1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_proc_update_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (event->attr.read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (event->attr.read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 size += entry * nr; 1841 event->read_size = size; 1842 } 1843 1844 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1845 { 1846 struct perf_sample_data *data; 1847 u16 size = 0; 1848 1849 if (sample_type & PERF_SAMPLE_IP) 1850 size += sizeof(data->ip); 1851 1852 if (sample_type & PERF_SAMPLE_ADDR) 1853 size += sizeof(data->addr); 1854 1855 if (sample_type & PERF_SAMPLE_PERIOD) 1856 size += sizeof(data->period); 1857 1858 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1859 size += sizeof(data->weight.full); 1860 1861 if (sample_type & PERF_SAMPLE_READ) 1862 size += event->read_size; 1863 1864 if (sample_type & PERF_SAMPLE_DATA_SRC) 1865 size += sizeof(data->data_src.val); 1866 1867 if (sample_type & PERF_SAMPLE_TRANSACTION) 1868 size += sizeof(data->txn); 1869 1870 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1871 size += sizeof(data->phys_addr); 1872 1873 if (sample_type & PERF_SAMPLE_CGROUP) 1874 size += sizeof(data->cgroup); 1875 1876 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1877 size += sizeof(data->data_page_size); 1878 1879 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1880 size += sizeof(data->code_page_size); 1881 1882 event->header_size = size; 1883 } 1884 1885 /* 1886 * Called at perf_event creation and when events are attached/detached from a 1887 * group. 1888 */ 1889 static void perf_event__header_size(struct perf_event *event) 1890 { 1891 __perf_event_read_size(event, 1892 event->group_leader->nr_siblings); 1893 __perf_event_header_size(event, event->attr.sample_type); 1894 } 1895 1896 static void perf_event__id_header_size(struct perf_event *event) 1897 { 1898 struct perf_sample_data *data; 1899 u64 sample_type = event->attr.sample_type; 1900 u16 size = 0; 1901 1902 if (sample_type & PERF_SAMPLE_TID) 1903 size += sizeof(data->tid_entry); 1904 1905 if (sample_type & PERF_SAMPLE_TIME) 1906 size += sizeof(data->time); 1907 1908 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1909 size += sizeof(data->id); 1910 1911 if (sample_type & PERF_SAMPLE_ID) 1912 size += sizeof(data->id); 1913 1914 if (sample_type & PERF_SAMPLE_STREAM_ID) 1915 size += sizeof(data->stream_id); 1916 1917 if (sample_type & PERF_SAMPLE_CPU) 1918 size += sizeof(data->cpu_entry); 1919 1920 event->id_header_size = size; 1921 } 1922 1923 static bool perf_event_validate_size(struct perf_event *event) 1924 { 1925 /* 1926 * The values computed here will be over-written when we actually 1927 * attach the event. 1928 */ 1929 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1930 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1931 perf_event__id_header_size(event); 1932 1933 /* 1934 * Sum the lot; should not exceed the 64k limit we have on records. 1935 * Conservative limit to allow for callchains and other variable fields. 1936 */ 1937 if (event->read_size + event->header_size + 1938 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1939 return false; 1940 1941 return true; 1942 } 1943 1944 static void perf_group_attach(struct perf_event *event) 1945 { 1946 struct perf_event *group_leader = event->group_leader, *pos; 1947 1948 lockdep_assert_held(&event->ctx->lock); 1949 1950 /* 1951 * We can have double attach due to group movement (move_group) in 1952 * perf_event_open(). 1953 */ 1954 if (event->attach_state & PERF_ATTACH_GROUP) 1955 return; 1956 1957 event->attach_state |= PERF_ATTACH_GROUP; 1958 1959 if (group_leader == event) 1960 return; 1961 1962 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1963 1964 group_leader->group_caps &= event->event_caps; 1965 1966 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1967 group_leader->nr_siblings++; 1968 group_leader->group_generation++; 1969 1970 perf_event__header_size(group_leader); 1971 1972 for_each_sibling_event(pos, group_leader) 1973 perf_event__header_size(pos); 1974 } 1975 1976 /* 1977 * Remove an event from the lists for its context. 1978 * Must be called with ctx->mutex and ctx->lock held. 1979 */ 1980 static void 1981 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1982 { 1983 WARN_ON_ONCE(event->ctx != ctx); 1984 lockdep_assert_held(&ctx->lock); 1985 1986 /* 1987 * We can have double detach due to exit/hot-unplug + close. 1988 */ 1989 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1990 return; 1991 1992 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1993 1994 ctx->nr_events--; 1995 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1996 ctx->nr_user--; 1997 if (event->attr.inherit_stat) 1998 ctx->nr_stat--; 1999 2000 list_del_rcu(&event->event_entry); 2001 2002 if (event->group_leader == event) 2003 del_event_from_groups(event, ctx); 2004 2005 /* 2006 * If event was in error state, then keep it 2007 * that way, otherwise bogus counts will be 2008 * returned on read(). The only way to get out 2009 * of error state is by explicit re-enabling 2010 * of the event 2011 */ 2012 if (event->state > PERF_EVENT_STATE_OFF) { 2013 perf_cgroup_event_disable(event, ctx); 2014 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2015 } 2016 2017 ctx->generation++; 2018 event->pmu_ctx->nr_events--; 2019 } 2020 2021 static int 2022 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2023 { 2024 if (!has_aux(aux_event)) 2025 return 0; 2026 2027 if (!event->pmu->aux_output_match) 2028 return 0; 2029 2030 return event->pmu->aux_output_match(aux_event); 2031 } 2032 2033 static void put_event(struct perf_event *event); 2034 static void event_sched_out(struct perf_event *event, 2035 struct perf_event_context *ctx); 2036 2037 static void perf_put_aux_event(struct perf_event *event) 2038 { 2039 struct perf_event_context *ctx = event->ctx; 2040 struct perf_event *iter; 2041 2042 /* 2043 * If event uses aux_event tear down the link 2044 */ 2045 if (event->aux_event) { 2046 iter = event->aux_event; 2047 event->aux_event = NULL; 2048 put_event(iter); 2049 return; 2050 } 2051 2052 /* 2053 * If the event is an aux_event, tear down all links to 2054 * it from other events. 2055 */ 2056 for_each_sibling_event(iter, event->group_leader) { 2057 if (iter->aux_event != event) 2058 continue; 2059 2060 iter->aux_event = NULL; 2061 put_event(event); 2062 2063 /* 2064 * If it's ACTIVE, schedule it out and put it into ERROR 2065 * state so that we don't try to schedule it again. Note 2066 * that perf_event_enable() will clear the ERROR status. 2067 */ 2068 event_sched_out(iter, ctx); 2069 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2070 } 2071 } 2072 2073 static bool perf_need_aux_event(struct perf_event *event) 2074 { 2075 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2076 } 2077 2078 static int perf_get_aux_event(struct perf_event *event, 2079 struct perf_event *group_leader) 2080 { 2081 /* 2082 * Our group leader must be an aux event if we want to be 2083 * an aux_output. This way, the aux event will precede its 2084 * aux_output events in the group, and therefore will always 2085 * schedule first. 2086 */ 2087 if (!group_leader) 2088 return 0; 2089 2090 /* 2091 * aux_output and aux_sample_size are mutually exclusive. 2092 */ 2093 if (event->attr.aux_output && event->attr.aux_sample_size) 2094 return 0; 2095 2096 if (event->attr.aux_output && 2097 !perf_aux_output_match(event, group_leader)) 2098 return 0; 2099 2100 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2101 return 0; 2102 2103 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2104 return 0; 2105 2106 /* 2107 * Link aux_outputs to their aux event; this is undone in 2108 * perf_group_detach() by perf_put_aux_event(). When the 2109 * group in torn down, the aux_output events loose their 2110 * link to the aux_event and can't schedule any more. 2111 */ 2112 event->aux_event = group_leader; 2113 2114 return 1; 2115 } 2116 2117 static inline struct list_head *get_event_list(struct perf_event *event) 2118 { 2119 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2120 &event->pmu_ctx->flexible_active; 2121 } 2122 2123 /* 2124 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2125 * cannot exist on their own, schedule them out and move them into the ERROR 2126 * state. Also see _perf_event_enable(), it will not be able to recover 2127 * this ERROR state. 2128 */ 2129 static inline void perf_remove_sibling_event(struct perf_event *event) 2130 { 2131 event_sched_out(event, event->ctx); 2132 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2133 } 2134 2135 static void perf_group_detach(struct perf_event *event) 2136 { 2137 struct perf_event *leader = event->group_leader; 2138 struct perf_event *sibling, *tmp; 2139 struct perf_event_context *ctx = event->ctx; 2140 2141 lockdep_assert_held(&ctx->lock); 2142 2143 /* 2144 * We can have double detach due to exit/hot-unplug + close. 2145 */ 2146 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2147 return; 2148 2149 event->attach_state &= ~PERF_ATTACH_GROUP; 2150 2151 perf_put_aux_event(event); 2152 2153 /* 2154 * If this is a sibling, remove it from its group. 2155 */ 2156 if (leader != event) { 2157 list_del_init(&event->sibling_list); 2158 event->group_leader->nr_siblings--; 2159 event->group_leader->group_generation++; 2160 goto out; 2161 } 2162 2163 /* 2164 * If this was a group event with sibling events then 2165 * upgrade the siblings to singleton events by adding them 2166 * to whatever list we are on. 2167 */ 2168 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2169 2170 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2171 perf_remove_sibling_event(sibling); 2172 2173 sibling->group_leader = sibling; 2174 list_del_init(&sibling->sibling_list); 2175 2176 /* Inherit group flags from the previous leader */ 2177 sibling->group_caps = event->group_caps; 2178 2179 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2180 add_event_to_groups(sibling, event->ctx); 2181 2182 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2183 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2184 } 2185 2186 WARN_ON_ONCE(sibling->ctx != event->ctx); 2187 } 2188 2189 out: 2190 for_each_sibling_event(tmp, leader) 2191 perf_event__header_size(tmp); 2192 2193 perf_event__header_size(leader); 2194 } 2195 2196 static void sync_child_event(struct perf_event *child_event); 2197 2198 static void perf_child_detach(struct perf_event *event) 2199 { 2200 struct perf_event *parent_event = event->parent; 2201 2202 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2203 return; 2204 2205 event->attach_state &= ~PERF_ATTACH_CHILD; 2206 2207 if (WARN_ON_ONCE(!parent_event)) 2208 return; 2209 2210 lockdep_assert_held(&parent_event->child_mutex); 2211 2212 sync_child_event(event); 2213 list_del_init(&event->child_list); 2214 } 2215 2216 static bool is_orphaned_event(struct perf_event *event) 2217 { 2218 return event->state == PERF_EVENT_STATE_DEAD; 2219 } 2220 2221 static inline int 2222 event_filter_match(struct perf_event *event) 2223 { 2224 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2225 perf_cgroup_match(event); 2226 } 2227 2228 static void 2229 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2230 { 2231 struct perf_event_pmu_context *epc = event->pmu_ctx; 2232 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2233 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2234 2235 // XXX cpc serialization, probably per-cpu IRQ disabled 2236 2237 WARN_ON_ONCE(event->ctx != ctx); 2238 lockdep_assert_held(&ctx->lock); 2239 2240 if (event->state != PERF_EVENT_STATE_ACTIVE) 2241 return; 2242 2243 /* 2244 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2245 * we can schedule events _OUT_ individually through things like 2246 * __perf_remove_from_context(). 2247 */ 2248 list_del_init(&event->active_list); 2249 2250 perf_pmu_disable(event->pmu); 2251 2252 event->pmu->del(event, 0); 2253 event->oncpu = -1; 2254 2255 if (event->pending_disable) { 2256 event->pending_disable = 0; 2257 perf_cgroup_event_disable(event, ctx); 2258 state = PERF_EVENT_STATE_OFF; 2259 } 2260 2261 if (event->pending_sigtrap) { 2262 bool dec = true; 2263 2264 event->pending_sigtrap = 0; 2265 if (state != PERF_EVENT_STATE_OFF && 2266 !event->pending_work) { 2267 event->pending_work = 1; 2268 dec = false; 2269 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2270 task_work_add(current, &event->pending_task, TWA_RESUME); 2271 } 2272 if (dec) 2273 local_dec(&event->ctx->nr_pending); 2274 } 2275 2276 perf_event_set_state(event, state); 2277 2278 if (!is_software_event(event)) 2279 cpc->active_oncpu--; 2280 if (event->attr.freq && event->attr.sample_freq) 2281 ctx->nr_freq--; 2282 if (event->attr.exclusive || !cpc->active_oncpu) 2283 cpc->exclusive = 0; 2284 2285 perf_pmu_enable(event->pmu); 2286 } 2287 2288 static void 2289 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2290 { 2291 struct perf_event *event; 2292 2293 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2294 return; 2295 2296 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2297 2298 event_sched_out(group_event, ctx); 2299 2300 /* 2301 * Schedule out siblings (if any): 2302 */ 2303 for_each_sibling_event(event, group_event) 2304 event_sched_out(event, ctx); 2305 } 2306 2307 #define DETACH_GROUP 0x01UL 2308 #define DETACH_CHILD 0x02UL 2309 #define DETACH_DEAD 0x04UL 2310 2311 /* 2312 * Cross CPU call to remove a performance event 2313 * 2314 * We disable the event on the hardware level first. After that we 2315 * remove it from the context list. 2316 */ 2317 static void 2318 __perf_remove_from_context(struct perf_event *event, 2319 struct perf_cpu_context *cpuctx, 2320 struct perf_event_context *ctx, 2321 void *info) 2322 { 2323 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2324 unsigned long flags = (unsigned long)info; 2325 2326 if (ctx->is_active & EVENT_TIME) { 2327 update_context_time(ctx); 2328 update_cgrp_time_from_cpuctx(cpuctx, false); 2329 } 2330 2331 /* 2332 * Ensure event_sched_out() switches to OFF, at the very least 2333 * this avoids raising perf_pending_task() at this time. 2334 */ 2335 if (flags & DETACH_DEAD) 2336 event->pending_disable = 1; 2337 event_sched_out(event, ctx); 2338 if (flags & DETACH_GROUP) 2339 perf_group_detach(event); 2340 if (flags & DETACH_CHILD) 2341 perf_child_detach(event); 2342 list_del_event(event, ctx); 2343 if (flags & DETACH_DEAD) 2344 event->state = PERF_EVENT_STATE_DEAD; 2345 2346 if (!pmu_ctx->nr_events) { 2347 pmu_ctx->rotate_necessary = 0; 2348 2349 if (ctx->task && ctx->is_active) { 2350 struct perf_cpu_pmu_context *cpc; 2351 2352 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2353 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2354 cpc->task_epc = NULL; 2355 } 2356 } 2357 2358 if (!ctx->nr_events && ctx->is_active) { 2359 if (ctx == &cpuctx->ctx) 2360 update_cgrp_time_from_cpuctx(cpuctx, true); 2361 2362 ctx->is_active = 0; 2363 if (ctx->task) { 2364 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2365 cpuctx->task_ctx = NULL; 2366 } 2367 } 2368 } 2369 2370 /* 2371 * Remove the event from a task's (or a CPU's) list of events. 2372 * 2373 * If event->ctx is a cloned context, callers must make sure that 2374 * every task struct that event->ctx->task could possibly point to 2375 * remains valid. This is OK when called from perf_release since 2376 * that only calls us on the top-level context, which can't be a clone. 2377 * When called from perf_event_exit_task, it's OK because the 2378 * context has been detached from its task. 2379 */ 2380 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2381 { 2382 struct perf_event_context *ctx = event->ctx; 2383 2384 lockdep_assert_held(&ctx->mutex); 2385 2386 /* 2387 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2388 * to work in the face of TASK_TOMBSTONE, unlike every other 2389 * event_function_call() user. 2390 */ 2391 raw_spin_lock_irq(&ctx->lock); 2392 if (!ctx->is_active) { 2393 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2394 ctx, (void *)flags); 2395 raw_spin_unlock_irq(&ctx->lock); 2396 return; 2397 } 2398 raw_spin_unlock_irq(&ctx->lock); 2399 2400 event_function_call(event, __perf_remove_from_context, (void *)flags); 2401 } 2402 2403 /* 2404 * Cross CPU call to disable a performance event 2405 */ 2406 static void __perf_event_disable(struct perf_event *event, 2407 struct perf_cpu_context *cpuctx, 2408 struct perf_event_context *ctx, 2409 void *info) 2410 { 2411 if (event->state < PERF_EVENT_STATE_INACTIVE) 2412 return; 2413 2414 if (ctx->is_active & EVENT_TIME) { 2415 update_context_time(ctx); 2416 update_cgrp_time_from_event(event); 2417 } 2418 2419 perf_pmu_disable(event->pmu_ctx->pmu); 2420 2421 if (event == event->group_leader) 2422 group_sched_out(event, ctx); 2423 else 2424 event_sched_out(event, ctx); 2425 2426 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2427 perf_cgroup_event_disable(event, ctx); 2428 2429 perf_pmu_enable(event->pmu_ctx->pmu); 2430 } 2431 2432 /* 2433 * Disable an event. 2434 * 2435 * If event->ctx is a cloned context, callers must make sure that 2436 * every task struct that event->ctx->task could possibly point to 2437 * remains valid. This condition is satisfied when called through 2438 * perf_event_for_each_child or perf_event_for_each because they 2439 * hold the top-level event's child_mutex, so any descendant that 2440 * goes to exit will block in perf_event_exit_event(). 2441 * 2442 * When called from perf_pending_irq it's OK because event->ctx 2443 * is the current context on this CPU and preemption is disabled, 2444 * hence we can't get into perf_event_task_sched_out for this context. 2445 */ 2446 static void _perf_event_disable(struct perf_event *event) 2447 { 2448 struct perf_event_context *ctx = event->ctx; 2449 2450 raw_spin_lock_irq(&ctx->lock); 2451 if (event->state <= PERF_EVENT_STATE_OFF) { 2452 raw_spin_unlock_irq(&ctx->lock); 2453 return; 2454 } 2455 raw_spin_unlock_irq(&ctx->lock); 2456 2457 event_function_call(event, __perf_event_disable, NULL); 2458 } 2459 2460 void perf_event_disable_local(struct perf_event *event) 2461 { 2462 event_function_local(event, __perf_event_disable, NULL); 2463 } 2464 2465 /* 2466 * Strictly speaking kernel users cannot create groups and therefore this 2467 * interface does not need the perf_event_ctx_lock() magic. 2468 */ 2469 void perf_event_disable(struct perf_event *event) 2470 { 2471 struct perf_event_context *ctx; 2472 2473 ctx = perf_event_ctx_lock(event); 2474 _perf_event_disable(event); 2475 perf_event_ctx_unlock(event, ctx); 2476 } 2477 EXPORT_SYMBOL_GPL(perf_event_disable); 2478 2479 void perf_event_disable_inatomic(struct perf_event *event) 2480 { 2481 event->pending_disable = 1; 2482 irq_work_queue(&event->pending_irq); 2483 } 2484 2485 #define MAX_INTERRUPTS (~0ULL) 2486 2487 static void perf_log_throttle(struct perf_event *event, int enable); 2488 static void perf_log_itrace_start(struct perf_event *event); 2489 2490 static int 2491 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2492 { 2493 struct perf_event_pmu_context *epc = event->pmu_ctx; 2494 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2495 int ret = 0; 2496 2497 WARN_ON_ONCE(event->ctx != ctx); 2498 2499 lockdep_assert_held(&ctx->lock); 2500 2501 if (event->state <= PERF_EVENT_STATE_OFF) 2502 return 0; 2503 2504 WRITE_ONCE(event->oncpu, smp_processor_id()); 2505 /* 2506 * Order event::oncpu write to happen before the ACTIVE state is 2507 * visible. This allows perf_event_{stop,read}() to observe the correct 2508 * ->oncpu if it sees ACTIVE. 2509 */ 2510 smp_wmb(); 2511 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2512 2513 /* 2514 * Unthrottle events, since we scheduled we might have missed several 2515 * ticks already, also for a heavily scheduling task there is little 2516 * guarantee it'll get a tick in a timely manner. 2517 */ 2518 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2519 perf_log_throttle(event, 1); 2520 event->hw.interrupts = 0; 2521 } 2522 2523 perf_pmu_disable(event->pmu); 2524 2525 perf_log_itrace_start(event); 2526 2527 if (event->pmu->add(event, PERF_EF_START)) { 2528 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2529 event->oncpu = -1; 2530 ret = -EAGAIN; 2531 goto out; 2532 } 2533 2534 if (!is_software_event(event)) 2535 cpc->active_oncpu++; 2536 if (event->attr.freq && event->attr.sample_freq) 2537 ctx->nr_freq++; 2538 2539 if (event->attr.exclusive) 2540 cpc->exclusive = 1; 2541 2542 out: 2543 perf_pmu_enable(event->pmu); 2544 2545 return ret; 2546 } 2547 2548 static int 2549 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2550 { 2551 struct perf_event *event, *partial_group = NULL; 2552 struct pmu *pmu = group_event->pmu_ctx->pmu; 2553 2554 if (group_event->state == PERF_EVENT_STATE_OFF) 2555 return 0; 2556 2557 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2558 2559 if (event_sched_in(group_event, ctx)) 2560 goto error; 2561 2562 /* 2563 * Schedule in siblings as one group (if any): 2564 */ 2565 for_each_sibling_event(event, group_event) { 2566 if (event_sched_in(event, ctx)) { 2567 partial_group = event; 2568 goto group_error; 2569 } 2570 } 2571 2572 if (!pmu->commit_txn(pmu)) 2573 return 0; 2574 2575 group_error: 2576 /* 2577 * Groups can be scheduled in as one unit only, so undo any 2578 * partial group before returning: 2579 * The events up to the failed event are scheduled out normally. 2580 */ 2581 for_each_sibling_event(event, group_event) { 2582 if (event == partial_group) 2583 break; 2584 2585 event_sched_out(event, ctx); 2586 } 2587 event_sched_out(group_event, ctx); 2588 2589 error: 2590 pmu->cancel_txn(pmu); 2591 return -EAGAIN; 2592 } 2593 2594 /* 2595 * Work out whether we can put this event group on the CPU now. 2596 */ 2597 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2598 { 2599 struct perf_event_pmu_context *epc = event->pmu_ctx; 2600 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2601 2602 /* 2603 * Groups consisting entirely of software events can always go on. 2604 */ 2605 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2606 return 1; 2607 /* 2608 * If an exclusive group is already on, no other hardware 2609 * events can go on. 2610 */ 2611 if (cpc->exclusive) 2612 return 0; 2613 /* 2614 * If this group is exclusive and there are already 2615 * events on the CPU, it can't go on. 2616 */ 2617 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2618 return 0; 2619 /* 2620 * Otherwise, try to add it if all previous groups were able 2621 * to go on. 2622 */ 2623 return can_add_hw; 2624 } 2625 2626 static void add_event_to_ctx(struct perf_event *event, 2627 struct perf_event_context *ctx) 2628 { 2629 list_add_event(event, ctx); 2630 perf_group_attach(event); 2631 } 2632 2633 static void task_ctx_sched_out(struct perf_event_context *ctx, 2634 enum event_type_t event_type) 2635 { 2636 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2637 2638 if (!cpuctx->task_ctx) 2639 return; 2640 2641 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2642 return; 2643 2644 ctx_sched_out(ctx, event_type); 2645 } 2646 2647 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2648 struct perf_event_context *ctx) 2649 { 2650 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2651 if (ctx) 2652 ctx_sched_in(ctx, EVENT_PINNED); 2653 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2654 if (ctx) 2655 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2656 } 2657 2658 /* 2659 * We want to maintain the following priority of scheduling: 2660 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2661 * - task pinned (EVENT_PINNED) 2662 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2663 * - task flexible (EVENT_FLEXIBLE). 2664 * 2665 * In order to avoid unscheduling and scheduling back in everything every 2666 * time an event is added, only do it for the groups of equal priority and 2667 * below. 2668 * 2669 * This can be called after a batch operation on task events, in which case 2670 * event_type is a bit mask of the types of events involved. For CPU events, 2671 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2672 */ 2673 /* 2674 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2675 * event to the context or enabling existing event in the context. We can 2676 * probably optimize it by rescheduling only affected pmu_ctx. 2677 */ 2678 static void ctx_resched(struct perf_cpu_context *cpuctx, 2679 struct perf_event_context *task_ctx, 2680 enum event_type_t event_type) 2681 { 2682 bool cpu_event = !!(event_type & EVENT_CPU); 2683 2684 /* 2685 * If pinned groups are involved, flexible groups also need to be 2686 * scheduled out. 2687 */ 2688 if (event_type & EVENT_PINNED) 2689 event_type |= EVENT_FLEXIBLE; 2690 2691 event_type &= EVENT_ALL; 2692 2693 perf_ctx_disable(&cpuctx->ctx, false); 2694 if (task_ctx) { 2695 perf_ctx_disable(task_ctx, false); 2696 task_ctx_sched_out(task_ctx, event_type); 2697 } 2698 2699 /* 2700 * Decide which cpu ctx groups to schedule out based on the types 2701 * of events that caused rescheduling: 2702 * - EVENT_CPU: schedule out corresponding groups; 2703 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2704 * - otherwise, do nothing more. 2705 */ 2706 if (cpu_event) 2707 ctx_sched_out(&cpuctx->ctx, event_type); 2708 else if (event_type & EVENT_PINNED) 2709 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2710 2711 perf_event_sched_in(cpuctx, task_ctx); 2712 2713 perf_ctx_enable(&cpuctx->ctx, false); 2714 if (task_ctx) 2715 perf_ctx_enable(task_ctx, false); 2716 } 2717 2718 void perf_pmu_resched(struct pmu *pmu) 2719 { 2720 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2721 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2722 2723 perf_ctx_lock(cpuctx, task_ctx); 2724 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2725 perf_ctx_unlock(cpuctx, task_ctx); 2726 } 2727 2728 /* 2729 * Cross CPU call to install and enable a performance event 2730 * 2731 * Very similar to remote_function() + event_function() but cannot assume that 2732 * things like ctx->is_active and cpuctx->task_ctx are set. 2733 */ 2734 static int __perf_install_in_context(void *info) 2735 { 2736 struct perf_event *event = info; 2737 struct perf_event_context *ctx = event->ctx; 2738 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2739 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2740 bool reprogram = true; 2741 int ret = 0; 2742 2743 raw_spin_lock(&cpuctx->ctx.lock); 2744 if (ctx->task) { 2745 raw_spin_lock(&ctx->lock); 2746 task_ctx = ctx; 2747 2748 reprogram = (ctx->task == current); 2749 2750 /* 2751 * If the task is running, it must be running on this CPU, 2752 * otherwise we cannot reprogram things. 2753 * 2754 * If its not running, we don't care, ctx->lock will 2755 * serialize against it becoming runnable. 2756 */ 2757 if (task_curr(ctx->task) && !reprogram) { 2758 ret = -ESRCH; 2759 goto unlock; 2760 } 2761 2762 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2763 } else if (task_ctx) { 2764 raw_spin_lock(&task_ctx->lock); 2765 } 2766 2767 #ifdef CONFIG_CGROUP_PERF 2768 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2769 /* 2770 * If the current cgroup doesn't match the event's 2771 * cgroup, we should not try to schedule it. 2772 */ 2773 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2774 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2775 event->cgrp->css.cgroup); 2776 } 2777 #endif 2778 2779 if (reprogram) { 2780 ctx_sched_out(ctx, EVENT_TIME); 2781 add_event_to_ctx(event, ctx); 2782 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2783 } else { 2784 add_event_to_ctx(event, ctx); 2785 } 2786 2787 unlock: 2788 perf_ctx_unlock(cpuctx, task_ctx); 2789 2790 return ret; 2791 } 2792 2793 static bool exclusive_event_installable(struct perf_event *event, 2794 struct perf_event_context *ctx); 2795 2796 /* 2797 * Attach a performance event to a context. 2798 * 2799 * Very similar to event_function_call, see comment there. 2800 */ 2801 static void 2802 perf_install_in_context(struct perf_event_context *ctx, 2803 struct perf_event *event, 2804 int cpu) 2805 { 2806 struct task_struct *task = READ_ONCE(ctx->task); 2807 2808 lockdep_assert_held(&ctx->mutex); 2809 2810 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2811 2812 if (event->cpu != -1) 2813 WARN_ON_ONCE(event->cpu != cpu); 2814 2815 /* 2816 * Ensures that if we can observe event->ctx, both the event and ctx 2817 * will be 'complete'. See perf_iterate_sb_cpu(). 2818 */ 2819 smp_store_release(&event->ctx, ctx); 2820 2821 /* 2822 * perf_event_attr::disabled events will not run and can be initialized 2823 * without IPI. Except when this is the first event for the context, in 2824 * that case we need the magic of the IPI to set ctx->is_active. 2825 * 2826 * The IOC_ENABLE that is sure to follow the creation of a disabled 2827 * event will issue the IPI and reprogram the hardware. 2828 */ 2829 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2830 ctx->nr_events && !is_cgroup_event(event)) { 2831 raw_spin_lock_irq(&ctx->lock); 2832 if (ctx->task == TASK_TOMBSTONE) { 2833 raw_spin_unlock_irq(&ctx->lock); 2834 return; 2835 } 2836 add_event_to_ctx(event, ctx); 2837 raw_spin_unlock_irq(&ctx->lock); 2838 return; 2839 } 2840 2841 if (!task) { 2842 cpu_function_call(cpu, __perf_install_in_context, event); 2843 return; 2844 } 2845 2846 /* 2847 * Should not happen, we validate the ctx is still alive before calling. 2848 */ 2849 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2850 return; 2851 2852 /* 2853 * Installing events is tricky because we cannot rely on ctx->is_active 2854 * to be set in case this is the nr_events 0 -> 1 transition. 2855 * 2856 * Instead we use task_curr(), which tells us if the task is running. 2857 * However, since we use task_curr() outside of rq::lock, we can race 2858 * against the actual state. This means the result can be wrong. 2859 * 2860 * If we get a false positive, we retry, this is harmless. 2861 * 2862 * If we get a false negative, things are complicated. If we are after 2863 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2864 * value must be correct. If we're before, it doesn't matter since 2865 * perf_event_context_sched_in() will program the counter. 2866 * 2867 * However, this hinges on the remote context switch having observed 2868 * our task->perf_event_ctxp[] store, such that it will in fact take 2869 * ctx::lock in perf_event_context_sched_in(). 2870 * 2871 * We do this by task_function_call(), if the IPI fails to hit the task 2872 * we know any future context switch of task must see the 2873 * perf_event_ctpx[] store. 2874 */ 2875 2876 /* 2877 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2878 * task_cpu() load, such that if the IPI then does not find the task 2879 * running, a future context switch of that task must observe the 2880 * store. 2881 */ 2882 smp_mb(); 2883 again: 2884 if (!task_function_call(task, __perf_install_in_context, event)) 2885 return; 2886 2887 raw_spin_lock_irq(&ctx->lock); 2888 task = ctx->task; 2889 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2890 /* 2891 * Cannot happen because we already checked above (which also 2892 * cannot happen), and we hold ctx->mutex, which serializes us 2893 * against perf_event_exit_task_context(). 2894 */ 2895 raw_spin_unlock_irq(&ctx->lock); 2896 return; 2897 } 2898 /* 2899 * If the task is not running, ctx->lock will avoid it becoming so, 2900 * thus we can safely install the event. 2901 */ 2902 if (task_curr(task)) { 2903 raw_spin_unlock_irq(&ctx->lock); 2904 goto again; 2905 } 2906 add_event_to_ctx(event, ctx); 2907 raw_spin_unlock_irq(&ctx->lock); 2908 } 2909 2910 /* 2911 * Cross CPU call to enable a performance event 2912 */ 2913 static void __perf_event_enable(struct perf_event *event, 2914 struct perf_cpu_context *cpuctx, 2915 struct perf_event_context *ctx, 2916 void *info) 2917 { 2918 struct perf_event *leader = event->group_leader; 2919 struct perf_event_context *task_ctx; 2920 2921 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2922 event->state <= PERF_EVENT_STATE_ERROR) 2923 return; 2924 2925 if (ctx->is_active) 2926 ctx_sched_out(ctx, EVENT_TIME); 2927 2928 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2929 perf_cgroup_event_enable(event, ctx); 2930 2931 if (!ctx->is_active) 2932 return; 2933 2934 if (!event_filter_match(event)) { 2935 ctx_sched_in(ctx, EVENT_TIME); 2936 return; 2937 } 2938 2939 /* 2940 * If the event is in a group and isn't the group leader, 2941 * then don't put it on unless the group is on. 2942 */ 2943 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2944 ctx_sched_in(ctx, EVENT_TIME); 2945 return; 2946 } 2947 2948 task_ctx = cpuctx->task_ctx; 2949 if (ctx->task) 2950 WARN_ON_ONCE(task_ctx != ctx); 2951 2952 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2953 } 2954 2955 /* 2956 * Enable an event. 2957 * 2958 * If event->ctx is a cloned context, callers must make sure that 2959 * every task struct that event->ctx->task could possibly point to 2960 * remains valid. This condition is satisfied when called through 2961 * perf_event_for_each_child or perf_event_for_each as described 2962 * for perf_event_disable. 2963 */ 2964 static void _perf_event_enable(struct perf_event *event) 2965 { 2966 struct perf_event_context *ctx = event->ctx; 2967 2968 raw_spin_lock_irq(&ctx->lock); 2969 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2970 event->state < PERF_EVENT_STATE_ERROR) { 2971 out: 2972 raw_spin_unlock_irq(&ctx->lock); 2973 return; 2974 } 2975 2976 /* 2977 * If the event is in error state, clear that first. 2978 * 2979 * That way, if we see the event in error state below, we know that it 2980 * has gone back into error state, as distinct from the task having 2981 * been scheduled away before the cross-call arrived. 2982 */ 2983 if (event->state == PERF_EVENT_STATE_ERROR) { 2984 /* 2985 * Detached SIBLING events cannot leave ERROR state. 2986 */ 2987 if (event->event_caps & PERF_EV_CAP_SIBLING && 2988 event->group_leader == event) 2989 goto out; 2990 2991 event->state = PERF_EVENT_STATE_OFF; 2992 } 2993 raw_spin_unlock_irq(&ctx->lock); 2994 2995 event_function_call(event, __perf_event_enable, NULL); 2996 } 2997 2998 /* 2999 * See perf_event_disable(); 3000 */ 3001 void perf_event_enable(struct perf_event *event) 3002 { 3003 struct perf_event_context *ctx; 3004 3005 ctx = perf_event_ctx_lock(event); 3006 _perf_event_enable(event); 3007 perf_event_ctx_unlock(event, ctx); 3008 } 3009 EXPORT_SYMBOL_GPL(perf_event_enable); 3010 3011 struct stop_event_data { 3012 struct perf_event *event; 3013 unsigned int restart; 3014 }; 3015 3016 static int __perf_event_stop(void *info) 3017 { 3018 struct stop_event_data *sd = info; 3019 struct perf_event *event = sd->event; 3020 3021 /* if it's already INACTIVE, do nothing */ 3022 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3023 return 0; 3024 3025 /* matches smp_wmb() in event_sched_in() */ 3026 smp_rmb(); 3027 3028 /* 3029 * There is a window with interrupts enabled before we get here, 3030 * so we need to check again lest we try to stop another CPU's event. 3031 */ 3032 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3033 return -EAGAIN; 3034 3035 event->pmu->stop(event, PERF_EF_UPDATE); 3036 3037 /* 3038 * May race with the actual stop (through perf_pmu_output_stop()), 3039 * but it is only used for events with AUX ring buffer, and such 3040 * events will refuse to restart because of rb::aux_mmap_count==0, 3041 * see comments in perf_aux_output_begin(). 3042 * 3043 * Since this is happening on an event-local CPU, no trace is lost 3044 * while restarting. 3045 */ 3046 if (sd->restart) 3047 event->pmu->start(event, 0); 3048 3049 return 0; 3050 } 3051 3052 static int perf_event_stop(struct perf_event *event, int restart) 3053 { 3054 struct stop_event_data sd = { 3055 .event = event, 3056 .restart = restart, 3057 }; 3058 int ret = 0; 3059 3060 do { 3061 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3062 return 0; 3063 3064 /* matches smp_wmb() in event_sched_in() */ 3065 smp_rmb(); 3066 3067 /* 3068 * We only want to restart ACTIVE events, so if the event goes 3069 * inactive here (event->oncpu==-1), there's nothing more to do; 3070 * fall through with ret==-ENXIO. 3071 */ 3072 ret = cpu_function_call(READ_ONCE(event->oncpu), 3073 __perf_event_stop, &sd); 3074 } while (ret == -EAGAIN); 3075 3076 return ret; 3077 } 3078 3079 /* 3080 * In order to contain the amount of racy and tricky in the address filter 3081 * configuration management, it is a two part process: 3082 * 3083 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3084 * we update the addresses of corresponding vmas in 3085 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3086 * (p2) when an event is scheduled in (pmu::add), it calls 3087 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3088 * if the generation has changed since the previous call. 3089 * 3090 * If (p1) happens while the event is active, we restart it to force (p2). 3091 * 3092 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3093 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3094 * ioctl; 3095 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3096 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3097 * for reading; 3098 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3099 * of exec. 3100 */ 3101 void perf_event_addr_filters_sync(struct perf_event *event) 3102 { 3103 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3104 3105 if (!has_addr_filter(event)) 3106 return; 3107 3108 raw_spin_lock(&ifh->lock); 3109 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3110 event->pmu->addr_filters_sync(event); 3111 event->hw.addr_filters_gen = event->addr_filters_gen; 3112 } 3113 raw_spin_unlock(&ifh->lock); 3114 } 3115 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3116 3117 static int _perf_event_refresh(struct perf_event *event, int refresh) 3118 { 3119 /* 3120 * not supported on inherited events 3121 */ 3122 if (event->attr.inherit || !is_sampling_event(event)) 3123 return -EINVAL; 3124 3125 atomic_add(refresh, &event->event_limit); 3126 _perf_event_enable(event); 3127 3128 return 0; 3129 } 3130 3131 /* 3132 * See perf_event_disable() 3133 */ 3134 int perf_event_refresh(struct perf_event *event, int refresh) 3135 { 3136 struct perf_event_context *ctx; 3137 int ret; 3138 3139 ctx = perf_event_ctx_lock(event); 3140 ret = _perf_event_refresh(event, refresh); 3141 perf_event_ctx_unlock(event, ctx); 3142 3143 return ret; 3144 } 3145 EXPORT_SYMBOL_GPL(perf_event_refresh); 3146 3147 static int perf_event_modify_breakpoint(struct perf_event *bp, 3148 struct perf_event_attr *attr) 3149 { 3150 int err; 3151 3152 _perf_event_disable(bp); 3153 3154 err = modify_user_hw_breakpoint_check(bp, attr, true); 3155 3156 if (!bp->attr.disabled) 3157 _perf_event_enable(bp); 3158 3159 return err; 3160 } 3161 3162 /* 3163 * Copy event-type-independent attributes that may be modified. 3164 */ 3165 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3166 const struct perf_event_attr *from) 3167 { 3168 to->sig_data = from->sig_data; 3169 } 3170 3171 static int perf_event_modify_attr(struct perf_event *event, 3172 struct perf_event_attr *attr) 3173 { 3174 int (*func)(struct perf_event *, struct perf_event_attr *); 3175 struct perf_event *child; 3176 int err; 3177 3178 if (event->attr.type != attr->type) 3179 return -EINVAL; 3180 3181 switch (event->attr.type) { 3182 case PERF_TYPE_BREAKPOINT: 3183 func = perf_event_modify_breakpoint; 3184 break; 3185 default: 3186 /* Place holder for future additions. */ 3187 return -EOPNOTSUPP; 3188 } 3189 3190 WARN_ON_ONCE(event->ctx->parent_ctx); 3191 3192 mutex_lock(&event->child_mutex); 3193 /* 3194 * Event-type-independent attributes must be copied before event-type 3195 * modification, which will validate that final attributes match the 3196 * source attributes after all relevant attributes have been copied. 3197 */ 3198 perf_event_modify_copy_attr(&event->attr, attr); 3199 err = func(event, attr); 3200 if (err) 3201 goto out; 3202 list_for_each_entry(child, &event->child_list, child_list) { 3203 perf_event_modify_copy_attr(&child->attr, attr); 3204 err = func(child, attr); 3205 if (err) 3206 goto out; 3207 } 3208 out: 3209 mutex_unlock(&event->child_mutex); 3210 return err; 3211 } 3212 3213 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3214 enum event_type_t event_type) 3215 { 3216 struct perf_event_context *ctx = pmu_ctx->ctx; 3217 struct perf_event *event, *tmp; 3218 struct pmu *pmu = pmu_ctx->pmu; 3219 3220 if (ctx->task && !ctx->is_active) { 3221 struct perf_cpu_pmu_context *cpc; 3222 3223 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3224 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3225 cpc->task_epc = NULL; 3226 } 3227 3228 if (!event_type) 3229 return; 3230 3231 perf_pmu_disable(pmu); 3232 if (event_type & EVENT_PINNED) { 3233 list_for_each_entry_safe(event, tmp, 3234 &pmu_ctx->pinned_active, 3235 active_list) 3236 group_sched_out(event, ctx); 3237 } 3238 3239 if (event_type & EVENT_FLEXIBLE) { 3240 list_for_each_entry_safe(event, tmp, 3241 &pmu_ctx->flexible_active, 3242 active_list) 3243 group_sched_out(event, ctx); 3244 /* 3245 * Since we cleared EVENT_FLEXIBLE, also clear 3246 * rotate_necessary, is will be reset by 3247 * ctx_flexible_sched_in() when needed. 3248 */ 3249 pmu_ctx->rotate_necessary = 0; 3250 } 3251 perf_pmu_enable(pmu); 3252 } 3253 3254 static void 3255 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3256 { 3257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3258 struct perf_event_pmu_context *pmu_ctx; 3259 int is_active = ctx->is_active; 3260 bool cgroup = event_type & EVENT_CGROUP; 3261 3262 event_type &= ~EVENT_CGROUP; 3263 3264 lockdep_assert_held(&ctx->lock); 3265 3266 if (likely(!ctx->nr_events)) { 3267 /* 3268 * See __perf_remove_from_context(). 