perf_event_header	header;
8581 		u64				lost;
8582 	} lost_samples_event = {
8583 		.header = {
8584 			.type = PERF_RECORD_LOST_SAMPLES,
8585 			.misc = 0,
8586 			.size = sizeof(lost_samples_event),
8587 		},
8588 		.lost		= lost,
8589 	};
8590 
8591 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8592 
8593 	ret = perf_output_begin(&handle, &sample, event,
8594 				lost_samples_event.header.size);
8595 	if (ret)
8596 		return;
8597 
8598 	perf_output_put(&handle, lost_samples_event);
8599 	perf_event__output_id_sample(event, &handle, &sample);
8600 	perf_output_end(&handle);
8601 }
8602 
8603 /*
8604  * context_switch tracking
8605  */
8606 
8607 struct perf_switch_event {
8608 	struct task_struct	*task;
8609 	struct task_struct	*next_prev;
8610 
8611 	struct {
8612 		struct perf_event_header	header;
8613 		u32				next_prev_pid;
8614 		u32				next_prev_tid;
8615 	} event_id;
8616 };
8617 
8618 static int perf_event_switch_match(struct perf_event *event)
8619 {
8620 	return event->attr.context_switch;
8621 }
8622 
8623 static void perf_event_switch_output(struct perf_event *event, void *data)
8624 {
8625 	struct perf_switch_event *se = data;
8626 	struct perf_output_handle handle;
8627 	struct perf_sample_data sample;
8628 	int ret;
8629 
8630 	if (!perf_event_switch_match(event))
8631 		return;
8632 
8633 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8634 	if (event->ctx->task) {
8635 		se->event_id.header.type = PERF_RECORD_SWITCH;
8636 		se->event_id.header.size = sizeof(se->event_id.header);
8637 	} else {
8638 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8639 		se->event_id.header.size = sizeof(se->event_id);
8640 		se->event_id.next_prev_pid =
8641 					perf_event_pid(event, se->next_prev);
8642 		se->event_id.next_prev_tid =
8643 					perf_event_tid(event, se->next_prev);
8644 	}
8645 
8646 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8647 
8648 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8649 	if (ret)
8650 		return;
8651 
8652 	if (event->ctx->task)
8653 		perf_output_put(&handle, se->event_id.header);
8654 	else
8655 		perf_output_put(&handle, se->event_id);
8656 
8657 	perf_event__output_id_sample(event, &handle, &sample);
8658 
8659 	perf_output_end(&handle);
8660 }
8661 
8662 static void perf_event_switch(struct task_struct *task,
8663 			      struct task_struct *next_prev, bool sched_in)
8664 {
8665 	struct perf_switch_event switch_event;
8666 
8667 	/* N.B. caller checks nr_switch_events != 0 */
8668 
8669 	switch_event = (struct perf_switch_event){
8670 		.task		= task,
8671 		.next_prev	= next_prev,
8672 		.event_id	= {
8673 			.header = {
8674 				/* .type */
8675 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8676 				/* .size */
8677 			},
8678 			/* .next_prev_pid */
8679 			/* .next_prev_tid */
8680 		},
8681 	};
8682 
8683 	if (!sched_in && task->state == TASK_RUNNING)
8684 		switch_event.event_id.header.misc |=
8685 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8686 
8687 	perf_iterate_sb(perf_event_switch_output,
8688 		       &switch_event,
8689 		       NULL);
8690 }
8691 
8692 /*
8693  * IRQ throttle logging
8694  */
8695 
8696 static void perf_log_throttle(struct perf_event *event, int enable)
8697 {
8698 	struct perf_output_handle handle;
8699 	struct perf_sample_data sample;
8700 	int ret;
8701 
8702 	struct {
8703 		struct perf_event_header	header;
8704 		u64				time;
8705 		u64				id;
8706 		u64				stream_id;
8707 	} throttle_event = {
8708 		.header = {
8709 			.type = PERF_RECORD_THROTTLE,
8710 			.misc = 0,
8711 			.size = sizeof(throttle_event),
8712 		},
8713 		.time		= perf_event_clock(event),
8714 		.id		= primary_event_id(event),
8715 		.stream_id	= event->id,
8716 	};
8717 
8718 	if (enable)
8719 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8720 
8721 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8722 
8723 	ret = perf_output_begin(&handle, &sample, event,
8724 				throttle_event.header.size);
8725 	if (ret)
8726 		return;
8727 
8728 	perf_output_put(&handle, throttle_event);
8729 	perf_event__output_id_sample(event, &handle, &sample);
8730 	perf_output_end(&handle);
8731 }
8732 
8733 /*
8734  * ksymbol register/unregister tracking
8735  */
8736 
8737 struct perf_ksymbol_event {
8738 	const char	*name;
8739 	int		name_len;
8740 	struct {
8741 		struct perf_event_header        header;
8742 		u64				addr;
8743 		u32				len;
8744 		u16				ksym_type;
8745 		u16				flags;
8746 	} event_id;
8747 };
8748 
8749 static int perf_event_ksymbol_match(struct perf_event *event)
8750 {
8751 	return event->attr.ksymbol;
8752 }
8753 
8754 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8755 {
8756 	struct perf_ksymbol_event *ksymbol_event = data;
8757 	struct perf_output_handle handle;
8758 	struct perf_sample_data sample;
8759 	int ret;
8760 
8761 	if (!perf_event_ksymbol_match(event))
8762 		return;
8763 
8764 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8765 				   &sample, event);
8766 	ret = perf_output_begin(&handle, &sample, event,
8767 				ksymbol_event->event_id.header.size);
8768 	if (ret)
8769 		return;
8770 
8771 	perf_output_put(&handle, ksymbol_event->event_id);
8772 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8773 	perf_event__output_id_sample(event, &handle, &sample);
8774 
8775 	perf_output_end(&handle);
8776 }
8777 
8778 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8779 			const char *sym)
8780 {
8781 	struct perf_ksymbol_event ksymbol_event;
8782 	char name[KSYM_NAME_LEN];
8783 	u16 flags = 0;
8784 	int name_len;
8785 
8786 	if (!atomic_read(&nr_ksymbol_events))
8787 		return;
8788 
8789 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8790 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8791 		goto err;
8792 
8793 	strlcpy(name, sym, KSYM_NAME_LEN);
8794 	name_len = strlen(name) + 1;
8795 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8796 		name[name_len++] = '\0';
8797 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8798 
8799 	if (unregister)
8800 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8801 
8802 	ksymbol_event = (struct perf_ksymbol_event){
8803 		.name = name,
8804 		.name_len = name_len,
8805 		.event_id = {
8806 			.header = {
8807 				.type = PERF_RECORD_KSYMBOL,
8808 				.size = sizeof(ksymbol_event.event_id) +
8809 					name_len,
8810 			},
8811 			.addr = addr,
8812 			.len = len,
8813 			.ksym_type = ksym_type,
8814 			.flags = flags,
8815 		},
8816 	};
8817 
8818 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8819 	return;
8820 err:
8821 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8822 }
8823 
8824 /*
8825  * bpf program load/unload tracking
8826  */
8827 
8828 struct perf_bpf_event {
8829 	struct bpf_prog	*prog;
8830 	struct {
8831 		struct perf_event_header        header;
8832 		u16				type;
8833 		u16				flags;
8834 		u32				id;
8835 		u8				tag[BPF_TAG_SIZE];
8836 	} event_id;
8837 };
8838 
8839 static int perf_event_bpf_match(struct perf_event *event)
8840 {
8841 	return event->attr.bpf_event;
8842 }
8843 
8844 static void perf_event_bpf_output(struct perf_event *event, void *data)
8845 {
8846 	struct perf_bpf_event *bpf_event = data;
8847 	struct perf_output_handle handle;
8848 	struct perf_sample_data sample;
8849 	int ret;
8850 
8851 	if (!perf_event_bpf_match(event))
8852 		return;
8853 
8854 	perf_event_header__init_id(&bpf_event->event_id.header,
8855 				   &sample, event);
8856 	ret = perf_output_begin(&handle, data, event,
8857 				bpf_event->event_id.header.size);
8858 	if (ret)
8859 		return;
8860 
8861 	perf_output_put(&handle, bpf_event->event_id);
8862 	perf_event__output_id_sample(event, &handle, &sample);
8863 
8864 	perf_output_end(&handle);
8865 }
8866 
8867 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8868 					 enum perf_bpf_event_type type)
8869 {
8870 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8871 	int i;
8872 
8873 	if (prog->aux->func_cnt == 0) {
8874 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8875 				   (u64)(unsigned long)prog->bpf_func,
8876 				   prog->jited_len, unregister,
8877 				   prog->aux->ksym.name);
8878 	} else {
8879 		for (i = 0; i < prog->aux->func_cnt; i++) {
8880 			struct bpf_prog *subprog = prog->aux->func[i];
8881 
8882 			perf_event_ksymbol(
8883 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8884 				(u64)(unsigned long)subprog->bpf_func,
8885 				subprog->jited_len, unregister,
8886 				prog->aux->ksym.name);
8887 		}
8888 	}
8889 }
8890 
8891 void perf_event_bpf_event(struct bpf_prog *prog,
8892 			  enum perf_bpf_event_type type,
8893 			  u16 flags)
8894 {
8895 	struct perf_bpf_event bpf_event;
8896 
8897 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8898 	    type >= PERF_BPF_EVENT_MAX)
8899 		return;
8900 
8901 	switch (type) {
8902 	case PERF_BPF_EVENT_PROG_LOAD:
8903 	case PERF_BPF_EVENT_PROG_UNLOAD:
8904 		if (atomic_read(&nr_ksymbol_events))
8905 			perf_event_bpf_emit_ksymbols(prog, type);
8906 		break;
8907 	default:
8908 		break;
8909 	}
8910 
8911 	if (!atomic_read(&nr_bpf_events))
8912 		return;
8913 
8914 	bpf_event = (struct perf_bpf_event){
8915 		.prog = prog,
8916 		.event_id = {
8917 			.header = {
8918 				.type = PERF_RECORD_BPF_EVENT,
8919 				.size = sizeof(bpf_event.event_id),
8920 			},
8921 			.type = type,
8922 			.flags = flags,
8923 			.id = prog->aux->id,
8924 		},
8925 	};
8926 
8927 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8928 
8929 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8930 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8931 }
8932 
8933 struct perf_text_poke_event {
8934 	const void		*old_bytes;
8935 	const void		*new_bytes;
8936 	size_t			pad;
8937 	u16			old_len;
8938 	u16			new_len;
8939 
8940 	struct {
8941 		struct perf_event_header	header;
8942 
8943 		u64				addr;
8944 	} event_id;
8945 };
8946 
8947 static int perf_event_text_poke_match(struct perf_event *event)
8948 {
8949 	return event->attr.text_poke;
8950 }
8951 
8952 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8953 {
8954 	struct perf_text_poke_event *text_poke_event = data;
8955 	struct perf_output_handle handle;
8956 	struct perf_sample_data sample;
8957 	u64 padding = 0;
8958 	int ret;
8959 
8960 	if (!perf_event_text_poke_match(event))
8961 		return;
8962 
8963 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8964 
8965 	ret = perf_output_begin(&handle, &sample, event,
8966 				text_poke_event->event_id.header.size);
8967 	if (ret)
8968 		return;
8969 
8970 	perf_output_put(&handle, text_poke_event->event_id);
8971 	perf_output_put(&handle, text_poke_event->old_len);
8972 	perf_output_put(&handle, text_poke_event->new_len);
8973 
8974 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8975 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8976 
8977 	if (text_poke_event->pad)
8978 		__output_copy(&handle, &padding, text_poke_event->pad);
8979 
8980 	perf_event__output_id_sample(event, &handle, &sample);
8981 
8982 	perf_output_end(&handle);
8983 }
8984 
8985 void perf_event_text_poke(const void *addr, const void *old_bytes,
8986 			  size_t old_len, const void *new_bytes, size_t new_len)
8987 {
8988 	struct perf_text_poke_event text_poke_event;
8989 	size_t tot, pad;
8990 
8991 	if (!atomic_read(&nr_text_poke_events))
8992 		return;
8993 
8994 	tot  = sizeof(text_poke_event.old_len) + old_len;
8995 	tot += sizeof(text_poke_event.new_len) + new_len;
8996 	pad  = ALIGN(tot, sizeof(u64)) - tot;
8997 
8998 	text_poke_event = (struct perf_text_poke_event){
8999 		.old_bytes    = old_bytes,
9000 		.new_bytes    = new_bytes,
9001 		.pad          = pad,
9002 		.old_len      = old_len,
9003 		.new_len      = new_len,
9004 		.event_id  = {
9005 			.header = {
9006 				.type = PERF_RECORD_TEXT_POKE,
9007 				.misc = PERF_RECORD_MISC_KERNEL,
9008 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9009 			},
9010 			.addr = (unsigned long)addr,
9011 		},
9012 	};
9013 
9014 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9015 }
9016 
9017 void perf_event_itrace_started(struct perf_event *event)
9018 {
9019 	event->attach_state |= PERF_ATTACH_ITRACE;
9020 }
9021 
9022 static void perf_log_itrace_start(struct perf_event *event)
9023 {
9024 	struct perf_output_handle handle;
9025 	struct perf_sample_data sample;
9026 	struct perf_aux_event {
9027 		struct perf_event_header        header;
9028 		u32				pid;
9029 		u32				tid;
9030 	} rec;
9031 	int ret;
9032 
9033 	if (event->parent)
9034 		event = event->parent;
9035 
9036 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9037 	    event->attach_state & PERF_ATTACH_ITRACE)
9038 		return;
9039 
9040 	rec.header.type	= PERF_RECORD_ITRACE_START;
9041 	rec.header.misc	= 0;
9042 	rec.header.size	= sizeof(rec);
9043 	rec.pid	= perf_event_pid(event, current);
9044 	rec.tid	= perf_event_tid(event, current);
9045 
9046 	perf_event_header__init_id(&rec.header, &sample, event);
9047 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9048 
9049 	if (ret)
9050 		return;
9051 
9052 	perf_output_put(&handle, rec);
9053 	perf_event__output_id_sample(event, &handle, &sample);
9054 
9055 	perf_output_end(&handle);
9056 }
9057 
9058 static int
9059 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9060 {
9061 	struct hw_perf_event *hwc = &event->hw;
9062 	int ret = 0;
9063 	u64 seq;
9064 
9065 	seq = __this_cpu_read(perf_throttled_seq);
9066 	if (seq != hwc->interrupts_seq) {
9067 		hwc->interrupts_seq = seq;
9068 		hwc->interrupts = 1;
9069 	} else {
9070 		hwc->interrupts++;
9071 		if (unlikely(throttle
9072 			     && hwc->interrupts >= max_samples_per_tick)) {
9073 			__this_cpu_inc(perf_throttled_count);
9074 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9075 			hwc->interrupts = MAX_INTERRUPTS;
9076 			perf_log_throttle(event, 0);
9077 			ret = 1;
9078 		}
9079 	}
9080 
9081 	if (event->attr.freq) {
9082 		u64 now = perf_clock();
9083 		s64 delta = now - hwc->freq_time_stamp;
9084 
9085 		hwc->freq_time_stamp = now;
9086 
9087 		if (delta > 0 && delta < 2*TICK_NSEC)
9088 			perf_adjust_period(event, delta, hwc->last_period, true);
9089 	}
9090 
9091 	return ret;
9092 }
9093 
9094 int perf_event_account_interrupt(struct perf_event *event)
9095 {
9096 	return __perf_event_account_interrupt(event, 1);
9097 }
9098 
9099 /*
9100  * Generic event overflow handling, sampling.
9101  */
9102 
9103 static int __perf_event_overflow(struct perf_event *event,
9104 				   int throttle, struct perf_sample_data *data,
9105 				   struct pt_regs *regs)
9106 {
9107 	int events = atomic_read(&event->event_limit);
9108 	int ret = 0;
9109 
9110 	/*
9111 	 * Non-sampling counters might still use the PMI to fold short
9112 	 * hardware counters, ignore those.
9113 	 */
9114 	if (unlikely(!is_sampling_event(event)))
9115 		return 0;
9116 
9117 	ret = __perf_event_account_interrupt(event, throttle);
9118 
9119 	/*
9120 	 * XXX event_limit might not quite work as expected on inherited
9121 	 * events
9122 	 */
9123 
9124 	event->pending_kill = POLL_IN;
9125 	if (events && atomic_dec_and_test(&event->event_limit)) {
9126 		ret = 1;
9127 		event->pending_kill = POLL_HUP;
9128 		event->pending_addr = data->addr;
9129 
9130 		perf_event_disable_inatomic(event);
9131 	}
9132 
9133 	READ_ONCE(event->overflow_handler)(event, data, regs);
9134 
9135 	if (*perf_event_fasync(event) && event->pending_kill) {
9136 		event->pending_wakeup = 1;
9137 		irq_work_queue(&event->pending);
9138 	}
9139 
9140 	return ret;
9141 }
9142 
9143 int perf_event_overflow(struct perf_event *event,
9144 			  struct perf_sample_data *data,
9145 			  struct pt_regs *regs)
9146 {
9147 	return __perf_event_overflow(event, 1, data, regs);
9148 }
9149 
9150 /*
9151  * Generic software event infrastructure
9152  */
9153 
9154 struct swevent_htable {
9155 	struct swevent_hlist		*swevent_hlist;
9156 	struct mutex			hlist_mutex;
9157 	int				hlist_refcount;
9158 
9159 	/* Recursion avoidance in each contexts */
9160 	int				recursion[PERF_NR_CONTEXTS];
9161 };
9162 
9163 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9164 
9165 /*
9166  * We directly increment event->count and keep a second value in
9167  * event->hw.period_left to count intervals. This period event
9168  * is kept in the range [-sample_period, 0] so that we can use the
9169  * sign as trigger.
