xref: /openbmc/linux/kernel/events/core.c (revision f3a8b664)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360 
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365 
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371 
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375 
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381 
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385 
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394 
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE		100000
402 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
404 
405 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
406 
407 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
409 
410 static int perf_sample_allowed_ns __read_mostly =
411 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412 
413 static void update_perf_cpu_limits(void)
414 {
415 	u64 tmp = perf_sample_period_ns;
416 
417 	tmp *= sysctl_perf_cpu_time_max_percent;
418 	tmp = div_u64(tmp, 100);
419 	if (!tmp)
420 		tmp = 1;
421 
422 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424 
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426 
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 		void __user *buffer, size_t *lenp,
429 		loff_t *ppos)
430 {
431 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432 
433 	if (ret || !write)
434 		return ret;
435 
436 	/*
437 	 * If throttling is disabled don't allow the write:
438 	 */
439 	if (sysctl_perf_cpu_time_max_percent == 100 ||
440 	    sysctl_perf_cpu_time_max_percent == 0)
441 		return -EINVAL;
442 
443 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 	update_perf_cpu_limits();
446 
447 	return 0;
448 }
449 
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451 
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 				void __user *buffer, size_t *lenp,
454 				loff_t *ppos)
455 {
456 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457 
458 	if (ret || !write)
459 		return ret;
460 
461 	if (sysctl_perf_cpu_time_max_percent == 100 ||
462 	    sysctl_perf_cpu_time_max_percent == 0) {
463 		printk(KERN_WARNING
464 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 		WRITE_ONCE(perf_sample_allowed_ns, 0);
466 	} else {
467 		update_perf_cpu_limits();
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481 
482 static u64 __report_avg;
483 static u64 __report_allowed;
484 
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 	printk_ratelimited(KERN_INFO
488 		"perf: interrupt took too long (%lld > %lld), lowering "
489 		"kernel.perf_event_max_sample_rate to %d\n",
490 		__report_avg, __report_allowed,
491 		sysctl_perf_event_sample_rate);
492 }
493 
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495 
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 	u64 running_len;
500 	u64 avg_len;
501 	u32 max;
502 
503 	if (max_len == 0)
504 		return;
505 
506 	/* Decay the counter by 1 average sample. */
507 	running_len = __this_cpu_read(running_sample_length);
508 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 	running_len += sample_len_ns;
510 	__this_cpu_write(running_sample_length, running_len);
511 
512 	/*
513 	 * Note: this will be biased artifically low until we have
514 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 	 * from having to maintain a count.
516 	 */
517 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 	if (avg_len <= max_len)
519 		return;
520 
521 	__report_avg = avg_len;
522 	__report_allowed = max_len;
523 
524 	/*
525 	 * Compute a throttle threshold 25% below the current duration.
526 	 */
527 	avg_len += avg_len / 4;
528 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 	if (avg_len < max)
530 		max /= (u32)avg_len;
531 	else
532 		max = 1;
533 
534 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 	WRITE_ONCE(max_samples_per_tick, max);
536 
537 	sysctl_perf_event_sample_rate = max * HZ;
538 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539 
540 	if (!irq_work_queue(&perf_duration_work)) {
541 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 			     "kernel.perf_event_max_sample_rate to %d\n",
543 			     __report_avg, __report_allowed,
544 			     sysctl_perf_event_sample_rate);
545 	}
546 }
547 
548 static atomic64_t perf_event_id;
549 
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 			      enum event_type_t event_type);
552 
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 			     enum event_type_t event_type,
555 			     struct task_struct *task);
556 
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559 
560 void __weak perf_event_print_debug(void)	{ }
561 
562 extern __weak const char *perf_pmu_name(void)
563 {
564 	return "pmu";
565 }
566 
567 static inline u64 perf_clock(void)
568 {
569 	return local_clock();
570 }
571 
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 	return event->clock();
575 }
576 
577 #ifdef CONFIG_CGROUP_PERF
578 
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 	struct perf_event_context *ctx = event->ctx;
583 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584 
585 	/* @event doesn't care about cgroup */
586 	if (!event->cgrp)
587 		return true;
588 
589 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
590 	if (!cpuctx->cgrp)
591 		return false;
592 
593 	/*
594 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
595 	 * also enabled for all its descendant cgroups.  If @cpuctx's
596 	 * cgroup is a descendant of @event's (the test covers identity
597 	 * case), it's a match.
598 	 */
599 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 				    event->cgrp->css.cgroup);
601 }
602 
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 	css_put(&event->cgrp->css);
606 	event->cgrp = NULL;
607 }
608 
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 	return event->cgrp != NULL;
612 }
613 
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 	struct perf_cgroup_info *t;
617 
618 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 	return t->time;
620 }
621 
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 	struct perf_cgroup_info *info;
625 	u64 now;
626 
627 	now = perf_clock();
628 
629 	info = this_cpu_ptr(cgrp->info);
630 
631 	info->time += now - info->timestamp;
632 	info->timestamp = now;
633 }
634 
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 	if (cgrp_out)
639 		__update_cgrp_time(cgrp_out);
640 }
641 
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 	struct perf_cgroup *cgrp;
645 
646 	/*
647 	 * ensure we access cgroup data only when needed and
648 	 * when we know the cgroup is pinned (css_get)
649 	 */
650 	if (!is_cgroup_event(event))
651 		return;
652 
653 	cgrp = perf_cgroup_from_task(current, event->ctx);
654 	/*
655 	 * Do not update time when cgroup is not active
656 	 */
657 	if (cgrp == event->cgrp)
658 		__update_cgrp_time(event->cgrp);
659 }
660 
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 			  struct perf_event_context *ctx)
664 {
665 	struct perf_cgroup *cgrp;
666 	struct perf_cgroup_info *info;
667 
668 	/*
669 	 * ctx->lock held by caller
670 	 * ensure we do not access cgroup data
671 	 * unless we have the cgroup pinned (css_get)
672 	 */
673 	if (!task || !ctx->nr_cgroups)
674 		return;
675 
676 	cgrp = perf_cgroup_from_task(task, ctx);
677 	info = this_cpu_ptr(cgrp->info);
678 	info->timestamp = ctx->timestamp;
679 }
680 
681 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
683 
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 	struct perf_cpu_context *cpuctx;
693 	struct pmu *pmu;
694 	unsigned long flags;
695 
696 	/*
697 	 * disable interrupts to avoid geting nr_cgroup
698 	 * changes via __perf_event_disable(). Also
699 	 * avoids preemption.
700 	 */
701 	local_irq_save(flags);
702 
703 	/*
704 	 * we reschedule only in the presence of cgroup
705 	 * constrained events.
706 	 */
707 
708 	list_for_each_entry_rcu(pmu, &pmus, entry) {
709 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 		if (cpuctx->unique_pmu != pmu)
711 			continue; /* ensure we process each cpuctx once */
712 
713 		/*
714 		 * perf_cgroup_events says at least one
715 		 * context on this CPU has cgroup events.
716 		 *
717 		 * ctx->nr_cgroups reports the number of cgroup
718 		 * events for a context.
719 		 */
720 		if (cpuctx->ctx.nr_cgroups > 0) {
721 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 			perf_pmu_disable(cpuctx->ctx.pmu);
723 
724 			if (mode & PERF_CGROUP_SWOUT) {
725 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 				/*
727 				 * must not be done before ctxswout due
728 				 * to event_filter_match() in event_sched_out()
729 				 */
730 				cpuctx->cgrp = NULL;
731 			}
732 
733 			if (mode & PERF_CGROUP_SWIN) {
734 				WARN_ON_ONCE(cpuctx->cgrp);
735 				/*
736 				 * set cgrp before ctxsw in to allow
737 				 * event_filter_match() to not have to pass
738 				 * task around
739 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 				 * because cgorup events are only per-cpu
741 				 */
742 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 			}
745 			perf_pmu_enable(cpuctx->ctx.pmu);
746 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 		}
748 	}
749 
750 	local_irq_restore(flags);
751 }
752 
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 					 struct task_struct *next)
755 {
756 	struct perf_cgroup *cgrp1;
757 	struct perf_cgroup *cgrp2 = NULL;
758 
759 	rcu_read_lock();
760 	/*
761 	 * we come here when we know perf_cgroup_events > 0
762 	 * we do not need to pass the ctx here because we know
763 	 * we are holding the rcu lock
764 	 */
765 	cgrp1 = perf_cgroup_from_task(task, NULL);
766 	cgrp2 = perf_cgroup_from_task(next, NULL);
767 
768 	/*
769 	 * only schedule out current cgroup events if we know
770 	 * that we are switching to a different cgroup. Otherwise,
771 	 * do no touch the cgroup events.
772 	 */
773 	if (cgrp1 != cgrp2)
774 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 
776 	rcu_read_unlock();
777 }
778 
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 					struct task_struct *task)
781 {
782 	struct perf_cgroup *cgrp1;
783 	struct perf_cgroup *cgrp2 = NULL;
784 
785 	rcu_read_lock();
786 	/*
787 	 * we come here when we know perf_cgroup_events > 0
788 	 * we do not need to pass the ctx here because we know
789 	 * we are holding the rcu lock
790 	 */
791 	cgrp1 = perf_cgroup_from_task(task, NULL);
792 	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 
794 	/*
795 	 * only need to schedule in cgroup events if we are changing
796 	 * cgroup during ctxsw. Cgroup events were not scheduled
797 	 * out of ctxsw out if that was not the case.
798 	 */
799 	if (cgrp1 != cgrp2)
800 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 
802 	rcu_read_unlock();
803 }
804 
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 				      struct perf_event_attr *attr,
807 				      struct perf_event *group_leader)
808 {
809 	struct perf_cgroup *cgrp;
810 	struct cgroup_subsys_state *css;
811 	struct fd f = fdget(fd);
812 	int ret = 0;
813 
814 	if (!f.file)
815 		return -EBADF;
816 
817 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 					 &perf_event_cgrp_subsys);
819 	if (IS_ERR(css)) {
820 		ret = PTR_ERR(css);
821 		goto out;
822 	}
823 
824 	cgrp = container_of(css, struct perf_cgroup, css);
825 	event->cgrp = cgrp;
826 
827 	/*
828 	 * all events in a group must monitor
829 	 * the same cgroup because a task belongs
830 	 * to only one perf cgroup at a time
831 	 */
832 	if (group_leader && group_leader->cgrp != cgrp) {
833 		perf_detach_cgroup(event);
834 		ret = -EINVAL;
835 	}
836 out:
837 	fdput(f);
838 	return ret;
839 }
840 
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 	struct perf_cgroup_info *t;
845 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 	event->shadow_ctx_time = now - t->timestamp;
847 }
848 
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 	/*
853 	 * when the current task's perf cgroup does not match
854 	 * the event's, we need to remember to call the
855 	 * perf_mark_enable() function the first time a task with
856 	 * a matching perf cgroup is scheduled in.
857 	 */
858 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 		event->cgrp_defer_enabled = 1;
860 }
861 
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 			 struct perf_event_context *ctx)
865 {
866 	struct perf_event *sub;
867 	u64 tstamp = perf_event_time(event);
868 
869 	if (!event->cgrp_defer_enabled)
870 		return;
871 
872 	event->cgrp_defer_enabled = 0;
873 
874 	event->tstamp_enabled = tstamp - event->total_time_enabled;
875 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 			sub->cgrp_defer_enabled = 0;
879 		}
880 	}
881 }
882 
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 			 struct perf_event_context *ctx, bool add)
890 {
891 	struct perf_cpu_context *cpuctx;
892 
893 	if (!is_cgroup_event(event))
894 		return;
895 
896 	if (add && ctx->nr_cgroups++)
897 		return;
898 	else if (!add && --ctx->nr_cgroups)
899 		return;
900 	/*
901 	 * Because cgroup events are always per-cpu events,
902 	 * this will always be called from the right CPU.
903 	 */
904 	cpuctx = __get_cpu_context(ctx);
905 	cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907 
908 #else /* !CONFIG_CGROUP_PERF */
909 
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913 	return true;
914 }
915 
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918 
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921 	return 0;
922 }
923 
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926 	return 0;
927 }
928 
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932 
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936 
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 					 struct task_struct *next)
939 {
940 }
941 
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 					struct task_struct *task)
944 {
945 }
946 
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 				      struct perf_event_attr *attr,
949 				      struct perf_event *group_leader)
950 {
951 	return -EINVAL;
952 }
953 
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 			  struct perf_event_context *ctx)
957 {
958 }
959 
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964 
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969 
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 	return 0;
973 }
974 
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979 
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 			 struct perf_event_context *ctx)
983 {
984 }
985 
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 			 struct perf_event_context *ctx, bool add)
989 {
990 }
991 
992 #endif
993 
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disbled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 	struct perf_cpu_context *cpuctx;
1005 	int rotations = 0;
1006 
1007 	WARN_ON(!irqs_disabled());
1008 
1009 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 	rotations = perf_rotate_context(cpuctx);
1011 
1012 	raw_spin_lock(&cpuctx->hrtimer_lock);
1013 	if (rotations)
1014 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 	else
1016 		cpuctx->hrtimer_active = 0;
1017 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018 
1019 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021 
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 	struct hrtimer *timer = &cpuctx->hrtimer;
1025 	struct pmu *pmu = cpuctx->ctx.pmu;
1026 	u64 interval;
1027 
1028 	/* no multiplexing needed for SW PMU */
1029 	if (pmu->task_ctx_nr == perf_sw_context)
1030 		return;
1031 
1032 	/*
1033 	 * check default is sane, if not set then force to
1034 	 * default interval (1/tick)
1035 	 */
1036 	interval = pmu->hrtimer_interval_ms;
1037 	if (interval < 1)
1038 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039 
1040 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041 
1042 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 	timer->function = perf_mux_hrtimer_handler;
1045 }
1046 
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 	struct hrtimer *timer = &cpuctx->hrtimer;
1050 	struct pmu *pmu = cpuctx->ctx.pmu;
1051 	unsigned long flags;
1052 
1053 	/* not for SW PMU */
1054 	if (pmu->task_ctx_nr == perf_sw_context)
1055 		return 0;
1056 
1057 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 	if (!cpuctx->hrtimer_active) {
1059 		cpuctx->hrtimer_active = 1;
1060 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 	}
1063 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064 
1065 	return 0;
1066 }
1067 
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 	if (!(*count)++)
1072 		pmu->pmu_disable(pmu);
1073 }
1074 
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 	if (!--(*count))
1079 		pmu->pmu_enable(pmu);
1080 }
1081 
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093 
1094 	WARN_ON(!irqs_disabled());
1095 
1096 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1097 
1098 	list_add(&ctx->active_ctx_list, head);
1099 }
1100 
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 	WARN_ON(!irqs_disabled());
1104 
1105 	WARN_ON(list_empty(&ctx->active_ctx_list));
1106 
1107 	list_del_init(&ctx->active_ctx_list);
1108 }
1109 
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114 
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 	struct perf_event_context *ctx;
1118 
1119 	ctx = container_of(head, struct perf_event_context, rcu_head);
1120 	kfree(ctx->task_ctx_data);
1121 	kfree(ctx);
1122 }
1123 
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 	if (atomic_dec_and_test(&ctx->refcount)) {
1127 		if (ctx->parent_ctx)
1128 			put_ctx(ctx->parent_ctx);
1129 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 			put_task_struct(ctx->task);
1131 		call_rcu(&ctx->rcu_head, free_ctx);
1132 	}
1133 }
1134 
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()	[ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()			[ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()		[ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event()	[ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *	task_struct::perf_event_mutex
1190  *	  perf_event_context::mutex
1191  *	    perf_event::child_mutex;
1192  *	      perf_event_context::lock
1193  *	    perf_event::mmap_mutex
1194  *	    mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 	struct perf_event_context *ctx;
1200 
1201 again:
1202 	rcu_read_lock();
1203 	ctx = ACCESS_ONCE(event->ctx);
1204 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 		rcu_read_unlock();
1206 		goto again;
1207 	}
1208 	rcu_read_unlock();
1209 
1210 	mutex_lock_nested(&ctx->mutex, nesting);
1211 	if (event->ctx != ctx) {
1212 		mutex_unlock(&ctx->mutex);
1213 		put_ctx(ctx);
1214 		goto again;
1215 	}
1216 
1217 	return ctx;
1218 }
1219 
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 	return perf_event_ctx_lock_nested(event, 0);
1224 }
1225 
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 				  struct perf_event_context *ctx)
1228 {
1229 	mutex_unlock(&ctx->mutex);
1230 	put_ctx(ctx);
1231 }
1232 
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242 
1243 	lockdep_assert_held(&ctx->lock);
1244 
1245 	if (parent_ctx)
1246 		ctx->parent_ctx = NULL;
1247 	ctx->generation++;
1248 
1249 	return parent_ctx;
1250 }
1251 
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254 	/*
1255 	 * only top level events have the pid namespace they were created in
1256 	 */
1257 	if (event->parent)
1258 		event = event->parent;
1259 
1260 	return task_tgid_nr_ns(p, event->ns);
1261 }
1262 
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265 	/*
1266 	 * only top level events have the pid namespace they were created in
1267 	 */
1268 	if (event->parent)
1269 		event = event->parent;
1270 
1271 	return task_pid_nr_ns(p, event->ns);
1272 }
1273 
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280 	u64 id = event->id;
1281 
1282 	if (event->parent)
1283 		id = event->parent->id;
1284 
1285 	return id;
1286 }
1287 
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297 	struct perf_event_context *ctx;
1298 
1299 retry:
1300 	/*
1301 	 * One of the few rules of preemptible RCU is that one cannot do
1302 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 	 * part of the read side critical section was irqs-enabled -- see
1304 	 * rcu_read_unlock_special().
1305 	 *
1306 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 	 * side critical section has interrupts disabled.
1308 	 */
1309 	local_irq_save(*flags);
1310 	rcu_read_lock();
1311 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 	if (ctx) {
1313 		/*
1314 		 * If this context is a clone of another, it might
1315 		 * get swapped for another underneath us by
1316 		 * perf_event_task_sched_out, though the
1317 		 * rcu_read_lock() protects us from any context
1318 		 * getting freed.  Lock the context and check if it
1319 		 * got swapped before we could get the lock, and retry
1320 		 * if so.  If we locked the right context, then it
1321 		 * can't get swapped on us any more.
1322 		 */
1323 		raw_spin_lock(&ctx->lock);
1324 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325 			raw_spin_unlock(&ctx->lock);
1326 			rcu_read_unlock();
1327 			local_irq_restore(*flags);
1328 			goto retry;
1329 		}
1330 
1331 		if (ctx->task == TASK_TOMBSTONE ||
1332 		    !atomic_inc_not_zero(&ctx->refcount)) {
1333 			raw_spin_unlock(&ctx->lock);
1334 			ctx = NULL;
1335 		} else {
1336 			WARN_ON_ONCE(ctx->task != task);
1337 		}
1338 	}
1339 	rcu_read_unlock();
1340 	if (!ctx)
1341 		local_irq_restore(*flags);
1342 	return ctx;
1343 }
1344 
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353 	struct perf_event_context *ctx;
1354 	unsigned long flags;
1355 
1356 	ctx = perf_lock_task_context(task, ctxn, &flags);
1357 	if (ctx) {
1358 		++ctx->pin_count;
1359 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 	}
1361 	return ctx;
1362 }
1363 
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366 	unsigned long flags;
1367 
1368 	raw_spin_lock_irqsave(&ctx->lock, flags);
1369 	--ctx->pin_count;
1370 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372 
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378 	u64 now = perf_clock();
1379 
1380 	ctx->time += now - ctx->timestamp;
1381 	ctx->timestamp = now;
1382 }
1383 
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386 	struct perf_event_context *ctx = event->ctx;
1387 
1388 	if (is_cgroup_event(event))
1389 		return perf_cgroup_event_time(event);
1390 
1391 	return ctx ? ctx->time : 0;
1392 }
1393 
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399 	struct perf_event_context *ctx = event->ctx;
1400 	u64 run_end;
1401 
1402 	lockdep_assert_held(&ctx->lock);
1403 
1404 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 		return;
1407 
1408 	/*
1409 	 * in cgroup mode, time_enabled represents
1410 	 * the time the event was enabled AND active
1411 	 * tasks were in the monitored cgroup. This is
1412 	 * independent of the activity of the context as
1413 	 * there may be a mix of cgroup and non-cgroup events.
1414 	 *
1415 	 * That is why we treat cgroup events differently
1416 	 * here.
1417 	 */
1418 	if (is_cgroup_event(event))
1419 		run_end = perf_cgroup_event_time(event);
1420 	else if (ctx->is_active)
1421 		run_end = ctx->time;
1422 	else
1423 		run_end = event->tstamp_stopped;
1424 
1425 	event->total_time_enabled = run_end - event->tstamp_enabled;
1426 
1427 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 		run_end = event->tstamp_stopped;
1429 	else
1430 		run_end = perf_event_time(event);
1431 
1432 	event->total_time_running = run_end - event->tstamp_running;
1433 
1434 }
1435 
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441 	struct perf_event *event;
1442 
1443 	update_event_times(leader);
1444 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 		update_event_times(event);
1446 }
1447 
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451 	if (event->attr.pinned)
1452 		return &ctx->pinned_groups;
1453 	else
1454 		return &ctx->flexible_groups;
1455 }
1456 
1457 /*
1458  * Add a event from the lists for its context.
1459  * Must be called with ctx->mutex and ctx->lock held.
1460  */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464 
1465 	lockdep_assert_held(&ctx->lock);
1466 
1467 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468 	event->attach_state |= PERF_ATTACH_CONTEXT;
1469 
1470 	/*
1471 	 * If we're a stand alone event or group leader, we go to the context
1472 	 * list, group events are kept attached to the group so that
1473 	 * perf_group_detach can, at all times, locate all siblings.
1474 	 */
1475 	if (event->group_leader == event) {
1476 		struct list_head *list;
1477 
1478 		event->group_caps = event->event_caps;
1479 
1480 		list = ctx_group_list(event, ctx);
1481 		list_add_tail(&event->group_entry, list);
1482 	}
1483 
1484 	list_update_cgroup_event(event, ctx, true);
1485 
1486 	list_add_rcu(&event->event_entry, &ctx->event_list);
1487 	ctx->nr_events++;
1488 	if (event->attr.inherit_stat)
1489 		ctx->nr_stat++;
1490 
1491 	ctx->generation++;
1492 }
1493 
1494 /*
1495  * Initialize event state based on the perf_event_attr::disabled.
1496  */
1497 static inline void perf_event__state_init(struct perf_event *event)
1498 {
1499 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1500 					      PERF_EVENT_STATE_INACTIVE;
1501 }
1502 
1503 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1504 {
1505 	int entry = sizeof(u64); /* value */
1506 	int size = 0;
1507 	int nr = 1;
1508 
1509 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1510 		size += sizeof(u64);
1511 
1512 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1513 		size += sizeof(u64);
1514 
1515 	if (event->attr.read_format & PERF_FORMAT_ID)
1516 		entry += sizeof(u64);
1517 
1518 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1519 		nr += nr_siblings;
1520 		size += sizeof(u64);
1521 	}
1522 
1523 	size += entry * nr;
1524 	event->read_size = size;
1525 }
1526 
1527 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1528 {
1529 	struct perf_sample_data *data;
1530 	u16 size = 0;
1531 
1532 	if (sample_type & PERF_SAMPLE_IP)
1533 		size += sizeof(data->ip);
1534 
1535 	if (sample_type & PERF_SAMPLE_ADDR)
1536 		size += sizeof(data->addr);
1537 
1538 	if (sample_type & PERF_SAMPLE_PERIOD)
1539 		size += sizeof(data->period);
1540 
1541 	if (sample_type & PERF_SAMPLE_WEIGHT)
1542 		size += sizeof(data->weight);
1543 
1544 	if (sample_type & PERF_SAMPLE_READ)
1545 		size += event->read_size;
1546 
1547 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1548 		size += sizeof(data->data_src.val);
1549 
1550 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1551 		size += sizeof(data->txn);
1552 
1553 	event->header_size = size;
1554 }
1555 
1556 /*
1557  * Called at perf_event creation and when events are attached/detached from a
1558  * group.
1559  */
1560 static void perf_event__header_size(struct perf_event *event)
1561 {
1562 	__perf_event_read_size(event,
1563 			       event->group_leader->nr_siblings);
1564 	__perf_event_header_size(event, event->attr.sample_type);
1565 }
1566 
1567 static void perf_event__id_header_size(struct perf_event *event)
1568 {
1569 	struct perf_sample_data *data;
1570 	u64 sample_type = event->attr.sample_type;
1571 	u16 size = 0;
1572 
1573 	if (sample_type & PERF_SAMPLE_TID)
1574 		size += sizeof(data->tid_entry);
1575 
1576 	if (sample_type & PERF_SAMPLE_TIME)
1577 		size += sizeof(data->time);
1578 
1579 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1580 		size += sizeof(data->id);
1581 
1582 	if (sample_type & PERF_SAMPLE_ID)
1583 		size += sizeof(data->id);
1584 
1585 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1586 		size += sizeof(data->stream_id);
1587 
1588 	if (sample_type & PERF_SAMPLE_CPU)
1589 		size += sizeof(data->cpu_entry);
1590 
1591 	event->id_header_size = size;
1592 }
1593 
1594 static bool perf_event_validate_size(struct perf_event *event)
1595 {
1596 	/*
1597 	 * The values computed here will be over-written when we actually
1598 	 * attach the event.
1599 	 */
1600 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1601 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1602 	perf_event__id_header_size(event);
1603 
1604 	/*
1605 	 * Sum the lot; should not exceed the 64k limit we have on records.
1606 	 * Conservative limit to allow for callchains and other variable fields.
1607 	 */
1608 	if (event->read_size + event->header_size +
1609 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1610 		return false;
1611 
1612 	return true;
1613 }
1614 
1615 static void perf_group_attach(struct perf_event *event)
1616 {
1617 	struct perf_event *group_leader = event->group_leader, *pos;
1618 
1619 	/*
1620 	 * We can have double attach due to group movement in perf_event_open.
1621 	 */
1622 	if (event->attach_state & PERF_ATTACH_GROUP)
1623 		return;
1624 
1625 	event->attach_state |= PERF_ATTACH_GROUP;
1626 
1627 	if (group_leader == event)
1628 		return;
1629 
1630 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1631 
1632 	group_leader->group_caps &= event->event_caps;
1633 
1634 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1635 	group_leader->nr_siblings++;
1636 
1637 	perf_event__header_size(group_leader);
1638 
1639 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1640 		perf_event__header_size(pos);
1641 }
1642 
1643 /*
1644  * Remove a event from the lists for its context.
1645  * Must be called with ctx->mutex and ctx->lock held.
1646  */
1647 static void
1648 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650 	WARN_ON_ONCE(event->ctx != ctx);
1651 	lockdep_assert_held(&ctx->lock);
1652 
1653 	/*
1654 	 * We can have double detach due to exit/hot-unplug + close.
1655 	 */
1656 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1657 		return;
1658 
1659 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1660 
1661 	list_update_cgroup_event(event, ctx, false);
1662 
1663 	ctx->nr_events--;
1664 	if (event->attr.inherit_stat)
1665 		ctx->nr_stat--;
1666 
1667 	list_del_rcu(&event->event_entry);
1668 
1669 	if (event->group_leader == event)
1670 		list_del_init(&event->group_entry);
1671 
1672 	update_group_times(event);
1673 
1674 	/*
1675 	 * If event was in error state, then keep it
1676 	 * that way, otherwise bogus counts will be
1677 	 * returned on read(). The only way to get out
1678 	 * of error state is by explicit re-enabling
1679 	 * of the event
1680 	 */
1681 	if (event->state > PERF_EVENT_STATE_OFF)
1682 		event->state = PERF_EVENT_STATE_OFF;
1683 
1684 	ctx->generation++;
1685 }
1686 
1687 static void perf_group_detach(struct perf_event *event)
1688 {
1689 	struct perf_event *sibling, *tmp;
1690 	struct list_head *list = NULL;
1691 
1692 	/*
1693 	 * We can have double detach due to exit/hot-unplug + close.