3269 */ 3270 WARN_ON_ONCE(ctx->is_active); 3271 if (ctx->task) 3272 WARN_ON_ONCE(cpuctx->task_ctx); 3273 return; 3274 } 3275 3276 /* 3277 * Always update time if it was set; not only when it changes. 3278 * Otherwise we can 'forget' to update time for any but the last 3279 * context we sched out. For example: 3280 * 3281 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3282 * ctx_sched_out(.event_type = EVENT_PINNED) 3283 * 3284 * would only update time for the pinned events. 3285 */ 3286 if (is_active & EVENT_TIME) { 3287 /* update (and stop) ctx time */ 3288 update_context_time(ctx); 3289 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3290 /* 3291 * CPU-release for the below ->is_active store, 3292 * see __load_acquire() in perf_event_time_now() 3293 */ 3294 barrier(); 3295 } 3296 3297 ctx->is_active &= ~event_type; 3298 if (!(ctx->is_active & EVENT_ALL)) 3299 ctx->is_active = 0; 3300 3301 if (ctx->task) { 3302 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3303 if (!ctx->is_active) 3304 cpuctx->task_ctx = NULL; 3305 } 3306 3307 is_active ^= ctx->is_active; /* changed bits */ 3308 3309 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3310 if (cgroup && !pmu_ctx->nr_cgroups) 3311 continue; 3312 __pmu_ctx_sched_out(pmu_ctx, is_active); 3313 } 3314 } 3315 3316 /* 3317 * Test whether two contexts are equivalent, i.e. whether they have both been 3318 * cloned from the same version of the same context. 3319 * 3320 * Equivalence is measured using a generation number in the context that is 3321 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3322 * and list_del_event(). 3323 */ 3324 static int context_equiv(struct perf_event_context *ctx1, 3325 struct perf_event_context *ctx2) 3326 { 3327 lockdep_assert_held(&ctx1->lock); 3328 lockdep_assert_held(&ctx2->lock); 3329 3330 /* Pinning disables the swap optimization */ 3331 if (ctx1->pin_count || ctx2->pin_count) 3332 return 0; 3333 3334 /* If ctx1 is the parent of ctx2 */ 3335 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3336 return 1; 3337 3338 /* If ctx2 is the parent of ctx1 */ 3339 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3340 return 1; 3341 3342 /* 3343 * If ctx1 and ctx2 have the same parent; we flatten the parent 3344 * hierarchy, see perf_event_init_context(). 3345 */ 3346 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3347 ctx1->parent_gen == ctx2->parent_gen) 3348 return 1; 3349 3350 /* Unmatched */ 3351 return 0; 3352 } 3353 3354 static void __perf_event_sync_stat(struct perf_event *event, 3355 struct perf_event *next_event) 3356 { 3357 u64 value; 3358 3359 if (!event->attr.inherit_stat) 3360 return; 3361 3362 /* 3363 * Update the event value, we cannot use perf_event_read() 3364 * because we're in the middle of a context switch and have IRQs 3365 * disabled, which upsets smp_call_function_single(), however 3366 * we know the event must be on the current CPU, therefore we 3367 * don't need to use it. 3368 */ 3369 if (event->state == PERF_EVENT_STATE_ACTIVE) 3370 event->pmu->read(event); 3371 3372 perf_event_update_time(event); 3373 3374 /* 3375 * In order to keep per-task stats reliable we need to flip the event 3376 * values when we flip the contexts. 3377 */ 3378 value = local64_read(&next_event->count); 3379 value = local64_xchg(&event->count, value); 3380 local64_set(&next_event->count, value); 3381 3382 swap(event->total_time_enabled, next_event->total_time_enabled); 3383 swap(event->total_time_running, next_event->total_time_running); 3384 3385 /* 3386 * Since we swizzled the values, update the user visible data too. 3387 */ 3388 perf_event_update_userpage(event); 3389 perf_event_update_userpage(next_event); 3390 } 3391 3392 static void perf_event_sync_stat(struct perf_event_context *ctx, 3393 struct perf_event_context *next_ctx) 3394 { 3395 struct perf_event *event, *next_event; 3396 3397 if (!ctx->nr_stat) 3398 return; 3399 3400 update_context_time(ctx); 3401 3402 event = list_first_entry(&ctx->event_list, 3403 struct perf_event, event_entry); 3404 3405 next_event = list_first_entry(&next_ctx->event_list, 3406 struct perf_event, event_entry); 3407 3408 while (&event->event_entry != &ctx->event_list && 3409 &next_event->event_entry != &next_ctx->event_list) { 3410 3411 __perf_event_sync_stat(event, next_event); 3412 3413 event = list_next_entry(event, event_entry); 3414 next_event = list_next_entry(next_event, event_entry); 3415 } 3416 } 3417 3418 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3419 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3420 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3421 !list_entry_is_head(pos1, head1, member) && \ 3422 !list_entry_is_head(pos2, head2, member); \ 3423 pos1 = list_next_entry(pos1, member), \ 3424 pos2 = list_next_entry(pos2, member)) 3425 3426 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3427 struct perf_event_context *next_ctx) 3428 { 3429 struct perf_event_pmu_context *prev_epc, *next_epc; 3430 3431 if (!prev_ctx->nr_task_data) 3432 return; 3433 3434 double_list_for_each_entry(prev_epc, next_epc, 3435 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3436 pmu_ctx_entry) { 3437 3438 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3439 continue; 3440 3441 /* 3442 * PMU specific parts of task perf context can require 3443 * additional synchronization. As an example of such 3444 * synchronization see implementation details of Intel 3445 * LBR call stack data profiling; 3446 */ 3447 if (prev_epc->pmu->swap_task_ctx) 3448 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3449 else 3450 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3451 } 3452 } 3453 3454 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3455 { 3456 struct perf_event_pmu_context *pmu_ctx; 3457 struct perf_cpu_pmu_context *cpc; 3458 3459 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3460 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3461 3462 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3463 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3464 } 3465 } 3466 3467 static void 3468 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3469 { 3470 struct perf_event_context *ctx = task->perf_event_ctxp; 3471 struct perf_event_context *next_ctx; 3472 struct perf_event_context *parent, *next_parent; 3473 int do_switch = 1; 3474 3475 if (likely(!ctx)) 3476 return; 3477 3478 rcu_read_lock(); 3479 next_ctx = rcu_dereference(next->perf_event_ctxp); 3480 if (!next_ctx) 3481 goto unlock; 3482 3483 parent = rcu_dereference(ctx->parent_ctx); 3484 next_parent = rcu_dereference(next_ctx->parent_ctx); 3485 3486 /* If neither context have a parent context; they cannot be clones. */ 3487 if (!parent && !next_parent) 3488 goto unlock; 3489 3490 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3491 /* 3492 * Looks like the two contexts are clones, so we might be 3493 * able to optimize the context switch. We lock both 3494 * contexts and check that they are clones under the 3495 * lock (including re-checking that neither has been 3496 * uncloned in the meantime). It doesn't matter which 3497 * order we take the locks because no other cpu could 3498 * be trying to lock both of these tasks. 3499 */ 3500 raw_spin_lock(&ctx->lock); 3501 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3502 if (context_equiv(ctx, next_ctx)) { 3503 3504 perf_ctx_disable(ctx, false); 3505 3506 /* PMIs are disabled; ctx->nr_pending is stable. */ 3507 if (local_read(&ctx->nr_pending) || 3508 local_read(&next_ctx->nr_pending)) { 3509 /* 3510 * Must not swap out ctx when there's pending 3511 * events that rely on the ctx->task relation. 3512 */ 3513 raw_spin_unlock(&next_ctx->lock); 3514 rcu_read_unlock(); 3515 goto inside_switch; 3516 } 3517 3518 WRITE_ONCE(ctx->task, next); 3519 WRITE_ONCE(next_ctx->task, task); 3520 3521 perf_ctx_sched_task_cb(ctx, false); 3522 perf_event_swap_task_ctx_data(ctx, next_ctx); 3523 3524 perf_ctx_enable(ctx, false); 3525 3526 /* 3527 * RCU_INIT_POINTER here is safe because we've not 3528 * modified the ctx and the above modification of 3529 * ctx->task and ctx->task_ctx_data are immaterial 3530 * since those values are always verified under 3531 * ctx->lock which we're now holding. 3532 */ 3533 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3534 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3535 3536 do_switch = 0; 3537 3538 perf_event_sync_stat(ctx, next_ctx); 3539 } 3540 raw_spin_unlock(&next_ctx->lock); 3541 raw_spin_unlock(&ctx->lock); 3542 } 3543 unlock: 3544 rcu_read_unlock(); 3545 3546 if (do_switch) { 3547 raw_spin_lock(&ctx->lock); 3548 perf_ctx_disable(ctx, false); 3549 3550 inside_switch: 3551 perf_ctx_sched_task_cb(ctx, false); 3552 task_ctx_sched_out(ctx, EVENT_ALL); 3553 3554 perf_ctx_enable(ctx, false); 3555 raw_spin_unlock(&ctx->lock); 3556 } 3557 } 3558 3559 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3560 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3561 3562 void perf_sched_cb_dec(struct pmu *pmu) 3563 { 3564 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3565 3566 this_cpu_dec(perf_sched_cb_usages); 3567 barrier(); 3568 3569 if (!--cpc->sched_cb_usage) 3570 list_del(&cpc->sched_cb_entry); 3571 } 3572 3573 3574 void perf_sched_cb_inc(struct pmu *pmu) 3575 { 3576 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3577 3578 if (!cpc->sched_cb_usage++) 3579 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3580 3581 barrier(); 3582 this_cpu_inc(perf_sched_cb_usages); 3583 } 3584 3585 /* 3586 * This function provides the context switch callback to the lower code 3587 * layer. It is invoked ONLY when the context switch callback is enabled. 3588 * 3589 * This callback is relevant even to per-cpu events; for example multi event 3590 * PEBS requires this to provide PID/TID information. This requires we flush 3591 * all queued PEBS records before we context switch to a new task. 3592 */ 3593 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3594 { 3595 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3596 struct pmu *pmu; 3597 3598 pmu = cpc->epc.pmu; 3599 3600 /* software PMUs will not have sched_task */ 3601 if (WARN_ON_ONCE(!pmu->sched_task)) 3602 return; 3603 3604 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3605 perf_pmu_disable(pmu); 3606 3607 pmu->sched_task(cpc->task_epc, sched_in); 3608 3609 perf_pmu_enable(pmu); 3610 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3611 } 3612 3613 static void perf_pmu_sched_task(struct task_struct *prev, 3614 struct task_struct *next, 3615 bool sched_in) 3616 { 3617 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3618 struct perf_cpu_pmu_context *cpc; 3619 3620 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3621 if (prev == next || cpuctx->task_ctx) 3622 return; 3623 3624 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3625 __perf_pmu_sched_task(cpc, sched_in); 3626 } 3627 3628 static void perf_event_switch(struct task_struct *task, 3629 struct task_struct *next_prev, bool sched_in); 3630 3631 /* 3632 * Called from scheduler to remove the events of the current task, 3633 * with interrupts disabled. 3634 * 3635 * We stop each event and update the event value in event->count. 3636 * 3637 * This does not protect us against NMI, but disable() 3638 * sets the disabled bit in the control field of event _before_ 3639 * accessing the event control register. If a NMI hits, then it will 3640 * not restart the event. 3641 */ 3642 void __perf_event_task_sched_out(struct task_struct *task, 3643 struct task_struct *next) 3644 { 3645 if (__this_cpu_read(perf_sched_cb_usages)) 3646 perf_pmu_sched_task(task, next, false); 3647 3648 if (atomic_read(&nr_switch_events)) 3649 perf_event_switch(task, next, false); 3650 3651 perf_event_context_sched_out(task, next); 3652 3653 /* 3654 * if cgroup events exist on this CPU, then we need 3655 * to check if we have to switch out PMU state. 3656 * cgroup event are system-wide mode only 3657 */ 3658 perf_cgroup_switch(next); 3659 } 3660 3661 static bool perf_less_group_idx(const void *l, const void *r) 3662 { 3663 const struct perf_event *le = *(const struct perf_event **)l; 3664 const struct perf_event *re = *(const struct perf_event **)r; 3665 3666 return le->group_index < re->group_index; 3667 } 3668 3669 static void swap_ptr(void *l, void *r) 3670 { 3671 void **lp = l, **rp = r; 3672 3673 swap(*lp, *rp); 3674 } 3675 3676 static const struct min_heap_callbacks perf_min_heap = { 3677 .elem_size = sizeof(struct perf_event *), 3678 .less = perf_less_group_idx, 3679 .swp = swap_ptr, 3680 }; 3681 3682 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3683 { 3684 struct perf_event **itrs = heap->data; 3685 3686 if (event) { 3687 itrs[heap->nr] = event; 3688 heap->nr++; 3689 } 3690 } 3691 3692 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3693 { 3694 struct perf_cpu_pmu_context *cpc; 3695 3696 if (!pmu_ctx->ctx->task) 3697 return; 3698 3699 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3700 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3701 cpc->task_epc = pmu_ctx; 3702 } 3703 3704 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3705 struct perf_event_groups *groups, int cpu, 3706 struct pmu *pmu, 3707 int (*func)(struct perf_event *, void *), 3708 void *data) 3709 { 3710 #ifdef CONFIG_CGROUP_PERF 3711 struct cgroup_subsys_state *css = NULL; 3712 #endif 3713 struct perf_cpu_context *cpuctx = NULL; 3714 /* Space for per CPU and/or any CPU event iterators. */ 3715 struct perf_event *itrs[2]; 3716 struct min_heap event_heap; 3717 struct perf_event **evt; 3718 int ret; 3719 3720 if (pmu->filter && pmu->filter(pmu, cpu)) 3721 return 0; 3722 3723 if (!ctx->task) { 3724 cpuctx = this_cpu_ptr(&perf_cpu_context); 3725 event_heap = (struct min_heap){ 3726 .data = cpuctx->heap, 3727 .nr = 0, 3728 .size = cpuctx->heap_size, 3729 }; 3730 3731 lockdep_assert_held(&cpuctx->ctx.lock); 3732 3733 #ifdef CONFIG_CGROUP_PERF 3734 if (cpuctx->cgrp) 3735 css = &cpuctx->cgrp->css; 3736 #endif 3737 } else { 3738 event_heap = (struct min_heap){ 3739 .data = itrs, 3740 .nr = 0, 3741 .size = ARRAY_SIZE(itrs), 3742 }; 3743 /* Events not within a CPU context may be on any CPU. */ 3744 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3745 } 3746 evt = event_heap.data; 3747 3748 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3749 3750 #ifdef CONFIG_CGROUP_PERF 3751 for (; css; css = css->parent) 3752 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3753 #endif 3754 3755 if (event_heap.nr) { 3756 __link_epc((*evt)->pmu_ctx); 3757 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3758 } 3759 3760 min_heapify_all(&event_heap, &perf_min_heap); 3761 3762 while (event_heap.nr) { 3763 ret = func(*evt, data); 3764 if (ret) 3765 return ret; 3766 3767 *evt = perf_event_groups_next(*evt, pmu); 3768 if (*evt) 3769 min_heapify(&event_heap, 0, &perf_min_heap); 3770 else 3771 min_heap_pop(&event_heap, &perf_min_heap); 3772 } 3773 3774 return 0; 3775 } 3776 3777 /* 3778 * Because the userpage is strictly per-event (there is no concept of context, 3779 * so there cannot be a context indirection), every userpage must be updated 3780 * when context time starts :-( 3781 * 3782 * IOW, we must not miss EVENT_TIME edges. 3783 */ 3784 static inline bool event_update_userpage(struct perf_event *event) 3785 { 3786 if (likely(!atomic_read(&event->mmap_count))) 3787 return false; 3788 3789 perf_event_update_time(event); 3790 perf_event_update_userpage(event); 3791 3792 return true; 3793 } 3794 3795 static inline void group_update_userpage(struct perf_event *group_event) 3796 { 3797 struct perf_event *event; 3798 3799 if (!event_update_userpage(group_event)) 3800 return; 3801 3802 for_each_sibling_event(event, group_event) 3803 event_update_userpage(event); 3804 } 3805 3806 static int merge_sched_in(struct perf_event *event, void *data) 3807 { 3808 struct perf_event_context *ctx = event->ctx; 3809 int *can_add_hw = data; 3810 3811 if (event->state <= PERF_EVENT_STATE_OFF) 3812 return 0; 3813 3814 if (!event_filter_match(event)) 3815 return 0; 3816 3817 if (group_can_go_on(event, *can_add_hw)) { 3818 if (!group_sched_in(event, ctx)) 3819 list_add_tail(&event->active_list, get_event_list(event)); 3820 } 3821 3822 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3823 *can_add_hw = 0; 3824 if (event->attr.pinned) { 3825 perf_cgroup_event_disable(event, ctx); 3826 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3827 } else { 3828 struct perf_cpu_pmu_context *cpc; 3829 3830 event->pmu_ctx->rotate_necessary = 1; 3831 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3832 perf_mux_hrtimer_restart(cpc); 3833 group_update_userpage(event); 3834 } 3835 } 3836 3837 return 0; 3838 } 3839 3840 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3841 struct perf_event_groups *groups, 3842 struct pmu *pmu) 3843 { 3844 int can_add_hw = 1; 3845 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3846 merge_sched_in, &can_add_hw); 3847 } 3848 3849 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3850 struct perf_event_groups *groups, 3851 bool cgroup) 3852 { 3853 struct perf_event_pmu_context *pmu_ctx; 3854 3855 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3856 if (cgroup && !pmu_ctx->nr_cgroups) 3857 continue; 3858 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3859 } 3860 } 3861 3862 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3863 struct pmu *pmu) 3864 { 3865 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3866 } 3867 3868 static void 3869 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3870 { 3871 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3872 int is_active = ctx->is_active; 3873 bool cgroup = event_type & EVENT_CGROUP; 3874 3875 event_type &= ~EVENT_CGROUP; 3876 3877 lockdep_assert_held(&ctx->lock); 3878 3879 if (likely(!ctx->nr_events)) 3880 return; 3881 3882 if (!(is_active & EVENT_TIME)) { 3883 /* start ctx time */ 3884 __update_context_time(ctx, false); 3885 perf_cgroup_set_timestamp(cpuctx); 3886 /* 3887 * CPU-release for the below ->is_active store, 3888 * see __load_acquire() in perf_event_time_now() 3889 */ 3890 barrier(); 3891 } 3892 3893 ctx->is_active |= (event_type | EVENT_TIME); 3894 if (ctx->task) { 3895 if (!is_active) 3896 cpuctx->task_ctx = ctx; 3897 else 3898 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3899 } 3900 3901 is_active ^= ctx->is_active; /* changed bits */ 3902 3903 /* 3904 * First go through the list and put on any pinned groups 3905 * in order to give them the best chance of going on. 3906 */ 3907 if (is_active & EVENT_PINNED) 3908 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3909 3910 /* Then walk through the lower prio flexible groups */ 3911 if (is_active & EVENT_FLEXIBLE) 3912 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3913 } 3914 3915 static void perf_event_context_sched_in(struct task_struct *task) 3916 { 3917 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3918 struct perf_event_context *ctx; 3919 3920 rcu_read_lock(); 3921 ctx = rcu_dereference(task->perf_event_ctxp); 3922 if (!ctx) 3923 goto rcu_unlock; 3924 3925 if (cpuctx->task_ctx == ctx) { 3926 perf_ctx_lock(cpuctx, ctx); 3927 perf_ctx_disable(ctx, false); 3928 3929 perf_ctx_sched_task_cb(ctx, true); 3930 3931 perf_ctx_enable(ctx, false); 3932 perf_ctx_unlock(cpuctx, ctx); 3933 goto rcu_unlock; 3934 } 3935 3936 perf_ctx_lock(cpuctx, ctx); 3937 /* 3938 * We must check ctx->nr_events while holding ctx->lock, such 3939 * that we serialize against perf_install_in_context(). 3940 */ 3941 if (!ctx->nr_events) 3942 goto unlock; 3943 3944 perf_ctx_disable(ctx, false); 3945 /* 3946 * We want to keep the following priority order: 3947 * cpu pinned (that don't need to move), task pinned, 3948 * cpu flexible, task flexible. 3949 * 3950 * However, if task's ctx is not carrying any pinned 3951 * events, no need to flip the cpuctx's events around. 3952 */ 3953 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3954 perf_ctx_disable(&cpuctx->ctx, false); 3955 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3956 } 3957 3958 perf_event_sched_in(cpuctx, ctx); 3959 3960 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3961 3962 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3963 perf_ctx_enable(&cpuctx->ctx, false); 3964 3965 perf_ctx_enable(ctx, false); 3966 3967 unlock: 3968 perf_ctx_unlock(cpuctx, ctx); 3969 rcu_unlock: 3970 rcu_read_unlock(); 3971 } 3972 3973 /* 3974 * Called from scheduler to add the events of the current task 3975 * with interrupts disabled. 3976 * 3977 * We restore the event value and then enable it. 3978 * 3979 * This does not protect us against NMI, but enable() 3980 * sets the enabled bit in the control field of event _before_ 3981 * accessing the event control register. If a NMI hits, then it will 3982 * keep the event running. 3983 */ 3984 void __perf_event_task_sched_in(struct task_struct *prev, 3985 struct task_struct *task) 3986 { 3987 perf_event_context_sched_in(task); 3988 3989 if (atomic_read(&nr_switch_events)) 3990 perf_event_switch(task, prev, true); 3991 3992 if (__this_cpu_read(perf_sched_cb_usages)) 3993 perf_pmu_sched_task(prev, task, true); 3994 } 3995 3996 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3997 { 3998 u64 frequency = event->attr.sample_freq; 3999 u64 sec = NSEC_PER_SEC; 4000 u64 divisor, dividend; 4001 4002 int count_fls, nsec_fls, frequency_fls, sec_fls; 4003 4004 count_fls = fls64(count); 4005 nsec_fls = fls64(nsec); 4006 frequency_fls = fls64(frequency); 4007 sec_fls = 30; 4008 4009 /* 4010 * We got @count in @nsec, with a target of sample_freq HZ 4011 * the target period becomes: 4012 * 4013 * @count * 10^9 4014 * period = ------------------- 4015 * @nsec * sample_freq 4016 * 4017 */ 4018 4019 /* 4020 * Reduce accuracy by one bit such that @a and @b converge 4021 * to a similar magnitude. 4022 */ 4023 #define REDUCE_FLS(a, b) \ 4024 do { \ 4025 if (a##_fls > b##_fls) { \ 4026 a >>= 1; \ 4027 a##_fls--; \ 4028 } else { \ 4029 b >>= 1; \ 4030 b##_fls--; \ 4031 } \ 4032 } while (0) 4033 4034 /* 4035 * Reduce accuracy until either term fits in a u64, then proceed with 4036 * the other, so that finally we can do a u64/u64 division. 4037 */ 4038 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4039 REDUCE_FLS(nsec, frequency); 4040 REDUCE_FLS(sec, count); 4041 } 4042 4043 if (count_fls + sec_fls > 64) { 4044 divisor = nsec * frequency; 4045 4046 while (count_fls + sec_fls > 64) { 4047 REDUCE_FLS(count, sec); 4048 divisor >>= 1; 4049 } 4050 4051 dividend = count * sec; 4052 } else { 4053 dividend = count * sec; 4054 4055 while (nsec_fls + frequency_fls > 64) { 4056 REDUCE_FLS(nsec, frequency); 4057 dividend >>= 1; 4058 } 4059 4060 divisor = nsec * frequency; 4061 } 4062 4063 if (!divisor) 4064 return dividend; 4065 4066 return div64_u64(dividend, divisor); 4067 } 4068 4069 static DEFINE_PER_CPU(int, perf_throttled_count); 4070 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4071 4072 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4073 { 4074 struct hw_perf_event *hwc = &event->hw; 4075 s64 period, sample_period; 4076 s64 delta; 4077 4078 period = perf_calculate_period(event, nsec, count); 4079 4080 delta = (s64)(period - hwc->sample_period); 4081 delta = (delta + 7) / 8; /* low pass filter */ 4082 4083 sample_period = hwc->sample_period + delta; 4084 4085 if (!sample_period) 4086 sample_period = 1; 4087 4088 hwc->sample_period = sample_period; 4089 4090 if (local64_read(&hwc->period_left) > 8*sample_period) { 4091 if (disable) 4092 event->pmu->stop(event, PERF_EF_UPDATE); 4093 4094 local64_set(&hwc->period_left, 0); 4095 4096 if (disable) 4097 event->pmu->start(event, PERF_EF_RELOAD); 4098 } 4099 } 4100 4101 /* 4102 * combine freq adjustment with unthrottling to avoid two passes over the 4103 * events. At the same time, make sure, having freq events does not change 4104 * the rate of unthrottling as that would introduce bias. 4105 */ 4106 static void 4107 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4108 { 4109 struct perf_event *event; 4110 struct hw_perf_event *hwc; 4111 u64 now, period = TICK_NSEC; 4112 s64 delta; 4113 4114 /* 4115 * only need to iterate over all events iff: 4116 * - context have events in frequency mode (needs freq adjust) 4117 * - there are events to unthrottle on this cpu 4118 */ 4119 if (!(ctx->nr_freq || unthrottle)) 4120 return; 4121 4122 raw_spin_lock(&ctx->lock); 4123 4124 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4125 if (event->state != PERF_EVENT_STATE_ACTIVE) 4126 continue; 4127 4128 // XXX use visit thingy to avoid the -1,cpu match 4129 if (!event_filter_match(event)) 4130 continue; 4131 4132 perf_pmu_disable(event->pmu); 4133 4134 hwc = &event->hw; 4135 4136 if (hwc->interrupts == MAX_INTERRUPTS) { 4137 hwc->interrupts = 0; 4138 perf_log_throttle(event, 1); 4139 event->pmu->start(event, 0); 4140 } 4141 4142 if (!event->attr.freq || !event->attr.sample_freq) 4143 goto next; 4144 4145 /* 4146 * stop the event and update event->count 4147 */ 4148 event->pmu->stop(event, PERF_EF_UPDATE); 4149 4150 now = local64_read(&event->count); 4151 delta = now - hwc->freq_count_stamp; 4152 hwc->freq_count_stamp = now; 4153 4154 /* 4155 * restart the event 4156 * reload only if value has changed 4157 * we have stopped the event so tell that 4158 * to perf_adjust_period() to avoid stopping it 4159 * twice. 4160 */ 4161 if (delta > 0) 4162 perf_adjust_period(event, period, delta, false); 4163 4164 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4165 next: 4166 perf_pmu_enable(event->pmu); 4167 } 4168 4169 raw_spin_unlock(&ctx->lock); 4170 } 4171 4172 /* 4173 * Move @event to the tail of the @ctx's elegible events. 4174 */ 4175 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4176 { 4177 /* 4178 * Rotate the first entry last of non-pinned groups. Rotation might be 4179 * disabled by the inheritance code. 4180 */ 4181 if (ctx->rotate_disable) 4182 return; 4183 4184 perf_event_groups_delete(&ctx->flexible_groups, event); 4185 perf_event_groups_insert(&ctx->flexible_groups, event); 4186 } 4187 4188 /* pick an event from the flexible_groups to rotate */ 4189 static inline struct perf_event * 4190 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4191 { 4192 struct perf_event *event; 4193 struct rb_node *node; 4194 struct rb_root *tree; 4195 struct __group_key key = { 4196 .pmu = pmu_ctx->pmu, 4197 }; 4198 4199 /* pick the first active flexible event */ 4200 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4201 struct perf_event, active_list); 4202 if (event) 4203 goto out; 4204 4205 /* if no active flexible event, pick the first event */ 4206 tree = &pmu_ctx->ctx->flexible_groups.tree; 4207 4208 if (!pmu_ctx->ctx->task) { 4209 key.cpu = smp_processor_id(); 4210 4211 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4212 if (node) 4213 event = __node_2_pe(node); 4214 goto out; 4215 } 4216 4217 key.cpu = -1; 4218 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4219 if (node) { 4220 event = __node_2_pe(node); 4221 goto out; 4222 } 4223 4224 key.cpu = smp_processor_id(); 4225 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4226 if (node) 4227 event = __node_2_pe(node); 4228 4229 out: 4230 /* 4231 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4232 * finds there are unschedulable events, it will set it again. 4233 */ 4234 pmu_ctx->rotate_necessary = 0; 4235 4236 return event; 4237 } 4238 4239 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4240 { 4241 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4242 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4243 struct perf_event *cpu_event = NULL, *task_event = NULL; 4244 int cpu_rotate, task_rotate; 4245 struct pmu *pmu; 4246 4247 /* 4248 * Since we run this from IRQ context, nobody can install new 4249 * events, thus the event count values are stable. 4250 */ 4251 4252 cpu_epc = &cpc->epc; 4253 pmu = cpu_epc->pmu; 4254 task_epc = cpc->task_epc; 4255 4256 cpu_rotate = cpu_epc->rotate_necessary; 4257 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4258 4259 if (!(cpu_rotate || task_rotate)) 4260 return false; 4261 4262 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4263 perf_pmu_disable(pmu); 4264 4265 if (task_rotate) 4266 task_event = ctx_event_to_rotate(task_epc); 4267 if (cpu_rotate) 4268 cpu_event = ctx_event_to_rotate(cpu_epc); 4269 4270 /* 4271 * As per the order given at ctx_resched() first 'pop' task flexible 4272 * and then, if needed CPU flexible. 4273 */ 4274 if (task_event || (task_epc && cpu_event)) { 4275 update_context_time(task_epc->ctx); 4276 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4277 } 4278 4279 if (cpu_event) { 4280 update_context_time(&cpuctx->ctx); 4281 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4282 rotate_ctx(&cpuctx->ctx, cpu_event); 4283 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4284 } 4285 4286 if (task_event) 4287 rotate_ctx(task_epc->ctx, task_event); 4288 4289 if (task_event || (task_epc && cpu_event)) 4290 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4291 4292 perf_pmu_enable(pmu); 4293 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4294 4295 return true; 4296 } 4297 4298 void perf_event_task_tick(void) 4299 { 4300 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4301 struct perf_event_context *ctx; 4302 int throttled; 4303 4304 lockdep_assert_irqs_disabled(); 4305 4306 __this_cpu_inc(perf_throttled_seq); 4307 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4308 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4309 4310 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4311 4312 rcu_read_lock(); 4313 ctx = rcu_dereference(current->perf_event_ctxp); 4314 if (ctx) 4315 perf_adjust_freq_unthr_context(ctx, !!throttled); 4316 rcu_read_unlock(); 4317 } 4318 4319 static int event_enable_on_exec(struct perf_event *event, 4320 struct perf_event_context *ctx) 4321 { 4322 if (!event->attr.enable_on_exec) 4323 return 0; 4324 4325 event->attr.enable_on_exec = 0; 4326 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4327 return 0; 4328 4329 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4330 4331 return 1; 4332 } 4333 4334 /* 4335 * Enable all of a task's events that have been marked enable-on-exec. 4336 * This expects task == current. 4337 */ 4338 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4339 { 4340 struct perf_event_context *clone_ctx = NULL; 4341 enum event_type_t event_type = 0; 4342 struct perf_cpu_context *cpuctx; 4343 struct perf_event *event; 4344 unsigned long flags; 4345 int enabled = 0; 4346 4347 local_irq_save(flags); 4348 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4349 goto out; 4350 4351 if (!ctx->nr_events) 4352 goto out; 4353 4354 cpuctx = this_cpu_ptr(&perf_cpu_context); 4355 perf_ctx_lock(cpuctx, ctx); 4356 ctx_sched_out(ctx, EVENT_TIME); 4357 4358 list_for_each_entry(event, &ctx->event_list, event_entry) { 4359 enabled |= event_enable_on_exec(event, ctx); 4360 event_type |= get_event_type(event); 4361 } 4362 4363 /* 4364 * Unclone and reschedule this context if we enabled any event. 4365 */ 4366 if (enabled) { 4367 clone_ctx = unclone_ctx(ctx); 4368 ctx_resched(cpuctx, ctx, event_type); 4369 } else { 4370 ctx_sched_in(ctx, EVENT_TIME); 4371 } 4372 perf_ctx_unlock(cpuctx, ctx); 4373 4374 out: 4375 local_irq_restore(flags); 4376 4377 if (clone_ctx) 4378 put_ctx(clone_ctx); 4379 } 4380 4381 static void perf_remove_from_owner(struct perf_event *event); 4382 static void perf_event_exit_event(struct perf_event *event, 4383 struct perf_event_context *ctx); 4384 4385 /* 4386 * Removes all events from the current task that have been marked 4387 * remove-on-exec, and feeds their values back to parent events. 4388 */ 4389 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4390 { 4391 struct perf_event_context *clone_ctx = NULL; 4392 struct perf_event *event, *next; 4393 unsigned long flags; 4394 bool modified = false; 4395 4396 mutex_lock(&ctx->mutex); 4397 4398 if (WARN_ON_ONCE(ctx->task != current)) 4399 goto unlock; 4400 4401 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4402 if (!event->attr.remove_on_exec) 4403 continue; 4404 4405 if (!is_kernel_event(event)) 4406 perf_remove_from_owner(event); 4407 4408 modified = true; 4409 4410 perf_event_exit_event(event, ctx); 4411 } 4412 4413 raw_spin_lock_irqsave(&ctx->lock, flags); 4414 if (modified) 4415 clone_ctx = unclone_ctx(ctx); 4416 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4417 4418 unlock: 4419 mutex_unlock(&ctx->mutex); 4420 4421 if (clone_ctx) 4422 put_ctx(clone_ctx); 4423 } 4424 4425 struct perf_read_data { 4426 struct perf_event *event; 4427 bool group; 4428 int ret; 4429 }; 4430 4431 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4432 { 4433 u16 local_pkg, event_pkg; 4434 4435 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4436 int local_cpu = smp_processor_id(); 4437 4438 event_pkg = topology_physical_package_id(event_cpu); 4439 local_pkg = topology_physical_package_id(local_cpu); 4440 4441 if (event_pkg == local_pkg) 4442 return local_cpu; 4443 } 4444 4445 return event_cpu; 4446 } 4447 4448 /* 4449 * Cross CPU call to read the hardware event 4450 */ 4451 static void __perf_event_read(void *info) 4452 { 4453 struct perf_read_data *data = info; 4454 struct perf_event *sub, *event = data->event; 4455 struct perf_event_context *ctx = event->ctx; 4456 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4457 struct pmu *pmu = event->pmu; 4458 4459 /* 4460 * If this is a task context, we need to check whether it is 4461 * the current task context of this cpu. If not it has been 4462 * scheduled out before the smp call arrived. In that case 4463 * event->count would have been updated to a recent sample 4464 * when the event was scheduled out. 4465 */ 4466 if (ctx->task && cpuctx->task_ctx != ctx) 4467 return; 4468 4469 raw_spin_lock(&ctx->lock); 4470 if (ctx->is_active & EVENT_TIME) { 4471 update_context_time(ctx); 4472 update_cgrp_time_from_event(event); 4473 } 4474 4475 perf_event_update_time(event); 4476 if (data->group) 4477 perf_event_update_sibling_time(event); 4478 4479 if (event->state != PERF_EVENT_STATE_ACTIVE) 4480 goto unlock; 4481 4482 if (!data->group) { 4483 pmu->read(event); 4484 data->ret = 0; 4485 goto unlock; 4486 } 4487 4488 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4489 4490 pmu->read(event); 4491 4492 for_each_sibling_event(sub, event) { 4493 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4494 /* 4495 * Use sibling's PMU rather than @event's since 4496 * sibling could be on different (eg: software) PMU. 4497 */ 4498 sub->pmu->read(sub); 4499 } 4500 } 4501 4502 data->ret = pmu->commit_txn(pmu); 4503 4504 unlock: 4505 raw_spin_unlock(&ctx->lock); 4506 } 4507 4508 static inline u64 perf_event_count(struct perf_event *event) 4509 { 4510 return local64_read(&event->count) + atomic64_read(&event->child_count); 4511 } 4512 4513 static void calc_timer_values(struct perf_event *event, 4514 u64 *now, 4515 u64 *enabled, 4516 u64 *running) 4517 { 4518 u64 ctx_time; 4519 4520 *now = perf_clock(); 4521 ctx_time = perf_event_time_now(event, *now); 4522 __perf_update_times(event, ctx_time, enabled, running); 4523 } 4524 4525 /* 4526 * NMI-safe method to read a local event, that is an event that 4527 * is: 4528 * - either for the current task, or for this CPU 4529 * - does not have inherit set, for inherited task events 4530 * will not be local and we cannot read them atomically 4531 * - must not have a pmu::count method 4532 */ 4533 int perf_event_read_local(struct perf_event *event, u64 *value, 4534 u64 *enabled, u64 *running) 4535 { 4536 unsigned long flags; 4537 int ret = 0; 4538 4539 /* 4540 * Disabling interrupts avoids all counter scheduling (context 4541 * switches, timer based rotation and IPIs). 4542 */ 4543 local_irq_save(flags); 4544 4545 /* 4546 * It must not be an event with inherit set, we cannot read 4547 * all child counters from atomic context. 4548 */ 4549 if (event->attr.inherit) { 4550 ret = -EOPNOTSUPP; 4551 goto out; 4552 } 4553 4554 /* If this is a per-task event, it must be for current */ 4555 if ((event->attach_state & PERF_ATTACH_TASK) && 4556 event->hw.target != current) { 4557 ret = -EINVAL; 4558 goto out; 4559 } 4560 4561 /* If this is a per-CPU event, it must be for this CPU */ 4562 if (!(event->attach_state & PERF_ATTACH_TASK) && 4563 event->cpu != smp_processor_id()) { 4564 ret = -EINVAL; 4565 goto out; 4566 } 4567 4568 /* If this is a pinned event it must be running on this CPU */ 4569 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4570 ret = -EBUSY; 4571 goto out; 4572 } 4573 4574 /* 4575 * If the event is currently on this CPU, its either a per-task event, 4576 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4577 * oncpu == -1). 4578 */ 4579 if (event->oncpu == smp_processor_id()) 4580 event->pmu->read(event); 4581 4582 *value = local64_read(&event->count); 4583 if (enabled || running) { 4584 u64 __enabled, __running, __now; 4585 4586 calc_timer_values(event, &__now, &__enabled, &__running); 4587 if (enabled) 4588 *enabled = __enabled; 4589 if (running) 4590 *running = __running; 4591 } 4592 out: 4593 local_irq_restore(flags); 4594 4595 return ret; 4596 } 4597 4598 static int perf_event_read(struct perf_event *event, bool group) 4599 { 4600 enum perf_event_state state = READ_ONCE(event->state); 4601 int event_cpu, ret = 0; 4602 4603 /* 4604 * If event is enabled and currently active on a CPU, update the 4605 * value in the event structure: 4606 */ 4607 again: 4608 if (state == PERF_EVENT_STATE_ACTIVE) { 4609 struct perf_read_data data; 4610 4611 /* 4612 * Orders the ->state and ->oncpu loads such that if we see 4613 * ACTIVE we must also see the right ->oncpu. 4614 * 4615 * Matches the smp_wmb() from event_sched_in(). 4616 */ 4617 smp_rmb(); 4618 4619 event_cpu = READ_ONCE(event->oncpu); 4620 if ((unsigned)event_cpu >= nr_cpu_ids) 4621 return 0; 4622 4623 data = (struct perf_read_data){ 4624 .event = event, 4625 .group = group, 4626 .ret = 0, 4627 }; 4628 4629 preempt_disable(); 4630 event_cpu = __perf_event_read_cpu(event, event_cpu); 4631 4632 /* 4633 * Purposely ignore the smp_call_function_single() return 4634 * value. 4635 * 4636 * If event_cpu isn't a valid CPU it means the event got 4637 * scheduled out and that will have updated the event count. 4638 * 4639 * Therefore, either way, we'll have an up-to-date event count 4640 * after this. 4641 */ 4642 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4643 preempt_enable(); 4644 ret = data.ret; 4645 4646 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4647 struct perf_event_context *ctx = event->ctx; 4648 unsigned long flags; 4649 4650 raw_spin_lock_irqsave(&ctx->lock, flags); 4651 state = event->state; 4652 if (state != PERF_EVENT_STATE_INACTIVE) { 4653 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4654 goto again; 4655 } 4656 4657 /* 4658 * May read while context is not active (e.g., thread is 4659 * blocked), in that case we cannot update context time 4660 */ 4661 if (ctx->is_active & EVENT_TIME) { 4662 update_context_time(ctx); 4663 update_cgrp_time_from_event(event); 4664 } 4665 4666 perf_event_update_time(event); 4667 if (group) 4668 perf_event_update_sibling_time(event); 4669 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4670 } 4671 4672 return ret; 4673 } 4674 4675 /* 4676 * Initialize the perf_event context in a task_struct: 4677 */ 4678 static void __perf_event_init_context(struct perf_event_context *ctx) 4679 { 4680 raw_spin_lock_init(&ctx->lock); 4681 mutex_init(&ctx->mutex); 4682 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4683 perf_event_groups_init(&ctx->pinned_groups); 4684 perf_event_groups_init(&ctx->flexible_groups); 4685 INIT_LIST_HEAD(&ctx->event_list); 4686 refcount_set(&ctx->refcount, 1); 4687 } 4688 4689 static void 4690 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4691 { 4692 epc->pmu = pmu; 4693 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4694 INIT_LIST_HEAD(&epc->pinned_active); 4695 INIT_LIST_HEAD(&epc->flexible_active); 4696 atomic_set(&epc->refcount, 1); 4697 } 4698 4699 static struct perf_event_context * 4700 alloc_perf_context(struct task_struct *task) 4701 { 4702 struct perf_event_context *ctx; 4703 4704 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4705 if (!ctx) 4706 return NULL; 4707 4708 __perf_event_init_context(ctx); 4709 if (task) 4710 ctx->task = get_task_struct(task); 4711 4712 return ctx; 4713 } 4714 4715 static struct task_struct * 4716 find_lively_task_by_vpid(pid_t vpid) 4717 { 4718 struct task_struct *task; 4719 4720 rcu_read_lock(); 4721 if (!vpid) 4722 task = current; 4723 else 4724 task = find_task_by_vpid(vpid); 4725 if (task) 4726 get_task_struct(task); 4727 rcu_read_unlock(); 4728 4729 if (!task) 4730 return ERR_PTR(-ESRCH); 4731 4732 return task; 4733 } 4734 4735 /* 4736 * Returns a matching context with refcount and pincount. 4737 */ 4738 static struct perf_event_context * 4739 find_get_context(struct task_struct *task, struct perf_event *event) 4740 { 4741 struct perf_event_context *ctx, *clone_ctx = NULL; 4742 struct perf_cpu_context *cpuctx; 4743 unsigned long flags; 4744 int err; 4745 4746 if (!task) { 4747 /* Must be root to operate on a CPU event: */ 4748 err = perf_allow_cpu(&event->attr); 4749 if (err) 4750 return ERR_PTR(err); 4751 4752 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4753 ctx = &cpuctx->ctx; 4754 get_ctx(ctx); 4755 raw_spin_lock_irqsave(&ctx->lock, flags); 4756 ++ctx->pin_count; 4757 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4758 4759 return ctx; 4760 } 4761 4762 err = -EINVAL; 4763 retry: 4764 ctx = perf_lock_task_context(task, &flags); 4765 if (ctx) { 4766 clone_ctx = unclone_ctx(ctx); 4767 ++ctx->pin_count; 4768 4769 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4770 4771 if (clone_ctx) 4772 put_ctx(clone_ctx); 4773 } else { 4774 ctx = alloc_perf_context(task); 4775 err = -ENOMEM; 4776 if (!ctx) 4777 goto errout; 4778 4779 err = 0; 4780 mutex_lock(&task->perf_event_mutex); 4781 /* 4782 * If it has already passed perf_event_exit_task(). 