9170  */
9171 
9172 u64 perf_swevent_set_period(struct perf_event *event)
9173 {
9174 	struct hw_perf_event *hwc = &event->hw;
9175 	u64 period = hwc->last_period;
9176 	u64 nr, offset;
9177 	s64 old, val;
9178 
9179 	hwc->last_period = hwc->sample_period;
9180 
9181 again:
9182 	old = val = local64_read(&hwc->period_left);
9183 	if (val < 0)
9184 		return 0;
9185 
9186 	nr = div64_u64(period + val, period);
9187 	offset = nr * period;
9188 	val -= offset;
9189 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9190 		goto again;
9191 
9192 	return nr;
9193 }
9194 
9195 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9196 				    struct perf_sample_data *data,
9197 				    struct pt_regs *regs)
9198 {
9199 	struct hw_perf_event *hwc = &event->hw;
9200 	int throttle = 0;
9201 
9202 	if (!overflow)
9203 		overflow = perf_swevent_set_period(event);
9204 
9205 	if (hwc->interrupts == MAX_INTERRUPTS)
9206 		return;
9207 
9208 	for (; overflow; overflow--) {
9209 		if (__perf_event_overflow(event, throttle,
9210 					    data, regs)) {
9211 			/*
9212 			 * We inhibit the overflow from happening when
9213 			 * hwc->interrupts == MAX_INTERRUPTS.
9214 			 */
9215 			break;
9216 		}
9217 		throttle = 1;
9218 	}
9219 }
9220 
9221 static void perf_swevent_event(struct perf_event *event, u64 nr,
9222 			       struct perf_sample_data *data,
9223 			       struct pt_regs *regs)
9224 {
9225 	struct hw_perf_event *hwc = &event->hw;
9226 
9227 	local64_add(nr, &event->count);
9228 
9229 	if (!regs)
9230 		return;
9231 
9232 	if (!is_sampling_event(event))
9233 		return;
9234 
9235 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9236 		data->period = nr;
9237 		return perf_swevent_overflow(event, 1, data, regs);
9238 	} else
9239 		data->period = event->hw.last_period;
9240 
9241 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9242 		return perf_swevent_overflow(event, 1, data, regs);
9243 
9244 	if (local64_add_negative(nr, &hwc->period_left))
9245 		return;
9246 
9247 	perf_swevent_overflow(event, 0, data, regs);
9248 }
9249 
9250 static int perf_exclude_event(struct perf_event *event,
9251 			      struct pt_regs *regs)
9252 {
9253 	if (event->hw.state & PERF_HES_STOPPED)
9254 		return 1;
9255 
9256 	if (regs) {
9257 		if (event->attr.exclude_user && user_mode(regs))
9258 			return 1;
9259 
9260 		if (event->attr.exclude_kernel && !user_mode(regs))
9261 			return 1;
9262 	}
9263 
9264 	return 0;
9265 }
9266 
9267 static int perf_swevent_match(struct perf_event *event,
9268 				enum perf_type_id type,
9269 				u32 event_id,
9270 				struct perf_sample_data *data,
9271 				struct pt_regs *regs)
9272 {
9273 	if (event->attr.type != type)
9274 		return 0;
9275 
9276 	if (event->attr.config != event_id)
9277 		return 0;
9278 
9279 	if (perf_exclude_event(event, regs))
9280 		return 0;
9281 
9282 	return 1;
9283 }
9284 
9285 static inline u64 swevent_hash(u64 type, u32 event_id)
9286 {
9287 	u64 val = event_id | (type << 32);
9288 
9289 	return hash_64(val, SWEVENT_HLIST_BITS);
9290 }
9291 
9292 static inline struct hlist_head *
9293 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9294 {
9295 	u64 hash = swevent_hash(type, event_id);
9296 
9297 	return &hlist->heads[hash];
9298 }
9299 
9300 /* For the read side: events when they trigger */
9301 static inline struct hlist_head *
9302 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9303 {
9304 	struct swevent_hlist *hlist;
9305 
9306 	hlist = rcu_dereference(swhash->swevent_hlist);
9307 	if (!hlist)
9308 		return NULL;
9309 
9310 	return __find_swevent_head(hlist, type, event_id);
9311 }
9312 
9313 /* For the event head insertion and removal in the hlist */
9314 static inline struct hlist_head *
9315 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9316 {
9317 	struct swevent_hlist *hlist;
9318 	u32 event_id = event->attr.config;
9319 	u64 type = event->attr.type;
9320 
9321 	/*
9322 	 * Event scheduling is always serialized against hlist allocation
9323 	 * and release. Which makes the protected version suitable here.
9324 	 * The context lock guarantees that.
9325 	 */
9326 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9327 					  lockdep_is_held(&event->ctx->lock));
9328 	if (!hlist)
9329 		return NULL;
9330 
9331 	return __find_swevent_head(hlist, type, event_id);
9332 }
9333 
9334 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9335 				    u64 nr,
9336 				    struct perf_sample_data *data,
9337 				    struct pt_regs *regs)
9338 {
9339 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9340 	struct perf_event *event;
9341 	struct hlist_head *head;
9342 
9343 	rcu_read_lock();
9344 	head = find_swevent_head_rcu(swhash, type, event_id);
9345 	if (!head)
9346 		goto end;
9347 
9348 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9349 		if (perf_swevent_match(event, type, event_id, data, regs))
9350 			perf_swevent_event(event, nr, data, regs);
9351 	}
9352 end:
9353 	rcu_read_unlock();
9354 }
9355 
9356 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9357 
9358 int perf_swevent_get_recursion_context(void)
9359 {
9360 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9361 
9362 	return get_recursion_context(swhash->recursion);
9363 }
9364 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9365 
9366 void perf_swevent_put_recursion_context(int rctx)
9367 {
9368 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9369 
9370 	put_recursion_context(swhash->recursion, rctx);
9371 }
9372 
9373 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9374 {
9375 	struct perf_sample_data data;
9376 
9377 	if (WARN_ON_ONCE(!regs))
9378 		return;
9379 
9380 	perf_sample_data_init(&data, addr, 0);
9381 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9382 }
9383 
9384 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9385 {
9386 	int rctx;
9387 
9388 	preempt_disable_notrace();
9389 	rctx = perf_swevent_get_recursion_context();
9390 	if (unlikely(rctx < 0))
9391 		goto fail;
9392 
9393 	___perf_sw_event(event_id, nr, regs, addr);
9394 
9395 	perf_swevent_put_recursion_context(rctx);
9396 fail:
9397 	preempt_enable_notrace();
9398 }
9399 
9400 static void perf_swevent_read(struct perf_event *event)
9401 {
9402 }
9403 
9404 static int perf_swevent_add(struct perf_event *event, int flags)
9405 {
9406 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9407 	struct hw_perf_event *hwc = &event->hw;
9408 	struct hlist_head *head;
9409 
9410 	if (is_sampling_event(event)) {
9411 		hwc->last_period = hwc->sample_period;
9412 		perf_swevent_set_period(event);
9413 	}
9414 
9415 	hwc->state = !(flags & PERF_EF_START);
9416 
9417 	head = find_swevent_head(swhash, event);
9418 	if (WARN_ON_ONCE(!head))
9419 		return -EINVAL;
9420 
9421 	hlist_add_head_rcu(&event->hlist_entry, head);
9422 	perf_event_update_userpage(event);
9423 
9424 	return 0;
9425 }
9426 
9427 static void perf_swevent_del(struct perf_event *event, int flags)
9428 {
9429 	hlist_del_rcu(&event->hlist_entry);
9430 }
9431 
9432 static void perf_swevent_start(struct perf_event *event, int flags)
9433 {
9434 	event->hw.state = 0;
9435 }
9436 
9437 static void perf_swevent_stop(struct perf_event *event, int flags)
9438 {
9439 	event->hw.state = PERF_HES_STOPPED;
9440 }
9441 
9442 /* Deref the hlist from the update side */
9443 static inline struct swevent_hlist *
9444 swevent_hlist_deref(struct swevent_htable *swhash)
9445 {
9446 	return rcu_dereference_protected(swhash->swevent_hlist,
9447 					 lockdep_is_held(&swhash->hlist_mutex));
9448 }
9449 
9450 static void swevent_hlist_release(struct swevent_htable *swhash)
9451 {
9452 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9453 
9454 	if (!hlist)
9455 		return;
9456 
9457 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9458 	kfree_rcu(hlist, rcu_head);
9459 }
9460 
9461 static void swevent_hlist_put_cpu(int cpu)
9462 {
9463 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9464 
9465 	mutex_lock(&swhash->hlist_mutex);
9466 
9467 	if (!--swhash->hlist_refcount)
9468 		swevent_hlist_release(swhash);
9469 
9470 	mutex_unlock(&swhash->hlist_mutex);
9471 }
9472 
9473 static void swevent_hlist_put(void)
9474 {
9475 	int cpu;
9476 
9477 	for_each_possible_cpu(cpu)
9478 		swevent_hlist_put_cpu(cpu);
9479 }
9480 
9481 static int swevent_hlist_get_cpu(int cpu)
9482 {
9483 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9484 	int err = 0;
9485 
9486 	mutex_lock(&swhash->hlist_mutex);
9487 	if (!swevent_hlist_deref(swhash) &&
9488 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9489 		struct swevent_hlist *hlist;
9490 
9491 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9492 		if (!hlist) {
9493 			err = -ENOMEM;
9494 			goto exit;
9495 		}
9496 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9497 	}
9498 	swhash->hlist_refcount++;
9499 exit:
9500 	mutex_unlock(&swhash->hlist_mutex);
9501 
9502 	return err;
9503 }
9504 
9505 static int swevent_hlist_get(void)
9506 {
9507 	int err, cpu, failed_cpu;
9508 
9509 	mutex_lock(&pmus_lock);
9510 	for_each_possible_cpu(cpu) {
9511 		err = swevent_hlist_get_cpu(cpu);
9512 		if (err) {
9513 			failed_cpu = cpu;
9514 			goto fail;
9515 		}
9516 	}
9517 	mutex_unlock(&pmus_lock);
9518 	return 0;
9519 fail:
9520 	for_each_possible_cpu(cpu) {
9521 		if (cpu == failed_cpu)
9522 			break;
9523 		swevent_hlist_put_cpu(cpu);
9524 	}
9525 	mutex_unlock(&pmus_lock);
9526 	return err;
9527 }
9528 
9529 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9530 
9531 static void sw_perf_event_destroy(struct perf_event *event)
9532 {
9533 	u64 event_id = event->attr.config;
9534 
9535 	WARN_ON(event->parent);
9536 
9537 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9538 	swevent_hlist_put();
9539 }
9540 
9541 static int perf_swevent_init(struct perf_event *event)
9542 {
9543 	u64 event_id = event->attr.config;
9544 
9545 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9546 		return -ENOENT;
9547 
9548 	/*
9549 	 * no branch sampling for software events
9550 	 */
9551 	if (has_branch_stack(event))
9552 		return -EOPNOTSUPP;
9553 
9554 	switch (event_id) {
9555 	case PERF_COUNT_SW_CPU_CLOCK:
9556 	case PERF_COUNT_SW_TASK_CLOCK:
9557 		return -ENOENT;
9558 
9559 	default:
9560 		break;
9561 	}
9562 
9563 	if (event_id >= PERF_COUNT_SW_MAX)
9564 		return -ENOENT;
9565 
9566 	if (!event->parent) {
9567 		int err;
9568 
9569 		err = swevent_hlist_get();
9570 		if (err)
9571 			return err;
9572 
9573 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9574 		event->destroy = sw_perf_event_destroy;
9575 	}
9576 
9577 	return 0;
9578 }
9579 
9580 static struct pmu perf_swevent = {
9581 	.task_ctx_nr	= perf_sw_context,
9582 
9583 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9584 
9585 	.event_init	= perf_swevent_init,
9586 	.add		= perf_swevent_add,
9587 	.del		= perf_swevent_del,
9588 	.start		= perf_swevent_start,
9589 	.stop		= perf_swevent_stop,
9590 	.read		= perf_swevent_read,
9591 };
9592 
9593 #ifdef CONFIG_EVENT_TRACING
9594 
9595 static int perf_tp_filter_match(struct perf_event *event,
9596 				struct perf_sample_data *data)
9597 {
9598 	void *record = data->raw->frag.data;
9599 
9600 	/* only top level events have filters set */
9601 	if (event->parent)
9602 		event = event->parent;
9603 
9604 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9605 		return 1;
9606 	return 0;
9607 }
9608 
9609 static int perf_tp_event_match(struct perf_event *event,
9610 				struct perf_sample_data *data,
9611 				struct pt_regs *regs)
9612 {
9613 	if (event->hw.state & PERF_HES_STOPPED)
9614 		return 0;
9615 	/*
9616 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9617 	 */
9618 	if (event->attr.exclude_kernel && !user_mode(regs))
9619 		return 0;
9620 
9621 	if (!perf_tp_filter_match(event, data))
9622 		return 0;
9623 
9624 	return 1;
9625 }
9626 
9627 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9628 			       struct trace_event_call *call, u64 count,
9629 			       struct pt_regs *regs, struct hlist_head *head,
9630 			       struct task_struct *task)
9631 {
9632 	if (bpf_prog_array_valid(call)) {
9633 		*(struct pt_regs **)raw_data = regs;
9634 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9635 			perf_swevent_put_recursion_context(rctx);
9636 			return;
9637 		}
9638 	}
9639 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9640 		      rctx, task);
9641 }
9642 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9643 
9644 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9645 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9646 		   struct task_struct *task)
9647 {
9648 	struct perf_sample_data data;
9649 	struct perf_event *event;
9650 
9651 	struct perf_raw_record raw = {
9652 		.frag = {
9653 			.size = entry_size,
9654 			.data = record,
9655 		},
9656 	};
9657 
9658 	perf_sample_data_init(&data, 0, 0);
9659 	data.raw = &raw;
9660 
9661 	perf_trace_buf_update(record, event_type);
9662 
9663 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9664 		if (perf_tp_event_match(event, &data, regs))
9665 			perf_swevent_event(event, count, &data, regs);
9666 	}
9667 
9668 	/*
9669 	 * If we got specified a target task, also iterate its context and
9670 	 * deliver this event there too.
9671 	 */
9672 	if (task && task != current) {
9673 		struct perf_event_context *ctx;
9674 		struct trace_entry *entry = record;
9675 
9676 		rcu_read_lock();
9677 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9678 		if (!ctx)
9679 			goto unlock;
9680 
9681 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9682 			if (event->cpu != smp_processor_id())
9683 				continue;
9684 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9685 				continue;
9686 			if (event->attr.config != entry->type)
9687 				continue;
9688 			if (perf_tp_event_match(event, &data, regs))
9689 				perf_swevent_event(event, count, &data, regs);
9690 		}
9691 unlock:
9692 		rcu_read_unlock();
9693 	}
9694 
9695 	perf_swevent_put_recursion_context(rctx);
9696 }
9697 EXPORT_SYMBOL_GPL(perf_tp_event);
9698 
9699 static void tp_perf_event_destroy(struct perf_event *event)
9700 {
9701 	perf_trace_destroy(event);
9702 }
9703 
9704 static int perf_tp_event_init(struct perf_event *event)
9705 {
9706 	int err;
9707 
9708 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9709 		return -ENOENT;
9710 
9711 	/*
9712 	 * no branch sampling for tracepoint events
9713 	 */
9714 	if (has_branch_stack(event))
9715 		return -EOPNOTSUPP;
9716 
9717 	err = perf_trace_init(event);
9718 	if (err)
9719 		return err;
9720 
9721 	event->destroy = tp_perf_event_destroy;
9722 
9723 	return 0;
9724 }
9725 
9726 static struct pmu perf_tracepoint = {
9727 	.task_ctx_nr	= perf_sw_context,
9728 
9729 	.event_init	= perf_tp_event_init,
9730 	.add		= perf_trace_add,
9731 	.del		= perf_trace_del,
9732 	.start		= perf_swevent_start,
9733 	.stop		= perf_swevent_stop,
9734 	.read		= perf_swevent_read,
9735 };
9736 
9737 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9738 /*
9739  * Flags in config, used by dynamic PMU kprobe and uprobe
9740  * The flags should match following PMU_FORMAT_ATTR().