1694 	 */
1695 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1696 		return;
1697 
1698 	event->attach_state &= ~PERF_ATTACH_GROUP;
1699 
1700 	/*
1701 	 * If this is a sibling, remove it from its group.
1702 	 */
1703 	if (event->group_leader != event) {
1704 		list_del_init(&event->group_entry);
1705 		event->group_leader->nr_siblings--;
1706 		goto out;
1707 	}
1708 
1709 	if (!list_empty(&event->group_entry))
1710 		list = &event->group_entry;
1711 
1712 	/*
1713 	 * If this was a group event with sibling events then
1714 	 * upgrade the siblings to singleton events by adding them
1715 	 * to whatever list we are on.
1716 	 */
1717 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1718 		if (list)
1719 			list_move_tail(&sibling->group_entry, list);
1720 		sibling->group_leader = sibling;
1721 
1722 		/* Inherit group flags from the previous leader */
1723 		sibling->group_caps = event->group_caps;
1724 
1725 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1726 	}
1727 
1728 out:
1729 	perf_event__header_size(event->group_leader);
1730 
1731 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1732 		perf_event__header_size(tmp);
1733 }
1734 
1735 static bool is_orphaned_event(struct perf_event *event)
1736 {
1737 	return event->state == PERF_EVENT_STATE_DEAD;
1738 }
1739 
1740 static inline int __pmu_filter_match(struct perf_event *event)
1741 {
1742 	struct pmu *pmu = event->pmu;
1743 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1744 }
1745 
1746 /*
1747  * Check whether we should attempt to schedule an event group based on
1748  * PMU-specific filtering. An event group can consist of HW and SW events,
1749  * potentially with a SW leader, so we must check all the filters, to
1750  * determine whether a group is schedulable:
1751  */
1752 static inline int pmu_filter_match(struct perf_event *event)
1753 {
1754 	struct perf_event *child;
1755 
1756 	if (!__pmu_filter_match(event))
1757 		return 0;
1758 
1759 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1760 		if (!__pmu_filter_match(child))
1761 			return 0;
1762 	}
1763 
1764 	return 1;
1765 }
1766 
1767 static inline int
1768 event_filter_match(struct perf_event *event)
1769 {
1770 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1771 	       perf_cgroup_match(event) && pmu_filter_match(event);
1772 }
1773 
1774 static void
1775 event_sched_out(struct perf_event *event,
1776 		  struct perf_cpu_context *cpuctx,
1777 		  struct perf_event_context *ctx)
1778 {
1779 	u64 tstamp = perf_event_time(event);
1780 	u64 delta;
1781 
1782 	WARN_ON_ONCE(event->ctx != ctx);
1783 	lockdep_assert_held(&ctx->lock);
1784 
1785 	/*
1786 	 * An event which could not be activated because of
1787 	 * filter mismatch still needs to have its timings
1788 	 * maintained, otherwise bogus information is return
1789 	 * via read() for time_enabled, time_running:
1790 	 */
1791 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1792 	    !event_filter_match(event)) {
1793 		delta = tstamp - event->tstamp_stopped;
1794 		event->tstamp_running += delta;
1795 		event->tstamp_stopped = tstamp;
1796 	}
1797 
1798 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1799 		return;
1800 
1801 	perf_pmu_disable(event->pmu);
1802 
1803 	event->tstamp_stopped = tstamp;
1804 	event->pmu->del(event, 0);
1805 	event->oncpu = -1;
1806 	event->state = PERF_EVENT_STATE_INACTIVE;
1807 	if (event->pending_disable) {
1808 		event->pending_disable = 0;
1809 		event->state = PERF_EVENT_STATE_OFF;
1810 	}
1811 
1812 	if (!is_software_event(event))
1813 		cpuctx->active_oncpu--;
1814 	if (!--ctx->nr_active)
1815 		perf_event_ctx_deactivate(ctx);
1816 	if (event->attr.freq && event->attr.sample_freq)
1817 		ctx->nr_freq--;
1818 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1819 		cpuctx->exclusive = 0;
1820 
1821 	perf_pmu_enable(event->pmu);
1822 }
1823 
1824 static void
1825 group_sched_out(struct perf_event *group_event,
1826 		struct perf_cpu_context *cpuctx,
1827 		struct perf_event_context *ctx)
1828 {
1829 	struct perf_event *event;
1830 	int state = group_event->state;
1831 
1832 	perf_pmu_disable(ctx->pmu);
1833 
1834 	event_sched_out(group_event, cpuctx, ctx);
1835 
1836 	/*
1837 	 * Schedule out siblings (if any):
1838 	 */
1839 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1840 		event_sched_out(event, cpuctx, ctx);
1841 
1842 	perf_pmu_enable(ctx->pmu);
1843 
1844 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1845 		cpuctx->exclusive = 0;
1846 }
1847 
1848 #define DETACH_GROUP	0x01UL
1849 
1850 /*
1851  * Cross CPU call to remove a performance event
1852  *
1853  * We disable the event on the hardware level first. After that we
1854  * remove it from the context list.
1855  */
1856 static void
1857 __perf_remove_from_context(struct perf_event *event,
1858 			   struct perf_cpu_context *cpuctx,
1859 			   struct perf_event_context *ctx,
1860 			   void *info)
1861 {
1862 	unsigned long flags = (unsigned long)info;
1863 
1864 	event_sched_out(event, cpuctx, ctx);
1865 	if (flags & DETACH_GROUP)
1866 		perf_group_detach(event);
1867 	list_del_event(event, ctx);
1868 
1869 	if (!ctx->nr_events && ctx->is_active) {
1870 		ctx->is_active = 0;
1871 		if (ctx->task) {
1872 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1873 			cpuctx->task_ctx = NULL;
1874 		}
1875 	}
1876 }
1877 
1878 /*
1879  * Remove the event from a task's (or a CPU's) list of events.
1880  *
1881  * If event->ctx is a cloned context, callers must make sure that
1882  * every task struct that event->ctx->task could possibly point to
1883  * remains valid.  This is OK when called from perf_release since
1884  * that only calls us on the top-level context, which can't be a clone.
1885  * When called from perf_event_exit_task, it's OK because the
1886  * context has been detached from its task.
1887  */
1888 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1889 {
1890 	lockdep_assert_held(&event->ctx->mutex);
1891 
1892 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1893 }
1894 
1895 /*
1896  * Cross CPU call to disable a performance event
1897  */
1898 static void __perf_event_disable(struct perf_event *event,
1899 				 struct perf_cpu_context *cpuctx,
1900 				 struct perf_event_context *ctx,
1901 				 void *info)
1902 {
1903 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1904 		return;
1905 
1906 	update_context_time(ctx);
1907 	update_cgrp_time_from_event(event);
1908 	update_group_times(event);
1909 	if (event == event->group_leader)
1910 		group_sched_out(event, cpuctx, ctx);
1911 	else
1912 		event_sched_out(event, cpuctx, ctx);
1913 	event->state = PERF_EVENT_STATE_OFF;
1914 }
1915 
1916 /*
1917  * Disable a event.
1918  *
1919  * If event->ctx is a cloned context, callers must make sure that
1920  * every task struct that event->ctx->task could possibly point to
1921  * remains valid.  This condition is satisifed when called through
1922  * perf_event_for_each_child or perf_event_for_each because they
1923  * hold the top-level event's child_mutex, so any descendant that
1924  * goes to exit will block in perf_event_exit_event().
1925  *
1926  * When called from perf_pending_event it's OK because event->ctx
1927  * is the current context on this CPU and preemption is disabled,
1928  * hence we can't get into perf_event_task_sched_out for this context.
1929  */
1930 static void _perf_event_disable(struct perf_event *event)
1931 {
1932 	struct perf_event_context *ctx = event->ctx;
1933 
1934 	raw_spin_lock_irq(&ctx->lock);
1935 	if (event->state <= PERF_EVENT_STATE_OFF) {
1936 		raw_spin_unlock_irq(&ctx->lock);
1937 		return;
1938 	}
1939 	raw_spin_unlock_irq(&ctx->lock);
1940 
1941 	event_function_call(event, __perf_event_disable, NULL);
1942 }
1943 
1944 void perf_event_disable_local(struct perf_event *event)
1945 {
1946 	event_function_local(event, __perf_event_disable, NULL);
1947 }
1948 
1949 /*
1950  * Strictly speaking kernel users cannot create groups and therefore this
1951  * interface does not need the perf_event_ctx_lock() magic.
1952  */
1953 void perf_event_disable(struct perf_event *event)
1954 {
1955 	struct perf_event_context *ctx;
1956 
1957 	ctx = perf_event_ctx_lock(event);
1958 	_perf_event_disable(event);
1959 	perf_event_ctx_unlock(event, ctx);
1960 }
1961 EXPORT_SYMBOL_GPL(perf_event_disable);
1962 
1963 void perf_event_disable_inatomic(struct perf_event *event)
1964 {
1965 	event->pending_disable = 1;
1966 	irq_work_queue(&event->pending);
1967 }
1968 
1969 static void perf_set_shadow_time(struct perf_event *event,
1970 				 struct perf_event_context *ctx,
1971 				 u64 tstamp)
1972 {
1973 	/*
1974 	 * use the correct time source for the time snapshot
1975 	 *
1976 	 * We could get by without this by leveraging the
1977 	 * fact that to get to this function, the caller
1978 	 * has most likely already called update_context_time()
1979 	 * and update_cgrp_time_xx() and thus both timestamp
1980 	 * are identical (or very close). Given that tstamp is,
1981 	 * already adjusted for cgroup, we could say that:
1982 	 *    tstamp - ctx->timestamp
1983 	 * is equivalent to
1984 	 *    tstamp - cgrp->timestamp.
1985 	 *
1986 	 * Then, in perf_output_read(), the calculation would
1987 	 * work with no changes because:
1988 	 * - event is guaranteed scheduled in
1989 	 * - no scheduled out in between
1990 	 * - thus the timestamp would be the same
1991 	 *
1992 	 * But this is a bit hairy.
1993 	 *
1994 	 * So instead, we have an explicit cgroup call to remain
1995 	 * within the time time source all along. We believe it
1996 	 * is cleaner and simpler to understand.
1997 	 */
1998 	if (is_cgroup_event(event))
1999 		perf_cgroup_set_shadow_time(event, tstamp);
2000 	else
2001 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2002 }
2003 
2004 #define MAX_INTERRUPTS (~0ULL)
2005 
2006 static void perf_log_throttle(struct perf_event *event, int enable);
2007 static void perf_log_itrace_start(struct perf_event *event);
2008 
2009 static int
2010 event_sched_in(struct perf_event *event,
2011 		 struct perf_cpu_context *cpuctx,
2012 		 struct perf_event_context *ctx)
2013 {
2014 	u64 tstamp = perf_event_time(event);
2015 	int ret = 0;
2016 
2017 	lockdep_assert_held(&ctx->lock);
2018 
2019 	if (event->state <= PERF_EVENT_STATE_OFF)
2020 		return 0;
2021 
2022 	WRITE_ONCE(event->oncpu, smp_processor_id());
2023 	/*
2024 	 * Order event::oncpu write to happen before the ACTIVE state
2025 	 * is visible.
2026 	 */
2027 	smp_wmb();
2028 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2029 
2030 	/*
2031 	 * Unthrottle events, since we scheduled we might have missed several
2032 	 * ticks already, also for a heavily scheduling task there is little
2033 	 * guarantee it'll get a tick in a timely manner.
2034 	 */
2035 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2036 		perf_log_throttle(event, 1);
2037 		event->hw.interrupts = 0;
2038 	}
2039 
2040 	/*
2041 	 * The new state must be visible before we turn it on in the hardware:
2042 	 */
2043 	smp_wmb();
2044 
2045 	perf_pmu_disable(event->pmu);
2046 
2047 	perf_set_shadow_time(event, ctx, tstamp);
2048 
2049 	perf_log_itrace_start(event);
2050 
2051 	if (event->pmu->add(event, PERF_EF_START)) {
2052 		event->state = PERF_EVENT_STATE_INACTIVE;
2053 		event->oncpu = -1;
2054 		ret = -EAGAIN;
2055 		goto out;
2056 	}
2057 
2058 	event->tstamp_running += tstamp - event->tstamp_stopped;
2059 
2060 	if (!is_software_event(event))
2061 		cpuctx->active_oncpu++;
2062 	if (!ctx->nr_active++)
2063 		perf_event_ctx_activate(ctx);
2064 	if (event->attr.freq && event->attr.sample_freq)
2065 		ctx->nr_freq++;
2066 
2067 	if (event->attr.exclusive)
2068 		cpuctx->exclusive = 1;
2069 
2070 out:
2071 	perf_pmu_enable(event->pmu);
2072 
2073 	return ret;
2074 }
2075 
2076 static int
2077 group_sched_in(struct perf_event *group_event,
2078 	       struct perf_cpu_context *cpuctx,
2079 	       struct perf_event_context *ctx)
2080 {
2081 	struct perf_event *event, *partial_group = NULL;
2082 	struct pmu *pmu = ctx->pmu;
2083 	u64 now = ctx->time;
2084 	bool simulate = false;
2085 
2086 	if (group_event->state == PERF_EVENT_STATE_OFF)
2087 		return 0;
2088 
2089 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2090 
2091 	if (event_sched_in(group_event, cpuctx, ctx)) {
2092 		pmu->cancel_txn(pmu);
2093 		perf_mux_hrtimer_restart(cpuctx);
2094 		return -EAGAIN;
2095 	}
2096 
2097 	/*
2098 	 * Schedule in siblings as one group (if any):
2099 	 */
2100 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2101 		if (event_sched_in(event, cpuctx, ctx)) {
2102 			partial_group = event;
2103 			goto group_error;
2104 		}
2105 	}
2106 
2107 	if (!pmu->commit_txn(pmu))
2108 		return 0;
2109 
2110 group_error:
2111 	/*
2112 	 * Groups can be scheduled in as one unit only, so undo any
2113 	 * partial group before returning:
2114 	 * The events up to the failed event are scheduled out normally,
2115 	 * tstamp_stopped will be updated.
2116 	 *
2117 	 * The failed events and the remaining siblings need to have
2118 	 * their timings updated as if they had gone thru event_sched_in()
2119 	 * and event_sched_out(). This is required to get consistent timings
2120 	 * across the group. This also takes care of the case where the group
2121 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2122 	 * the time the event was actually stopped, such that time delta
2123 	 * calculation in update_event_times() is correct.
2124 	 */
2125 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2126 		if (event == partial_group)
2127 			simulate = true;
2128 
2129 		if (simulate) {
2130 			event->tstamp_running += now - event->tstamp_stopped;
2131 			event->tstamp_stopped = now;
2132 		} else {
2133 			event_sched_out(event, cpuctx, ctx);
2134 		}
2135 	}
2136 	event_sched_out(group_event, cpuctx, ctx);
2137 
2138 	pmu->cancel_txn(pmu);
2139 
2140 	perf_mux_hrtimer_restart(cpuctx);
2141 
2142 	return -EAGAIN;
2143 }
2144 
2145 /*
2146  * Work out whether we can put this event group on the CPU now.
2147  */
2148 static int group_can_go_on(struct perf_event *event,
2149 			   struct perf_cpu_context *cpuctx,
2150 			   int can_add_hw)
2151 {
2152 	/*
2153 	 * Groups consisting entirely of software events can always go on.
2154 	 */
2155 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2156 		return 1;
2157 	/*
2158 	 * If an exclusive group is already on, no other hardware
2159 	 * events can go on.
2160 	 */
2161 	if (cpuctx->exclusive)
2162 		return 0;
2163 	/*
2164 	 * If this group is exclusive and there are already
2165 	 * events on the CPU, it can't go on.
2166 	 */
2167 	if (event->attr.exclusive && cpuctx->active_oncpu)
2168 		return 0;
2169 	/*
2170 	 * Otherwise, try to add it if all previous groups were able
2171 	 * to go on.
2172 	 */
2173 	return can_add_hw;
2174 }
2175 
2176 static void add_event_to_ctx(struct perf_event *event,
2177 			       struct perf_event_context *ctx)
2178 {
2179 	u64 tstamp = perf_event_time(event);
2180 
2181 	list_add_event(event, ctx);
2182 	perf_group_attach(event);
2183 	event->tstamp_enabled = tstamp;
2184 	event->tstamp_running = tstamp;
2185 	event->tstamp_stopped = tstamp;
2186 }
2187 
2188 static void ctx_sched_out(struct perf_event_context *ctx,
2189 			  struct perf_cpu_context *cpuctx,
2190 			  enum event_type_t event_type);
2191 static void
2192 ctx_sched_in(struct perf_event_context *ctx,
2193 	     struct perf_cpu_context *cpuctx,
2194 	     enum event_type_t event_type,
2195 	     struct task_struct *task);
2196 
2197 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2198 			       struct perf_event_context *ctx)
2199 {
2200 	if (!cpuctx->task_ctx)
2201 		return;
2202 
2203 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2204 		return;
2205 
2206 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2207 }
2208 
2209 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2210 				struct perf_event_context *ctx,
2211 				struct task_struct *task)
2212 {
2213 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2214 	if (ctx)
2215 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2216 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2217 	if (ctx)
2218 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2219 }
2220 
2221 static void ctx_resched(struct perf_cpu_context *cpuctx,
2222 			struct perf_event_context *task_ctx)
2223 {
2224 	perf_pmu_disable(cpuctx->ctx.pmu);
2225 	if (task_ctx)
2226 		task_ctx_sched_out(cpuctx, task_ctx);
2227 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2228 	perf_event_sched_in(cpuctx, task_ctx, current);
2229 	perf_pmu_enable(cpuctx->ctx.pmu);
2230 }
2231 
2232 /*
2233  * Cross CPU call to install and enable a performance event
2234  *
2235  * Very similar to remote_function() + event_function() but cannot assume that
2236  * things like ctx->is_active and cpuctx->task_ctx are set.
2237  */
2238 static int  __perf_install_in_context(void *info)
2239 {
2240 	struct perf_event *event = info;
2241 	struct perf_event_context *ctx = event->ctx;
2242 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2243 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2244 	bool activate = true;
2245 	int ret = 0;
2246 
2247 	raw_spin_lock(&cpuctx->ctx.lock);
2248 	if (ctx->task) {
2249 		raw_spin_lock(&ctx->lock);
2250 		task_ctx = ctx;
2251 
2252 		/* If we're on the wrong CPU, try again */
2253 		if (task_cpu(ctx->task) != smp_processor_id()) {
2254 			ret = -ESRCH;
2255 			goto unlock;
2256 		}
2257 
2258 		/*
2259 		 * If we're on the right CPU, see if the task we target is
2260 		 * current, if not we don't have to activate the ctx, a future
2261 		 * context switch will do that for us.
2262 		 */
2263 		if (ctx->task != current)
2264 			activate = false;
2265 		else
2266 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2267 
2268 	} else if (task_ctx) {
2269 		raw_spin_lock(&task_ctx->lock);
2270 	}
2271 
2272 	if (activate) {
2273 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2274 		add_event_to_ctx(event, ctx);
2275 		ctx_resched(cpuctx, task_ctx);
2276 	} else {
2277 		add_event_to_ctx(event, ctx);
2278 	}
2279 
2280 unlock:
2281 	perf_ctx_unlock(cpuctx, task_ctx);
2282 
2283 	return ret;
2284 }
2285 
2286 /*
2287  * Attach a performance event to a context.
2288  *
2289  * Very similar to event_function_call, see comment there.
2290  */
2291 static void
2292 perf_install_in_context(struct perf_event_context *ctx,
2293 			struct perf_event *event,
2294 			int cpu)
2295 {
2296 	struct task_struct *task = READ_ONCE(ctx->task);
2297 
2298 	lockdep_assert_held(&ctx->mutex);
2299 
2300 	if (event->cpu != -1)
2301 		event->cpu = cpu;
2302 
2303 	/*
2304 	 * Ensures that if we can observe event->ctx, both the event and ctx
2305 	 * will be 'complete'. See perf_iterate_sb_cpu().
2306 	 */
2307 	smp_store_release(&event->ctx, ctx);
2308 
2309 	if (!task) {
2310 		cpu_function_call(cpu, __perf_install_in_context, event);
2311 		return;
2312 	}
2313 
2314 	/*
2315 	 * Should not happen, we validate the ctx is still alive before calling.
2316 	 */
2317 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2318 		return;
2319 
2320 	/*
2321 	 * Installing events is tricky because we cannot rely on ctx->is_active
2322 	 * to be set in case this is the nr_events 0 -> 1 transition.
2323 	 */
2324 again:
2325 	/*
2326 	 * Cannot use task_function_call() because we need to run on the task's
2327 	 * CPU regardless of whether its current or not.
2328 	 */
2329 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2330 		return;
2331 
2332 	raw_spin_lock_irq(&ctx->lock);
2333 	task = ctx->task;
2334 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2335 		/*
2336 		 * Cannot happen because we already checked above (which also
2337 		 * cannot happen), and we hold ctx->mutex, which serializes us
2338 		 * against perf_event_exit_task_context().
2339 		 */
2340 		raw_spin_unlock_irq(&ctx->lock);
2341 		return;
2342 	}
2343 	raw_spin_unlock_irq(&ctx->lock);
2344 	/*
2345 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2346 	 * unconditionally.
2347 	 */
2348 	goto again;
2349 }
2350 
2351 /*
2352  * Put a event into inactive state and update time fields.
2353  * Enabling the leader of a group effectively enables all
2354  * the group members that aren't explicitly disabled, so we
2355  * have to update their ->tstamp_enabled also.
2356  * Note: this works for group members as well as group leaders
2357  * since the non-leader members' sibling_lists will be empty.
2358  */
2359 static void __perf_event_mark_enabled(struct perf_event *event)
2360 {
2361 	struct perf_event *sub;
2362 	u64 tstamp = perf_event_time(event);
2363 
2364 	event->state = PERF_EVENT_STATE_INACTIVE;
2365 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2366 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2367 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2368 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2369 	}
2370 }
2371 
2372 /*
2373  * Cross CPU call to enable a performance event
2374  */
2375 static void __perf_event_enable(struct perf_event *event,
2376 				struct perf_cpu_context *cpuctx,
2377 				struct perf_event_context *ctx,
2378 				void *info)
2379 {
2380 	struct perf_event *leader = event->group_leader;
2381 	struct perf_event_context *task_ctx;
2382 
2383 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2384 	    event->state <= PERF_EVENT_STATE_ERROR)
2385 		return;
2386 
2387 	if (ctx->is_active)
2388 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2389 
2390 	__perf_event_mark_enabled(event);
2391 
2392 	if (!ctx->is_active)
2393 		return;
2394 
2395 	if (!event_filter_match(event)) {
2396 		if (is_cgroup_event(event))
2397 			perf_cgroup_defer_enabled(event);
2398 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2399 		return;
2400 	}
2401 
2402 	/*
2403 	 * If the event is in a group and isn't the group leader,
2404 	 * then don't put it on unless the group is on.
2405 	 */
2406 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2407 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2408 		return;
2409 	}
2410 
2411 	task_ctx = cpuctx->task_ctx;
2412 	if (ctx->task)
2413 		WARN_ON_ONCE(task_ctx != ctx);
2414 
2415 	ctx_resched(cpuctx, task_ctx);
2416 }
2417 
2418 /*
2419  * Enable a event.
2420  *
2421  * If event->ctx is a cloned context, callers must make sure that
2422  * every task struct that event->ctx->task could possibly point to
2423  * remains valid.  This condition is satisfied when called through
2424  * perf_event_for_each_child or perf_event_for_each as described
2425  * for perf_event_disable.
2426  */
2427 static void _perf_event_enable(struct perf_event *event)
2428 {
2429 	struct perf_event_context *ctx = event->ctx;
2430 
2431 	raw_spin_lock_irq(&ctx->lock);
2432 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2433 	    event->state <  PERF_EVENT_STATE_ERROR) {
2434 		raw_spin_unlock_irq(&ctx->lock);
2435 		return;
2436 	}
2437 
2438 	/*
2439 	 * If the event is in error state, clear that first.
2440 	 *
2441 	 * That way, if we see the event in error state below, we know that it
2442 	 * has gone back into error state, as distinct from the task having
2443 	 * been scheduled away before the cross-call arrived.
2444 	 */
2445 	if (event->state == PERF_EVENT_STATE_ERROR)
2446 		event->state = PERF_EVENT_STATE_OFF;
2447 	raw_spin_unlock_irq(&ctx->lock);
2448 
2449 	event_function_call(event, __perf_event_enable, NULL);
2450 }
2451 
2452 /*
2453  * See perf_event_disable();
2454  */
2455 void perf_event_enable(struct perf_event *event)
2456 {
2457 	struct perf_event_context *ctx;
2458 
2459 	ctx = perf_event_ctx_lock(event);
2460 	_perf_event_enable(event);
2461 	perf_event_ctx_unlock(event, ctx);
2462 }
2463 EXPORT_SYMBOL_GPL(perf_event_enable);
2464 
2465 struct stop_event_data {
2466 	struct perf_event	*event;
2467 	unsigned int		restart;
2468 };
2469 
2470 static int __perf_event_stop(void *info)
2471 {
2472 	struct stop_event_data *sd = info;
2473 	struct perf_event *event = sd->event;
2474 
2475 	/* if it's already INACTIVE, do nothing */
2476 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2477 		return 0;
2478 
2479 	/* matches smp_wmb() in event_sched_in() */
2480 	smp_rmb();
2481 
2482 	/*
2483 	 * There is a window with interrupts enabled before we get here,
2484 	 * so we need to check again lest we try to stop another CPU's event.
2485 	 */
2486 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2487 		return -EAGAIN;
2488 
2489 	event->pmu->stop(event, PERF_EF_UPDATE);
2490 
2491 	/*
2492 	 * May race with the actual stop (through perf_pmu_output_stop()),
2493 	 * but it is only used for events with AUX ring buffer, and such
2494 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2495 	 * see comments in perf_aux_output_begin().
2496 	 *
2497 	 * Since this is happening on a event-local CPU, no trace is lost
2498 	 * while restarting.
2499 	 */
2500 	if (sd->restart)
2501 		event->pmu->start(event, 0);
2502 
2503 	return 0;
2504 }
2505 
2506 static int perf_event_stop(struct perf_event *event, int restart)
2507 {
2508 	struct stop_event_data sd = {
2509 		.event		= event,
2510 		.restart	= restart,
2511 	};
2512 	int ret = 0;
2513 
2514 	do {
2515 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2516 			return 0;
2517 
2518 		/* matches smp_wmb() in event_sched_in() */
2519 		smp_rmb();
2520 
2521 		/*
2522 		 * We only want to restart ACTIVE events, so if the event goes
2523 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2524 		 * fall through with ret==-ENXIO.
2525 		 */
2526 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2527 					__perf_event_stop, &sd);
2528 	} while (ret == -EAGAIN);
2529 
2530 	return ret;
2531 }
2532 
2533 /*
2534  * In order to contain the amount of racy and tricky in the address filter
2535  * configuration management, it is a two part process:
2536  *
2537  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2538  *      we update the addresses of corresponding vmas in
2539  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2540  * (p2) when an event is scheduled in (pmu::add), it calls
2541  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2542  *      if the generation has changed since the previous call.
2543  *
2544  * If (p1) happens while the event is active, we restart it to force (p2).
2545  *
2546  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2547  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2548  *     ioctl;
2549  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2550  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2551  *     for reading;
2552  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2553  *     of exec.