4783 * we must see PF_EXITING, it takes this mutex too. 4784 */ 4785 if (task->flags & PF_EXITING) 4786 err = -ESRCH; 4787 else if (task->perf_event_ctxp) 4788 err = -EAGAIN; 4789 else { 4790 get_ctx(ctx); 4791 ++ctx->pin_count; 4792 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4793 } 4794 mutex_unlock(&task->perf_event_mutex); 4795 4796 if (unlikely(err)) { 4797 put_ctx(ctx); 4798 4799 if (err == -EAGAIN) 4800 goto retry; 4801 goto errout; 4802 } 4803 } 4804 4805 return ctx; 4806 4807 errout: 4808 return ERR_PTR(err); 4809 } 4810 4811 static struct perf_event_pmu_context * 4812 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4813 struct perf_event *event) 4814 { 4815 struct perf_event_pmu_context *new = NULL, *epc; 4816 void *task_ctx_data = NULL; 4817 4818 if (!ctx->task) { 4819 /* 4820 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4821 * relies on the fact that find_get_pmu_context() cannot fail 4822 * for CPU contexts. 4823 */ 4824 struct perf_cpu_pmu_context *cpc; 4825 4826 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4827 epc = &cpc->epc; 4828 raw_spin_lock_irq(&ctx->lock); 4829 if (!epc->ctx) { 4830 atomic_set(&epc->refcount, 1); 4831 epc->embedded = 1; 4832 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4833 epc->ctx = ctx; 4834 } else { 4835 WARN_ON_ONCE(epc->ctx != ctx); 4836 atomic_inc(&epc->refcount); 4837 } 4838 raw_spin_unlock_irq(&ctx->lock); 4839 return epc; 4840 } 4841 4842 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4843 if (!new) 4844 return ERR_PTR(-ENOMEM); 4845 4846 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4847 task_ctx_data = alloc_task_ctx_data(pmu); 4848 if (!task_ctx_data) { 4849 kfree(new); 4850 return ERR_PTR(-ENOMEM); 4851 } 4852 } 4853 4854 __perf_init_event_pmu_context(new, pmu); 4855 4856 /* 4857 * XXX 4858 * 4859 * lockdep_assert_held(&ctx->mutex); 4860 * 4861 * can't because perf_event_init_task() doesn't actually hold the 4862 * child_ctx->mutex. 4863 */ 4864 4865 raw_spin_lock_irq(&ctx->lock); 4866 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4867 if (epc->pmu == pmu) { 4868 WARN_ON_ONCE(epc->ctx != ctx); 4869 atomic_inc(&epc->refcount); 4870 goto found_epc; 4871 } 4872 } 4873 4874 epc = new; 4875 new = NULL; 4876 4877 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4878 epc->ctx = ctx; 4879 4880 found_epc: 4881 if (task_ctx_data && !epc->task_ctx_data) { 4882 epc->task_ctx_data = task_ctx_data; 4883 task_ctx_data = NULL; 4884 ctx->nr_task_data++; 4885 } 4886 raw_spin_unlock_irq(&ctx->lock); 4887 4888 free_task_ctx_data(pmu, task_ctx_data); 4889 kfree(new); 4890 4891 return epc; 4892 } 4893 4894 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4895 { 4896 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4897 } 4898 4899 static void free_epc_rcu(struct rcu_head *head) 4900 { 4901 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4902 4903 kfree(epc->task_ctx_data); 4904 kfree(epc); 4905 } 4906 4907 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4908 { 4909 struct perf_event_context *ctx = epc->ctx; 4910 unsigned long flags; 4911 4912 /* 4913 * XXX 4914 * 4915 * lockdep_assert_held(&ctx->mutex); 4916 * 4917 * can't because of the call-site in _free_event()/put_event() 4918 * which isn't always called under ctx->mutex. 4919 */ 4920 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4921 return; 4922 4923 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4924 4925 list_del_init(&epc->pmu_ctx_entry); 4926 epc->ctx = NULL; 4927 4928 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4929 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4930 4931 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4932 4933 if (epc->embedded) 4934 return; 4935 4936 call_rcu(&epc->rcu_head, free_epc_rcu); 4937 } 4938 4939 static void perf_event_free_filter(struct perf_event *event); 4940 4941 static void free_event_rcu(struct rcu_head *head) 4942 { 4943 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4944 4945 if (event->ns) 4946 put_pid_ns(event->ns); 4947 perf_event_free_filter(event); 4948 kmem_cache_free(perf_event_cache, event); 4949 } 4950 4951 static void ring_buffer_attach(struct perf_event *event, 4952 struct perf_buffer *rb); 4953 4954 static void detach_sb_event(struct perf_event *event) 4955 { 4956 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4957 4958 raw_spin_lock(&pel->lock); 4959 list_del_rcu(&event->sb_list); 4960 raw_spin_unlock(&pel->lock); 4961 } 4962 4963 static bool is_sb_event(struct perf_event *event) 4964 { 4965 struct perf_event_attr *attr = &event->attr; 4966 4967 if (event->parent) 4968 return false; 4969 4970 if (event->attach_state & PERF_ATTACH_TASK) 4971 return false; 4972 4973 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4974 attr->comm || attr->comm_exec || 4975 attr->task || attr->ksymbol || 4976 attr->context_switch || attr->text_poke || 4977 attr->bpf_event) 4978 return true; 4979 return false; 4980 } 4981 4982 static void unaccount_pmu_sb_event(struct perf_event *event) 4983 { 4984 if (is_sb_event(event)) 4985 detach_sb_event(event); 4986 } 4987 4988 #ifdef CONFIG_NO_HZ_FULL 4989 static DEFINE_SPINLOCK(nr_freq_lock); 4990 #endif 4991 4992 static void unaccount_freq_event_nohz(void) 4993 { 4994 #ifdef CONFIG_NO_HZ_FULL 4995 spin_lock(&nr_freq_lock); 4996 if (atomic_dec_and_test(&nr_freq_events)) 4997 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4998 spin_unlock(&nr_freq_lock); 4999 #endif 5000 } 5001 5002 static void unaccount_freq_event(void) 5003 { 5004 if (tick_nohz_full_enabled()) 5005 unaccount_freq_event_nohz(); 5006 else 5007 atomic_dec(&nr_freq_events); 5008 } 5009 5010 static void unaccount_event(struct perf_event *event) 5011 { 5012 bool dec = false; 5013 5014 if (event->parent) 5015 return; 5016 5017 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5018 dec = true; 5019 if (event->attr.mmap || event->attr.mmap_data) 5020 atomic_dec(&nr_mmap_events); 5021 if (event->attr.build_id) 5022 atomic_dec(&nr_build_id_events); 5023 if (event->attr.comm) 5024 atomic_dec(&nr_comm_events); 5025 if (event->attr.namespaces) 5026 atomic_dec(&nr_namespaces_events); 5027 if (event->attr.cgroup) 5028 atomic_dec(&nr_cgroup_events); 5029 if (event->attr.task) 5030 atomic_dec(&nr_task_events); 5031 if (event->attr.freq) 5032 unaccount_freq_event(); 5033 if (event->attr.context_switch) { 5034 dec = true; 5035 atomic_dec(&nr_switch_events); 5036 } 5037 if (is_cgroup_event(event)) 5038 dec = true; 5039 if (has_branch_stack(event)) 5040 dec = true; 5041 if (event->attr.ksymbol) 5042 atomic_dec(&nr_ksymbol_events); 5043 if (event->attr.bpf_event) 5044 atomic_dec(&nr_bpf_events); 5045 if (event->attr.text_poke) 5046 atomic_dec(&nr_text_poke_events); 5047 5048 if (dec) { 5049 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5050 schedule_delayed_work(&perf_sched_work, HZ); 5051 } 5052 5053 unaccount_pmu_sb_event(event); 5054 } 5055 5056 static void perf_sched_delayed(struct work_struct *work) 5057 { 5058 mutex_lock(&perf_sched_mutex); 5059 if (atomic_dec_and_test(&perf_sched_count)) 5060 static_branch_disable(&perf_sched_events); 5061 mutex_unlock(&perf_sched_mutex); 5062 } 5063 5064 /* 5065 * The following implement mutual exclusion of events on "exclusive" pmus 5066 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5067 * at a time, so we disallow creating events that might conflict, namely: 5068 * 5069 * 1) cpu-wide events in the presence of per-task events, 5070 * 2) per-task events in the presence of cpu-wide events, 5071 * 3) two matching events on the same perf_event_context. 5072 * 5073 * The former two cases are handled in the allocation path (perf_event_alloc(), 5074 * _free_event()), the latter -- before the first perf_install_in_context(). 5075 */ 5076 static int exclusive_event_init(struct perf_event *event) 5077 { 5078 struct pmu *pmu = event->pmu; 5079 5080 if (!is_exclusive_pmu(pmu)) 5081 return 0; 5082 5083 /* 5084 * Prevent co-existence of per-task and cpu-wide events on the 5085 * same exclusive pmu. 5086 * 5087 * Negative pmu::exclusive_cnt means there are cpu-wide 5088 * events on this "exclusive" pmu, positive means there are 5089 * per-task events. 5090 * 5091 * Since this is called in perf_event_alloc() path, event::ctx 5092 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5093 * to mean "per-task event", because unlike other attach states it 5094 * never gets cleared. 5095 */ 5096 if (event->attach_state & PERF_ATTACH_TASK) { 5097 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5098 return -EBUSY; 5099 } else { 5100 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5101 return -EBUSY; 5102 } 5103 5104 return 0; 5105 } 5106 5107 static void exclusive_event_destroy(struct perf_event *event) 5108 { 5109 struct pmu *pmu = event->pmu; 5110 5111 if (!is_exclusive_pmu(pmu)) 5112 return; 5113 5114 /* see comment in exclusive_event_init() */ 5115 if (event->attach_state & PERF_ATTACH_TASK) 5116 atomic_dec(&pmu->exclusive_cnt); 5117 else 5118 atomic_inc(&pmu->exclusive_cnt); 5119 } 5120 5121 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5122 { 5123 if ((e1->pmu == e2->pmu) && 5124 (e1->cpu == e2->cpu || 5125 e1->cpu == -1 || 5126 e2->cpu == -1)) 5127 return true; 5128 return false; 5129 } 5130 5131 static bool exclusive_event_installable(struct perf_event *event, 5132 struct perf_event_context *ctx) 5133 { 5134 struct perf_event *iter_event; 5135 struct pmu *pmu = event->pmu; 5136 5137 lockdep_assert_held(&ctx->mutex); 5138 5139 if (!is_exclusive_pmu(pmu)) 5140 return true; 5141 5142 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5143 if (exclusive_event_match(iter_event, event)) 5144 return false; 5145 } 5146 5147 return true; 5148 } 5149 5150 static void perf_addr_filters_splice(struct perf_event *event, 5151 struct list_head *head); 5152 5153 static void _free_event(struct perf_event *event) 5154 { 5155 irq_work_sync(&event->pending_irq); 5156 5157 unaccount_event(event); 5158 5159 security_perf_event_free(event); 5160 5161 if (event->rb) { 5162 /* 5163 * Can happen when we close an event with re-directed output. 5164 * 5165 * Since we have a 0 refcount, perf_mmap_close() will skip 5166 * over us; possibly making our ring_buffer_put() the last. 5167 */ 5168 mutex_lock(&event->mmap_mutex); 5169 ring_buffer_attach(event, NULL); 5170 mutex_unlock(&event->mmap_mutex); 5171 } 5172 5173 if (is_cgroup_event(event)) 5174 perf_detach_cgroup(event); 5175 5176 if (!event->parent) { 5177 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5178 put_callchain_buffers(); 5179 } 5180 5181 perf_event_free_bpf_prog(event); 5182 perf_addr_filters_splice(event, NULL); 5183 kfree(event->addr_filter_ranges); 5184 5185 if (event->destroy) 5186 event->destroy(event); 5187 5188 /* 5189 * Must be after ->destroy(), due to uprobe_perf_close() using 5190 * hw.target. 5191 */ 5192 if (event->hw.target) 5193 put_task_struct(event->hw.target); 5194 5195 if (event->pmu_ctx) 5196 put_pmu_ctx(event->pmu_ctx); 5197 5198 /* 5199 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5200 * all task references must be cleaned up. 5201 */ 5202 if (event->ctx) 5203 put_ctx(event->ctx); 5204 5205 exclusive_event_destroy(event); 5206 module_put(event->pmu->module); 5207 5208 call_rcu(&event->rcu_head, free_event_rcu); 5209 } 5210 5211 /* 5212 * Used to free events which have a known refcount of 1, such as in error paths 5213 * where the event isn't exposed yet and inherited events. 5214 */ 5215 static void free_event(struct perf_event *event) 5216 { 5217 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5218 "unexpected event refcount: %ld; ptr=%p\n", 5219 atomic_long_read(&event->refcount), event)) { 5220 /* leak to avoid use-after-free */ 5221 return; 5222 } 5223 5224 _free_event(event); 5225 } 5226 5227 /* 5228 * Remove user event from the owner task. 5229 */ 5230 static void perf_remove_from_owner(struct perf_event *event) 5231 { 5232 struct task_struct *owner; 5233 5234 rcu_read_lock(); 5235 /* 5236 * Matches the smp_store_release() in perf_event_exit_task(). If we 5237 * observe !owner it means the list deletion is complete and we can 5238 * indeed free this event, otherwise we need to serialize on 5239 * owner->perf_event_mutex. 5240 */ 5241 owner = READ_ONCE(event->owner); 5242 if (owner) { 5243 /* 5244 * Since delayed_put_task_struct() also drops the last 5245 * task reference we can safely take a new reference 5246 * while holding the rcu_read_lock(). 5247 */ 5248 get_task_struct(owner); 5249 } 5250 rcu_read_unlock(); 5251 5252 if (owner) { 5253 /* 5254 * If we're here through perf_event_exit_task() we're already 5255 * holding ctx->mutex which would be an inversion wrt. the 5256 * normal lock order. 5257 * 5258 * However we can safely take this lock because its the child 5259 * ctx->mutex. 5260 */ 5261 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5262 5263 /* 5264 * We have to re-check the event->owner field, if it is cleared 5265 * we raced with perf_event_exit_task(), acquiring the mutex 5266 * ensured they're done, and we can proceed with freeing the 5267 * event. 5268 */ 5269 if (event->owner) { 5270 list_del_init(&event->owner_entry); 5271 smp_store_release(&event->owner, NULL); 5272 } 5273 mutex_unlock(&owner->perf_event_mutex); 5274 put_task_struct(owner); 5275 } 5276 } 5277 5278 static void put_event(struct perf_event *event) 5279 { 5280 if (!atomic_long_dec_and_test(&event->refcount)) 5281 return; 5282 5283 _free_event(event); 5284 } 5285 5286 /* 5287 * Kill an event dead; while event:refcount will preserve the event 5288 * object, it will not preserve its functionality. Once the last 'user' 5289 * gives up the object, we'll destroy the thing. 5290 */ 5291 int perf_event_release_kernel(struct perf_event *event) 5292 { 5293 struct perf_event_context *ctx = event->ctx; 5294 struct perf_event *child, *tmp; 5295 LIST_HEAD(free_list); 5296 5297 /* 5298 * If we got here through err_alloc: free_event(event); we will not 5299 * have attached to a context yet. 5300 */ 5301 if (!ctx) { 5302 WARN_ON_ONCE(event->attach_state & 5303 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5304 goto no_ctx; 5305 } 5306 5307 if (!is_kernel_event(event)) 5308 perf_remove_from_owner(event); 5309 5310 ctx = perf_event_ctx_lock(event); 5311 WARN_ON_ONCE(ctx->parent_ctx); 5312 5313 /* 5314 * Mark this event as STATE_DEAD, there is no external reference to it 5315 * anymore. 5316 * 5317 * Anybody acquiring event->child_mutex after the below loop _must_ 5318 * also see this, most importantly inherit_event() which will avoid 5319 * placing more children on the list. 5320 * 5321 * Thus this guarantees that we will in fact observe and kill _ALL_ 5322 * child events. 5323 */ 5324 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5325 5326 perf_event_ctx_unlock(event, ctx); 5327 5328 again: 5329 mutex_lock(&event->child_mutex); 5330 list_for_each_entry(child, &event->child_list, child_list) { 5331 5332 /* 5333 * Cannot change, child events are not migrated, see the 5334 * comment with perf_event_ctx_lock_nested(). 5335 */ 5336 ctx = READ_ONCE(child->ctx); 5337 /* 5338 * Since child_mutex nests inside ctx::mutex, we must jump 5339 * through hoops. We start by grabbing a reference on the ctx. 5340 * 5341 * Since the event cannot get freed while we hold the 5342 * child_mutex, the context must also exist and have a !0 5343 * reference count. 5344 */ 5345 get_ctx(ctx); 5346 5347 /* 5348 * Now that we have a ctx ref, we can drop child_mutex, and 5349 * acquire ctx::mutex without fear of it going away. Then we 5350 * can re-acquire child_mutex. 5351 */ 5352 mutex_unlock(&event->child_mutex); 5353 mutex_lock(&ctx->mutex); 5354 mutex_lock(&event->child_mutex); 5355 5356 /* 5357 * Now that we hold ctx::mutex and child_mutex, revalidate our 5358 * state, if child is still the first entry, it didn't get freed 5359 * and we can continue doing so. 5360 */ 5361 tmp = list_first_entry_or_null(&event->child_list, 5362 struct perf_event, child_list); 5363 if (tmp == child) { 5364 perf_remove_from_context(child, DETACH_GROUP); 5365 list_move(&child->child_list, &free_list); 5366 /* 5367 * This matches the refcount bump in inherit_event(); 5368 * this can't be the last reference. 5369 */ 5370 put_event(event); 5371 } 5372 5373 mutex_unlock(&event->child_mutex); 5374 mutex_unlock(&ctx->mutex); 5375 put_ctx(ctx); 5376 goto again; 5377 } 5378 mutex_unlock(&event->child_mutex); 5379 5380 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5381 void *var = &child->ctx->refcount; 5382 5383 list_del(&child->child_list); 5384 free_event(child); 5385 5386 /* 5387 * Wake any perf_event_free_task() waiting for this event to be 5388 * freed. 5389 */ 5390 smp_mb(); /* pairs with wait_var_event() */ 5391 wake_up_var(var); 5392 } 5393 5394 no_ctx: 5395 put_event(event); /* Must be the 'last' reference */ 5396 return 0; 5397 } 5398 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5399 5400 /* 5401 * Called when the last reference to the file is gone. 5402 */ 5403 static int perf_release(struct inode *inode, struct file *file) 5404 { 5405 perf_event_release_kernel(file->private_data); 5406 return 0; 5407 } 5408 5409 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5410 { 5411 struct perf_event *child; 5412 u64 total = 0; 5413 5414 *enabled = 0; 5415 *running = 0; 5416 5417 mutex_lock(&event->child_mutex); 5418 5419 (void)perf_event_read(event, false); 5420 total += perf_event_count(event); 5421 5422 *enabled += event->total_time_enabled + 5423 atomic64_read(&event->child_total_time_enabled); 5424 *running += event->total_time_running + 5425 atomic64_read(&event->child_total_time_running); 5426 5427 list_for_each_entry(child, &event->child_list, child_list) { 5428 (void)perf_event_read(child, false); 5429 total += perf_event_count(child); 5430 *enabled += child->total_time_enabled; 5431 *running += child->total_time_running; 5432 } 5433 mutex_unlock(&event->child_mutex); 5434 5435 return total; 5436 } 5437 5438 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5439 { 5440 struct perf_event_context *ctx; 5441 u64 count; 5442 5443 ctx = perf_event_ctx_lock(event); 5444 count = __perf_event_read_value(event, enabled, running); 5445 perf_event_ctx_unlock(event, ctx); 5446 5447 return count; 5448 } 5449 EXPORT_SYMBOL_GPL(perf_event_read_value); 5450 5451 static int __perf_read_group_add(struct perf_event *leader, 5452 u64 read_format, u64 *values) 5453 { 5454 struct perf_event_context *ctx = leader->ctx; 5455 struct perf_event *sub, *parent; 5456 unsigned long flags; 5457 int n = 1; /* skip @nr */ 5458 int ret; 5459 5460 ret = perf_event_read(leader, true); 5461 if (ret) 5462 return ret; 5463 5464 raw_spin_lock_irqsave(&ctx->lock, flags); 5465 /* 5466 * Verify the grouping between the parent and child (inherited) 5467 * events is still in tact. 5468 * 5469 * Specifically: 5470 * - leader->ctx->lock pins leader->sibling_list 5471 * - parent->child_mutex pins parent->child_list 5472 * - parent->ctx->mutex pins parent->sibling_list 5473 * 5474 * Because parent->ctx != leader->ctx (and child_list nests inside 5475 * ctx->mutex), group destruction is not atomic between children, also 5476 * see perf_event_release_kernel(). Additionally, parent can grow the 5477 * group. 5478 * 5479 * Therefore it is possible to have parent and child groups in a 5480 * different configuration and summing over such a beast makes no sense 5481 * what so ever. 5482 * 5483 * Reject this. 5484 */ 5485 parent = leader->parent; 5486 if (parent && 5487 (parent->group_generation != leader->group_generation || 5488 parent->nr_siblings != leader->nr_siblings)) { 5489 ret = -ECHILD; 5490 goto unlock; 5491 } 5492 5493 /* 5494 * Since we co-schedule groups, {enabled,running} times of siblings 5495 * will be identical to those of the leader, so we only publish one 5496 * set. 5497 */ 5498 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5499 values[n++] += leader->total_time_enabled + 5500 atomic64_read(&leader->child_total_time_enabled); 5501 } 5502 5503 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5504 values[n++] += leader->total_time_running + 5505 atomic64_read(&leader->child_total_time_running); 5506 } 5507 5508 /* 5509 * Write {count,id} tuples for every sibling. 5510 */ 5511 values[n++] += perf_event_count(leader); 5512 if (read_format & PERF_FORMAT_ID) 5513 values[n++] = primary_event_id(leader); 5514 if (read_format & PERF_FORMAT_LOST) 5515 values[n++] = atomic64_read(&leader->lost_samples); 5516 5517 for_each_sibling_event(sub, leader) { 5518 values[n++] += perf_event_count(sub); 5519 if (read_format & PERF_FORMAT_ID) 5520 values[n++] = primary_event_id(sub); 5521 if (read_format & PERF_FORMAT_LOST) 5522 values[n++] = atomic64_read(&sub->lost_samples); 5523 } 5524 5525 unlock: 5526 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5527 return ret; 5528 } 5529 5530 static int perf_read_group(struct perf_event *event, 5531 u64 read_format, char __user *buf) 5532 { 5533 struct perf_event *leader = event->group_leader, *child; 5534 struct perf_event_context *ctx = leader->ctx; 5535 int ret; 5536 u64 *values; 5537 5538 lockdep_assert_held(&ctx->mutex); 5539 5540 values = kzalloc(event->read_size, GFP_KERNEL); 5541 if (!values) 5542 return -ENOMEM; 5543 5544 values[0] = 1 + leader->nr_siblings; 5545 5546 mutex_lock(&leader->child_mutex); 5547 5548 ret = __perf_read_group_add(leader, read_format, values); 5549 if (ret) 5550 goto unlock; 5551 5552 list_for_each_entry(child, &leader->child_list, child_list) { 5553 ret = __perf_read_group_add(child, read_format, values); 5554 if (ret) 5555 goto unlock; 5556 } 5557 5558 mutex_unlock(&leader->child_mutex); 5559 5560 ret = event->read_size; 5561 if (copy_to_user(buf, values, event->read_size)) 5562 ret = -EFAULT; 5563 goto out; 5564 5565 unlock: 5566 mutex_unlock(&leader->child_mutex); 5567 out: 5568 kfree(values); 5569 return ret; 5570 } 5571 5572 static int perf_read_one(struct perf_event *event, 5573 u64 read_format, char __user *buf) 5574 { 5575 u64 enabled, running; 5576 u64 values[5]; 5577 int n = 0; 5578 5579 values[n++] = __perf_event_read_value(event, &enabled, &running); 5580 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5581 values[n++] = enabled; 5582 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5583 values[n++] = running; 5584 if (read_format & PERF_FORMAT_ID) 5585 values[n++] = primary_event_id(event); 5586 if (read_format & PERF_FORMAT_LOST) 5587 values[n++] = atomic64_read(&event->lost_samples); 5588 5589 if (copy_to_user(buf, values, n * sizeof(u64))) 5590 return -EFAULT; 5591 5592 return n * sizeof(u64); 5593 } 5594 5595 static bool is_event_hup(struct perf_event *event) 5596 { 5597 bool no_children; 5598 5599 if (event->state > PERF_EVENT_STATE_EXIT) 5600 return false; 5601 5602 mutex_lock(&event->child_mutex); 5603 no_children = list_empty(&event->child_list); 5604 mutex_unlock(&event->child_mutex); 5605 return no_children; 5606 } 5607 5608 /* 5609 * Read the performance event - simple non blocking version for now 5610 */ 5611 static ssize_t 5612 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5613 { 5614 u64 read_format = event->attr.read_format; 5615 int ret; 5616 5617 /* 5618 * Return end-of-file for a read on an event that is in 5619 * error state (i.e. because it was pinned but it couldn't be 5620 * scheduled on to the CPU at some point). 5621 */ 5622 if (event->state == PERF_EVENT_STATE_ERROR) 5623 return 0; 5624 5625 if (count < event->read_size) 5626 return -ENOSPC; 5627 5628 WARN_ON_ONCE(event->ctx->parent_ctx); 5629 if (read_format & PERF_FORMAT_GROUP) 5630 ret = perf_read_group(event, read_format, buf); 5631 else 5632 ret = perf_read_one(event, read_format, buf); 5633 5634 return ret; 5635 } 5636 5637 static ssize_t 5638 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5639 { 5640 struct perf_event *event = file->private_data; 5641 struct perf_event_context *ctx; 5642 int ret; 5643 5644 ret = security_perf_event_read(event); 5645 if (ret) 5646 return ret; 5647 5648 ctx = perf_event_ctx_lock(event); 5649 ret = __perf_read(event, buf, count); 5650 perf_event_ctx_unlock(event, ctx); 5651 5652 return ret; 5653 } 5654 5655 static __poll_t perf_poll(struct file *file, poll_table *wait) 5656 { 5657 struct perf_event *event = file->private_data; 5658 struct perf_buffer *rb; 5659 __poll_t events = EPOLLHUP; 5660 5661 poll_wait(file, &event->waitq, wait); 5662 5663 if (is_event_hup(event)) 5664 return events; 5665 5666 /* 5667 * Pin the event->rb by taking event->mmap_mutex; otherwise 5668 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5669 */ 5670 mutex_lock(&event->mmap_mutex); 5671 rb = event->rb; 5672 if (rb) 5673 events = atomic_xchg(&rb->poll, 0); 5674 mutex_unlock(&event->mmap_mutex); 5675 return events; 5676 } 5677 5678 static void _perf_event_reset(struct perf_event *event) 5679 { 5680 (void)perf_event_read(event, false); 5681 local64_set(&event->count, 0); 5682 perf_event_update_userpage(event); 5683 } 5684 5685 /* Assume it's not an event with inherit set. */ 5686 u64 perf_event_pause(struct perf_event *event, bool reset) 5687 { 5688 struct perf_event_context *ctx; 5689 u64 count; 5690 5691 ctx = perf_event_ctx_lock(event); 5692 WARN_ON_ONCE(event->attr.inherit); 5693 _perf_event_disable(event); 5694 count = local64_read(&event->count); 5695 if (reset) 5696 local64_set(&event->count, 0); 5697 perf_event_ctx_unlock(event, ctx); 5698 5699 return count; 5700 } 5701 EXPORT_SYMBOL_GPL(perf_event_pause); 5702 5703 /* 5704 * Holding the top-level event's child_mutex means that any 5705 * descendant process that has inherited this event will block 5706 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5707 * task existence requirements of perf_event_enable/disable. 5708 */ 5709 static void perf_event_for_each_child(struct perf_event *event, 5710 void (*func)(struct perf_event *)) 5711 { 5712 struct perf_event *child; 5713 5714 WARN_ON_ONCE(event->ctx->parent_ctx); 5715 5716 mutex_lock(&event->child_mutex); 5717 func(event); 5718 list_for_each_entry(child, &event->child_list, child_list) 5719 func(child); 5720 mutex_unlock(&event->child_mutex); 5721 } 5722 5723 static void perf_event_for_each(struct perf_event *event, 5724 void (*func)(struct perf_event *)) 5725 { 5726 struct perf_event_context *ctx = event->ctx; 5727 struct perf_event *sibling; 5728 5729 lockdep_assert_held(&ctx->mutex); 5730 5731 event = event->group_leader; 5732 5733 perf_event_for_each_child(event, func); 5734 for_each_sibling_event(sibling, event) 5735 perf_event_for_each_child(sibling, func); 5736 } 5737 5738 static void __perf_event_period(struct perf_event *event, 5739 struct perf_cpu_context *cpuctx, 5740 struct perf_event_context *ctx, 5741 void *info) 5742 { 5743 u64 value = *((u64 *)info); 5744 bool active; 5745 5746 if (event->attr.freq) { 5747 event->attr.sample_freq = value; 5748 } else { 5749 event->attr.sample_period = value; 5750 event->hw.sample_period = value; 5751 } 5752 5753 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5754 if (active) { 5755 perf_pmu_disable(event->pmu); 5756 /* 5757 * We could be throttled; unthrottle now to avoid the tick 5758 * trying to unthrottle while we already re-started the event. 5759 */ 5760 if (event->hw.interrupts == MAX_INTERRUPTS) { 5761 event->hw.interrupts = 0; 5762 perf_log_throttle(event, 1); 5763 } 5764 event->pmu->stop(event, PERF_EF_UPDATE); 5765 } 5766 5767 local64_set(&event->hw.period_left, 0); 5768 5769 if (active) { 5770 event->pmu->start(event, PERF_EF_RELOAD); 5771 perf_pmu_enable(event->pmu); 5772 } 5773 } 5774 5775 static int perf_event_check_period(struct perf_event *event, u64 value) 5776 { 5777 return event->pmu->check_period(event, value); 5778 } 5779 5780 static int _perf_event_period(struct perf_event *event, u64 value) 5781 { 5782 if (!is_sampling_event(event)) 5783 return -EINVAL; 5784 5785 if (!value) 5786 return -EINVAL; 5787 5788 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5789 return -EINVAL; 5790 5791 if (perf_event_check_period(event, value)) 5792 return -EINVAL; 5793 5794 if (!event->attr.freq && (value & (1ULL << 63))) 5795 return -EINVAL; 5796 5797 event_function_call(event, __perf_event_period, &value); 5798 5799 return 0; 5800 } 5801 5802 int perf_event_period(struct perf_event *event, u64 value) 5803 { 5804 struct perf_event_context *ctx; 5805 int ret; 5806 5807 ctx = perf_event_ctx_lock(event); 5808 ret = _perf_event_period(event, value); 5809 perf_event_ctx_unlock(event, ctx); 5810 5811 return ret; 5812 } 5813 EXPORT_SYMBOL_GPL(perf_event_period); 5814 5815 static const struct file_operations perf_fops; 5816 5817 static inline int perf_fget_light(int fd, struct fd *p) 5818 { 5819 struct fd f = fdget(fd); 5820 if (!f.file) 5821 return -EBADF; 5822 5823 if (f.file->f_op != &perf_fops) { 5824 fdput(f); 5825 return -EBADF; 5826 } 5827 *p = f; 5828 return 0; 5829 } 5830 5831 static int perf_event_set_output(struct perf_event *event, 5832 struct perf_event *output_event); 5833 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5834 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5835 struct perf_event_attr *attr); 5836 5837 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5838 { 5839 void (*func)(struct perf_event *); 5840 u32 flags = arg; 5841 5842 switch (cmd) { 5843 case PERF_EVENT_IOC_ENABLE: 5844 func = _perf_event_enable; 5845 break; 5846 case PERF_EVENT_IOC_DISABLE: 5847 func = _perf_event_disable; 5848 break; 5849 case PERF_EVENT_IOC_RESET: 5850 func = _perf_event_reset; 5851 break; 5852 5853 case PERF_EVENT_IOC_REFRESH: 5854 return _perf_event_refresh(event, arg); 5855 5856 case PERF_EVENT_IOC_PERIOD: 5857 { 5858 u64 value; 5859 5860 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5861 return -EFAULT; 5862 5863 return _perf_event_period(event, value); 5864 } 5865 case PERF_EVENT_IOC_ID: 5866 { 5867 u64 id = primary_event_id(event); 5868 5869 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5870 return -EFAULT; 5871 return 0; 5872 } 5873 5874 case PERF_EVENT_IOC_SET_OUTPUT: 5875 { 5876 int ret; 5877 if (arg != -1) { 5878 struct perf_event *output_event; 5879 struct fd output; 5880 ret = perf_fget_light(arg, &output); 5881 if (ret) 5882 return ret; 5883 output_event = output.file->private_data; 5884 ret = perf_event_set_output(event, output_event); 5885 fdput(output); 5886 } else { 5887 ret = perf_event_set_output(event, NULL); 5888 } 5889 return ret; 5890 } 5891 5892 case PERF_EVENT_IOC_SET_FILTER: 5893 return perf_event_set_filter(event, (void __user *)arg); 5894 5895 case PERF_EVENT_IOC_SET_BPF: 5896 { 5897 struct bpf_prog *prog; 5898 int err; 5899 5900 prog = bpf_prog_get(arg); 5901 if (IS_ERR(prog)) 5902 return PTR_ERR(prog); 5903 5904 err = perf_event_set_bpf_prog(event, prog, 0); 5905 if (err) { 5906 bpf_prog_put(prog); 5907 return err; 5908 } 5909 5910 return 0; 5911 } 5912 5913 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5914 struct perf_buffer *rb; 5915 5916 rcu_read_lock(); 5917 rb = rcu_dereference(event->rb); 5918 if (!rb || !rb->nr_pages) { 5919 rcu_read_unlock(); 5920 return -EINVAL; 5921 } 5922 rb_toggle_paused(rb, !!arg); 5923 rcu_read_unlock(); 5924 return 0; 5925 } 5926 5927 case PERF_EVENT_IOC_QUERY_BPF: 5928 return perf_event_query_prog_array(event, (void __user *)arg); 5929 5930 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5931 struct perf_event_attr new_attr; 5932 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5933 &new_attr); 5934 5935 if (err) 5936 return err; 5937 5938 return perf_event_modify_attr(event, &new_attr); 5939 } 5940 default: 5941 return -ENOTTY; 5942 } 5943 5944 if (flags & PERF_IOC_FLAG_GROUP) 5945 perf_event_for_each(event, func); 5946 else 5947 perf_event_for_each_child(event, func); 5948 5949 return 0; 5950 } 5951 5952 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5953 { 5954 struct perf_event *event = file->private_data; 5955 struct perf_event_context *ctx; 5956 long ret; 5957 5958 /* Treat ioctl like writes as it is likely a mutating operation. */ 5959 ret = security_perf_event_write(event); 5960 if (ret) 5961 return ret; 5962 5963 ctx = perf_event_ctx_lock(event); 5964 ret = _perf_ioctl(event, cmd, arg); 5965 perf_event_ctx_unlock(event, ctx); 5966 5967 return ret; 5968 } 5969 5970 #ifdef CONFIG_COMPAT 5971 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5972 unsigned long arg) 5973 { 5974 switch (_IOC_NR(cmd)) { 5975 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5976 case _IOC_NR(PERF_EVENT_IOC_ID): 5977 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5978 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5979 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5980 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5981 cmd &= ~IOCSIZE_MASK; 5982 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5983 } 5984 break; 5985 } 5986 return perf_ioctl(file, cmd, arg); 5987 } 5988 #else 5989 # define perf_compat_ioctl NULL 5990 #endif 5991 5992 int perf_event_task_enable(void) 5993 { 5994 struct perf_event_context *ctx; 5995 struct perf_event *event; 5996 5997 mutex_lock(¤t->perf_event_mutex); 5998 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5999 ctx = perf_event_ctx_lock(event); 6000 perf_event_for_each_child(event, _perf_event_enable); 6001 perf_event_ctx_unlock(event, ctx); 6002 } 6003 mutex_unlock(¤t->perf_event_mutex); 6004 6005 return 0; 6006 } 6007 6008 int perf_event_task_disable(void) 6009 { 6010 struct perf_event_context *ctx; 6011 struct perf_event *event; 6012 6013 mutex_lock(¤t->perf_event_mutex); 6014 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6015 ctx = perf_event_ctx_lock(event); 6016 perf_event_for_each_child(event, _perf_event_disable); 6017 perf_event_ctx_unlock(event, ctx); 6018 } 6019 mutex_unlock(¤t->perf_event_mutex); 6020 6021 return 0; 6022 } 6023 6024 static int perf_event_index(struct perf_event *event) 6025 { 6026 if (event->hw.state & PERF_HES_STOPPED) 6027 return 0; 6028 6029 if (event->state != PERF_EVENT_STATE_ACTIVE) 6030 return 0; 6031 6032 return event->pmu->event_idx(event); 6033 } 6034 6035 static void perf_event_init_userpage(struct perf_event *event) 6036 { 6037 struct perf_event_mmap_page *userpg; 6038 struct perf_buffer *rb; 6039 6040 rcu_read_lock(); 6041 rb = rcu_dereference(event->rb); 6042 if (!rb) 6043 goto unlock; 6044 6045 userpg = rb->user_page; 6046 6047 /* Allow new userspace to detect that bit 0 is deprecated */ 6048 userpg->cap_bit0_is_deprecated = 1; 6049 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6050 userpg->data_offset = PAGE_SIZE; 6051 userpg->data_size = perf_data_size(rb); 6052 6053 unlock: 6054 rcu_read_unlock(); 6055 } 6056 6057 void __weak arch_perf_update_userpage( 6058 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6059 { 6060 } 6061 6062 /* 6063 * Callers need to ensure there can be no nesting of this function, otherwise 6064 * the seqlock logic goes bad. We can not serialize this because the arch 6065 * code calls this from NMI context. 6066 */ 6067 void perf_event_update_userpage(struct perf_event *event) 6068 { 6069 struct perf_event_mmap_page *userpg; 6070 struct perf_buffer *rb; 6071 u64 enabled, running, now; 6072 6073 rcu_read_lock(); 6074 rb = rcu_dereference(event->rb); 6075 if (!rb) 6076 goto unlock; 6077 6078 /* 6079 * compute total_time_enabled, total_time_running 6080 * based on snapshot values taken when the event 6081 * was last scheduled in. 6082 * 6083 * we cannot simply called update_context_time() 6084 * because of locking issue as we can be called in 6085 * NMI context 6086 */ 6087 calc_timer_values(event, &now, &enabled, &running); 6088 6089 userpg = rb->user_page; 6090 /* 6091 * Disable preemption to guarantee consistent time stamps are stored to 6092 * the user page. 6093 */ 6094 preempt_disable(); 6095 ++userpg->lock; 6096 barrier(); 6097 userpg->index = perf_event_index(event); 6098 userpg->offset = perf_event_count(event); 6099 if (userpg->index) 6100 userpg->offset -= local64_read(&event->hw.prev_count); 6101 6102 userpg->time_enabled = enabled + 6103 atomic64_read(&event->child_total_time_enabled); 6104 6105 userpg->time_running = running + 6106 atomic64_read(&event->child_total_time_running); 6107 6108 arch_perf_update_userpage(event, userpg, now); 6109 6110 barrier(); 6111 ++userpg->lock; 6112 preempt_enable(); 6113 unlock: 6114 rcu_read_unlock(); 6115 } 6116 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6117 6118 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6119 { 6120 struct perf_event *event = vmf->vma->vm_file->private_data; 6121 struct perf_buffer *rb; 6122 vm_fault_t ret = VM_FAULT_SIGBUS; 6123 6124 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6125 if (vmf->pgoff == 0) 6126 ret = 0; 6127 return ret; 6128 } 6129 6130 rcu_read_lock(); 6131 rb = rcu_dereference(event->rb); 6132 if (!rb) 6133 goto unlock; 6134 6135 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6136 goto unlock; 6137 6138 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6139 if (!vmf->page) 6140 goto unlock; 6141 6142 get_page(vmf->page); 6143 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6144 vmf->page->index = vmf->pgoff; 6145 6146 ret = 0; 6147 unlock: 6148 rcu_read_unlock(); 6149 6150 return ret; 6151 } 6152 6153 static void ring_buffer_attach(struct perf_event *event, 6154 struct perf_buffer *rb) 6155 { 6156 struct perf_buffer *old_rb = NULL; 6157 unsigned long flags; 6158 6159 WARN_ON_ONCE(event->parent); 6160 6161 if (event->rb) { 6162 /* 6163 * Should be impossible, we set this when removing 6164 * event->rb_entry and wait/clear when adding event->rb_entry. 6165 */ 6166 WARN_ON_ONCE(event->rcu_pending); 6167 6168 old_rb = event->rb; 6169 spin_lock_irqsave(&old_rb->event_lock, flags); 6170 list_del_rcu(&event->rb_entry); 6171 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6172 6173 event->rcu_batches = get_state_synchronize_rcu(); 6174 event->rcu_pending = 1; 6175 } 6176 6177 if (rb) { 6178 if (event->rcu_pending) { 6179 cond_synchronize_rcu(event->rcu_batches); 6180 event->rcu_pending = 0; 6181 } 6182 6183 spin_lock_irqsave(&rb->event_lock, flags); 6184 list_add_rcu(&event->rb_entry, &rb->event_list); 6185 spin_unlock_irqrestore(&rb->event_lock, flags); 6186 } 6187 6188 /* 6189 * Avoid racing with perf_mmap_close(AUX): stop the event 6190 * before swizzling the event::rb pointer; if it's getting 6191 * unmapped, its aux_mmap_count will be 0 and it won't 6192 * restart. See the comment in __perf_pmu_output_stop(). 6193 * 6194 * Data will inevitably be lost when set_output is done in 6195 * mid-air, but then again, whoever does it like this is 6196 * not in for the data anyway. 6197 */ 6198 if (has_aux(event)) 6199 perf_event_stop(event, 0); 6200 6201 rcu_assign_pointer(event->rb, rb); 6202 6203 if (old_rb) { 6204 ring_buffer_put(old_rb); 6205 /* 6206 * Since we detached before setting the new rb, so that we 6207 * could attach the new rb, we could have missed a wakeup. 6208 * Provide it now. 6209 */ 6210 wake_up_all(&event->waitq); 6211 } 6212 } 6213 6214 static void ring_buffer_wakeup(struct perf_event *event) 6215 { 6216 struct perf_buffer *rb; 6217 6218 if (event->parent) 6219 event = event->parent; 6220 6221 rcu_read_lock(); 6222 rb = rcu_dereference(event->rb); 6223 if (rb) { 6224 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6225 wake_up_all(&event->waitq); 6226 } 6227 rcu_read_unlock(); 6228 } 6229 6230 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6231 { 6232 struct perf_buffer *rb; 6233 6234 if (event->parent) 6235 event = event->parent; 6236 6237 rcu_read_lock(); 6238 rb = rcu_dereference(event->rb); 6239 if (rb) { 6240 if (!refcount_inc_not_zero(&rb->refcount)) 6241 rb = NULL; 6242 } 6243 rcu_read_unlock(); 6244 6245 return rb; 6246 } 6247 6248 void ring_buffer_put(struct perf_buffer *rb) 6249 { 6250 if (!refcount_dec_and_test(&rb->refcount)) 6251 return; 6252 6253 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6254 6255 call_rcu(&rb->rcu_head, rb_free_rcu); 6256 } 6257 6258 static void perf_mmap_open(struct vm_area_struct *vma) 6259 { 6260 struct perf_event *event = vma->vm_file->private_data; 6261 6262 atomic_inc(&event->mmap_count); 6263 atomic_inc(&event->rb->mmap_count); 6264 6265 if (vma->vm_pgoff) 6266 atomic_inc(&event->rb->aux_mmap_count); 6267 6268 if (event->pmu->event_mapped) 6269 event->pmu->event_mapped(event, vma->vm_mm); 6270 } 6271 6272 static void perf_pmu_output_stop(struct perf_event *event); 6273 6274 /* 6275 * A buffer can be mmap()ed multiple times; either directly through the same 6276 * event, or through other events by use of perf_event_set_output(). 6277 * 6278 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6279 * the buffer here, where we still have a VM context. This means we need 6280 * to detach all events redirecting to us. 6281 */ 6282 static void perf_mmap_close(struct vm_area_struct *vma) 6283 { 6284 struct perf_event *event = vma->vm_file->private_data; 6285 struct perf_buffer *rb = ring_buffer_get(event); 6286 struct user_struct *mmap_user = rb->mmap_user; 6287 int mmap_locked = rb->mmap_locked; 6288 unsigned long size = perf_data_size(rb); 6289 bool detach_rest = false; 6290 6291 if (event->pmu->event_unmapped) 6292 event->pmu->event_unmapped(event, vma->vm_mm); 6293 6294 /* 6295 * rb->aux_mmap_count will always drop before rb->mmap_count and 6296 * event->mmap_count, so it is ok to use event->mmap_mutex to 6297 * serialize with perf_mmap here. 6298 */ 6299 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6300 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6301 /* 6302 * Stop all AUX events that are writing to this buffer, 6303 * so that we can free its AUX pages and corresponding PMU 6304 * data. Note that after rb::aux_mmap_count dropped to zero, 6305 * they won't start any more (see perf_aux_output_begin()). 