9741  *
9742  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9743  *                               if not set, create kprobe/uprobe
9744  *
9745  * The following values specify a reference counter (or semaphore in the
9746  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9747  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9748  *
9749  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9750  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9751  */
9752 enum perf_probe_config {
9753 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9754 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9755 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9756 };
9757 
9758 PMU_FORMAT_ATTR(retprobe, "config:0");
9759 #endif
9760 
9761 #ifdef CONFIG_KPROBE_EVENTS
9762 static struct attribute *kprobe_attrs[] = {
9763 	&format_attr_retprobe.attr,
9764 	NULL,
9765 };
9766 
9767 static struct attribute_group kprobe_format_group = {
9768 	.name = "format",
9769 	.attrs = kprobe_attrs,
9770 };
9771 
9772 static const struct attribute_group *kprobe_attr_groups[] = {
9773 	&kprobe_format_group,
9774 	NULL,
9775 };
9776 
9777 static int perf_kprobe_event_init(struct perf_event *event);
9778 static struct pmu perf_kprobe = {
9779 	.task_ctx_nr	= perf_sw_context,
9780 	.event_init	= perf_kprobe_event_init,
9781 	.add		= perf_trace_add,
9782 	.del		= perf_trace_del,
9783 	.start		= perf_swevent_start,
9784 	.stop		= perf_swevent_stop,
9785 	.read		= perf_swevent_read,
9786 	.attr_groups	= kprobe_attr_groups,
9787 };
9788 
9789 static int perf_kprobe_event_init(struct perf_event *event)
9790 {
9791 	int err;
9792 	bool is_retprobe;
9793 
9794 	if (event->attr.type != perf_kprobe.type)
9795 		return -ENOENT;
9796 
9797 	if (!perfmon_capable())
9798 		return -EACCES;
9799 
9800 	/*
9801 	 * no branch sampling for probe events
9802 	 */
9803 	if (has_branch_stack(event))
9804 		return -EOPNOTSUPP;
9805 
9806 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9807 	err = perf_kprobe_init(event, is_retprobe);
9808 	if (err)
9809 		return err;
9810 
9811 	event->destroy = perf_kprobe_destroy;
9812 
9813 	return 0;
9814 }
9815 #endif /* CONFIG_KPROBE_EVENTS */
9816 
9817 #ifdef CONFIG_UPROBE_EVENTS
9818 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9819 
9820 static struct attribute *uprobe_attrs[] = {
9821 	&format_attr_retprobe.attr,
9822 	&format_attr_ref_ctr_offset.attr,
9823 	NULL,
9824 };
9825 
9826 static struct attribute_group uprobe_format_group = {
9827 	.name = "format",
9828 	.attrs = uprobe_attrs,
9829 };
9830 
9831 static const struct attribute_group *uprobe_attr_groups[] = {
9832 	&uprobe_format_group,
9833 	NULL,
9834 };
9835 
9836 static int perf_uprobe_event_init(struct perf_event *event);
9837 static struct pmu perf_uprobe = {
9838 	.task_ctx_nr	= perf_sw_context,
9839 	.event_init	= perf_uprobe_event_init,
9840 	.add		= perf_trace_add,
9841 	.del		= perf_trace_del,
9842 	.start		= perf_swevent_start,
9843 	.stop		= perf_swevent_stop,
9844 	.read		= perf_swevent_read,
9845 	.attr_groups	= uprobe_attr_groups,
9846 };
9847 
9848 static int perf_uprobe_event_init(struct perf_event *event)
9849 {
9850 	int err;
9851 	unsigned long ref_ctr_offset;
9852 	bool is_retprobe;
9853 
9854 	if (event->attr.type != perf_uprobe.type)
9855 		return -ENOENT;
9856 
9857 	if (!perfmon_capable())
9858 		return -EACCES;
9859 
9860 	/*
9861 	 * no branch sampling for probe events
9862 	 */
9863 	if (has_branch_stack(event))
9864 		return -EOPNOTSUPP;
9865 
9866 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9867 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9868 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9869 	if (err)
9870 		return err;
9871 
9872 	event->destroy = perf_uprobe_destroy;
9873 
9874 	return 0;
9875 }
9876 #endif /* CONFIG_UPROBE_EVENTS */
9877 
9878 static inline void perf_tp_register(void)
9879 {
9880 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9881 #ifdef CONFIG_KPROBE_EVENTS
9882 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9883 #endif
9884 #ifdef CONFIG_UPROBE_EVENTS
9885 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9886 #endif
9887 }
9888 
9889 static void perf_event_free_filter(struct perf_event *event)
9890 {
9891 	ftrace_profile_free_filter(event);
9892 }
9893 
9894 #ifdef CONFIG_BPF_SYSCALL
9895 static void bpf_overflow_handler(struct perf_event *event,
9896 				 struct perf_sample_data *data,
9897 				 struct pt_regs *regs)
9898 {
9899 	struct bpf_perf_event_data_kern ctx = {
9900 		.data = data,
9901 		.event = event,
9902 	};
9903 	int ret = 0;
9904 
9905 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9906 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9907 		goto out;
9908 	rcu_read_lock();
9909 	ret = BPF_PROG_RUN(event->prog, &ctx);
9910 	rcu_read_unlock();
9911 out:
9912 	__this_cpu_dec(bpf_prog_active);
9913 	if (!ret)
9914 		return;
9915 
9916 	event->orig_overflow_handler(event, data, regs);
9917 }
9918 
9919 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9920 {
9921 	struct bpf_prog *prog;
9922 
9923 	if (event->overflow_handler_context)
9924 		/* hw breakpoint or kernel counter */
9925 		return -EINVAL;
9926 
9927 	if (event->prog)
9928 		return -EEXIST;
9929 
9930 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9931 	if (IS_ERR(prog))
9932 		return PTR_ERR(prog);
9933 
9934 	if (event->attr.precise_ip &&
9935 	    prog->call_get_stack &&
9936 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9937 	     event->attr.exclude_callchain_kernel ||
9938 	     event->attr.exclude_callchain_user)) {
9939 		/*
9940 		 * On perf_event with precise_ip, calling bpf_get_stack()
9941 		 * may trigger unwinder warnings and occasional crashes.
9942 		 * bpf_get_[stack|stackid] works around this issue by using
9943 		 * callchain attached to perf_sample_data. If the
9944 		 * perf_event does not full (kernel and user) callchain
9945 		 * attached to perf_sample_data, do not allow attaching BPF
9946 		 * program that calls bpf_get_[stack|stackid].
9947 		 */
9948 		bpf_prog_put(prog);
9949 		return -EPROTO;
9950 	}
9951 
9952 	event->prog = prog;
9953 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9954 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9955 	return 0;
9956 }
9957 
9958 static void perf_event_free_bpf_handler(struct perf_event *event)
9959 {
9960 	struct bpf_prog *prog = event->prog;
9961 
9962 	if (!prog)
9963 		return;
9964 
9965 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9966 	event->prog = NULL;
9967 	bpf_prog_put(prog);
9968 }
9969 #else
9970 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9971 {
9972 	return -EOPNOTSUPP;
9973 }
9974 static void perf_event_free_bpf_handler(struct perf_event *event)
9975 {
9976 }
9977 #endif
9978 
9979 /*
9980  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9981  * with perf_event_open()
9982  */
9983 static inline bool perf_event_is_tracing(struct perf_event *event)
9984 {
9985 	if (event->pmu == &perf_tracepoint)
9986 		return true;
9987 #ifdef CONFIG_KPROBE_EVENTS
9988 	if (event->pmu == &perf_kprobe)
9989 		return true;
9990 #endif
9991 #ifdef CONFIG_UPROBE_EVENTS
9992 	if (event->pmu == &perf_uprobe)
9993 		return true;
9994 #endif
9995 	return false;
9996 }
9997 
9998 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9999 {
10000 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10001 	struct bpf_prog *prog;
10002 	int ret;
10003 
10004 	if (!perf_event_is_tracing(event))
10005 		return perf_event_set_bpf_handler(event, prog_fd);
10006 
10007 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10008 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10009 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10010 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10011 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10012 		return -EINVAL;
10013 
10014 	prog = bpf_prog_get(prog_fd);
10015 	if (IS_ERR(prog))
10016 		return PTR_ERR(prog);
10017 
10018 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10019 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10020 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10021 		/* valid fd, but invalid bpf program type */
10022 		bpf_prog_put(prog);
10023 		return -EINVAL;
10024 	}
10025 
10026 	/* Kprobe override only works for kprobes, not uprobes. */
10027 	if (prog->kprobe_override &&
10028 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10029 		bpf_prog_put(prog);
10030 		return -EINVAL;
10031 	}
10032 
10033 	if (is_tracepoint || is_syscall_tp) {
10034 		int off = trace_event_get_offsets(event->tp_event);
10035 
10036 		if (prog->aux->max_ctx_offset > off) {
10037 			bpf_prog_put(prog);
10038 			return -EACCES;
10039 		}
10040 	}
10041 
10042 	ret = perf_event_attach_bpf_prog(event, prog);
10043 	if (ret)
10044 		bpf_prog_put(prog);
10045 	return ret;
10046 }
10047 
10048 static void perf_event_free_bpf_prog(struct perf_event *event)
10049 {
10050 	if (!perf_event_is_tracing(event)) {
10051 		perf_event_free_bpf_handler(event);
10052 		return;
10053 	}
10054 	perf_event_detach_bpf_prog(event);
10055 }
10056 
10057 #else
10058 
10059 static inline void perf_tp_register(void)
10060 {
10061 }
10062 
10063 static void perf_event_free_filter(struct perf_event *event)
10064 {
10065 }
10066 
10067 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10068 {
10069 	return -ENOENT;
10070 }
10071 
10072 static void perf_event_free_bpf_prog(struct perf_event *event)
10073 {
10074 }
10075 #endif /* CONFIG_EVENT_TRACING */
10076 
10077 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10078 void perf_bp_event(struct perf_event *bp, void *data)
10079 {
10080 	struct perf_sample_data sample;
10081 	struct pt_regs *regs = data;
10082 
10083 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10084 
10085 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10086 		perf_swevent_event(bp, 1, &sample, regs);
10087 }
10088 #endif
10089 
10090 /*
10091  * Allocate a new address filter
10092  */
10093 static struct perf_addr_filter *
10094 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10095 {
10096 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10097 	struct perf_addr_filter *filter;
10098 
10099 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10100 	if (!filter)
10101 		return NULL;
10102 
10103 	INIT_LIST_HEAD(&filter->entry);
10104 	list_add_tail(&filter->entry, filters);
10105 
10106 	return filter;
10107 }
10108 
10109 static void free_filters_list(struct list_head *filters)
10110 {
10111 	struct perf_addr_filter *filter, *iter;
10112 
10113 	list_for_each_entry_safe(filter, iter, filters, entry) {
10114 		path_put(&filter->path);
10115 		list_del(&filter->entry);
10116 		kfree(filter);
10117 	}
10118 }
10119 
10120 /*
10121  * Free existing address filters and optionally install new ones
10122  */
10123 static void perf_addr_filters_splice(struct perf_event *event,
10124 				     struct list_head *head)
10125 {
10126 	unsigned long flags;
10127 	LIST_HEAD(list);
10128 
10129 	if (!has_addr_filter(event))
10130 		return;
10131 
10132 	/* don't bother with children, they don't have their own filters */
10133 	if (event->parent)
10134 		return;
10135 
10136 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10137 
10138 	list_splice_init(&event->addr_filters.list, &list);
10139 	if (head)
10140 		list_splice(head, &event->addr_filters.list);
10141 
10142 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10143 
10144 	free_filters_list(&list);
10145 }
10146 
10147 /*
10148  * Scan through mm's vmas and see if one of them matches the
10149  * @filter; if so, adjust filter's address range.
10150  * Called with mm::mmap_lock down for reading.
10151  */
10152 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10153 				   struct mm_struct *mm,
10154 				   struct perf_addr_filter_range *fr)
10155 {
10156 	struct vm_area_struct *vma;
10157 
10158 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10159 		if (!vma->vm_file)
10160 			continue;
10161 
10162 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10163 			return;
10164 	}
10165 }
10166 
10167 /*
10168  * Update event's address range filters based on the
10169  * task's existing mappings, if any.
10170  */
10171 static void perf_event_addr_filters_apply(struct perf_event *event)
10172 {
10173 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10174 	struct task_struct *task = READ_ONCE(event->ctx->task);
10175 	struct perf_addr_filter *filter;
10176 	struct mm_struct *mm = NULL;
10177 	unsigned int count = 0;
10178 	unsigned long flags;
10179 
10180 	/*
10181 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10182 	 * will stop on the parent's child_mutex that our caller is also holding
10183 	 */
10184 	if (task == TASK_TOMBSTONE)
10185 		return;
10186 
10187 	if (ifh->nr_file_filters) {
10188 		mm = get_task_mm(event->ctx->task);
10189 		if (!mm)
10190 			goto restart;
10191 
10192 		mmap_read_lock(mm);
10193 	}
10194 
10195 	raw_spin_lock_irqsave(&ifh->lock, flags);
10196 	list_for_each_entry(filter, &ifh->list, entry) {
10197 		if (filter->path.dentry) {
10198 			/*
10199 			 * Adjust base offset if the filter is associated to a
10200 			 * binary that needs to be mapped:
10201 			 */
10202 			event->addr_filter_ranges[count].start = 0;
10203 			event->addr_filter_ranges[count].size = 0;
10204 
10205 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10206 		} else {
10207 			event->addr_filter_ranges[count].start = filter->offset;
10208 			event->addr_filter_ranges[count].size  = filter->size;
10209 		}
10210 
10211 		count++;
10212 	}
10213 
10214 	event->addr_filters_gen++;
10215 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10216 
10217 	if (ifh->nr_file_filters) {
10218 		mmap_read_unlock(mm);
10219 
10220 		mmput(mm);
10221 	}
10222 
10223 restart:
10224 	perf_event_stop(event, 1);
10225 }
10226 
10227 /*
10228  * Address range filtering: limiting the data to certain
10229  * instruction address ranges. Filters are ioctl()ed to us from
10230  * userspace as ascii strings.
10231  *
10232  * Filter string format:
10233  *
10234  * ACTION RANGE_SPEC
10235  * where ACTION is one of the
10236  *  * "filter": limit the trace to this region
10237  *  * "start": start tracing from this address
10238  *  * "stop": stop tracing at this address/region;
10239  * RANGE_SPEC is
10240  *  * for kernel addresses: <start address>[/<size>]
10241  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10242  *
10243  * if <size> is not specified or is zero, the range is treated as a single
10244  * address; not valid for ACTION=="filter".
10245  */
10246 enum {
10247 	IF_ACT_NONE = -1,
10248 	IF_ACT_FILTER,
10249 	IF_ACT_START,
10250 	IF_ACT_STOP,
10251 	IF_SRC_FILE,
10252 	IF_SRC_KERNEL,
10253 	IF_SRC_FILEADDR,
10254 	IF_SRC_KERNELADDR,
10255 };
10256 
10257 enum {
10258 	IF_STATE_ACTION = 0,
10259 	IF_STATE_SOURCE,
10260 	IF_STATE_END,
10261 };
10262 
10263 static const match_table_t if_tokens = {
10264 	{ IF_ACT_FILTER,	"filter" },
10265 	{ IF_ACT_START,		"start" },
10266 	{ IF_ACT_STOP,		"stop" },
10267 	{ IF_SRC_FILE,		"%u/%u@%s" },
10268 	{ IF_SRC_KERNEL,	"%u/%u" },
10269 	{ IF_SRC_FILEADDR,	"%u@%s" },
10270 	{ IF_SRC_KERNELADDR,	"%u" },
10271 	{ IF_ACT_NONE,		NULL },
10272 };
10273 
10274 /*
10275  * Address filter string parser
10276  */
10277 static int
10278 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10279 			     struct list_head *filters)
10280 {
10281 	struct perf_addr_filter *filter = NULL;
10282 	char *start, *orig, *filename = NULL;
10283 	substring_t args[MAX_OPT_ARGS];
10284 	int state = IF_STATE_ACTION, token;
10285 	unsigned int kernel = 0;
10286 	int ret = -EINVAL;
10287 
10288 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10289 	if (!fstr)
10290 		return -ENOMEM;
10291 
10292 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10293 		static const enum perf_addr_filter_action_t actions[] = {
10294 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10295 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10296 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10297 		};
10298 		ret = -EINVAL;
10299 
10300 		if (!*start)
10301 			continue;
10302 
10303 		/* filter definition begins */
10304 		if (state == IF_STATE_ACTION) {
10305 			filter = perf_addr_filter_new(event, filters);
10306 			if (!filter)
10307 				goto fail;
10308 		}
10309 
10310 		token = match_token(start, if_tokens, args);
10311 		switch (token) {
10312 		case IF_ACT_FILTER:
10313 		case IF_ACT_START:
10314 		case IF_ACT_STOP:
10315 			if (state != IF_STATE_ACTION)
10316 				goto fail;
10317 
10318 			filter->action = actions[token];
10319 			state = IF_STATE_SOURCE;
10320 			break;
10321 
10322 		case IF_SRC_KERNELADDR:
10323 		case IF_SRC_KERNEL:
10324 			kernel = 1;
10325 			fallthrough;
10326 
10327 		case IF_SRC_FILEADDR:
10328 		case IF_SRC_FILE:
10329 			if (state != IF_STATE_SOURCE)
10330 				goto fail;
10331 
10332 			*args[0].to = 0;
10333 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10334 			if (ret)
10335 				goto fail;
10336 
10337 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10338 				*args[1].to = 0;
10339 				ret = kstrtoul(args[1].from, 0, &filter->size);
10340 				if (ret)
10341 					goto fail;
10342 			}
10343 
10344 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10345 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10346 
10347 				kfree(filename);
10348 				filename = match_strdup(&args[fpos]);
10349 				if (!filename) {
10350 					ret = -ENOMEM;
10351 					goto fail;
10352 				}
10353 			}
10354 
10355 			state = IF_STATE_END;
10356 			break;
10357 
10358 		default:
10359 			goto fail;
10360 		}
10361 
10362 		/*
10363 		 * Filter definition is fully parsed, validate and install it.
10364 		 * Make sure that it doesn't contradict itself or the event's
10365 		 * attribute.
10366 		 */
10367 		if (state == IF_STATE_END) {
10368 			ret = -EINVAL;
10369 			if (kernel && event->attr.exclude_kernel)
10370 				goto fail;
10371 
10372 			/*
10373 			 * ACTION "filter" must have a non-zero length region
10374 			 * specified.
10375 			 */
10376 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10377 			    !filter->size)
10378 				goto fail;
10379 
10380 			if (!kernel) {
10381 				if (!filename)
10382 					goto fail;
10383 
10384 				/*
10385 				 * For now, we only support file-based filters
10386 				 * in per-task events; doing so for CPU-wide
10387 				 * events requires additional context switching
10388 				 * trickery, since same object code will be
10389 				 * mapped at different virtual addresses in
10390 				 * different processes.
10391 				 */
10392 				ret = -EOPNOTSUPP;
10393 				if (!event->ctx->task)
10394 					goto fail;
10395 
10396 				/* look up the path and grab its inode */
10397 				ret = kern_path(filename, LOOKUP_FOLLOW,
10398 						&filter->path);
10399 				if (ret)
10400 					goto fail;
10401 
10402 				ret = -EINVAL;
10403 				if (!filter->path.dentry ||
10404 				    !S_ISREG(d_inode(filter->path.dentry)
10405 					     ->i_mode))
10406 					goto fail;
10407 
10408 				event->addr_filters.nr_file_filters++;
10409 			}
10410 
10411 			/* ready to consume more filters */
10412 			state = IF_STATE_ACTION;
10413 			filter = NULL;
10414 		}
10415 	}
10416 
10417 	if (state != IF_STATE_ACTION)
10418 		goto fail;
10419 
10420 	kfree(filename);
10421 	kfree(orig);
10422 
10423 	return 0;
10424 
10425 fail:
10426 	kfree(filename);
10427 	free_filters_list(filters);
10428 	kfree(orig);
10429 
10430 	return ret;
10431 }
10432 
10433 static int
10434 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10435 {
10436 	LIST_HEAD(filters);
10437 	int ret;
10438 
10439 	/*
10440 	 * Since this is called in perf_ioctl() path, we're already holding
10441 	 * ctx::mutex.