2554  */
2555 void perf_event_addr_filters_sync(struct perf_event *event)
2556 {
2557 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2558 
2559 	if (!has_addr_filter(event))
2560 		return;
2561 
2562 	raw_spin_lock(&ifh->lock);
2563 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2564 		event->pmu->addr_filters_sync(event);
2565 		event->hw.addr_filters_gen = event->addr_filters_gen;
2566 	}
2567 	raw_spin_unlock(&ifh->lock);
2568 }
2569 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2570 
2571 static int _perf_event_refresh(struct perf_event *event, int refresh)
2572 {
2573 	/*
2574 	 * not supported on inherited events
2575 	 */
2576 	if (event->attr.inherit || !is_sampling_event(event))
2577 		return -EINVAL;
2578 
2579 	atomic_add(refresh, &event->event_limit);
2580 	_perf_event_enable(event);
2581 
2582 	return 0;
2583 }
2584 
2585 /*
2586  * See perf_event_disable()
2587  */
2588 int perf_event_refresh(struct perf_event *event, int refresh)
2589 {
2590 	struct perf_event_context *ctx;
2591 	int ret;
2592 
2593 	ctx = perf_event_ctx_lock(event);
2594 	ret = _perf_event_refresh(event, refresh);
2595 	perf_event_ctx_unlock(event, ctx);
2596 
2597 	return ret;
2598 }
2599 EXPORT_SYMBOL_GPL(perf_event_refresh);
2600 
2601 static void ctx_sched_out(struct perf_event_context *ctx,
2602 			  struct perf_cpu_context *cpuctx,
2603 			  enum event_type_t event_type)
2604 {
2605 	int is_active = ctx->is_active;
2606 	struct perf_event *event;
2607 
2608 	lockdep_assert_held(&ctx->lock);
2609 
2610 	if (likely(!ctx->nr_events)) {
2611 		/*
2612 		 * See __perf_remove_from_context().
2613 		 */
2614 		WARN_ON_ONCE(ctx->is_active);
2615 		if (ctx->task)
2616 			WARN_ON_ONCE(cpuctx->task_ctx);
2617 		return;
2618 	}
2619 
2620 	ctx->is_active &= ~event_type;
2621 	if (!(ctx->is_active & EVENT_ALL))
2622 		ctx->is_active = 0;
2623 
2624 	if (ctx->task) {
2625 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2626 		if (!ctx->is_active)
2627 			cpuctx->task_ctx = NULL;
2628 	}
2629 
2630 	/*
2631 	 * Always update time if it was set; not only when it changes.
2632 	 * Otherwise we can 'forget' to update time for any but the last
2633 	 * context we sched out. For example:
2634 	 *
2635 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2636 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2637 	 *
2638 	 * would only update time for the pinned events.
2639 	 */
2640 	if (is_active & EVENT_TIME) {
2641 		/* update (and stop) ctx time */
2642 		update_context_time(ctx);
2643 		update_cgrp_time_from_cpuctx(cpuctx);
2644 	}
2645 
2646 	is_active ^= ctx->is_active; /* changed bits */
2647 
2648 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2649 		return;
2650 
2651 	perf_pmu_disable(ctx->pmu);
2652 	if (is_active & EVENT_PINNED) {
2653 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2654 			group_sched_out(event, cpuctx, ctx);
2655 	}
2656 
2657 	if (is_active & EVENT_FLEXIBLE) {
2658 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2659 			group_sched_out(event, cpuctx, ctx);
2660 	}
2661 	perf_pmu_enable(ctx->pmu);
2662 }
2663 
2664 /*
2665  * Test whether two contexts are equivalent, i.e. whether they have both been
2666  * cloned from the same version of the same context.
2667  *
2668  * Equivalence is measured using a generation number in the context that is
2669  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2670  * and list_del_event().
2671  */
2672 static int context_equiv(struct perf_event_context *ctx1,
2673 			 struct perf_event_context *ctx2)
2674 {
2675 	lockdep_assert_held(&ctx1->lock);
2676 	lockdep_assert_held(&ctx2->lock);
2677 
2678 	/* Pinning disables the swap optimization */
2679 	if (ctx1->pin_count || ctx2->pin_count)
2680 		return 0;
2681 
2682 	/* If ctx1 is the parent of ctx2 */
2683 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2684 		return 1;
2685 
2686 	/* If ctx2 is the parent of ctx1 */
2687 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2688 		return 1;
2689 
2690 	/*
2691 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2692 	 * hierarchy, see perf_event_init_context().
2693 	 */
2694 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2695 			ctx1->parent_gen == ctx2->parent_gen)
2696 		return 1;
2697 
2698 	/* Unmatched */
2699 	return 0;
2700 }
2701 
2702 static void __perf_event_sync_stat(struct perf_event *event,
2703 				     struct perf_event *next_event)
2704 {
2705 	u64 value;
2706 
2707 	if (!event->attr.inherit_stat)
2708 		return;
2709 
2710 	/*
2711 	 * Update the event value, we cannot use perf_event_read()
2712 	 * because we're in the middle of a context switch and have IRQs
2713 	 * disabled, which upsets smp_call_function_single(), however
2714 	 * we know the event must be on the current CPU, therefore we
2715 	 * don't need to use it.
2716 	 */
2717 	switch (event->state) {
2718 	case PERF_EVENT_STATE_ACTIVE:
2719 		event->pmu->read(event);
2720 		/* fall-through */
2721 
2722 	case PERF_EVENT_STATE_INACTIVE:
2723 		update_event_times(event);
2724 		break;
2725 
2726 	default:
2727 		break;
2728 	}
2729 
2730 	/*
2731 	 * In order to keep per-task stats reliable we need to flip the event
2732 	 * values when we flip the contexts.
2733 	 */
2734 	value = local64_read(&next_event->count);
2735 	value = local64_xchg(&event->count, value);
2736 	local64_set(&next_event->count, value);
2737 
2738 	swap(event->total_time_enabled, next_event->total_time_enabled);
2739 	swap(event->total_time_running, next_event->total_time_running);
2740 
2741 	/*
2742 	 * Since we swizzled the values, update the user visible data too.
2743 	 */
2744 	perf_event_update_userpage(event);
2745 	perf_event_update_userpage(next_event);
2746 }
2747 
2748 static void perf_event_sync_stat(struct perf_event_context *ctx,
2749 				   struct perf_event_context *next_ctx)
2750 {
2751 	struct perf_event *event, *next_event;
2752 
2753 	if (!ctx->nr_stat)
2754 		return;
2755 
2756 	update_context_time(ctx);
2757 
2758 	event = list_first_entry(&ctx->event_list,
2759 				   struct perf_event, event_entry);
2760 
2761 	next_event = list_first_entry(&next_ctx->event_list,
2762 					struct perf_event, event_entry);
2763 
2764 	while (&event->event_entry != &ctx->event_list &&
2765 	       &next_event->event_entry != &next_ctx->event_list) {
2766 
2767 		__perf_event_sync_stat(event, next_event);
2768 
2769 		event = list_next_entry(event, event_entry);
2770 		next_event = list_next_entry(next_event, event_entry);
2771 	}
2772 }
2773 
2774 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2775 					 struct task_struct *next)
2776 {
2777 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2778 	struct perf_event_context *next_ctx;
2779 	struct perf_event_context *parent, *next_parent;
2780 	struct perf_cpu_context *cpuctx;
2781 	int do_switch = 1;
2782 
2783 	if (likely(!ctx))
2784 		return;
2785 
2786 	cpuctx = __get_cpu_context(ctx);
2787 	if (!cpuctx->task_ctx)
2788 		return;
2789 
2790 	rcu_read_lock();
2791 	next_ctx = next->perf_event_ctxp[ctxn];
2792 	if (!next_ctx)
2793 		goto unlock;
2794 
2795 	parent = rcu_dereference(ctx->parent_ctx);
2796 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2797 
2798 	/* If neither context have a parent context; they cannot be clones. */
2799 	if (!parent && !next_parent)
2800 		goto unlock;
2801 
2802 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2803 		/*
2804 		 * Looks like the two contexts are clones, so we might be
2805 		 * able to optimize the context switch.  We lock both
2806 		 * contexts and check that they are clones under the
2807 		 * lock (including re-checking that neither has been
2808 		 * uncloned in the meantime).  It doesn't matter which
2809 		 * order we take the locks because no other cpu could
2810 		 * be trying to lock both of these tasks.
2811 		 */
2812 		raw_spin_lock(&ctx->lock);
2813 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2814 		if (context_equiv(ctx, next_ctx)) {
2815 			WRITE_ONCE(ctx->task, next);
2816 			WRITE_ONCE(next_ctx->task, task);
2817 
2818 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2819 
2820 			/*
2821 			 * RCU_INIT_POINTER here is safe because we've not
2822 			 * modified the ctx and the above modification of
2823 			 * ctx->task and ctx->task_ctx_data are immaterial
2824 			 * since those values are always verified under
2825 			 * ctx->lock which we're now holding.
2826 			 */
2827 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2828 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2829 
2830 			do_switch = 0;
2831 
2832 			perf_event_sync_stat(ctx, next_ctx);
2833 		}
2834 		raw_spin_unlock(&next_ctx->lock);
2835 		raw_spin_unlock(&ctx->lock);
2836 	}
2837 unlock:
2838 	rcu_read_unlock();
2839 
2840 	if (do_switch) {
2841 		raw_spin_lock(&ctx->lock);
2842 		task_ctx_sched_out(cpuctx, ctx);
2843 		raw_spin_unlock(&ctx->lock);
2844 	}
2845 }
2846 
2847 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2848 
2849 void perf_sched_cb_dec(struct pmu *pmu)
2850 {
2851 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2852 
2853 	this_cpu_dec(perf_sched_cb_usages);
2854 
2855 	if (!--cpuctx->sched_cb_usage)
2856 		list_del(&cpuctx->sched_cb_entry);
2857 }
2858 
2859 
2860 void perf_sched_cb_inc(struct pmu *pmu)
2861 {
2862 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2863 
2864 	if (!cpuctx->sched_cb_usage++)
2865 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2866 
2867 	this_cpu_inc(perf_sched_cb_usages);
2868 }
2869 
2870 /*
2871  * This function provides the context switch callback to the lower code
2872  * layer. It is invoked ONLY when the context switch callback is enabled.
2873  *
2874  * This callback is relevant even to per-cpu events; for example multi event
2875  * PEBS requires this to provide PID/TID information. This requires we flush
2876  * all queued PEBS records before we context switch to a new task.
2877  */
2878 static void perf_pmu_sched_task(struct task_struct *prev,
2879 				struct task_struct *next,
2880 				bool sched_in)
2881 {
2882 	struct perf_cpu_context *cpuctx;
2883 	struct pmu *pmu;
2884 
2885 	if (prev == next)
2886 		return;
2887 
2888 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2889 		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2890 
2891 		if (WARN_ON_ONCE(!pmu->sched_task))
2892 			continue;
2893 
2894 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2895 		perf_pmu_disable(pmu);
2896 
2897 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2898 
2899 		perf_pmu_enable(pmu);
2900 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2901 	}
2902 }
2903 
2904 static void perf_event_switch(struct task_struct *task,
2905 			      struct task_struct *next_prev, bool sched_in);
2906 
2907 #define for_each_task_context_nr(ctxn)					\
2908 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2909 
2910 /*
2911  * Called from scheduler to remove the events of the current task,
2912  * with interrupts disabled.
2913  *
2914  * We stop each event and update the event value in event->count.
2915  *
2916  * This does not protect us against NMI, but disable()
2917  * sets the disabled bit in the control field of event _before_
2918  * accessing the event control register. If a NMI hits, then it will
2919  * not restart the event.
2920  */
2921 void __perf_event_task_sched_out(struct task_struct *task,
2922 				 struct task_struct *next)
2923 {
2924 	int ctxn;
2925 
2926 	if (__this_cpu_read(perf_sched_cb_usages))
2927 		perf_pmu_sched_task(task, next, false);
2928 
2929 	if (atomic_read(&nr_switch_events))
2930 		perf_event_switch(task, next, false);
2931 
2932 	for_each_task_context_nr(ctxn)
2933 		perf_event_context_sched_out(task, ctxn, next);
2934 
2935 	/*
2936 	 * if cgroup events exist on this CPU, then we need
2937 	 * to check if we have to switch out PMU state.
2938 	 * cgroup event are system-wide mode only
2939 	 */
2940 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2941 		perf_cgroup_sched_out(task, next);
2942 }
2943 
2944 /*
2945  * Called with IRQs disabled
2946  */
2947 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2948 			      enum event_type_t event_type)
2949 {
2950 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2951 }
2952 
2953 static void
2954 ctx_pinned_sched_in(struct perf_event_context *ctx,
2955 		    struct perf_cpu_context *cpuctx)
2956 {
2957 	struct perf_event *event;
2958 
2959 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2960 		if (event->state <= PERF_EVENT_STATE_OFF)
2961 			continue;
2962 		if (!event_filter_match(event))
2963 			continue;
2964 
2965 		/* may need to reset tstamp_enabled */
2966 		if (is_cgroup_event(event))
2967 			perf_cgroup_mark_enabled(event, ctx);
2968 
2969 		if (group_can_go_on(event, cpuctx, 1))
2970 			group_sched_in(event, cpuctx, ctx);
2971 
2972 		/*
2973 		 * If this pinned group hasn't been scheduled,
2974 		 * put it in error state.
2975 		 */
2976 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2977 			update_group_times(event);
2978 			event->state = PERF_EVENT_STATE_ERROR;
2979 		}
2980 	}
2981 }
2982 
2983 static void
2984 ctx_flexible_sched_in(struct perf_event_context *ctx,
2985 		      struct perf_cpu_context *cpuctx)
2986 {
2987 	struct perf_event *event;
2988 	int can_add_hw = 1;
2989 
2990 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2991 		/* Ignore events in OFF or ERROR state */
2992 		if (event->state <= PERF_EVENT_STATE_OFF)
2993 			continue;
2994 		/*
2995 		 * Listen to the 'cpu' scheduling filter constraint
2996 		 * of events:
2997 		 */
2998 		if (!event_filter_match(event))
2999 			continue;
3000 
3001 		/* may need to reset tstamp_enabled */
3002 		if (is_cgroup_event(event))
3003 			perf_cgroup_mark_enabled(event, ctx);
3004 
3005 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3006 			if (group_sched_in(event, cpuctx, ctx))
3007 				can_add_hw = 0;
3008 		}
3009 	}
3010 }
3011 
3012 static void
3013 ctx_sched_in(struct perf_event_context *ctx,
3014 	     struct perf_cpu_context *cpuctx,
3015 	     enum event_type_t event_type,
3016 	     struct task_struct *task)
3017 {
3018 	int is_active = ctx->is_active;
3019 	u64 now;
3020 
3021 	lockdep_assert_held(&ctx->lock);
3022 
3023 	if (likely(!ctx->nr_events))
3024 		return;
3025 
3026 	ctx->is_active |= (event_type | EVENT_TIME);
3027 	if (ctx->task) {
3028 		if (!is_active)
3029 			cpuctx->task_ctx = ctx;
3030 		else
3031 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3032 	}
3033 
3034 	is_active ^= ctx->is_active; /* changed bits */
3035 
3036 	if (is_active & EVENT_TIME) {
3037 		/* start ctx time */
3038 		now = perf_clock();
3039 		ctx->timestamp = now;
3040 		perf_cgroup_set_timestamp(task, ctx);
3041 	}
3042 
3043 	/*
3044 	 * First go through the list and put on any pinned groups
3045 	 * in order to give them the best chance of going on.
3046 	 */
3047 	if (is_active & EVENT_PINNED)
3048 		ctx_pinned_sched_in(ctx, cpuctx);
3049 
3050 	/* Then walk through the lower prio flexible groups */
3051 	if (is_active & EVENT_FLEXIBLE)
3052 		ctx_flexible_sched_in(ctx, cpuctx);
3053 }
3054 
3055 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3056 			     enum event_type_t event_type,
3057 			     struct task_struct *task)
3058 {
3059 	struct perf_event_context *ctx = &cpuctx->ctx;
3060 
3061 	ctx_sched_in(ctx, cpuctx, event_type, task);
3062 }
3063 
3064 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3065 					struct task_struct *task)
3066 {
3067 	struct perf_cpu_context *cpuctx;
3068 
3069 	cpuctx = __get_cpu_context(ctx);
3070 	if (cpuctx->task_ctx == ctx)
3071 		return;
3072 
3073 	perf_ctx_lock(cpuctx, ctx);
3074 	perf_pmu_disable(ctx->pmu);
3075 	/*
3076 	 * We want to keep the following priority order:
3077 	 * cpu pinned (that don't need to move), task pinned,
3078 	 * cpu flexible, task flexible.
3079 	 */
3080 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3081 	perf_event_sched_in(cpuctx, ctx, task);
3082 	perf_pmu_enable(ctx->pmu);
3083 	perf_ctx_unlock(cpuctx, ctx);
3084 }
3085 
3086 /*
3087  * Called from scheduler to add the events of the current task
3088  * with interrupts disabled.
3089  *
3090  * We restore the event value and then enable it.
3091  *
3092  * This does not protect us against NMI, but enable()
3093  * sets the enabled bit in the control field of event _before_
3094  * accessing the event control register. If a NMI hits, then it will
3095  * keep the event running.
3096  */
3097 void __perf_event_task_sched_in(struct task_struct *prev,
3098 				struct task_struct *task)
3099 {
3100 	struct perf_event_context *ctx;
3101 	int ctxn;
3102 
3103 	/*
3104 	 * If cgroup events exist on this CPU, then we need to check if we have
3105 	 * to switch in PMU state; cgroup event are system-wide mode only.
3106 	 *
3107 	 * Since cgroup events are CPU events, we must schedule these in before
3108 	 * we schedule in the task events.
3109 	 */
3110 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3111 		perf_cgroup_sched_in(prev, task);
3112 
3113 	for_each_task_context_nr(ctxn) {
3114 		ctx = task->perf_event_ctxp[ctxn];
3115 		if (likely(!ctx))
3116 			continue;
3117 
3118 		perf_event_context_sched_in(ctx, task);
3119 	}
3120 
3121 	if (atomic_read(&nr_switch_events))
3122 		perf_event_switch(task, prev, true);
3123 
3124 	if (__this_cpu_read(perf_sched_cb_usages))
3125 		perf_pmu_sched_task(prev, task, true);
3126 }
3127 
3128 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3129 {
3130 	u64 frequency = event->attr.sample_freq;
3131 	u64 sec = NSEC_PER_SEC;
3132 	u64 divisor, dividend;
3133 
3134 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3135 
3136 	count_fls = fls64(count);
3137 	nsec_fls = fls64(nsec);
3138 	frequency_fls = fls64(frequency);
3139 	sec_fls = 30;
3140 
3141 	/*
3142 	 * We got @count in @nsec, with a target of sample_freq HZ
3143 	 * the target period becomes:
3144 	 *
3145 	 *             @count * 10^9
3146 	 * period = -------------------
3147 	 *          @nsec * sample_freq
3148 	 *
3149 	 */
3150 
3151 	/*
3152 	 * Reduce accuracy by one bit such that @a and @b converge
3153 	 * to a similar magnitude.
3154 	 */
3155 #define REDUCE_FLS(a, b)		\
3156 do {					\
3157 	if (a##_fls > b##_fls) {	\
3158 		a >>= 1;		\
3159 		a##_fls--;		\
3160 	} else {			\
3161 		b >>= 1;		\
3162 		b##_fls--;		\
3163 	}				\
3164 } while (0)
3165 
3166 	/*
3167 	 * Reduce accuracy until either term fits in a u64, then proceed with
3168 	 * the other, so that finally we can do a u64/u64 division.
3169 	 */
3170 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3171 		REDUCE_FLS(nsec, frequency);
3172 		REDUCE_FLS(sec, count);
3173 	}
3174 
3175 	if (count_fls + sec_fls > 64) {
3176 		divisor = nsec * frequency;
3177 
3178 		while (count_fls + sec_fls > 64) {
3179 			REDUCE_FLS(count, sec);
3180 			divisor >>= 1;
3181 		}
3182 
3183 		dividend = count * sec;
3184 	} else {
3185 		dividend = count * sec;
3186 
3187 		while (nsec_fls + frequency_fls > 64) {
3188 			REDUCE_FLS(nsec, frequency);
3189 			dividend >>= 1;
3190 		}
3191 
3192 		divisor = nsec * frequency;
3193 	}
3194 
3195 	if (!divisor)
3196 		return dividend;
3197 
3198 	return div64_u64(dividend, divisor);
3199 }
3200 
3201 static DEFINE_PER_CPU(int, perf_throttled_count);
3202 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3203 
3204 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3205 {
3206 	struct hw_perf_event *hwc = &event->hw;
3207 	s64 period, sample_period;
3208 	s64 delta;
3209 
3210 	period = perf_calculate_period(event, nsec, count);
3211 
3212 	delta = (s64)(period - hwc->sample_period);
3213 	delta = (delta + 7) / 8; /* low pass filter */
3214 
3215 	sample_period = hwc->sample_period + delta;
3216 
3217 	if (!sample_period)
3218 		sample_period = 1;
3219 
3220 	hwc->sample_period = sample_period;
3221 
3222 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3223 		if (disable)
3224 			event->pmu->stop(event, PERF_EF_UPDATE);
3225 
3226 		local64_set(&hwc->period_left, 0);
3227 
3228 		if (disable)
3229 			event->pmu->start(event, PERF_EF_RELOAD);
3230 	}
3231 }
3232 
3233 /*
3234  * combine freq adjustment with unthrottling to avoid two passes over the
3235  * events. At the same time, make sure, having freq events does not change
3236  * the rate of unthrottling as that would introduce bias.
3237  */
3238 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3239 					   int needs_unthr)
3240 {
3241 	struct perf_event *event;
3242 	struct hw_perf_event *hwc;
3243 	u64 now, period = TICK_NSEC;
3244 	s64 delta;
3245 
3246 	/*
3247 	 * only need to iterate over all events iff:
3248 	 * - context have events in frequency mode (needs freq adjust)
3249 	 * - there are events to unthrottle on this cpu
3250 	 */
3251 	if (!(ctx->nr_freq || needs_unthr))
3252 		return;
3253 
3254 	raw_spin_lock(&ctx->lock);
3255 	perf_pmu_disable(ctx->pmu);
3256 
3257 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3258 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3259 			continue;
3260 
3261 		if (!event_filter_match(event))
3262 			continue;
3263 
3264 		perf_pmu_disable(event->pmu);
3265 
3266 		hwc = &event->hw;
3267 
3268 		if (hwc->interrupts == MAX_INTERRUPTS) {
3269 			hwc->interrupts = 0;
3270 			perf_log_throttle(event, 1);
3271 			event->pmu->start(event, 0);
3272 		}
3273 
3274 		if (!event->attr.freq || !event->attr.sample_freq)
3275 			goto next;
3276 
3277 		/*
3278 		 * stop the event and update event->count
3279 		 */
3280 		event->pmu->stop(event, PERF_EF_UPDATE);
3281 
3282 		now = local64_read(&event->count);
3283 		delta = now - hwc->freq_count_stamp;
3284 		hwc->freq_count_stamp = now;
3285 
3286 		/*
3287 		 * restart the event
3288 		 * reload only if value has changed
3289 		 * we have stopped the event so tell that
3290 		 * to perf_adjust_period() to avoid stopping it
3291 		 * twice.
3292 		 */
3293 		if (delta > 0)
3294 			perf_adjust_period(event, period, delta, false);
3295 
3296 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3297 	next:
3298 		perf_pmu_enable(event->pmu);
3299 	}
3300 
3301 	perf_pmu_enable(ctx->pmu);
3302 	raw_spin_unlock(&ctx->lock);
3303 }
3304 
3305 /*
3306  * Round-robin a context's events:
3307  */
3308 static void rotate_ctx(struct perf_event_context *ctx)
3309 {
3310 	/*
3311 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3312 	 * disabled by the inheritance code.
3313 	 */
3314 	if (!ctx->rotate_disable)
3315 		list_rotate_left(&ctx->flexible_groups);
3316 }
3317 
3318 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3319 {
3320 	struct perf_event_context *ctx = NULL;
3321 	int rotate = 0;
3322 
3323 	if (cpuctx->ctx.nr_events) {
3324 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3325 			rotate = 1;
3326 	}
3327 
3328 	ctx = cpuctx->task_ctx;
3329 	if (ctx && ctx->nr_events) {
3330 		if (ctx->nr_events != ctx->nr_active)
3331 			rotate = 1;
3332 	}
3333 
3334 	if (!rotate)
3335 		goto done;
3336 
3337 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3338 	perf_pmu_disable(cpuctx->ctx.pmu);
3339 
3340 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3341 	if (ctx)
3342 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3343 
3344 	rotate_ctx(&cpuctx->ctx);
3345 	if (ctx)
3346 		rotate_ctx(ctx);
3347 
3348 	perf_event_sched_in(cpuctx, ctx, current);
3349 
3350 	perf_pmu_enable(cpuctx->ctx.pmu);
3351 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3352 done:
3353 
3354 	return rotate;
3355 }
3356 
3357 void perf_event_task_tick(void)
3358 {
3359 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3360 	struct perf_event_context *ctx, *tmp;
3361 	int throttled;
3362 
3363 	WARN_ON(!irqs_disabled());
3364 
3365 	__this_cpu_inc(perf_throttled_seq);
3366 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3367 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3368 
3369 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3370 		perf_adjust_freq_unthr_context(ctx, throttled);
3371 }
3372 
3373 static int event_enable_on_exec(struct perf_event *event,
3374 				struct perf_event_context *ctx)
3375 {
3376 	if (!event->attr.enable_on_exec)
3377 		return 0;
3378 
3379 	event->attr.enable_on_exec = 0;
3380 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3381 		return 0;
3382 
3383 	__perf_event_mark_enabled(event);
3384 
3385 	return 1;
3386 }
3387 
3388 /*
3389  * Enable all of a task's events that have been marked enable-on-exec.
3390  * This expects task == current.
3391  */
3392 static void perf_event_enable_on_exec(int ctxn)
3393 {
3394 	struct perf_event_context *ctx, *clone_ctx = NULL;
3395 	struct perf_cpu_context *cpuctx;
3396 	struct perf_event *event;
3397 	unsigned long flags;
3398 	int enabled = 0;
3399 
3400 	local_irq_save(flags);
3401 	ctx = current->perf_event_ctxp[ctxn];
3402 	if (!ctx || !ctx->nr_events)
3403 		goto out;
3404 
3405 	cpuctx = __get_cpu_context(ctx);
3406 	perf_ctx_lock(cpuctx, ctx);
3407 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3408 	list_for_each_entry(event, &ctx->event_list, event_entry)
3409 		enabled |= event_enable_on_exec(event, ctx);
3410 
3411 	/*
3412 	 * Unclone and reschedule this context if we enabled any event.
3413 	 */
3414 	if (enabled) {
3415 		clone_ctx = unclone_ctx(ctx);
3416 		ctx_resched(cpuctx, ctx);
3417 	}
3418 	perf_ctx_unlock(cpuctx, ctx);
3419 
3420 out:
3421 	local_irq_restore(flags);
3422 
3423 	if (clone_ctx)
3424 		put_ctx(clone_ctx);
3425 }
3426 
3427 struct perf_read_data {
3428 	struct perf_event *event;
3429 	bool group;
3430 	int ret;
3431 };
3432 
3433 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3434 {
3435 	int event_cpu = event->oncpu;
3436 	u16 local_pkg, event_pkg;
3437 
3438 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3439 		event_pkg =  topology_physical_package_id(event_cpu);
3440 		local_pkg =  topology_physical_package_id(local_cpu);
3441 
3442 		if (event_pkg == local_pkg)
3443 			return local_cpu;
3444 	}
3445 
3446 	return event_cpu;
3447 }
3448 
3449 /*
3450  * Cross CPU call to read the hardware event
3451  */
3452 static void __perf_event_read(void *info)
3453 {
3454 	struct perf_read_data *data = info;
3455 	struct perf_event *sub, *event = data->event;
3456 	struct perf_event_context *ctx = event->ctx;
3457 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3458 	struct pmu *pmu = event->pmu;
3459 
3460 	/*
3461 	 * If this is a task context, we need to check whether it is
3462 	 * the current task context of this cpu.  If not it has been
3463 	 * scheduled out before the smp call arrived.  In that case
3464 	 * event->count would have been updated to a recent sample
3465 	 * when the event was scheduled out.