6306 */ 6307 perf_pmu_output_stop(event); 6308 6309 /* now it's safe to free the pages */ 6310 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6311 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6312 6313 /* this has to be the last one */ 6314 rb_free_aux(rb); 6315 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6316 6317 mutex_unlock(&event->mmap_mutex); 6318 } 6319 6320 if (atomic_dec_and_test(&rb->mmap_count)) 6321 detach_rest = true; 6322 6323 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6324 goto out_put; 6325 6326 ring_buffer_attach(event, NULL); 6327 mutex_unlock(&event->mmap_mutex); 6328 6329 /* If there's still other mmap()s of this buffer, we're done. */ 6330 if (!detach_rest) 6331 goto out_put; 6332 6333 /* 6334 * No other mmap()s, detach from all other events that might redirect 6335 * into the now unreachable buffer. Somewhat complicated by the 6336 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6337 */ 6338 again: 6339 rcu_read_lock(); 6340 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6341 if (!atomic_long_inc_not_zero(&event->refcount)) { 6342 /* 6343 * This event is en-route to free_event() which will 6344 * detach it and remove it from the list. 6345 */ 6346 continue; 6347 } 6348 rcu_read_unlock(); 6349 6350 mutex_lock(&event->mmap_mutex); 6351 /* 6352 * Check we didn't race with perf_event_set_output() which can 6353 * swizzle the rb from under us while we were waiting to 6354 * acquire mmap_mutex. 6355 * 6356 * If we find a different rb; ignore this event, a next 6357 * iteration will no longer find it on the list. We have to 6358 * still restart the iteration to make sure we're not now 6359 * iterating the wrong list. 6360 */ 6361 if (event->rb == rb) 6362 ring_buffer_attach(event, NULL); 6363 6364 mutex_unlock(&event->mmap_mutex); 6365 put_event(event); 6366 6367 /* 6368 * Restart the iteration; either we're on the wrong list or 6369 * destroyed its integrity by doing a deletion. 6370 */ 6371 goto again; 6372 } 6373 rcu_read_unlock(); 6374 6375 /* 6376 * It could be there's still a few 0-ref events on the list; they'll 6377 * get cleaned up by free_event() -- they'll also still have their 6378 * ref on the rb and will free it whenever they are done with it. 6379 * 6380 * Aside from that, this buffer is 'fully' detached and unmapped, 6381 * undo the VM accounting. 6382 */ 6383 6384 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6385 &mmap_user->locked_vm); 6386 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6387 free_uid(mmap_user); 6388 6389 out_put: 6390 ring_buffer_put(rb); /* could be last */ 6391 } 6392 6393 static const struct vm_operations_struct perf_mmap_vmops = { 6394 .open = perf_mmap_open, 6395 .close = perf_mmap_close, /* non mergeable */ 6396 .fault = perf_mmap_fault, 6397 .page_mkwrite = perf_mmap_fault, 6398 }; 6399 6400 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6401 { 6402 struct perf_event *event = file->private_data; 6403 unsigned long user_locked, user_lock_limit; 6404 struct user_struct *user = current_user(); 6405 struct perf_buffer *rb = NULL; 6406 unsigned long locked, lock_limit; 6407 unsigned long vma_size; 6408 unsigned long nr_pages; 6409 long user_extra = 0, extra = 0; 6410 int ret = 0, flags = 0; 6411 6412 /* 6413 * Don't allow mmap() of inherited per-task counters. This would 6414 * create a performance issue due to all children writing to the 6415 * same rb. 6416 */ 6417 if (event->cpu == -1 && event->attr.inherit) 6418 return -EINVAL; 6419 6420 if (!(vma->vm_flags & VM_SHARED)) 6421 return -EINVAL; 6422 6423 ret = security_perf_event_read(event); 6424 if (ret) 6425 return ret; 6426 6427 vma_size = vma->vm_end - vma->vm_start; 6428 6429 if (vma->vm_pgoff == 0) { 6430 nr_pages = (vma_size / PAGE_SIZE) - 1; 6431 } else { 6432 /* 6433 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6434 * mapped, all subsequent mappings should have the same size 6435 * and offset. Must be above the normal perf buffer. 6436 */ 6437 u64 aux_offset, aux_size; 6438 6439 if (!event->rb) 6440 return -EINVAL; 6441 6442 nr_pages = vma_size / PAGE_SIZE; 6443 6444 mutex_lock(&event->mmap_mutex); 6445 ret = -EINVAL; 6446 6447 rb = event->rb; 6448 if (!rb) 6449 goto aux_unlock; 6450 6451 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6452 aux_size = READ_ONCE(rb->user_page->aux_size); 6453 6454 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6455 goto aux_unlock; 6456 6457 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6458 goto aux_unlock; 6459 6460 /* already mapped with a different offset */ 6461 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6462 goto aux_unlock; 6463 6464 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6465 goto aux_unlock; 6466 6467 /* already mapped with a different size */ 6468 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6469 goto aux_unlock; 6470 6471 if (!is_power_of_2(nr_pages)) 6472 goto aux_unlock; 6473 6474 if (!atomic_inc_not_zero(&rb->mmap_count)) 6475 goto aux_unlock; 6476 6477 if (rb_has_aux(rb)) { 6478 atomic_inc(&rb->aux_mmap_count); 6479 ret = 0; 6480 goto unlock; 6481 } 6482 6483 atomic_set(&rb->aux_mmap_count, 1); 6484 user_extra = nr_pages; 6485 6486 goto accounting; 6487 } 6488 6489 /* 6490 * If we have rb pages ensure they're a power-of-two number, so we 6491 * can do bitmasks instead of modulo. 6492 */ 6493 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6494 return -EINVAL; 6495 6496 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6497 return -EINVAL; 6498 6499 WARN_ON_ONCE(event->ctx->parent_ctx); 6500 again: 6501 mutex_lock(&event->mmap_mutex); 6502 if (event->rb) { 6503 if (data_page_nr(event->rb) != nr_pages) { 6504 ret = -EINVAL; 6505 goto unlock; 6506 } 6507 6508 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6509 /* 6510 * Raced against perf_mmap_close(); remove the 6511 * event and try again. 6512 */ 6513 ring_buffer_attach(event, NULL); 6514 mutex_unlock(&event->mmap_mutex); 6515 goto again; 6516 } 6517 6518 goto unlock; 6519 } 6520 6521 user_extra = nr_pages + 1; 6522 6523 accounting: 6524 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6525 6526 /* 6527 * Increase the limit linearly with more CPUs: 6528 */ 6529 user_lock_limit *= num_online_cpus(); 6530 6531 user_locked = atomic_long_read(&user->locked_vm); 6532 6533 /* 6534 * sysctl_perf_event_mlock may have changed, so that 6535 * user->locked_vm > user_lock_limit 6536 */ 6537 if (user_locked > user_lock_limit) 6538 user_locked = user_lock_limit; 6539 user_locked += user_extra; 6540 6541 if (user_locked > user_lock_limit) { 6542 /* 6543 * charge locked_vm until it hits user_lock_limit; 6544 * charge the rest from pinned_vm 6545 */ 6546 extra = user_locked - user_lock_limit; 6547 user_extra -= extra; 6548 } 6549 6550 lock_limit = rlimit(RLIMIT_MEMLOCK); 6551 lock_limit >>= PAGE_SHIFT; 6552 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6553 6554 if ((locked > lock_limit) && perf_is_paranoid() && 6555 !capable(CAP_IPC_LOCK)) { 6556 ret = -EPERM; 6557 goto unlock; 6558 } 6559 6560 WARN_ON(!rb && event->rb); 6561 6562 if (vma->vm_flags & VM_WRITE) 6563 flags |= RING_BUFFER_WRITABLE; 6564 6565 if (!rb) { 6566 rb = rb_alloc(nr_pages, 6567 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6568 event->cpu, flags); 6569 6570 if (!rb) { 6571 ret = -ENOMEM; 6572 goto unlock; 6573 } 6574 6575 atomic_set(&rb->mmap_count, 1); 6576 rb->mmap_user = get_current_user(); 6577 rb->mmap_locked = extra; 6578 6579 ring_buffer_attach(event, rb); 6580 6581 perf_event_update_time(event); 6582 perf_event_init_userpage(event); 6583 perf_event_update_userpage(event); 6584 } else { 6585 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6586 event->attr.aux_watermark, flags); 6587 if (!ret) 6588 rb->aux_mmap_locked = extra; 6589 } 6590 6591 unlock: 6592 if (!ret) { 6593 atomic_long_add(user_extra, &user->locked_vm); 6594 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6595 6596 atomic_inc(&event->mmap_count); 6597 } else if (rb) { 6598 atomic_dec(&rb->mmap_count); 6599 } 6600 aux_unlock: 6601 mutex_unlock(&event->mmap_mutex); 6602 6603 /* 6604 * Since pinned accounting is per vm we cannot allow fork() to copy our 6605 * vma. 6606 */ 6607 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6608 vma->vm_ops = &perf_mmap_vmops; 6609 6610 if (event->pmu->event_mapped) 6611 event->pmu->event_mapped(event, vma->vm_mm); 6612 6613 return ret; 6614 } 6615 6616 static int perf_fasync(int fd, struct file *filp, int on) 6617 { 6618 struct inode *inode = file_inode(filp); 6619 struct perf_event *event = filp->private_data; 6620 int retval; 6621 6622 inode_lock(inode); 6623 retval = fasync_helper(fd, filp, on, &event->fasync); 6624 inode_unlock(inode); 6625 6626 if (retval < 0) 6627 return retval; 6628 6629 return 0; 6630 } 6631 6632 static const struct file_operations perf_fops = { 6633 .llseek = no_llseek, 6634 .release = perf_release, 6635 .read = perf_read, 6636 .poll = perf_poll, 6637 .unlocked_ioctl = perf_ioctl, 6638 .compat_ioctl = perf_compat_ioctl, 6639 .mmap = perf_mmap, 6640 .fasync = perf_fasync, 6641 }; 6642 6643 /* 6644 * Perf event wakeup 6645 * 6646 * If there's data, ensure we set the poll() state and publish everything 6647 * to user-space before waking everybody up. 6648 */ 6649 6650 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6651 { 6652 /* only the parent has fasync state */ 6653 if (event->parent) 6654 event = event->parent; 6655 return &event->fasync; 6656 } 6657 6658 void perf_event_wakeup(struct perf_event *event) 6659 { 6660 ring_buffer_wakeup(event); 6661 6662 if (event->pending_kill) { 6663 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6664 event->pending_kill = 0; 6665 } 6666 } 6667 6668 static void perf_sigtrap(struct perf_event *event) 6669 { 6670 /* 6671 * We'd expect this to only occur if the irq_work is delayed and either 6672 * ctx->task or current has changed in the meantime. This can be the 6673 * case on architectures that do not implement arch_irq_work_raise(). 6674 */ 6675 if (WARN_ON_ONCE(event->ctx->task != current)) 6676 return; 6677 6678 /* 6679 * Both perf_pending_task() and perf_pending_irq() can race with the 6680 * task exiting. 6681 */ 6682 if (current->flags & PF_EXITING) 6683 return; 6684 6685 send_sig_perf((void __user *)event->pending_addr, 6686 event->orig_type, event->attr.sig_data); 6687 } 6688 6689 /* 6690 * Deliver the pending work in-event-context or follow the context. 6691 */ 6692 static void __perf_pending_irq(struct perf_event *event) 6693 { 6694 int cpu = READ_ONCE(event->oncpu); 6695 6696 /* 6697 * If the event isn't running; we done. event_sched_out() will have 6698 * taken care of things. 6699 */ 6700 if (cpu < 0) 6701 return; 6702 6703 /* 6704 * Yay, we hit home and are in the context of the event. 6705 */ 6706 if (cpu == smp_processor_id()) { 6707 if (event->pending_sigtrap) { 6708 event->pending_sigtrap = 0; 6709 perf_sigtrap(event); 6710 local_dec(&event->ctx->nr_pending); 6711 } 6712 if (event->pending_disable) { 6713 event->pending_disable = 0; 6714 perf_event_disable_local(event); 6715 } 6716 return; 6717 } 6718 6719 /* 6720 * CPU-A CPU-B 6721 * 6722 * perf_event_disable_inatomic() 6723 * @pending_disable = CPU-A; 6724 * irq_work_queue(); 6725 * 6726 * sched-out 6727 * @pending_disable = -1; 6728 * 6729 * sched-in 6730 * perf_event_disable_inatomic() 6731 * @pending_disable = CPU-B; 6732 * irq_work_queue(); // FAILS 6733 * 6734 * irq_work_run() 6735 * perf_pending_irq() 6736 * 6737 * But the event runs on CPU-B and wants disabling there. 6738 */ 6739 irq_work_queue_on(&event->pending_irq, cpu); 6740 } 6741 6742 static void perf_pending_irq(struct irq_work *entry) 6743 { 6744 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6745 int rctx; 6746 6747 /* 6748 * If we 'fail' here, that's OK, it means recursion is already disabled 6749 * and we won't recurse 'further'. 6750 */ 6751 rctx = perf_swevent_get_recursion_context(); 6752 6753 /* 6754 * The wakeup isn't bound to the context of the event -- it can happen 6755 * irrespective of where the event is. 6756 */ 6757 if (event->pending_wakeup) { 6758 event->pending_wakeup = 0; 6759 perf_event_wakeup(event); 6760 } 6761 6762 __perf_pending_irq(event); 6763 6764 if (rctx >= 0) 6765 perf_swevent_put_recursion_context(rctx); 6766 } 6767 6768 static void perf_pending_task(struct callback_head *head) 6769 { 6770 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6771 int rctx; 6772 6773 /* 6774 * If we 'fail' here, that's OK, it means recursion is already disabled 6775 * and we won't recurse 'further'. 6776 */ 6777 preempt_disable_notrace(); 6778 rctx = perf_swevent_get_recursion_context(); 6779 6780 if (event->pending_work) { 6781 event->pending_work = 0; 6782 perf_sigtrap(event); 6783 local_dec(&event->ctx->nr_pending); 6784 } 6785 6786 if (rctx >= 0) 6787 perf_swevent_put_recursion_context(rctx); 6788 preempt_enable_notrace(); 6789 6790 put_event(event); 6791 } 6792 6793 #ifdef CONFIG_GUEST_PERF_EVENTS 6794 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6795 6796 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6797 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6798 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6799 6800 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6801 { 6802 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6803 return; 6804 6805 rcu_assign_pointer(perf_guest_cbs, cbs); 6806 static_call_update(__perf_guest_state, cbs->state); 6807 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6808 6809 /* Implementing ->handle_intel_pt_intr is optional. */ 6810 if (cbs->handle_intel_pt_intr) 6811 static_call_update(__perf_guest_handle_intel_pt_intr, 6812 cbs->handle_intel_pt_intr); 6813 } 6814 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6815 6816 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6817 { 6818 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6819 return; 6820 6821 rcu_assign_pointer(perf_guest_cbs, NULL); 6822 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6823 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6824 static_call_update(__perf_guest_handle_intel_pt_intr, 6825 (void *)&__static_call_return0); 6826 synchronize_rcu(); 6827 } 6828 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6829 #endif 6830 6831 static void 6832 perf_output_sample_regs(struct perf_output_handle *handle, 6833 struct pt_regs *regs, u64 mask) 6834 { 6835 int bit; 6836 DECLARE_BITMAP(_mask, 64); 6837 6838 bitmap_from_u64(_mask, mask); 6839 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6840 u64 val; 6841 6842 val = perf_reg_value(regs, bit); 6843 perf_output_put(handle, val); 6844 } 6845 } 6846 6847 static void perf_sample_regs_user(struct perf_regs *regs_user, 6848 struct pt_regs *regs) 6849 { 6850 if (user_mode(regs)) { 6851 regs_user->abi = perf_reg_abi(current); 6852 regs_user->regs = regs; 6853 } else if (!(current->flags & PF_KTHREAD)) { 6854 perf_get_regs_user(regs_user, regs); 6855 } else { 6856 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6857 regs_user->regs = NULL; 6858 } 6859 } 6860 6861 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6862 struct pt_regs *regs) 6863 { 6864 regs_intr->regs = regs; 6865 regs_intr->abi = perf_reg_abi(current); 6866 } 6867 6868 6869 /* 6870 * Get remaining task size from user stack pointer. 6871 * 6872 * It'd be better to take stack vma map and limit this more 6873 * precisely, but there's no way to get it safely under interrupt, 6874 * so using TASK_SIZE as limit. 6875 */ 6876 static u64 perf_ustack_task_size(struct pt_regs *regs) 6877 { 6878 unsigned long addr = perf_user_stack_pointer(regs); 6879 6880 if (!addr || addr >= TASK_SIZE) 6881 return 0; 6882 6883 return TASK_SIZE - addr; 6884 } 6885 6886 static u16 6887 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6888 struct pt_regs *regs) 6889 { 6890 u64 task_size; 6891 6892 /* No regs, no stack pointer, no dump. */ 6893 if (!regs) 6894 return 0; 6895 6896 /* 6897 * Check if we fit in with the requested stack size into the: 6898 * - TASK_SIZE 6899 * If we don't, we limit the size to the TASK_SIZE. 6900 * 6901 * - remaining sample size 6902 * If we don't, we customize the stack size to 6903 * fit in to the remaining sample size. 6904 */ 6905 6906 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6907 stack_size = min(stack_size, (u16) task_size); 6908 6909 /* Current header size plus static size and dynamic size. */ 6910 header_size += 2 * sizeof(u64); 6911 6912 /* Do we fit in with the current stack dump size? */ 6913 if ((u16) (header_size + stack_size) < header_size) { 6914 /* 6915 * If we overflow the maximum size for the sample, 6916 * we customize the stack dump size to fit in. 6917 */ 6918 stack_size = USHRT_MAX - header_size - sizeof(u64); 6919 stack_size = round_up(stack_size, sizeof(u64)); 6920 } 6921 6922 return stack_size; 6923 } 6924 6925 static void 6926 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6927 struct pt_regs *regs) 6928 { 6929 /* Case of a kernel thread, nothing to dump */ 6930 if (!regs) { 6931 u64 size = 0; 6932 perf_output_put(handle, size); 6933 } else { 6934 unsigned long sp; 6935 unsigned int rem; 6936 u64 dyn_size; 6937 6938 /* 6939 * We dump: 6940 * static size 6941 * - the size requested by user or the best one we can fit 6942 * in to the sample max size 6943 * data 6944 * - user stack dump data 6945 * dynamic size 6946 * - the actual dumped size 6947 */ 6948 6949 /* Static size. */ 6950 perf_output_put(handle, dump_size); 6951 6952 /* Data. */ 6953 sp = perf_user_stack_pointer(regs); 6954 rem = __output_copy_user(handle, (void *) sp, dump_size); 6955 dyn_size = dump_size - rem; 6956 6957 perf_output_skip(handle, rem); 6958 6959 /* Dynamic size. */ 6960 perf_output_put(handle, dyn_size); 6961 } 6962 } 6963 6964 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6965 struct perf_sample_data *data, 6966 size_t size) 6967 { 6968 struct perf_event *sampler = event->aux_event; 6969 struct perf_buffer *rb; 6970 6971 data->aux_size = 0; 6972 6973 if (!sampler) 6974 goto out; 6975 6976 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6977 goto out; 6978 6979 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6980 goto out; 6981 6982 rb = ring_buffer_get(sampler); 6983 if (!rb) 6984 goto out; 6985 6986 /* 6987 * If this is an NMI hit inside sampling code, don't take 6988 * the sample. See also perf_aux_sample_output(). 6989 */ 6990 if (READ_ONCE(rb->aux_in_sampling)) { 6991 data->aux_size = 0; 6992 } else { 6993 size = min_t(size_t, size, perf_aux_size(rb)); 6994 data->aux_size = ALIGN(size, sizeof(u64)); 6995 } 6996 ring_buffer_put(rb); 6997 6998 out: 6999 return data->aux_size; 7000 } 7001 7002 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7003 struct perf_event *event, 7004 struct perf_output_handle *handle, 7005 unsigned long size) 7006 { 7007 unsigned long flags; 7008 long ret; 7009 7010 /* 7011 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7012 * paths. If we start calling them in NMI context, they may race with 7013 * the IRQ ones, that is, for example, re-starting an event that's just 7014 * been stopped, which is why we're using a separate callback that 7015 * doesn't change the event state. 7016 * 7017 * IRQs need to be disabled to prevent IPIs from racing with us. 7018 */ 7019 local_irq_save(flags); 7020 /* 7021 * Guard against NMI hits inside the critical section; 7022 * see also perf_prepare_sample_aux(). 7023 */ 7024 WRITE_ONCE(rb->aux_in_sampling, 1); 7025 barrier(); 7026 7027 ret = event->pmu->snapshot_aux(event, handle, size); 7028 7029 barrier(); 7030 WRITE_ONCE(rb->aux_in_sampling, 0); 7031 local_irq_restore(flags); 7032 7033 return ret; 7034 } 7035 7036 static void perf_aux_sample_output(struct perf_event *event, 7037 struct perf_output_handle *handle, 7038 struct perf_sample_data *data) 7039 { 7040 struct perf_event *sampler = event->aux_event; 7041 struct perf_buffer *rb; 7042 unsigned long pad; 7043 long size; 7044 7045 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7046 return; 7047 7048 rb = ring_buffer_get(sampler); 7049 if (!rb) 7050 return; 7051 7052 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7053 7054 /* 7055 * An error here means that perf_output_copy() failed (returned a 7056 * non-zero surplus that it didn't copy), which in its current 7057 * enlightened implementation is not possible. If that changes, we'd 7058 * like to know. 7059 */ 7060 if (WARN_ON_ONCE(size < 0)) 7061 goto out_put; 7062 7063 /* 7064 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7065 * perf_prepare_sample_aux(), so should not be more than that. 7066 */ 7067 pad = data->aux_size - size; 7068 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7069 pad = 8; 7070 7071 if (pad) { 7072 u64 zero = 0; 7073 perf_output_copy(handle, &zero, pad); 7074 } 7075 7076 out_put: 7077 ring_buffer_put(rb); 7078 } 7079 7080 /* 7081 * A set of common sample data types saved even for non-sample records 7082 * when event->attr.sample_id_all is set. 7083 */ 7084 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7085 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7086 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7087 7088 static void __perf_event_header__init_id(struct perf_sample_data *data, 7089 struct perf_event *event, 7090 u64 sample_type) 7091 { 7092 data->type = event->attr.sample_type; 7093 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7094 7095 if (sample_type & PERF_SAMPLE_TID) { 7096 /* namespace issues */ 7097 data->tid_entry.pid = perf_event_pid(event, current); 7098 data->tid_entry.tid = perf_event_tid(event, current); 7099 } 7100 7101 if (sample_type & PERF_SAMPLE_TIME) 7102 data->time = perf_event_clock(event); 7103 7104 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7105 data->id = primary_event_id(event); 7106 7107 if (sample_type & PERF_SAMPLE_STREAM_ID) 7108 data->stream_id = event->id; 7109 7110 if (sample_type & PERF_SAMPLE_CPU) { 7111 data->cpu_entry.cpu = raw_smp_processor_id(); 7112 data->cpu_entry.reserved = 0; 7113 } 7114 } 7115 7116 void perf_event_header__init_id(struct perf_event_header *header, 7117 struct perf_sample_data *data, 7118 struct perf_event *event) 7119 { 7120 if (event->attr.sample_id_all) { 7121 header->size += event->id_header_size; 7122 __perf_event_header__init_id(data, event, event->attr.sample_type); 7123 } 7124 } 7125 7126 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7127 struct perf_sample_data *data) 7128 { 7129 u64 sample_type = data->type; 7130 7131 if (sample_type & PERF_SAMPLE_TID) 7132 perf_output_put(handle, data->tid_entry); 7133 7134 if (sample_type & PERF_SAMPLE_TIME) 7135 perf_output_put(handle, data->time); 7136 7137 if (sample_type & PERF_SAMPLE_ID) 7138 perf_output_put(handle, data->id); 7139 7140 if (sample_type & PERF_SAMPLE_STREAM_ID) 7141 perf_output_put(handle, data->stream_id); 7142 7143 if (sample_type & PERF_SAMPLE_CPU) 7144 perf_output_put(handle, data->cpu_entry); 7145 7146 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7147 perf_output_put(handle, data->id); 7148 } 7149 7150 void perf_event__output_id_sample(struct perf_event *event, 7151 struct perf_output_handle *handle, 7152 struct perf_sample_data *sample) 7153 { 7154 if (event->attr.sample_id_all) 7155 __perf_event__output_id_sample(handle, sample); 7156 } 7157 7158 static void perf_output_read_one(struct perf_output_handle *handle, 7159 struct perf_event *event, 7160 u64 enabled, u64 running) 7161 { 7162 u64 read_format = event->attr.read_format; 7163 u64 values[5]; 7164 int n = 0; 7165 7166 values[n++] = perf_event_count(event); 7167 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7168 values[n++] = enabled + 7169 atomic64_read(&event->child_total_time_enabled); 7170 } 7171 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7172 values[n++] = running + 7173 atomic64_read(&event->child_total_time_running); 7174 } 7175 if (read_format & PERF_FORMAT_ID) 7176 values[n++] = primary_event_id(event); 7177 if (read_format & PERF_FORMAT_LOST) 7178 values[n++] = atomic64_read(&event->lost_samples); 7179 7180 __output_copy(handle, values, n * sizeof(u64)); 7181 } 7182 7183 static void perf_output_read_group(struct perf_output_handle *handle, 7184 struct perf_event *event, 7185 u64 enabled, u64 running) 7186 { 7187 struct perf_event *leader = event->group_leader, *sub; 7188 u64 read_format = event->attr.read_format; 7189 unsigned long flags; 7190 u64 values[6]; 7191 int n = 0; 7192 7193 /* 7194 * Disabling interrupts avoids all counter scheduling 7195 * (context switches, timer based rotation and IPIs). 7196 */ 7197 local_irq_save(flags); 7198 7199 values[n++] = 1 + leader->nr_siblings; 7200 7201 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7202 values[n++] = enabled; 7203 7204 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7205 values[n++] = running; 7206 7207 if ((leader != event) && 7208 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7209 leader->pmu->read(leader); 7210 7211 values[n++] = perf_event_count(leader); 7212 if (read_format & PERF_FORMAT_ID) 7213 values[n++] = primary_event_id(leader); 7214 if (read_format & PERF_FORMAT_LOST) 7215 values[n++] = atomic64_read(&leader->lost_samples); 7216 7217 __output_copy(handle, values, n * sizeof(u64)); 7218 7219 for_each_sibling_event(sub, leader) { 7220 n = 0; 7221 7222 if ((sub != event) && 7223 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7224 sub->pmu->read(sub); 7225 7226 values[n++] = perf_event_count(sub); 7227 if (read_format & PERF_FORMAT_ID) 7228 values[n++] = primary_event_id(sub); 7229 if (read_format & PERF_FORMAT_LOST) 7230 values[n++] = atomic64_read(&sub->lost_samples); 7231 7232 __output_copy(handle, values, n * sizeof(u64)); 7233 } 7234 7235 local_irq_restore(flags); 7236 } 7237 7238 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7239 PERF_FORMAT_TOTAL_TIME_RUNNING) 7240 7241 /* 7242 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7243 * 7244 * The problem is that its both hard and excessively expensive to iterate the 7245 * child list, not to mention that its impossible to IPI the children running 7246 * on another CPU, from interrupt/NMI context. 7247 */ 7248 static void perf_output_read(struct perf_output_handle *handle, 7249 struct perf_event *event) 7250 { 7251 u64 enabled = 0, running = 0, now; 7252 u64 read_format = event->attr.read_format; 7253 7254 /* 7255 * compute total_time_enabled, total_time_running 7256 * based on snapshot values taken when the event 7257 * was last scheduled in. 7258 * 7259 * we cannot simply called update_context_time() 7260 * because of locking issue as we are called in 7261 * NMI context 7262 */ 7263 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7264 calc_timer_values(event, &now, &enabled, &running); 7265 7266 if (event->attr.read_format & PERF_FORMAT_GROUP) 7267 perf_output_read_group(handle, event, enabled, running); 7268 else 7269 perf_output_read_one(handle, event, enabled, running); 7270 } 7271 7272 void perf_output_sample(struct perf_output_handle *handle, 7273 struct perf_event_header *header, 7274 struct perf_sample_data *data, 7275 struct perf_event *event) 7276 { 7277 u64 sample_type = data->type; 7278 7279 perf_output_put(handle, *header); 7280 7281 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7282 perf_output_put(handle, data->id); 7283 7284 if (sample_type & PERF_SAMPLE_IP) 7285 perf_output_put(handle, data->ip); 7286 7287 if (sample_type & PERF_SAMPLE_TID) 7288 perf_output_put(handle, data->tid_entry); 7289 7290 if (sample_type & PERF_SAMPLE_TIME) 7291 perf_output_put(handle, data->time); 7292 7293 if (sample_type & PERF_SAMPLE_ADDR) 7294 perf_output_put(handle, data->addr); 7295 7296 if (sample_type & PERF_SAMPLE_ID) 7297 perf_output_put(handle, data->id); 7298 7299 if (sample_type & PERF_SAMPLE_STREAM_ID) 7300 perf_output_put(handle, data->stream_id); 7301 7302 if (sample_type & PERF_SAMPLE_CPU) 7303 perf_output_put(handle, data->cpu_entry); 7304 7305 if (sample_type & PERF_SAMPLE_PERIOD) 7306 perf_output_put(handle, data->period); 7307 7308 if (sample_type & PERF_SAMPLE_READ) 7309 perf_output_read(handle, event); 7310 7311 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7312 int size = 1; 7313 7314 size += data->callchain->nr; 7315 size *= sizeof(u64); 7316 __output_copy(handle, data->callchain, size); 7317 } 7318 7319 if (sample_type & PERF_SAMPLE_RAW) { 7320 struct perf_raw_record *raw = data->raw; 7321 7322 if (raw) { 7323 struct perf_raw_frag *frag = &raw->frag; 7324 7325 perf_output_put(handle, raw->size); 7326 do { 7327 if (frag->copy) { 7328 __output_custom(handle, frag->copy, 7329 frag->data, frag->size); 7330 } else { 7331 __output_copy(handle, frag->data, 7332 frag->size); 7333 } 7334 if (perf_raw_frag_last(frag)) 7335 break; 7336 frag = frag->next; 7337 } while (1); 7338 if (frag->pad) 7339 __output_skip(handle, NULL, frag->pad); 7340 } else { 7341 struct { 7342 u32 size; 7343 u32 data; 7344 } raw = { 7345 .size = sizeof(u32), 7346 .data = 0, 7347 }; 7348 perf_output_put(handle, raw); 7349 } 7350 } 7351 7352 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7353 if (data->br_stack) { 7354 size_t size; 7355 7356 size = data->br_stack->nr 7357 * sizeof(struct perf_branch_entry); 7358 7359 perf_output_put(handle, data->br_stack->nr); 7360 if (branch_sample_hw_index(event)) 7361 perf_output_put(handle, data->br_stack->hw_idx); 7362 perf_output_copy(handle, data->br_stack->entries, size); 7363 } else { 7364 /* 7365 * we always store at least the value of nr 7366 */ 7367 u64 nr = 0; 7368 perf_output_put(handle, nr); 7369 } 7370 } 7371 7372 if (sample_type & PERF_SAMPLE_REGS_USER) { 7373 u64 abi = data->regs_user.abi; 7374 7375 /* 7376 * If there are no regs to dump, notice it through 7377 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7378 */ 7379 perf_output_put(handle, abi); 7380 7381 if (abi) { 7382 u64 mask = event->attr.sample_regs_user; 7383 perf_output_sample_regs(handle, 7384 data->regs_user.regs, 7385 mask); 7386 } 7387 } 7388 7389 if (sample_type & PERF_SAMPLE_STACK_USER) { 7390 perf_output_sample_ustack(handle, 7391 data->stack_user_size, 7392 data->regs_user.regs); 7393 } 7394 7395 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7396 perf_output_put(handle, data->weight.full); 7397 7398 if (sample_type & PERF_SAMPLE_DATA_SRC) 7399 perf_output_put(handle, data->data_src.val); 7400 7401 if (sample_type & PERF_SAMPLE_TRANSACTION) 7402 perf_output_put(handle, data->txn); 7403 7404 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7405 u64 abi = data->regs_intr.abi; 7406 /* 7407 * If there are no regs to dump, notice it through 7408 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7409 */ 7410 perf_output_put(handle, abi); 7411 7412 if (abi) { 7413 u64 mask = event->attr.sample_regs_intr; 7414 7415 perf_output_sample_regs(handle, 7416 data->regs_intr.regs, 7417 mask); 7418 } 7419 } 7420 7421 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7422 perf_output_put(handle, data->phys_addr); 7423 7424 if (sample_type & PERF_SAMPLE_CGROUP) 7425 perf_output_put(handle, data->cgroup); 7426 7427 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7428 perf_output_put(handle, data->data_page_size); 7429 7430 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7431 perf_output_put(handle, data->code_page_size); 7432 7433 if (sample_type & PERF_SAMPLE_AUX) { 7434 perf_output_put(handle, data->aux_size); 7435 7436 if (data->aux_size) 7437 perf_aux_sample_output(event, handle, data); 7438 } 7439 7440 if (!event->attr.watermark) { 7441 int wakeup_events = event->attr.wakeup_events; 7442 7443 if (wakeup_events) { 7444 struct perf_buffer *rb = handle->rb; 7445 int events = local_inc_return(&rb->events); 7446 7447 if (events >= wakeup_events) { 7448 local_sub(wakeup_events, &rb->events); 7449 local_inc(&rb->wakeup); 7450 } 7451 } 7452 } 7453 } 7454 7455 static u64 perf_virt_to_phys(u64 virt) 7456 { 7457 u64 phys_addr = 0; 7458 7459 if (!virt) 7460 return 0; 7461 7462 if (virt >= TASK_SIZE) { 7463 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7464 if (virt_addr_valid((void *)(uintptr_t)virt) && 7465 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7466 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7467 } else { 7468 /* 7469 * Walking the pages tables for user address. 7470 * Interrupts are disabled, so it prevents any tear down 7471 * of the page tables. 7472 * Try IRQ-safe get_user_page_fast_only first. 7473 * If failed, leave phys_addr as 0. 7474 */ 7475 if (current->mm != NULL) { 7476 struct page *p; 7477 7478 pagefault_disable(); 7479 if (get_user_page_fast_only(virt, 0, &p)) { 7480 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7481 put_page(p); 7482 } 7483 pagefault_enable(); 7484 } 7485 } 7486 7487 return phys_addr; 7488 } 7489 7490 /* 7491 * Return the pagetable size of a given virtual address. 7492 */ 7493 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7494 { 7495 u64 size = 0; 7496 7497 #ifdef CONFIG_HAVE_FAST_GUP 7498 pgd_t *pgdp, pgd; 7499 p4d_t *p4dp, p4d; 7500 pud_t *pudp, pud; 7501 pmd_t *pmdp, pmd; 7502 pte_t *ptep, pte; 7503 7504 pgdp = pgd_offset(mm, addr); 7505 pgd = READ_ONCE(*pgdp); 7506 if (pgd_none(pgd)) 7507 return 0; 7508 7509 if (pgd_leaf(pgd)) 7510 return pgd_leaf_size(pgd); 7511 7512 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7513 p4d = READ_ONCE(*p4dp); 7514 if (!p4d_present(p4d)) 7515 return 0; 7516 7517 if (p4d_leaf(p4d)) 7518 return p4d_leaf_size(p4d); 7519 7520 pudp = pud_offset_lockless(p4dp, p4d, addr); 7521 pud = READ_ONCE(*pudp); 7522 if (!pud_present(pud)) 7523 return 0; 7524 7525 if (pud_leaf(pud)) 7526 return pud_leaf_size(pud); 7527 7528 pmdp = pmd_offset_lockless(pudp, pud, addr); 7529 again: 7530 pmd = pmdp_get_lockless(pmdp); 7531 if (!pmd_present(pmd)) 7532 return 0; 7533 7534 if (pmd_leaf(pmd)) 7535 return pmd_leaf_size(pmd); 7536 7537 ptep = pte_offset_map(&pmd, addr); 7538 if (!ptep) 7539 goto again; 7540 7541 pte = ptep_get_lockless(ptep); 7542 if (pte_present(pte)) 7543 size = pte_leaf_size(pte); 7544 pte_unmap(ptep); 7545 #endif /* CONFIG_HAVE_FAST_GUP */ 7546 7547 return size; 7548 } 7549 7550 static u64 perf_get_page_size(unsigned long addr) 7551 { 7552 struct mm_struct *mm; 7553 unsigned long flags; 7554 u64 size; 7555 7556 if (!addr) 7557 return 0; 7558 7559 /* 7560 * Software page-table walkers must disable IRQs, 7561 * which prevents any tear down of the page tables. 7562 */ 7563 local_irq_save(flags); 7564 7565 mm = current->mm; 7566 if (!mm) { 7567 /* 7568 * For kernel threads and the like, use init_mm so that 7569 * we can find kernel memory. 7570 */ 7571 mm = &init_mm; 7572 } 7573 7574 size = perf_get_pgtable_size(mm, addr); 7575 7576 local_irq_restore(flags); 7577 7578 return size; 7579 } 7580 7581 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7582 7583 struct perf_callchain_entry * 7584 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7585 { 7586 bool kernel = !event->attr.exclude_callchain_kernel; 7587 bool user = !event->attr.exclude_callchain_user; 7588 /* Disallow cross-task user callchains. */ 7589 bool crosstask = event->ctx->task && event->ctx->task != current; 7590 const u32 max_stack = event->attr.sample_max_stack; 7591 struct perf_callchain_entry *callchain; 7592 7593 if (!kernel && !user) 7594 return &__empty_callchain; 7595 7596 callchain = get_perf_callchain(regs, 0, kernel, user, 7597 max_stack, crosstask, true); 7598 return callchain ?: &__empty_callchain; 7599 } 7600 7601 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7602 { 7603 return d * !!(flags & s); 7604 } 7605 7606 void perf_prepare_sample(struct perf_sample_data *data, 7607 struct perf_event *event, 7608 struct pt_regs *regs) 7609 { 7610 u64 sample_type = event->attr.sample_type; 7611 u64 filtered_sample_type; 7612 7613 /* 7614 * Add the sample flags that are dependent to others. And clear the 7615 * sample flags that have already been done by the PMU driver. 7616 */ 7617 filtered_sample_type = sample_type; 7618 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7619 PERF_SAMPLE_IP); 7620 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7621 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7622 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7623 PERF_SAMPLE_REGS_USER); 7624 filtered_sample_type &= ~data->sample_flags; 7625 7626 if (filtered_sample_type == 0) { 7627 /* Make sure it has the correct data->type for output */ 7628 data->type = event->attr.sample_type; 7629 return; 7630 } 7631 7632 __perf_event_header__init_id(data, event, filtered_sample_type); 7633 7634 if (filtered_sample_type & PERF_SAMPLE_IP) { 7635 data->ip = perf_instruction_pointer(regs); 7636 data->sample_flags |= PERF_SAMPLE_IP; 7637 } 7638 7639 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7640 perf_sample_save_callchain(data, event, regs); 7641 7642 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7643 data->raw = NULL; 7644 data->dyn_size += sizeof(u64); 7645 data->sample_flags |= PERF_SAMPLE_RAW; 7646 } 7647 7648 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7649 data->br_stack = NULL; 7650 data->dyn_size += sizeof(u64); 7651 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7652 } 7653 7654 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7655 perf_sample_regs_user(&data->regs_user, regs); 7656 7657 /* 7658 * It cannot use the filtered_sample_type here as REGS_USER can be set 7659 * by STACK_USER (using __cond_set() above) and we don't want to update 7660 * the dyn_size if it's not requested by users. 7661 */ 7662 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7663 /* regs dump ABI info */ 7664 int size = sizeof(u64); 7665 7666 if (data->regs_user.regs) { 7667 u64 mask = event->attr.sample_regs_user; 7668 size += hweight64(mask) * sizeof(u64); 7669 } 7670 7671 data->dyn_size += size; 7672 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7673 } 7674 7675 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7676 /* 7677 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7678 * processed as the last one or have additional check added 7679 * in case new sample type is added, because we could eat 7680 * up the rest of the sample size. 7681 */ 7682 u16 stack_size = event->attr.sample_stack_user; 7683 u16 header_size = perf_sample_data_size(data, event); 7684 u16 size = sizeof(u64); 7685 7686 stack_size = perf_sample_ustack_size(stack_size, header_size, 7687 data->regs_user.regs); 7688 7689 /* 7690 * If there is something to dump, add space for the dump 7691 * itself and for the field that tells the dynamic size, 7692 * which is how many have been actually dumped. 7693 */ 7694 if (stack_size) 7695 size += sizeof(u64) + stack_size; 7696 7697 data->stack_user_size = stack_size; 7698 data->dyn_size += size; 7699 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7700 } 7701 7702 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7703 data->weight.full = 0; 7704 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7705 } 7706 7707 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7708 data->data_src.val = PERF_MEM_NA; 7709 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7710 } 7711 7712 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7713 data->txn = 0; 7714 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7715 } 7716 7717 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7718 data->addr = 0; 7719 data->sample_flags |= PERF_SAMPLE_ADDR; 7720 } 7721 7722 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7723 /* regs dump ABI info */ 7724 int size = sizeof(u64); 7725 7726 perf_sample_regs_intr(&data->regs_intr, regs); 7727 7728 if (data->regs_intr.regs) { 7729 u64 mask = event->attr.sample_regs_intr; 7730 7731 size += hweight64(mask) * sizeof(u64); 7732 } 7733 7734 data->dyn_size += size; 7735 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7736 } 7737 7738 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7739 data->phys_addr = perf_virt_to_phys(data->addr); 7740 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7741 } 7742 7743 #ifdef CONFIG_CGROUP_PERF 7744 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7745 struct cgroup *cgrp; 7746 7747 /* protected by RCU */ 7748 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7749 data->cgroup = cgroup_id(cgrp); 7750 data->sample_flags |= PERF_SAMPLE_CGROUP; 7751 } 7752 #endif 7753 7754 /* 7755 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7756 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7757 * but the value will not dump to the userspace. 7758 */ 7759 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7760 data->data_page_size = perf_get_page_size(data->addr); 7761 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7762 } 7763 7764 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7765 data->code_page_size = perf_get_page_size(data->ip); 7766 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7767 } 7768 7769 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7770 u64 size; 7771 u16 header_size = perf_sample_data_size(data, event); 7772 7773 header_size += sizeof(u64); /* size */ 7774 7775 /* 7776 * Given the 16bit nature of header::size, an AUX sample can 7777 * easily overflow it, what with all the preceding sample bits. 7778 * Make sure this doesn't happen by using up to U16_MAX bytes 7779 * per sample in total (rounded down to 8 byte boundary). 