10442 	 */
10443 	lockdep_assert_held(&event->ctx->mutex);
10444 
10445 	if (WARN_ON_ONCE(event->parent))
10446 		return -EINVAL;
10447 
10448 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10449 	if (ret)
10450 		goto fail_clear_files;
10451 
10452 	ret = event->pmu->addr_filters_validate(&filters);
10453 	if (ret)
10454 		goto fail_free_filters;
10455 
10456 	/* remove existing filters, if any */
10457 	perf_addr_filters_splice(event, &filters);
10458 
10459 	/* install new filters */
10460 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10461 
10462 	return ret;
10463 
10464 fail_free_filters:
10465 	free_filters_list(&filters);
10466 
10467 fail_clear_files:
10468 	event->addr_filters.nr_file_filters = 0;
10469 
10470 	return ret;
10471 }
10472 
10473 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10474 {
10475 	int ret = -EINVAL;
10476 	char *filter_str;
10477 
10478 	filter_str = strndup_user(arg, PAGE_SIZE);
10479 	if (IS_ERR(filter_str))
10480 		return PTR_ERR(filter_str);
10481 
10482 #ifdef CONFIG_EVENT_TRACING
10483 	if (perf_event_is_tracing(event)) {
10484 		struct perf_event_context *ctx = event->ctx;
10485 
10486 		/*
10487 		 * Beware, here be dragons!!
10488 		 *
10489 		 * the tracepoint muck will deadlock against ctx->mutex, but
10490 		 * the tracepoint stuff does not actually need it. So
10491 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10492 		 * already have a reference on ctx.
10493 		 *
10494 		 * This can result in event getting moved to a different ctx,
10495 		 * but that does not affect the tracepoint state.
10496 		 */
10497 		mutex_unlock(&ctx->mutex);
10498 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10499 		mutex_lock(&ctx->mutex);
10500 	} else
10501 #endif
10502 	if (has_addr_filter(event))
10503 		ret = perf_event_set_addr_filter(event, filter_str);
10504 
10505 	kfree(filter_str);
10506 	return ret;
10507 }
10508 
10509 /*
10510  * hrtimer based swevent callback
10511  */
10512 
10513 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10514 {
10515 	enum hrtimer_restart ret = HRTIMER_RESTART;
10516 	struct perf_sample_data data;
10517 	struct pt_regs *regs;
10518 	struct perf_event *event;
10519 	u64 period;
10520 
10521 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10522 
10523 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10524 		return HRTIMER_NORESTART;
10525 
10526 	event->pmu->read(event);
10527 
10528 	perf_sample_data_init(&data, 0, event->hw.last_period);
10529 	regs = get_irq_regs();
10530 
10531 	if (regs && !perf_exclude_event(event, regs)) {
10532 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10533 			if (__perf_event_overflow(event, 1, &data, regs))
10534 				ret = HRTIMER_NORESTART;
10535 	}
10536 
10537 	period = max_t(u64, 10000, event->hw.sample_period);
10538 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10539 
10540 	return ret;
10541 }
10542 
10543 static void perf_swevent_start_hrtimer(struct perf_event *event)
10544 {
10545 	struct hw_perf_event *hwc = &event->hw;
10546 	s64 period;
10547 
10548 	if (!is_sampling_event(event))
10549 		return;
10550 
10551 	period = local64_read(&hwc->period_left);
10552 	if (period) {
10553 		if (period < 0)
10554 			period = 10000;
10555 
10556 		local64_set(&hwc->period_left, 0);
10557 	} else {
10558 		period = max_t(u64, 10000, hwc->sample_period);
10559 	}
10560 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10561 		      HRTIMER_MODE_REL_PINNED_HARD);
10562 }
10563 
10564 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10565 {
10566 	struct hw_perf_event *hwc = &event->hw;
10567 
10568 	if (is_sampling_event(event)) {
10569 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10570 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10571 
10572 		hrtimer_cancel(&hwc->hrtimer);
10573 	}
10574 }
10575 
10576 static void perf_swevent_init_hrtimer(struct perf_event *event)
10577 {
10578 	struct hw_perf_event *hwc = &event->hw;
10579 
10580 	if (!is_sampling_event(event))
10581 		return;
10582 
10583 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10584 	hwc->hrtimer.function = perf_swevent_hrtimer;
10585 
10586 	/*
10587 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10588 	 * mapping and avoid the whole period adjust feedback stuff.
10589 	 */
10590 	if (event->attr.freq) {
10591 		long freq = event->attr.sample_freq;
10592 
10593 		event->attr.sample_period = NSEC_PER_SEC / freq;
10594 		hwc->sample_period = event->attr.sample_period;
10595 		local64_set(&hwc->period_left, hwc->sample_period);
10596 		hwc->last_period = hwc->sample_period;
10597 		event->attr.freq = 0;
10598 	}
10599 }
10600 
10601 /*
10602  * Software event: cpu wall time clock
10603  */
10604 
10605 static void cpu_clock_event_update(struct perf_event *event)
10606 {
10607 	s64 prev;
10608 	u64 now;
10609 
10610 	now = local_clock();
10611 	prev = local64_xchg(&event->hw.prev_count, now);
10612 	local64_add(now - prev, &event->count);
10613 }
10614 
10615 static void cpu_clock_event_start(struct perf_event *event, int flags)
10616 {
10617 	local64_set(&event->hw.prev_count, local_clock());
10618 	perf_swevent_start_hrtimer(event);
10619 }
10620 
10621 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10622 {
10623 	perf_swevent_cancel_hrtimer(event);
10624 	cpu_clock_event_update(event);
10625 }
10626 
10627 static int cpu_clock_event_add(struct perf_event *event, int flags)
10628 {
10629 	if (flags & PERF_EF_START)
10630 		cpu_clock_event_start(event, flags);
10631 	perf_event_update_userpage(event);
10632 
10633 	return 0;
10634 }
10635 
10636 static void cpu_clock_event_del(struct perf_event *event, int flags)
10637 {
10638 	cpu_clock_event_stop(event, flags);
10639 }
10640 
10641 static void cpu_clock_event_read(struct perf_event *event)
10642 {
10643 	cpu_clock_event_update(event);
10644 }
10645 
10646 static int cpu_clock_event_init(struct perf_event *event)
10647 {
10648 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10649 		return -ENOENT;
10650 
10651 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10652 		return -ENOENT;
10653 
10654 	/*
10655 	 * no branch sampling for software events
10656 	 */
10657 	if (has_branch_stack(event))
10658 		return -EOPNOTSUPP;
10659 
10660 	perf_swevent_init_hrtimer(event);
10661 
10662 	return 0;
10663 }
10664 
10665 static struct pmu perf_cpu_clock = {
10666 	.task_ctx_nr	= perf_sw_context,
10667 
10668 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10669 
10670 	.event_init	= cpu_clock_event_init,
10671 	.add		= cpu_clock_event_add,
10672 	.del		= cpu_clock_event_del,
10673 	.start		= cpu_clock_event_start,
10674 	.stop		= cpu_clock_event_stop,
10675 	.read		= cpu_clock_event_read,
10676 };
10677 
10678 /*
10679  * Software event: task time clock
10680  */
10681 
10682 static void task_clock_event_update(struct perf_event *event, u64 now)
10683 {
10684 	u64 prev;
10685 	s64 delta;
10686 
10687 	prev = local64_xchg(&event->hw.prev_count, now);
10688 	delta = now - prev;
10689 	local64_add(delta, &event->count);
10690 }
10691 
10692 static void task_clock_event_start(struct perf_event *event, int flags)
10693 {
10694 	local64_set(&event->hw.prev_count, event->ctx->time);
10695 	perf_swevent_start_hrtimer(event);
10696 }
10697 
10698 static void task_clock_event_stop(struct perf_event *event, int flags)
10699 {
10700 	perf_swevent_cancel_hrtimer(event);
10701 	task_clock_event_update(event, event->ctx->time);
10702 }
10703 
10704 static int task_clock_event_add(struct perf_event *event, int flags)
10705 {
10706 	if (flags & PERF_EF_START)
10707 		task_clock_event_start(event, flags);
10708 	perf_event_update_userpage(event);
10709 
10710 	return 0;
10711 }
10712 
10713 static void task_clock_event_del(struct perf_event *event, int flags)
10714 {
10715 	task_clock_event_stop(event, PERF_EF_UPDATE);
10716 }
10717 
10718 static void task_clock_event_read(struct perf_event *event)
10719 {
10720 	u64 now = perf_clock();
10721 	u64 delta = now - event->ctx->timestamp;
10722 	u64 time = event->ctx->time + delta;
10723 
10724 	task_clock_event_update(event, time);
10725 }
10726 
10727 static int task_clock_event_init(struct perf_event *event)
10728 {
10729 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10730 		return -ENOENT;
10731 
10732 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10733 		return -ENOENT;
10734 
10735 	/*
10736 	 * no branch sampling for software events
10737 	 */
10738 	if (has_branch_stack(event))
10739 		return -EOPNOTSUPP;
10740 
10741 	perf_swevent_init_hrtimer(event);
10742 
10743 	return 0;
10744 }
10745 
10746 static struct pmu perf_task_clock = {
10747 	.task_ctx_nr	= perf_sw_context,
10748 
10749 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10750 
10751 	.event_init	= task_clock_event_init,
10752 	.add		= task_clock_event_add,
10753 	.del		= task_clock_event_del,
10754 	.start		= task_clock_event_start,
10755 	.stop		= task_clock_event_stop,
10756 	.read		= task_clock_event_read,
10757 };
10758 
10759 static void perf_pmu_nop_void(struct pmu *pmu)
10760 {
10761 }
10762 
10763 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10764 {
10765 }
10766 
10767 static int perf_pmu_nop_int(struct pmu *pmu)
10768 {
10769 	return 0;
10770 }
10771 
10772 static int perf_event_nop_int(struct perf_event *event, u64 value)
10773 {
10774 	return 0;
10775 }
10776 
10777 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10778 
10779 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10780 {
10781 	__this_cpu_write(nop_txn_flags, flags);
10782 
10783 	if (flags & ~PERF_PMU_TXN_ADD)
10784 		return;
10785 
10786 	perf_pmu_disable(pmu);
10787 }
10788 
10789 static int perf_pmu_commit_txn(struct pmu *pmu)
10790 {
10791 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10792 
10793 	__this_cpu_write(nop_txn_flags, 0);
10794 
10795 	if (flags & ~PERF_PMU_TXN_ADD)
10796 		return 0;
10797 
10798 	perf_pmu_enable(pmu);
10799 	return 0;
10800 }
10801 
10802 static void perf_pmu_cancel_txn(struct pmu *pmu)
10803 {
10804 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10805 
10806 	__this_cpu_write(nop_txn_flags, 0);
10807 
10808 	if (flags & ~PERF_PMU_TXN_ADD)
10809 		return;
10810 
10811 	perf_pmu_enable(pmu);
10812 }
10813 
10814 static int perf_event_idx_default(struct perf_event *event)
10815 {
10816 	return 0;
10817 }
10818 
10819 /*
10820  * Ensures all contexts with the same task_ctx_nr have the same
10821  * pmu_cpu_context too.
10822  */
10823 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10824 {
10825 	struct pmu *pmu;
10826 
10827 	if (ctxn < 0)
10828 		return NULL;
10829 
10830 	list_for_each_entry(pmu, &pmus, entry) {
10831 		if (pmu->task_ctx_nr == ctxn)
10832 			return pmu->pmu_cpu_context;
10833 	}
10834 
10835 	return NULL;
10836 }
10837 
10838 static void free_pmu_context(struct pmu *pmu)
10839 {
10840 	/*
10841 	 * Static contexts such as perf_sw_context have a global lifetime
10842 	 * and may be shared between different PMUs. Avoid freeing them
10843 	 * when a single PMU is going away.
10844 	 */
10845 	if (pmu->task_ctx_nr > perf_invalid_context)
10846 		return;
10847 
10848 	free_percpu(pmu->pmu_cpu_context);
10849 }
10850 
10851 /*
10852  * Let userspace know that this PMU supports address range filtering:
10853  */
10854 static ssize_t nr_addr_filters_show(struct device *dev,
10855 				    struct device_attribute *attr,
10856 				    char *page)
10857 {
10858 	struct pmu *pmu = dev_get_drvdata(dev);
10859 
10860 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10861 }
10862 DEVICE_ATTR_RO(nr_addr_filters);
10863 
10864 static struct idr pmu_idr;
10865 
10866 static ssize_t
10867 type_show(struct device *dev, struct device_attribute *attr, char *page)
10868 {
10869 	struct pmu *pmu = dev_get_drvdata(dev);
10870 
10871 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10872 }
10873 static DEVICE_ATTR_RO(type);
10874 
10875 static ssize_t
10876 perf_event_mux_interval_ms_show(struct device *dev,
10877 				struct device_attribute *attr,
10878 				char *page)
10879 {
10880 	struct pmu *pmu = dev_get_drvdata(dev);
10881 
10882 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10883 }
10884 
10885 static DEFINE_MUTEX(mux_interval_mutex);
10886 
10887 static ssize_t
10888 perf_event_mux_interval_ms_store(struct device *dev,
10889 				 struct device_attribute *attr,
10890 				 const char *buf, size_t count)
10891 {
10892 	struct pmu *pmu = dev_get_drvdata(dev);
10893 	int timer, cpu, ret;
10894 
10895 	ret = kstrtoint(buf, 0, &timer);
10896 	if (ret)
10897 		return ret;
10898 
10899 	if (timer < 1)
10900 		return -EINVAL;
10901 
10902 	/* same value, noting to do */
10903 	if (timer == pmu->hrtimer_interval_ms)
10904 		return count;
10905 
10906 	mutex_lock(&mux_interval_mutex);
10907 	pmu->hrtimer_interval_ms = timer;
10908 
10909 	/* update all cpuctx for this PMU */
10910 	cpus_read_lock();
10911 	for_each_online_cpu(cpu) {
10912 		struct perf_cpu_context *cpuctx;
10913 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10914 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10915 
10916 		cpu_function_call(cpu,
10917 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10918 	}
10919 	cpus_read_unlock();
10920 	mutex_unlock(&mux_interval_mutex);
10921 
10922 	return count;
10923 }
10924 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10925 
10926 static struct attribute *pmu_dev_attrs[] = {
10927 	&dev_attr_type.attr,
10928 	&dev_attr_perf_event_mux_interval_ms.attr,
10929 	NULL,
10930 };
10931 ATTRIBUTE_GROUPS(pmu_dev);
10932 
10933 static int pmu_bus_running;
10934 static struct bus_type pmu_bus = {
10935 	.name		= "event_source",
10936 	.dev_groups	= pmu_dev_groups,
10937 };
10938 
10939 static void pmu_dev_release(struct device *dev)
10940 {
10941 	kfree(dev);
10942 }
10943 
10944 static int pmu_dev_alloc(struct pmu *pmu)
10945 {
10946 	int ret = -ENOMEM;
10947 
10948 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10949 	if (!pmu->dev)
10950 		goto out;
10951 
10952 	pmu->dev->groups = pmu->attr_groups;
10953 	device_initialize(pmu->dev);
10954 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10955 	if (ret)
10956 		goto free_dev;
10957 
10958 	dev_set_drvdata(pmu->dev, pmu);
10959 	pmu->dev->bus = &pmu_bus;
10960 	pmu->dev->release = pmu_dev_release;
10961 	ret = device_add(pmu->dev);
10962 	if (ret)
10963 		goto free_dev;
10964 
10965 	/* For PMUs with address filters, throw in an extra attribute: */
10966 	if (pmu->nr_addr_filters)
10967 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10968 
10969 	if (ret)
10970 		goto del_dev;
10971 
10972 	if (pmu->attr_update)
10973 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10974 
10975 	if (ret)
10976 		goto del_dev;
10977 
10978 out:
10979 	return ret;
10980 
10981 del_dev:
10982 	device_del(pmu->dev);
10983 
10984 free_dev:
10985 	put_device(pmu->dev);
10986 	goto out;
10987 }
10988 
10989 static struct lock_class_key cpuctx_mutex;
10990 static struct lock_class_key cpuctx_lock;
10991 
10992 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10993 {
10994 	int cpu, ret, max = PERF_TYPE_MAX;
10995 
10996 	mutex_lock(&pmus_lock);
10997 	ret = -ENOMEM;
10998 	pmu->pmu_disable_count = alloc_percpu(int);
10999 	if (!pmu->pmu_disable_count)
11000 		goto unlock;
11001 
11002 	pmu->type = -1;
11003 	if (!name)
11004 		goto skip_type;
11005 	pmu->name = name;
11006 
11007 	if (type != PERF_TYPE_SOFTWARE) {
11008 		if (type >= 0)
11009 			max = type;
11010 
11011 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11012 		if (ret < 0)
11013 			goto free_pdc;
11014 
11015 		WARN_ON(type >= 0 && ret != type);
11016 
11017 		type = ret;
11018 	}
11019 	pmu->type = type;
11020 
11021 	if (pmu_bus_running) {
11022 		ret = pmu_dev_alloc(pmu);
11023 		if (ret)
11024 			goto free_idr;
11025 	}
11026 
11027 skip_type:
11028 	if (pmu->task_ctx_nr == perf_hw_context) {
11029 		static int hw_context_taken = 0;
11030 
11031 		/*
11032 		 * Other than systems with heterogeneous CPUs, it never makes
11033 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11034 		 * uncore must use perf_invalid_context.
11035 		 */
11036 		if (WARN_ON_ONCE(hw_context_taken &&
11037 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11038 			pmu->task_ctx_nr = perf_invalid_context;
11039 
11040 		hw_context_taken = 1;
11041 	}
11042 
11043 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11044 	if (pmu->pmu_cpu_context)
11045 		goto got_cpu_context;
11046 
11047 	ret = -ENOMEM;
11048 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11049 	if (!pmu->pmu_cpu_context)
11050 		goto free_dev;
11051 
11052 	for_each_possible_cpu(cpu) {
11053 		struct perf_cpu_context *cpuctx;
11054 
11055 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11056 		__perf_event_init_context(&cpuctx->ctx);
11057 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11058 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11059 		cpuctx->ctx.pmu = pmu;
11060 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11061 
11062 		__perf_mux_hrtimer_init(cpuctx, cpu);
11063 
11064 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11065 		cpuctx->heap = cpuctx->heap_default;
11066 	}
11067 
11068 got_cpu_context:
11069 	if (!pmu->start_txn) {
11070 		if (pmu->pmu_enable) {
11071 			/*
11072 			 * If we have pmu_enable/pmu_disable calls, install
11073 			 * transaction stubs that use that to try and batch
11074 			 * hardware accesses.