3466 	 */
3467 	if (ctx->task && cpuctx->task_ctx != ctx)
3468 		return;
3469 
3470 	raw_spin_lock(&ctx->lock);
3471 	if (ctx->is_active) {
3472 		update_context_time(ctx);
3473 		update_cgrp_time_from_event(event);
3474 	}
3475 
3476 	update_event_times(event);
3477 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3478 		goto unlock;
3479 
3480 	if (!data->group) {
3481 		pmu->read(event);
3482 		data->ret = 0;
3483 		goto unlock;
3484 	}
3485 
3486 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3487 
3488 	pmu->read(event);
3489 
3490 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3491 		update_event_times(sub);
3492 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3493 			/*
3494 			 * Use sibling's PMU rather than @event's since
3495 			 * sibling could be on different (eg: software) PMU.
3496 			 */
3497 			sub->pmu->read(sub);
3498 		}
3499 	}
3500 
3501 	data->ret = pmu->commit_txn(pmu);
3502 
3503 unlock:
3504 	raw_spin_unlock(&ctx->lock);
3505 }
3506 
3507 static inline u64 perf_event_count(struct perf_event *event)
3508 {
3509 	if (event->pmu->count)
3510 		return event->pmu->count(event);
3511 
3512 	return __perf_event_count(event);
3513 }
3514 
3515 /*
3516  * NMI-safe method to read a local event, that is an event that
3517  * is:
3518  *   - either for the current task, or for this CPU
3519  *   - does not have inherit set, for inherited task events
3520  *     will not be local and we cannot read them atomically
3521  *   - must not have a pmu::count method
3522  */
3523 u64 perf_event_read_local(struct perf_event *event)
3524 {
3525 	unsigned long flags;
3526 	u64 val;
3527 
3528 	/*
3529 	 * Disabling interrupts avoids all counter scheduling (context
3530 	 * switches, timer based rotation and IPIs).
3531 	 */
3532 	local_irq_save(flags);
3533 
3534 	/* If this is a per-task event, it must be for current */
3535 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3536 		     event->hw.target != current);
3537 
3538 	/* If this is a per-CPU event, it must be for this CPU */
3539 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3540 		     event->cpu != smp_processor_id());
3541 
3542 	/*
3543 	 * It must not be an event with inherit set, we cannot read
3544 	 * all child counters from atomic context.
3545 	 */
3546 	WARN_ON_ONCE(event->attr.inherit);
3547 
3548 	/*
3549 	 * It must not have a pmu::count method, those are not
3550 	 * NMI safe.
3551 	 */
3552 	WARN_ON_ONCE(event->pmu->count);
3553 
3554 	/*
3555 	 * If the event is currently on this CPU, its either a per-task event,
3556 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3557 	 * oncpu == -1).
3558 	 */
3559 	if (event->oncpu == smp_processor_id())
3560 		event->pmu->read(event);
3561 
3562 	val = local64_read(&event->count);
3563 	local_irq_restore(flags);
3564 
3565 	return val;
3566 }
3567 
3568 static int perf_event_read(struct perf_event *event, bool group)
3569 {
3570 	int ret = 0, cpu_to_read, local_cpu;
3571 
3572 	/*
3573 	 * If event is enabled and currently active on a CPU, update the
3574 	 * value in the event structure:
3575 	 */
3576 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3577 		struct perf_read_data data = {
3578 			.event = event,
3579 			.group = group,
3580 			.ret = 0,
3581 		};
3582 
3583 		local_cpu = get_cpu();
3584 		cpu_to_read = find_cpu_to_read(event, local_cpu);
3585 		put_cpu();
3586 
3587 		/*
3588 		 * Purposely ignore the smp_call_function_single() return
3589 		 * value.
3590 		 *
3591 		 * If event->oncpu isn't a valid CPU it means the event got
3592 		 * scheduled out and that will have updated the event count.
3593 		 *
3594 		 * Therefore, either way, we'll have an up-to-date event count
3595 		 * after this.
3596 		 */
3597 		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3598 		ret = data.ret;
3599 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3600 		struct perf_event_context *ctx = event->ctx;
3601 		unsigned long flags;
3602 
3603 		raw_spin_lock_irqsave(&ctx->lock, flags);
3604 		/*
3605 		 * may read while context is not active
3606 		 * (e.g., thread is blocked), in that case
3607 		 * we cannot update context time
3608 		 */
3609 		if (ctx->is_active) {
3610 			update_context_time(ctx);
3611 			update_cgrp_time_from_event(event);
3612 		}
3613 		if (group)
3614 			update_group_times(event);
3615 		else
3616 			update_event_times(event);
3617 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3618 	}
3619 
3620 	return ret;
3621 }
3622 
3623 /*
3624  * Initialize the perf_event context in a task_struct:
3625  */
3626 static void __perf_event_init_context(struct perf_event_context *ctx)
3627 {
3628 	raw_spin_lock_init(&ctx->lock);
3629 	mutex_init(&ctx->mutex);
3630 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3631 	INIT_LIST_HEAD(&ctx->pinned_groups);
3632 	INIT_LIST_HEAD(&ctx->flexible_groups);
3633 	INIT_LIST_HEAD(&ctx->event_list);
3634 	atomic_set(&ctx->refcount, 1);
3635 }
3636 
3637 static struct perf_event_context *
3638 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3639 {
3640 	struct perf_event_context *ctx;
3641 
3642 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3643 	if (!ctx)
3644 		return NULL;
3645 
3646 	__perf_event_init_context(ctx);
3647 	if (task) {
3648 		ctx->task = task;
3649 		get_task_struct(task);
3650 	}
3651 	ctx->pmu = pmu;
3652 
3653 	return ctx;
3654 }
3655 
3656 static struct task_struct *
3657 find_lively_task_by_vpid(pid_t vpid)
3658 {
3659 	struct task_struct *task;
3660 
3661 	rcu_read_lock();
3662 	if (!vpid)
3663 		task = current;
3664 	else
3665 		task = find_task_by_vpid(vpid);
3666 	if (task)
3667 		get_task_struct(task);
3668 	rcu_read_unlock();
3669 
3670 	if (!task)
3671 		return ERR_PTR(-ESRCH);
3672 
3673 	return task;
3674 }
3675 
3676 /*
3677  * Returns a matching context with refcount and pincount.
3678  */
3679 static struct perf_event_context *
3680 find_get_context(struct pmu *pmu, struct task_struct *task,
3681 		struct perf_event *event)
3682 {
3683 	struct perf_event_context *ctx, *clone_ctx = NULL;
3684 	struct perf_cpu_context *cpuctx;
3685 	void *task_ctx_data = NULL;
3686 	unsigned long flags;
3687 	int ctxn, err;
3688 	int cpu = event->cpu;
3689 
3690 	if (!task) {
3691 		/* Must be root to operate on a CPU event: */
3692 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3693 			return ERR_PTR(-EACCES);
3694 
3695 		/*
3696 		 * We could be clever and allow to attach a event to an
3697 		 * offline CPU and activate it when the CPU comes up, but
3698 		 * that's for later.
3699 		 */
3700 		if (!cpu_online(cpu))
3701 			return ERR_PTR(-ENODEV);
3702 
3703 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3704 		ctx = &cpuctx->ctx;
3705 		get_ctx(ctx);
3706 		++ctx->pin_count;
3707 
3708 		return ctx;
3709 	}
3710 
3711 	err = -EINVAL;
3712 	ctxn = pmu->task_ctx_nr;
3713 	if (ctxn < 0)
3714 		goto errout;
3715 
3716 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3717 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3718 		if (!task_ctx_data) {
3719 			err = -ENOMEM;
3720 			goto errout;
3721 		}
3722 	}
3723 
3724 retry:
3725 	ctx = perf_lock_task_context(task, ctxn, &flags);
3726 	if (ctx) {
3727 		clone_ctx = unclone_ctx(ctx);
3728 		++ctx->pin_count;
3729 
3730 		if (task_ctx_data && !ctx->task_ctx_data) {
3731 			ctx->task_ctx_data = task_ctx_data;
3732 			task_ctx_data = NULL;
3733 		}
3734 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3735 
3736 		if (clone_ctx)
3737 			put_ctx(clone_ctx);
3738 	} else {
3739 		ctx = alloc_perf_context(pmu, task);
3740 		err = -ENOMEM;
3741 		if (!ctx)
3742 			goto errout;
3743 
3744 		if (task_ctx_data) {
3745 			ctx->task_ctx_data = task_ctx_data;
3746 			task_ctx_data = NULL;
3747 		}
3748 
3749 		err = 0;
3750 		mutex_lock(&task->perf_event_mutex);
3751 		/*
3752 		 * If it has already passed perf_event_exit_task().
3753 		 * we must see PF_EXITING, it takes this mutex too.
3754 		 */
3755 		if (task->flags & PF_EXITING)
3756 			err = -ESRCH;
3757 		else if (task->perf_event_ctxp[ctxn])
3758 			err = -EAGAIN;
3759 		else {
3760 			get_ctx(ctx);
3761 			++ctx->pin_count;
3762 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3763 		}
3764 		mutex_unlock(&task->perf_event_mutex);
3765 
3766 		if (unlikely(err)) {
3767 			put_ctx(ctx);
3768 
3769 			if (err == -EAGAIN)
3770 				goto retry;
3771 			goto errout;
3772 		}
3773 	}
3774 
3775 	kfree(task_ctx_data);
3776 	return ctx;
3777 
3778 errout:
3779 	kfree(task_ctx_data);
3780 	return ERR_PTR(err);
3781 }
3782 
3783 static void perf_event_free_filter(struct perf_event *event);
3784 static void perf_event_free_bpf_prog(struct perf_event *event);
3785 
3786 static void free_event_rcu(struct rcu_head *head)
3787 {
3788 	struct perf_event *event;
3789 
3790 	event = container_of(head, struct perf_event, rcu_head);
3791 	if (event->ns)
3792 		put_pid_ns(event->ns);
3793 	perf_event_free_filter(event);
3794 	kfree(event);
3795 }
3796 
3797 static void ring_buffer_attach(struct perf_event *event,
3798 			       struct ring_buffer *rb);
3799 
3800 static void detach_sb_event(struct perf_event *event)
3801 {
3802 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3803 
3804 	raw_spin_lock(&pel->lock);
3805 	list_del_rcu(&event->sb_list);
3806 	raw_spin_unlock(&pel->lock);
3807 }
3808 
3809 static bool is_sb_event(struct perf_event *event)
3810 {
3811 	struct perf_event_attr *attr = &event->attr;
3812 
3813 	if (event->parent)
3814 		return false;
3815 
3816 	if (event->attach_state & PERF_ATTACH_TASK)
3817 		return false;
3818 
3819 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3820 	    attr->comm || attr->comm_exec ||
3821 	    attr->task ||
3822 	    attr->context_switch)
3823 		return true;
3824 	return false;
3825 }
3826 
3827 static void unaccount_pmu_sb_event(struct perf_event *event)
3828 {
3829 	if (is_sb_event(event))
3830 		detach_sb_event(event);
3831 }
3832 
3833 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3834 {
3835 	if (event->parent)
3836 		return;
3837 
3838 	if (is_cgroup_event(event))
3839 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3840 }
3841 
3842 #ifdef CONFIG_NO_HZ_FULL
3843 static DEFINE_SPINLOCK(nr_freq_lock);
3844 #endif
3845 
3846 static void unaccount_freq_event_nohz(void)
3847 {
3848 #ifdef CONFIG_NO_HZ_FULL
3849 	spin_lock(&nr_freq_lock);
3850 	if (atomic_dec_and_test(&nr_freq_events))
3851 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3852 	spin_unlock(&nr_freq_lock);
3853 #endif
3854 }
3855 
3856 static void unaccount_freq_event(void)
3857 {
3858 	if (tick_nohz_full_enabled())
3859 		unaccount_freq_event_nohz();
3860 	else
3861 		atomic_dec(&nr_freq_events);
3862 }
3863 
3864 static void unaccount_event(struct perf_event *event)
3865 {
3866 	bool dec = false;
3867 
3868 	if (event->parent)
3869 		return;
3870 
3871 	if (event->attach_state & PERF_ATTACH_TASK)
3872 		dec = true;
3873 	if (event->attr.mmap || event->attr.mmap_data)
3874 		atomic_dec(&nr_mmap_events);
3875 	if (event->attr.comm)
3876 		atomic_dec(&nr_comm_events);
3877 	if (event->attr.task)
3878 		atomic_dec(&nr_task_events);
3879 	if (event->attr.freq)
3880 		unaccount_freq_event();
3881 	if (event->attr.context_switch) {
3882 		dec = true;
3883 		atomic_dec(&nr_switch_events);
3884 	}
3885 	if (is_cgroup_event(event))
3886 		dec = true;
3887 	if (has_branch_stack(event))
3888 		dec = true;
3889 
3890 	if (dec) {
3891 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3892 			schedule_delayed_work(&perf_sched_work, HZ);
3893 	}
3894 
3895 	unaccount_event_cpu(event, event->cpu);
3896 
3897 	unaccount_pmu_sb_event(event);
3898 }
3899 
3900 static void perf_sched_delayed(struct work_struct *work)
3901 {
3902 	mutex_lock(&perf_sched_mutex);
3903 	if (atomic_dec_and_test(&perf_sched_count))
3904 		static_branch_disable(&perf_sched_events);
3905 	mutex_unlock(&perf_sched_mutex);
3906 }
3907 
3908 /*
3909  * The following implement mutual exclusion of events on "exclusive" pmus
3910  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3911  * at a time, so we disallow creating events that might conflict, namely:
3912  *
3913  *  1) cpu-wide events in the presence of per-task events,
3914  *  2) per-task events in the presence of cpu-wide events,
3915  *  3) two matching events on the same context.
3916  *
3917  * The former two cases are handled in the allocation path (perf_event_alloc(),
3918  * _free_event()), the latter -- before the first perf_install_in_context().
3919  */
3920 static int exclusive_event_init(struct perf_event *event)
3921 {
3922 	struct pmu *pmu = event->pmu;
3923 
3924 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3925 		return 0;
3926 
3927 	/*
3928 	 * Prevent co-existence of per-task and cpu-wide events on the
3929 	 * same exclusive pmu.
3930 	 *
3931 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3932 	 * events on this "exclusive" pmu, positive means there are
3933 	 * per-task events.
3934 	 *
3935 	 * Since this is called in perf_event_alloc() path, event::ctx
3936 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3937 	 * to mean "per-task event", because unlike other attach states it
3938 	 * never gets cleared.
3939 	 */
3940 	if (event->attach_state & PERF_ATTACH_TASK) {
3941 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3942 			return -EBUSY;
3943 	} else {
3944 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3945 			return -EBUSY;
3946 	}
3947 
3948 	return 0;
3949 }
3950 
3951 static void exclusive_event_destroy(struct perf_event *event)
3952 {
3953 	struct pmu *pmu = event->pmu;
3954 
3955 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3956 		return;
3957 
3958 	/* see comment in exclusive_event_init() */
3959 	if (event->attach_state & PERF_ATTACH_TASK)
3960 		atomic_dec(&pmu->exclusive_cnt);
3961 	else
3962 		atomic_inc(&pmu->exclusive_cnt);
3963 }
3964 
3965 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3966 {
3967 	if ((e1->pmu == e2->pmu) &&
3968 	    (e1->cpu == e2->cpu ||
3969 	     e1->cpu == -1 ||
3970 	     e2->cpu == -1))
3971 		return true;
3972 	return false;
3973 }
3974 
3975 /* Called under the same ctx::mutex as perf_install_in_context() */
3976 static bool exclusive_event_installable(struct perf_event *event,
3977 					struct perf_event_context *ctx)
3978 {
3979 	struct perf_event *iter_event;
3980 	struct pmu *pmu = event->pmu;
3981 
3982 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3983 		return true;
3984 
3985 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3986 		if (exclusive_event_match(iter_event, event))
3987 			return false;
3988 	}
3989 
3990 	return true;
3991 }
3992 
3993 static void perf_addr_filters_splice(struct perf_event *event,
3994 				       struct list_head *head);
3995 
3996 static void _free_event(struct perf_event *event)
3997 {
3998 	irq_work_sync(&event->pending);
3999 
4000 	unaccount_event(event);
4001 
4002 	if (event->rb) {
4003 		/*
4004 		 * Can happen when we close an event with re-directed output.
4005 		 *
4006 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4007 		 * over us; possibly making our ring_buffer_put() the last.
4008 		 */
4009 		mutex_lock(&event->mmap_mutex);
4010 		ring_buffer_attach(event, NULL);
4011 		mutex_unlock(&event->mmap_mutex);
4012 	}
4013 
4014 	if (is_cgroup_event(event))
4015 		perf_detach_cgroup(event);
4016 
4017 	if (!event->parent) {
4018 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4019 			put_callchain_buffers();
4020 	}
4021 
4022 	perf_event_free_bpf_prog(event);
4023 	perf_addr_filters_splice(event, NULL);
4024 	kfree(event->addr_filters_offs);
4025 
4026 	if (event->destroy)
4027 		event->destroy(event);
4028 
4029 	if (event->ctx)
4030 		put_ctx(event->ctx);
4031 
4032 	exclusive_event_destroy(event);
4033 	module_put(event->pmu->module);
4034 
4035 	call_rcu(&event->rcu_head, free_event_rcu);
4036 }
4037 
4038 /*
4039  * Used to free events which have a known refcount of 1, such as in error paths
4040  * where the event isn't exposed yet and inherited events.
4041  */
4042 static void free_event(struct perf_event *event)
4043 {
4044 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4045 				"unexpected event refcount: %ld; ptr=%p\n",
4046 				atomic_long_read(&event->refcount), event)) {
4047 		/* leak to avoid use-after-free */
4048 		return;
4049 	}
4050 
4051 	_free_event(event);
4052 }
4053 
4054 /*
4055  * Remove user event from the owner task.
4056  */
4057 static void perf_remove_from_owner(struct perf_event *event)
4058 {
4059 	struct task_struct *owner;
4060 
4061 	rcu_read_lock();
4062 	/*
4063 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4064 	 * observe !owner it means the list deletion is complete and we can
4065 	 * indeed free this event, otherwise we need to serialize on
4066 	 * owner->perf_event_mutex.
4067 	 */
4068 	owner = lockless_dereference(event->owner);
4069 	if (owner) {
4070 		/*
4071 		 * Since delayed_put_task_struct() also drops the last
4072 		 * task reference we can safely take a new reference
4073 		 * while holding the rcu_read_lock().
4074 		 */
4075 		get_task_struct(owner);
4076 	}
4077 	rcu_read_unlock();
4078 
4079 	if (owner) {
4080 		/*
4081 		 * If we're here through perf_event_exit_task() we're already
4082 		 * holding ctx->mutex which would be an inversion wrt. the
4083 		 * normal lock order.
4084 		 *
4085 		 * However we can safely take this lock because its the child
4086 		 * ctx->mutex.
4087 		 */
4088 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4089 
4090 		/*
4091 		 * We have to re-check the event->owner field, if it is cleared
4092 		 * we raced with perf_event_exit_task(), acquiring the mutex
4093 		 * ensured they're done, and we can proceed with freeing the
4094 		 * event.
4095 		 */
4096 		if (event->owner) {
4097 			list_del_init(&event->owner_entry);
4098 			smp_store_release(&event->owner, NULL);
4099 		}
4100 		mutex_unlock(&owner->perf_event_mutex);
4101 		put_task_struct(owner);
4102 	}
4103 }
4104 
4105 static void put_event(struct perf_event *event)
4106 {
4107 	if (!atomic_long_dec_and_test(&event->refcount))
4108 		return;
4109 
4110 	_free_event(event);
4111 }
4112 
4113 /*
4114  * Kill an event dead; while event:refcount will preserve the event
4115  * object, it will not preserve its functionality. Once the last 'user'
4116  * gives up the object, we'll destroy the thing.
4117  */
4118 int perf_event_release_kernel(struct perf_event *event)
4119 {
4120 	struct perf_event_context *ctx = event->ctx;
4121 	struct perf_event *child, *tmp;
4122 
4123 	/*
4124 	 * If we got here through err_file: fput(event_file); we will not have
4125 	 * attached to a context yet.
4126 	 */
4127 	if (!ctx) {
4128 		WARN_ON_ONCE(event->attach_state &
4129 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4130 		goto no_ctx;
4131 	}
4132 
4133 	if (!is_kernel_event(event))
4134 		perf_remove_from_owner(event);
4135 
4136 	ctx = perf_event_ctx_lock(event);
4137 	WARN_ON_ONCE(ctx->parent_ctx);
4138 	perf_remove_from_context(event, DETACH_GROUP);
4139 
4140 	raw_spin_lock_irq(&ctx->lock);
4141 	/*
4142 	 * Mark this even as STATE_DEAD, there is no external reference to it
4143 	 * anymore.
4144 	 *
4145 	 * Anybody acquiring event->child_mutex after the below loop _must_
4146 	 * also see this, most importantly inherit_event() which will avoid
4147 	 * placing more children on the list.
4148 	 *
4149 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4150 	 * child events.
4151 	 */
4152 	event->state = PERF_EVENT_STATE_DEAD;
4153 	raw_spin_unlock_irq(&ctx->lock);
4154 
4155 	perf_event_ctx_unlock(event, ctx);
4156 
4157 again:
4158 	mutex_lock(&event->child_mutex);
4159 	list_for_each_entry(child, &event->child_list, child_list) {
4160 
4161 		/*
4162 		 * Cannot change, child events are not migrated, see the
4163 		 * comment with perf_event_ctx_lock_nested().
4164 		 */
4165 		ctx = lockless_dereference(child->ctx);
4166 		/*
4167 		 * Since child_mutex nests inside ctx::mutex, we must jump
4168 		 * through hoops. We start by grabbing a reference on the ctx.
4169 		 *
4170 		 * Since the event cannot get freed while we hold the
4171 		 * child_mutex, the context must also exist and have a !0
4172 		 * reference count.
4173 		 */
4174 		get_ctx(ctx);
4175 
4176 		/*
4177 		 * Now that we have a ctx ref, we can drop child_mutex, and
4178 		 * acquire ctx::mutex without fear of it going away. Then we
4179 		 * can re-acquire child_mutex.
4180 		 */
4181 		mutex_unlock(&event->child_mutex);
4182 		mutex_lock(&ctx->mutex);
4183 		mutex_lock(&event->child_mutex);
4184 
4185 		/*
4186 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4187 		 * state, if child is still the first entry, it didn't get freed
4188 		 * and we can continue doing so.
4189 		 */
4190 		tmp = list_first_entry_or_null(&event->child_list,
4191 					       struct perf_event, child_list);
4192 		if (tmp == child) {
4193 			perf_remove_from_context(child, DETACH_GROUP);
4194 			list_del(&child->child_list);
4195 			free_event(child);
4196 			/*
4197 			 * This matches the refcount bump in inherit_event();
4198 			 * this can't be the last reference.
4199 			 */
4200 			put_event(event);
4201 		}
4202 
4203 		mutex_unlock(&event->child_mutex);
4204 		mutex_unlock(&ctx->mutex);
4205 		put_ctx(ctx);
4206 		goto again;
4207 	}
4208 	mutex_unlock(&event->child_mutex);
4209 
4210 no_ctx:
4211 	put_event(event); /* Must be the 'last' reference */
4212 	return 0;
4213 }
4214 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4215 
4216 /*
4217  * Called when the last reference to the file is gone.
4218  */
4219 static int perf_release(struct inode *inode, struct file *file)
4220 {
4221 	perf_event_release_kernel(file->private_data);
4222 	return 0;
4223 }
4224 
4225 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4226 {
4227 	struct perf_event *child;
4228 	u64 total = 0;
4229 
4230 	*enabled = 0;
4231 	*running = 0;
4232 
4233 	mutex_lock(&event->child_mutex);
4234 
4235 	(void)perf_event_read(event, false);
4236 	total += perf_event_count(event);
4237 
4238 	*enabled += event->total_time_enabled +
4239 			atomic64_read(&event->child_total_time_enabled);
4240 	*running += event->total_time_running +
4241 			atomic64_read(&event->child_total_time_running);
4242 
4243 	list_for_each_entry(child, &event->child_list, child_list) {
4244 		(void)perf_event_read(child, false);
4245 		total += perf_event_count(child);
4246 		*enabled += child->total_time_enabled;
4247 		*running += child->total_time_running;
4248 	}
4249 	mutex_unlock(&event->child_mutex);
4250 
4251 	return total;
4252 }
4253 EXPORT_SYMBOL_GPL(perf_event_read_value);
4254 
4255 static int __perf_read_group_add(struct perf_event *leader,
4256 					u64 read_format, u64 *values)
4257 {
4258 	struct perf_event *sub;
4259 	int n = 1; /* skip @nr */
4260 	int ret;
4261 
4262 	ret = perf_event_read(leader, true);
4263 	if (ret)
4264 		return ret;
4265 
4266 	/*
4267 	 * Since we co-schedule groups, {enabled,running} times of siblings
4268 	 * will be identical to those of the leader, so we only publish one
4269 	 * set.
4270 	 */
4271 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4272 		values[n++] += leader->total_time_enabled +
4273 			atomic64_read(&leader->child_total_time_enabled);
4274 	}
4275 
4276 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4277 		values[n++] += leader->total_time_running +
4278 			atomic64_read(&leader->child_total_time_running);
4279 	}
4280 
4281 	/*
4282 	 * Write {count,id} tuples for every sibling.
4283 	 */
4284 	values[n++] += perf_event_count(leader);
4285 	if (read_format & PERF_FORMAT_ID)
4286 		values[n++] = primary_event_id(leader);
4287 
4288 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4289 		values[n++] += perf_event_count(sub);
4290 		if (read_format & PERF_FORMAT_ID)
4291 			values[n++] = primary_event_id(sub);
4292 	}
4293 
4294 	return 0;
4295 }
4296 
4297 static int perf_read_group(struct perf_event *event,
4298 				   u64 read_format, char __user *buf)
4299 {
4300 	struct perf_event *leader = event->group_leader, *child;
4301 	struct perf_event_context *ctx = leader->ctx;
4302 	int ret;
4303 	u64 *values;
4304 
4305 	lockdep_assert_held(&ctx->mutex);
4306 
4307 	values = kzalloc(event->read_size, GFP_KERNEL);
4308 	if (!values)
4309 		return -ENOMEM;
4310 
4311 	values[0] = 1 + leader->nr_siblings;
4312 
4313 	/*
4314 	 * By locking the child_mutex of the leader we effectively
4315 	 * lock the child list of all siblings.. XXX explain how.
4316 	 */
4317 	mutex_lock(&leader->child_mutex);
4318 
4319 	ret = __perf_read_group_add(leader, read_format, values);
4320 	if (ret)
4321 		goto unlock;
4322 
4323 	list_for_each_entry(child, &leader->child_list, child_list) {
4324 		ret = __perf_read_group_add(child, read_format, values);
4325 		if (ret)
4326 			goto unlock;
4327 	}
4328 
4329 	mutex_unlock(&leader->child_mutex);
4330 
4331 	ret = event->read_size;
4332 	if (copy_to_user(buf, values, event->read_size))
4333 		ret = -EFAULT;
4334 	goto out;
4335 
4336 unlock:
4337 	mutex_unlock(&leader->child_mutex);
4338 out:
4339 	kfree(values);
4340 	return ret;
4341 }
4342 
4343 static int perf_read_one(struct perf_event *event,
4344 				 u64 read_format, char __user *buf)
4345 {
4346 	u64 enabled, running;
4347 	u64 values[4];
4348 	int n = 0;
4349 
4350 	values[n++] = perf_event_read_value(event, &enabled, &running);
4351 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4352 		values[n++] = enabled;
4353 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4354 		values[n++] = running;
4355 	if (read_format & PERF_FORMAT_ID)
4356 		values[n++] = primary_event_id(event);
4357 
4358 	if (copy_to_user(buf, values, n * sizeof(u64)))
4359 		return -EFAULT;
4360 
4361 	return n * sizeof(u64);
4362 }
4363 
4364 static bool is_event_hup(struct perf_event *event)
4365 {
4366 	bool no_children;
4367 
4368 	if (event->state > PERF_EVENT_STATE_EXIT)
4369 		return false;
4370 
4371 	mutex_lock(&event->child_mutex);
4372 	no_children = list_empty(&event->child_list);
4373 	mutex_unlock(&event->child_mutex);
4374 	return no_children;
4375 }
4376 
4377 /*
4378  * Read the performance event - simple non blocking version for now
4379  */
4380 static ssize_t
4381 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4382 {
4383 	u64 read_format = event->attr.read_format;
4384 	int ret;
4385 
4386 	/*
4387 	 * Return end-of-file for a read on a event that is in
4388 	 * error state (i.e. because it was pinned but it couldn't be
4389 	 * scheduled on to the CPU at some point).