7780 */ 7781 size = min_t(size_t, U16_MAX - header_size, 7782 event->attr.aux_sample_size); 7783 size = rounddown(size, 8); 7784 size = perf_prepare_sample_aux(event, data, size); 7785 7786 WARN_ON_ONCE(size + header_size > U16_MAX); 7787 data->dyn_size += size + sizeof(u64); /* size above */ 7788 data->sample_flags |= PERF_SAMPLE_AUX; 7789 } 7790 } 7791 7792 void perf_prepare_header(struct perf_event_header *header, 7793 struct perf_sample_data *data, 7794 struct perf_event *event, 7795 struct pt_regs *regs) 7796 { 7797 header->type = PERF_RECORD_SAMPLE; 7798 header->size = perf_sample_data_size(data, event); 7799 header->misc = perf_misc_flags(regs); 7800 7801 /* 7802 * If you're adding more sample types here, you likely need to do 7803 * something about the overflowing header::size, like repurpose the 7804 * lowest 3 bits of size, which should be always zero at the moment. 7805 * This raises a more important question, do we really need 512k sized 7806 * samples and why, so good argumentation is in order for whatever you 7807 * do here next. 7808 */ 7809 WARN_ON_ONCE(header->size & 7); 7810 } 7811 7812 static __always_inline int 7813 __perf_event_output(struct perf_event *event, 7814 struct perf_sample_data *data, 7815 struct pt_regs *regs, 7816 int (*output_begin)(struct perf_output_handle *, 7817 struct perf_sample_data *, 7818 struct perf_event *, 7819 unsigned int)) 7820 { 7821 struct perf_output_handle handle; 7822 struct perf_event_header header; 7823 int err; 7824 7825 /* protect the callchain buffers */ 7826 rcu_read_lock(); 7827 7828 perf_prepare_sample(data, event, regs); 7829 perf_prepare_header(&header, data, event, regs); 7830 7831 err = output_begin(&handle, data, event, header.size); 7832 if (err) 7833 goto exit; 7834 7835 perf_output_sample(&handle, &header, data, event); 7836 7837 perf_output_end(&handle); 7838 7839 exit: 7840 rcu_read_unlock(); 7841 return err; 7842 } 7843 7844 void 7845 perf_event_output_forward(struct perf_event *event, 7846 struct perf_sample_data *data, 7847 struct pt_regs *regs) 7848 { 7849 __perf_event_output(event, data, regs, perf_output_begin_forward); 7850 } 7851 7852 void 7853 perf_event_output_backward(struct perf_event *event, 7854 struct perf_sample_data *data, 7855 struct pt_regs *regs) 7856 { 7857 __perf_event_output(event, data, regs, perf_output_begin_backward); 7858 } 7859 7860 int 7861 perf_event_output(struct perf_event *event, 7862 struct perf_sample_data *data, 7863 struct pt_regs *regs) 7864 { 7865 return __perf_event_output(event, data, regs, perf_output_begin); 7866 } 7867 7868 /* 7869 * read event_id 7870 */ 7871 7872 struct perf_read_event { 7873 struct perf_event_header header; 7874 7875 u32 pid; 7876 u32 tid; 7877 }; 7878 7879 static void 7880 perf_event_read_event(struct perf_event *event, 7881 struct task_struct *task) 7882 { 7883 struct perf_output_handle handle; 7884 struct perf_sample_data sample; 7885 struct perf_read_event read_event = { 7886 .header = { 7887 .type = PERF_RECORD_READ, 7888 .misc = 0, 7889 .size = sizeof(read_event) + event->read_size, 7890 }, 7891 .pid = perf_event_pid(event, task), 7892 .tid = perf_event_tid(event, task), 7893 }; 7894 int ret; 7895 7896 perf_event_header__init_id(&read_event.header, &sample, event); 7897 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7898 if (ret) 7899 return; 7900 7901 perf_output_put(&handle, read_event); 7902 perf_output_read(&handle, event); 7903 perf_event__output_id_sample(event, &handle, &sample); 7904 7905 perf_output_end(&handle); 7906 } 7907 7908 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7909 7910 static void 7911 perf_iterate_ctx(struct perf_event_context *ctx, 7912 perf_iterate_f output, 7913 void *data, bool all) 7914 { 7915 struct perf_event *event; 7916 7917 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7918 if (!all) { 7919 if (event->state < PERF_EVENT_STATE_INACTIVE) 7920 continue; 7921 if (!event_filter_match(event)) 7922 continue; 7923 } 7924 7925 output(event, data); 7926 } 7927 } 7928 7929 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7930 { 7931 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7932 struct perf_event *event; 7933 7934 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7935 /* 7936 * Skip events that are not fully formed yet; ensure that 7937 * if we observe event->ctx, both event and ctx will be 7938 * complete enough. See perf_install_in_context(). 7939 */ 7940 if (!smp_load_acquire(&event->ctx)) 7941 continue; 7942 7943 if (event->state < PERF_EVENT_STATE_INACTIVE) 7944 continue; 7945 if (!event_filter_match(event)) 7946 continue; 7947 output(event, data); 7948 } 7949 } 7950 7951 /* 7952 * Iterate all events that need to receive side-band events. 7953 * 7954 * For new callers; ensure that account_pmu_sb_event() includes 7955 * your event, otherwise it might not get delivered. 7956 */ 7957 static void 7958 perf_iterate_sb(perf_iterate_f output, void *data, 7959 struct perf_event_context *task_ctx) 7960 { 7961 struct perf_event_context *ctx; 7962 7963 rcu_read_lock(); 7964 preempt_disable(); 7965 7966 /* 7967 * If we have task_ctx != NULL we only notify the task context itself. 7968 * The task_ctx is set only for EXIT events before releasing task 7969 * context. 7970 */ 7971 if (task_ctx) { 7972 perf_iterate_ctx(task_ctx, output, data, false); 7973 goto done; 7974 } 7975 7976 perf_iterate_sb_cpu(output, data); 7977 7978 ctx = rcu_dereference(current->perf_event_ctxp); 7979 if (ctx) 7980 perf_iterate_ctx(ctx, output, data, false); 7981 done: 7982 preempt_enable(); 7983 rcu_read_unlock(); 7984 } 7985 7986 /* 7987 * Clear all file-based filters at exec, they'll have to be 7988 * re-instated when/if these objects are mmapped again. 7989 */ 7990 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7991 { 7992 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7993 struct perf_addr_filter *filter; 7994 unsigned int restart = 0, count = 0; 7995 unsigned long flags; 7996 7997 if (!has_addr_filter(event)) 7998 return; 7999 8000 raw_spin_lock_irqsave(&ifh->lock, flags); 8001 list_for_each_entry(filter, &ifh->list, entry) { 8002 if (filter->path.dentry) { 8003 event->addr_filter_ranges[count].start = 0; 8004 event->addr_filter_ranges[count].size = 0; 8005 restart++; 8006 } 8007 8008 count++; 8009 } 8010 8011 if (restart) 8012 event->addr_filters_gen++; 8013 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8014 8015 if (restart) 8016 perf_event_stop(event, 1); 8017 } 8018 8019 void perf_event_exec(void) 8020 { 8021 struct perf_event_context *ctx; 8022 8023 ctx = perf_pin_task_context(current); 8024 if (!ctx) 8025 return; 8026 8027 perf_event_enable_on_exec(ctx); 8028 perf_event_remove_on_exec(ctx); 8029 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8030 8031 perf_unpin_context(ctx); 8032 put_ctx(ctx); 8033 } 8034 8035 struct remote_output { 8036 struct perf_buffer *rb; 8037 int err; 8038 }; 8039 8040 static void __perf_event_output_stop(struct perf_event *event, void *data) 8041 { 8042 struct perf_event *parent = event->parent; 8043 struct remote_output *ro = data; 8044 struct perf_buffer *rb = ro->rb; 8045 struct stop_event_data sd = { 8046 .event = event, 8047 }; 8048 8049 if (!has_aux(event)) 8050 return; 8051 8052 if (!parent) 8053 parent = event; 8054 8055 /* 8056 * In case of inheritance, it will be the parent that links to the 8057 * ring-buffer, but it will be the child that's actually using it. 8058 * 8059 * We are using event::rb to determine if the event should be stopped, 8060 * however this may race with ring_buffer_attach() (through set_output), 8061 * which will make us skip the event that actually needs to be stopped. 8062 * So ring_buffer_attach() has to stop an aux event before re-assigning 8063 * its rb pointer. 8064 */ 8065 if (rcu_dereference(parent->rb) == rb) 8066 ro->err = __perf_event_stop(&sd); 8067 } 8068 8069 static int __perf_pmu_output_stop(void *info) 8070 { 8071 struct perf_event *event = info; 8072 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8073 struct remote_output ro = { 8074 .rb = event->rb, 8075 }; 8076 8077 rcu_read_lock(); 8078 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8079 if (cpuctx->task_ctx) 8080 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8081 &ro, false); 8082 rcu_read_unlock(); 8083 8084 return ro.err; 8085 } 8086 8087 static void perf_pmu_output_stop(struct perf_event *event) 8088 { 8089 struct perf_event *iter; 8090 int err, cpu; 8091 8092 restart: 8093 rcu_read_lock(); 8094 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8095 /* 8096 * For per-CPU events, we need to make sure that neither they 8097 * nor their children are running; for cpu==-1 events it's 8098 * sufficient to stop the event itself if it's active, since 8099 * it can't have children. 8100 */ 8101 cpu = iter->cpu; 8102 if (cpu == -1) 8103 cpu = READ_ONCE(iter->oncpu); 8104 8105 if (cpu == -1) 8106 continue; 8107 8108 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8109 if (err == -EAGAIN) { 8110 rcu_read_unlock(); 8111 goto restart; 8112 } 8113 } 8114 rcu_read_unlock(); 8115 } 8116 8117 /* 8118 * task tracking -- fork/exit 8119 * 8120 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8121 */ 8122 8123 struct perf_task_event { 8124 struct task_struct *task; 8125 struct perf_event_context *task_ctx; 8126 8127 struct { 8128 struct perf_event_header header; 8129 8130 u32 pid; 8131 u32 ppid; 8132 u32 tid; 8133 u32 ptid; 8134 u64 time; 8135 } event_id; 8136 }; 8137 8138 static int perf_event_task_match(struct perf_event *event) 8139 { 8140 return event->attr.comm || event->attr.mmap || 8141 event->attr.mmap2 || event->attr.mmap_data || 8142 event->attr.task; 8143 } 8144 8145 static void perf_event_task_output(struct perf_event *event, 8146 void *data) 8147 { 8148 struct perf_task_event *task_event = data; 8149 struct perf_output_handle handle; 8150 struct perf_sample_data sample; 8151 struct task_struct *task = task_event->task; 8152 int ret, size = task_event->event_id.header.size; 8153 8154 if (!perf_event_task_match(event)) 8155 return; 8156 8157 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8158 8159 ret = perf_output_begin(&handle, &sample, event, 8160 task_event->event_id.header.size); 8161 if (ret) 8162 goto out; 8163 8164 task_event->event_id.pid = perf_event_pid(event, task); 8165 task_event->event_id.tid = perf_event_tid(event, task); 8166 8167 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8168 task_event->event_id.ppid = perf_event_pid(event, 8169 task->real_parent); 8170 task_event->event_id.ptid = perf_event_pid(event, 8171 task->real_parent); 8172 } else { /* PERF_RECORD_FORK */ 8173 task_event->event_id.ppid = perf_event_pid(event, current); 8174 task_event->event_id.ptid = perf_event_tid(event, current); 8175 } 8176 8177 task_event->event_id.time = perf_event_clock(event); 8178 8179 perf_output_put(&handle, task_event->event_id); 8180 8181 perf_event__output_id_sample(event, &handle, &sample); 8182 8183 perf_output_end(&handle); 8184 out: 8185 task_event->event_id.header.size = size; 8186 } 8187 8188 static void perf_event_task(struct task_struct *task, 8189 struct perf_event_context *task_ctx, 8190 int new) 8191 { 8192 struct perf_task_event task_event; 8193 8194 if (!atomic_read(&nr_comm_events) && 8195 !atomic_read(&nr_mmap_events) && 8196 !atomic_read(&nr_task_events)) 8197 return; 8198 8199 task_event = (struct perf_task_event){ 8200 .task = task, 8201 .task_ctx = task_ctx, 8202 .event_id = { 8203 .header = { 8204 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8205 .misc = 0, 8206 .size = sizeof(task_event.event_id), 8207 }, 8208 /* .pid */ 8209 /* .ppid */ 8210 /* .tid */ 8211 /* .ptid */ 8212 /* .time */ 8213 }, 8214 }; 8215 8216 perf_iterate_sb(perf_event_task_output, 8217 &task_event, 8218 task_ctx); 8219 } 8220 8221 void perf_event_fork(struct task_struct *task) 8222 { 8223 perf_event_task(task, NULL, 1); 8224 perf_event_namespaces(task); 8225 } 8226 8227 /* 8228 * comm tracking 8229 */ 8230 8231 struct perf_comm_event { 8232 struct task_struct *task; 8233 char *comm; 8234 int comm_size; 8235 8236 struct { 8237 struct perf_event_header header; 8238 8239 u32 pid; 8240 u32 tid; 8241 } event_id; 8242 }; 8243 8244 static int perf_event_comm_match(struct perf_event *event) 8245 { 8246 return event->attr.comm; 8247 } 8248 8249 static void perf_event_comm_output(struct perf_event *event, 8250 void *data) 8251 { 8252 struct perf_comm_event *comm_event = data; 8253 struct perf_output_handle handle; 8254 struct perf_sample_data sample; 8255 int size = comm_event->event_id.header.size; 8256 int ret; 8257 8258 if (!perf_event_comm_match(event)) 8259 return; 8260 8261 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8262 ret = perf_output_begin(&handle, &sample, event, 8263 comm_event->event_id.header.size); 8264 8265 if (ret) 8266 goto out; 8267 8268 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8269 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8270 8271 perf_output_put(&handle, comm_event->event_id); 8272 __output_copy(&handle, comm_event->comm, 8273 comm_event->comm_size); 8274 8275 perf_event__output_id_sample(event, &handle, &sample); 8276 8277 perf_output_end(&handle); 8278 out: 8279 comm_event->event_id.header.size = size; 8280 } 8281 8282 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8283 { 8284 char comm[TASK_COMM_LEN]; 8285 unsigned int size; 8286 8287 memset(comm, 0, sizeof(comm)); 8288 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8289 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8290 8291 comm_event->comm = comm; 8292 comm_event->comm_size = size; 8293 8294 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8295 8296 perf_iterate_sb(perf_event_comm_output, 8297 comm_event, 8298 NULL); 8299 } 8300 8301 void perf_event_comm(struct task_struct *task, bool exec) 8302 { 8303 struct perf_comm_event comm_event; 8304 8305 if (!atomic_read(&nr_comm_events)) 8306 return; 8307 8308 comm_event = (struct perf_comm_event){ 8309 .task = task, 8310 /* .comm */ 8311 /* .comm_size */ 8312 .event_id = { 8313 .header = { 8314 .type = PERF_RECORD_COMM, 8315 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8316 /* .size */ 8317 }, 8318 /* .pid */ 8319 /* .tid */ 8320 }, 8321 }; 8322 8323 perf_event_comm_event(&comm_event); 8324 } 8325 8326 /* 8327 * namespaces tracking 8328 */ 8329 8330 struct perf_namespaces_event { 8331 struct task_struct *task; 8332 8333 struct { 8334 struct perf_event_header header; 8335 8336 u32 pid; 8337 u32 tid; 8338 u64 nr_namespaces; 8339 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8340 } event_id; 8341 }; 8342 8343 static int perf_event_namespaces_match(struct perf_event *event) 8344 { 8345 return event->attr.namespaces; 8346 } 8347 8348 static void perf_event_namespaces_output(struct perf_event *event, 8349 void *data) 8350 { 8351 struct perf_namespaces_event *namespaces_event = data; 8352 struct perf_output_handle handle; 8353 struct perf_sample_data sample; 8354 u16 header_size = namespaces_event->event_id.header.size; 8355 int ret; 8356 8357 if (!perf_event_namespaces_match(event)) 8358 return; 8359 8360 perf_event_header__init_id(&namespaces_event->event_id.header, 8361 &sample, event); 8362 ret = perf_output_begin(&handle, &sample, event, 8363 namespaces_event->event_id.header.size); 8364 if (ret) 8365 goto out; 8366 8367 namespaces_event->event_id.pid = perf_event_pid(event, 8368 namespaces_event->task); 8369 namespaces_event->event_id.tid = perf_event_tid(event, 8370 namespaces_event->task); 8371 8372 perf_output_put(&handle, namespaces_event->event_id); 8373 8374 perf_event__output_id_sample(event, &handle, &sample); 8375 8376 perf_output_end(&handle); 8377 out: 8378 namespaces_event->event_id.header.size = header_size; 8379 } 8380 8381 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8382 struct task_struct *task, 8383 const struct proc_ns_operations *ns_ops) 8384 { 8385 struct path ns_path; 8386 struct inode *ns_inode; 8387 int error; 8388 8389 error = ns_get_path(&ns_path, task, ns_ops); 8390 if (!error) { 8391 ns_inode = ns_path.dentry->d_inode; 8392 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8393 ns_link_info->ino = ns_inode->i_ino; 8394 path_put(&ns_path); 8395 } 8396 } 8397 8398 void perf_event_namespaces(struct task_struct *task) 8399 { 8400 struct perf_namespaces_event namespaces_event; 8401 struct perf_ns_link_info *ns_link_info; 8402 8403 if (!atomic_read(&nr_namespaces_events)) 8404 return; 8405 8406 namespaces_event = (struct perf_namespaces_event){ 8407 .task = task, 8408 .event_id = { 8409 .header = { 8410 .type = PERF_RECORD_NAMESPACES, 8411 .misc = 0, 8412 .size = sizeof(namespaces_event.event_id), 8413 }, 8414 /* .pid */ 8415 /* .tid */ 8416 .nr_namespaces = NR_NAMESPACES, 8417 /* .link_info[NR_NAMESPACES] */ 8418 }, 8419 }; 8420 8421 ns_link_info = namespaces_event.event_id.link_info; 8422 8423 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8424 task, &mntns_operations); 8425 8426 #ifdef CONFIG_USER_NS 8427 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8428 task, &userns_operations); 8429 #endif 8430 #ifdef CONFIG_NET_NS 8431 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8432 task, &netns_operations); 8433 #endif 8434 #ifdef CONFIG_UTS_NS 8435 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8436 task, &utsns_operations); 8437 #endif 8438 #ifdef CONFIG_IPC_NS 8439 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8440 task, &ipcns_operations); 8441 #endif 8442 #ifdef CONFIG_PID_NS 8443 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8444 task, &pidns_operations); 8445 #endif 8446 #ifdef CONFIG_CGROUPS 8447 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8448 task, &cgroupns_operations); 8449 #endif 8450 8451 perf_iterate_sb(perf_event_namespaces_output, 8452 &namespaces_event, 8453 NULL); 8454 } 8455 8456 /* 8457 * cgroup tracking 8458 */ 8459 #ifdef CONFIG_CGROUP_PERF 8460 8461 struct perf_cgroup_event { 8462 char *path; 8463 int path_size; 8464 struct { 8465 struct perf_event_header header; 8466 u64 id; 8467 char path[]; 8468 } event_id; 8469 }; 8470 8471 static int perf_event_cgroup_match(struct perf_event *event) 8472 { 8473 return event->attr.cgroup; 8474 } 8475 8476 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8477 { 8478 struct perf_cgroup_event *cgroup_event = data; 8479 struct perf_output_handle handle; 8480 struct perf_sample_data sample; 8481 u16 header_size = cgroup_event->event_id.header.size; 8482 int ret; 8483 8484 if (!perf_event_cgroup_match(event)) 8485 return; 8486 8487 perf_event_header__init_id(&cgroup_event->event_id.header, 8488 &sample, event); 8489 ret = perf_output_begin(&handle, &sample, event, 8490 cgroup_event->event_id.header.size); 8491 if (ret) 8492 goto out; 8493 8494 perf_output_put(&handle, cgroup_event->event_id); 8495 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8496 8497 perf_event__output_id_sample(event, &handle, &sample); 8498 8499 perf_output_end(&handle); 8500 out: 8501 cgroup_event->event_id.header.size = header_size; 8502 } 8503 8504 static void perf_event_cgroup(struct cgroup *cgrp) 8505 { 8506 struct perf_cgroup_event cgroup_event; 8507 char path_enomem[16] = "//enomem"; 8508 char *pathname; 8509 size_t size; 8510 8511 if (!atomic_read(&nr_cgroup_events)) 8512 return; 8513 8514 cgroup_event = (struct perf_cgroup_event){ 8515 .event_id = { 8516 .header = { 8517 .type = PERF_RECORD_CGROUP, 8518 .misc = 0, 8519 .size = sizeof(cgroup_event.event_id), 8520 }, 8521 .id = cgroup_id(cgrp), 8522 }, 8523 }; 8524 8525 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8526 if (pathname == NULL) { 8527 cgroup_event.path = path_enomem; 8528 } else { 8529 /* just to be sure to have enough space for alignment */ 8530 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8531 cgroup_event.path = pathname; 8532 } 8533 8534 /* 8535 * Since our buffer works in 8 byte units we need to align our string 8536 * size to a multiple of 8. However, we must guarantee the tail end is 8537 * zero'd out to avoid leaking random bits to userspace. 8538 */ 8539 size = strlen(cgroup_event.path) + 1; 8540 while (!IS_ALIGNED(size, sizeof(u64))) 8541 cgroup_event.path[size++] = '\0'; 8542 8543 cgroup_event.event_id.header.size += size; 8544 cgroup_event.path_size = size; 8545 8546 perf_iterate_sb(perf_event_cgroup_output, 8547 &cgroup_event, 8548 NULL); 8549 8550 kfree(pathname); 8551 } 8552 8553 #endif 8554 8555 /* 8556 * mmap tracking 8557 */ 8558 8559 struct perf_mmap_event { 8560 struct vm_area_struct *vma; 8561 8562 const char *file_name; 8563 int file_size; 8564 int maj, min; 8565 u64 ino; 8566 u64 ino_generation; 8567 u32 prot, flags; 8568 u8 build_id[BUILD_ID_SIZE_MAX]; 8569 u32 build_id_size; 8570 8571 struct { 8572 struct perf_event_header header; 8573 8574 u32 pid; 8575 u32 tid; 8576 u64 start; 8577 u64 len; 8578 u64 pgoff; 8579 } event_id; 8580 }; 8581 8582 static int perf_event_mmap_match(struct perf_event *event, 8583 void *data) 8584 { 8585 struct perf_mmap_event *mmap_event = data; 8586 struct vm_area_struct *vma = mmap_event->vma; 8587 int executable = vma->vm_flags & VM_EXEC; 8588 8589 return (!executable && event->attr.mmap_data) || 8590 (executable && (event->attr.mmap || event->attr.mmap2)); 8591 } 8592 8593 static void perf_event_mmap_output(struct perf_event *event, 8594 void *data) 8595 { 8596 struct perf_mmap_event *mmap_event = data; 8597 struct perf_output_handle handle; 8598 struct perf_sample_data sample; 8599 int size = mmap_event->event_id.header.size; 8600 u32 type = mmap_event->event_id.header.type; 8601 bool use_build_id; 8602 int ret; 8603 8604 if (!perf_event_mmap_match(event, data)) 8605 return; 8606 8607 if (event->attr.mmap2) { 8608 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8609 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8610 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8611 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8612 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8613 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8614 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8615 } 8616 8617 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8618 ret = perf_output_begin(&handle, &sample, event, 8619 mmap_event->event_id.header.size); 8620 if (ret) 8621 goto out; 8622 8623 mmap_event->event_id.pid = perf_event_pid(event, current); 8624 mmap_event->event_id.tid = perf_event_tid(event, current); 8625 8626 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8627 8628 if (event->attr.mmap2 && use_build_id) 8629 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8630 8631 perf_output_put(&handle, mmap_event->event_id); 8632 8633 if (event->attr.mmap2) { 8634 if (use_build_id) { 8635 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8636 8637 __output_copy(&handle, size, 4); 8638 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8639 } else { 8640 perf_output_put(&handle, mmap_event->maj); 8641 perf_output_put(&handle, mmap_event->min); 8642 perf_output_put(&handle, mmap_event->ino); 8643 perf_output_put(&handle, mmap_event->ino_generation); 8644 } 8645 perf_output_put(&handle, mmap_event->prot); 8646 perf_output_put(&handle, mmap_event->flags); 8647 } 8648 8649 __output_copy(&handle, mmap_event->file_name, 8650 mmap_event->file_size); 8651 8652 perf_event__output_id_sample(event, &handle, &sample); 8653 8654 perf_output_end(&handle); 8655 out: 8656 mmap_event->event_id.header.size = size; 8657 mmap_event->event_id.header.type = type; 8658 } 8659 8660 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8661 { 8662 struct vm_area_struct *vma = mmap_event->vma; 8663 struct file *file = vma->vm_file; 8664 int maj = 0, min = 0; 8665 u64 ino = 0, gen = 0; 8666 u32 prot = 0, flags = 0; 8667 unsigned int size; 8668 char tmp[16]; 8669 char *buf = NULL; 8670 char *name = NULL; 8671 8672 if (vma->vm_flags & VM_READ) 8673 prot |= PROT_READ; 8674 if (vma->vm_flags & VM_WRITE) 8675 prot |= PROT_WRITE; 8676 if (vma->vm_flags & VM_EXEC) 8677 prot |= PROT_EXEC; 8678 8679 if (vma->vm_flags & VM_MAYSHARE) 8680 flags = MAP_SHARED; 8681 else 8682 flags = MAP_PRIVATE; 8683 8684 if (vma->vm_flags & VM_LOCKED) 8685 flags |= MAP_LOCKED; 8686 if (is_vm_hugetlb_page(vma)) 8687 flags |= MAP_HUGETLB; 8688 8689 if (file) { 8690 struct inode *inode; 8691 dev_t dev; 8692 8693 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8694 if (!buf) { 8695 name = "//enomem"; 8696 goto cpy_name; 8697 } 8698 /* 8699 * d_path() works from the end of the rb backwards, so we 8700 * need to add enough zero bytes after the string to handle 8701 * the 64bit alignment we do later. 8702 */ 8703 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8704 if (IS_ERR(name)) { 8705 name = "//toolong"; 8706 goto cpy_name; 8707 } 8708 inode = file_inode(vma->vm_file); 8709 dev = inode->i_sb->s_dev; 8710 ino = inode->i_ino; 8711 gen = inode->i_generation; 8712 maj = MAJOR(dev); 8713 min = MINOR(dev); 8714 8715 goto got_name; 8716 } else { 8717 if (vma->vm_ops && vma->vm_ops->name) 8718 name = (char *) vma->vm_ops->name(vma); 8719 if (!name) 8720 name = (char *)arch_vma_name(vma); 8721 if (!name) { 8722 if (vma_is_initial_heap(vma)) 8723 name = "[heap]"; 8724 else if (vma_is_initial_stack(vma)) 8725 name = "[stack]"; 8726 else 8727 name = "//anon"; 8728 } 8729 } 8730 8731 cpy_name: 8732 strscpy(tmp, name, sizeof(tmp)); 8733 name = tmp; 8734 got_name: 8735 /* 8736 * Since our buffer works in 8 byte units we need to align our string 8737 * size to a multiple of 8. However, we must guarantee the tail end is 8738 * zero'd out to avoid leaking random bits to userspace. 8739 */ 8740 size = strlen(name)+1; 8741 while (!IS_ALIGNED(size, sizeof(u64))) 8742 name[size++] = '\0'; 8743 8744 mmap_event->file_name = name; 8745 mmap_event->file_size = size; 8746 mmap_event->maj = maj; 8747 mmap_event->min = min; 8748 mmap_event->ino = ino; 8749 mmap_event->ino_generation = gen; 8750 mmap_event->prot = prot; 8751 mmap_event->flags = flags; 8752 8753 if (!(vma->vm_flags & VM_EXEC)) 8754 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8755 8756 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8757 8758 if (atomic_read(&nr_build_id_events)) 8759 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8760 8761 perf_iterate_sb(perf_event_mmap_output, 8762 mmap_event, 8763 NULL); 8764 8765 kfree(buf); 8766 } 8767 8768 /* 8769 * Check whether inode and address range match filter criteria. 8770 */ 8771 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8772 struct file *file, unsigned long offset, 8773 unsigned long size) 8774 { 8775 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8776 if (!filter->path.dentry) 8777 return false; 8778 8779 if (d_inode(filter->path.dentry) != file_inode(file)) 8780 return false; 8781 8782 if (filter->offset > offset + size) 8783 return false; 8784 8785 if (filter->offset + filter->size < offset) 8786 return false; 8787 8788 return true; 8789 } 8790 8791 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8792 struct vm_area_struct *vma, 8793 struct perf_addr_filter_range *fr) 8794 { 8795 unsigned long vma_size = vma->vm_end - vma->vm_start; 8796 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8797 struct file *file = vma->vm_file; 8798 8799 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8800 return false; 8801 8802 if (filter->offset < off) { 8803 fr->start = vma->vm_start; 8804 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8805 } else { 8806 fr->start = vma->vm_start + filter->offset - off; 8807 fr->size = min(vma->vm_end - fr->start, filter->size); 8808 } 8809 8810 return true; 8811 } 8812 8813 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8814 { 8815 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8816 struct vm_area_struct *vma = data; 8817 struct perf_addr_filter *filter; 8818 unsigned int restart = 0, count = 0; 8819 unsigned long flags; 8820 8821 if (!has_addr_filter(event)) 8822 return; 8823 8824 if (!vma->vm_file) 8825 return; 8826 8827 raw_spin_lock_irqsave(&ifh->lock, flags); 8828 list_for_each_entry(filter, &ifh->list, entry) { 8829 if (perf_addr_filter_vma_adjust(filter, vma, 8830 &event->addr_filter_ranges[count])) 8831 restart++; 8832 8833 count++; 8834 } 8835 8836 if (restart) 8837 event->addr_filters_gen++; 8838 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8839 8840 if (restart) 8841 perf_event_stop(event, 1); 8842 } 8843 8844 /* 8845 * Adjust all task's events' filters to the new vma 8846 */ 8847 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8848 { 8849 struct perf_event_context *ctx; 8850 8851 /* 8852 * Data tracing isn't supported yet and as such there is no need 8853 * to keep track of anything that isn't related to executable code: 8854 */ 8855 if (!(vma->vm_flags & VM_EXEC)) 8856 return; 8857 8858 rcu_read_lock(); 8859 ctx = rcu_dereference(current->perf_event_ctxp); 8860 if (ctx) 8861 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8862 rcu_read_unlock(); 8863 } 8864 8865 void perf_event_mmap(struct vm_area_struct *vma) 8866 { 8867 struct perf_mmap_event mmap_event; 8868 8869 if (!atomic_read(&nr_mmap_events)) 8870 return; 8871 8872 mmap_event = (struct perf_mmap_event){ 8873 .vma = vma, 8874 /* .file_name */ 8875 /* .file_size */ 8876 .event_id = { 8877 .header = { 8878 .type = PERF_RECORD_MMAP, 8879 .misc = PERF_RECORD_MISC_USER, 8880 /* .size */ 8881 }, 8882 /* .pid */ 8883 /* .tid */ 8884 .start = vma->vm_start, 8885 .len = vma->vm_end - vma->vm_start, 8886 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8887 }, 8888 /* .maj (attr_mmap2 only) */ 8889 /* .min (attr_mmap2 only) */ 8890 /* .ino (attr_mmap2 only) */ 8891 /* .ino_generation (attr_mmap2 only) */ 8892 /* .prot (attr_mmap2 only) */ 8893 /* .flags (attr_mmap2 only) */ 8894 }; 8895 8896 perf_addr_filters_adjust(vma); 8897 perf_event_mmap_event(&mmap_event); 8898 } 8899 8900 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8901 unsigned long size, u64 flags) 8902 { 8903 struct perf_output_handle handle; 8904 struct perf_sample_data sample; 8905 struct perf_aux_event { 8906 struct perf_event_header header; 8907 u64 offset; 8908 u64 size; 8909 u64 flags; 8910 } rec = { 8911 .header = { 8912 .type = PERF_RECORD_AUX, 8913 .misc = 0, 8914 .size = sizeof(rec), 8915 }, 8916 .offset = head, 8917 .size = size, 8918 .flags = flags, 8919 }; 8920 int ret; 8921 8922 perf_event_header__init_id(&rec.header, &sample, event); 8923 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8924 8925 if (ret) 8926 return; 8927 8928 perf_output_put(&handle, rec); 8929 perf_event__output_id_sample(event, &handle, &sample); 8930 8931 perf_output_end(&handle); 8932 } 8933 8934 /* 8935 * Lost/dropped samples logging 8936 */ 8937 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8938 { 8939 struct perf_output_handle handle; 8940 struct perf_sample_data sample; 8941 int ret; 8942 8943 struct { 8944 struct perf_event_header header; 8945 u64 lost; 8946 } lost_samples_event = { 8947 .header = { 8948 .type = PERF_RECORD_LOST_SAMPLES, 8949 .misc = 0, 8950 .size = sizeof(lost_samples_event), 8951 }, 8952 .lost = lost, 8953 }; 8954 8955 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8956 8957 ret = perf_output_begin(&handle, &sample, event, 8958 lost_samples_event.header.size); 8959 if (ret) 8960 return; 8961 8962 perf_output_put(&handle, lost_samples_event); 8963 perf_event__output_id_sample(event, &handle, &sample); 8964 perf_output_end(&handle); 8965 } 8966 8967 /* 8968 * context_switch tracking 8969 */ 8970 8971 struct perf_switch_event { 8972 struct task_struct *task; 8973 struct task_struct *next_prev; 8974 8975 struct { 8976 struct perf_event_header header; 8977 u32 next_prev_pid; 8978 u32 next_prev_tid; 8979 } event_id; 8980 }; 8981 8982 static int perf_event_switch_match(struct perf_event *event) 8983 { 8984 return event->attr.context_switch; 8985 } 8986 8987 static void perf_event_switch_output(struct perf_event *event, void *data) 8988 { 8989 struct perf_switch_event *se = data; 8990 struct perf_output_handle handle; 8991 struct perf_sample_data sample; 8992 int ret; 8993 8994 if (!perf_event_switch_match(event)) 8995 return; 8996 8997 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8998 if (event->ctx->task) { 8999 se->event_id.header.type = PERF_RECORD_SWITCH; 9000 se->event_id.header.size = sizeof(se->event_id.header); 9001 } else { 9002 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9003 se->event_id.header.size = sizeof(se->event_id); 9004 se->event_id.next_prev_pid = 9005 perf_event_pid(event, se->next_prev); 9006 se->event_id.next_prev_tid = 9007 perf_event_tid(event, se->next_prev); 9008 } 9009 9010 perf_event_header__init_id(&se->event_id.header, &sample, event); 9011 9012 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9013 if (ret) 9014 return; 9015 9016 if (event->ctx->task) 9017 perf_output_put(&handle, se->event_id.header); 9018 else 9019 perf_output_put(&handle, se->event_id); 9020 9021 perf_event__output_id_sample(event, &handle, &sample); 9022 9023 perf_output_end(&handle); 9024 } 9025 9026 static void perf_event_switch(struct task_struct *task, 9027 struct task_struct *next_prev, bool sched_in) 9028 { 9029 struct perf_switch_event switch_event; 9030 9031 /* N.B. caller checks nr_switch_events != 0 */ 9032 9033 switch_event = (struct perf_switch_event){ 9034 .task = task, 9035 .next_prev = next_prev, 9036 .event_id = { 9037 .header = { 9038 /* .type */ 9039 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9040 /* .size */ 9041 }, 9042 /* .next_prev_pid */ 9043 /* .next_prev_tid */ 9044 }, 9045 }; 9046 9047 if (!sched_in && task->on_rq) { 9048 switch_event.event_id.header.misc |= 9049 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9050 } 9051 9052 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9053 } 9054 9055 /* 9056 * IRQ throttle logging 9057 */ 9058 9059 static void perf_log_throttle(struct perf_event *event, int enable) 9060 { 9061 struct perf_output_handle handle; 9062 struct perf_sample_data sample; 9063 int ret; 9064 9065 struct { 9066 struct perf_event_header header; 9067 u64 time; 9068 u64 id; 9069 u64 stream_id; 9070 } throttle_event = { 9071 .header = { 9072 .type = PERF_RECORD_THROTTLE, 9073 .misc = 0, 9074 .size = sizeof(throttle_event), 9075 }, 9076 .time = perf_event_clock(event), 9077 .id = primary_event_id(event), 9078 .stream_id = event->id, 9079 }; 9080 9081 if (enable) 9082 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9083 9084 perf_event_header__init_id(&throttle_event.header, &sample, event); 9085 9086 ret = perf_output_begin(&handle, &sample, event, 9087 throttle_event.header.size); 9088 if (ret) 9089 return; 9090 9091 perf_output_put(&handle, throttle_event); 9092 perf_event__output_id_sample(event, &handle, &sample); 9093 perf_output_end(&handle); 9094 } 9095 9096 /* 9097 * ksymbol register/unregister tracking 9098 */ 9099 9100 struct perf_ksymbol_event { 9101 const char *name; 9102 int name_len; 9103 struct { 9104 struct perf_event_header header; 9105 u64 addr; 9106 u32 len; 9107 u16 ksym_type; 9108 u16 flags; 9109 } event_id; 9110 }; 9111 9112 static int perf_event_ksymbol_match(struct perf_event *event) 9113 { 9114 return event->attr.ksymbol; 9115 } 9116 9117 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9118 { 9119 struct perf_ksymbol_event *ksymbol_event = data; 9120 struct perf_output_handle handle; 9121 struct perf_sample_data sample; 9122 int ret; 9123 9124 if (!perf_event_ksymbol_match(event)) 9125 return; 9126 9127 perf_event_header__init_id(&ksymbol_event->event_id.header, 9128 &sample, event); 9129 ret = perf_output_begin(&handle, &sample, event, 9130 ksymbol_event->event_id.header.size); 9131 if (ret) 9132 return; 9133 9134 perf_output_put(&handle, ksymbol_event->event_id); 9135 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9136 perf_event__output_id_sample(event, &handle, &sample); 9137 9138 perf_output_end(&handle); 9139 } 9140 9141 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9142 const char *sym) 9143 { 9144 struct perf_ksymbol_event ksymbol_event; 9145 char name[KSYM_NAME_LEN]; 9146 u16 flags = 0; 9147 int name_len; 9148 9149 if (!atomic_read(&nr_ksymbol_events)) 9150 return; 9151 9152 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9153 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9154 goto err; 9155 9156 strscpy(name, sym, KSYM_NAME_LEN); 9157 name_len = strlen(name) + 1; 9158 while (!IS_ALIGNED(name_len, sizeof(u64))) 9159 name[name_len++] = '\0'; 9160 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9161 9162 if (unregister) 9163 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9164 9165 ksymbol_event = (struct perf_ksymbol_event){ 9166 .name = name, 9167 .name_len = name_len, 9168 .event_id = { 9169 .header = { 9170 .type = PERF_RECORD_KSYMBOL, 9171 .size = sizeof(ksymbol_event.event_id) + 9172 name_len, 9173 }, 9174 .addr = addr, 9175 .len = len, 9176 .ksym_type = ksym_type, 9177 .flags = flags, 9178 }, 9179 }; 9180 9181 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9182 return; 9183 err: 9184 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9185 } 9186 9187 /* 9188 * bpf program load/unload tracking 9189 */ 9190 9191 struct perf_bpf_event { 9192 struct bpf_prog *prog; 9193 struct { 9194 struct perf_event_header header; 9195 u16 type; 9196 u16 flags; 9197 u32 id; 9198 u8 tag[BPF_TAG_SIZE]; 9199 } event_id; 9200 }; 9201 9202 static int perf_event_bpf_match(struct perf_event *event) 9203 { 9204 return event->attr.bpf_event; 9205 } 9206 9207 static void perf_event_bpf_output(struct perf_event *event, void *data) 9208 { 9209 struct perf_bpf_event *bpf_event = data; 9210 struct perf_output_handle handle; 9211 struct perf_sample_data sample; 9212 int ret; 9213 9214 if (!perf_event_bpf_match(event)) 9215 return; 9216 9217 perf_event_header__init_id(&bpf_event->event_id.header, 9218 &sample, event); 9219 ret = perf_output_begin(&handle, &sample, event, 9220 bpf_event->event_id.header.size); 9221 if (ret) 9222 return; 9223 9224 perf_output_put(&handle, bpf_event->event_id); 9225 perf_event__output_id_sample(event, &handle, &sample); 9226 9227 perf_output_end(&handle); 9228 } 9229 9230 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9231 enum perf_bpf_event_type type) 9232 { 9233 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9234 int i; 9235 9236 if (prog->aux->func_cnt == 0) { 9237 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9238 (u64)(unsigned long)prog->bpf_func, 9239 prog->jited_len, unregister, 9240 prog->aux->ksym.name); 9241 } else { 9242 for (i = 0; i < prog->aux->func_cnt; i++) { 9243 struct bpf_prog *subprog = prog->aux->func[i]; 9244 9245 perf_event_ksymbol( 9246 PERF_RECORD_KSYMBOL_TYPE_BPF, 9247 (u64)(unsigned long)subprog->bpf_func, 9248 subprog->jited_len, unregister, 9249 subprog->aux->ksym.name); 9250 } 9251 } 9252 } 9253 9254 void perf_event_bpf_event(struct bpf_prog *prog, 9255 enum perf_bpf_event_type type, 9256 u16 flags) 9257 { 9258 struct perf_bpf_event bpf_event; 9259 9260 if (type <= PERF_BPF_EVENT_UNKNOWN || 9261 type >= PERF_BPF_EVENT_MAX) 9262 return; 9263 9264 switch (type) { 9265 case PERF_BPF_EVENT_PROG_LOAD: 9266 case PERF_BPF_EVENT_PROG_UNLOAD: 9267 if (atomic_read(&nr_ksymbol_events)) 9268 perf_event_bpf_emit_ksymbols(prog, type); 9269 break; 9270 default: 9271 break; 9272 } 9273 9274 if (!atomic_read(&nr_bpf_events)) 9275 return; 9276 9277 bpf_event = (struct perf_bpf_event){ 9278 .prog = prog, 9279 .event_id = { 9280 .header = { 9281 .type = PERF_RECORD_BPF_EVENT, 9282 .size = sizeof(bpf_event.event_id), 9283 }, 9284 .type = type, 9285 .flags = flags, 9286 .id = prog->aux->id, 9287 }, 9288 }; 9289 9290 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9291 9292 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9293 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9294 } 9295 9296 struct perf_text_poke_event { 9297 const void *old_bytes; 9298 const void *new_bytes; 9299 size_t pad; 9300 u16 old_len; 9301 u16 new_len; 9302 9303 struct { 9304 struct perf_event_header header; 9305 9306 u64 addr; 9307 } event_id; 9308 }; 9309 9310 static int perf_event_text_poke_match(struct perf_event *event) 9311 { 9312 return event->attr.text_poke; 9313 } 9314 9315 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9316 { 9317 struct perf_text_poke_event *text_poke_event = data; 9318 struct perf_output_handle handle; 9319 struct perf_sample_data sample; 9320 u64 padding = 0; 9321 int ret; 9322 9323 if (!perf_event_text_poke_match(event)) 9324 return; 9325 9326 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9327 9328 ret = perf_output_begin(&handle, &sample, event, 9329 text_poke_event->event_id.header.size); 9330 if (ret) 9331 return; 9332 9333 perf_output_put(&handle, text_poke_event->event_id); 9334 perf_output_put(&handle, text_poke_event->old_len); 9335 perf_output_put(&handle, text_poke_event->new_len); 9336 9337 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9338 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9339 9340 if (text_poke_event->pad) 9341 __output_copy(&handle, &padding, text_poke_event->pad); 9342 9343 perf_event__output_id_sample(event, &handle, &sample); 9344 9345 perf_output_end(&handle); 9346 } 9347 9348 void perf_event_text_poke(const void *addr, const void *old_bytes, 9349 size_t old_len, const void *new_bytes, size_t new_len) 9350 { 9351 struct perf_text_poke_event text_poke_event; 9352 size_t tot, pad; 9353 9354 if (!atomic_read(&nr_text_poke_events)) 9355 return; 9356 9357 tot = sizeof(text_poke_event.old_len) + old_len; 9358 tot += sizeof(text_poke_event.new_len) + new_len; 9359 pad = ALIGN(tot, sizeof(u64)) - tot; 9360 9361 text_poke_event = (struct perf_text_poke_event){ 9362 .old_bytes = old_bytes, 9363 .new_bytes = new_bytes, 9364 .pad = pad, 9365 .old_len = old_len, 9366 .new_len = new_len, 9367 .event_id = { 9368 .header = { 9369 .type = PERF_RECORD_TEXT_POKE, 9370 .misc = PERF_RECORD_MISC_KERNEL, 9371 .size = sizeof(text_poke_event.event_id) + tot + pad, 9372 }, 9373 .addr = (unsigned long)addr, 9374 }, 9375 }; 9376 9377 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9378 } 9379 9380 void perf_event_itrace_started(struct perf_event *event) 9381 { 9382 event->attach_state |= PERF_ATTACH_ITRACE; 9383 } 9384 9385 static void perf_log_itrace_start(struct perf_event *event) 9386 { 9387 struct perf_output_handle handle; 9388 struct perf_sample_data sample; 9389 struct perf_aux_event { 9390 struct perf_event_header header; 9391 u32 pid; 9392 u32 tid; 9393 } rec; 9394 int ret; 9395 9396 if (event->parent) 9397 event = event->parent; 9398 9399 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9400 event->attach_state & PERF_ATTACH_ITRACE) 9401 return; 9402 9403 rec.header.type = PERF_RECORD_ITRACE_START; 9404 rec.header.misc = 0; 9405 rec.header.size = sizeof(rec); 9406 rec.pid = perf_event_pid(event, current); 9407 rec.tid = perf_event_tid(event, current); 9408 9409 perf_event_header__init_id(&rec.header, &sample, event); 9410 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9411 9412 if (ret) 9413 return; 9414 9415 perf_output_put(&handle, rec); 9416 perf_event__output_id_sample(event, &handle, &sample); 9417 9418 perf_output_end(&handle); 9419 } 9420 9421 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9422 { 9423 struct perf_output_handle handle; 9424 struct perf_sample_data sample; 9425 struct perf_aux_event { 9426 struct perf_event_header header; 9427 u64 hw_id; 9428 } rec; 9429 int ret; 9430 9431 if (event->parent) 9432 event = event->parent; 9433 9434 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9435 rec.header.misc = 0; 9436 rec.header.size = sizeof(rec); 9437 rec.hw_id = hw_id; 9438 9439 perf_event_header__init_id(&rec.header, &sample, event); 9440 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9441 9442 if (ret) 9443 return; 9444 9445 perf_output_put(&handle, rec); 9446 perf_event__output_id_sample(event, &handle, &sample); 9447 9448 perf_output_end(&handle); 9449 } 9450 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9451 9452 static int 9453 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9454 { 9455 struct hw_perf_event *hwc = &event->hw; 9456 int ret = 0; 9457 u64 seq; 9458 9459 seq = __this_cpu_read(perf_throttled_seq); 9460 if (seq != hwc->interrupts_seq) { 9461 hwc->interrupts_seq = seq; 9462 hwc->interrupts = 1; 9463 } else { 9464 hwc->interrupts++; 9465 if (unlikely(throttle && 9466 hwc->interrupts > max_samples_per_tick)) { 9467 __this_cpu_inc(perf_throttled_count); 9468 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9469 hwc->interrupts = MAX_INTERRUPTS; 9470 perf_log_throttle(event, 0); 9471 ret = 1; 9472 } 9473 } 9474 9475 if (event->attr.freq) { 9476 u64 now = perf_clock(); 9477 s64 delta = now - hwc->freq_time_stamp; 9478 9479 hwc->freq_time_stamp = now; 9480 9481 if (delta > 0 && delta < 2*TICK_NSEC) 9482 perf_adjust_period(event, delta, hwc->last_period, true); 9483 } 9484 9485 return ret; 9486 } 9487 9488 int perf_event_account_interrupt(struct perf_event *event) 9489 { 9490 return __perf_event_account_interrupt(event, 1); 9491 } 9492 9493 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9494 { 9495 /* 9496 * Due to interrupt latency (AKA "skid"), we may enter the 9497 * kernel before taking an overflow, even if the PMU is only 9498 * counting user events. 