11075 			 */
11076 			pmu->start_txn  = perf_pmu_start_txn;
11077 			pmu->commit_txn = perf_pmu_commit_txn;
11078 			pmu->cancel_txn = perf_pmu_cancel_txn;
11079 		} else {
11080 			pmu->start_txn  = perf_pmu_nop_txn;
11081 			pmu->commit_txn = perf_pmu_nop_int;
11082 			pmu->cancel_txn = perf_pmu_nop_void;
11083 		}
11084 	}
11085 
11086 	if (!pmu->pmu_enable) {
11087 		pmu->pmu_enable  = perf_pmu_nop_void;
11088 		pmu->pmu_disable = perf_pmu_nop_void;
11089 	}
11090 
11091 	if (!pmu->check_period)
11092 		pmu->check_period = perf_event_nop_int;
11093 
11094 	if (!pmu->event_idx)
11095 		pmu->event_idx = perf_event_idx_default;
11096 
11097 	/*
11098 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11099 	 * since these cannot be in the IDR. This way the linear search
11100 	 * is fast, provided a valid software event is provided.
11101 	 */
11102 	if (type == PERF_TYPE_SOFTWARE || !name)
11103 		list_add_rcu(&pmu->entry, &pmus);
11104 	else
11105 		list_add_tail_rcu(&pmu->entry, &pmus);
11106 
11107 	atomic_set(&pmu->exclusive_cnt, 0);
11108 	ret = 0;
11109 unlock:
11110 	mutex_unlock(&pmus_lock);
11111 
11112 	return ret;
11113 
11114 free_dev:
11115 	device_del(pmu->dev);
11116 	put_device(pmu->dev);
11117 
11118 free_idr:
11119 	if (pmu->type != PERF_TYPE_SOFTWARE)
11120 		idr_remove(&pmu_idr, pmu->type);
11121 
11122 free_pdc:
11123 	free_percpu(pmu->pmu_disable_count);
11124 	goto unlock;
11125 }
11126 EXPORT_SYMBOL_GPL(perf_pmu_register);
11127 
11128 void perf_pmu_unregister(struct pmu *pmu)
11129 {
11130 	mutex_lock(&pmus_lock);
11131 	list_del_rcu(&pmu->entry);
11132 
11133 	/*
11134 	 * We dereference the pmu list under both SRCU and regular RCU, so
11135 	 * synchronize against both of those.
11136 	 */
11137 	synchronize_srcu(&pmus_srcu);
11138 	synchronize_rcu();
11139 
11140 	free_percpu(pmu->pmu_disable_count);
11141 	if (pmu->type != PERF_TYPE_SOFTWARE)
11142 		idr_remove(&pmu_idr, pmu->type);
11143 	if (pmu_bus_running) {
11144 		if (pmu->nr_addr_filters)
11145 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11146 		device_del(pmu->dev);
11147 		put_device(pmu->dev);
11148 	}
11149 	free_pmu_context(pmu);
11150 	mutex_unlock(&pmus_lock);
11151 }
11152 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11153 
11154 static inline bool has_extended_regs(struct perf_event *event)
11155 {
11156 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11157 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11158 }
11159 
11160 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11161 {
11162 	struct perf_event_context *ctx = NULL;
11163 	int ret;
11164 
11165 	if (!try_module_get(pmu->module))
11166 		return -ENODEV;
11167 
11168 	/*
11169 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11170 	 * for example, validate if the group fits on the PMU. Therefore,
11171 	 * if this is a sibling event, acquire the ctx->mutex to protect
11172 	 * the sibling_list.
11173 	 */
11174 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11175 		/*
11176 		 * This ctx->mutex can nest when we're called through
11177 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11178 		 */
11179 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11180 						 SINGLE_DEPTH_NESTING);
11181 		BUG_ON(!ctx);
11182 	}
11183 
11184 	event->pmu = pmu;
11185 	ret = pmu->event_init(event);
11186 
11187 	if (ctx)
11188 		perf_event_ctx_unlock(event->group_leader, ctx);
11189 
11190 	if (!ret) {
11191 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11192 		    has_extended_regs(event))
11193 			ret = -EOPNOTSUPP;
11194 
11195 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11196 		    event_has_any_exclude_flag(event))
11197 			ret = -EINVAL;
11198 
11199 		if (ret && event->destroy)
11200 			event->destroy(event);
11201 	}
11202 
11203 	if (ret)
11204 		module_put(pmu->module);
11205 
11206 	return ret;
11207 }
11208 
11209 static struct pmu *perf_init_event(struct perf_event *event)
11210 {
11211 	bool extended_type = false;
11212 	int idx, type, ret;
11213 	struct pmu *pmu;
11214 
11215 	idx = srcu_read_lock(&pmus_srcu);
11216 
11217 	/* Try parent's PMU first: */
11218 	if (event->parent && event->parent->pmu) {
11219 		pmu = event->parent->pmu;
11220 		ret = perf_try_init_event(pmu, event);
11221 		if (!ret)
11222 			goto unlock;
11223 	}
11224 
11225 	/*
11226 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11227 	 * are often aliases for PERF_TYPE_RAW.
11228 	 */
11229 	type = event->attr.type;
11230 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11231 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11232 		if (!type) {
11233 			type = PERF_TYPE_RAW;
11234 		} else {
11235 			extended_type = true;
11236 			event->attr.config &= PERF_HW_EVENT_MASK;
11237 		}
11238 	}
11239 
11240 again:
11241 	rcu_read_lock();
11242 	pmu = idr_find(&pmu_idr, type);
11243 	rcu_read_unlock();
11244 	if (pmu) {
11245 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11246 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11247 			goto fail;
11248 
11249 		ret = perf_try_init_event(pmu, event);
11250 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11251 			type = event->attr.type;
11252 			goto again;
11253 		}
11254 
11255 		if (ret)
11256 			pmu = ERR_PTR(ret);
11257 
11258 		goto unlock;
11259 	}
11260 
11261 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11262 		ret = perf_try_init_event(pmu, event);
11263 		if (!ret)
11264 			goto unlock;
11265 
11266 		if (ret != -ENOENT) {
11267 			pmu = ERR_PTR(ret);
11268 			goto unlock;
11269 		}
11270 	}
11271 fail:
11272 	pmu = ERR_PTR(-ENOENT);
11273 unlock:
11274 	srcu_read_unlock(&pmus_srcu, idx);
11275 
11276 	return pmu;
11277 }
11278 
11279 static void attach_sb_event(struct perf_event *event)
11280 {
11281 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11282 
11283 	raw_spin_lock(&pel->lock);
11284 	list_add_rcu(&event->sb_list, &pel->list);
11285 	raw_spin_unlock(&pel->lock);
11286 }
11287 
11288 /*
11289  * We keep a list of all !task (and therefore per-cpu) events
11290  * that need to receive side-band records.
11291  *
11292  * This avoids having to scan all the various PMU per-cpu contexts
11293  * looking for them.
11294  */
11295 static void account_pmu_sb_event(struct perf_event *event)
11296 {
11297 	if (is_sb_event(event))
11298 		attach_sb_event(event);
11299 }
11300 
11301 static void account_event_cpu(struct perf_event *event, int cpu)
11302 {
11303 	if (event->parent)
11304 		return;
11305 
11306 	if (is_cgroup_event(event))
11307 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11308 }
11309 
11310 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11311 static void account_freq_event_nohz(void)
11312 {
11313 #ifdef CONFIG_NO_HZ_FULL
11314 	/* Lock so we don't race with concurrent unaccount */
11315 	spin_lock(&nr_freq_lock);
11316 	if (atomic_inc_return(&nr_freq_events) == 1)
11317 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11318 	spin_unlock(&nr_freq_lock);
11319 #endif
11320 }
11321 
11322 static void account_freq_event(void)
11323 {
11324 	if (tick_nohz_full_enabled())
11325 		account_freq_event_nohz();
11326 	else
11327 		atomic_inc(&nr_freq_events);
11328 }
11329 
11330 
11331 static void account_event(struct perf_event *event)
11332 {
11333 	bool inc = false;
11334 
11335 	if (event->parent)
11336 		return;
11337 
11338 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11339 		inc = true;
11340 	if (event->attr.mmap || event->attr.mmap_data)
11341 		atomic_inc(&nr_mmap_events);
11342 	if (event->attr.build_id)
11343 		atomic_inc(&nr_build_id_events);
11344 	if (event->attr.comm)
11345 		atomic_inc(&nr_comm_events);
11346 	if (event->attr.namespaces)
11347 		atomic_inc(&nr_namespaces_events);
11348 	if (event->attr.cgroup)
11349 		atomic_inc(&nr_cgroup_events);
11350 	if (event->attr.task)
11351 		atomic_inc(&nr_task_events);
11352 	if (event->attr.freq)
11353 		account_freq_event();
11354 	if (event->attr.context_switch) {
11355 		atomic_inc(&nr_switch_events);
11356 		inc = true;
11357 	}
11358 	if (has_branch_stack(event))
11359 		inc = true;
11360 	if (is_cgroup_event(event))
11361 		inc = true;
11362 	if (event->attr.ksymbol)
11363 		atomic_inc(&nr_ksymbol_events);
11364 	if (event->attr.bpf_event)
11365 		atomic_inc(&nr_bpf_events);
11366 	if (event->attr.text_poke)
11367 		atomic_inc(&nr_text_poke_events);
11368 
11369 	if (inc) {
11370 		/*
11371 		 * We need the mutex here because static_branch_enable()
11372 		 * must complete *before* the perf_sched_count increment
11373 		 * becomes visible.
11374 		 */
11375 		if (atomic_inc_not_zero(&perf_sched_count))
11376 			goto enabled;
11377 
11378 		mutex_lock(&perf_sched_mutex);
11379 		if (!atomic_read(&perf_sched_count)) {
11380 			static_branch_enable(&perf_sched_events);
11381 			/*
11382 			 * Guarantee that all CPUs observe they key change and
11383 			 * call the perf scheduling hooks before proceeding to
11384 			 * install events that need them.
11385 			 */
11386 			synchronize_rcu();
11387 		}
11388 		/*
11389 		 * Now that we have waited for the sync_sched(), allow further
11390 		 * increments to by-pass the mutex.
11391 		 */
11392 		atomic_inc(&perf_sched_count);
11393 		mutex_unlock(&perf_sched_mutex);
11394 	}
11395 enabled:
11396 
11397 	account_event_cpu(event, event->cpu);
11398 
11399 	account_pmu_sb_event(event);
11400 }
11401 
11402 /*
11403  * Allocate and initialize an event structure
11404  */
11405 static struct perf_event *
11406 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11407 		 struct task_struct *task,
11408 		 struct perf_event *group_leader,
11409 		 struct perf_event *parent_event,
11410 		 perf_overflow_handler_t overflow_handler,
11411 		 void *context, int cgroup_fd)
11412 {
11413 	struct pmu *pmu;
11414 	struct perf_event *event;
11415 	struct hw_perf_event *hwc;
11416 	long err = -EINVAL;
11417 	int node;
11418 
11419 	if ((unsigned)cpu >= nr_cpu_ids) {
11420 		if (!task || cpu != -1)
11421 			return ERR_PTR(-EINVAL);
11422 	}
11423 	if (attr->sigtrap && !task) {
11424 		/* Requires a task: avoid signalling random tasks. */
11425 		return ERR_PTR(-EINVAL);
11426 	}
11427 
11428 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11429 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11430 				      node);
11431 	if (!event)
11432 		return ERR_PTR(-ENOMEM);
11433 
11434 	/*
11435 	 * Single events are their own group leaders, with an
11436 	 * empty sibling list:
11437 	 */
11438 	if (!group_leader)
11439 		group_leader = event;
11440 
11441 	mutex_init(&event->child_mutex);
11442 	INIT_LIST_HEAD(&event->child_list);
11443 
11444 	INIT_LIST_HEAD(&event->event_entry);
11445 	INIT_LIST_HEAD(&event->sibling_list);
11446 	INIT_LIST_HEAD(&event->active_list);
11447 	init_event_group(event);
11448 	INIT_LIST_HEAD(&event->rb_entry);
11449 	INIT_LIST_HEAD(&event->active_entry);
11450 	INIT_LIST_HEAD(&event->addr_filters.list);
11451 	INIT_HLIST_NODE(&event->hlist_entry);
11452 
11453 
11454 	init_waitqueue_head(&event->waitq);
11455 	event->pending_disable = -1;
11456 	init_irq_work(&event->pending, perf_pending_event);
11457 
11458 	mutex_init(&event->mmap_mutex);
11459 	raw_spin_lock_init(&event->addr_filters.lock);
11460 
11461 	atomic_long_set(&event->refcount, 1);
11462 	event->cpu		= cpu;
11463 	event->attr		= *attr;
11464 	event->group_leader	= group_leader;
11465 	event->pmu		= NULL;
11466 	event->oncpu		= -1;
11467 
11468 	event->parent		= parent_event;
11469 
11470 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11471 	event->id		= atomic64_inc_return(&perf_event_id);
11472 
11473 	event->state		= PERF_EVENT_STATE_INACTIVE;
11474 
11475 	if (event->attr.sigtrap)
11476 		atomic_set(&event->event_limit, 1);
11477 
11478 	if (task) {
11479 		event->attach_state = PERF_ATTACH_TASK;
11480 		/*
11481 		 * XXX pmu::event_init needs to know what task to account to
11482 		 * and we cannot use the ctx information because we need the
11483 		 * pmu before we get a ctx.
11484 		 */
11485 		event->hw.target = get_task_struct(task);
11486 	}
11487 
11488 	event->clock = &local_clock;
11489 	if (parent_event)
11490 		event->clock = parent_event->clock;
11491 
11492 	if (!overflow_handler && parent_event) {
11493 		overflow_handler = parent_event->overflow_handler;
11494 		context = parent_event->overflow_handler_context;
11495 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11496 		if (overflow_handler == bpf_overflow_handler) {
11497 			struct bpf_prog *prog = parent_event->prog;
11498 
11499 			bpf_prog_inc(prog);
11500 			event->prog = prog;
11501 			event->orig_overflow_handler =
11502 				parent_event->orig_overflow_handler;
11503 		}
11504 #endif
11505 	}
11506 
11507 	if (overflow_handler) {
11508 		event->overflow_handler	= overflow_handler;
11509 		event->overflow_handler_context = context;
11510 	} else if (is_write_backward(event)){
11511 		event->overflow_handler = perf_event_output_backward;
11512 		event->overflow_handler_context = NULL;
11513 	} else {
11514 		event->overflow_handler = perf_event_output_forward;
11515 		event->overflow_handler_context = NULL;
11516 	}
11517 
11518 	perf_event__state_init(event);
11519 
11520 	pmu = NULL;
11521 
11522 	hwc = &event->hw;
11523 	hwc->sample_period = attr->sample_period;
11524 	if (attr->freq && attr->sample_freq)
11525 		hwc->sample_period = 1;
11526 	hwc->last_period = hwc->sample_period;
11527 
11528 	local64_set(&hwc->period_left, hwc->sample_period);
11529 
11530 	/*
11531 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11532 	 * See perf_output_read().
11533 	 */
11534 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11535 		goto err_ns;
11536 
11537 	if (!has_branch_stack(event))
11538 		event->attr.branch_sample_type = 0;
11539 
11540 	pmu = perf_init_event(event);
11541 	if (IS_ERR(pmu)) {
11542 		err = PTR_ERR(pmu);
11543 		goto err_ns;
11544 	}
11545 
11546 	/*
11547 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11548 	 * be different on other CPUs in the uncore mask.
11549 	 */
11550 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11551 		err = -EINVAL;
11552 		goto err_pmu;
11553 	}
11554 
11555 	if (event->attr.aux_output &&
11556 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11557 		err = -EOPNOTSUPP;
11558 		goto err_pmu;
11559 	}
11560 
11561 	if (cgroup_fd != -1) {
11562 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11563 		if (err)
11564 			goto err_pmu;
11565 	}
11566 
11567 	err = exclusive_event_init(event);
11568 	if (err)
11569 		goto err_pmu;
11570 
11571 	if (has_addr_filter(event)) {
11572 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11573 						    sizeof(struct perf_addr_filter_range),
11574 						    GFP_KERNEL);
11575 		if (!event->addr_filter_ranges) {
11576 			err = -ENOMEM;
11577 			goto err_per_task;
11578 		}
11579 
11580 		/*
11581 		 * Clone the parent's vma offsets: they are valid until exec()
11582 		 * even if the mm is not shared with the parent.