4390 	 */
4391 	if (event->state == PERF_EVENT_STATE_ERROR)
4392 		return 0;
4393 
4394 	if (count < event->read_size)
4395 		return -ENOSPC;
4396 
4397 	WARN_ON_ONCE(event->ctx->parent_ctx);
4398 	if (read_format & PERF_FORMAT_GROUP)
4399 		ret = perf_read_group(event, read_format, buf);
4400 	else
4401 		ret = perf_read_one(event, read_format, buf);
4402 
4403 	return ret;
4404 }
4405 
4406 static ssize_t
4407 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4408 {
4409 	struct perf_event *event = file->private_data;
4410 	struct perf_event_context *ctx;
4411 	int ret;
4412 
4413 	ctx = perf_event_ctx_lock(event);
4414 	ret = __perf_read(event, buf, count);
4415 	perf_event_ctx_unlock(event, ctx);
4416 
4417 	return ret;
4418 }
4419 
4420 static unsigned int perf_poll(struct file *file, poll_table *wait)
4421 {
4422 	struct perf_event *event = file->private_data;
4423 	struct ring_buffer *rb;
4424 	unsigned int events = POLLHUP;
4425 
4426 	poll_wait(file, &event->waitq, wait);
4427 
4428 	if (is_event_hup(event))
4429 		return events;
4430 
4431 	/*
4432 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4433 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4434 	 */
4435 	mutex_lock(&event->mmap_mutex);
4436 	rb = event->rb;
4437 	if (rb)
4438 		events = atomic_xchg(&rb->poll, 0);
4439 	mutex_unlock(&event->mmap_mutex);
4440 	return events;
4441 }
4442 
4443 static void _perf_event_reset(struct perf_event *event)
4444 {
4445 	(void)perf_event_read(event, false);
4446 	local64_set(&event->count, 0);
4447 	perf_event_update_userpage(event);
4448 }
4449 
4450 /*
4451  * Holding the top-level event's child_mutex means that any
4452  * descendant process that has inherited this event will block
4453  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4454  * task existence requirements of perf_event_enable/disable.
4455  */
4456 static void perf_event_for_each_child(struct perf_event *event,
4457 					void (*func)(struct perf_event *))
4458 {
4459 	struct perf_event *child;
4460 
4461 	WARN_ON_ONCE(event->ctx->parent_ctx);
4462 
4463 	mutex_lock(&event->child_mutex);
4464 	func(event);
4465 	list_for_each_entry(child, &event->child_list, child_list)
4466 		func(child);
4467 	mutex_unlock(&event->child_mutex);
4468 }
4469 
4470 static void perf_event_for_each(struct perf_event *event,
4471 				  void (*func)(struct perf_event *))
4472 {
4473 	struct perf_event_context *ctx = event->ctx;
4474 	struct perf_event *sibling;
4475 
4476 	lockdep_assert_held(&ctx->mutex);
4477 
4478 	event = event->group_leader;
4479 
4480 	perf_event_for_each_child(event, func);
4481 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4482 		perf_event_for_each_child(sibling, func);
4483 }
4484 
4485 static void __perf_event_period(struct perf_event *event,
4486 				struct perf_cpu_context *cpuctx,
4487 				struct perf_event_context *ctx,
4488 				void *info)
4489 {
4490 	u64 value = *((u64 *)info);
4491 	bool active;
4492 
4493 	if (event->attr.freq) {
4494 		event->attr.sample_freq = value;
4495 	} else {
4496 		event->attr.sample_period = value;
4497 		event->hw.sample_period = value;
4498 	}
4499 
4500 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4501 	if (active) {
4502 		perf_pmu_disable(ctx->pmu);
4503 		/*
4504 		 * We could be throttled; unthrottle now to avoid the tick
4505 		 * trying to unthrottle while we already re-started the event.
4506 		 */
4507 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4508 			event->hw.interrupts = 0;
4509 			perf_log_throttle(event, 1);
4510 		}
4511 		event->pmu->stop(event, PERF_EF_UPDATE);
4512 	}
4513 
4514 	local64_set(&event->hw.period_left, 0);
4515 
4516 	if (active) {
4517 		event->pmu->start(event, PERF_EF_RELOAD);
4518 		perf_pmu_enable(ctx->pmu);
4519 	}
4520 }
4521 
4522 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4523 {
4524 	u64 value;
4525 
4526 	if (!is_sampling_event(event))
4527 		return -EINVAL;
4528 
4529 	if (copy_from_user(&value, arg, sizeof(value)))
4530 		return -EFAULT;
4531 
4532 	if (!value)
4533 		return -EINVAL;
4534 
4535 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4536 		return -EINVAL;
4537 
4538 	event_function_call(event, __perf_event_period, &value);
4539 
4540 	return 0;
4541 }
4542 
4543 static const struct file_operations perf_fops;
4544 
4545 static inline int perf_fget_light(int fd, struct fd *p)
4546 {
4547 	struct fd f = fdget(fd);
4548 	if (!f.file)
4549 		return -EBADF;
4550 
4551 	if (f.file->f_op != &perf_fops) {
4552 		fdput(f);
4553 		return -EBADF;
4554 	}
4555 	*p = f;
4556 	return 0;
4557 }
4558 
4559 static int perf_event_set_output(struct perf_event *event,
4560 				 struct perf_event *output_event);
4561 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4562 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4563 
4564 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4565 {
4566 	void (*func)(struct perf_event *);
4567 	u32 flags = arg;
4568 
4569 	switch (cmd) {
4570 	case PERF_EVENT_IOC_ENABLE:
4571 		func = _perf_event_enable;
4572 		break;
4573 	case PERF_EVENT_IOC_DISABLE:
4574 		func = _perf_event_disable;
4575 		break;
4576 	case PERF_EVENT_IOC_RESET:
4577 		func = _perf_event_reset;
4578 		break;
4579 
4580 	case PERF_EVENT_IOC_REFRESH:
4581 		return _perf_event_refresh(event, arg);
4582 
4583 	case PERF_EVENT_IOC_PERIOD:
4584 		return perf_event_period(event, (u64 __user *)arg);
4585 
4586 	case PERF_EVENT_IOC_ID:
4587 	{
4588 		u64 id = primary_event_id(event);
4589 
4590 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4591 			return -EFAULT;
4592 		return 0;
4593 	}
4594 
4595 	case PERF_EVENT_IOC_SET_OUTPUT:
4596 	{
4597 		int ret;
4598 		if (arg != -1) {
4599 			struct perf_event *output_event;
4600 			struct fd output;
4601 			ret = perf_fget_light(arg, &output);
4602 			if (ret)
4603 				return ret;
4604 			output_event = output.file->private_data;
4605 			ret = perf_event_set_output(event, output_event);
4606 			fdput(output);
4607 		} else {
4608 			ret = perf_event_set_output(event, NULL);
4609 		}
4610 		return ret;
4611 	}
4612 
4613 	case PERF_EVENT_IOC_SET_FILTER:
4614 		return perf_event_set_filter(event, (void __user *)arg);
4615 
4616 	case PERF_EVENT_IOC_SET_BPF:
4617 		return perf_event_set_bpf_prog(event, arg);
4618 
4619 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4620 		struct ring_buffer *rb;
4621 
4622 		rcu_read_lock();
4623 		rb = rcu_dereference(event->rb);
4624 		if (!rb || !rb->nr_pages) {
4625 			rcu_read_unlock();
4626 			return -EINVAL;
4627 		}
4628 		rb_toggle_paused(rb, !!arg);
4629 		rcu_read_unlock();
4630 		return 0;
4631 	}
4632 	default:
4633 		return -ENOTTY;
4634 	}
4635 
4636 	if (flags & PERF_IOC_FLAG_GROUP)
4637 		perf_event_for_each(event, func);
4638 	else
4639 		perf_event_for_each_child(event, func);
4640 
4641 	return 0;
4642 }
4643 
4644 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4645 {
4646 	struct perf_event *event = file->private_data;
4647 	struct perf_event_context *ctx;
4648 	long ret;
4649 
4650 	ctx = perf_event_ctx_lock(event);
4651 	ret = _perf_ioctl(event, cmd, arg);
4652 	perf_event_ctx_unlock(event, ctx);
4653 
4654 	return ret;
4655 }
4656 
4657 #ifdef CONFIG_COMPAT
4658 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4659 				unsigned long arg)
4660 {
4661 	switch (_IOC_NR(cmd)) {
4662 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4663 	case _IOC_NR(PERF_EVENT_IOC_ID):
4664 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4665 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4666 			cmd &= ~IOCSIZE_MASK;
4667 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4668 		}
4669 		break;
4670 	}
4671 	return perf_ioctl(file, cmd, arg);
4672 }
4673 #else
4674 # define perf_compat_ioctl NULL
4675 #endif
4676 
4677 int perf_event_task_enable(void)
4678 {
4679 	struct perf_event_context *ctx;
4680 	struct perf_event *event;
4681 
4682 	mutex_lock(&current->perf_event_mutex);
4683 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4684 		ctx = perf_event_ctx_lock(event);
4685 		perf_event_for_each_child(event, _perf_event_enable);
4686 		perf_event_ctx_unlock(event, ctx);
4687 	}
4688 	mutex_unlock(&current->perf_event_mutex);
4689 
4690 	return 0;
4691 }
4692 
4693 int perf_event_task_disable(void)
4694 {
4695 	struct perf_event_context *ctx;
4696 	struct perf_event *event;
4697 
4698 	mutex_lock(&current->perf_event_mutex);
4699 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4700 		ctx = perf_event_ctx_lock(event);
4701 		perf_event_for_each_child(event, _perf_event_disable);
4702 		perf_event_ctx_unlock(event, ctx);
4703 	}
4704 	mutex_unlock(&current->perf_event_mutex);
4705 
4706 	return 0;
4707 }
4708 
4709 static int perf_event_index(struct perf_event *event)
4710 {
4711 	if (event->hw.state & PERF_HES_STOPPED)
4712 		return 0;
4713 
4714 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4715 		return 0;
4716 
4717 	return event->pmu->event_idx(event);
4718 }
4719 
4720 static void calc_timer_values(struct perf_event *event,
4721 				u64 *now,
4722 				u64 *enabled,
4723 				u64 *running)
4724 {
4725 	u64 ctx_time;
4726 
4727 	*now = perf_clock();
4728 	ctx_time = event->shadow_ctx_time + *now;
4729 	*enabled = ctx_time - event->tstamp_enabled;
4730 	*running = ctx_time - event->tstamp_running;
4731 }
4732 
4733 static void perf_event_init_userpage(struct perf_event *event)
4734 {
4735 	struct perf_event_mmap_page *userpg;
4736 	struct ring_buffer *rb;
4737 
4738 	rcu_read_lock();
4739 	rb = rcu_dereference(event->rb);
4740 	if (!rb)
4741 		goto unlock;
4742 
4743 	userpg = rb->user_page;
4744 
4745 	/* Allow new userspace to detect that bit 0 is deprecated */
4746 	userpg->cap_bit0_is_deprecated = 1;
4747 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4748 	userpg->data_offset = PAGE_SIZE;
4749 	userpg->data_size = perf_data_size(rb);
4750 
4751 unlock:
4752 	rcu_read_unlock();
4753 }
4754 
4755 void __weak arch_perf_update_userpage(
4756 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4757 {
4758 }
4759 
4760 /*
4761  * Callers need to ensure there can be no nesting of this function, otherwise
4762  * the seqlock logic goes bad. We can not serialize this because the arch
4763  * code calls this from NMI context.
4764  */
4765 void perf_event_update_userpage(struct perf_event *event)
4766 {
4767 	struct perf_event_mmap_page *userpg;
4768 	struct ring_buffer *rb;
4769 	u64 enabled, running, now;
4770 
4771 	rcu_read_lock();
4772 	rb = rcu_dereference(event->rb);
4773 	if (!rb)
4774 		goto unlock;
4775 
4776 	/*
4777 	 * compute total_time_enabled, total_time_running
4778 	 * based on snapshot values taken when the event
4779 	 * was last scheduled in.
4780 	 *
4781 	 * we cannot simply called update_context_time()
4782 	 * because of locking issue as we can be called in
4783 	 * NMI context
4784 	 */
4785 	calc_timer_values(event, &now, &enabled, &running);
4786 
4787 	userpg = rb->user_page;
4788 	/*
4789 	 * Disable preemption so as to not let the corresponding user-space
4790 	 * spin too long if we get preempted.
4791 	 */
4792 	preempt_disable();
4793 	++userpg->lock;
4794 	barrier();
4795 	userpg->index = perf_event_index(event);
4796 	userpg->offset = perf_event_count(event);
4797 	if (userpg->index)
4798 		userpg->offset -= local64_read(&event->hw.prev_count);
4799 
4800 	userpg->time_enabled = enabled +
4801 			atomic64_read(&event->child_total_time_enabled);
4802 
4803 	userpg->time_running = running +
4804 			atomic64_read(&event->child_total_time_running);
4805 
4806 	arch_perf_update_userpage(event, userpg, now);
4807 
4808 	barrier();
4809 	++userpg->lock;
4810 	preempt_enable();
4811 unlock:
4812 	rcu_read_unlock();
4813 }
4814 
4815 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4816 {
4817 	struct perf_event *event = vma->vm_file->private_data;
4818 	struct ring_buffer *rb;
4819 	int ret = VM_FAULT_SIGBUS;
4820 
4821 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4822 		if (vmf->pgoff == 0)
4823 			ret = 0;
4824 		return ret;
4825 	}
4826 
4827 	rcu_read_lock();
4828 	rb = rcu_dereference(event->rb);
4829 	if (!rb)
4830 		goto unlock;
4831 
4832 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4833 		goto unlock;
4834 
4835 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4836 	if (!vmf->page)
4837 		goto unlock;
4838 
4839 	get_page(vmf->page);
4840 	vmf->page->mapping = vma->vm_file->f_mapping;
4841 	vmf->page->index   = vmf->pgoff;
4842 
4843 	ret = 0;
4844 unlock:
4845 	rcu_read_unlock();
4846 
4847 	return ret;
4848 }
4849 
4850 static void ring_buffer_attach(struct perf_event *event,
4851 			       struct ring_buffer *rb)
4852 {
4853 	struct ring_buffer *old_rb = NULL;
4854 	unsigned long flags;
4855 
4856 	if (event->rb) {
4857 		/*
4858 		 * Should be impossible, we set this when removing
4859 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4860 		 */
4861 		WARN_ON_ONCE(event->rcu_pending);
4862 
4863 		old_rb = event->rb;
4864 		spin_lock_irqsave(&old_rb->event_lock, flags);
4865 		list_del_rcu(&event->rb_entry);
4866 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4867 
4868 		event->rcu_batches = get_state_synchronize_rcu();
4869 		event->rcu_pending = 1;
4870 	}
4871 
4872 	if (rb) {
4873 		if (event->rcu_pending) {
4874 			cond_synchronize_rcu(event->rcu_batches);
4875 			event->rcu_pending = 0;
4876 		}
4877 
4878 		spin_lock_irqsave(&rb->event_lock, flags);
4879 		list_add_rcu(&event->rb_entry, &rb->event_list);
4880 		spin_unlock_irqrestore(&rb->event_lock, flags);
4881 	}
4882 
4883 	/*
4884 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4885 	 * before swizzling the event::rb pointer; if it's getting
4886 	 * unmapped, its aux_mmap_count will be 0 and it won't
4887 	 * restart. See the comment in __perf_pmu_output_stop().
4888 	 *
4889 	 * Data will inevitably be lost when set_output is done in
4890 	 * mid-air, but then again, whoever does it like this is
4891 	 * not in for the data anyway.
4892 	 */
4893 	if (has_aux(event))
4894 		perf_event_stop(event, 0);
4895 
4896 	rcu_assign_pointer(event->rb, rb);
4897 
4898 	if (old_rb) {
4899 		ring_buffer_put(old_rb);
4900 		/*
4901 		 * Since we detached before setting the new rb, so that we
4902 		 * could attach the new rb, we could have missed a wakeup.
4903 		 * Provide it now.
4904 		 */
4905 		wake_up_all(&event->waitq);
4906 	}
4907 }
4908 
4909 static void ring_buffer_wakeup(struct perf_event *event)
4910 {
4911 	struct ring_buffer *rb;
4912 
4913 	rcu_read_lock();
4914 	rb = rcu_dereference(event->rb);
4915 	if (rb) {
4916 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4917 			wake_up_all(&event->waitq);
4918 	}
4919 	rcu_read_unlock();
4920 }
4921 
4922 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4923 {
4924 	struct ring_buffer *rb;
4925 
4926 	rcu_read_lock();
4927 	rb = rcu_dereference(event->rb);
4928 	if (rb) {
4929 		if (!atomic_inc_not_zero(&rb->refcount))
4930 			rb = NULL;
4931 	}
4932 	rcu_read_unlock();
4933 
4934 	return rb;
4935 }
4936 
4937 void ring_buffer_put(struct ring_buffer *rb)
4938 {
4939 	if (!atomic_dec_and_test(&rb->refcount))
4940 		return;
4941 
4942 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4943 
4944 	call_rcu(&rb->rcu_head, rb_free_rcu);
4945 }
4946 
4947 static void perf_mmap_open(struct vm_area_struct *vma)
4948 {
4949 	struct perf_event *event = vma->vm_file->private_data;
4950 
4951 	atomic_inc(&event->mmap_count);
4952 	atomic_inc(&event->rb->mmap_count);
4953 
4954 	if (vma->vm_pgoff)
4955 		atomic_inc(&event->rb->aux_mmap_count);
4956 
4957 	if (event->pmu->event_mapped)
4958 		event->pmu->event_mapped(event);
4959 }
4960 
4961 static void perf_pmu_output_stop(struct perf_event *event);
4962 
4963 /*
4964  * A buffer can be mmap()ed multiple times; either directly through the same
4965  * event, or through other events by use of perf_event_set_output().
4966  *
4967  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4968  * the buffer here, where we still have a VM context. This means we need
4969  * to detach all events redirecting to us.
4970  */
4971 static void perf_mmap_close(struct vm_area_struct *vma)
4972 {
4973 	struct perf_event *event = vma->vm_file->private_data;
4974 
4975 	struct ring_buffer *rb = ring_buffer_get(event);
4976 	struct user_struct *mmap_user = rb->mmap_user;
4977 	int mmap_locked = rb->mmap_locked;
4978 	unsigned long size = perf_data_size(rb);
4979 
4980 	if (event->pmu->event_unmapped)
4981 		event->pmu->event_unmapped(event);
4982 
4983 	/*
4984 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4985 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4986 	 * serialize with perf_mmap here.
4987 	 */
4988 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4989 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4990 		/*
4991 		 * Stop all AUX events that are writing to this buffer,
4992 		 * so that we can free its AUX pages and corresponding PMU
4993 		 * data. Note that after rb::aux_mmap_count dropped to zero,
4994 		 * they won't start any more (see perf_aux_output_begin()).
4995 		 */
4996 		perf_pmu_output_stop(event);
4997 
4998 		/* now it's safe to free the pages */
4999 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5000 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5001 
5002 		/* this has to be the last one */
5003 		rb_free_aux(rb);
5004 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5005 
5006 		mutex_unlock(&event->mmap_mutex);
5007 	}
5008 
5009 	atomic_dec(&rb->mmap_count);
5010 
5011 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5012 		goto out_put;
5013 
5014 	ring_buffer_attach(event, NULL);
5015 	mutex_unlock(&event->mmap_mutex);
5016 
5017 	/* If there's still other mmap()s of this buffer, we're done. */
5018 	if (atomic_read(&rb->mmap_count))
5019 		goto out_put;
5020 
5021 	/*
5022 	 * No other mmap()s, detach from all other events that might redirect
5023 	 * into the now unreachable buffer. Somewhat complicated by the
5024 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5025 	 */
5026 again:
5027 	rcu_read_lock();
5028 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5029 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5030 			/*
5031 			 * This event is en-route to free_event() which will
5032 			 * detach it and remove it from the list.
5033 			 */
5034 			continue;
5035 		}
5036 		rcu_read_unlock();
5037 
5038 		mutex_lock(&event->mmap_mutex);
5039 		/*
5040 		 * Check we didn't race with perf_event_set_output() which can
5041 		 * swizzle the rb from under us while we were waiting to
5042 		 * acquire mmap_mutex.
5043 		 *
5044 		 * If we find a different rb; ignore this event, a next
5045 		 * iteration will no longer find it on the list. We have to
5046 		 * still restart the iteration to make sure we're not now
5047 		 * iterating the wrong list.
5048 		 */
5049 		if (event->rb == rb)
5050 			ring_buffer_attach(event, NULL);
5051 
5052 		mutex_unlock(&event->mmap_mutex);
5053 		put_event(event);
5054 
5055 		/*
5056 		 * Restart the iteration; either we're on the wrong list or
5057 		 * destroyed its integrity by doing a deletion.
5058 		 */
5059 		goto again;
5060 	}
5061 	rcu_read_unlock();
5062 
5063 	/*
5064 	 * It could be there's still a few 0-ref events on the list; they'll
5065 	 * get cleaned up by free_event() -- they'll also still have their
5066 	 * ref on the rb and will free it whenever they are done with it.
5067 	 *
5068 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5069 	 * undo the VM accounting.
5070 	 */
5071 
5072 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5073 	vma->vm_mm->pinned_vm -= mmap_locked;
5074 	free_uid(mmap_user);
5075 
5076 out_put:
5077 	ring_buffer_put(rb); /* could be last */
5078 }
5079 
5080 static const struct vm_operations_struct perf_mmap_vmops = {
5081 	.open		= perf_mmap_open,
5082 	.close		= perf_mmap_close, /* non mergable */
5083 	.fault		= perf_mmap_fault,
5084 	.page_mkwrite	= perf_mmap_fault,
5085 };
5086 
5087 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5088 {
5089 	struct perf_event *event = file->private_data;
5090 	unsigned long user_locked, user_lock_limit;
5091 	struct user_struct *user = current_user();
5092 	unsigned long locked, lock_limit;
5093 	struct ring_buffer *rb = NULL;
5094 	unsigned long vma_size;
5095 	unsigned long nr_pages;
5096 	long user_extra = 0, extra = 0;
5097 	int ret = 0, flags = 0;
5098 
5099 	/*
5100 	 * Don't allow mmap() of inherited per-task counters. This would
5101 	 * create a performance issue due to all children writing to the
5102 	 * same rb.
5103 	 */
5104 	if (event->cpu == -1 && event->attr.inherit)
5105 		return -EINVAL;
5106 
5107 	if (!(vma->vm_flags & VM_SHARED))
5108 		return -EINVAL;
5109 
5110 	vma_size = vma->vm_end - vma->vm_start;
5111 
5112 	if (vma->vm_pgoff == 0) {
5113 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5114 	} else {
5115 		/*
5116 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5117 		 * mapped, all subsequent mappings should have the same size
5118 		 * and offset. Must be above the normal perf buffer.
5119 		 */
5120 		u64 aux_offset, aux_size;
5121 
5122 		if (!event->rb)
5123 			return -EINVAL;
5124 
5125 		nr_pages = vma_size / PAGE_SIZE;
5126 
5127 		mutex_lock(&event->mmap_mutex);
5128 		ret = -EINVAL;
5129 
5130 		rb = event->rb;
5131 		if (!rb)
5132 			goto aux_unlock;
5133 
5134 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5135 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5136 
5137 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5138 			goto aux_unlock;
5139 
5140 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5141 			goto aux_unlock;
5142 
5143 		/* already mapped with a different offset */
5144 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5145 			goto aux_unlock;
5146 
5147 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5148 			goto aux_unlock;
5149 
5150 		/* already mapped with a different size */
5151 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5152 			goto aux_unlock;
5153 
5154 		if (!is_power_of_2(nr_pages))
5155 			goto aux_unlock;
5156 
5157 		if (!atomic_inc_not_zero(&rb->mmap_count))
5158 			goto aux_unlock;
5159 
5160 		if (rb_has_aux(rb)) {
5161 			atomic_inc(&rb->aux_mmap_count);
5162 			ret = 0;
5163 			goto unlock;
5164 		}
5165 
5166 		atomic_set(&rb->aux_mmap_count, 1);
5167 		user_extra = nr_pages;
5168 
5169 		goto accounting;
5170 	}
5171 
5172 	/*
5173 	 * If we have rb pages ensure they're a power-of-two number, so we
5174 	 * can do bitmasks instead of modulo.
5175 	 */
5176 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5177 		return -EINVAL;
5178 
5179 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5180 		return -EINVAL;
5181 
5182 	WARN_ON_ONCE(event->ctx->parent_ctx);
5183 again:
5184 	mutex_lock(&event->mmap_mutex);
5185 	if (event->rb) {
5186 		if (event->rb->nr_pages != nr_pages) {
5187 			ret = -EINVAL;
5188 			goto unlock;
5189 		}
5190 
5191 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5192 			/*
5193 			 * Raced against perf_mmap_close() through
5194 			 * perf_event_set_output(). Try again, hope for better
5195 			 * luck.
5196 			 */
5197 			mutex_unlock(&event->mmap_mutex);
5198 			goto again;
5199 		}
5200 
5201 		goto unlock;
5202 	}
5203 
5204 	user_extra = nr_pages + 1;
5205 
5206 accounting:
5207 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5208 
5209 	/*
5210 	 * Increase the limit linearly with more CPUs:
5211 	 */
5212 	user_lock_limit *= num_online_cpus();
5213 
5214 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5215 
5216 	if (user_locked > user_lock_limit)
5217 		extra = user_locked - user_lock_limit;
5218 
5219 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5220 	lock_limit >>= PAGE_SHIFT;
5221 	locked = vma->vm_mm->pinned_vm + extra;
5222 
5223 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5224 		!capable(CAP_IPC_LOCK)) {
5225 		ret = -EPERM;
5226 		goto unlock;
5227 	}
5228 
5229 	WARN_ON(!rb && event->rb);
5230 
5231 	if (vma->vm_flags & VM_WRITE)
5232 		flags |= RING_BUFFER_WRITABLE;
5233 
5234 	if (!rb) {
5235 		rb = rb_alloc(nr_pages,
5236 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5237 			      event->cpu, flags);
5238 
5239 		if (!rb) {
5240 			ret = -ENOMEM;
5241 			goto unlock;
5242 		}
5243 
5244 		atomic_set(&rb->mmap_count, 1);
5245 		rb->mmap_user = get_current_user();
5246 		rb->mmap_locked = extra;
5247 
5248 		ring_buffer_attach(event, rb);
5249 
5250 		perf_event_init_userpage(event);
5251 		perf_event_update_userpage(event);
5252 	} else {
5253 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5254 				   event->attr.aux_watermark, flags);
5255 		if (!ret)
5256 			rb->aux_mmap_locked = extra;
5257 	}
5258 
5259 unlock:
5260 	if (!ret) {
5261 		atomic_long_add(user_extra, &user->locked_vm);
5262 		vma->vm_mm->pinned_vm += extra;
5263 
5264 		atomic_inc(&event->mmap_count);
5265 	} else if (rb) {
5266 		atomic_dec(&rb->mmap_count);
5267 	}
5268 aux_unlock:
5269 	mutex_unlock(&event->mmap_mutex);
5270 
5271 	/*
5272 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5273 	 * vma.