9499 */ 9500 if (event->attr.exclude_kernel && !user_mode(regs)) 9501 return false; 9502 9503 return true; 9504 } 9505 9506 /* 9507 * Generic event overflow handling, sampling. 9508 */ 9509 9510 static int __perf_event_overflow(struct perf_event *event, 9511 int throttle, struct perf_sample_data *data, 9512 struct pt_regs *regs) 9513 { 9514 int events = atomic_read(&event->event_limit); 9515 int ret = 0; 9516 9517 /* 9518 * Non-sampling counters might still use the PMI to fold short 9519 * hardware counters, ignore those. 9520 */ 9521 if (unlikely(!is_sampling_event(event))) 9522 return 0; 9523 9524 ret = __perf_event_account_interrupt(event, throttle); 9525 9526 /* 9527 * XXX event_limit might not quite work as expected on inherited 9528 * events 9529 */ 9530 9531 event->pending_kill = POLL_IN; 9532 if (events && atomic_dec_and_test(&event->event_limit)) { 9533 ret = 1; 9534 event->pending_kill = POLL_HUP; 9535 perf_event_disable_inatomic(event); 9536 } 9537 9538 if (event->attr.sigtrap) { 9539 /* 9540 * The desired behaviour of sigtrap vs invalid samples is a bit 9541 * tricky; on the one hand, one should not loose the SIGTRAP if 9542 * it is the first event, on the other hand, we should also not 9543 * trigger the WARN or override the data address. 9544 */ 9545 bool valid_sample = sample_is_allowed(event, regs); 9546 unsigned int pending_id = 1; 9547 9548 if (regs) 9549 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9550 if (!event->pending_sigtrap) { 9551 event->pending_sigtrap = pending_id; 9552 local_inc(&event->ctx->nr_pending); 9553 } else if (event->attr.exclude_kernel && valid_sample) { 9554 /* 9555 * Should not be able to return to user space without 9556 * consuming pending_sigtrap; with exceptions: 9557 * 9558 * 1. Where !exclude_kernel, events can overflow again 9559 * in the kernel without returning to user space. 9560 * 9561 * 2. Events that can overflow again before the IRQ- 9562 * work without user space progress (e.g. hrtimer). 9563 * To approximate progress (with false negatives), 9564 * check 32-bit hash of the current IP. 9565 */ 9566 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9567 } 9568 9569 event->pending_addr = 0; 9570 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9571 event->pending_addr = data->addr; 9572 irq_work_queue(&event->pending_irq); 9573 } 9574 9575 READ_ONCE(event->overflow_handler)(event, data, regs); 9576 9577 if (*perf_event_fasync(event) && event->pending_kill) { 9578 event->pending_wakeup = 1; 9579 irq_work_queue(&event->pending_irq); 9580 } 9581 9582 return ret; 9583 } 9584 9585 int perf_event_overflow(struct perf_event *event, 9586 struct perf_sample_data *data, 9587 struct pt_regs *regs) 9588 { 9589 return __perf_event_overflow(event, 1, data, regs); 9590 } 9591 9592 /* 9593 * Generic software event infrastructure 9594 */ 9595 9596 struct swevent_htable { 9597 struct swevent_hlist *swevent_hlist; 9598 struct mutex hlist_mutex; 9599 int hlist_refcount; 9600 9601 /* Recursion avoidance in each contexts */ 9602 int recursion[PERF_NR_CONTEXTS]; 9603 }; 9604 9605 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9606 9607 /* 9608 * We directly increment event->count and keep a second value in 9609 * event->hw.period_left to count intervals. This period event 9610 * is kept in the range [-sample_period, 0] so that we can use the 9611 * sign as trigger. 9612 */ 9613 9614 u64 perf_swevent_set_period(struct perf_event *event) 9615 { 9616 struct hw_perf_event *hwc = &event->hw; 9617 u64 period = hwc->last_period; 9618 u64 nr, offset; 9619 s64 old, val; 9620 9621 hwc->last_period = hwc->sample_period; 9622 9623 old = local64_read(&hwc->period_left); 9624 do { 9625 val = old; 9626 if (val < 0) 9627 return 0; 9628 9629 nr = div64_u64(period + val, period); 9630 offset = nr * period; 9631 val -= offset; 9632 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9633 9634 return nr; 9635 } 9636 9637 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9638 struct perf_sample_data *data, 9639 struct pt_regs *regs) 9640 { 9641 struct hw_perf_event *hwc = &event->hw; 9642 int throttle = 0; 9643 9644 if (!overflow) 9645 overflow = perf_swevent_set_period(event); 9646 9647 if (hwc->interrupts == MAX_INTERRUPTS) 9648 return; 9649 9650 for (; overflow; overflow--) { 9651 if (__perf_event_overflow(event, throttle, 9652 data, regs)) { 9653 /* 9654 * We inhibit the overflow from happening when 9655 * hwc->interrupts == MAX_INTERRUPTS. 9656 */ 9657 break; 9658 } 9659 throttle = 1; 9660 } 9661 } 9662 9663 static void perf_swevent_event(struct perf_event *event, u64 nr, 9664 struct perf_sample_data *data, 9665 struct pt_regs *regs) 9666 { 9667 struct hw_perf_event *hwc = &event->hw; 9668 9669 local64_add(nr, &event->count); 9670 9671 if (!regs) 9672 return; 9673 9674 if (!is_sampling_event(event)) 9675 return; 9676 9677 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9678 data->period = nr; 9679 return perf_swevent_overflow(event, 1, data, regs); 9680 } else 9681 data->period = event->hw.last_period; 9682 9683 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9684 return perf_swevent_overflow(event, 1, data, regs); 9685 9686 if (local64_add_negative(nr, &hwc->period_left)) 9687 return; 9688 9689 perf_swevent_overflow(event, 0, data, regs); 9690 } 9691 9692 static int perf_exclude_event(struct perf_event *event, 9693 struct pt_regs *regs) 9694 { 9695 if (event->hw.state & PERF_HES_STOPPED) 9696 return 1; 9697 9698 if (regs) { 9699 if (event->attr.exclude_user && user_mode(regs)) 9700 return 1; 9701 9702 if (event->attr.exclude_kernel && !user_mode(regs)) 9703 return 1; 9704 } 9705 9706 return 0; 9707 } 9708 9709 static int perf_swevent_match(struct perf_event *event, 9710 enum perf_type_id type, 9711 u32 event_id, 9712 struct perf_sample_data *data, 9713 struct pt_regs *regs) 9714 { 9715 if (event->attr.type != type) 9716 return 0; 9717 9718 if (event->attr.config != event_id) 9719 return 0; 9720 9721 if (perf_exclude_event(event, regs)) 9722 return 0; 9723 9724 return 1; 9725 } 9726 9727 static inline u64 swevent_hash(u64 type, u32 event_id) 9728 { 9729 u64 val = event_id | (type << 32); 9730 9731 return hash_64(val, SWEVENT_HLIST_BITS); 9732 } 9733 9734 static inline struct hlist_head * 9735 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9736 { 9737 u64 hash = swevent_hash(type, event_id); 9738 9739 return &hlist->heads[hash]; 9740 } 9741 9742 /* For the read side: events when they trigger */ 9743 static inline struct hlist_head * 9744 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9745 { 9746 struct swevent_hlist *hlist; 9747 9748 hlist = rcu_dereference(swhash->swevent_hlist); 9749 if (!hlist) 9750 return NULL; 9751 9752 return __find_swevent_head(hlist, type, event_id); 9753 } 9754 9755 /* For the event head insertion and removal in the hlist */ 9756 static inline struct hlist_head * 9757 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9758 { 9759 struct swevent_hlist *hlist; 9760 u32 event_id = event->attr.config; 9761 u64 type = event->attr.type; 9762 9763 /* 9764 * Event scheduling is always serialized against hlist allocation 9765 * and release. Which makes the protected version suitable here. 9766 * The context lock guarantees that. 9767 */ 9768 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9769 lockdep_is_held(&event->ctx->lock)); 9770 if (!hlist) 9771 return NULL; 9772 9773 return __find_swevent_head(hlist, type, event_id); 9774 } 9775 9776 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9777 u64 nr, 9778 struct perf_sample_data *data, 9779 struct pt_regs *regs) 9780 { 9781 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9782 struct perf_event *event; 9783 struct hlist_head *head; 9784 9785 rcu_read_lock(); 9786 head = find_swevent_head_rcu(swhash, type, event_id); 9787 if (!head) 9788 goto end; 9789 9790 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9791 if (perf_swevent_match(event, type, event_id, data, regs)) 9792 perf_swevent_event(event, nr, data, regs); 9793 } 9794 end: 9795 rcu_read_unlock(); 9796 } 9797 9798 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9799 9800 int perf_swevent_get_recursion_context(void) 9801 { 9802 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9803 9804 return get_recursion_context(swhash->recursion); 9805 } 9806 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9807 9808 void perf_swevent_put_recursion_context(int rctx) 9809 { 9810 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9811 9812 put_recursion_context(swhash->recursion, rctx); 9813 } 9814 9815 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9816 { 9817 struct perf_sample_data data; 9818 9819 if (WARN_ON_ONCE(!regs)) 9820 return; 9821 9822 perf_sample_data_init(&data, addr, 0); 9823 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9824 } 9825 9826 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9827 { 9828 int rctx; 9829 9830 preempt_disable_notrace(); 9831 rctx = perf_swevent_get_recursion_context(); 9832 if (unlikely(rctx < 0)) 9833 goto fail; 9834 9835 ___perf_sw_event(event_id, nr, regs, addr); 9836 9837 perf_swevent_put_recursion_context(rctx); 9838 fail: 9839 preempt_enable_notrace(); 9840 } 9841 9842 static void perf_swevent_read(struct perf_event *event) 9843 { 9844 } 9845 9846 static int perf_swevent_add(struct perf_event *event, int flags) 9847 { 9848 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9849 struct hw_perf_event *hwc = &event->hw; 9850 struct hlist_head *head; 9851 9852 if (is_sampling_event(event)) { 9853 hwc->last_period = hwc->sample_period; 9854 perf_swevent_set_period(event); 9855 } 9856 9857 hwc->state = !(flags & PERF_EF_START); 9858 9859 head = find_swevent_head(swhash, event); 9860 if (WARN_ON_ONCE(!head)) 9861 return -EINVAL; 9862 9863 hlist_add_head_rcu(&event->hlist_entry, head); 9864 perf_event_update_userpage(event); 9865 9866 return 0; 9867 } 9868 9869 static void perf_swevent_del(struct perf_event *event, int flags) 9870 { 9871 hlist_del_rcu(&event->hlist_entry); 9872 } 9873 9874 static void perf_swevent_start(struct perf_event *event, int flags) 9875 { 9876 event->hw.state = 0; 9877 } 9878 9879 static void perf_swevent_stop(struct perf_event *event, int flags) 9880 { 9881 event->hw.state = PERF_HES_STOPPED; 9882 } 9883 9884 /* Deref the hlist from the update side */ 9885 static inline struct swevent_hlist * 9886 swevent_hlist_deref(struct swevent_htable *swhash) 9887 { 9888 return rcu_dereference_protected(swhash->swevent_hlist, 9889 lockdep_is_held(&swhash->hlist_mutex)); 9890 } 9891 9892 static void swevent_hlist_release(struct swevent_htable *swhash) 9893 { 9894 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9895 9896 if (!hlist) 9897 return; 9898 9899 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9900 kfree_rcu(hlist, rcu_head); 9901 } 9902 9903 static void swevent_hlist_put_cpu(int cpu) 9904 { 9905 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9906 9907 mutex_lock(&swhash->hlist_mutex); 9908 9909 if (!--swhash->hlist_refcount) 9910 swevent_hlist_release(swhash); 9911 9912 mutex_unlock(&swhash->hlist_mutex); 9913 } 9914 9915 static void swevent_hlist_put(void) 9916 { 9917 int cpu; 9918 9919 for_each_possible_cpu(cpu) 9920 swevent_hlist_put_cpu(cpu); 9921 } 9922 9923 static int swevent_hlist_get_cpu(int cpu) 9924 { 9925 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9926 int err = 0; 9927 9928 mutex_lock(&swhash->hlist_mutex); 9929 if (!swevent_hlist_deref(swhash) && 9930 cpumask_test_cpu(cpu, perf_online_mask)) { 9931 struct swevent_hlist *hlist; 9932 9933 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9934 if (!hlist) { 9935 err = -ENOMEM; 9936 goto exit; 9937 } 9938 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9939 } 9940 swhash->hlist_refcount++; 9941 exit: 9942 mutex_unlock(&swhash->hlist_mutex); 9943 9944 return err; 9945 } 9946 9947 static int swevent_hlist_get(void) 9948 { 9949 int err, cpu, failed_cpu; 9950 9951 mutex_lock(&pmus_lock); 9952 for_each_possible_cpu(cpu) { 9953 err = swevent_hlist_get_cpu(cpu); 9954 if (err) { 9955 failed_cpu = cpu; 9956 goto fail; 9957 } 9958 } 9959 mutex_unlock(&pmus_lock); 9960 return 0; 9961 fail: 9962 for_each_possible_cpu(cpu) { 9963 if (cpu == failed_cpu) 9964 break; 9965 swevent_hlist_put_cpu(cpu); 9966 } 9967 mutex_unlock(&pmus_lock); 9968 return err; 9969 } 9970 9971 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9972 9973 static void sw_perf_event_destroy(struct perf_event *event) 9974 { 9975 u64 event_id = event->attr.config; 9976 9977 WARN_ON(event->parent); 9978 9979 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9980 swevent_hlist_put(); 9981 } 9982 9983 static struct pmu perf_cpu_clock; /* fwd declaration */ 9984 static struct pmu perf_task_clock; 9985 9986 static int perf_swevent_init(struct perf_event *event) 9987 { 9988 u64 event_id = event->attr.config; 9989 9990 if (event->attr.type != PERF_TYPE_SOFTWARE) 9991 return -ENOENT; 9992 9993 /* 9994 * no branch sampling for software events 9995 */ 9996 if (has_branch_stack(event)) 9997 return -EOPNOTSUPP; 9998 9999 switch (event_id) { 10000 case PERF_COUNT_SW_CPU_CLOCK: 10001 event->attr.type = perf_cpu_clock.type; 10002 return -ENOENT; 10003 case PERF_COUNT_SW_TASK_CLOCK: 10004 event->attr.type = perf_task_clock.type; 10005 return -ENOENT; 10006 10007 default: 10008 break; 10009 } 10010 10011 if (event_id >= PERF_COUNT_SW_MAX) 10012 return -ENOENT; 10013 10014 if (!event->parent) { 10015 int err; 10016 10017 err = swevent_hlist_get(); 10018 if (err) 10019 return err; 10020 10021 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10022 event->destroy = sw_perf_event_destroy; 10023 } 10024 10025 return 0; 10026 } 10027 10028 static struct pmu perf_swevent = { 10029 .task_ctx_nr = perf_sw_context, 10030 10031 .capabilities = PERF_PMU_CAP_NO_NMI, 10032 10033 .event_init = perf_swevent_init, 10034 .add = perf_swevent_add, 10035 .del = perf_swevent_del, 10036 .start = perf_swevent_start, 10037 .stop = perf_swevent_stop, 10038 .read = perf_swevent_read, 10039 }; 10040 10041 #ifdef CONFIG_EVENT_TRACING 10042 10043 static void tp_perf_event_destroy(struct perf_event *event) 10044 { 10045 perf_trace_destroy(event); 10046 } 10047 10048 static int perf_tp_event_init(struct perf_event *event) 10049 { 10050 int err; 10051 10052 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10053 return -ENOENT; 10054 10055 /* 10056 * no branch sampling for tracepoint events 10057 */ 10058 if (has_branch_stack(event)) 10059 return -EOPNOTSUPP; 10060 10061 err = perf_trace_init(event); 10062 if (err) 10063 return err; 10064 10065 event->destroy = tp_perf_event_destroy; 10066 10067 return 0; 10068 } 10069 10070 static struct pmu perf_tracepoint = { 10071 .task_ctx_nr = perf_sw_context, 10072 10073 .event_init = perf_tp_event_init, 10074 .add = perf_trace_add, 10075 .del = perf_trace_del, 10076 .start = perf_swevent_start, 10077 .stop = perf_swevent_stop, 10078 .read = perf_swevent_read, 10079 }; 10080 10081 static int perf_tp_filter_match(struct perf_event *event, 10082 struct perf_sample_data *data) 10083 { 10084 void *record = data->raw->frag.data; 10085 10086 /* only top level events have filters set */ 10087 if (event->parent) 10088 event = event->parent; 10089 10090 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10091 return 1; 10092 return 0; 10093 } 10094 10095 static int perf_tp_event_match(struct perf_event *event, 10096 struct perf_sample_data *data, 10097 struct pt_regs *regs) 10098 { 10099 if (event->hw.state & PERF_HES_STOPPED) 10100 return 0; 10101 /* 10102 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10103 */ 10104 if (event->attr.exclude_kernel && !user_mode(regs)) 10105 return 0; 10106 10107 if (!perf_tp_filter_match(event, data)) 10108 return 0; 10109 10110 return 1; 10111 } 10112 10113 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10114 struct trace_event_call *call, u64 count, 10115 struct pt_regs *regs, struct hlist_head *head, 10116 struct task_struct *task) 10117 { 10118 if (bpf_prog_array_valid(call)) { 10119 *(struct pt_regs **)raw_data = regs; 10120 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10121 perf_swevent_put_recursion_context(rctx); 10122 return; 10123 } 10124 } 10125 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10126 rctx, task); 10127 } 10128 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10129 10130 static void __perf_tp_event_target_task(u64 count, void *record, 10131 struct pt_regs *regs, 10132 struct perf_sample_data *data, 10133 struct perf_event *event) 10134 { 10135 struct trace_entry *entry = record; 10136 10137 if (event->attr.config != entry->type) 10138 return; 10139 /* Cannot deliver synchronous signal to other task. */ 10140 if (event->attr.sigtrap) 10141 return; 10142 if (perf_tp_event_match(event, data, regs)) 10143 perf_swevent_event(event, count, data, regs); 10144 } 10145 10146 static void perf_tp_event_target_task(u64 count, void *record, 10147 struct pt_regs *regs, 10148 struct perf_sample_data *data, 10149 struct perf_event_context *ctx) 10150 { 10151 unsigned int cpu = smp_processor_id(); 10152 struct pmu *pmu = &perf_tracepoint; 10153 struct perf_event *event, *sibling; 10154 10155 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10156 __perf_tp_event_target_task(count, record, regs, data, event); 10157 for_each_sibling_event(sibling, event) 10158 __perf_tp_event_target_task(count, record, regs, data, sibling); 10159 } 10160 10161 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10162 __perf_tp_event_target_task(count, record, regs, data, event); 10163 for_each_sibling_event(sibling, event) 10164 __perf_tp_event_target_task(count, record, regs, data, sibling); 10165 } 10166 } 10167 10168 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10169 struct pt_regs *regs, struct hlist_head *head, int rctx, 10170 struct task_struct *task) 10171 { 10172 struct perf_sample_data data; 10173 struct perf_event *event; 10174 10175 struct perf_raw_record raw = { 10176 .frag = { 10177 .size = entry_size, 10178 .data = record, 10179 }, 10180 }; 10181 10182 perf_sample_data_init(&data, 0, 0); 10183 perf_sample_save_raw_data(&data, &raw); 10184 10185 perf_trace_buf_update(record, event_type); 10186 10187 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10188 if (perf_tp_event_match(event, &data, regs)) { 10189 perf_swevent_event(event, count, &data, regs); 10190 10191 /* 10192 * Here use the same on-stack perf_sample_data, 10193 * some members in data are event-specific and 10194 * need to be re-computed for different sweveents. 10195 * Re-initialize data->sample_flags safely to avoid 10196 * the problem that next event skips preparing data 10197 * because data->sample_flags is set. 10198 */ 10199 perf_sample_data_init(&data, 0, 0); 10200 perf_sample_save_raw_data(&data, &raw); 10201 } 10202 } 10203 10204 /* 10205 * If we got specified a target task, also iterate its context and 10206 * deliver this event there too. 10207 */ 10208 if (task && task != current) { 10209 struct perf_event_context *ctx; 10210 10211 rcu_read_lock(); 10212 ctx = rcu_dereference(task->perf_event_ctxp); 10213 if (!ctx) 10214 goto unlock; 10215 10216 raw_spin_lock(&ctx->lock); 10217 perf_tp_event_target_task(count, record, regs, &data, ctx); 10218 raw_spin_unlock(&ctx->lock); 10219 unlock: 10220 rcu_read_unlock(); 10221 } 10222 10223 perf_swevent_put_recursion_context(rctx); 10224 } 10225 EXPORT_SYMBOL_GPL(perf_tp_event); 10226 10227 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10228 /* 10229 * Flags in config, used by dynamic PMU kprobe and uprobe 10230 * The flags should match following PMU_FORMAT_ATTR(). 10231 * 10232 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10233 * if not set, create kprobe/uprobe 10234 * 10235 * The following values specify a reference counter (or semaphore in the 10236 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10237 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10238 * 10239 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10240 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10241 */ 10242 enum perf_probe_config { 10243 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10244 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10245 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10246 }; 10247 10248 PMU_FORMAT_ATTR(retprobe, "config:0"); 10249 #endif 10250 10251 #ifdef CONFIG_KPROBE_EVENTS 10252 static struct attribute *kprobe_attrs[] = { 10253 &format_attr_retprobe.attr, 10254 NULL, 10255 }; 10256 10257 static struct attribute_group kprobe_format_group = { 10258 .name = "format", 10259 .attrs = kprobe_attrs, 10260 }; 10261 10262 static const struct attribute_group *kprobe_attr_groups[] = { 10263 &kprobe_format_group, 10264 NULL, 10265 }; 10266 10267 static int perf_kprobe_event_init(struct perf_event *event); 10268 static struct pmu perf_kprobe = { 10269 .task_ctx_nr = perf_sw_context, 10270 .event_init = perf_kprobe_event_init, 10271 .add = perf_trace_add, 10272 .del = perf_trace_del, 10273 .start = perf_swevent_start, 10274 .stop = perf_swevent_stop, 10275 .read = perf_swevent_read, 10276 .attr_groups = kprobe_attr_groups, 10277 }; 10278 10279 static int perf_kprobe_event_init(struct perf_event *event) 10280 { 10281 int err; 10282 bool is_retprobe; 10283 10284 if (event->attr.type != perf_kprobe.type) 10285 return -ENOENT; 10286 10287 if (!perfmon_capable()) 10288 return -EACCES; 10289 10290 /* 10291 * no branch sampling for probe events 10292 */ 10293 if (has_branch_stack(event)) 10294 return -EOPNOTSUPP; 10295 10296 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10297 err = perf_kprobe_init(event, is_retprobe); 10298 if (err) 10299 return err; 10300 10301 event->destroy = perf_kprobe_destroy; 10302 10303 return 0; 10304 } 10305 #endif /* CONFIG_KPROBE_EVENTS */ 10306 10307 #ifdef CONFIG_UPROBE_EVENTS 10308 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10309 10310 static struct attribute *uprobe_attrs[] = { 10311 &format_attr_retprobe.attr, 10312 &format_attr_ref_ctr_offset.attr, 10313 NULL, 10314 }; 10315 10316 static struct attribute_group uprobe_format_group = { 10317 .name = "format", 10318 .attrs = uprobe_attrs, 10319 }; 10320 10321 static const struct attribute_group *uprobe_attr_groups[] = { 10322 &uprobe_format_group, 10323 NULL, 10324 }; 10325 10326 static int perf_uprobe_event_init(struct perf_event *event); 10327 static struct pmu perf_uprobe = { 10328 .task_ctx_nr = perf_sw_context, 10329 .event_init = perf_uprobe_event_init, 10330 .add = perf_trace_add, 10331 .del = perf_trace_del, 10332 .start = perf_swevent_start, 10333 .stop = perf_swevent_stop, 10334 .read = perf_swevent_read, 10335 .attr_groups = uprobe_attr_groups, 10336 }; 10337 10338 static int perf_uprobe_event_init(struct perf_event *event) 10339 { 10340 int err; 10341 unsigned long ref_ctr_offset; 10342 bool is_retprobe; 10343 10344 if (event->attr.type != perf_uprobe.type) 10345 return -ENOENT; 10346 10347 if (!perfmon_capable()) 10348 return -EACCES; 10349 10350 /* 10351 * no branch sampling for probe events 10352 */ 10353 if (has_branch_stack(event)) 10354 return -EOPNOTSUPP; 10355 10356 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10357 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10358 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10359 if (err) 10360 return err; 10361 10362 event->destroy = perf_uprobe_destroy; 10363 10364 return 0; 10365 } 10366 #endif /* CONFIG_UPROBE_EVENTS */ 10367 10368 static inline void perf_tp_register(void) 10369 { 10370 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10371 #ifdef CONFIG_KPROBE_EVENTS 10372 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10373 #endif 10374 #ifdef CONFIG_UPROBE_EVENTS 10375 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10376 #endif 10377 } 10378 10379 static void perf_event_free_filter(struct perf_event *event) 10380 { 10381 ftrace_profile_free_filter(event); 10382 } 10383 10384 #ifdef CONFIG_BPF_SYSCALL 10385 static void bpf_overflow_handler(struct perf_event *event, 10386 struct perf_sample_data *data, 10387 struct pt_regs *regs) 10388 { 10389 struct bpf_perf_event_data_kern ctx = { 10390 .data = data, 10391 .event = event, 10392 }; 10393 struct bpf_prog *prog; 10394 int ret = 0; 10395 10396 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10397 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10398 goto out; 10399 rcu_read_lock(); 10400 prog = READ_ONCE(event->prog); 10401 if (prog) { 10402 perf_prepare_sample(data, event, regs); 10403 ret = bpf_prog_run(prog, &ctx); 10404 } 10405 rcu_read_unlock(); 10406 out: 10407 __this_cpu_dec(bpf_prog_active); 10408 if (!ret) 10409 return; 10410 10411 event->orig_overflow_handler(event, data, regs); 10412 } 10413 10414 static int perf_event_set_bpf_handler(struct perf_event *event, 10415 struct bpf_prog *prog, 10416 u64 bpf_cookie) 10417 { 10418 if (event->overflow_handler_context) 10419 /* hw breakpoint or kernel counter */ 10420 return -EINVAL; 10421 10422 if (event->prog) 10423 return -EEXIST; 10424 10425 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10426 return -EINVAL; 10427 10428 if (event->attr.precise_ip && 10429 prog->call_get_stack && 10430 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10431 event->attr.exclude_callchain_kernel || 10432 event->attr.exclude_callchain_user)) { 10433 /* 10434 * On perf_event with precise_ip, calling bpf_get_stack() 10435 * may trigger unwinder warnings and occasional crashes. 10436 * bpf_get_[stack|stackid] works around this issue by using 10437 * callchain attached to perf_sample_data. If the 10438 * perf_event does not full (kernel and user) callchain 10439 * attached to perf_sample_data, do not allow attaching BPF 10440 * program that calls bpf_get_[stack|stackid]. 10441 */ 10442 return -EPROTO; 10443 } 10444 10445 event->prog = prog; 10446 event->bpf_cookie = bpf_cookie; 10447 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10448 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10449 return 0; 10450 } 10451 10452 static void perf_event_free_bpf_handler(struct perf_event *event) 10453 { 10454 struct bpf_prog *prog = event->prog; 10455 10456 if (!prog) 10457 return; 10458 10459 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10460 event->prog = NULL; 10461 bpf_prog_put(prog); 10462 } 10463 #else 10464 static int perf_event_set_bpf_handler(struct perf_event *event, 10465 struct bpf_prog *prog, 10466 u64 bpf_cookie) 10467 { 10468 return -EOPNOTSUPP; 10469 } 10470 static void perf_event_free_bpf_handler(struct perf_event *event) 10471 { 10472 } 10473 #endif 10474 10475 /* 10476 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10477 * with perf_event_open() 10478 */ 10479 static inline bool perf_event_is_tracing(struct perf_event *event) 10480 { 10481 if (event->pmu == &perf_tracepoint) 10482 return true; 10483 #ifdef CONFIG_KPROBE_EVENTS 10484 if (event->pmu == &perf_kprobe) 10485 return true; 10486 #endif 10487 #ifdef CONFIG_UPROBE_EVENTS 10488 if (event->pmu == &perf_uprobe) 10489 return true; 10490 #endif 10491 return false; 10492 } 10493 10494 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10495 u64 bpf_cookie) 10496 { 10497 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10498 10499 if (!perf_event_is_tracing(event)) 10500 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10501 10502 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10503 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10504 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10505 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10506 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10507 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10508 return -EINVAL; 10509 10510 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10511 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10512 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10513 return -EINVAL; 10514 10515 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10516 /* only uprobe programs are allowed to be sleepable */ 10517 return -EINVAL; 10518 10519 /* Kprobe override only works for kprobes, not uprobes. */ 10520 if (prog->kprobe_override && !is_kprobe) 10521 return -EINVAL; 10522 10523 if (is_tracepoint || is_syscall_tp) { 10524 int off = trace_event_get_offsets(event->tp_event); 10525 10526 if (prog->aux->max_ctx_offset > off) 10527 return -EACCES; 10528 } 10529 10530 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10531 } 10532 10533 void perf_event_free_bpf_prog(struct perf_event *event) 10534 { 10535 if (!perf_event_is_tracing(event)) { 10536 perf_event_free_bpf_handler(event); 10537 return; 10538 } 10539 perf_event_detach_bpf_prog(event); 10540 } 10541 10542 #else 10543 10544 static inline void perf_tp_register(void) 10545 { 10546 } 10547 10548 static void perf_event_free_filter(struct perf_event *event) 10549 { 10550 } 10551 10552 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10553 u64 bpf_cookie) 10554 { 10555 return -ENOENT; 10556 } 10557 10558 void perf_event_free_bpf_prog(struct perf_event *event) 10559 { 10560 } 10561 #endif /* CONFIG_EVENT_TRACING */ 10562 10563 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10564 void perf_bp_event(struct perf_event *bp, void *data) 10565 { 10566 struct perf_sample_data sample; 10567 struct pt_regs *regs = data; 10568 10569 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10570 10571 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10572 perf_swevent_event(bp, 1, &sample, regs); 10573 } 10574 #endif 10575 10576 /* 10577 * Allocate a new address filter 10578 */ 10579 static struct perf_addr_filter * 10580 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10581 { 10582 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10583 struct perf_addr_filter *filter; 10584 10585 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10586 if (!filter) 10587 return NULL; 10588 10589 INIT_LIST_HEAD(&filter->entry); 10590 list_add_tail(&filter->entry, filters); 10591 10592 return filter; 10593 } 10594 10595 static void free_filters_list(struct list_head *filters) 10596 { 10597 struct perf_addr_filter *filter, *iter; 10598 10599 list_for_each_entry_safe(filter, iter, filters, entry) { 10600 path_put(&filter->path); 10601 list_del(&filter->entry); 10602 kfree(filter); 10603 } 10604 } 10605 10606 /* 10607 * Free existing address filters and optionally install new ones 10608 */ 10609 static void perf_addr_filters_splice(struct perf_event *event, 10610 struct list_head *head) 10611 { 10612 unsigned long flags; 10613 LIST_HEAD(list); 10614 10615 if (!has_addr_filter(event)) 10616 return; 10617 10618 /* don't bother with children, they don't have their own filters */ 10619 if (event->parent) 10620 return; 10621 10622 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10623 10624 list_splice_init(&event->addr_filters.list, &list); 10625 if (head) 10626 list_splice(head, &event->addr_filters.list); 10627 10628 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10629 10630 free_filters_list(&list); 10631 } 10632 10633 /* 10634 * Scan through mm's vmas and see if one of them matches the 10635 * @filter; if so, adjust filter's address range. 10636 * Called with mm::mmap_lock down for reading. 10637 */ 10638 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10639 struct mm_struct *mm, 10640 struct perf_addr_filter_range *fr) 10641 { 10642 struct vm_area_struct *vma; 10643 VMA_ITERATOR(vmi, mm, 0); 10644 10645 for_each_vma(vmi, vma) { 10646 if (!vma->vm_file) 10647 continue; 10648 10649 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10650 return; 10651 } 10652 } 10653 10654 /* 10655 * Update event's address range filters based on the 10656 * task's existing mappings, if any. 10657 */ 10658 static void perf_event_addr_filters_apply(struct perf_event *event) 10659 { 10660 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10661 struct task_struct *task = READ_ONCE(event->ctx->task); 10662 struct perf_addr_filter *filter; 10663 struct mm_struct *mm = NULL; 10664 unsigned int count = 0; 10665 unsigned long flags; 10666 10667 /* 10668 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10669 * will stop on the parent's child_mutex that our caller is also holding 10670 */ 10671 if (task == TASK_TOMBSTONE) 10672 return; 10673 10674 if (ifh->nr_file_filters) { 10675 mm = get_task_mm(task); 10676 if (!mm) 10677 goto restart; 10678 10679 mmap_read_lock(mm); 10680 } 10681 10682 raw_spin_lock_irqsave(&ifh->lock, flags); 10683 list_for_each_entry(filter, &ifh->list, entry) { 10684 if (filter->path.dentry) { 10685 /* 10686 * Adjust base offset if the filter is associated to a 10687 * binary that needs to be mapped: 10688 */ 10689 event->addr_filter_ranges[count].start = 0; 10690 event->addr_filter_ranges[count].size = 0; 10691 10692 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10693 } else { 10694 event->addr_filter_ranges[count].start = filter->offset; 10695 event->addr_filter_ranges[count].size = filter->size; 10696 } 10697 10698 count++; 10699 } 10700 10701 event->addr_filters_gen++; 10702 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10703 10704 if (ifh->nr_file_filters) { 10705 mmap_read_unlock(mm); 10706 10707 mmput(mm); 10708 } 10709 10710 restart: 10711 perf_event_stop(event, 1); 10712 } 10713 10714 /* 10715 * Address range filtering: limiting the data to certain 10716 * instruction address ranges. Filters are ioctl()ed to us from 10717 * userspace as ascii strings. 10718 * 10719 * Filter string format: 10720 * 10721 * ACTION RANGE_SPEC 10722 * where ACTION is one of the 10723 * * "filter": limit the trace to this region 10724 * * "start": start tracing from this address 10725 * * "stop": stop tracing at this address/region; 10726 * RANGE_SPEC is 10727 * * for kernel addresses: <start address>[/<size>] 10728 * * for object files: <start address>[/<size>]@</path/to/object/file> 10729 * 10730 * if <size> is not specified or is zero, the range is treated as a single 10731 * address; not valid for ACTION=="filter". 10732 */ 10733 enum { 10734 IF_ACT_NONE = -1, 10735 IF_ACT_FILTER, 10736 IF_ACT_START, 10737 IF_ACT_STOP, 10738 IF_SRC_FILE, 10739 IF_SRC_KERNEL, 10740 IF_SRC_FILEADDR, 10741 IF_SRC_KERNELADDR, 10742 }; 10743 10744 enum { 10745 IF_STATE_ACTION = 0, 10746 IF_STATE_SOURCE, 10747 IF_STATE_END, 10748 }; 10749 10750 static const match_table_t if_tokens = { 10751 { IF_ACT_FILTER, "filter" }, 10752 { IF_ACT_START, "start" }, 10753 { IF_ACT_STOP, "stop" }, 10754 { IF_SRC_FILE, "%u/%u@%s" }, 10755 { IF_SRC_KERNEL, "%u/%u" }, 10756 { IF_SRC_FILEADDR, "%u@%s" }, 10757 { IF_SRC_KERNELADDR, "%u" }, 10758 { IF_ACT_NONE, NULL }, 10759 }; 10760 10761 /* 10762 * Address filter string parser 10763 */ 10764 static int 10765 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10766 struct list_head *filters) 10767 { 10768 struct perf_addr_filter *filter = NULL; 10769 char *start, *orig, *filename = NULL; 10770 substring_t args[MAX_OPT_ARGS]; 10771 int state = IF_STATE_ACTION, token; 10772 unsigned int kernel = 0; 10773 int ret = -EINVAL; 10774 10775 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10776 if (!fstr) 10777 return -ENOMEM; 10778 10779 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10780 static const enum perf_addr_filter_action_t actions[] = { 10781 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10782 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10783 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10784 }; 10785 ret = -EINVAL; 10786 10787 if (!*start) 10788 continue; 10789 10790 /* filter definition begins */ 10791 if (state == IF_STATE_ACTION) { 10792 filter = perf_addr_filter_new(event, filters); 10793 if (!filter) 10794 goto fail; 10795 } 10796 10797 token = match_token(start, if_tokens, args); 10798 switch (token) { 10799 case IF_ACT_FILTER: 10800 case IF_ACT_START: 10801 case IF_ACT_STOP: 10802 if (state != IF_STATE_ACTION) 10803 goto fail; 10804 10805 filter->action = actions[token]; 10806 state = IF_STATE_SOURCE; 10807 break; 10808 10809 case IF_SRC_KERNELADDR: 10810 case IF_SRC_KERNEL: 10811 kernel = 1; 10812 fallthrough; 10813 10814 case IF_SRC_FILEADDR: 10815 case IF_SRC_FILE: 10816 if (state != IF_STATE_SOURCE) 10817 goto fail; 10818 10819 *args[0].to = 0; 10820 ret = kstrtoul(args[0].from, 0, &filter->offset); 10821 if (ret) 10822 goto fail; 10823 10824 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10825 *args[1].to = 0; 10826 ret = kstrtoul(args[1].from, 0, &filter->size); 10827 if (ret) 10828 goto fail; 10829 } 10830 10831 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10832 int fpos = token == IF_SRC_FILE ? 2 : 1; 10833 10834 kfree(filename); 10835 filename = match_strdup(&args[fpos]); 10836 if (!filename) { 10837 ret = -ENOMEM; 10838 goto fail; 10839 } 10840 } 10841 10842 state = IF_STATE_END; 10843 break; 10844 10845 default: 10846 goto fail; 10847 } 10848 10849 /* 10850 * Filter definition is fully parsed, validate and install it. 10851 * Make sure that it doesn't contradict itself or the event's 10852 * attribute. 10853 */ 10854 if (state == IF_STATE_END) { 10855 ret = -EINVAL; 10856 10857 /* 10858 * ACTION "filter" must have a non-zero length region 10859 * specified. 10860 */ 10861 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10862 !filter->size) 10863 goto fail; 10864 10865 if (!kernel) { 10866 if (!filename) 10867 goto fail; 10868 10869 /* 10870 * For now, we only support file-based filters 10871 * in per-task events; doing so for CPU-wide 10872 * events requires additional context switching 10873 * trickery, since same object code will be 10874 * mapped at different virtual addresses in 10875 * different processes. 