11583 		 */
11584 		if (event->parent) {
11585 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11586 
11587 			raw_spin_lock_irq(&ifh->lock);
11588 			memcpy(event->addr_filter_ranges,
11589 			       event->parent->addr_filter_ranges,
11590 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11591 			raw_spin_unlock_irq(&ifh->lock);
11592 		}
11593 
11594 		/* force hw sync on the address filters */
11595 		event->addr_filters_gen = 1;
11596 	}
11597 
11598 	if (!event->parent) {
11599 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11600 			err = get_callchain_buffers(attr->sample_max_stack);
11601 			if (err)
11602 				goto err_addr_filters;
11603 		}
11604 	}
11605 
11606 	err = security_perf_event_alloc(event);
11607 	if (err)
11608 		goto err_callchain_buffer;
11609 
11610 	/* symmetric to unaccount_event() in _free_event() */
11611 	account_event(event);
11612 
11613 	return event;
11614 
11615 err_callchain_buffer:
11616 	if (!event->parent) {
11617 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11618 			put_callchain_buffers();
11619 	}
11620 err_addr_filters:
11621 	kfree(event->addr_filter_ranges);
11622 
11623 err_per_task:
11624 	exclusive_event_destroy(event);
11625 
11626 err_pmu:
11627 	if (is_cgroup_event(event))
11628 		perf_detach_cgroup(event);
11629 	if (event->destroy)
11630 		event->destroy(event);
11631 	module_put(pmu->module);
11632 err_ns:
11633 	if (event->ns)
11634 		put_pid_ns(event->ns);
11635 	if (event->hw.target)
11636 		put_task_struct(event->hw.target);
11637 	kmem_cache_free(perf_event_cache, event);
11638 
11639 	return ERR_PTR(err);
11640 }
11641 
11642 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11643 			  struct perf_event_attr *attr)
11644 {
11645 	u32 size;
11646 	int ret;
11647 
11648 	/* Zero the full structure, so that a short copy will be nice. */
11649 	memset(attr, 0, sizeof(*attr));
11650 
11651 	ret = get_user(size, &uattr->size);
11652 	if (ret)
11653 		return ret;
11654 
11655 	/* ABI compatibility quirk: */
11656 	if (!size)
11657 		size = PERF_ATTR_SIZE_VER0;
11658 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11659 		goto err_size;
11660 
11661 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11662 	if (ret) {
11663 		if (ret == -E2BIG)
11664 			goto err_size;
11665 		return ret;
11666 	}
11667 
11668 	attr->size = size;
11669 
11670 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11671 		return -EINVAL;
11672 
11673 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11674 		return -EINVAL;
11675 
11676 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11677 		return -EINVAL;
11678 
11679 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11680 		u64 mask = attr->branch_sample_type;
11681 
11682 		/* only using defined bits */
11683 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11684 			return -EINVAL;
11685 
11686 		/* at least one branch bit must be set */
11687 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11688 			return -EINVAL;
11689 
11690 		/* propagate priv level, when not set for branch */
11691 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11692 
11693 			/* exclude_kernel checked on syscall entry */
11694 			if (!attr->exclude_kernel)
11695 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11696 
11697 			if (!attr->exclude_user)
11698 				mask |= PERF_SAMPLE_BRANCH_USER;
11699 
11700 			if (!attr->exclude_hv)
11701 				mask |= PERF_SAMPLE_BRANCH_HV;
11702 			/*
11703 			 * adjust user setting (for HW filter setup)
11704 			 */
11705 			attr->branch_sample_type = mask;
11706 		}
11707 		/* privileged levels capture (kernel, hv): check permissions */
11708 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11709 			ret = perf_allow_kernel(attr);
11710 			if (ret)
11711 				return ret;
11712 		}
11713 	}
11714 
11715 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11716 		ret = perf_reg_validate(attr->sample_regs_user);
11717 		if (ret)
11718 			return ret;
11719 	}
11720 
11721 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11722 		if (!arch_perf_have_user_stack_dump())
11723 			return -ENOSYS;
11724 
11725 		/*
11726 		 * We have __u32 type for the size, but so far
11727 		 * we can only use __u16 as maximum due to the
11728 		 * __u16 sample size limit.
11729 		 */
11730 		if (attr->sample_stack_user >= USHRT_MAX)
11731 			return -EINVAL;
11732 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11733 			return -EINVAL;
11734 	}
11735 
11736 	if (!attr->sample_max_stack)
11737 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11738 
11739 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11740 		ret = perf_reg_validate(attr->sample_regs_intr);
11741 
11742 #ifndef CONFIG_CGROUP_PERF
11743 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11744 		return -EINVAL;
11745 #endif
11746 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11747 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11748 		return -EINVAL;
11749 
11750 	if (!attr->inherit && attr->inherit_thread)
11751 		return -EINVAL;
11752 
11753 	if (attr->remove_on_exec && attr->enable_on_exec)
11754 		return -EINVAL;
11755 
11756 	if (attr->sigtrap && !attr->remove_on_exec)
11757 		return -EINVAL;
11758 
11759 out:
11760 	return ret;
11761 
11762 err_size:
11763 	put_user(sizeof(*attr), &uattr->size);
11764 	ret = -E2BIG;
11765 	goto out;
11766 }
11767 
11768 static int
11769 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11770 {
11771 	struct perf_buffer *rb = NULL;
11772 	int ret = -EINVAL;
11773 
11774 	if (!output_event)
11775 		goto set;
11776 
11777 	/* don't allow circular references */
11778 	if (event == output_event)
11779 		goto out;
11780 
11781 	/*
11782 	 * Don't allow cross-cpu buffers
11783 	 */
11784 	if (output_event->cpu != event->cpu)
11785 		goto out;
11786 
11787 	/*
11788 	 * If its not a per-cpu rb, it must be the same task.
11789 	 */
11790 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11791 		goto out;
11792 
11793 	/*
11794 	 * Mixing clocks in the same buffer is trouble you don't need.
11795 	 */
11796 	if (output_event->clock != event->clock)
11797 		goto out;
11798 
11799 	/*
11800 	 * Either writing ring buffer from beginning or from end.
11801 	 * Mixing is not allowed.
11802 	 */
11803 	if (is_write_backward(output_event) != is_write_backward(event))
11804 		goto out;
11805 
11806 	/*
11807 	 * If both events generate aux data, they must be on the same PMU
11808 	 */
11809 	if (has_aux(event) && has_aux(output_event) &&
11810 	    event->pmu != output_event->pmu)
11811 		goto out;
11812 
11813 set:
11814 	mutex_lock(&event->mmap_mutex);
11815 	/* Can't redirect output if we've got an active mmap() */
11816 	if (atomic_read(&event->mmap_count))
11817 		goto unlock;
11818 
11819 	if (output_event) {
11820 		/* get the rb we want to redirect to */
11821 		rb = ring_buffer_get(output_event);
11822 		if (!rb)
11823 			goto unlock;
11824 	}
11825 
11826 	ring_buffer_attach(event, rb);
11827 
11828 	ret = 0;
11829 unlock:
11830 	mutex_unlock(&event->mmap_mutex);
11831 
11832 out:
11833 	return ret;
11834 }
11835 
11836 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11837 {
11838 	if (b < a)
11839 		swap(a, b);
11840 
11841 	mutex_lock(a);
11842 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11843 }
11844 
11845 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11846 {
11847 	bool nmi_safe = false;
11848 
11849 	switch (clk_id) {
11850 	case CLOCK_MONOTONIC:
11851 		event->clock = &ktime_get_mono_fast_ns;
11852 		nmi_safe = true;
11853 		break;
11854 
11855 	case CLOCK_MONOTONIC_RAW:
11856 		event->clock = &ktime_get_raw_fast_ns;
11857 		nmi_safe = true;
11858 		break;
11859 
11860 	case CLOCK_REALTIME:
11861 		event->clock = &ktime_get_real_ns;
11862 		break;
11863 
11864 	case CLOCK_BOOTTIME:
11865 		event->clock = &ktime_get_boottime_ns;
11866 		break;
11867 
11868 	case CLOCK_TAI:
11869 		event->clock = &ktime_get_clocktai_ns;
11870 		break;
11871 
11872 	default:
11873 		return -EINVAL;
11874 	}
11875 
11876 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11877 		return -EINVAL;
11878 
11879 	return 0;
11880 }
11881 
11882 /*
11883  * Variation on perf_event_ctx_lock_nested(), except we take two context
11884  * mutexes.
11885  */
11886 static struct perf_event_context *
11887 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11888 			     struct perf_event_context *ctx)
11889 {
11890 	struct perf_event_context *gctx;
11891 
11892 again:
11893 	rcu_read_lock();
11894 	gctx = READ_ONCE(group_leader->ctx);
11895 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11896 		rcu_read_unlock();
11897 		goto again;
11898 	}
11899 	rcu_read_unlock();
11900 
11901 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11902 
11903 	if (group_leader->ctx != gctx) {
11904 		mutex_unlock(&ctx->mutex);
11905 		mutex_unlock(&gctx->mutex);
11906 		put_ctx(gctx);
11907 		goto again;
11908 	}
11909 
11910 	return gctx;
11911 }
11912 
11913 /**
11914  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11915  *
11916  * @attr_uptr:	event_id type attributes for monitoring/sampling
11917  * @pid:		target pid
11918  * @cpu:		target cpu
11919  * @group_fd:		group leader event fd
11920  */
11921 SYSCALL_DEFINE5(perf_event_open,
11922 		struct perf_event_attr __user *, attr_uptr,
11923 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11924 {
11925 	struct perf_event *group_leader = NULL, *output_event = NULL;
11926 	struct perf_event *event, *sibling;
11927 	struct perf_event_attr attr;
11928 	struct perf_event_context *ctx, *gctx;
11929 	struct file *event_file = NULL;
11930 	struct fd group = {NULL, 0};
11931 	struct task_struct *task = NULL;
11932 	struct pmu *pmu;
11933 	int event_fd;
11934 	int move_group = 0;
11935 	int err;
11936 	int f_flags = O_RDWR;
11937 	int cgroup_fd = -1;
11938 
11939 	/* for future expandability... */
11940 	if (flags & ~PERF_FLAG_ALL)
11941 		return -EINVAL;
11942 
11943 	/* Do we allow access to perf_event_open(2) ? */
11944 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11945 	if (err)
11946 		return err;
11947 
11948 	err = perf_copy_attr(attr_uptr, &attr);
11949 	if (err)
11950 		return err;
11951 
11952 	if (!attr.exclude_kernel) {
11953 		err = perf_allow_kernel(&attr);
11954 		if (err)
11955 			return err;
11956 	}
11957 
11958 	if (attr.namespaces) {
11959 		if (!perfmon_capable())
11960 			return -EACCES;
11961 	}
11962 
11963 	if (attr.freq) {
11964 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11965 			return -EINVAL;
11966 	} else {
11967 		if (attr.sample_period & (1ULL << 63))
11968 			return -EINVAL;
11969 	}
11970 
11971 	/* Only privileged users can get physical addresses */
11972 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11973 		err = perf_allow_kernel(&attr);
11974 		if (err)
11975 			return err;
11976 	}
11977 
11978 	/* REGS_INTR can leak data, lockdown must prevent this */
11979 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11980 		err = security_locked_down(LOCKDOWN_PERF);
11981 		if (err)
11982 			return err;
11983 	}
11984 
11985 	/*
11986 	 * In cgroup mode, the pid argument is used to pass the fd
11987 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11988 	 * designates the cpu on which to monitor threads from that
11989 	 * cgroup.
11990 	 */
11991 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11992 		return -EINVAL;
11993 
11994 	if (flags & PERF_FLAG_FD_CLOEXEC)
11995 		f_flags |= O_CLOEXEC;
11996 
11997 	event_fd = get_unused_fd_flags(f_flags);
11998 	if (event_fd < 0)
11999 		return event_fd;
12000 
12001 	if (group_fd != -1) {
12002 		err = perf_fget_light(group_fd, &group);
12003 		if (err)
12004 			goto err_fd;
12005 		group_leader = group.file->private_data;
12006 		if (flags & PERF_FLAG_FD_OUTPUT)
12007 			output_event = group_leader;
12008 		if (flags & PERF_FLAG_FD_NO_GROUP)
12009 			group_leader = NULL;
12010 	}
12011 
12012 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12013 		task = find_lively_task_by_vpid(pid);
12014 		if (IS_ERR(task)) {
12015 			err = PTR_ERR(task);
12016 			goto err_group_fd;
12017 		}
12018 	}
12019 
12020 	if (task && group_leader &&
12021 	    group_leader->attr.inherit != attr.inherit) {
12022 		err = -EINVAL;
12023 		goto err_task;
12024 	}
12025 
12026 	if (flags & PERF_FLAG_PID_CGROUP)
12027 		cgroup_fd = pid;
12028 
12029 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12030 				 NULL, NULL, cgroup_fd);
12031 	if (IS_ERR(event)) {
12032 		err = PTR_ERR(event);
12033 		goto err_task;
12034 	}
12035 
12036 	if (is_sampling_event(event)) {
12037 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12038 			err = -EOPNOTSUPP;
12039 			goto err_alloc;
12040 		}
12041 	}
12042 
12043 	/*
12044 	 * Special case software events and allow them to be part of
12045 	 * any hardware group.
12046 	 */
12047 	pmu = event->pmu;
12048 
12049 	if (attr.use_clockid) {
12050 		err = perf_event_set_clock(event, attr.clockid);
12051 		if (err)
12052 			goto err_alloc;
12053 	}
12054 
12055 	if (pmu->task_ctx_nr == perf_sw_context)
12056 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12057 
12058 	if (group_leader) {
12059 		if (is_software_event(event) &&
12060 		    !in_software_context(group_leader)) {
12061 			/*
12062 			 * If the event is a sw event, but the group_leader
12063 			 * is on hw context.
12064 			 *
12065 			 * Allow the addition of software events to hw
12066 			 * groups, this is safe because software events
12067 			 * never fail to schedule.
12068 			 */
12069 			pmu = group_leader->ctx->pmu;
12070 		} else if (!is_software_event(event) &&
12071 			   is_software_event(group_leader) &&
12072 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12073 			/*
12074 			 * In case the group is a pure software group, and we
12075 			 * try to add a hardware event, move the whole group to
12076 			 * the hardware context.
12077 			 */
12078 			move_group = 1;
12079 		}
12080 	}
12081 
12082 	/*
12083 	 * Get the target context (task or percpu):
12084 	 */
12085 	ctx = find_get_context(pmu, task, event);
12086 	if (IS_ERR(ctx)) {
12087 		err = PTR_ERR(ctx);
12088 		goto err_alloc;
12089 	}
12090 
12091 	/*
12092 	 * Look up the group leader (we will attach this event to it):
12093 	 */
12094 	if (group_leader) {
12095 		err = -EINVAL;
12096 
12097 		/*
12098 		 * Do not allow a recursive hierarchy (this new sibling
12099 		 * becoming part of another group-sibling):
12100 		 */
12101 		if (group_leader->group_leader != group_leader)
12102 			goto err_context;
12103 
12104 		/* All events in a group should have the same clock */
12105 		if (group_leader->clock != event->clock)
12106 			goto err_context;
12107 
12108 		/*
12109 		 * Make sure we're both events for the same CPU;
12110 		 * grouping events for different CPUs is broken; since
12111 		 * you can never concurrently schedule them anyhow.
12112 		 */
12113 		if (group_leader->cpu != event->cpu)
12114 			goto err_context;
12115 
12116 		/*
12117 		 * Make sure we're both on the same task, or both
12118 		 * per-CPU events.
12119 		 */
12120 		if (group_leader->ctx->task != ctx->task)
12121 			goto err_context;
12122 
12123 		/*
12124 		 * Do not allow to attach to a group in a different task
12125 		 * or CPU context. If we're moving SW events, we'll fix
12126 		 * this up later, so allow that.
12127 		 */
12128 		if (!move_group && group_leader->ctx != ctx)
12129 			goto err_context;
12130 
12131 		/*
12132 		 * Only a group leader can be exclusive or pinned
12133 		 */
12134 		if (attr.exclusive || attr.pinned)
12135 			goto err_context;
12136 	}
12137 
12138 	if (output_event) {
12139 		err = perf_event_set_output(event, output_event);
12140 		if (err)
12141 			goto err_context;
12142 	}
12143 
12144 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12145 					f_flags);
12146 	if (IS_ERR(event_file)) {
12147 		err = PTR_ERR(event_file);
12148 		event_file = NULL;
12149 		goto err_context;
12150 	}
12151 
12152 	if (task) {
12153 		err = down_read_interruptible(&task->signal->exec_update_lock);
12154 		if (err)
12155 			goto err_file;
12156 
12157 		/*
12158 		 * Preserve ptrace permission check for backwards compatibility.
12159 		 *
12160 		 * We must hold exec_update_lock across this and any potential
12161 		 * perf_install_in_context() call for this new event to
12162 		 * serialize against exec() altering our credentials (and the
12163 		 * perf_event_exit_task() that could imply).
12164 		 */
12165 		err = -EACCES;
12166 		if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12167 			goto err_cred;
12168 	}
12169 
12170 	if (move_group) {
12171 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12172 
12173 		if (gctx->task == TASK_TOMBSTONE) {
12174 			err = -ESRCH;
12175 			goto err_locked;
12176 		}
12177 
12178 		/*
12179 		 * Check if we raced against another sys_perf_event_open() call
12180 		 * moving the software group underneath us.
12181 		 */
12182 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12183 			/*
12184 			 * If someone moved the group out from under us, check
12185 			 * if this new event wound up on the same ctx, if so
12186 			 * its the regular !move_group case, otherwise fail.
12187 			 */
12188 			if (gctx != ctx) {
12189 				err = -EINVAL;
12190 				goto err_locked;
12191 			} else {
12192 				perf_event_ctx_unlock(group_leader, gctx);
12193 				move_group = 0;
12194 			}
12195 		}
12196 
12197 		/*
12198 		 * Failure to create exclusive events returns -EBUSY.
12199 		 */
12200 		err = -EBUSY;
12201 		if (!exclusive_event_installable(group_leader, ctx))
12202 			goto err_locked;
12203 
12204 		for_each_sibling_event(sibling, group_leader) {
12205 			if (!exclusive_event_installable(sibling, ctx))
12206 				goto err_locked;
12207 		}
12208 	} else {
12209 		mutex_lock(&ctx->mutex);
12210 	}
12211 
12212 	if (ctx->task == TASK_TOMBSTONE) {
12213 		err = -ESRCH;
12214 		goto err_locked;
12215 	}
12216 
12217 	if (!perf_event_validate_size(event)) {
12218 		err = -E2BIG;
12219 		goto err_locked;
12220 	}
12221 
12222 	if (!task) {
12223 		/*
12224 		 * Check if the @cpu we're creating an event for is online.
12225 		 *
12226 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12227 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12228 		 */
12229 		struct perf_cpu_context *cpuctx =
12230 			container_of(ctx, struct perf_cpu_context, ctx);
12231 
12232 		if (!cpuctx->online) {
12233 			err = -ENODEV;
12234 			goto err_locked;
12235 		}
12236 	}
12237 
12238 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12239 		err = -EINVAL;
12240 		goto err_locked;
12241 	}
12242 
12243 	/*
12244 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12245 	 * because we need to serialize with concurrent event creation.
12246 	 */
12247 	if (!exclusive_event_installable(event, ctx)) {
12248 		err = -EBUSY;
12249 		goto err_locked;
12250 	}
12251 
12252 	WARN_ON_ONCE(ctx->parent_ctx);
12253 
12254 	/*
12255 	 * This is the point on no return; we cannot fail hereafter. This is
12256 	 * where we start modifying current state.