5274 	 */
5275 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5276 	vma->vm_ops = &perf_mmap_vmops;
5277 
5278 	if (event->pmu->event_mapped)
5279 		event->pmu->event_mapped(event);
5280 
5281 	return ret;
5282 }
5283 
5284 static int perf_fasync(int fd, struct file *filp, int on)
5285 {
5286 	struct inode *inode = file_inode(filp);
5287 	struct perf_event *event = filp->private_data;
5288 	int retval;
5289 
5290 	inode_lock(inode);
5291 	retval = fasync_helper(fd, filp, on, &event->fasync);
5292 	inode_unlock(inode);
5293 
5294 	if (retval < 0)
5295 		return retval;
5296 
5297 	return 0;
5298 }
5299 
5300 static const struct file_operations perf_fops = {
5301 	.llseek			= no_llseek,
5302 	.release		= perf_release,
5303 	.read			= perf_read,
5304 	.poll			= perf_poll,
5305 	.unlocked_ioctl		= perf_ioctl,
5306 	.compat_ioctl		= perf_compat_ioctl,
5307 	.mmap			= perf_mmap,
5308 	.fasync			= perf_fasync,
5309 };
5310 
5311 /*
5312  * Perf event wakeup
5313  *
5314  * If there's data, ensure we set the poll() state and publish everything
5315  * to user-space before waking everybody up.
5316  */
5317 
5318 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5319 {
5320 	/* only the parent has fasync state */
5321 	if (event->parent)
5322 		event = event->parent;
5323 	return &event->fasync;
5324 }
5325 
5326 void perf_event_wakeup(struct perf_event *event)
5327 {
5328 	ring_buffer_wakeup(event);
5329 
5330 	if (event->pending_kill) {
5331 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5332 		event->pending_kill = 0;
5333 	}
5334 }
5335 
5336 static void perf_pending_event(struct irq_work *entry)
5337 {
5338 	struct perf_event *event = container_of(entry,
5339 			struct perf_event, pending);
5340 	int rctx;
5341 
5342 	rctx = perf_swevent_get_recursion_context();
5343 	/*
5344 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5345 	 * and we won't recurse 'further'.
5346 	 */
5347 
5348 	if (event->pending_disable) {
5349 		event->pending_disable = 0;
5350 		perf_event_disable_local(event);
5351 	}
5352 
5353 	if (event->pending_wakeup) {
5354 		event->pending_wakeup = 0;
5355 		perf_event_wakeup(event);
5356 	}
5357 
5358 	if (rctx >= 0)
5359 		perf_swevent_put_recursion_context(rctx);
5360 }
5361 
5362 /*
5363  * We assume there is only KVM supporting the callbacks.
5364  * Later on, we might change it to a list if there is
5365  * another virtualization implementation supporting the callbacks.
5366  */
5367 struct perf_guest_info_callbacks *perf_guest_cbs;
5368 
5369 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5370 {
5371 	perf_guest_cbs = cbs;
5372 	return 0;
5373 }
5374 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5375 
5376 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5377 {
5378 	perf_guest_cbs = NULL;
5379 	return 0;
5380 }
5381 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5382 
5383 static void
5384 perf_output_sample_regs(struct perf_output_handle *handle,
5385 			struct pt_regs *regs, u64 mask)
5386 {
5387 	int bit;
5388 	DECLARE_BITMAP(_mask, 64);
5389 
5390 	bitmap_from_u64(_mask, mask);
5391 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5392 		u64 val;
5393 
5394 		val = perf_reg_value(regs, bit);
5395 		perf_output_put(handle, val);
5396 	}
5397 }
5398 
5399 static void perf_sample_regs_user(struct perf_regs *regs_user,
5400 				  struct pt_regs *regs,
5401 				  struct pt_regs *regs_user_copy)
5402 {
5403 	if (user_mode(regs)) {
5404 		regs_user->abi = perf_reg_abi(current);
5405 		regs_user->regs = regs;
5406 	} else if (current->mm) {
5407 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5408 	} else {
5409 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5410 		regs_user->regs = NULL;
5411 	}
5412 }
5413 
5414 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5415 				  struct pt_regs *regs)
5416 {
5417 	regs_intr->regs = regs;
5418 	regs_intr->abi  = perf_reg_abi(current);
5419 }
5420 
5421 
5422 /*
5423  * Get remaining task size from user stack pointer.
5424  *
5425  * It'd be better to take stack vma map and limit this more
5426  * precisly, but there's no way to get it safely under interrupt,
5427  * so using TASK_SIZE as limit.
5428  */
5429 static u64 perf_ustack_task_size(struct pt_regs *regs)
5430 {
5431 	unsigned long addr = perf_user_stack_pointer(regs);
5432 
5433 	if (!addr || addr >= TASK_SIZE)
5434 		return 0;
5435 
5436 	return TASK_SIZE - addr;
5437 }
5438 
5439 static u16
5440 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5441 			struct pt_regs *regs)
5442 {
5443 	u64 task_size;
5444 
5445 	/* No regs, no stack pointer, no dump. */
5446 	if (!regs)
5447 		return 0;
5448 
5449 	/*
5450 	 * Check if we fit in with the requested stack size into the:
5451 	 * - TASK_SIZE
5452 	 *   If we don't, we limit the size to the TASK_SIZE.
5453 	 *
5454 	 * - remaining sample size
5455 	 *   If we don't, we customize the stack size to
5456 	 *   fit in to the remaining sample size.
5457 	 */
5458 
5459 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5460 	stack_size = min(stack_size, (u16) task_size);
5461 
5462 	/* Current header size plus static size and dynamic size. */
5463 	header_size += 2 * sizeof(u64);
5464 
5465 	/* Do we fit in with the current stack dump size? */
5466 	if ((u16) (header_size + stack_size) < header_size) {
5467 		/*
5468 		 * If we overflow the maximum size for the sample,
5469 		 * we customize the stack dump size to fit in.
5470 		 */
5471 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5472 		stack_size = round_up(stack_size, sizeof(u64));
5473 	}
5474 
5475 	return stack_size;
5476 }
5477 
5478 static void
5479 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5480 			  struct pt_regs *regs)
5481 {
5482 	/* Case of a kernel thread, nothing to dump */
5483 	if (!regs) {
5484 		u64 size = 0;
5485 		perf_output_put(handle, size);
5486 	} else {
5487 		unsigned long sp;
5488 		unsigned int rem;
5489 		u64 dyn_size;
5490 
5491 		/*
5492 		 * We dump:
5493 		 * static size
5494 		 *   - the size requested by user or the best one we can fit
5495 		 *     in to the sample max size
5496 		 * data
5497 		 *   - user stack dump data
5498 		 * dynamic size
5499 		 *   - the actual dumped size
5500 		 */
5501 
5502 		/* Static size. */
5503 		perf_output_put(handle, dump_size);
5504 
5505 		/* Data. */
5506 		sp = perf_user_stack_pointer(regs);
5507 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5508 		dyn_size = dump_size - rem;
5509 
5510 		perf_output_skip(handle, rem);
5511 
5512 		/* Dynamic size. */
5513 		perf_output_put(handle, dyn_size);
5514 	}
5515 }
5516 
5517 static void __perf_event_header__init_id(struct perf_event_header *header,
5518 					 struct perf_sample_data *data,
5519 					 struct perf_event *event)
5520 {
5521 	u64 sample_type = event->attr.sample_type;
5522 
5523 	data->type = sample_type;
5524 	header->size += event->id_header_size;
5525 
5526 	if (sample_type & PERF_SAMPLE_TID) {
5527 		/* namespace issues */
5528 		data->tid_entry.pid = perf_event_pid(event, current);
5529 		data->tid_entry.tid = perf_event_tid(event, current);
5530 	}
5531 
5532 	if (sample_type & PERF_SAMPLE_TIME)
5533 		data->time = perf_event_clock(event);
5534 
5535 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5536 		data->id = primary_event_id(event);
5537 
5538 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5539 		data->stream_id = event->id;
5540 
5541 	if (sample_type & PERF_SAMPLE_CPU) {
5542 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5543 		data->cpu_entry.reserved = 0;
5544 	}
5545 }
5546 
5547 void perf_event_header__init_id(struct perf_event_header *header,
5548 				struct perf_sample_data *data,
5549 				struct perf_event *event)
5550 {
5551 	if (event->attr.sample_id_all)
5552 		__perf_event_header__init_id(header, data, event);
5553 }
5554 
5555 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5556 					   struct perf_sample_data *data)
5557 {
5558 	u64 sample_type = data->type;
5559 
5560 	if (sample_type & PERF_SAMPLE_TID)
5561 		perf_output_put(handle, data->tid_entry);
5562 
5563 	if (sample_type & PERF_SAMPLE_TIME)
5564 		perf_output_put(handle, data->time);
5565 
5566 	if (sample_type & PERF_SAMPLE_ID)
5567 		perf_output_put(handle, data->id);
5568 
5569 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5570 		perf_output_put(handle, data->stream_id);
5571 
5572 	if (sample_type & PERF_SAMPLE_CPU)
5573 		perf_output_put(handle, data->cpu_entry);
5574 
5575 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5576 		perf_output_put(handle, data->id);
5577 }
5578 
5579 void perf_event__output_id_sample(struct perf_event *event,
5580 				  struct perf_output_handle *handle,
5581 				  struct perf_sample_data *sample)
5582 {
5583 	if (event->attr.sample_id_all)
5584 		__perf_event__output_id_sample(handle, sample);
5585 }
5586 
5587 static void perf_output_read_one(struct perf_output_handle *handle,
5588 				 struct perf_event *event,
5589 				 u64 enabled, u64 running)
5590 {
5591 	u64 read_format = event->attr.read_format;
5592 	u64 values[4];
5593 	int n = 0;
5594 
5595 	values[n++] = perf_event_count(event);
5596 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5597 		values[n++] = enabled +
5598 			atomic64_read(&event->child_total_time_enabled);
5599 	}
5600 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5601 		values[n++] = running +
5602 			atomic64_read(&event->child_total_time_running);
5603 	}
5604 	if (read_format & PERF_FORMAT_ID)
5605 		values[n++] = primary_event_id(event);
5606 
5607 	__output_copy(handle, values, n * sizeof(u64));
5608 }
5609 
5610 /*
5611  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5612  */
5613 static void perf_output_read_group(struct perf_output_handle *handle,
5614 			    struct perf_event *event,
5615 			    u64 enabled, u64 running)
5616 {
5617 	struct perf_event *leader = event->group_leader, *sub;
5618 	u64 read_format = event->attr.read_format;
5619 	u64 values[5];
5620 	int n = 0;
5621 
5622 	values[n++] = 1 + leader->nr_siblings;
5623 
5624 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5625 		values[n++] = enabled;
5626 
5627 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5628 		values[n++] = running;
5629 
5630 	if (leader != event)
5631 		leader->pmu->read(leader);
5632 
5633 	values[n++] = perf_event_count(leader);
5634 	if (read_format & PERF_FORMAT_ID)
5635 		values[n++] = primary_event_id(leader);
5636 
5637 	__output_copy(handle, values, n * sizeof(u64));
5638 
5639 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5640 		n = 0;
5641 
5642 		if ((sub != event) &&
5643 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5644 			sub->pmu->read(sub);
5645 
5646 		values[n++] = perf_event_count(sub);
5647 		if (read_format & PERF_FORMAT_ID)
5648 			values[n++] = primary_event_id(sub);
5649 
5650 		__output_copy(handle, values, n * sizeof(u64));
5651 	}
5652 }
5653 
5654 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5655 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5656 
5657 static void perf_output_read(struct perf_output_handle *handle,
5658 			     struct perf_event *event)
5659 {
5660 	u64 enabled = 0, running = 0, now;
5661 	u64 read_format = event->attr.read_format;
5662 
5663 	/*
5664 	 * compute total_time_enabled, total_time_running
5665 	 * based on snapshot values taken when the event
5666 	 * was last scheduled in.
5667 	 *
5668 	 * we cannot simply called update_context_time()
5669 	 * because of locking issue as we are called in
5670 	 * NMI context
5671 	 */
5672 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5673 		calc_timer_values(event, &now, &enabled, &running);
5674 
5675 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5676 		perf_output_read_group(handle, event, enabled, running);
5677 	else
5678 		perf_output_read_one(handle, event, enabled, running);
5679 }
5680 
5681 void perf_output_sample(struct perf_output_handle *handle,
5682 			struct perf_event_header *header,
5683 			struct perf_sample_data *data,
5684 			struct perf_event *event)
5685 {
5686 	u64 sample_type = data->type;
5687 
5688 	perf_output_put(handle, *header);
5689 
5690 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5691 		perf_output_put(handle, data->id);
5692 
5693 	if (sample_type & PERF_SAMPLE_IP)
5694 		perf_output_put(handle, data->ip);
5695 
5696 	if (sample_type & PERF_SAMPLE_TID)
5697 		perf_output_put(handle, data->tid_entry);
5698 
5699 	if (sample_type & PERF_SAMPLE_TIME)
5700 		perf_output_put(handle, data->time);
5701 
5702 	if (sample_type & PERF_SAMPLE_ADDR)
5703 		perf_output_put(handle, data->addr);
5704 
5705 	if (sample_type & PERF_SAMPLE_ID)
5706 		perf_output_put(handle, data->id);
5707 
5708 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5709 		perf_output_put(handle, data->stream_id);
5710 
5711 	if (sample_type & PERF_SAMPLE_CPU)
5712 		perf_output_put(handle, data->cpu_entry);
5713 
5714 	if (sample_type & PERF_SAMPLE_PERIOD)
5715 		perf_output_put(handle, data->period);
5716 
5717 	if (sample_type & PERF_SAMPLE_READ)
5718 		perf_output_read(handle, event);
5719 
5720 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5721 		if (data->callchain) {
5722 			int size = 1;
5723 
5724 			if (data->callchain)
5725 				size += data->callchain->nr;
5726 
5727 			size *= sizeof(u64);
5728 
5729 			__output_copy(handle, data->callchain, size);
5730 		} else {
5731 			u64 nr = 0;
5732 			perf_output_put(handle, nr);
5733 		}
5734 	}
5735 
5736 	if (sample_type & PERF_SAMPLE_RAW) {
5737 		struct perf_raw_record *raw = data->raw;
5738 
5739 		if (raw) {
5740 			struct perf_raw_frag *frag = &raw->frag;
5741 
5742 			perf_output_put(handle, raw->size);
5743 			do {
5744 				if (frag->copy) {
5745 					__output_custom(handle, frag->copy,
5746 							frag->data, frag->size);
5747 				} else {
5748 					__output_copy(handle, frag->data,
5749 						      frag->size);
5750 				}
5751 				if (perf_raw_frag_last(frag))
5752 					break;
5753 				frag = frag->next;
5754 			} while (1);
5755 			if (frag->pad)
5756 				__output_skip(handle, NULL, frag->pad);
5757 		} else {
5758 			struct {
5759 				u32	size;
5760 				u32	data;
5761 			} raw = {
5762 				.size = sizeof(u32),
5763 				.data = 0,
5764 			};
5765 			perf_output_put(handle, raw);
5766 		}
5767 	}
5768 
5769 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5770 		if (data->br_stack) {
5771 			size_t size;
5772 
5773 			size = data->br_stack->nr
5774 			     * sizeof(struct perf_branch_entry);
5775 
5776 			perf_output_put(handle, data->br_stack->nr);
5777 			perf_output_copy(handle, data->br_stack->entries, size);
5778 		} else {
5779 			/*
5780 			 * we always store at least the value of nr
5781 			 */
5782 			u64 nr = 0;
5783 			perf_output_put(handle, nr);
5784 		}
5785 	}
5786 
5787 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5788 		u64 abi = data->regs_user.abi;
5789 
5790 		/*
5791 		 * If there are no regs to dump, notice it through
5792 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5793 		 */
5794 		perf_output_put(handle, abi);
5795 
5796 		if (abi) {
5797 			u64 mask = event->attr.sample_regs_user;
5798 			perf_output_sample_regs(handle,
5799 						data->regs_user.regs,
5800 						mask);
5801 		}
5802 	}
5803 
5804 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5805 		perf_output_sample_ustack(handle,
5806 					  data->stack_user_size,
5807 					  data->regs_user.regs);
5808 	}
5809 
5810 	if (sample_type & PERF_SAMPLE_WEIGHT)
5811 		perf_output_put(handle, data->weight);
5812 
5813 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5814 		perf_output_put(handle, data->data_src.val);
5815 
5816 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5817 		perf_output_put(handle, data->txn);
5818 
5819 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5820 		u64 abi = data->regs_intr.abi;
5821 		/*
5822 		 * If there are no regs to dump, notice it through
5823 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5824 		 */
5825 		perf_output_put(handle, abi);
5826 
5827 		if (abi) {
5828 			u64 mask = event->attr.sample_regs_intr;
5829 
5830 			perf_output_sample_regs(handle,
5831 						data->regs_intr.regs,
5832 						mask);
5833 		}
5834 	}
5835 
5836 	if (!event->attr.watermark) {
5837 		int wakeup_events = event->attr.wakeup_events;
5838 
5839 		if (wakeup_events) {
5840 			struct ring_buffer *rb = handle->rb;
5841 			int events = local_inc_return(&rb->events);
5842 
5843 			if (events >= wakeup_events) {
5844 				local_sub(wakeup_events, &rb->events);
5845 				local_inc(&rb->wakeup);
5846 			}
5847 		}
5848 	}
5849 }
5850 
5851 void perf_prepare_sample(struct perf_event_header *header,
5852 			 struct perf_sample_data *data,
5853 			 struct perf_event *event,
5854 			 struct pt_regs *regs)
5855 {
5856 	u64 sample_type = event->attr.sample_type;
5857 
5858 	header->type = PERF_RECORD_SAMPLE;
5859 	header->size = sizeof(*header) + event->header_size;
5860 
5861 	header->misc = 0;
5862 	header->misc |= perf_misc_flags(regs);
5863 
5864 	__perf_event_header__init_id(header, data, event);
5865 
5866 	if (sample_type & PERF_SAMPLE_IP)
5867 		data->ip = perf_instruction_pointer(regs);
5868 
5869 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5870 		int size = 1;
5871 
5872 		data->callchain = perf_callchain(event, regs);
5873 
5874 		if (data->callchain)
5875 			size += data->callchain->nr;
5876 
5877 		header->size += size * sizeof(u64);
5878 	}
5879 
5880 	if (sample_type & PERF_SAMPLE_RAW) {
5881 		struct perf_raw_record *raw = data->raw;
5882 		int size;
5883 
5884 		if (raw) {
5885 			struct perf_raw_frag *frag = &raw->frag;
5886 			u32 sum = 0;
5887 
5888 			do {
5889 				sum += frag->size;
5890 				if (perf_raw_frag_last(frag))
5891 					break;
5892 				frag = frag->next;
5893 			} while (1);
5894 
5895 			size = round_up(sum + sizeof(u32), sizeof(u64));
5896 			raw->size = size - sizeof(u32);
5897 			frag->pad = raw->size - sum;
5898 		} else {
5899 			size = sizeof(u64);
5900 		}
5901 
5902 		header->size += size;
5903 	}
5904 
5905 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5906 		int size = sizeof(u64); /* nr */
5907 		if (data->br_stack) {
5908 			size += data->br_stack->nr
5909 			      * sizeof(struct perf_branch_entry);
5910 		}
5911 		header->size += size;
5912 	}
5913 
5914 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5915 		perf_sample_regs_user(&data->regs_user, regs,
5916 				      &data->regs_user_copy);
5917 
5918 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5919 		/* regs dump ABI info */
5920 		int size = sizeof(u64);
5921 
5922 		if (data->regs_user.regs) {
5923 			u64 mask = event->attr.sample_regs_user;
5924 			size += hweight64(mask) * sizeof(u64);
5925 		}
5926 
5927 		header->size += size;
5928 	}
5929 
5930 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5931 		/*
5932 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5933 		 * processed as the last one or have additional check added
5934 		 * in case new sample type is added, because we could eat
5935 		 * up the rest of the sample size.
5936 		 */
5937 		u16 stack_size = event->attr.sample_stack_user;
5938 		u16 size = sizeof(u64);
5939 
5940 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5941 						     data->regs_user.regs);
5942 
5943 		/*
5944 		 * If there is something to dump, add space for the dump
5945 		 * itself and for the field that tells the dynamic size,
5946 		 * which is how many have been actually dumped.
5947 		 */
5948 		if (stack_size)
5949 			size += sizeof(u64) + stack_size;
5950 
5951 		data->stack_user_size = stack_size;
5952 		header->size += size;
5953 	}
5954 
5955 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5956 		/* regs dump ABI info */
5957 		int size = sizeof(u64);
5958 
5959 		perf_sample_regs_intr(&data->regs_intr, regs);
5960 
5961 		if (data->regs_intr.regs) {
5962 			u64 mask = event->attr.sample_regs_intr;
5963 
5964 			size += hweight64(mask) * sizeof(u64);
5965 		}
5966 
5967 		header->size += size;
5968 	}
5969 }
5970 
5971 static void __always_inline
5972 __perf_event_output(struct perf_event *event,
5973 		    struct perf_sample_data *data,
5974 		    struct pt_regs *regs,
5975 		    int (*output_begin)(struct perf_output_handle *,
5976 					struct perf_event *,
5977 					unsigned int))
5978 {
5979 	struct perf_output_handle handle;
5980 	struct perf_event_header header;
5981 
5982 	/* protect the callchain buffers */
5983 	rcu_read_lock();
5984 
5985 	perf_prepare_sample(&header, data, event, regs);
5986 
5987 	if (output_begin(&handle, event, header.size))
5988 		goto exit;
5989 
5990 	perf_output_sample(&handle, &header, data, event);
5991 
5992 	perf_output_end(&handle);
5993 
5994 exit:
5995 	rcu_read_unlock();
5996 }
5997 
5998 void
5999 perf_event_output_forward(struct perf_event *event,
6000 			 struct perf_sample_data *data,
6001 			 struct pt_regs *regs)
6002 {
6003 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6004 }
6005 
6006 void
6007 perf_event_output_backward(struct perf_event *event,
6008 			   struct perf_sample_data *data,
6009 			   struct pt_regs *regs)
6010 {
6011 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6012 }
6013 
6014 void
6015 perf_event_output(struct perf_event *event,
6016 		  struct perf_sample_data *data,
6017 		  struct pt_regs *regs)
6018 {
6019 	__perf_event_output(event, data, regs, perf_output_begin);
6020 }
6021 
6022 /*
6023  * read event_id
6024  */
6025 
6026 struct perf_read_event {
6027 	struct perf_event_header	header;
6028 
6029 	u32				pid;
6030 	u32				tid;
6031 };
6032 
6033 static void
6034 perf_event_read_event(struct perf_event *event,
6035 			struct task_struct *task)
6036 {
6037 	struct perf_output_handle handle;
6038 	struct perf_sample_data sample;
6039 	struct perf_read_event read_event = {
6040 		.header = {
6041 			.type = PERF_RECORD_READ,
6042 			.misc = 0,
6043 			.size = sizeof(read_event) + event->read_size,
6044 		},
6045 		.pid = perf_event_pid(event, task),
6046 		.tid = perf_event_tid(event, task),
6047 	};
6048 	int ret;
6049 
6050 	perf_event_header__init_id(&read_event.header, &sample, event);
6051 	ret = perf_output_begin(&handle, event, read_event.header.size);
6052 	if (ret)
6053 		return;
6054 
6055 	perf_output_put(&handle, read_event);
6056 	perf_output_read(&handle, event);
6057 	perf_event__output_id_sample(event, &handle, &sample);
6058 
6059 	perf_output_end(&handle);
6060 }
6061 
6062 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6063 
6064 static void
6065 perf_iterate_ctx(struct perf_event_context *ctx,
6066 		   perf_iterate_f output,
6067 		   void *data, bool all)
6068 {
6069 	struct perf_event *event;
6070 
6071 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6072 		if (!all) {
6073 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6074 				continue;
6075 			if (!event_filter_match(event))
6076 				continue;
6077 		}
6078 
6079 		output(event, data);
6080 	}
6081 }
6082 
6083 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6084 {
6085 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6086 	struct perf_event *event;
6087 
6088 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6089 		/*
6090 		 * Skip events that are not fully formed yet; ensure that
6091 		 * if we observe event->ctx, both event and ctx will be
6092 		 * complete enough. See perf_install_in_context().
6093 		 */
6094 		if (!smp_load_acquire(&event->ctx))
6095 			continue;
6096 
6097 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6098 			continue;
6099 		if (!event_filter_match(event))
6100 			continue;
6101 		output(event, data);
6102 	}
6103 }
6104 
6105 /*
6106  * Iterate all events that need to receive side-band events.
6107  *
6108  * For new callers; ensure that account_pmu_sb_event() includes
6109  * your event, otherwise it might not get delivered.
6110  */
6111 static void
6112 perf_iterate_sb(perf_iterate_f output, void *data,
6113 	       struct perf_event_context *task_ctx)
6114 {
6115 	struct perf_event_context *ctx;
6116 	int ctxn;
6117 
6118 	rcu_read_lock();
6119 	preempt_disable();
6120 
6121 	/*
6122 	 * If we have task_ctx != NULL we only notify the task context itself.
6123 	 * The task_ctx is set only for EXIT events before releasing task
6124 	 * context.
6125 	 */
6126 	if (task_ctx) {
6127 		perf_iterate_ctx(task_ctx, output, data, false);
6128 		goto done;
6129 	}
6130 
6131 	perf_iterate_sb_cpu(output, data);
6132 
6133 	for_each_task_context_nr(ctxn) {
6134 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6135 		if (ctx)
6136 			perf_iterate_ctx(ctx, output, data, false);
6137 	}
6138 done:
6139 	preempt_enable();
6140 	rcu_read_unlock();
6141 }
6142 
6143 /*
6144  * Clear all file-based filters at exec, they'll have to be
6145  * re-instated when/if these objects are mmapped again.
6146  */
6147 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6148 {
6149 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6150 	struct perf_addr_filter *filter;
6151 	unsigned int restart = 0, count = 0;
6152 	unsigned long flags;
6153 
6154 	if (!has_addr_filter(event))
6155 		return;
6156 
6157 	raw_spin_lock_irqsave(&ifh->lock, flags);
6158 	list_for_each_entry(filter, &ifh->list, entry) {
6159 		if (filter->inode) {
6160 			event->addr_filters_offs[count] = 0;
6161 			restart++;
6162 		}
6163 
6164 		count++;
6165 	}
6166 
6167 	if (restart)
6168 		event->addr_filters_gen++;
6169 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6170 
6171 	if (restart)
6172 		perf_event_stop(event, 1);
6173 }
6174 
6175 void perf_event_exec(void)
6176 {
6177 	struct perf_event_context *ctx;
6178 	int ctxn;
6179 
6180 	rcu_read_lock();
6181 	for_each_task_context_nr(ctxn) {
6182 		ctx = current->perf_event_ctxp[ctxn];
6183 		if (!ctx)
6184 			continue;
6185 
6186 		perf_event_enable_on_exec(ctxn);
6187 
6188 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6189 				   true);
6190 	}
6191 	rcu_read_unlock();
6192 }
6193 
6194 struct remote_output {
6195 	struct ring_buffer	*rb;
6196 	int			err;
6197 };
6198 
6199 static void __perf_event_output_stop(struct perf_event *event, void *data)
6200 {
6201 	struct perf_event *parent = event->parent;
6202 	struct remote_output *ro = data;
6203 	struct ring_buffer *rb = ro->rb;
6204 	struct stop_event_data sd = {
6205 		.event	= event,
6206 	};
6207 
6208 	if (!has_aux(event))
6209 		return;
6210 
6211 	if (!parent)
6212 		parent = event;
6213 
6214 	/*
6215 	 * In case of inheritance, it will be the parent that links to the
6216 	 * ring-buffer, but it will be the child that's actually using it.
6217 	 *
6218 	 * We are using event::rb to determine if the event should be stopped,
6219 	 * however this may race with ring_buffer_attach() (through set_output),
6220 	 * which will make us skip the event that actually needs to be stopped.
6221 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6222 	 * its rb pointer.