10876 */ 10877 ret = -EOPNOTSUPP; 10878 if (!event->ctx->task) 10879 goto fail; 10880 10881 /* look up the path and grab its inode */ 10882 ret = kern_path(filename, LOOKUP_FOLLOW, 10883 &filter->path); 10884 if (ret) 10885 goto fail; 10886 10887 ret = -EINVAL; 10888 if (!filter->path.dentry || 10889 !S_ISREG(d_inode(filter->path.dentry) 10890 ->i_mode)) 10891 goto fail; 10892 10893 event->addr_filters.nr_file_filters++; 10894 } 10895 10896 /* ready to consume more filters */ 10897 kfree(filename); 10898 filename = NULL; 10899 state = IF_STATE_ACTION; 10900 filter = NULL; 10901 kernel = 0; 10902 } 10903 } 10904 10905 if (state != IF_STATE_ACTION) 10906 goto fail; 10907 10908 kfree(filename); 10909 kfree(orig); 10910 10911 return 0; 10912 10913 fail: 10914 kfree(filename); 10915 free_filters_list(filters); 10916 kfree(orig); 10917 10918 return ret; 10919 } 10920 10921 static int 10922 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10923 { 10924 LIST_HEAD(filters); 10925 int ret; 10926 10927 /* 10928 * Since this is called in perf_ioctl() path, we're already holding 10929 * ctx::mutex. 10930 */ 10931 lockdep_assert_held(&event->ctx->mutex); 10932 10933 if (WARN_ON_ONCE(event->parent)) 10934 return -EINVAL; 10935 10936 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10937 if (ret) 10938 goto fail_clear_files; 10939 10940 ret = event->pmu->addr_filters_validate(&filters); 10941 if (ret) 10942 goto fail_free_filters; 10943 10944 /* remove existing filters, if any */ 10945 perf_addr_filters_splice(event, &filters); 10946 10947 /* install new filters */ 10948 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10949 10950 return ret; 10951 10952 fail_free_filters: 10953 free_filters_list(&filters); 10954 10955 fail_clear_files: 10956 event->addr_filters.nr_file_filters = 0; 10957 10958 return ret; 10959 } 10960 10961 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10962 { 10963 int ret = -EINVAL; 10964 char *filter_str; 10965 10966 filter_str = strndup_user(arg, PAGE_SIZE); 10967 if (IS_ERR(filter_str)) 10968 return PTR_ERR(filter_str); 10969 10970 #ifdef CONFIG_EVENT_TRACING 10971 if (perf_event_is_tracing(event)) { 10972 struct perf_event_context *ctx = event->ctx; 10973 10974 /* 10975 * Beware, here be dragons!! 10976 * 10977 * the tracepoint muck will deadlock against ctx->mutex, but 10978 * the tracepoint stuff does not actually need it. So 10979 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10980 * already have a reference on ctx. 10981 * 10982 * This can result in event getting moved to a different ctx, 10983 * but that does not affect the tracepoint state. 10984 */ 10985 mutex_unlock(&ctx->mutex); 10986 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10987 mutex_lock(&ctx->mutex); 10988 } else 10989 #endif 10990 if (has_addr_filter(event)) 10991 ret = perf_event_set_addr_filter(event, filter_str); 10992 10993 kfree(filter_str); 10994 return ret; 10995 } 10996 10997 /* 10998 * hrtimer based swevent callback 10999 */ 11000 11001 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11002 { 11003 enum hrtimer_restart ret = HRTIMER_RESTART; 11004 struct perf_sample_data data; 11005 struct pt_regs *regs; 11006 struct perf_event *event; 11007 u64 period; 11008 11009 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11010 11011 if (event->state != PERF_EVENT_STATE_ACTIVE) 11012 return HRTIMER_NORESTART; 11013 11014 event->pmu->read(event); 11015 11016 perf_sample_data_init(&data, 0, event->hw.last_period); 11017 regs = get_irq_regs(); 11018 11019 if (regs && !perf_exclude_event(event, regs)) { 11020 if (!(event->attr.exclude_idle && is_idle_task(current))) 11021 if (__perf_event_overflow(event, 1, &data, regs)) 11022 ret = HRTIMER_NORESTART; 11023 } 11024 11025 period = max_t(u64, 10000, event->hw.sample_period); 11026 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11027 11028 return ret; 11029 } 11030 11031 static void perf_swevent_start_hrtimer(struct perf_event *event) 11032 { 11033 struct hw_perf_event *hwc = &event->hw; 11034 s64 period; 11035 11036 if (!is_sampling_event(event)) 11037 return; 11038 11039 period = local64_read(&hwc->period_left); 11040 if (period) { 11041 if (period < 0) 11042 period = 10000; 11043 11044 local64_set(&hwc->period_left, 0); 11045 } else { 11046 period = max_t(u64, 10000, hwc->sample_period); 11047 } 11048 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11049 HRTIMER_MODE_REL_PINNED_HARD); 11050 } 11051 11052 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11053 { 11054 struct hw_perf_event *hwc = &event->hw; 11055 11056 if (is_sampling_event(event)) { 11057 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11058 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11059 11060 hrtimer_cancel(&hwc->hrtimer); 11061 } 11062 } 11063 11064 static void perf_swevent_init_hrtimer(struct perf_event *event) 11065 { 11066 struct hw_perf_event *hwc = &event->hw; 11067 11068 if (!is_sampling_event(event)) 11069 return; 11070 11071 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11072 hwc->hrtimer.function = perf_swevent_hrtimer; 11073 11074 /* 11075 * Since hrtimers have a fixed rate, we can do a static freq->period 11076 * mapping and avoid the whole period adjust feedback stuff. 11077 */ 11078 if (event->attr.freq) { 11079 long freq = event->attr.sample_freq; 11080 11081 event->attr.sample_period = NSEC_PER_SEC / freq; 11082 hwc->sample_period = event->attr.sample_period; 11083 local64_set(&hwc->period_left, hwc->sample_period); 11084 hwc->last_period = hwc->sample_period; 11085 event->attr.freq = 0; 11086 } 11087 } 11088 11089 /* 11090 * Software event: cpu wall time clock 11091 */ 11092 11093 static void cpu_clock_event_update(struct perf_event *event) 11094 { 11095 s64 prev; 11096 u64 now; 11097 11098 now = local_clock(); 11099 prev = local64_xchg(&event->hw.prev_count, now); 11100 local64_add(now - prev, &event->count); 11101 } 11102 11103 static void cpu_clock_event_start(struct perf_event *event, int flags) 11104 { 11105 local64_set(&event->hw.prev_count, local_clock()); 11106 perf_swevent_start_hrtimer(event); 11107 } 11108 11109 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11110 { 11111 perf_swevent_cancel_hrtimer(event); 11112 cpu_clock_event_update(event); 11113 } 11114 11115 static int cpu_clock_event_add(struct perf_event *event, int flags) 11116 { 11117 if (flags & PERF_EF_START) 11118 cpu_clock_event_start(event, flags); 11119 perf_event_update_userpage(event); 11120 11121 return 0; 11122 } 11123 11124 static void cpu_clock_event_del(struct perf_event *event, int flags) 11125 { 11126 cpu_clock_event_stop(event, flags); 11127 } 11128 11129 static void cpu_clock_event_read(struct perf_event *event) 11130 { 11131 cpu_clock_event_update(event); 11132 } 11133 11134 static int cpu_clock_event_init(struct perf_event *event) 11135 { 11136 if (event->attr.type != perf_cpu_clock.type) 11137 return -ENOENT; 11138 11139 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11140 return -ENOENT; 11141 11142 /* 11143 * no branch sampling for software events 11144 */ 11145 if (has_branch_stack(event)) 11146 return -EOPNOTSUPP; 11147 11148 perf_swevent_init_hrtimer(event); 11149 11150 return 0; 11151 } 11152 11153 static struct pmu perf_cpu_clock = { 11154 .task_ctx_nr = perf_sw_context, 11155 11156 .capabilities = PERF_PMU_CAP_NO_NMI, 11157 .dev = PMU_NULL_DEV, 11158 11159 .event_init = cpu_clock_event_init, 11160 .add = cpu_clock_event_add, 11161 .del = cpu_clock_event_del, 11162 .start = cpu_clock_event_start, 11163 .stop = cpu_clock_event_stop, 11164 .read = cpu_clock_event_read, 11165 }; 11166 11167 /* 11168 * Software event: task time clock 11169 */ 11170 11171 static void task_clock_event_update(struct perf_event *event, u64 now) 11172 { 11173 u64 prev; 11174 s64 delta; 11175 11176 prev = local64_xchg(&event->hw.prev_count, now); 11177 delta = now - prev; 11178 local64_add(delta, &event->count); 11179 } 11180 11181 static void task_clock_event_start(struct perf_event *event, int flags) 11182 { 11183 local64_set(&event->hw.prev_count, event->ctx->time); 11184 perf_swevent_start_hrtimer(event); 11185 } 11186 11187 static void task_clock_event_stop(struct perf_event *event, int flags) 11188 { 11189 perf_swevent_cancel_hrtimer(event); 11190 task_clock_event_update(event, event->ctx->time); 11191 } 11192 11193 static int task_clock_event_add(struct perf_event *event, int flags) 11194 { 11195 if (flags & PERF_EF_START) 11196 task_clock_event_start(event, flags); 11197 perf_event_update_userpage(event); 11198 11199 return 0; 11200 } 11201 11202 static void task_clock_event_del(struct perf_event *event, int flags) 11203 { 11204 task_clock_event_stop(event, PERF_EF_UPDATE); 11205 } 11206 11207 static void task_clock_event_read(struct perf_event *event) 11208 { 11209 u64 now = perf_clock(); 11210 u64 delta = now - event->ctx->timestamp; 11211 u64 time = event->ctx->time + delta; 11212 11213 task_clock_event_update(event, time); 11214 } 11215 11216 static int task_clock_event_init(struct perf_event *event) 11217 { 11218 if (event->attr.type != perf_task_clock.type) 11219 return -ENOENT; 11220 11221 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11222 return -ENOENT; 11223 11224 /* 11225 * no branch sampling for software events 11226 */ 11227 if (has_branch_stack(event)) 11228 return -EOPNOTSUPP; 11229 11230 perf_swevent_init_hrtimer(event); 11231 11232 return 0; 11233 } 11234 11235 static struct pmu perf_task_clock = { 11236 .task_ctx_nr = perf_sw_context, 11237 11238 .capabilities = PERF_PMU_CAP_NO_NMI, 11239 .dev = PMU_NULL_DEV, 11240 11241 .event_init = task_clock_event_init, 11242 .add = task_clock_event_add, 11243 .del = task_clock_event_del, 11244 .start = task_clock_event_start, 11245 .stop = task_clock_event_stop, 11246 .read = task_clock_event_read, 11247 }; 11248 11249 static void perf_pmu_nop_void(struct pmu *pmu) 11250 { 11251 } 11252 11253 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11254 { 11255 } 11256 11257 static int perf_pmu_nop_int(struct pmu *pmu) 11258 { 11259 return 0; 11260 } 11261 11262 static int perf_event_nop_int(struct perf_event *event, u64 value) 11263 { 11264 return 0; 11265 } 11266 11267 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11268 11269 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11270 { 11271 __this_cpu_write(nop_txn_flags, flags); 11272 11273 if (flags & ~PERF_PMU_TXN_ADD) 11274 return; 11275 11276 perf_pmu_disable(pmu); 11277 } 11278 11279 static int perf_pmu_commit_txn(struct pmu *pmu) 11280 { 11281 unsigned int flags = __this_cpu_read(nop_txn_flags); 11282 11283 __this_cpu_write(nop_txn_flags, 0); 11284 11285 if (flags & ~PERF_PMU_TXN_ADD) 11286 return 0; 11287 11288 perf_pmu_enable(pmu); 11289 return 0; 11290 } 11291 11292 static void perf_pmu_cancel_txn(struct pmu *pmu) 11293 { 11294 unsigned int flags = __this_cpu_read(nop_txn_flags); 11295 11296 __this_cpu_write(nop_txn_flags, 0); 11297 11298 if (flags & ~PERF_PMU_TXN_ADD) 11299 return; 11300 11301 perf_pmu_enable(pmu); 11302 } 11303 11304 static int perf_event_idx_default(struct perf_event *event) 11305 { 11306 return 0; 11307 } 11308 11309 static void free_pmu_context(struct pmu *pmu) 11310 { 11311 free_percpu(pmu->cpu_pmu_context); 11312 } 11313 11314 /* 11315 * Let userspace know that this PMU supports address range filtering: 11316 */ 11317 static ssize_t nr_addr_filters_show(struct device *dev, 11318 struct device_attribute *attr, 11319 char *page) 11320 { 11321 struct pmu *pmu = dev_get_drvdata(dev); 11322 11323 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11324 } 11325 DEVICE_ATTR_RO(nr_addr_filters); 11326 11327 static struct idr pmu_idr; 11328 11329 static ssize_t 11330 type_show(struct device *dev, struct device_attribute *attr, char *page) 11331 { 11332 struct pmu *pmu = dev_get_drvdata(dev); 11333 11334 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11335 } 11336 static DEVICE_ATTR_RO(type); 11337 11338 static ssize_t 11339 perf_event_mux_interval_ms_show(struct device *dev, 11340 struct device_attribute *attr, 11341 char *page) 11342 { 11343 struct pmu *pmu = dev_get_drvdata(dev); 11344 11345 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11346 } 11347 11348 static DEFINE_MUTEX(mux_interval_mutex); 11349 11350 static ssize_t 11351 perf_event_mux_interval_ms_store(struct device *dev, 11352 struct device_attribute *attr, 11353 const char *buf, size_t count) 11354 { 11355 struct pmu *pmu = dev_get_drvdata(dev); 11356 int timer, cpu, ret; 11357 11358 ret = kstrtoint(buf, 0, &timer); 11359 if (ret) 11360 return ret; 11361 11362 if (timer < 1) 11363 return -EINVAL; 11364 11365 /* same value, noting to do */ 11366 if (timer == pmu->hrtimer_interval_ms) 11367 return count; 11368 11369 mutex_lock(&mux_interval_mutex); 11370 pmu->hrtimer_interval_ms = timer; 11371 11372 /* update all cpuctx for this PMU */ 11373 cpus_read_lock(); 11374 for_each_online_cpu(cpu) { 11375 struct perf_cpu_pmu_context *cpc; 11376 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11377 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11378 11379 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11380 } 11381 cpus_read_unlock(); 11382 mutex_unlock(&mux_interval_mutex); 11383 11384 return count; 11385 } 11386 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11387 11388 static struct attribute *pmu_dev_attrs[] = { 11389 &dev_attr_type.attr, 11390 &dev_attr_perf_event_mux_interval_ms.attr, 11391 NULL, 11392 }; 11393 ATTRIBUTE_GROUPS(pmu_dev); 11394 11395 static int pmu_bus_running; 11396 static struct bus_type pmu_bus = { 11397 .name = "event_source", 11398 .dev_groups = pmu_dev_groups, 11399 }; 11400 11401 static void pmu_dev_release(struct device *dev) 11402 { 11403 kfree(dev); 11404 } 11405 11406 static int pmu_dev_alloc(struct pmu *pmu) 11407 { 11408 int ret = -ENOMEM; 11409 11410 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11411 if (!pmu->dev) 11412 goto out; 11413 11414 pmu->dev->groups = pmu->attr_groups; 11415 device_initialize(pmu->dev); 11416 11417 dev_set_drvdata(pmu->dev, pmu); 11418 pmu->dev->bus = &pmu_bus; 11419 pmu->dev->parent = pmu->parent; 11420 pmu->dev->release = pmu_dev_release; 11421 11422 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11423 if (ret) 11424 goto free_dev; 11425 11426 ret = device_add(pmu->dev); 11427 if (ret) 11428 goto free_dev; 11429 11430 /* For PMUs with address filters, throw in an extra attribute: */ 11431 if (pmu->nr_addr_filters) 11432 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11433 11434 if (ret) 11435 goto del_dev; 11436 11437 if (pmu->attr_update) 11438 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11439 11440 if (ret) 11441 goto del_dev; 11442 11443 out: 11444 return ret; 11445 11446 del_dev: 11447 device_del(pmu->dev); 11448 11449 free_dev: 11450 put_device(pmu->dev); 11451 goto out; 11452 } 11453 11454 static struct lock_class_key cpuctx_mutex; 11455 static struct lock_class_key cpuctx_lock; 11456 11457 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11458 { 11459 int cpu, ret, max = PERF_TYPE_MAX; 11460 11461 mutex_lock(&pmus_lock); 11462 ret = -ENOMEM; 11463 pmu->pmu_disable_count = alloc_percpu(int); 11464 if (!pmu->pmu_disable_count) 11465 goto unlock; 11466 11467 pmu->type = -1; 11468 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11469 ret = -EINVAL; 11470 goto free_pdc; 11471 } 11472 11473 pmu->name = name; 11474 11475 if (type >= 0) 11476 max = type; 11477 11478 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11479 if (ret < 0) 11480 goto free_pdc; 11481 11482 WARN_ON(type >= 0 && ret != type); 11483 11484 type = ret; 11485 pmu->type = type; 11486 11487 if (pmu_bus_running && !pmu->dev) { 11488 ret = pmu_dev_alloc(pmu); 11489 if (ret) 11490 goto free_idr; 11491 } 11492 11493 ret = -ENOMEM; 11494 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11495 if (!pmu->cpu_pmu_context) 11496 goto free_dev; 11497 11498 for_each_possible_cpu(cpu) { 11499 struct perf_cpu_pmu_context *cpc; 11500 11501 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11502 __perf_init_event_pmu_context(&cpc->epc, pmu); 11503 __perf_mux_hrtimer_init(cpc, cpu); 11504 } 11505 11506 if (!pmu->start_txn) { 11507 if (pmu->pmu_enable) { 11508 /* 11509 * If we have pmu_enable/pmu_disable calls, install 11510 * transaction stubs that use that to try and batch 11511 * hardware accesses. 11512 */ 11513 pmu->start_txn = perf_pmu_start_txn; 11514 pmu->commit_txn = perf_pmu_commit_txn; 11515 pmu->cancel_txn = perf_pmu_cancel_txn; 11516 } else { 11517 pmu->start_txn = perf_pmu_nop_txn; 11518 pmu->commit_txn = perf_pmu_nop_int; 11519 pmu->cancel_txn = perf_pmu_nop_void; 11520 } 11521 } 11522 11523 if (!pmu->pmu_enable) { 11524 pmu->pmu_enable = perf_pmu_nop_void; 11525 pmu->pmu_disable = perf_pmu_nop_void; 11526 } 11527 11528 if (!pmu->check_period) 11529 pmu->check_period = perf_event_nop_int; 11530 11531 if (!pmu->event_idx) 11532 pmu->event_idx = perf_event_idx_default; 11533 11534 list_add_rcu(&pmu->entry, &pmus); 11535 atomic_set(&pmu->exclusive_cnt, 0); 11536 ret = 0; 11537 unlock: 11538 mutex_unlock(&pmus_lock); 11539 11540 return ret; 11541 11542 free_dev: 11543 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11544 device_del(pmu->dev); 11545 put_device(pmu->dev); 11546 } 11547 11548 free_idr: 11549 idr_remove(&pmu_idr, pmu->type); 11550 11551 free_pdc: 11552 free_percpu(pmu->pmu_disable_count); 11553 goto unlock; 11554 } 11555 EXPORT_SYMBOL_GPL(perf_pmu_register); 11556 11557 void perf_pmu_unregister(struct pmu *pmu) 11558 { 11559 mutex_lock(&pmus_lock); 11560 list_del_rcu(&pmu->entry); 11561 11562 /* 11563 * We dereference the pmu list under both SRCU and regular RCU, so 11564 * synchronize against both of those. 11565 */ 11566 synchronize_srcu(&pmus_srcu); 11567 synchronize_rcu(); 11568 11569 free_percpu(pmu->pmu_disable_count); 11570 idr_remove(&pmu_idr, pmu->type); 11571 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11572 if (pmu->nr_addr_filters) 11573 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11574 device_del(pmu->dev); 11575 put_device(pmu->dev); 11576 } 11577 free_pmu_context(pmu); 11578 mutex_unlock(&pmus_lock); 11579 } 11580 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11581 11582 static inline bool has_extended_regs(struct perf_event *event) 11583 { 11584 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11585 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11586 } 11587 11588 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11589 { 11590 struct perf_event_context *ctx = NULL; 11591 int ret; 11592 11593 if (!try_module_get(pmu->module)) 11594 return -ENODEV; 11595 11596 /* 11597 * A number of pmu->event_init() methods iterate the sibling_list to, 11598 * for example, validate if the group fits on the PMU. Therefore, 11599 * if this is a sibling event, acquire the ctx->mutex to protect 11600 * the sibling_list. 11601 */ 11602 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11603 /* 11604 * This ctx->mutex can nest when we're called through 11605 * inheritance. See the perf_event_ctx_lock_nested() comment. 11606 */ 11607 ctx = perf_event_ctx_lock_nested(event->group_leader, 11608 SINGLE_DEPTH_NESTING); 11609 BUG_ON(!ctx); 11610 } 11611 11612 event->pmu = pmu; 11613 ret = pmu->event_init(event); 11614 11615 if (ctx) 11616 perf_event_ctx_unlock(event->group_leader, ctx); 11617 11618 if (!ret) { 11619 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11620 has_extended_regs(event)) 11621 ret = -EOPNOTSUPP; 11622 11623 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11624 event_has_any_exclude_flag(event)) 11625 ret = -EINVAL; 11626 11627 if (ret && event->destroy) 11628 event->destroy(event); 11629 } 11630 11631 if (ret) 11632 module_put(pmu->module); 11633 11634 return ret; 11635 } 11636 11637 static struct pmu *perf_init_event(struct perf_event *event) 11638 { 11639 bool extended_type = false; 11640 int idx, type, ret; 11641 struct pmu *pmu; 11642 11643 idx = srcu_read_lock(&pmus_srcu); 11644 11645 /* 11646 * Save original type before calling pmu->event_init() since certain 11647 * pmus overwrites event->attr.type to forward event to another pmu. 11648 */ 11649 event->orig_type = event->attr.type; 11650 11651 /* Try parent's PMU first: */ 11652 if (event->parent && event->parent->pmu) { 11653 pmu = event->parent->pmu; 11654 ret = perf_try_init_event(pmu, event); 11655 if (!ret) 11656 goto unlock; 11657 } 11658 11659 /* 11660 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11661 * are often aliases for PERF_TYPE_RAW. 11662 */ 11663 type = event->attr.type; 11664 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11665 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11666 if (!type) { 11667 type = PERF_TYPE_RAW; 11668 } else { 11669 extended_type = true; 11670 event->attr.config &= PERF_HW_EVENT_MASK; 11671 } 11672 } 11673 11674 again: 11675 rcu_read_lock(); 11676 pmu = idr_find(&pmu_idr, type); 11677 rcu_read_unlock(); 11678 if (pmu) { 11679 if (event->attr.type != type && type != PERF_TYPE_RAW && 11680 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11681 goto fail; 11682 11683 ret = perf_try_init_event(pmu, event); 11684 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11685 type = event->attr.type; 11686 goto again; 11687 } 11688 11689 if (ret) 11690 pmu = ERR_PTR(ret); 11691 11692 goto unlock; 11693 } 11694 11695 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11696 ret = perf_try_init_event(pmu, event); 11697 if (!ret) 11698 goto unlock; 11699 11700 if (ret != -ENOENT) { 11701 pmu = ERR_PTR(ret); 11702 goto unlock; 11703 } 11704 } 11705 fail: 11706 pmu = ERR_PTR(-ENOENT); 11707 unlock: 11708 srcu_read_unlock(&pmus_srcu, idx); 11709 11710 return pmu; 11711 } 11712 11713 static void attach_sb_event(struct perf_event *event) 11714 { 11715 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11716 11717 raw_spin_lock(&pel->lock); 11718 list_add_rcu(&event->sb_list, &pel->list); 11719 raw_spin_unlock(&pel->lock); 11720 } 11721 11722 /* 11723 * We keep a list of all !task (and therefore per-cpu) events 11724 * that need to receive side-band records. 11725 * 11726 * This avoids having to scan all the various PMU per-cpu contexts 11727 * looking for them. 11728 */ 11729 static void account_pmu_sb_event(struct perf_event *event) 11730 { 11731 if (is_sb_event(event)) 11732 attach_sb_event(event); 11733 } 11734 11735 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11736 static void account_freq_event_nohz(void) 11737 { 11738 #ifdef CONFIG_NO_HZ_FULL 11739 /* Lock so we don't race with concurrent unaccount */ 11740 spin_lock(&nr_freq_lock); 11741 if (atomic_inc_return(&nr_freq_events) == 1) 11742 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11743 spin_unlock(&nr_freq_lock); 11744 #endif 11745 } 11746 11747 static void account_freq_event(void) 11748 { 11749 if (tick_nohz_full_enabled()) 11750 account_freq_event_nohz(); 11751 else 11752 atomic_inc(&nr_freq_events); 11753 } 11754 11755 11756 static void account_event(struct perf_event *event) 11757 { 11758 bool inc = false; 11759 11760 if (event->parent) 11761 return; 11762 11763 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11764 inc = true; 11765 if (event->attr.mmap || event->attr.mmap_data) 11766 atomic_inc(&nr_mmap_events); 11767 if (event->attr.build_id) 11768 atomic_inc(&nr_build_id_events); 11769 if (event->attr.comm) 11770 atomic_inc(&nr_comm_events); 11771 if (event->attr.namespaces) 11772 atomic_inc(&nr_namespaces_events); 11773 if (event->attr.cgroup) 11774 atomic_inc(&nr_cgroup_events); 11775 if (event->attr.task) 11776 atomic_inc(&nr_task_events); 11777 if (event->attr.freq) 11778 account_freq_event(); 11779 if (event->attr.context_switch) { 11780 atomic_inc(&nr_switch_events); 11781 inc = true; 11782 } 11783 if (has_branch_stack(event)) 11784 inc = true; 11785 if (is_cgroup_event(event)) 11786 inc = true; 11787 if (event->attr.ksymbol) 11788 atomic_inc(&nr_ksymbol_events); 11789 if (event->attr.bpf_event) 11790 atomic_inc(&nr_bpf_events); 11791 if (event->attr.text_poke) 11792 atomic_inc(&nr_text_poke_events); 11793 11794 if (inc) { 11795 /* 11796 * We need the mutex here because static_branch_enable() 11797 * must complete *before* the perf_sched_count increment 11798 * becomes visible. 11799 */ 11800 if (atomic_inc_not_zero(&perf_sched_count)) 11801 goto enabled; 11802 11803 mutex_lock(&perf_sched_mutex); 11804 if (!atomic_read(&perf_sched_count)) { 11805 static_branch_enable(&perf_sched_events); 11806 /* 11807 * Guarantee that all CPUs observe they key change and 11808 * call the perf scheduling hooks before proceeding to 11809 * install events that need them. 11810 */ 11811 synchronize_rcu(); 11812 } 11813 /* 11814 * Now that we have waited for the sync_sched(), allow further 11815 * increments to by-pass the mutex. 11816 */ 11817 atomic_inc(&perf_sched_count); 11818 mutex_unlock(&perf_sched_mutex); 11819 } 11820 enabled: 11821 11822 account_pmu_sb_event(event); 11823 } 11824 11825 /* 11826 * Allocate and initialize an event structure 11827 */ 11828 static struct perf_event * 11829 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11830 struct task_struct *task, 11831 struct perf_event *group_leader, 11832 struct perf_event *parent_event, 11833 perf_overflow_handler_t overflow_handler, 11834 void *context, int cgroup_fd) 11835 { 11836 struct pmu *pmu; 11837 struct perf_event *event; 11838 struct hw_perf_event *hwc; 11839 long err = -EINVAL; 11840 int node; 11841 11842 if ((unsigned)cpu >= nr_cpu_ids) { 11843 if (!task || cpu != -1) 11844 return ERR_PTR(-EINVAL); 11845 } 11846 if (attr->sigtrap && !task) { 11847 /* Requires a task: avoid signalling random tasks. */ 11848 return ERR_PTR(-EINVAL); 11849 } 11850 11851 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11852 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11853 node); 11854 if (!event) 11855 return ERR_PTR(-ENOMEM); 11856 11857 /* 11858 * Single events are their own group leaders, with an 11859 * empty sibling list: 11860 */ 11861 if (!group_leader) 11862 group_leader = event; 11863 11864 mutex_init(&event->child_mutex); 11865 INIT_LIST_HEAD(&event->child_list); 11866 11867 INIT_LIST_HEAD(&event->event_entry); 11868 INIT_LIST_HEAD(&event->sibling_list); 11869 INIT_LIST_HEAD(&event->active_list); 11870 init_event_group(event); 11871 INIT_LIST_HEAD(&event->rb_entry); 11872 INIT_LIST_HEAD(&event->active_entry); 11873 INIT_LIST_HEAD(&event->addr_filters.list); 11874 INIT_HLIST_NODE(&event->hlist_entry); 11875 11876 11877 init_waitqueue_head(&event->waitq); 11878 init_irq_work(&event->pending_irq, perf_pending_irq); 11879 init_task_work(&event->pending_task, perf_pending_task); 11880 11881 mutex_init(&event->mmap_mutex); 11882 raw_spin_lock_init(&event->addr_filters.lock); 11883 11884 atomic_long_set(&event->refcount, 1); 11885 event->cpu = cpu; 11886 event->attr = *attr; 11887 event->group_leader = group_leader; 11888 event->pmu = NULL; 11889 event->oncpu = -1; 11890 11891 event->parent = parent_event; 11892 11893 event->ns = get_pid_ns(task_active_pid_ns(current)); 11894 event->id = atomic64_inc_return(&perf_event_id); 11895 11896 event->state = PERF_EVENT_STATE_INACTIVE; 11897 11898 if (parent_event) 11899 event->event_caps = parent_event->event_caps; 11900 11901 if (task) { 11902 event->attach_state = PERF_ATTACH_TASK; 11903 /* 11904 * XXX pmu::event_init needs to know what task to account to 11905 * and we cannot use the ctx information because we need the 11906 * pmu before we get a ctx. 11907 */ 11908 event->hw.target = get_task_struct(task); 11909 } 11910 11911 event->clock = &local_clock; 11912 if (parent_event) 11913 event->clock = parent_event->clock; 11914 11915 if (!overflow_handler && parent_event) { 11916 overflow_handler = parent_event->overflow_handler; 11917 context = parent_event->overflow_handler_context; 11918 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11919 if (overflow_handler == bpf_overflow_handler) { 11920 struct bpf_prog *prog = parent_event->prog; 11921 11922 bpf_prog_inc(prog); 11923 event->prog = prog; 11924 event->orig_overflow_handler = 11925 parent_event->orig_overflow_handler; 11926 } 11927 #endif 11928 } 11929 11930 if (overflow_handler) { 11931 event->overflow_handler = overflow_handler; 11932 event->overflow_handler_context = context; 11933 } else if (is_write_backward(event)){ 11934 event->overflow_handler = perf_event_output_backward; 11935 event->overflow_handler_context = NULL; 11936 } else { 11937 event->overflow_handler = perf_event_output_forward; 11938 event->overflow_handler_context = NULL; 11939 } 11940 11941 perf_event__state_init(event); 11942 11943 pmu = NULL; 11944 11945 hwc = &event->hw; 11946 hwc->sample_period = attr->sample_period; 11947 if (attr->freq && attr->sample_freq) 11948 hwc->sample_period = 1; 11949 hwc->last_period = hwc->sample_period; 11950 11951 local64_set(&hwc->period_left, hwc->sample_period); 11952 11953 /* 11954 * We currently do not support PERF_SAMPLE_READ on inherited events. 11955 * See perf_output_read(). 11956 */ 11957 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11958 goto err_ns; 11959 11960 if (!has_branch_stack(event)) 11961 event->attr.branch_sample_type = 0; 11962 11963 pmu = perf_init_event(event); 11964 if (IS_ERR(pmu)) { 11965 err = PTR_ERR(pmu); 11966 goto err_ns; 11967 } 11968 11969 /* 11970 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 11971 * events (they don't make sense as the cgroup will be different 11972 * on other CPUs in the uncore mask). 11973 */ 11974 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 11975 err = -EINVAL; 11976 goto err_pmu; 11977 } 11978 11979 if (event->attr.aux_output && 11980 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11981 err = -EOPNOTSUPP; 11982 goto err_pmu; 11983 } 11984 11985 if (cgroup_fd != -1) { 11986 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11987 if (err) 11988 goto err_pmu; 11989 } 11990 11991 err = exclusive_event_init(event); 11992 if (err) 11993 goto err_pmu; 11994 11995 if (has_addr_filter(event)) { 11996 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11997 sizeof(struct perf_addr_filter_range), 11998 GFP_KERNEL); 11999 if (!event->addr_filter_ranges) { 12000 err = -ENOMEM; 12001 goto err_per_task; 12002 } 12003 12004 /* 12005 * Clone the parent's vma offsets: they are valid until exec() 12006 * even if the mm is not shared with the parent. 12007 */ 12008 if (event->parent) { 12009 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12010 12011 raw_spin_lock_irq(&ifh->lock); 12012 memcpy(event->addr_filter_ranges, 12013 event->parent->addr_filter_ranges, 12014 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12015 raw_spin_unlock_irq(&ifh->lock); 12016 } 12017 12018 /* force hw sync on the address filters */ 12019 event->addr_filters_gen = 1; 12020 } 12021 12022 if (!event->parent) { 12023 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12024 err = get_callchain_buffers(attr->sample_max_stack); 12025 if (err) 12026 goto err_addr_filters; 12027 } 12028 } 12029 12030 err = security_perf_event_alloc(event); 12031 if (err) 12032 goto err_callchain_buffer; 12033 12034 /* symmetric to unaccount_event() in _free_event() */ 12035 account_event(event); 12036 12037 return event; 12038 12039 err_callchain_buffer: 12040 if (!event->parent) { 12041 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12042 put_callchain_buffers(); 12043 } 12044 err_addr_filters: 12045 kfree(event->addr_filter_ranges); 12046 12047 err_per_task: 12048 exclusive_event_destroy(event); 12049 12050 err_pmu: 12051 if (is_cgroup_event(event)) 12052 perf_detach_cgroup(event); 12053 if (event->destroy) 12054 event->destroy(event); 12055 module_put(pmu->module); 12056 err_ns: 12057 if (event->hw.target) 12058 put_task_struct(event->hw.target); 12059 call_rcu(&event->rcu_head, free_event_rcu); 12060 12061 return ERR_PTR(err); 12062 } 12063 12064 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12065 struct perf_event_attr *attr) 12066 { 12067 u32 size; 12068 int ret; 12069 12070 /* Zero the full structure, so that a short copy will be nice. */ 12071 memset(attr, 0, sizeof(*attr)); 12072 12073 ret = get_user(size, &uattr->size); 12074 if (ret) 12075 return ret; 12076 12077 /* ABI compatibility quirk: */ 12078 if (!size) 12079 size = PERF_ATTR_SIZE_VER0; 12080 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12081 goto err_size; 12082 12083 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12084 if (ret) { 12085 if (ret == -E2BIG) 12086 goto err_size; 12087 return ret; 12088 } 12089 12090 attr->size = size; 12091 12092 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12093 return -EINVAL; 12094 12095 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12096 return -EINVAL; 12097 12098 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12099 return -EINVAL; 12100 12101 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12102 u64 mask = attr->branch_sample_type; 12103 12104 /* only using defined bits */ 12105 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12106 return -EINVAL; 12107 12108 /* at least one branch bit must be set */ 12109 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12110 return -EINVAL; 12111 12112 /* propagate priv level, when not set for branch */ 12113 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12114 12115 /* exclude_kernel checked on syscall entry */ 12116 if (!attr->exclude_kernel) 12117 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12118 12119 if (!attr->exclude_user) 12120 mask |= PERF_SAMPLE_BRANCH_USER; 12121 12122 if (!attr->exclude_hv) 12123 mask |= PERF_SAMPLE_BRANCH_HV; 12124 /* 12125 * adjust user setting (for HW filter setup) 12126 */ 12127 attr->branch_sample_type = mask; 12128 } 12129 /* privileged levels capture (kernel, hv): check permissions */ 12130 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12131 ret = perf_allow_kernel(attr); 12132 if (ret) 12133 return ret; 12134 } 12135 } 12136 12137 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12138 ret = perf_reg_validate(attr->sample_regs_user); 12139 if (ret) 12140 return ret; 12141 } 12142 12143 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12144 if (!arch_perf_have_user_stack_dump()) 12145 return -ENOSYS; 12146 12147 /* 12148 * We have __u32 type for the size, but so far 12149 * we can only use __u16 as maximum due to the 12150 * __u16 sample size limit. 12151 */ 12152 if (attr->sample_stack_user >= USHRT_MAX) 12153 return -EINVAL; 12154 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12155 return -EINVAL; 12156 } 12157 12158 if (!attr->sample_max_stack) 12159 attr->sample_max_stack = sysctl_perf_event_max_stack; 12160 12161 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12162 ret = perf_reg_validate(attr->sample_regs_intr); 12163 12164 #ifndef CONFIG_CGROUP_PERF 12165 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12166 return -EINVAL; 12167 #endif 12168 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12169 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12170 return -EINVAL; 12171 12172 if (!attr->inherit && attr->inherit_thread) 12173 return -EINVAL; 12174 12175 if (attr->remove_on_exec && attr->enable_on_exec) 12176 return -EINVAL; 12177 12178 if (attr->sigtrap && !attr->remove_on_exec) 12179 return -EINVAL; 12180 12181 out: 12182 return ret; 12183 12184 err_size: 12185 put_user(sizeof(*attr), &uattr->size); 12186 ret = -E2BIG; 12187 goto out; 12188 } 12189 12190 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12191 { 12192 if (b < a) 12193 swap(a, b); 12194 12195 mutex_lock(a); 12196 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12197 } 12198 12199 static int 12200 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12201 { 12202 struct perf_buffer *rb = NULL; 12203 int ret = -EINVAL; 12204 12205 if (!output_event) { 12206 mutex_lock(&event->mmap_mutex); 12207 goto set; 12208 } 12209 12210 /* don't allow circular references */ 12211 if (event == output_event) 12212 goto out; 12213 12214 /* 12215 * Don't allow cross-cpu buffers 12216 */ 12217 if (output_event->cpu != event->cpu) 12218 goto out; 12219 12220 /* 12221 * If its not a per-cpu rb, it must be the same task. 12222 */ 12223 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12224 goto out; 12225 12226 /* 12227 * Mixing clocks in the same buffer is trouble you don't need. 12228 */ 12229 if (output_event->clock != event->clock) 12230 goto out; 12231 12232 /* 12233 * Either writing ring buffer from beginning or from end. 12234 * Mixing is not allowed. 12235 */ 12236 if (is_write_backward(output_event) != is_write_backward(event)) 12237 goto out; 12238 12239 /* 12240 * If both events generate aux data, they must be on the same PMU 12241 */ 12242 if (has_aux(event) && has_aux(output_event) && 12243 event->pmu != output_event->pmu) 12244 goto out; 12245 12246 /* 12247 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12248 * output_event is already on rb->event_list, and the list iteration 12249 * restarts after every removal, it is guaranteed this new event is 12250 * observed *OR* if output_event is already removed, it's guaranteed we 12251 * observe !rb->mmap_count. 12252 */ 12253 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12254 set: 12255 /* Can't redirect output if we've got an active mmap() */ 12256 if (atomic_read(&event->mmap_count)) 12257 goto unlock; 12258 12259 if (output_event) { 12260 /* get the rb we want to redirect to */ 12261 rb = ring_buffer_get(output_event); 12262 if (!rb) 12263 goto unlock; 12264 12265 /* did we race against perf_mmap_close() */ 12266 if (!atomic_read(&rb->mmap_count)) { 12267 ring_buffer_put(rb); 12268 goto unlock; 12269 } 12270 } 12271 12272 ring_buffer_attach(event, rb); 12273 12274 ret = 0; 12275 unlock: 12276 mutex_unlock(&event->mmap_mutex); 12277 if (output_event) 12278 mutex_unlock(&output_event->mmap_mutex); 12279 12280 out: 12281 return ret; 12282 } 12283 12284 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12285 { 12286 bool nmi_safe = false; 12287 12288 switch (clk_id) { 12289 case CLOCK_MONOTONIC: 12290 event->clock = &ktime_get_mono_fast_ns; 12291 nmi_safe = true; 12292 break; 12293 12294 case CLOCK_MONOTONIC_RAW: 12295 event->clock = &ktime_get_raw_fast_ns; 12296 nmi_safe = true; 12297 break; 12298 12299 case CLOCK_REALTIME: 12300 event->clock = &ktime_get_real_ns; 12301 break; 12302 12303 case CLOCK_BOOTTIME: 12304 event->clock = &ktime_get_boottime_ns; 12305 break; 12306 12307 case CLOCK_TAI: 12308 event->clock = &ktime_get_clocktai_ns; 12309 break; 12310 12311 default: 12312 return -EINVAL; 12313 } 12314 12315 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12316 return -EINVAL; 12317 12318 return 0; 12319 } 12320 12321 static bool 12322 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12323 { 12324 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12325 bool is_capable = perfmon_capable(); 12326 12327 if (attr->sigtrap) { 12328 /* 12329 * perf_event_attr::sigtrap sends signals to the other task. 12330 * Require the current task to also have CAP_KILL. 12331 */ 12332 rcu_read_lock(); 12333 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12334 rcu_read_unlock(); 12335 12336 /* 12337 * If the required capabilities aren't available, checks for 12338 * ptrace permissions: upgrade to ATTACH, since sending signals 12339 * can effectively change the target task. 12340 */ 12341 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12342 } 12343 12344 /* 12345 * Preserve ptrace permission check for backwards compatibility. The 12346 * ptrace check also includes checks that the current task and other 12347 * task have matching uids, and is therefore not done here explicitly. 12348 */ 12349 return is_capable || ptrace_may_access(task, ptrace_mode); 12350 } 12351 12352 /** 12353 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12354 * 12355 * @attr_uptr: event_id type attributes for monitoring/sampling 12356 * @pid: target pid 12357 * @cpu: target cpu 12358 * @group_fd: group leader event fd 12359 * @flags: perf event open flags 12360 */ 12361 SYSCALL_DEFINE5(perf_event_open, 12362 struct perf_event_attr __user *, attr_uptr, 12363 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12364 { 12365 struct perf_event *group_leader = NULL, *output_event = NULL; 12366 struct perf_event_pmu_context *pmu_ctx; 12367 struct perf_event *event, *sibling; 12368 struct perf_event_attr attr; 12369 struct perf_event_context *ctx; 12370 struct file *event_file = NULL; 12371 struct fd group = {NULL, 0}; 12372 struct task_struct *task = NULL; 12373 struct pmu *pmu; 12374 int event_fd; 12375 int move_group = 0; 12376 int err; 12377 int f_flags = O_RDWR; 12378 int cgroup_fd = -1; 12379 12380 /* for future expandability... */ 12381 if (flags & ~PERF_FLAG_ALL) 12382 return -EINVAL; 12383 12384 err = perf_copy_attr(attr_uptr, &attr); 12385 if (err) 12386 return err; 12387 12388 /* Do we allow access to perf_event_open(2) ? */ 12389 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12390 if (err) 12391 return err; 12392 12393 if (!attr.exclude_kernel) { 12394 err = perf_allow_kernel(&attr); 12395 if (err) 12396 return err; 12397 } 12398 12399 if (attr.namespaces) { 12400 if (!perfmon_capable()) 12401 return -EACCES; 12402 } 12403 12404 if (attr.freq) { 12405 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12406 return -EINVAL; 12407 } else { 12408 if (attr.sample_period & (1ULL << 63)) 12409 return -EINVAL; 12410 } 12411 12412 /* Only privileged users can get physical addresses */ 12413 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12414 err = perf_allow_kernel(&attr); 12415 if (err) 12416 return err; 12417 } 12418 12419 /* REGS_INTR can leak data, lockdown must prevent this */ 12420 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12421 err = security_locked_down(LOCKDOWN_PERF); 12422 if (err) 12423 return err; 12424 } 12425 12426 /* 12427 * In cgroup mode, the pid argument is used to pass the fd 12428 * opened to the cgroup directory in cgroupfs. The cpu argument 12429 * designates the cpu on which to monitor threads from that 12430 * cgroup. 