12257 	 */
12258 
12259 	if (move_group) {
12260 		/*
12261 		 * See perf_event_ctx_lock() for comments on the details
12262 		 * of swizzling perf_event::ctx.
12263 		 */
12264 		perf_remove_from_context(group_leader, 0);
12265 		put_ctx(gctx);
12266 
12267 		for_each_sibling_event(sibling, group_leader) {
12268 			perf_remove_from_context(sibling, 0);
12269 			put_ctx(gctx);
12270 		}
12271 
12272 		/*
12273 		 * Wait for everybody to stop referencing the events through
12274 		 * the old lists, before installing it on new lists.
12275 		 */
12276 		synchronize_rcu();
12277 
12278 		/*
12279 		 * Install the group siblings before the group leader.
12280 		 *
12281 		 * Because a group leader will try and install the entire group
12282 		 * (through the sibling list, which is still in-tact), we can
12283 		 * end up with siblings installed in the wrong context.
12284 		 *
12285 		 * By installing siblings first we NO-OP because they're not
12286 		 * reachable through the group lists.
12287 		 */
12288 		for_each_sibling_event(sibling, group_leader) {
12289 			perf_event__state_init(sibling);
12290 			perf_install_in_context(ctx, sibling, sibling->cpu);
12291 			get_ctx(ctx);
12292 		}
12293 
12294 		/*
12295 		 * Removing from the context ends up with disabled
12296 		 * event. What we want here is event in the initial
12297 		 * startup state, ready to be add into new context.
12298 		 */
12299 		perf_event__state_init(group_leader);
12300 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12301 		get_ctx(ctx);
12302 	}
12303 
12304 	/*
12305 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12306 	 * that we're serialized against further additions and before
12307 	 * perf_install_in_context() which is the point the event is active and
12308 	 * can use these values.
12309 	 */
12310 	perf_event__header_size(event);
12311 	perf_event__id_header_size(event);
12312 
12313 	event->owner = current;
12314 
12315 	perf_install_in_context(ctx, event, event->cpu);
12316 	perf_unpin_context(ctx);
12317 
12318 	if (move_group)
12319 		perf_event_ctx_unlock(group_leader, gctx);
12320 	mutex_unlock(&ctx->mutex);
12321 
12322 	if (task) {
12323 		up_read(&task->signal->exec_update_lock);
12324 		put_task_struct(task);
12325 	}
12326 
12327 	mutex_lock(&current->perf_event_mutex);
12328 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12329 	mutex_unlock(&current->perf_event_mutex);
12330 
12331 	/*
12332 	 * Drop the reference on the group_event after placing the
12333 	 * new event on the sibling_list. This ensures destruction
12334 	 * of the group leader will find the pointer to itself in
12335 	 * perf_group_detach().
12336 	 */
12337 	fdput(group);
12338 	fd_install(event_fd, event_file);
12339 	return event_fd;
12340 
12341 err_locked:
12342 	if (move_group)
12343 		perf_event_ctx_unlock(group_leader, gctx);
12344 	mutex_unlock(&ctx->mutex);
12345 err_cred:
12346 	if (task)
12347 		up_read(&task->signal->exec_update_lock);
12348 err_file:
12349 	fput(event_file);
12350 err_context:
12351 	perf_unpin_context(ctx);
12352 	put_ctx(ctx);
12353 err_alloc:
12354 	/*
12355 	 * If event_file is set, the fput() above will have called ->release()
12356 	 * and that will take care of freeing the event.
12357 	 */
12358 	if (!event_file)
12359 		free_event(event);
12360 err_task:
12361 	if (task)
12362 		put_task_struct(task);
12363 err_group_fd:
12364 	fdput(group);
12365 err_fd:
12366 	put_unused_fd(event_fd);
12367 	return err;
12368 }
12369 
12370 /**
12371  * perf_event_create_kernel_counter
12372  *
12373  * @attr: attributes of the counter to create
12374  * @cpu: cpu in which the counter is bound
12375  * @task: task to profile (NULL for percpu)
12376  */
12377 struct perf_event *
12378 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12379 				 struct task_struct *task,
12380 				 perf_overflow_handler_t overflow_handler,
12381 				 void *context)
12382 {
12383 	struct perf_event_context *ctx;
12384 	struct perf_event *event;
12385 	int err;
12386 
12387 	/*
12388 	 * Grouping is not supported for kernel events, neither is 'AUX',
12389 	 * make sure the caller's intentions are adjusted.
12390 	 */
12391 	if (attr->aux_output)
12392 		return ERR_PTR(-EINVAL);
12393 
12394 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12395 				 overflow_handler, context, -1);
12396 	if (IS_ERR(event)) {
12397 		err = PTR_ERR(event);
12398 		goto err;
12399 	}
12400 
12401 	/* Mark owner so we could distinguish it from user events. */
12402 	event->owner = TASK_TOMBSTONE;
12403 
12404 	/*
12405 	 * Get the target context (task or percpu):
12406 	 */
12407 	ctx = find_get_context(event->pmu, task, event);
12408 	if (IS_ERR(ctx)) {
12409 		err = PTR_ERR(ctx);
12410 		goto err_free;
12411 	}
12412 
12413 	WARN_ON_ONCE(ctx->parent_ctx);
12414 	mutex_lock(&ctx->mutex);
12415 	if (ctx->task == TASK_TOMBSTONE) {
12416 		err = -ESRCH;
12417 		goto err_unlock;
12418 	}
12419 
12420 	if (!task) {
12421 		/*
12422 		 * Check if the @cpu we're creating an event for is online.
12423 		 *
12424 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12425 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12426 		 */
12427 		struct perf_cpu_context *cpuctx =
12428 			container_of(ctx, struct perf_cpu_context, ctx);
12429 		if (!cpuctx->online) {
12430 			err = -ENODEV;
12431 			goto err_unlock;
12432 		}
12433 	}
12434 
12435 	if (!exclusive_event_installable(event, ctx)) {
12436 		err = -EBUSY;
12437 		goto err_unlock;
12438 	}
12439 
12440 	perf_install_in_context(ctx, event, event->cpu);
12441 	perf_unpin_context(ctx);
12442 	mutex_unlock(&ctx->mutex);
12443 
12444 	return event;
12445 
12446 err_unlock:
12447 	mutex_unlock(&ctx->mutex);
12448 	perf_unpin_context(ctx);
12449 	put_ctx(ctx);
12450 err_free:
12451 	free_event(event);
12452 err:
12453 	return ERR_PTR(err);
12454 }
12455 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12456 
12457 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12458 {
12459 	struct perf_event_context *src_ctx;
12460 	struct perf_event_context *dst_ctx;
12461 	struct perf_event *event, *tmp;
12462 	LIST_HEAD(events);
12463 
12464 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12465 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12466 
12467 	/*
12468 	 * See perf_event_ctx_lock() for comments on the details
12469 	 * of swizzling perf_event::ctx.
12470 	 */
12471 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12472 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12473 				 event_entry) {
12474 		perf_remove_from_context(event, 0);
12475 		unaccount_event_cpu(event, src_cpu);
12476 		put_ctx(src_ctx);
12477 		list_add(&event->migrate_entry, &events);
12478 	}
12479 
12480 	/*
12481 	 * Wait for the events to quiesce before re-instating them.
12482 	 */
12483 	synchronize_rcu();
12484 
12485 	/*
12486 	 * Re-instate events in 2 passes.
12487 	 *
12488 	 * Skip over group leaders and only install siblings on this first
12489 	 * pass, siblings will not get enabled without a leader, however a
12490 	 * leader will enable its siblings, even if those are still on the old
12491 	 * context.
12492 	 */
12493 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12494 		if (event->group_leader == event)
12495 			continue;
12496 
12497 		list_del(&event->migrate_entry);
12498 		if (event->state >= PERF_EVENT_STATE_OFF)
12499 			event->state = PERF_EVENT_STATE_INACTIVE;
12500 		account_event_cpu(event, dst_cpu);
12501 		perf_install_in_context(dst_ctx, event, dst_cpu);
12502 		get_ctx(dst_ctx);
12503 	}
12504 
12505 	/*
12506 	 * Once all the siblings are setup properly, install the group leaders
12507 	 * to make it go.
12508 	 */
12509 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12510 		list_del(&event->migrate_entry);
12511 		if (event->state >= PERF_EVENT_STATE_OFF)
12512 			event->state = PERF_EVENT_STATE_INACTIVE;
12513 		account_event_cpu(event, dst_cpu);
12514 		perf_install_in_context(dst_ctx, event, dst_cpu);
12515 		get_ctx(dst_ctx);
12516 	}
12517 	mutex_unlock(&dst_ctx->mutex);
12518 	mutex_unlock(&src_ctx->mutex);
12519 }
12520 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12521 
12522 static void sync_child_event(struct perf_event *child_event)
12523 {
12524 	struct perf_event *parent_event = child_event->parent;
12525 	u64 child_val;
12526 
12527 	if (child_event->attr.inherit_stat) {
12528 		struct task_struct *task = child_event->ctx->task;
12529 
12530 		if (task && task != TASK_TOMBSTONE)
12531 			perf_event_read_event(child_event, task);
12532 	}
12533 
12534 	child_val = perf_event_count(child_event);
12535 
12536 	/*
12537 	 * Add back the child's count to the parent's count:
12538 	 */
12539 	atomic64_add(child_val, &parent_event->child_count);
12540 	atomic64_add(child_event->total_time_enabled,
12541 		     &parent_event->child_total_time_enabled);
12542 	atomic64_add(child_event->total_time_running,
12543 		     &parent_event->child_total_time_running);
12544 }
12545 
12546 static void
12547 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12548 {
12549 	struct perf_event *parent_event = event->parent;
12550 	unsigned long detach_flags = 0;
12551 
12552 	if (parent_event) {
12553 		/*
12554 		 * Do not destroy the 'original' grouping; because of the
12555 		 * context switch optimization the original events could've
12556 		 * ended up in a random child task.
12557 		 *
12558 		 * If we were to destroy the original group, all group related
12559 		 * operations would cease to function properly after this
12560 		 * random child dies.
12561 		 *
12562 		 * Do destroy all inherited groups, we don't care about those
12563 		 * and being thorough is better.
12564 		 */
12565 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12566 		mutex_lock(&parent_event->child_mutex);
12567 	}
12568 
12569 	perf_remove_from_context(event, detach_flags);
12570 
12571 	raw_spin_lock_irq(&ctx->lock);
12572 	if (event->state > PERF_EVENT_STATE_EXIT)
12573 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12574 	raw_spin_unlock_irq(&ctx->lock);
12575 
12576 	/*
12577 	 * Child events can be freed.
12578 	 */
12579 	if (parent_event) {
12580 		mutex_unlock(&parent_event->child_mutex);
12581 		/*
12582 		 * Kick perf_poll() for is_event_hup();
12583 		 */
12584 		perf_event_wakeup(parent_event);
12585 		free_event(event);
12586 		put_event(parent_event);
12587 		return;
12588 	}
12589 
12590 	/*
12591 	 * Parent events are governed by their filedesc, retain them.
12592 	 */
12593 	perf_event_wakeup(event);
12594 }
12595 
12596 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12597 {
12598 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12599 	struct perf_event *child_event, *next;
12600 
12601 	WARN_ON_ONCE(child != current);
12602 
12603 	child_ctx = perf_pin_task_context(child, ctxn);
12604 	if (!child_ctx)
12605 		return;
12606 
12607 	/*
12608 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12609 	 * ctx::mutex over the entire thing. This serializes against almost
12610 	 * everything that wants to access the ctx.
12611 	 *
12612 	 * The exception is sys_perf_event_open() /
12613 	 * perf_event_create_kernel_count() which does find_get_context()
12614 	 * without ctx::mutex (it cannot because of the move_group double mutex
12615 	 * lock thing). See the comments in perf_install_in_context().
12616 	 */
12617 	mutex_lock(&child_ctx->mutex);
12618 
12619 	/*
12620 	 * In a single ctx::lock section, de-schedule the events and detach the
12621 	 * context from the task such that we cannot ever get it scheduled back
12622 	 * in.
12623 	 */
12624 	raw_spin_lock_irq(&child_ctx->lock);
12625 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12626 
12627 	/*
12628 	 * Now that the context is inactive, destroy the task <-> ctx relation
12629 	 * and mark the context dead.
12630 	 */
12631 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12632 	put_ctx(child_ctx); /* cannot be last */
12633 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12634 	put_task_struct(current); /* cannot be last */
12635 
12636 	clone_ctx = unclone_ctx(child_ctx);
12637 	raw_spin_unlock_irq(&child_ctx->lock);
12638 
12639 	if (clone_ctx)
12640 		put_ctx(clone_ctx);
12641 
12642 	/*
12643 	 * Report the task dead after unscheduling the events so that we
12644 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12645 	 * get a few PERF_RECORD_READ events.
12646 	 */
12647 	perf_event_task(child, child_ctx, 0);
12648 
12649 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12650 		perf_event_exit_event(child_event, child_ctx);
12651 
12652 	mutex_unlock(&child_ctx->mutex);
12653 
12654 	put_ctx(child_ctx);
12655 }
12656 
12657 /*
12658  * When a child task exits, feed back event values to parent events.
12659  *
12660  * Can be called with exec_update_lock held when called from
12661  * setup_new_exec().
12662  */
12663 void perf_event_exit_task(struct task_struct *child)
12664 {
12665 	struct perf_event *event, *tmp;
12666 	int ctxn;
12667 
12668 	mutex_lock(&child->perf_event_mutex);
12669 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12670 				 owner_entry) {
12671 		list_del_init(&event->owner_entry);
12672 
12673 		/*
12674 		 * Ensure the list deletion is visible before we clear
12675 		 * the owner, closes a race against perf_release() where
12676 		 * we need to serialize on the owner->perf_event_mutex.
12677 		 */
12678 		smp_store_release(&event->owner, NULL);
12679 	}
12680 	mutex_unlock(&child->perf_event_mutex);
12681 
12682 	for_each_task_context_nr(ctxn)
12683 		perf_event_exit_task_context(child, ctxn);
12684 
12685 	/*
12686 	 * The perf_event_exit_task_context calls perf_event_task
12687 	 * with child's task_ctx, which generates EXIT events for
12688 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12689 	 * At this point we need to send EXIT events to cpu contexts.
12690 	 */
12691 	perf_event_task(child, NULL, 0);
12692 }
12693 
12694 static void perf_free_event(struct perf_event *event,
12695 			    struct perf_event_context *ctx)
12696 {
12697 	struct perf_event *parent = event->parent;
12698 
12699 	if (WARN_ON_ONCE(!parent))
12700 		return;
12701 
12702 	mutex_lock(&parent->child_mutex);
12703 	list_del_init(&event->child_list);
12704 	mutex_unlock(&parent->child_mutex);
12705 
12706 	put_event(parent);
12707 
12708 	raw_spin_lock_irq(&ctx->lock);
12709 	perf_group_detach(event);
12710 	list_del_event(event, ctx);
12711 	raw_spin_unlock_irq(&ctx->lock);
12712 	free_event(event);
12713 }
12714 
12715 /*
12716  * Free a context as created by inheritance by perf_event_init_task() below,
12717  * used by fork() in case of fail.
12718  *
12719  * Even though the task has never lived, the context and events have been
12720  * exposed through the child_list, so we must take care tearing it all down.
12721  */
12722 void perf_event_free_task(struct task_struct *task)
12723 {
12724 	struct perf_event_context *ctx;
12725 	struct perf_event *event, *tmp;
12726 	int ctxn;
12727 
12728 	for_each_task_context_nr(ctxn) {
12729 		ctx = task->perf_event_ctxp[ctxn];
12730 		if (!ctx)
12731 			continue;
12732 
12733 		mutex_lock(&ctx->mutex);
12734 		raw_spin_lock_irq(&ctx->lock);
12735 		/*
12736 		 * Destroy the task <-> ctx relation and mark the context dead.
12737 		 *
12738 		 * This is important because even though the task hasn't been
12739 		 * exposed yet the context has been (through child_list).
12740 		 */
12741 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12742 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12743 		put_task_struct(task); /* cannot be last */
12744 		raw_spin_unlock_irq(&ctx->lock);
12745 
12746 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12747 			perf_free_event(event, ctx);
12748 
12749 		mutex_unlock(&ctx->mutex);
12750 
12751 		/*
12752 		 * perf_event_release_kernel() could've stolen some of our
12753 		 * child events and still have them on its free_list. In that
12754 		 * case we must wait for these events to have been freed (in
12755 		 * particular all their references to this task must've been
12756 		 * dropped).
12757 		 *
12758 		 * Without this copy_process() will unconditionally free this
12759 		 * task (irrespective of its reference count) and
12760 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12761 		 * use-after-free.
12762 		 *
12763 		 * Wait for all events to drop their context reference.
12764 		 */
12765 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12766 		put_ctx(ctx); /* must be last */
12767 	}
12768 }
12769 
12770 void perf_event_delayed_put(struct task_struct *task)
12771 {
12772 	int ctxn;
12773 
12774 	for_each_task_context_nr(ctxn)
12775 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12776 }
12777 
12778 struct file *perf_event_get(unsigned int fd)
12779 {
12780 	struct file *file = fget(fd);
12781 	if (!file)
12782 		return ERR_PTR(-EBADF);
12783 
12784 	if (file->f_op != &perf_fops) {
12785 		fput(file);
12786 		return ERR_PTR(-EBADF);
12787 	}
12788 
12789 	return file;
12790 }
12791 
12792 const struct perf_event *perf_get_event(struct file *file)
12793 {
12794 	if (file->f_op != &perf_fops)
12795 		return ERR_PTR(-EINVAL);
12796 
12797 	return file->private_data;
12798 }
12799 
12800 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12801 {
12802 	if (!event)
12803 		return ERR_PTR(-EINVAL);
12804 
12805 	return &event->attr;
12806 }
12807 
12808 /*
12809  * Inherit an event from parent task to child task.