6223 	 */
6224 	if (rcu_dereference(parent->rb) == rb)
6225 		ro->err = __perf_event_stop(&sd);
6226 }
6227 
6228 static int __perf_pmu_output_stop(void *info)
6229 {
6230 	struct perf_event *event = info;
6231 	struct pmu *pmu = event->pmu;
6232 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6233 	struct remote_output ro = {
6234 		.rb	= event->rb,
6235 	};
6236 
6237 	rcu_read_lock();
6238 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6239 	if (cpuctx->task_ctx)
6240 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6241 				   &ro, false);
6242 	rcu_read_unlock();
6243 
6244 	return ro.err;
6245 }
6246 
6247 static void perf_pmu_output_stop(struct perf_event *event)
6248 {
6249 	struct perf_event *iter;
6250 	int err, cpu;
6251 
6252 restart:
6253 	rcu_read_lock();
6254 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6255 		/*
6256 		 * For per-CPU events, we need to make sure that neither they
6257 		 * nor their children are running; for cpu==-1 events it's
6258 		 * sufficient to stop the event itself if it's active, since
6259 		 * it can't have children.
6260 		 */
6261 		cpu = iter->cpu;
6262 		if (cpu == -1)
6263 			cpu = READ_ONCE(iter->oncpu);
6264 
6265 		if (cpu == -1)
6266 			continue;
6267 
6268 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6269 		if (err == -EAGAIN) {
6270 			rcu_read_unlock();
6271 			goto restart;
6272 		}
6273 	}
6274 	rcu_read_unlock();
6275 }
6276 
6277 /*
6278  * task tracking -- fork/exit
6279  *
6280  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6281  */
6282 
6283 struct perf_task_event {
6284 	struct task_struct		*task;
6285 	struct perf_event_context	*task_ctx;
6286 
6287 	struct {
6288 		struct perf_event_header	header;
6289 
6290 		u32				pid;
6291 		u32				ppid;
6292 		u32				tid;
6293 		u32				ptid;
6294 		u64				time;
6295 	} event_id;
6296 };
6297 
6298 static int perf_event_task_match(struct perf_event *event)
6299 {
6300 	return event->attr.comm  || event->attr.mmap ||
6301 	       event->attr.mmap2 || event->attr.mmap_data ||
6302 	       event->attr.task;
6303 }
6304 
6305 static void perf_event_task_output(struct perf_event *event,
6306 				   void *data)
6307 {
6308 	struct perf_task_event *task_event = data;
6309 	struct perf_output_handle handle;
6310 	struct perf_sample_data	sample;
6311 	struct task_struct *task = task_event->task;
6312 	int ret, size = task_event->event_id.header.size;
6313 
6314 	if (!perf_event_task_match(event))
6315 		return;
6316 
6317 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6318 
6319 	ret = perf_output_begin(&handle, event,
6320 				task_event->event_id.header.size);
6321 	if (ret)
6322 		goto out;
6323 
6324 	task_event->event_id.pid = perf_event_pid(event, task);
6325 	task_event->event_id.ppid = perf_event_pid(event, current);
6326 
6327 	task_event->event_id.tid = perf_event_tid(event, task);
6328 	task_event->event_id.ptid = perf_event_tid(event, current);
6329 
6330 	task_event->event_id.time = perf_event_clock(event);
6331 
6332 	perf_output_put(&handle, task_event->event_id);
6333 
6334 	perf_event__output_id_sample(event, &handle, &sample);
6335 
6336 	perf_output_end(&handle);
6337 out:
6338 	task_event->event_id.header.size = size;
6339 }
6340 
6341 static void perf_event_task(struct task_struct *task,
6342 			      struct perf_event_context *task_ctx,
6343 			      int new)
6344 {
6345 	struct perf_task_event task_event;
6346 
6347 	if (!atomic_read(&nr_comm_events) &&
6348 	    !atomic_read(&nr_mmap_events) &&
6349 	    !atomic_read(&nr_task_events))
6350 		return;
6351 
6352 	task_event = (struct perf_task_event){
6353 		.task	  = task,
6354 		.task_ctx = task_ctx,
6355 		.event_id    = {
6356 			.header = {
6357 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6358 				.misc = 0,
6359 				.size = sizeof(task_event.event_id),
6360 			},
6361 			/* .pid  */
6362 			/* .ppid */
6363 			/* .tid  */
6364 			/* .ptid */
6365 			/* .time */
6366 		},
6367 	};
6368 
6369 	perf_iterate_sb(perf_event_task_output,
6370 		       &task_event,
6371 		       task_ctx);
6372 }
6373 
6374 void perf_event_fork(struct task_struct *task)
6375 {
6376 	perf_event_task(task, NULL, 1);
6377 }
6378 
6379 /*
6380  * comm tracking
6381  */
6382 
6383 struct perf_comm_event {
6384 	struct task_struct	*task;
6385 	char			*comm;
6386 	int			comm_size;
6387 
6388 	struct {
6389 		struct perf_event_header	header;
6390 
6391 		u32				pid;
6392 		u32				tid;
6393 	} event_id;
6394 };
6395 
6396 static int perf_event_comm_match(struct perf_event *event)
6397 {
6398 	return event->attr.comm;
6399 }
6400 
6401 static void perf_event_comm_output(struct perf_event *event,
6402 				   void *data)
6403 {
6404 	struct perf_comm_event *comm_event = data;
6405 	struct perf_output_handle handle;
6406 	struct perf_sample_data sample;
6407 	int size = comm_event->event_id.header.size;
6408 	int ret;
6409 
6410 	if (!perf_event_comm_match(event))
6411 		return;
6412 
6413 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6414 	ret = perf_output_begin(&handle, event,
6415 				comm_event->event_id.header.size);
6416 
6417 	if (ret)
6418 		goto out;
6419 
6420 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6421 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6422 
6423 	perf_output_put(&handle, comm_event->event_id);
6424 	__output_copy(&handle, comm_event->comm,
6425 				   comm_event->comm_size);
6426 
6427 	perf_event__output_id_sample(event, &handle, &sample);
6428 
6429 	perf_output_end(&handle);
6430 out:
6431 	comm_event->event_id.header.size = size;
6432 }
6433 
6434 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6435 {
6436 	char comm[TASK_COMM_LEN];
6437 	unsigned int size;
6438 
6439 	memset(comm, 0, sizeof(comm));
6440 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6441 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6442 
6443 	comm_event->comm = comm;
6444 	comm_event->comm_size = size;
6445 
6446 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6447 
6448 	perf_iterate_sb(perf_event_comm_output,
6449 		       comm_event,
6450 		       NULL);
6451 }
6452 
6453 void perf_event_comm(struct task_struct *task, bool exec)
6454 {
6455 	struct perf_comm_event comm_event;
6456 
6457 	if (!atomic_read(&nr_comm_events))
6458 		return;
6459 
6460 	comm_event = (struct perf_comm_event){
6461 		.task	= task,
6462 		/* .comm      */
6463 		/* .comm_size */
6464 		.event_id  = {
6465 			.header = {
6466 				.type = PERF_RECORD_COMM,
6467 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6468 				/* .size */
6469 			},
6470 			/* .pid */
6471 			/* .tid */
6472 		},
6473 	};
6474 
6475 	perf_event_comm_event(&comm_event);
6476 }
6477 
6478 /*
6479  * mmap tracking
6480  */
6481 
6482 struct perf_mmap_event {
6483 	struct vm_area_struct	*vma;
6484 
6485 	const char		*file_name;
6486 	int			file_size;
6487 	int			maj, min;
6488 	u64			ino;
6489 	u64			ino_generation;
6490 	u32			prot, flags;
6491 
6492 	struct {
6493 		struct perf_event_header	header;
6494 
6495 		u32				pid;
6496 		u32				tid;
6497 		u64				start;
6498 		u64				len;
6499 		u64				pgoff;
6500 	} event_id;
6501 };
6502 
6503 static int perf_event_mmap_match(struct perf_event *event,
6504 				 void *data)
6505 {
6506 	struct perf_mmap_event *mmap_event = data;
6507 	struct vm_area_struct *vma = mmap_event->vma;
6508 	int executable = vma->vm_flags & VM_EXEC;
6509 
6510 	return (!executable && event->attr.mmap_data) ||
6511 	       (executable && (event->attr.mmap || event->attr.mmap2));
6512 }
6513 
6514 static void perf_event_mmap_output(struct perf_event *event,
6515 				   void *data)
6516 {
6517 	struct perf_mmap_event *mmap_event = data;
6518 	struct perf_output_handle handle;
6519 	struct perf_sample_data sample;
6520 	int size = mmap_event->event_id.header.size;
6521 	int ret;
6522 
6523 	if (!perf_event_mmap_match(event, data))
6524 		return;
6525 
6526 	if (event->attr.mmap2) {
6527 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6528 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6529 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6530 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6531 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6532 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6533 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6534 	}
6535 
6536 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6537 	ret = perf_output_begin(&handle, event,
6538 				mmap_event->event_id.header.size);
6539 	if (ret)
6540 		goto out;
6541 
6542 	mmap_event->event_id.pid = perf_event_pid(event, current);
6543 	mmap_event->event_id.tid = perf_event_tid(event, current);
6544 
6545 	perf_output_put(&handle, mmap_event->event_id);
6546 
6547 	if (event->attr.mmap2) {
6548 		perf_output_put(&handle, mmap_event->maj);
6549 		perf_output_put(&handle, mmap_event->min);
6550 		perf_output_put(&handle, mmap_event->ino);
6551 		perf_output_put(&handle, mmap_event->ino_generation);
6552 		perf_output_put(&handle, mmap_event->prot);
6553 		perf_output_put(&handle, mmap_event->flags);
6554 	}
6555 
6556 	__output_copy(&handle, mmap_event->file_name,
6557 				   mmap_event->file_size);
6558 
6559 	perf_event__output_id_sample(event, &handle, &sample);
6560 
6561 	perf_output_end(&handle);
6562 out:
6563 	mmap_event->event_id.header.size = size;
6564 }
6565 
6566 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6567 {
6568 	struct vm_area_struct *vma = mmap_event->vma;
6569 	struct file *file = vma->vm_file;
6570 	int maj = 0, min = 0;
6571 	u64 ino = 0, gen = 0;
6572 	u32 prot = 0, flags = 0;
6573 	unsigned int size;
6574 	char tmp[16];
6575 	char *buf = NULL;
6576 	char *name;
6577 
6578 	if (file) {
6579 		struct inode *inode;
6580 		dev_t dev;
6581 
6582 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6583 		if (!buf) {
6584 			name = "//enomem";
6585 			goto cpy_name;
6586 		}
6587 		/*
6588 		 * d_path() works from the end of the rb backwards, so we
6589 		 * need to add enough zero bytes after the string to handle
6590 		 * the 64bit alignment we do later.
6591 		 */
6592 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6593 		if (IS_ERR(name)) {
6594 			name = "//toolong";
6595 			goto cpy_name;
6596 		}
6597 		inode = file_inode(vma->vm_file);
6598 		dev = inode->i_sb->s_dev;
6599 		ino = inode->i_ino;
6600 		gen = inode->i_generation;
6601 		maj = MAJOR(dev);
6602 		min = MINOR(dev);
6603 
6604 		if (vma->vm_flags & VM_READ)
6605 			prot |= PROT_READ;
6606 		if (vma->vm_flags & VM_WRITE)
6607 			prot |= PROT_WRITE;
6608 		if (vma->vm_flags & VM_EXEC)
6609 			prot |= PROT_EXEC;
6610 
6611 		if (vma->vm_flags & VM_MAYSHARE)
6612 			flags = MAP_SHARED;
6613 		else
6614 			flags = MAP_PRIVATE;
6615 
6616 		if (vma->vm_flags & VM_DENYWRITE)
6617 			flags |= MAP_DENYWRITE;
6618 		if (vma->vm_flags & VM_MAYEXEC)
6619 			flags |= MAP_EXECUTABLE;
6620 		if (vma->vm_flags & VM_LOCKED)
6621 			flags |= MAP_LOCKED;
6622 		if (vma->vm_flags & VM_HUGETLB)
6623 			flags |= MAP_HUGETLB;
6624 
6625 		goto got_name;
6626 	} else {
6627 		if (vma->vm_ops && vma->vm_ops->name) {
6628 			name = (char *) vma->vm_ops->name(vma);
6629 			if (name)
6630 				goto cpy_name;
6631 		}
6632 
6633 		name = (char *)arch_vma_name(vma);
6634 		if (name)
6635 			goto cpy_name;
6636 
6637 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6638 				vma->vm_end >= vma->vm_mm->brk) {
6639 			name = "[heap]";
6640 			goto cpy_name;
6641 		}
6642 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6643 				vma->vm_end >= vma->vm_mm->start_stack) {
6644 			name = "[stack]";
6645 			goto cpy_name;
6646 		}
6647 
6648 		name = "//anon";
6649 		goto cpy_name;
6650 	}
6651 
6652 cpy_name:
6653 	strlcpy(tmp, name, sizeof(tmp));
6654 	name = tmp;
6655 got_name:
6656 	/*
6657 	 * Since our buffer works in 8 byte units we need to align our string
6658 	 * size to a multiple of 8. However, we must guarantee the tail end is
6659 	 * zero'd out to avoid leaking random bits to userspace.
6660 	 */
6661 	size = strlen(name)+1;
6662 	while (!IS_ALIGNED(size, sizeof(u64)))
6663 		name[size++] = '\0';
6664 
6665 	mmap_event->file_name = name;
6666 	mmap_event->file_size = size;
6667 	mmap_event->maj = maj;
6668 	mmap_event->min = min;
6669 	mmap_event->ino = ino;
6670 	mmap_event->ino_generation = gen;
6671 	mmap_event->prot = prot;
6672 	mmap_event->flags = flags;
6673 
6674 	if (!(vma->vm_flags & VM_EXEC))
6675 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6676 
6677 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6678 
6679 	perf_iterate_sb(perf_event_mmap_output,
6680 		       mmap_event,
6681 		       NULL);
6682 
6683 	kfree(buf);
6684 }
6685 
6686 /*
6687  * Check whether inode and address range match filter criteria.
6688  */
6689 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6690 				     struct file *file, unsigned long offset,
6691 				     unsigned long size)
6692 {
6693 	if (filter->inode != file->f_inode)
6694 		return false;
6695 
6696 	if (filter->offset > offset + size)
6697 		return false;
6698 
6699 	if (filter->offset + filter->size < offset)
6700 		return false;
6701 
6702 	return true;
6703 }
6704 
6705 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6706 {
6707 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6708 	struct vm_area_struct *vma = data;
6709 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6710 	struct file *file = vma->vm_file;
6711 	struct perf_addr_filter *filter;
6712 	unsigned int restart = 0, count = 0;
6713 
6714 	if (!has_addr_filter(event))
6715 		return;
6716 
6717 	if (!file)
6718 		return;
6719 
6720 	raw_spin_lock_irqsave(&ifh->lock, flags);
6721 	list_for_each_entry(filter, &ifh->list, entry) {
6722 		if (perf_addr_filter_match(filter, file, off,
6723 					     vma->vm_end - vma->vm_start)) {
6724 			event->addr_filters_offs[count] = vma->vm_start;
6725 			restart++;
6726 		}
6727 
6728 		count++;
6729 	}
6730 
6731 	if (restart)
6732 		event->addr_filters_gen++;
6733 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6734 
6735 	if (restart)
6736 		perf_event_stop(event, 1);
6737 }
6738 
6739 /*
6740  * Adjust all task's events' filters to the new vma
6741  */
6742 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6743 {
6744 	struct perf_event_context *ctx;
6745 	int ctxn;
6746 
6747 	/*
6748 	 * Data tracing isn't supported yet and as such there is no need
6749 	 * to keep track of anything that isn't related to executable code:
6750 	 */
6751 	if (!(vma->vm_flags & VM_EXEC))
6752 		return;
6753 
6754 	rcu_read_lock();
6755 	for_each_task_context_nr(ctxn) {
6756 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6757 		if (!ctx)
6758 			continue;
6759 
6760 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6761 	}
6762 	rcu_read_unlock();
6763 }
6764 
6765 void perf_event_mmap(struct vm_area_struct *vma)
6766 {
6767 	struct perf_mmap_event mmap_event;
6768 
6769 	if (!atomic_read(&nr_mmap_events))
6770 		return;
6771 
6772 	mmap_event = (struct perf_mmap_event){
6773 		.vma	= vma,
6774 		/* .file_name */
6775 		/* .file_size */
6776 		.event_id  = {
6777 			.header = {
6778 				.type = PERF_RECORD_MMAP,
6779 				.misc = PERF_RECORD_MISC_USER,
6780 				/* .size */
6781 			},
6782 			/* .pid */
6783 			/* .tid */
6784 			.start  = vma->vm_start,
6785 			.len    = vma->vm_end - vma->vm_start,
6786 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6787 		},
6788 		/* .maj (attr_mmap2 only) */
6789 		/* .min (attr_mmap2 only) */
6790 		/* .ino (attr_mmap2 only) */
6791 		/* .ino_generation (attr_mmap2 only) */
6792 		/* .prot (attr_mmap2 only) */
6793 		/* .flags (attr_mmap2 only) */
6794 	};
6795 
6796 	perf_addr_filters_adjust(vma);
6797 	perf_event_mmap_event(&mmap_event);
6798 }
6799 
6800 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6801 			  unsigned long size, u64 flags)
6802 {
6803 	struct perf_output_handle handle;
6804 	struct perf_sample_data sample;
6805 	struct perf_aux_event {
6806 		struct perf_event_header	header;
6807 		u64				offset;
6808 		u64				size;
6809 		u64				flags;
6810 	} rec = {
6811 		.header = {
6812 			.type = PERF_RECORD_AUX,
6813 			.misc = 0,
6814 			.size = sizeof(rec),
6815 		},
6816 		.offset		= head,
6817 		.size		= size,
6818 		.flags		= flags,
6819 	};
6820 	int ret;
6821 
6822 	perf_event_header__init_id(&rec.header, &sample, event);
6823 	ret = perf_output_begin(&handle, event, rec.header.size);
6824 
6825 	if (ret)
6826 		return;
6827 
6828 	perf_output_put(&handle, rec);
6829 	perf_event__output_id_sample(event, &handle, &sample);
6830 
6831 	perf_output_end(&handle);
6832 }
6833 
6834 /*
6835  * Lost/dropped samples logging
6836  */
6837 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6838 {
6839 	struct perf_output_handle handle;
6840 	struct perf_sample_data sample;
6841 	int ret;
6842 
6843 	struct {
6844 		struct perf_event_header	header;
6845 		u64				lost;
6846 	} lost_samples_event = {
6847 		.header = {
6848 			.type = PERF_RECORD_LOST_SAMPLES,
6849 			.misc = 0,
6850 			.size = sizeof(lost_samples_event),
6851 		},
6852 		.lost		= lost,
6853 	};
6854 
6855 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6856 
6857 	ret = perf_output_begin(&handle, event,
6858 				lost_samples_event.header.size);
6859 	if (ret)
6860 		return;
6861 
6862 	perf_output_put(&handle, lost_samples_event);
6863 	perf_event__output_id_sample(event, &handle, &sample);
6864 	perf_output_end(&handle);
6865 }
6866 
6867 /*
6868  * context_switch tracking
6869  */
6870 
6871 struct perf_switch_event {
6872 	struct task_struct	*task;
6873 	struct task_struct	*next_prev;
6874 
6875 	struct {
6876 		struct perf_event_header	header;
6877 		u32				next_prev_pid;
6878 		u32				next_prev_tid;
6879 	} event_id;
6880 };
6881 
6882 static int perf_event_switch_match(struct perf_event *event)
6883 {
6884 	return event->attr.context_switch;
6885 }
6886 
6887 static void perf_event_switch_output(struct perf_event *event, void *data)
6888 {
6889 	struct perf_switch_event *se = data;
6890 	struct perf_output_handle handle;
6891 	struct perf_sample_data sample;
6892 	int ret;
6893 
6894 	if (!perf_event_switch_match(event))
6895 		return;
6896 
6897 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6898 	if (event->ctx->task) {
6899 		se->event_id.header.type = PERF_RECORD_SWITCH;
6900 		se->event_id.header.size = sizeof(se->event_id.header);
6901 	} else {
6902 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6903 		se->event_id.header.size = sizeof(se->event_id);
6904 		se->event_id.next_prev_pid =
6905 					perf_event_pid(event, se->next_prev);
6906 		se->event_id.next_prev_tid =
6907 					perf_event_tid(event, se->next_prev);
6908 	}
6909 
6910 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6911 
6912 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6913 	if (ret)
6914 		return;
6915 
6916 	if (event->ctx->task)
6917 		perf_output_put(&handle, se->event_id.header);
6918 	else
6919 		perf_output_put(&handle, se->event_id);
6920 
6921 	perf_event__output_id_sample(event, &handle, &sample);
6922 
6923 	perf_output_end(&handle);
6924 }
6925 
6926 static void perf_event_switch(struct task_struct *task,
6927 			      struct task_struct *next_prev, bool sched_in)
6928 {
6929 	struct perf_switch_event switch_event;
6930 
6931 	/* N.B. caller checks nr_switch_events != 0 */
6932 
6933 	switch_event = (struct perf_switch_event){
6934 		.task		= task,
6935 		.next_prev	= next_prev,
6936 		.event_id	= {
6937 			.header = {
6938 				/* .type */
6939 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6940 				/* .size */
6941 			},
6942 			/* .next_prev_pid */
6943 			/* .next_prev_tid */
6944 		},
6945 	};
6946 
6947 	perf_iterate_sb(perf_event_switch_output,
6948 		       &switch_event,
6949 		       NULL);
6950 }
6951 
6952 /*
6953  * IRQ throttle logging
6954  */
6955 
6956 static void perf_log_throttle(struct perf_event *event, int enable)
6957 {
6958 	struct perf_output_handle handle;
6959 	struct perf_sample_data sample;
6960 	int ret;
6961 
6962 	struct {
6963 		struct perf_event_header	header;
6964 		u64				time;
6965 		u64				id;
6966 		u64				stream_id;
6967 	} throttle_event = {
6968 		.header = {
6969 			.type = PERF_RECORD_THROTTLE,
6970 			.misc = 0,
6971 			.size = sizeof(throttle_event),
6972 		},
6973 		.time		= perf_event_clock(event),
6974 		.id		= primary_event_id(event),
6975 		.stream_id	= event->id,
6976 	};
6977 
6978 	if (enable)
6979 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6980 
6981 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6982 
6983 	ret = perf_output_begin(&handle, event,
6984 				throttle_event.header.size);
6985 	if (ret)
6986 		return;
6987 
6988 	perf_output_put(&handle, throttle_event);
6989 	perf_event__output_id_sample(event, &handle, &sample);
6990 	perf_output_end(&handle);
6991 }
6992 
6993 static void perf_log_itrace_start(struct perf_event *event)
6994 {
6995 	struct perf_output_handle handle;
6996 	struct perf_sample_data sample;
6997 	struct perf_aux_event {
6998 		struct perf_event_header        header;
6999 		u32				pid;
7000 		u32				tid;
7001 	} rec;
7002 	int ret;
7003 
7004 	if (event->parent)
7005 		event = event->parent;
7006 
7007 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7008 	    event->hw.itrace_started)
7009 		return;
7010 
7011 	rec.header.type	= PERF_RECORD_ITRACE_START;
7012 	rec.header.misc	= 0;
7013 	rec.header.size	= sizeof(rec);
7014 	rec.pid	= perf_event_pid(event, current);
7015 	rec.tid	= perf_event_tid(event, current);
7016 
7017 	perf_event_header__init_id(&rec.header, &sample, event);
7018 	ret = perf_output_begin(&handle, event, rec.header.size);
7019 
7020 	if (ret)
7021 		return;
7022 
7023 	perf_output_put(&handle, rec);
7024 	perf_event__output_id_sample(event, &handle, &sample);
7025 
7026 	perf_output_end(&handle);
7027 }
7028 
7029 /*
7030  * Generic event overflow handling, sampling.
7031  */
7032 
7033 static int __perf_event_overflow(struct perf_event *event,
7034 				   int throttle, struct perf_sample_data *data,
7035 				   struct pt_regs *regs)
7036 {
7037 	int events = atomic_read(&event->event_limit);
7038 	struct hw_perf_event *hwc = &event->hw;
7039 	u64 seq;
7040 	int ret = 0;
7041 
7042 	/*
7043 	 * Non-sampling counters might still use the PMI to fold short
7044 	 * hardware counters, ignore those.
7045 	 */
7046 	if (unlikely(!is_sampling_event(event)))
7047 		return 0;
7048 
7049 	seq = __this_cpu_read(perf_throttled_seq);
7050 	if (seq != hwc->interrupts_seq) {
7051 		hwc->interrupts_seq = seq;
7052 		hwc->interrupts = 1;
7053 	} else {
7054 		hwc->interrupts++;
7055 		if (unlikely(throttle
7056 			     && hwc->interrupts >= max_samples_per_tick)) {
7057 			__this_cpu_inc(perf_throttled_count);
7058 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7059 			hwc->interrupts = MAX_INTERRUPTS;
7060 			perf_log_throttle(event, 0);
7061 			ret = 1;
7062 		}
7063 	}
7064 
7065 	if (event->attr.freq) {
7066 		u64 now = perf_clock();
7067 		s64 delta = now - hwc->freq_time_stamp;
7068 
7069 		hwc->freq_time_stamp = now;
7070 
7071 		if (delta > 0 && delta < 2*TICK_NSEC)
7072 			perf_adjust_period(event, delta, hwc->last_period, true);
7073 	}
7074 
7075 	/*
7076 	 * XXX event_limit might not quite work as expected on inherited
7077 	 * events
7078 	 */
7079 
7080 	event->pending_kill = POLL_IN;
7081 	if (events && atomic_dec_and_test(&event->event_limit)) {
7082 		ret = 1;
7083 		event->pending_kill = POLL_HUP;
7084 
7085 		perf_event_disable_inatomic(event);
7086 	}
7087 
7088 	READ_ONCE(event->overflow_handler)(event, data, regs);
7089 
7090 	if (*perf_event_fasync(event) && event->pending_kill) {
7091 		event->pending_wakeup = 1;
7092 		irq_work_queue(&event->pending);
7093 	}
7094 
7095 	return ret;
7096 }
7097 
7098 int perf_event_overflow(struct perf_event *event,
7099 			  struct perf_sample_data *data,
7100 			  struct pt_regs *regs)
7101 {
7102 	return __perf_event_overflow(event, 1, data, regs);
7103 }
7104 
7105 /*
7106  * Generic software event infrastructure
7107  */
7108 
7109 struct swevent_htable {
7110 	struct swevent_hlist		*swevent_hlist;
7111 	struct mutex			hlist_mutex;
7112 	int				hlist_refcount;
7113 
7114 	/* Recursion avoidance in each contexts */
7115 	int				recursion[PERF_NR_CONTEXTS];
7116 };
7117 
7118 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7119 
7120 /*
7121  * We directly increment event->count and keep a second value in
7122  * event->hw.period_left to count intervals. This period event
7123  * is kept in the range [-sample_period, 0] so that we can use the
7124  * sign as trigger.
7125  */
7126 
7127 u64 perf_swevent_set_period(struct perf_event *event)
7128 {
7129 	struct hw_perf_event *hwc = &event->hw;
7130 	u64 period = hwc->last_period;
7131 	u64 nr, offset;
7132 	s64 old, val;
7133 
7134 	hwc->last_period = hwc->sample_period;
7135 
7136 again:
7137 	old = val = local64_read(&hwc->period_left);
7138 	if (val < 0)
7139 		return 0;
7140 
7141 	nr = div64_u64(period + val, period);
7142 	offset = nr * period;
7143 	val -= offset;
7144 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7145 		goto again;
7146 
7147 	return nr;
7148 }
7149 
7150 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7151 				    struct perf_sample_data *data,
7152 				    struct pt_regs *regs)
7153 {
7154 	struct hw_perf_event *hwc = &event->hw;
7155 	int throttle = 0;
7156 
7157 	if (!overflow)
7158 		overflow = perf_swevent_set_period(event);
7159 
7160 	if (hwc->interrupts == MAX_INTERRUPTS)
7161 		return;
7162 
7163 	for (; overflow; overflow--) {
7164 		if (__perf_event_overflow(event, throttle,
7165 					    data, regs)) {
7166 			/*
7167 			 * We inhibit the overflow from happening when
7168 			 * hwc->interrupts == MAX_INTERRUPTS.