12431 */ 12432 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12433 return -EINVAL; 12434 12435 if (flags & PERF_FLAG_FD_CLOEXEC) 12436 f_flags |= O_CLOEXEC; 12437 12438 event_fd = get_unused_fd_flags(f_flags); 12439 if (event_fd < 0) 12440 return event_fd; 12441 12442 if (group_fd != -1) { 12443 err = perf_fget_light(group_fd, &group); 12444 if (err) 12445 goto err_fd; 12446 group_leader = group.file->private_data; 12447 if (flags & PERF_FLAG_FD_OUTPUT) 12448 output_event = group_leader; 12449 if (flags & PERF_FLAG_FD_NO_GROUP) 12450 group_leader = NULL; 12451 } 12452 12453 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12454 task = find_lively_task_by_vpid(pid); 12455 if (IS_ERR(task)) { 12456 err = PTR_ERR(task); 12457 goto err_group_fd; 12458 } 12459 } 12460 12461 if (task && group_leader && 12462 group_leader->attr.inherit != attr.inherit) { 12463 err = -EINVAL; 12464 goto err_task; 12465 } 12466 12467 if (flags & PERF_FLAG_PID_CGROUP) 12468 cgroup_fd = pid; 12469 12470 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12471 NULL, NULL, cgroup_fd); 12472 if (IS_ERR(event)) { 12473 err = PTR_ERR(event); 12474 goto err_task; 12475 } 12476 12477 if (is_sampling_event(event)) { 12478 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12479 err = -EOPNOTSUPP; 12480 goto err_alloc; 12481 } 12482 } 12483 12484 /* 12485 * Special case software events and allow them to be part of 12486 * any hardware group. 12487 */ 12488 pmu = event->pmu; 12489 12490 if (attr.use_clockid) { 12491 err = perf_event_set_clock(event, attr.clockid); 12492 if (err) 12493 goto err_alloc; 12494 } 12495 12496 if (pmu->task_ctx_nr == perf_sw_context) 12497 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12498 12499 if (task) { 12500 err = down_read_interruptible(&task->signal->exec_update_lock); 12501 if (err) 12502 goto err_alloc; 12503 12504 /* 12505 * We must hold exec_update_lock across this and any potential 12506 * perf_install_in_context() call for this new event to 12507 * serialize against exec() altering our credentials (and the 12508 * perf_event_exit_task() that could imply). 12509 */ 12510 err = -EACCES; 12511 if (!perf_check_permission(&attr, task)) 12512 goto err_cred; 12513 } 12514 12515 /* 12516 * Get the target context (task or percpu): 12517 */ 12518 ctx = find_get_context(task, event); 12519 if (IS_ERR(ctx)) { 12520 err = PTR_ERR(ctx); 12521 goto err_cred; 12522 } 12523 12524 mutex_lock(&ctx->mutex); 12525 12526 if (ctx->task == TASK_TOMBSTONE) { 12527 err = -ESRCH; 12528 goto err_locked; 12529 } 12530 12531 if (!task) { 12532 /* 12533 * Check if the @cpu we're creating an event for is online. 12534 * 12535 * We use the perf_cpu_context::ctx::mutex to serialize against 12536 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12537 */ 12538 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12539 12540 if (!cpuctx->online) { 12541 err = -ENODEV; 12542 goto err_locked; 12543 } 12544 } 12545 12546 if (group_leader) { 12547 err = -EINVAL; 12548 12549 /* 12550 * Do not allow a recursive hierarchy (this new sibling 12551 * becoming part of another group-sibling): 12552 */ 12553 if (group_leader->group_leader != group_leader) 12554 goto err_locked; 12555 12556 /* All events in a group should have the same clock */ 12557 if (group_leader->clock != event->clock) 12558 goto err_locked; 12559 12560 /* 12561 * Make sure we're both events for the same CPU; 12562 * grouping events for different CPUs is broken; since 12563 * you can never concurrently schedule them anyhow. 12564 */ 12565 if (group_leader->cpu != event->cpu) 12566 goto err_locked; 12567 12568 /* 12569 * Make sure we're both on the same context; either task or cpu. 12570 */ 12571 if (group_leader->ctx != ctx) 12572 goto err_locked; 12573 12574 /* 12575 * Only a group leader can be exclusive or pinned 12576 */ 12577 if (attr.exclusive || attr.pinned) 12578 goto err_locked; 12579 12580 if (is_software_event(event) && 12581 !in_software_context(group_leader)) { 12582 /* 12583 * If the event is a sw event, but the group_leader 12584 * is on hw context. 12585 * 12586 * Allow the addition of software events to hw 12587 * groups, this is safe because software events 12588 * never fail to schedule. 12589 * 12590 * Note the comment that goes with struct 12591 * perf_event_pmu_context. 12592 */ 12593 pmu = group_leader->pmu_ctx->pmu; 12594 } else if (!is_software_event(event)) { 12595 if (is_software_event(group_leader) && 12596 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12597 /* 12598 * In case the group is a pure software group, and we 12599 * try to add a hardware event, move the whole group to 12600 * the hardware context. 12601 */ 12602 move_group = 1; 12603 } 12604 12605 /* Don't allow group of multiple hw events from different pmus */ 12606 if (!in_software_context(group_leader) && 12607 group_leader->pmu_ctx->pmu != pmu) 12608 goto err_locked; 12609 } 12610 } 12611 12612 /* 12613 * Now that we're certain of the pmu; find the pmu_ctx. 12614 */ 12615 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12616 if (IS_ERR(pmu_ctx)) { 12617 err = PTR_ERR(pmu_ctx); 12618 goto err_locked; 12619 } 12620 event->pmu_ctx = pmu_ctx; 12621 12622 if (output_event) { 12623 err = perf_event_set_output(event, output_event); 12624 if (err) 12625 goto err_context; 12626 } 12627 12628 if (!perf_event_validate_size(event)) { 12629 err = -E2BIG; 12630 goto err_context; 12631 } 12632 12633 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12634 err = -EINVAL; 12635 goto err_context; 12636 } 12637 12638 /* 12639 * Must be under the same ctx::mutex as perf_install_in_context(), 12640 * because we need to serialize with concurrent event creation. 12641 */ 12642 if (!exclusive_event_installable(event, ctx)) { 12643 err = -EBUSY; 12644 goto err_context; 12645 } 12646 12647 WARN_ON_ONCE(ctx->parent_ctx); 12648 12649 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12650 if (IS_ERR(event_file)) { 12651 err = PTR_ERR(event_file); 12652 event_file = NULL; 12653 goto err_context; 12654 } 12655 12656 /* 12657 * This is the point on no return; we cannot fail hereafter. This is 12658 * where we start modifying current state. 12659 */ 12660 12661 if (move_group) { 12662 perf_remove_from_context(group_leader, 0); 12663 put_pmu_ctx(group_leader->pmu_ctx); 12664 12665 for_each_sibling_event(sibling, group_leader) { 12666 perf_remove_from_context(sibling, 0); 12667 put_pmu_ctx(sibling->pmu_ctx); 12668 } 12669 12670 /* 12671 * Install the group siblings before the group leader. 12672 * 12673 * Because a group leader will try and install the entire group 12674 * (through the sibling list, which is still in-tact), we can 12675 * end up with siblings installed in the wrong context. 12676 * 12677 * By installing siblings first we NO-OP because they're not 12678 * reachable through the group lists. 12679 */ 12680 for_each_sibling_event(sibling, group_leader) { 12681 sibling->pmu_ctx = pmu_ctx; 12682 get_pmu_ctx(pmu_ctx); 12683 perf_event__state_init(sibling); 12684 perf_install_in_context(ctx, sibling, sibling->cpu); 12685 } 12686 12687 /* 12688 * Removing from the context ends up with disabled 12689 * event. What we want here is event in the initial 12690 * startup state, ready to be add into new context. 12691 */ 12692 group_leader->pmu_ctx = pmu_ctx; 12693 get_pmu_ctx(pmu_ctx); 12694 perf_event__state_init(group_leader); 12695 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12696 } 12697 12698 /* 12699 * Precalculate sample_data sizes; do while holding ctx::mutex such 12700 * that we're serialized against further additions and before 12701 * perf_install_in_context() which is the point the event is active and 12702 * can use these values. 12703 */ 12704 perf_event__header_size(event); 12705 perf_event__id_header_size(event); 12706 12707 event->owner = current; 12708 12709 perf_install_in_context(ctx, event, event->cpu); 12710 perf_unpin_context(ctx); 12711 12712 mutex_unlock(&ctx->mutex); 12713 12714 if (task) { 12715 up_read(&task->signal->exec_update_lock); 12716 put_task_struct(task); 12717 } 12718 12719 mutex_lock(¤t->perf_event_mutex); 12720 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12721 mutex_unlock(¤t->perf_event_mutex); 12722 12723 /* 12724 * Drop the reference on the group_event after placing the 12725 * new event on the sibling_list. This ensures destruction 12726 * of the group leader will find the pointer to itself in 12727 * perf_group_detach(). 12728 */ 12729 fdput(group); 12730 fd_install(event_fd, event_file); 12731 return event_fd; 12732 12733 err_context: 12734 put_pmu_ctx(event->pmu_ctx); 12735 event->pmu_ctx = NULL; /* _free_event() */ 12736 err_locked: 12737 mutex_unlock(&ctx->mutex); 12738 perf_unpin_context(ctx); 12739 put_ctx(ctx); 12740 err_cred: 12741 if (task) 12742 up_read(&task->signal->exec_update_lock); 12743 err_alloc: 12744 free_event(event); 12745 err_task: 12746 if (task) 12747 put_task_struct(task); 12748 err_group_fd: 12749 fdput(group); 12750 err_fd: 12751 put_unused_fd(event_fd); 12752 return err; 12753 } 12754 12755 /** 12756 * perf_event_create_kernel_counter 12757 * 12758 * @attr: attributes of the counter to create 12759 * @cpu: cpu in which the counter is bound 12760 * @task: task to profile (NULL for percpu) 12761 * @overflow_handler: callback to trigger when we hit the event 12762 * @context: context data could be used in overflow_handler callback 12763 */ 12764 struct perf_event * 12765 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12766 struct task_struct *task, 12767 perf_overflow_handler_t overflow_handler, 12768 void *context) 12769 { 12770 struct perf_event_pmu_context *pmu_ctx; 12771 struct perf_event_context *ctx; 12772 struct perf_event *event; 12773 struct pmu *pmu; 12774 int err; 12775 12776 /* 12777 * Grouping is not supported for kernel events, neither is 'AUX', 12778 * make sure the caller's intentions are adjusted. 12779 */ 12780 if (attr->aux_output) 12781 return ERR_PTR(-EINVAL); 12782 12783 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12784 overflow_handler, context, -1); 12785 if (IS_ERR(event)) { 12786 err = PTR_ERR(event); 12787 goto err; 12788 } 12789 12790 /* Mark owner so we could distinguish it from user events. */ 12791 event->owner = TASK_TOMBSTONE; 12792 pmu = event->pmu; 12793 12794 if (pmu->task_ctx_nr == perf_sw_context) 12795 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12796 12797 /* 12798 * Get the target context (task or percpu): 12799 */ 12800 ctx = find_get_context(task, event); 12801 if (IS_ERR(ctx)) { 12802 err = PTR_ERR(ctx); 12803 goto err_alloc; 12804 } 12805 12806 WARN_ON_ONCE(ctx->parent_ctx); 12807 mutex_lock(&ctx->mutex); 12808 if (ctx->task == TASK_TOMBSTONE) { 12809 err = -ESRCH; 12810 goto err_unlock; 12811 } 12812 12813 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12814 if (IS_ERR(pmu_ctx)) { 12815 err = PTR_ERR(pmu_ctx); 12816 goto err_unlock; 12817 } 12818 event->pmu_ctx = pmu_ctx; 12819 12820 if (!task) { 12821 /* 12822 * Check if the @cpu we're creating an event for is online. 12823 * 12824 * We use the perf_cpu_context::ctx::mutex to serialize against 12825 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12826 */ 12827 struct perf_cpu_context *cpuctx = 12828 container_of(ctx, struct perf_cpu_context, ctx); 12829 if (!cpuctx->online) { 12830 err = -ENODEV; 12831 goto err_pmu_ctx; 12832 } 12833 } 12834 12835 if (!exclusive_event_installable(event, ctx)) { 12836 err = -EBUSY; 12837 goto err_pmu_ctx; 12838 } 12839 12840 perf_install_in_context(ctx, event, event->cpu); 12841 perf_unpin_context(ctx); 12842 mutex_unlock(&ctx->mutex); 12843 12844 return event; 12845 12846 err_pmu_ctx: 12847 put_pmu_ctx(pmu_ctx); 12848 event->pmu_ctx = NULL; /* _free_event() */ 12849 err_unlock: 12850 mutex_unlock(&ctx->mutex); 12851 perf_unpin_context(ctx); 12852 put_ctx(ctx); 12853 err_alloc: 12854 free_event(event); 12855 err: 12856 return ERR_PTR(err); 12857 } 12858 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12859 12860 static void __perf_pmu_remove(struct perf_event_context *ctx, 12861 int cpu, struct pmu *pmu, 12862 struct perf_event_groups *groups, 12863 struct list_head *events) 12864 { 12865 struct perf_event *event, *sibling; 12866 12867 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12868 perf_remove_from_context(event, 0); 12869 put_pmu_ctx(event->pmu_ctx); 12870 list_add(&event->migrate_entry, events); 12871 12872 for_each_sibling_event(sibling, event) { 12873 perf_remove_from_context(sibling, 0); 12874 put_pmu_ctx(sibling->pmu_ctx); 12875 list_add(&sibling->migrate_entry, events); 12876 } 12877 } 12878 } 12879 12880 static void __perf_pmu_install_event(struct pmu *pmu, 12881 struct perf_event_context *ctx, 12882 int cpu, struct perf_event *event) 12883 { 12884 struct perf_event_pmu_context *epc; 12885 struct perf_event_context *old_ctx = event->ctx; 12886 12887 get_ctx(ctx); /* normally find_get_context() */ 12888 12889 event->cpu = cpu; 12890 epc = find_get_pmu_context(pmu, ctx, event); 12891 event->pmu_ctx = epc; 12892 12893 if (event->state >= PERF_EVENT_STATE_OFF) 12894 event->state = PERF_EVENT_STATE_INACTIVE; 12895 perf_install_in_context(ctx, event, cpu); 12896 12897 /* 12898 * Now that event->ctx is updated and visible, put the old ctx. 12899 */ 12900 put_ctx(old_ctx); 12901 } 12902 12903 static void __perf_pmu_install(struct perf_event_context *ctx, 12904 int cpu, struct pmu *pmu, struct list_head *events) 12905 { 12906 struct perf_event *event, *tmp; 12907 12908 /* 12909 * Re-instate events in 2 passes. 12910 * 12911 * Skip over group leaders and only install siblings on this first 12912 * pass, siblings will not get enabled without a leader, however a 12913 * leader will enable its siblings, even if those are still on the old 12914 * context. 12915 */ 12916 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12917 if (event->group_leader == event) 12918 continue; 12919 12920 list_del(&event->migrate_entry); 12921 __perf_pmu_install_event(pmu, ctx, cpu, event); 12922 } 12923 12924 /* 12925 * Once all the siblings are setup properly, install the group leaders 12926 * to make it go. 12927 */ 12928 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12929 list_del(&event->migrate_entry); 12930 __perf_pmu_install_event(pmu, ctx, cpu, event); 12931 } 12932 } 12933 12934 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12935 { 12936 struct perf_event_context *src_ctx, *dst_ctx; 12937 LIST_HEAD(events); 12938 12939 /* 12940 * Since per-cpu context is persistent, no need to grab an extra 12941 * reference. 12942 */ 12943 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12944 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12945 12946 /* 12947 * See perf_event_ctx_lock() for comments on the details 12948 * of swizzling perf_event::ctx. 12949 */ 12950 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12951 12952 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 12953 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 12954 12955 if (!list_empty(&events)) { 12956 /* 12957 * Wait for the events to quiesce before re-instating them. 12958 */ 12959 synchronize_rcu(); 12960 12961 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 12962 } 12963 12964 mutex_unlock(&dst_ctx->mutex); 12965 mutex_unlock(&src_ctx->mutex); 12966 } 12967 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12968 12969 static void sync_child_event(struct perf_event *child_event) 12970 { 12971 struct perf_event *parent_event = child_event->parent; 12972 u64 child_val; 12973 12974 if (child_event->attr.inherit_stat) { 12975 struct task_struct *task = child_event->ctx->task; 12976 12977 if (task && task != TASK_TOMBSTONE) 12978 perf_event_read_event(child_event, task); 12979 } 12980 12981 child_val = perf_event_count(child_event); 12982 12983 /* 12984 * Add back the child's count to the parent's count: 12985 */ 12986 atomic64_add(child_val, &parent_event->child_count); 12987 atomic64_add(child_event->total_time_enabled, 12988 &parent_event->child_total_time_enabled); 12989 atomic64_add(child_event->total_time_running, 12990 &parent_event->child_total_time_running); 12991 } 12992 12993 static void 12994 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12995 { 12996 struct perf_event *parent_event = event->parent; 12997 unsigned long detach_flags = 0; 12998 12999 if (parent_event) { 13000 /* 13001 * Do not destroy the 'original' grouping; because of the 13002 * context switch optimization the original events could've 13003 * ended up in a random child task. 13004 * 13005 * If we were to destroy the original group, all group related 13006 * operations would cease to function properly after this 13007 * random child dies. 13008 * 13009 * Do destroy all inherited groups, we don't care about those 13010 * and being thorough is better. 13011 */ 13012 detach_flags = DETACH_GROUP | DETACH_CHILD; 13013 mutex_lock(&parent_event->child_mutex); 13014 } 13015 13016 perf_remove_from_context(event, detach_flags); 13017 13018 raw_spin_lock_irq(&ctx->lock); 13019 if (event->state > PERF_EVENT_STATE_EXIT) 13020 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13021 raw_spin_unlock_irq(&ctx->lock); 13022 13023 /* 13024 * Child events can be freed. 13025 */ 13026 if (parent_event) { 13027 mutex_unlock(&parent_event->child_mutex); 13028 /* 13029 * Kick perf_poll() for is_event_hup(); 13030 */ 13031 perf_event_wakeup(parent_event); 13032 free_event(event); 13033 put_event(parent_event); 13034 return; 13035 } 13036 13037 /* 13038 * Parent events are governed by their filedesc, retain them. 13039 */ 13040 perf_event_wakeup(event); 13041 } 13042 13043 static void perf_event_exit_task_context(struct task_struct *child) 13044 { 13045 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13046 struct perf_event *child_event, *next; 13047 13048 WARN_ON_ONCE(child != current); 13049 13050 child_ctx = perf_pin_task_context(child); 13051 if (!child_ctx) 13052 return; 13053 13054 /* 13055 * In order to reduce the amount of tricky in ctx tear-down, we hold 13056 * ctx::mutex over the entire thing. This serializes against almost 13057 * everything that wants to access the ctx. 13058 * 13059 * The exception is sys_perf_event_open() / 13060 * perf_event_create_kernel_count() which does find_get_context() 13061 * without ctx::mutex (it cannot because of the move_group double mutex 13062 * lock thing). See the comments in perf_install_in_context(). 13063 */ 13064 mutex_lock(&child_ctx->mutex); 13065 13066 /* 13067 * In a single ctx::lock section, de-schedule the events and detach the 13068 * context from the task such that we cannot ever get it scheduled back 13069 * in. 13070 */ 13071 raw_spin_lock_irq(&child_ctx->lock); 13072 task_ctx_sched_out(child_ctx, EVENT_ALL); 13073 13074 /* 13075 * Now that the context is inactive, destroy the task <-> ctx relation 13076 * and mark the context dead. 13077 */ 13078 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13079 put_ctx(child_ctx); /* cannot be last */ 13080 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13081 put_task_struct(current); /* cannot be last */ 13082 13083 clone_ctx = unclone_ctx(child_ctx); 13084 raw_spin_unlock_irq(&child_ctx->lock); 13085 13086 if (clone_ctx) 13087 put_ctx(clone_ctx); 13088 13089 /* 13090 * Report the task dead after unscheduling the events so that we 13091 * won't get any samples after PERF_RECORD_EXIT. We can however still 13092 * get a few PERF_RECORD_READ events. 13093 */ 13094 perf_event_task(child, child_ctx, 0); 13095 13096 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13097 perf_event_exit_event(child_event, child_ctx); 13098 13099 mutex_unlock(&child_ctx->mutex); 13100 13101 put_ctx(child_ctx); 13102 } 13103 13104 /* 13105 * When a child task exits, feed back event values to parent events. 13106 * 13107 * Can be called with exec_update_lock held when called from 13108 * setup_new_exec(). 13109 */ 13110 void perf_event_exit_task(struct task_struct *child) 13111 { 13112 struct perf_event *event, *tmp; 13113 13114 mutex_lock(&child->perf_event_mutex); 13115 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13116 owner_entry) { 13117 list_del_init(&event->owner_entry); 13118 13119 /* 13120 * Ensure the list deletion is visible before we clear 13121 * the owner, closes a race against perf_release() where 13122 * we need to serialize on the owner->perf_event_mutex. 13123 */ 13124 smp_store_release(&event->owner, NULL); 13125 } 13126 mutex_unlock(&child->perf_event_mutex); 13127 13128 perf_event_exit_task_context(child); 13129 13130 /* 13131 * The perf_event_exit_task_context calls perf_event_task 13132 * with child's task_ctx, which generates EXIT events for 13133 * child contexts and sets child->perf_event_ctxp[] to NULL. 13134 * At this point we need to send EXIT events to cpu contexts. 13135 */ 13136 perf_event_task(child, NULL, 0); 13137 } 13138 13139 static void perf_free_event(struct perf_event *event, 13140 struct perf_event_context *ctx) 13141 { 13142 struct perf_event *parent = event->parent; 13143 13144 if (WARN_ON_ONCE(!parent)) 13145 return; 13146 13147 mutex_lock(&parent->child_mutex); 13148 list_del_init(&event->child_list); 13149 mutex_unlock(&parent->child_mutex); 13150 13151 put_event(parent); 13152 13153 raw_spin_lock_irq(&ctx->lock); 13154 perf_group_detach(event); 13155 list_del_event(event, ctx); 13156 raw_spin_unlock_irq(&ctx->lock); 13157 free_event(event); 13158 } 13159 13160 /* 13161 * Free a context as created by inheritance by perf_event_init_task() below, 13162 * used by fork() in case of fail. 13163 * 13164 * Even though the task has never lived, the context and events have been 13165 * exposed through the child_list, so we must take care tearing it all down. 13166 */ 13167 void perf_event_free_task(struct task_struct *task) 13168 { 13169 struct perf_event_context *ctx; 13170 struct perf_event *event, *tmp; 13171 13172 ctx = rcu_access_pointer(task->perf_event_ctxp); 13173 if (!ctx) 13174 return; 13175 13176 mutex_lock(&ctx->mutex); 13177 raw_spin_lock_irq(&ctx->lock); 13178 /* 13179 * Destroy the task <-> ctx relation and mark the context dead. 13180 * 13181 * This is important because even though the task hasn't been 13182 * exposed yet the context has been (through child_list). 13183 */ 13184 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13185 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13186 put_task_struct(task); /* cannot be last */ 13187 raw_spin_unlock_irq(&ctx->lock); 13188 13189 13190 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13191 perf_free_event(event, ctx); 13192 13193 mutex_unlock(&ctx->mutex); 13194 13195 /* 13196 * perf_event_release_kernel() could've stolen some of our 13197 * child events and still have them on its free_list. In that 13198 * case we must wait for these events to have been freed (in 13199 * particular all their references to this task must've been 13200 * dropped). 13201 * 13202 * Without this copy_process() will unconditionally free this 13203 * task (irrespective of its reference count) and 13204 * _free_event()'s put_task_struct(event->hw.target) will be a 13205 * use-after-free. 13206 * 13207 * Wait for all events to drop their context reference. 13208 */ 13209 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13210 put_ctx(ctx); /* must be last */ 13211 } 13212 13213 void perf_event_delayed_put(struct task_struct *task) 13214 { 13215 WARN_ON_ONCE(task->perf_event_ctxp); 13216 } 13217 13218 struct file *perf_event_get(unsigned int fd) 13219 { 13220 struct file *file = fget(fd); 13221 if (!file) 13222 return ERR_PTR(-EBADF); 13223 13224 if (file->f_op != &perf_fops) { 13225 fput(file); 13226 return ERR_PTR(-EBADF); 13227 } 13228 13229 return file; 13230 } 13231 13232 const struct perf_event *perf_get_event(struct file *file) 13233 { 13234 if (file->f_op != &perf_fops) 13235 return ERR_PTR(-EINVAL); 13236 13237 return file->private_data; 13238 } 13239 13240 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13241 { 13242 if (!event) 13243 return ERR_PTR(-EINVAL); 13244 13245 return &event->attr; 13246 } 13247 13248 /* 13249 * Inherit an event from parent task to child task. 13250 * 13251 * Returns: 13252 * - valid pointer on success 13253 * - NULL for orphaned events 13254 * - IS_ERR() on error 13255 */ 13256 static struct perf_event * 13257 inherit_event(struct perf_event *parent_event, 13258 struct task_struct *parent, 13259 struct perf_event_context *parent_ctx, 13260 struct task_struct *child, 13261 struct perf_event *group_leader, 13262 struct perf_event_context *child_ctx) 13263 { 13264 enum perf_event_state parent_state = parent_event->state; 13265 struct perf_event_pmu_context *pmu_ctx; 13266 struct perf_event *child_event; 13267 unsigned long flags; 13268 13269 /* 13270 * Instead of creating recursive hierarchies of events, 13271 * we link inherited events back to the original parent, 13272 * which has a filp for sure, which we use as the reference 13273 * count: 13274 */ 13275 if (parent_event->parent) 13276 parent_event = parent_event->parent; 13277 13278 child_event = perf_event_alloc(&parent_event->attr, 13279 parent_event->cpu, 13280 child, 13281 group_leader, parent_event, 13282 NULL, NULL, -1); 13283 if (IS_ERR(child_event)) 13284 return child_event; 13285 13286 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13287 if (IS_ERR(pmu_ctx)) { 13288 free_event(child_event); 13289 return ERR_CAST(pmu_ctx); 13290 } 13291 child_event->pmu_ctx = pmu_ctx; 13292 13293 /* 13294 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13295 * must be under the same lock in order to serialize against 13296 * perf_event_release_kernel(), such that either we must observe 13297 * is_orphaned_event() or they will observe us on the child_list. 13298 */ 13299 mutex_lock(&parent_event->child_mutex); 13300 if (is_orphaned_event(parent_event) || 13301 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13302 mutex_unlock(&parent_event->child_mutex); 13303 /* task_ctx_data is freed with child_ctx */ 13304 free_event(child_event); 13305 return NULL; 13306 } 13307 13308 get_ctx(child_ctx); 13309 13310 /* 13311 * Make the child state follow the state of the parent event, 13312 * not its attr.disabled bit. We hold the parent's mutex, 13313 * so we won't race with perf_event_{en, dis}able_family. 13314 */ 13315 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13316 child_event->state = PERF_EVENT_STATE_INACTIVE; 13317 else 13318 child_event->state = PERF_EVENT_STATE_OFF; 13319 13320 if (parent_event->attr.freq) { 13321 u64 sample_period = parent_event->hw.sample_period; 13322 struct hw_perf_event *hwc = &child_event->hw; 13323 13324 hwc->sample_period = sample_period; 13325 hwc->last_period = sample_period; 13326 13327 local64_set(&hwc->period_left, sample_period); 13328 } 13329 13330 child_event->ctx = child_ctx; 13331 child_event->overflow_handler = parent_event->overflow_handler; 13332 child_event->overflow_handler_context 13333 = parent_event->overflow_handler_context; 13334 13335 /* 13336 * Precalculate sample_data sizes 13337 */ 13338 perf_event__header_size(child_event); 13339 perf_event__id_header_size(child_event); 13340 13341 /* 13342 * Link it up in the child's context: 13343 */ 13344 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13345 add_event_to_ctx(child_event, child_ctx); 13346 child_event->attach_state |= PERF_ATTACH_CHILD; 13347 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13348 13349 /* 13350 * Link this into the parent event's child list 13351 */ 13352 list_add_tail(&child_event->child_list, &parent_event->child_list); 13353 mutex_unlock(&parent_event->child_mutex); 13354 13355 return child_event; 13356 } 13357 13358 /* 13359 * Inherits an event group. 13360 * 13361 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13362 * This matches with perf_event_release_kernel() removing all child events. 13363 * 13364 * Returns: 13365 * - 0 on success 13366 * - <0 on error 13367 */ 13368 static int inherit_group(struct perf_event *parent_event, 13369 struct task_struct *parent, 13370 struct perf_event_context *parent_ctx, 13371 struct task_struct *child, 13372 struct perf_event_context *child_ctx) 13373 { 13374 struct perf_event *leader; 13375 struct perf_event *sub; 13376 struct perf_event *child_ctr; 13377 13378 leader = inherit_event(parent_event, parent, parent_ctx, 13379 child, NULL, child_ctx); 13380 if (IS_ERR(leader)) 13381 return PTR_ERR(leader); 13382 /* 13383 * @leader can be NULL here because of is_orphaned_event(). In this 13384 * case inherit_event() will create individual events, similar to what 13385 * perf_group_detach() would do anyway. 13386 */ 13387 for_each_sibling_event(sub, parent_event) { 13388 child_ctr = inherit_event(sub, parent, parent_ctx, 13389 child, leader, child_ctx); 13390 if (IS_ERR(child_ctr)) 13391 return PTR_ERR(child_ctr); 13392 13393 if (sub->aux_event == parent_event && child_ctr && 13394 !perf_get_aux_event(child_ctr, leader)) 13395 return -EINVAL; 13396 } 13397 if (leader) 13398 leader->group_generation = parent_event->group_generation; 13399 return 0; 13400 } 13401 13402 /* 13403 * Creates the child task context and tries to inherit the event-group. 13404 * 13405 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13406 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13407 * consistent with perf_event_release_kernel() removing all child events. 13408 * 13409 * Returns: 13410 * - 0 on success 13411 * - <0 on error 13412 */ 13413 static int 13414 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13415 struct perf_event_context *parent_ctx, 13416 struct task_struct *child, 13417 u64 clone_flags, int *inherited_all) 13418 { 13419 struct perf_event_context *child_ctx; 13420 int ret; 13421 13422 if (!event->attr.inherit || 13423 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13424 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13425 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13426 *inherited_all = 0; 13427 return 0; 13428 } 13429 13430 child_ctx = child->perf_event_ctxp; 13431 if (!child_ctx) { 13432 /* 13433 * This is executed from the parent task context, so 13434 * inherit events that have been marked for cloning. 13435 * First allocate and initialize a context for the 13436 * child. 13437 */ 13438 child_ctx = alloc_perf_context(child); 13439 if (!child_ctx) 13440 return -ENOMEM; 13441 13442 child->perf_event_ctxp = child_ctx; 13443 } 13444 13445 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13446 if (ret) 13447 *inherited_all = 0; 13448 13449 return ret; 13450 } 13451 13452 /* 13453 * Initialize the perf_event context in task_struct 13454 */ 13455 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13456 { 13457 struct perf_event_context *child_ctx, *parent_ctx; 13458 struct perf_event_context *cloned_ctx; 13459 struct perf_event *event; 13460 struct task_struct *parent = current; 13461 int inherited_all = 1; 13462 unsigned long flags; 13463 int ret = 0; 13464 13465 if (likely(!parent->perf_event_ctxp)) 13466 return 0; 13467 13468 /* 13469 * If the parent's context is a clone, pin it so it won't get 13470 * swapped under us. 13471 */ 13472 parent_ctx = perf_pin_task_context(parent); 13473 if (!parent_ctx) 13474 return 0; 13475 13476 /* 13477 * No need to check if parent_ctx != NULL here; since we saw 13478 * it non-NULL earlier, the only reason for it to become NULL 13479 * is if we exit, and since we're currently in the middle of 13480 * a fork we can't be exiting at the same time. 13481 */ 13482 13483 /* 13484 * Lock the parent list. No need to lock the child - not PID 13485 * hashed yet and not running, so nobody can access it. 13486 */ 13487 mutex_lock(&parent_ctx->mutex); 13488 13489 /* 13490 * We dont have to disable NMIs - we are only looking at 13491 * the list, not manipulating it: 13492 */ 13493 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13494 ret = inherit_task_group(event, parent, parent_ctx, 13495 child, clone_flags, &inherited_all); 13496 if (ret) 13497 goto out_unlock; 13498 } 13499 13500 /* 13501 * We can't hold ctx->lock when iterating the ->flexible_group list due 13502 * to allocations, but we need to prevent rotation because 13503 * rotate_ctx() will change the list from interrupt context. 13504 */ 13505 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13506 parent_ctx->rotate_disable = 1; 13507 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13508 13509 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13510 ret = inherit_task_group(event, parent, parent_ctx, 13511 child, clone_flags, &inherited_all); 13512 if (ret) 13513 goto out_unlock; 13514 } 13515 13516 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13517 parent_ctx->rotate_disable = 0; 13518 13519 child_ctx = child->perf_event_ctxp; 13520 13521 if (child_ctx && inherited_all) { 13522 /* 13523 * Mark the child context as a clone of the parent 13524 * context, or of whatever the parent is a clone of. 13525 * 13526 * Note that if the parent is a clone, the holding of 13527 * parent_ctx->lock avoids it from being uncloned. 13528 */ 13529 cloned_ctx = parent_ctx->parent_ctx; 13530 if (cloned_ctx) { 13531 child_ctx->parent_ctx = cloned_ctx; 13532 child_ctx->parent_gen = parent_ctx->parent_gen; 13533 } else { 13534 child_ctx->parent_ctx = parent_ctx; 13535 child_ctx->parent_gen = parent_ctx->generation; 13536 } 13537 get_ctx(child_ctx->parent_ctx); 13538 } 13539 13540 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13541 out_unlock: 13542 mutex_unlock(&parent_ctx->mutex); 13543 13544 perf_unpin_context(parent_ctx); 13545 put_ctx(parent_ctx); 13546 13547 return ret; 13548 } 13549 13550 /* 13551 * Initialize the perf_event context in task_struct 13552 */ 13553 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13554 { 13555 int ret; 13556 13557 child->perf_event_ctxp = NULL; 13558 mutex_init(&child->perf_event_mutex); 13559 INIT_LIST_HEAD(&child->perf_event_list); 13560 13561 ret = perf_event_init_context(child, clone_flags); 13562 if (ret) { 13563 perf_event_free_task(child); 13564 return ret; 13565 } 13566 13567 return 0; 13568 } 13569 13570 static void __init perf_event_init_all_cpus(void) 13571 { 13572 struct swevent_htable *swhash; 13573 struct perf_cpu_context *cpuctx; 13574 int cpu; 13575 13576 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13577 13578 for_each_possible_cpu(cpu) { 13579 swhash = &per_cpu(swevent_htable, cpu); 13580 mutex_init(&swhash->hlist_mutex); 13581 13582 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13583 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13584 13585 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13586 13587 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13588 __perf_event_init_context(&cpuctx->ctx); 13589 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13590 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13591 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13592 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13593 cpuctx->heap = cpuctx->heap_default; 13594 } 13595 } 13596 13597 static void perf_swevent_init_cpu(unsigned int cpu) 13598 { 13599 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13600 13601 mutex_lock(&swhash->hlist_mutex); 13602 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13603 struct swevent_hlist *hlist; 13604 13605 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13606 WARN_ON(!hlist); 13607 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13608 } 13609 mutex_unlock(&swhash->hlist_mutex); 13610 } 13611 13612 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13613 static void __perf_event_exit_context(void *__info) 13614 { 13615 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13616 struct perf_event_context *ctx = __info; 13617 struct perf_event *event; 13618 13619 raw_spin_lock(&ctx->lock); 13620 ctx_sched_out(ctx, EVENT_TIME); 13621 list_for_each_entry(event, &ctx->event_list, event_entry) 13622 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13623 raw_spin_unlock(&ctx->lock); 13624 } 13625 13626 static void perf_event_exit_cpu_context(int cpu) 13627 { 13628 struct perf_cpu_context *cpuctx; 13629 struct perf_event_context *ctx; 13630 13631 // XXX simplify cpuctx->online 13632 mutex_lock(&pmus_lock); 13633 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13634 ctx = &cpuctx->ctx; 13635 13636 mutex_lock(&ctx->mutex); 13637 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13638 cpuctx->online = 0; 13639 mutex_unlock(&ctx->mutex); 13640 cpumask_clear_cpu(cpu, perf_online_mask); 13641 mutex_unlock(&pmus_lock); 13642 } 13643 #else 13644 13645 static void perf_event_exit_cpu_context(int cpu) { } 13646 13647 #endif 13648 13649 int perf_event_init_cpu(unsigned int cpu) 13650 { 13651 struct perf_cpu_context *cpuctx; 13652 struct perf_event_context *ctx; 13653 13654 perf_swevent_init_cpu(cpu); 13655 13656 mutex_lock(&pmus_lock); 13657 cpumask_set_cpu(cpu, perf_online_mask); 13658 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13659 ctx = &cpuctx->ctx; 13660 13661 mutex_lock(&ctx->mutex); 13662 cpuctx->online = 1; 13663 mutex_unlock(&ctx->mutex); 13664 mutex_unlock(&pmus_lock); 13665 13666 return 0; 13667 } 13668 13669 int perf_event_exit_cpu(unsigned int cpu) 13670 { 13671 perf_event_exit_cpu_context(cpu); 13672 return 0; 13673 } 13674 13675 static int 13676 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13677 { 13678 int cpu; 13679 13680 for_each_online_cpu(cpu) 13681 perf_event_exit_cpu(cpu); 13682 13683 return NOTIFY_OK; 13684 } 13685 13686 /* 13687 * Run the perf reboot notifier at the very last possible moment so that 13688 * the generic watchdog code runs as long as possible. 13689 */ 13690 static struct notifier_block perf_reboot_notifier = { 13691 .notifier_call = perf_reboot, 13692 .priority = INT_MIN, 13693 }; 13694 13695 void __init perf_event_init(void) 13696 { 13697 int ret; 13698 13699 idr_init(&pmu_idr); 13700 13701 perf_event_init_all_cpus(); 13702 init_srcu_struct(&pmus_srcu); 13703 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13704 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13705 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13706 perf_tp_register(); 13707 perf_event_init_cpu(smp_processor_id()); 13708 register_reboot_notifier(&perf_reboot_notifier); 13709 13710 ret = init_hw_breakpoint(); 13711 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13712 13713 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13714 13715 /* 13716 * Build time assertion that we keep the data_head at the intended 13717 * location. IOW, validation we got the __reserved[] size right. 13718 */ 13719 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13720 != 1024); 13721 } 13722 13723 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13724 char *page) 13725 { 13726 struct perf_pmu_events_attr *pmu_attr = 13727 container_of(attr, struct perf_pmu_events_attr, attr); 13728 13729 if (pmu_attr->event_str) 13730 return sprintf(page, "%s\n", pmu_attr->event_str); 13731 13732 return 0; 13733 } 13734 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13735 13736 static int __init perf_event_sysfs_init(void) 13737 { 13738 struct pmu *pmu; 13739 int ret; 13740 13741 mutex_lock(&pmus_lock); 13742 13743 ret = bus_register(&pmu_bus); 13744 if (ret) 13745 goto unlock; 13746 13747 list_for_each_entry(pmu, &pmus, entry) { 13748 if (pmu->dev) 13749 continue; 13750 13751 ret = pmu_dev_alloc(pmu); 13752 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13753 } 13754 pmu_bus_running = 1; 13755 ret = 0; 13756 13757 unlock: 13758 mutex_unlock(&pmus_lock); 13759 13760 return ret; 13761 } 13762 device_initcall(perf_event_sysfs_init); 13763 13764 #ifdef CONFIG_CGROUP_PERF 13765 static struct cgroup_subsys_state * 13766 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13767 { 13768 struct perf_cgroup *jc; 13769 13770 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13771 if (!jc) 13772 return ERR_PTR(-ENOMEM); 13773 13774 jc->info = alloc_percpu(struct perf_cgroup_info); 13775 if (!jc->info) { 13776 kfree(jc); 13777 return ERR_PTR(-ENOMEM); 13778 } 13779 13780 return &jc->css; 13781 } 13782 13783 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13784 { 13785 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13786 13787 free_percpu(jc->info); 13788 kfree(jc); 13789 } 13790 13791 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13792 { 13793 perf_event_cgroup(css->cgroup); 13794 return 0; 13795 } 13796 13797 static int __perf_cgroup_move(void *info) 13798 { 13799 struct task_struct *task = info; 13800 13801 preempt_disable(); 13802 perf_cgroup_switch(task); 13803 preempt_enable(); 13804 13805 return 0; 13806 } 13807 13808 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13809 { 13810 struct task_struct *task; 13811 struct cgroup_subsys_state *css; 13812 13813 cgroup_taskset_for_each(task, css, tset) 13814 task_function_call(task, __perf_cgroup_move, task); 13815 } 13816 13817 struct cgroup_subsys perf_event_cgrp_subsys = { 13818 .css_alloc = perf_cgroup_css_alloc, 13819 .css_free = perf_cgroup_css_free, 13820 .css_online = perf_cgroup_css_online, 13821 .attach = perf_cgroup_attach, 13822 /* 13823 * Implicitly enable on dfl hierarchy so that perf events can 13824 * always be filtered by cgroup2 path as long as perf_event 13825 * controller is not mounted on a legacy hierarchy. 13826 */ 13827 .implicit_on_dfl = true, 13828 .threaded = true, 13829 }; 13830 #endif /* CONFIG_CGROUP_PERF */ 13831 13832 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13833