12810  *
12811  * Returns:
12812  *  - valid pointer on success
12813  *  - NULL for orphaned events
12814  *  - IS_ERR() on error
12815  */
12816 static struct perf_event *
12817 inherit_event(struct perf_event *parent_event,
12818 	      struct task_struct *parent,
12819 	      struct perf_event_context *parent_ctx,
12820 	      struct task_struct *child,
12821 	      struct perf_event *group_leader,
12822 	      struct perf_event_context *child_ctx)
12823 {
12824 	enum perf_event_state parent_state = parent_event->state;
12825 	struct perf_event *child_event;
12826 	unsigned long flags;
12827 
12828 	/*
12829 	 * Instead of creating recursive hierarchies of events,
12830 	 * we link inherited events back to the original parent,
12831 	 * which has a filp for sure, which we use as the reference
12832 	 * count:
12833 	 */
12834 	if (parent_event->parent)
12835 		parent_event = parent_event->parent;
12836 
12837 	child_event = perf_event_alloc(&parent_event->attr,
12838 					   parent_event->cpu,
12839 					   child,
12840 					   group_leader, parent_event,
12841 					   NULL, NULL, -1);
12842 	if (IS_ERR(child_event))
12843 		return child_event;
12844 
12845 
12846 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12847 	    !child_ctx->task_ctx_data) {
12848 		struct pmu *pmu = child_event->pmu;
12849 
12850 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12851 		if (!child_ctx->task_ctx_data) {
12852 			free_event(child_event);
12853 			return ERR_PTR(-ENOMEM);
12854 		}
12855 	}
12856 
12857 	/*
12858 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12859 	 * must be under the same lock in order to serialize against
12860 	 * perf_event_release_kernel(), such that either we must observe
12861 	 * is_orphaned_event() or they will observe us on the child_list.
12862 	 */
12863 	mutex_lock(&parent_event->child_mutex);
12864 	if (is_orphaned_event(parent_event) ||
12865 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12866 		mutex_unlock(&parent_event->child_mutex);
12867 		/* task_ctx_data is freed with child_ctx */
12868 		free_event(child_event);
12869 		return NULL;
12870 	}
12871 
12872 	get_ctx(child_ctx);
12873 
12874 	/*
12875 	 * Make the child state follow the state of the parent event,
12876 	 * not its attr.disabled bit.  We hold the parent's mutex,
12877 	 * so we won't race with perf_event_{en, dis}able_family.
12878 	 */
12879 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12880 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12881 	else
12882 		child_event->state = PERF_EVENT_STATE_OFF;
12883 
12884 	if (parent_event->attr.freq) {
12885 		u64 sample_period = parent_event->hw.sample_period;
12886 		struct hw_perf_event *hwc = &child_event->hw;
12887 
12888 		hwc->sample_period = sample_period;
12889 		hwc->last_period   = sample_period;
12890 
12891 		local64_set(&hwc->period_left, sample_period);
12892 	}
12893 
12894 	child_event->ctx = child_ctx;
12895 	child_event->overflow_handler = parent_event->overflow_handler;
12896 	child_event->overflow_handler_context
12897 		= parent_event->overflow_handler_context;
12898 
12899 	/*
12900 	 * Precalculate sample_data sizes
12901 	 */
12902 	perf_event__header_size(child_event);
12903 	perf_event__id_header_size(child_event);
12904 
12905 	/*
12906 	 * Link it up in the child's context:
12907 	 */
12908 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12909 	add_event_to_ctx(child_event, child_ctx);
12910 	child_event->attach_state |= PERF_ATTACH_CHILD;
12911 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12912 
12913 	/*
12914 	 * Link this into the parent event's child list
12915 	 */
12916 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12917 	mutex_unlock(&parent_event->child_mutex);
12918 
12919 	return child_event;
12920 }
12921 
12922 /*
12923  * Inherits an event group.
12924  *
12925  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12926  * This matches with perf_event_release_kernel() removing all child events.
12927  *
12928  * Returns:
12929  *  - 0 on success
12930  *  - <0 on error
12931  */
12932 static int inherit_group(struct perf_event *parent_event,
12933 	      struct task_struct *parent,
12934 	      struct perf_event_context *parent_ctx,
12935 	      struct task_struct *child,
12936 	      struct perf_event_context *child_ctx)
12937 {
12938 	struct perf_event *leader;
12939 	struct perf_event *sub;
12940 	struct perf_event *child_ctr;
12941 
12942 	leader = inherit_event(parent_event, parent, parent_ctx,
12943 				 child, NULL, child_ctx);
12944 	if (IS_ERR(leader))
12945 		return PTR_ERR(leader);
12946 	/*
12947 	 * @leader can be NULL here because of is_orphaned_event(). In this
12948 	 * case inherit_event() will create individual events, similar to what
12949 	 * perf_group_detach() would do anyway.
12950 	 */
12951 	for_each_sibling_event(sub, parent_event) {
12952 		child_ctr = inherit_event(sub, parent, parent_ctx,
12953 					    child, leader, child_ctx);
12954 		if (IS_ERR(child_ctr))
12955 			return PTR_ERR(child_ctr);
12956 
12957 		if (sub->aux_event == parent_event && child_ctr &&
12958 		    !perf_get_aux_event(child_ctr, leader))
12959 			return -EINVAL;
12960 	}
12961 	return 0;
12962 }
12963 
12964 /*
12965  * Creates the child task context and tries to inherit the event-group.
12966  *
12967  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12968  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12969  * consistent with perf_event_release_kernel() removing all child events.
12970  *
12971  * Returns:
12972  *  - 0 on success
12973  *  - <0 on error
12974  */
12975 static int
12976 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12977 		   struct perf_event_context *parent_ctx,
12978 		   struct task_struct *child, int ctxn,
12979 		   u64 clone_flags, int *inherited_all)
12980 {
12981 	int ret;
12982 	struct perf_event_context *child_ctx;
12983 
12984 	if (!event->attr.inherit ||
12985 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
12986 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
12987 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
12988 		*inherited_all = 0;
12989 		return 0;
12990 	}
12991 
12992 	child_ctx = child->perf_event_ctxp[ctxn];
12993 	if (!child_ctx) {
12994 		/*
12995 		 * This is executed from the parent task context, so
12996 		 * inherit events that have been marked for cloning.
12997 		 * First allocate and initialize a context for the
12998 		 * child.
12999 		 */
13000 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13001 		if (!child_ctx)
13002 			return -ENOMEM;
13003 
13004 		child->perf_event_ctxp[ctxn] = child_ctx;
13005 	}
13006 
13007 	ret = inherit_group(event, parent, parent_ctx,
13008 			    child, child_ctx);
13009 
13010 	if (ret)
13011 		*inherited_all = 0;
13012 
13013 	return ret;
13014 }
13015 
13016 /*
13017  * Initialize the perf_event context in task_struct
13018  */
13019 static int perf_event_init_context(struct task_struct *child, int ctxn,
13020 				   u64 clone_flags)
13021 {
13022 	struct perf_event_context *child_ctx, *parent_ctx;
13023 	struct perf_event_context *cloned_ctx;
13024 	struct perf_event *event;
13025 	struct task_struct *parent = current;
13026 	int inherited_all = 1;
13027 	unsigned long flags;
13028 	int ret = 0;
13029 
13030 	if (likely(!parent->perf_event_ctxp[ctxn]))
13031 		return 0;
13032 
13033 	/*
13034 	 * If the parent's context is a clone, pin it so it won't get
13035 	 * swapped under us.
13036 	 */
13037 	parent_ctx = perf_pin_task_context(parent, ctxn);
13038 	if (!parent_ctx)
13039 		return 0;
13040 
13041 	/*
13042 	 * No need to check if parent_ctx != NULL here; since we saw
13043 	 * it non-NULL earlier, the only reason for it to become NULL
13044 	 * is if we exit, and since we're currently in the middle of
13045 	 * a fork we can't be exiting at the same time.
13046 	 */
13047 
13048 	/*
13049 	 * Lock the parent list. No need to lock the child - not PID
13050 	 * hashed yet and not running, so nobody can access it.
13051 	 */
13052 	mutex_lock(&parent_ctx->mutex);
13053 
13054 	/*
13055 	 * We dont have to disable NMIs - we are only looking at
13056 	 * the list, not manipulating it:
13057 	 */
13058 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13059 		ret = inherit_task_group(event, parent, parent_ctx,
13060 					 child, ctxn, clone_flags,
13061 					 &inherited_all);
13062 		if (ret)
13063 			goto out_unlock;
13064 	}
13065 
13066 	/*
13067 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13068 	 * to allocations, but we need to prevent rotation because
13069 	 * rotate_ctx() will change the list from interrupt context.
13070 	 */
13071 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13072 	parent_ctx->rotate_disable = 1;
13073 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13074 
13075 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13076 		ret = inherit_task_group(event, parent, parent_ctx,
13077 					 child, ctxn, clone_flags,
13078 					 &inherited_all);
13079 		if (ret)
13080 			goto out_unlock;
13081 	}
13082 
13083 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13084 	parent_ctx->rotate_disable = 0;
13085 
13086 	child_ctx = child->perf_event_ctxp[ctxn];
13087 
13088 	if (child_ctx && inherited_all) {
13089 		/*
13090 		 * Mark the child context as a clone of the parent
13091 		 * context, or of whatever the parent is a clone of.
13092 		 *
13093 		 * Note that if the parent is a clone, the holding of
13094 		 * parent_ctx->lock avoids it from being uncloned.
13095 		 */
13096 		cloned_ctx = parent_ctx->parent_ctx;
13097 		if (cloned_ctx) {
13098 			child_ctx->parent_ctx = cloned_ctx;
13099 			child_ctx->parent_gen = parent_ctx->parent_gen;
13100 		} else {
13101 			child_ctx->parent_ctx = parent_ctx;
13102 			child_ctx->parent_gen = parent_ctx->generation;
13103 		}
13104 		get_ctx(child_ctx->parent_ctx);
13105 	}
13106 
13107 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13108 out_unlock:
13109 	mutex_unlock(&parent_ctx->mutex);
13110 
13111 	perf_unpin_context(parent_ctx);
13112 	put_ctx(parent_ctx);
13113 
13114 	return ret;
13115 }
13116 
13117 /*
13118  * Initialize the perf_event context in task_struct
13119  */
13120 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13121 {
13122 	int ctxn, ret;
13123 
13124 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13125 	mutex_init(&child->perf_event_mutex);
13126 	INIT_LIST_HEAD(&child->perf_event_list);
13127 
13128 	for_each_task_context_nr(ctxn) {
13129 		ret = perf_event_init_context(child, ctxn, clone_flags);
13130 		if (ret) {
13131 			perf_event_free_task(child);
13132 			return ret;
13133 		}
13134 	}
13135 
13136 	return 0;
13137 }
13138 
13139 static void __init perf_event_init_all_cpus(void)
13140 {
13141 	struct swevent_htable *swhash;
13142 	int cpu;
13143 
13144 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13145 
13146 	for_each_possible_cpu(cpu) {
13147 		swhash = &per_cpu(swevent_htable, cpu);
13148 		mutex_init(&swhash->hlist_mutex);
13149 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13150 
13151 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13152 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13153 
13154 #ifdef CONFIG_CGROUP_PERF
13155 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13156 #endif
13157 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13158 	}
13159 }
13160 
13161 static void perf_swevent_init_cpu(unsigned int cpu)
13162 {
13163 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13164 
13165 	mutex_lock(&swhash->hlist_mutex);
13166 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13167 		struct swevent_hlist *hlist;
13168 
13169 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13170 		WARN_ON(!hlist);
13171 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13172 	}
13173 	mutex_unlock(&swhash->hlist_mutex);
13174 }
13175 
13176 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13177 static void __perf_event_exit_context(void *__info)
13178 {
13179 	struct perf_event_context *ctx = __info;
13180 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13181 	struct perf_event *event;
13182 
13183 	raw_spin_lock(&ctx->lock);
13184 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13185 	list_for_each_entry(event, &ctx->event_list, event_entry)
13186 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13187 	raw_spin_unlock(&ctx->lock);
13188 }
13189 
13190 static void perf_event_exit_cpu_context(int cpu)
13191 {
13192 	struct perf_cpu_context *cpuctx;
13193 	struct perf_event_context *ctx;
13194 	struct pmu *pmu;
13195 
13196 	mutex_lock(&pmus_lock);
13197 	list_for_each_entry(pmu, &pmus, entry) {
13198 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13199 		ctx = &cpuctx->ctx;
13200 
13201 		mutex_lock(&ctx->mutex);
13202 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13203 		cpuctx->online = 0;
13204 		mutex_unlock(&ctx->mutex);
13205 	}
13206 	cpumask_clear_cpu(cpu, perf_online_mask);
13207 	mutex_unlock(&pmus_lock);
13208 }
13209 #else
13210 
13211 static void perf_event_exit_cpu_context(int cpu) { }
13212 
13213 #endif
13214 
13215 int perf_event_init_cpu(unsigned int cpu)
13216 {
13217 	struct perf_cpu_context *cpuctx;
13218 	struct perf_event_context *ctx;
13219 	struct pmu *pmu;
13220 
13221 	perf_swevent_init_cpu(cpu);
13222 
13223 	mutex_lock(&pmus_lock);
13224 	cpumask_set_cpu(cpu, perf_online_mask);
13225 	list_for_each_entry(pmu, &pmus, entry) {
13226 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13227 		ctx = &cpuctx->ctx;
13228 
13229 		mutex_lock(&ctx->mutex);
13230 		cpuctx->online = 1;
13231 		mutex_unlock(&ctx->mutex);
13232 	}
13233 	mutex_unlock(&pmus_lock);
13234 
13235 	return 0;
13236 }
13237 
13238 int perf_event_exit_cpu(unsigned int cpu)
13239 {
13240 	perf_event_exit_cpu_context(cpu);
13241 	return 0;
13242 }
13243 
13244 static int
13245 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13246 {
13247 	int cpu;
13248 
13249 	for_each_online_cpu(cpu)
13250 		perf_event_exit_cpu(cpu);
13251 
13252 	return NOTIFY_OK;
13253 }
13254 
13255 /*
13256  * Run the perf reboot notifier at the very last possible moment so that
13257  * the generic watchdog code runs as long as possible.
13258  */
13259 static struct notifier_block perf_reboot_notifier = {
13260 	.notifier_call = perf_reboot,
13261 	.priority = INT_MIN,
13262 };
13263 
13264 void __init perf_event_init(void)
13265 {
13266 	int ret;
13267 
13268 	idr_init(&pmu_idr);
13269 
13270 	perf_event_init_all_cpus();
13271 	init_srcu_struct(&pmus_srcu);
13272 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13273 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13274 	perf_pmu_register(&perf_task_clock, NULL, -1);
13275 	perf_tp_register();
13276 	perf_event_init_cpu(smp_processor_id());
13277 	register_reboot_notifier(&perf_reboot_notifier);
13278 
13279 	ret = init_hw_breakpoint();
13280 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13281 
13282 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13283 
13284 	/*
13285 	 * Build time assertion that we keep the data_head at the intended
13286 	 * location.  IOW, validation we got the __reserved[] size right.
13287 	 */
13288 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13289 		     != 1024);
13290 }
13291 
13292 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13293 			      char *page)
13294 {
13295 	struct perf_pmu_events_attr *pmu_attr =
13296 		container_of(attr, struct perf_pmu_events_attr, attr);
13297 
13298 	if (pmu_attr->event_str)
13299 		return sprintf(page, "%s\n", pmu_attr->event_str);
13300 
13301 	return 0;
13302 }
13303 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13304 
13305 static int __init perf_event_sysfs_init(void)
13306 {
13307 	struct pmu *pmu;
13308 	int ret;
13309 
13310 	mutex_lock(&pmus_lock);
13311 
13312 	ret = bus_register(&pmu_bus);
13313 	if (ret)
13314 		goto unlock;
13315 
13316 	list_for_each_entry(pmu, &pmus, entry) {
13317 		if (!pmu->name || pmu->type < 0)
13318 			continue;
13319 
13320 		ret = pmu_dev_alloc(pmu);
13321 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13322 	}
13323 	pmu_bus_running = 1;
13324 	ret = 0;
13325 
13326 unlock:
13327 	mutex_unlock(&pmus_lock);
13328 
13329 	return ret;
13330 }
13331 device_initcall(perf_event_sysfs_init);
13332 
13333 #ifdef CONFIG_CGROUP_PERF
13334 static struct cgroup_subsys_state *
13335 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13336 {
13337 	struct perf_cgroup *jc;
13338 
13339 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13340 	if (!jc)
13341 		return ERR_PTR(-ENOMEM);
13342 
13343 	jc->info = alloc_percpu(struct perf_cgroup_info);
13344 	if (!jc->info) {
13345 		kfree(jc);
13346 		return ERR_PTR(-ENOMEM);
13347 	}
13348 
13349 	return &jc->css;
13350 }
13351 
13352 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13353 {
13354 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13355 
13356 	free_percpu(jc->info);
13357 	kfree(jc);
13358 }
13359 
13360 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13361 {
13362 	perf_event_cgroup(css->cgroup);
13363 	return 0;
13364 }
13365 
13366 static int __perf_cgroup_move(void *info)
13367 {
13368 	struct task_struct *task = info;
13369 	rcu_read_lock();
13370 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13371 	rcu_read_unlock();
13372 	return 0;
13373 }
13374 
13375 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13376 {
13377 	struct task_struct *task;
13378 	struct cgroup_subsys_state *css;
13379 
13380 	cgroup_taskset_for_each(task, css, tset)
13381 		task_function_call(task, __perf_cgroup_move, task);
13382 }
13383 
13384 struct cgroup_subsys perf_event_cgrp_subsys = {
13385 	.css_alloc	= perf_cgroup_css_alloc,
13386 	.css_free	= perf_cgroup_css_free,
13387 	.css_online	= perf_cgroup_css_online,
13388 	.attach		= perf_cgroup_attach,
13389 	/*
13390 	 * Implicitly enable on dfl hierarchy so that perf events can
13391 	 * always be filtered by cgroup2 path as long as perf_event
13392 	 * controller is not mounted on a legacy hierarchy.
13393 	 */
13394 	.implicit_on_dfl = true,
13395 	.threaded	= true,
13396 };
13397 #endif /* CONFIG_CGROUP_PERF */
13398