7169 			 */
7170 			break;
7171 		}
7172 		throttle = 1;
7173 	}
7174 }
7175 
7176 static void perf_swevent_event(struct perf_event *event, u64 nr,
7177 			       struct perf_sample_data *data,
7178 			       struct pt_regs *regs)
7179 {
7180 	struct hw_perf_event *hwc = &event->hw;
7181 
7182 	local64_add(nr, &event->count);
7183 
7184 	if (!regs)
7185 		return;
7186 
7187 	if (!is_sampling_event(event))
7188 		return;
7189 
7190 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7191 		data->period = nr;
7192 		return perf_swevent_overflow(event, 1, data, regs);
7193 	} else
7194 		data->period = event->hw.last_period;
7195 
7196 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7197 		return perf_swevent_overflow(event, 1, data, regs);
7198 
7199 	if (local64_add_negative(nr, &hwc->period_left))
7200 		return;
7201 
7202 	perf_swevent_overflow(event, 0, data, regs);
7203 }
7204 
7205 static int perf_exclude_event(struct perf_event *event,
7206 			      struct pt_regs *regs)
7207 {
7208 	if (event->hw.state & PERF_HES_STOPPED)
7209 		return 1;
7210 
7211 	if (regs) {
7212 		if (event->attr.exclude_user && user_mode(regs))
7213 			return 1;
7214 
7215 		if (event->attr.exclude_kernel && !user_mode(regs))
7216 			return 1;
7217 	}
7218 
7219 	return 0;
7220 }
7221 
7222 static int perf_swevent_match(struct perf_event *event,
7223 				enum perf_type_id type,
7224 				u32 event_id,
7225 				struct perf_sample_data *data,
7226 				struct pt_regs *regs)
7227 {
7228 	if (event->attr.type != type)
7229 		return 0;
7230 
7231 	if (event->attr.config != event_id)
7232 		return 0;
7233 
7234 	if (perf_exclude_event(event, regs))
7235 		return 0;
7236 
7237 	return 1;
7238 }
7239 
7240 static inline u64 swevent_hash(u64 type, u32 event_id)
7241 {
7242 	u64 val = event_id | (type << 32);
7243 
7244 	return hash_64(val, SWEVENT_HLIST_BITS);
7245 }
7246 
7247 static inline struct hlist_head *
7248 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7249 {
7250 	u64 hash = swevent_hash(type, event_id);
7251 
7252 	return &hlist->heads[hash];
7253 }
7254 
7255 /* For the read side: events when they trigger */
7256 static inline struct hlist_head *
7257 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7258 {
7259 	struct swevent_hlist *hlist;
7260 
7261 	hlist = rcu_dereference(swhash->swevent_hlist);
7262 	if (!hlist)
7263 		return NULL;
7264 
7265 	return __find_swevent_head(hlist, type, event_id);
7266 }
7267 
7268 /* For the event head insertion and removal in the hlist */
7269 static inline struct hlist_head *
7270 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7271 {
7272 	struct swevent_hlist *hlist;
7273 	u32 event_id = event->attr.config;
7274 	u64 type = event->attr.type;
7275 
7276 	/*
7277 	 * Event scheduling is always serialized against hlist allocation
7278 	 * and release. Which makes the protected version suitable here.
7279 	 * The context lock guarantees that.
7280 	 */
7281 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7282 					  lockdep_is_held(&event->ctx->lock));
7283 	if (!hlist)
7284 		return NULL;
7285 
7286 	return __find_swevent_head(hlist, type, event_id);
7287 }
7288 
7289 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7290 				    u64 nr,
7291 				    struct perf_sample_data *data,
7292 				    struct pt_regs *regs)
7293 {
7294 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7295 	struct perf_event *event;
7296 	struct hlist_head *head;
7297 
7298 	rcu_read_lock();
7299 	head = find_swevent_head_rcu(swhash, type, event_id);
7300 	if (!head)
7301 		goto end;
7302 
7303 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7304 		if (perf_swevent_match(event, type, event_id, data, regs))
7305 			perf_swevent_event(event, nr, data, regs);
7306 	}
7307 end:
7308 	rcu_read_unlock();
7309 }
7310 
7311 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7312 
7313 int perf_swevent_get_recursion_context(void)
7314 {
7315 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7316 
7317 	return get_recursion_context(swhash->recursion);
7318 }
7319 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7320 
7321 void perf_swevent_put_recursion_context(int rctx)
7322 {
7323 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7324 
7325 	put_recursion_context(swhash->recursion, rctx);
7326 }
7327 
7328 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7329 {
7330 	struct perf_sample_data data;
7331 
7332 	if (WARN_ON_ONCE(!regs))
7333 		return;
7334 
7335 	perf_sample_data_init(&data, addr, 0);
7336 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7337 }
7338 
7339 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7340 {
7341 	int rctx;
7342 
7343 	preempt_disable_notrace();
7344 	rctx = perf_swevent_get_recursion_context();
7345 	if (unlikely(rctx < 0))
7346 		goto fail;
7347 
7348 	___perf_sw_event(event_id, nr, regs, addr);
7349 
7350 	perf_swevent_put_recursion_context(rctx);
7351 fail:
7352 	preempt_enable_notrace();
7353 }
7354 
7355 static void perf_swevent_read(struct perf_event *event)
7356 {
7357 }
7358 
7359 static int perf_swevent_add(struct perf_event *event, int flags)
7360 {
7361 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7362 	struct hw_perf_event *hwc = &event->hw;
7363 	struct hlist_head *head;
7364 
7365 	if (is_sampling_event(event)) {
7366 		hwc->last_period = hwc->sample_period;
7367 		perf_swevent_set_period(event);
7368 	}
7369 
7370 	hwc->state = !(flags & PERF_EF_START);
7371 
7372 	head = find_swevent_head(swhash, event);
7373 	if (WARN_ON_ONCE(!head))
7374 		return -EINVAL;
7375 
7376 	hlist_add_head_rcu(&event->hlist_entry, head);
7377 	perf_event_update_userpage(event);
7378 
7379 	return 0;
7380 }
7381 
7382 static void perf_swevent_del(struct perf_event *event, int flags)
7383 {
7384 	hlist_del_rcu(&event->hlist_entry);
7385 }
7386 
7387 static void perf_swevent_start(struct perf_event *event, int flags)
7388 {
7389 	event->hw.state = 0;
7390 }
7391 
7392 static void perf_swevent_stop(struct perf_event *event, int flags)
7393 {
7394 	event->hw.state = PERF_HES_STOPPED;
7395 }
7396 
7397 /* Deref the hlist from the update side */
7398 static inline struct swevent_hlist *
7399 swevent_hlist_deref(struct swevent_htable *swhash)
7400 {
7401 	return rcu_dereference_protected(swhash->swevent_hlist,
7402 					 lockdep_is_held(&swhash->hlist_mutex));
7403 }
7404 
7405 static void swevent_hlist_release(struct swevent_htable *swhash)
7406 {
7407 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7408 
7409 	if (!hlist)
7410 		return;
7411 
7412 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7413 	kfree_rcu(hlist, rcu_head);
7414 }
7415 
7416 static void swevent_hlist_put_cpu(int cpu)
7417 {
7418 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7419 
7420 	mutex_lock(&swhash->hlist_mutex);
7421 
7422 	if (!--swhash->hlist_refcount)
7423 		swevent_hlist_release(swhash);
7424 
7425 	mutex_unlock(&swhash->hlist_mutex);
7426 }
7427 
7428 static void swevent_hlist_put(void)
7429 {
7430 	int cpu;
7431 
7432 	for_each_possible_cpu(cpu)
7433 		swevent_hlist_put_cpu(cpu);
7434 }
7435 
7436 static int swevent_hlist_get_cpu(int cpu)
7437 {
7438 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7439 	int err = 0;
7440 
7441 	mutex_lock(&swhash->hlist_mutex);
7442 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7443 		struct swevent_hlist *hlist;
7444 
7445 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7446 		if (!hlist) {
7447 			err = -ENOMEM;
7448 			goto exit;
7449 		}
7450 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7451 	}
7452 	swhash->hlist_refcount++;
7453 exit:
7454 	mutex_unlock(&swhash->hlist_mutex);
7455 
7456 	return err;
7457 }
7458 
7459 static int swevent_hlist_get(void)
7460 {
7461 	int err, cpu, failed_cpu;
7462 
7463 	get_online_cpus();
7464 	for_each_possible_cpu(cpu) {
7465 		err = swevent_hlist_get_cpu(cpu);
7466 		if (err) {
7467 			failed_cpu = cpu;
7468 			goto fail;
7469 		}
7470 	}
7471 	put_online_cpus();
7472 
7473 	return 0;
7474 fail:
7475 	for_each_possible_cpu(cpu) {
7476 		if (cpu == failed_cpu)
7477 			break;
7478 		swevent_hlist_put_cpu(cpu);
7479 	}
7480 
7481 	put_online_cpus();
7482 	return err;
7483 }
7484 
7485 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7486 
7487 static void sw_perf_event_destroy(struct perf_event *event)
7488 {
7489 	u64 event_id = event->attr.config;
7490 
7491 	WARN_ON(event->parent);
7492 
7493 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7494 	swevent_hlist_put();
7495 }
7496 
7497 static int perf_swevent_init(struct perf_event *event)
7498 {
7499 	u64 event_id = event->attr.config;
7500 
7501 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7502 		return -ENOENT;
7503 
7504 	/*
7505 	 * no branch sampling for software events
7506 	 */
7507 	if (has_branch_stack(event))
7508 		return -EOPNOTSUPP;
7509 
7510 	switch (event_id) {
7511 	case PERF_COUNT_SW_CPU_CLOCK:
7512 	case PERF_COUNT_SW_TASK_CLOCK:
7513 		return -ENOENT;
7514 
7515 	default:
7516 		break;
7517 	}
7518 
7519 	if (event_id >= PERF_COUNT_SW_MAX)
7520 		return -ENOENT;
7521 
7522 	if (!event->parent) {
7523 		int err;
7524 
7525 		err = swevent_hlist_get();
7526 		if (err)
7527 			return err;
7528 
7529 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7530 		event->destroy = sw_perf_event_destroy;
7531 	}
7532 
7533 	return 0;
7534 }
7535 
7536 static struct pmu perf_swevent = {
7537 	.task_ctx_nr	= perf_sw_context,
7538 
7539 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7540 
7541 	.event_init	= perf_swevent_init,
7542 	.add		= perf_swevent_add,
7543 	.del		= perf_swevent_del,
7544 	.start		= perf_swevent_start,
7545 	.stop		= perf_swevent_stop,
7546 	.read		= perf_swevent_read,
7547 };
7548 
7549 #ifdef CONFIG_EVENT_TRACING
7550 
7551 static int perf_tp_filter_match(struct perf_event *event,
7552 				struct perf_sample_data *data)
7553 {
7554 	void *record = data->raw->frag.data;
7555 
7556 	/* only top level events have filters set */
7557 	if (event->parent)
7558 		event = event->parent;
7559 
7560 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7561 		return 1;
7562 	return 0;
7563 }
7564 
7565 static int perf_tp_event_match(struct perf_event *event,
7566 				struct perf_sample_data *data,
7567 				struct pt_regs *regs)
7568 {
7569 	if (event->hw.state & PERF_HES_STOPPED)
7570 		return 0;
7571 	/*
7572 	 * All tracepoints are from kernel-space.
7573 	 */
7574 	if (event->attr.exclude_kernel)
7575 		return 0;
7576 
7577 	if (!perf_tp_filter_match(event, data))
7578 		return 0;
7579 
7580 	return 1;
7581 }
7582 
7583 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7584 			       struct trace_event_call *call, u64 count,
7585 			       struct pt_regs *regs, struct hlist_head *head,
7586 			       struct task_struct *task)
7587 {
7588 	struct bpf_prog *prog = call->prog;
7589 
7590 	if (prog) {
7591 		*(struct pt_regs **)raw_data = regs;
7592 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7593 			perf_swevent_put_recursion_context(rctx);
7594 			return;
7595 		}
7596 	}
7597 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7598 		      rctx, task);
7599 }
7600 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7601 
7602 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7603 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7604 		   struct task_struct *task)
7605 {
7606 	struct perf_sample_data data;
7607 	struct perf_event *event;
7608 
7609 	struct perf_raw_record raw = {
7610 		.frag = {
7611 			.size = entry_size,
7612 			.data = record,
7613 		},
7614 	};
7615 
7616 	perf_sample_data_init(&data, 0, 0);
7617 	data.raw = &raw;
7618 
7619 	perf_trace_buf_update(record, event_type);
7620 
7621 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7622 		if (perf_tp_event_match(event, &data, regs))
7623 			perf_swevent_event(event, count, &data, regs);
7624 	}
7625 
7626 	/*
7627 	 * If we got specified a target task, also iterate its context and
7628 	 * deliver this event there too.
7629 	 */
7630 	if (task && task != current) {
7631 		struct perf_event_context *ctx;
7632 		struct trace_entry *entry = record;
7633 
7634 		rcu_read_lock();
7635 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7636 		if (!ctx)
7637 			goto unlock;
7638 
7639 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7640 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7641 				continue;
7642 			if (event->attr.config != entry->type)
7643 				continue;
7644 			if (perf_tp_event_match(event, &data, regs))
7645 				perf_swevent_event(event, count, &data, regs);
7646 		}
7647 unlock:
7648 		rcu_read_unlock();
7649 	}
7650 
7651 	perf_swevent_put_recursion_context(rctx);
7652 }
7653 EXPORT_SYMBOL_GPL(perf_tp_event);
7654 
7655 static void tp_perf_event_destroy(struct perf_event *event)
7656 {
7657 	perf_trace_destroy(event);
7658 }
7659 
7660 static int perf_tp_event_init(struct perf_event *event)
7661 {
7662 	int err;
7663 
7664 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7665 		return -ENOENT;
7666 
7667 	/*
7668 	 * no branch sampling for tracepoint events
7669 	 */
7670 	if (has_branch_stack(event))
7671 		return -EOPNOTSUPP;
7672 
7673 	err = perf_trace_init(event);
7674 	if (err)
7675 		return err;
7676 
7677 	event->destroy = tp_perf_event_destroy;
7678 
7679 	return 0;
7680 }
7681 
7682 static struct pmu perf_tracepoint = {
7683 	.task_ctx_nr	= perf_sw_context,
7684 
7685 	.event_init	= perf_tp_event_init,
7686 	.add		= perf_trace_add,
7687 	.del		= perf_trace_del,
7688 	.start		= perf_swevent_start,
7689 	.stop		= perf_swevent_stop,
7690 	.read		= perf_swevent_read,
7691 };
7692 
7693 static inline void perf_tp_register(void)
7694 {
7695 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7696 }
7697 
7698 static void perf_event_free_filter(struct perf_event *event)
7699 {
7700 	ftrace_profile_free_filter(event);
7701 }
7702 
7703 #ifdef CONFIG_BPF_SYSCALL
7704 static void bpf_overflow_handler(struct perf_event *event,
7705 				 struct perf_sample_data *data,
7706 				 struct pt_regs *regs)
7707 {
7708 	struct bpf_perf_event_data_kern ctx = {
7709 		.data = data,
7710 		.regs = regs,
7711 	};
7712 	int ret = 0;
7713 
7714 	preempt_disable();
7715 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7716 		goto out;
7717 	rcu_read_lock();
7718 	ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7719 	rcu_read_unlock();
7720 out:
7721 	__this_cpu_dec(bpf_prog_active);
7722 	preempt_enable();
7723 	if (!ret)
7724 		return;
7725 
7726 	event->orig_overflow_handler(event, data, regs);
7727 }
7728 
7729 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7730 {
7731 	struct bpf_prog *prog;
7732 
7733 	if (event->overflow_handler_context)
7734 		/* hw breakpoint or kernel counter */
7735 		return -EINVAL;
7736 
7737 	if (event->prog)
7738 		return -EEXIST;
7739 
7740 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7741 	if (IS_ERR(prog))
7742 		return PTR_ERR(prog);
7743 
7744 	event->prog = prog;
7745 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7746 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7747 	return 0;
7748 }
7749 
7750 static void perf_event_free_bpf_handler(struct perf_event *event)
7751 {
7752 	struct bpf_prog *prog = event->prog;
7753 
7754 	if (!prog)
7755 		return;
7756 
7757 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7758 	event->prog = NULL;
7759 	bpf_prog_put(prog);
7760 }
7761 #else
7762 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7763 {
7764 	return -EOPNOTSUPP;
7765 }
7766 static void perf_event_free_bpf_handler(struct perf_event *event)
7767 {
7768 }
7769 #endif
7770 
7771 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7772 {
7773 	bool is_kprobe, is_tracepoint;
7774 	struct bpf_prog *prog;
7775 
7776 	if (event->attr.type == PERF_TYPE_HARDWARE ||
7777 	    event->attr.type == PERF_TYPE_SOFTWARE)
7778 		return perf_event_set_bpf_handler(event, prog_fd);
7779 
7780 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7781 		return -EINVAL;
7782 
7783 	if (event->tp_event->prog)
7784 		return -EEXIST;
7785 
7786 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7787 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7788 	if (!is_kprobe && !is_tracepoint)
7789 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7790 		return -EINVAL;
7791 
7792 	prog = bpf_prog_get(prog_fd);
7793 	if (IS_ERR(prog))
7794 		return PTR_ERR(prog);
7795 
7796 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7797 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7798 		/* valid fd, but invalid bpf program type */
7799 		bpf_prog_put(prog);
7800 		return -EINVAL;
7801 	}
7802 
7803 	if (is_tracepoint) {
7804 		int off = trace_event_get_offsets(event->tp_event);
7805 
7806 		if (prog->aux->max_ctx_offset > off) {
7807 			bpf_prog_put(prog);
7808 			return -EACCES;
7809 		}
7810 	}
7811 	event->tp_event->prog = prog;
7812 
7813 	return 0;
7814 }
7815 
7816 static void perf_event_free_bpf_prog(struct perf_event *event)
7817 {
7818 	struct bpf_prog *prog;
7819 
7820 	perf_event_free_bpf_handler(event);
7821 
7822 	if (!event->tp_event)
7823 		return;
7824 
7825 	prog = event->tp_event->prog;
7826 	if (prog) {
7827 		event->tp_event->prog = NULL;
7828 		bpf_prog_put(prog);
7829 	}
7830 }
7831 
7832 #else
7833 
7834 static inline void perf_tp_register(void)
7835 {
7836 }
7837 
7838 static void perf_event_free_filter(struct perf_event *event)
7839 {
7840 }
7841 
7842 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7843 {
7844 	return -ENOENT;
7845 }
7846 
7847 static void perf_event_free_bpf_prog(struct perf_event *event)
7848 {
7849 }
7850 #endif /* CONFIG_EVENT_TRACING */
7851 
7852 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7853 void perf_bp_event(struct perf_event *bp, void *data)
7854 {
7855 	struct perf_sample_data sample;
7856 	struct pt_regs *regs = data;
7857 
7858 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7859 
7860 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7861 		perf_swevent_event(bp, 1, &sample, regs);
7862 }
7863 #endif
7864 
7865 /*
7866  * Allocate a new address filter
7867  */
7868 static struct perf_addr_filter *
7869 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7870 {
7871 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7872 	struct perf_addr_filter *filter;
7873 
7874 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7875 	if (!filter)
7876 		return NULL;
7877 
7878 	INIT_LIST_HEAD(&filter->entry);
7879 	list_add_tail(&filter->entry, filters);
7880 
7881 	return filter;
7882 }
7883 
7884 static void free_filters_list(struct list_head *filters)
7885 {
7886 	struct perf_addr_filter *filter, *iter;
7887 
7888 	list_for_each_entry_safe(filter, iter, filters, entry) {
7889 		if (filter->inode)
7890 			iput(filter->inode);
7891 		list_del(&filter->entry);
7892 		kfree(filter);
7893 	}
7894 }
7895 
7896 /*
7897  * Free existing address filters and optionally install new ones
7898  */
7899 static void perf_addr_filters_splice(struct perf_event *event,
7900 				     struct list_head *head)
7901 {
7902 	unsigned long flags;
7903 	LIST_HEAD(list);
7904 
7905 	if (!has_addr_filter(event))
7906 		return;
7907 
7908 	/* don't bother with children, they don't have their own filters */
7909 	if (event->parent)
7910 		return;
7911 
7912 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7913 
7914 	list_splice_init(&event->addr_filters.list, &list);
7915 	if (head)
7916 		list_splice(head, &event->addr_filters.list);
7917 
7918 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7919 
7920 	free_filters_list(&list);
7921 }
7922 
7923 /*
7924  * Scan through mm's vmas and see if one of them matches the
7925  * @filter; if so, adjust filter's address range.
7926  * Called with mm::mmap_sem down for reading.
7927  */
7928 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7929 					    struct mm_struct *mm)
7930 {
7931 	struct vm_area_struct *vma;
7932 
7933 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7934 		struct file *file = vma->vm_file;
7935 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7936 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7937 
7938 		if (!file)
7939 			continue;
7940 
7941 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7942 			continue;
7943 
7944 		return vma->vm_start;
7945 	}
7946 
7947 	return 0;
7948 }
7949 
7950 /*
7951  * Update event's address range filters based on the
7952  * task's existing mappings, if any.
7953  */
7954 static void perf_event_addr_filters_apply(struct perf_event *event)
7955 {
7956 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7957 	struct task_struct *task = READ_ONCE(event->ctx->task);
7958 	struct perf_addr_filter *filter;
7959 	struct mm_struct *mm = NULL;
7960 	unsigned int count = 0;
7961 	unsigned long flags;
7962 
7963 	/*
7964 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7965 	 * will stop on the parent's child_mutex that our caller is also holding
7966 	 */
7967 	if (task == TASK_TOMBSTONE)
7968 		return;
7969 
7970 	mm = get_task_mm(event->ctx->task);
7971 	if (!mm)
7972 		goto restart;
7973 
7974 	down_read(&mm->mmap_sem);
7975 
7976 	raw_spin_lock_irqsave(&ifh->lock, flags);
7977 	list_for_each_entry(filter, &ifh->list, entry) {
7978 		event->addr_filters_offs[count] = 0;
7979 
7980 		/*
7981 		 * Adjust base offset if the filter is associated to a binary
7982 		 * that needs to be mapped:
7983 		 */
7984 		if (filter->inode)
7985 			event->addr_filters_offs[count] =
7986 				perf_addr_filter_apply(filter, mm);
7987 
7988 		count++;
7989 	}
7990 
7991 	event->addr_filters_gen++;
7992 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7993 
7994 	up_read(&mm->mmap_sem);
7995 
7996 	mmput(mm);
7997 
7998 restart:
7999 	perf_event_stop(event, 1);
8000 }
8001 
8002 /*
8003  * Address range filtering: limiting the data to certain
8004  * instruction address ranges. Filters are ioctl()ed to us from
8005  * userspace as ascii strings.
8006  *
8007  * Filter string format:
8008  *
8009  * ACTION RANGE_SPEC
8010  * where ACTION is one of the
8011  *  * "filter": limit the trace to this region
8012  *  * "start": start tracing from this address
8013  *  * "stop": stop tracing at this address/region;
8014  * RANGE_SPEC is
8015  *  * for kernel addresses: <start address>[/<size>]
8016  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8017  *
8018  * if <size> is not specified, the range is treated as a single address.
8019  */
8020 enum {
8021 	IF_ACT_FILTER,
8022 	IF_ACT_START,
8023 	IF_ACT_STOP,
8024 	IF_SRC_FILE,
8025 	IF_SRC_KERNEL,
8026 	IF_SRC_FILEADDR,
8027 	IF_SRC_KERNELADDR,
8028 };
8029 
8030 enum {
8031 	IF_STATE_ACTION = 0,
8032 	IF_STATE_SOURCE,
8033 	IF_STATE_END,
8034 };
8035 
8036 static const match_table_t if_tokens = {
8037 	{ IF_ACT_FILTER,	"filter" },
8038 	{ IF_ACT_START,		"start" },
8039 	{ IF_ACT_STOP,		"stop" },
8040 	{ IF_SRC_FILE,		"%u/%u@%s" },
8041 	{ IF_SRC_KERNEL,	"%u/%u" },
8042 	{ IF_SRC_FILEADDR,	"%u@%s" },
8043 	{ IF_SRC_KERNELADDR,	"%u" },
8044 };
8045 
8046 /*
8047  * Address filter string parser
8048  */
8049 static int
8050 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8051 			     struct list_head *filters)
8052 {
8053 	struct perf_addr_filter *filter = NULL;
8054 	char *start, *orig, *filename = NULL;
8055 	struct path path;
8056 	substring_t args[MAX_OPT_ARGS];
8057 	int state = IF_STATE_ACTION, token;
8058 	unsigned int kernel = 0;
8059 	int ret = -EINVAL;
8060 
8061 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8062 	if (!fstr)
8063 		return -ENOMEM;
8064 
8065 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8066 		ret = -EINVAL;
8067 
8068 		if (!*start)
8069 			continue;
8070 
8071 		/* filter definition begins */
8072 		if (state == IF_STATE_ACTION) {
8073 			filter = perf_addr_filter_new(event, filters);
8074 			if (!filter)
8075 				goto fail;
8076 		}
8077 
8078 		token = match_token(start, if_tokens, args);
8079 		switch (token) {
8080 		case IF_ACT_FILTER:
8081 		case IF_ACT_START:
8082 			filter->filter = 1;
8083 
8084 		case IF_ACT_STOP:
8085 			if (state != IF_STATE_ACTION)
8086 				goto fail;
8087 
8088 			state = IF_STATE_SOURCE;
8089 			break;
8090 
8091 		case IF_SRC_KERNELADDR:
8092 		case IF_SRC_KERNEL:
8093 			kernel = 1;
8094 
8095 		case IF_SRC_FILEADDR:
8096 		case IF_SRC_FILE:
8097 			if (state != IF_STATE_SOURCE)
8098 				goto fail;
8099 
8100 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8101 				filter->range = 1;
8102 
8103 			*args[0].to = 0;
8104 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8105 			if (ret)
8106 				goto fail;
8107 
8108 			if (filter->range) {
8109 				*args[1].to = 0;
8110 				ret = kstrtoul(args[1].from, 0, &filter->size);
8111 				if (ret)
8112 					goto fail;
8113 			}
8114 
8115 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8116 				int fpos = filter->range ? 2 : 1;
8117 
8118 				filename = match_strdup(&args[fpos]);
8119 				if (!filename) {
8120 					ret = -ENOMEM;
8121 					goto fail;
8122 				}
8123 			}
8124 
8125 			state = IF_STATE_END;
8126 			break;
8127 
8128 		default:
8129 			goto fail;
8130 		}
8131 
8132 		/*
8133 		 * Filter definition is fully parsed, validate and install it.
8134 		 * Make sure that it doesn't contradict itself or the event's
8135 		 * attribute.
8136 		 */
8137 		if (state == IF_STATE_END) {
8138 			if (kernel && event->attr.exclude_kernel)
8139 				goto fail;
8140 
8141 			if (!kernel) {
8142 				if (!filename)
8143 					goto fail;
8144 
8145 				/* look up the path and grab its inode */
8146 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8147 				if (ret)
8148 					goto fail_free_name;
8149 
8150 				filter->inode = igrab(d_inode(path.dentry));
8151 				path_put(&path);
8152 				kfree(filename);
8153 				filename = NULL;
8154 
8155 				ret = -EINVAL;
8156 				if (!filter->inode ||
8157 				    !S_ISREG(filter->inode->i_mode))
8158 					/* free_filters_list() will iput() */
8159 					goto fail;
8160 			}
8161 
8162 			/* ready to consume more filters */
8163 			state = IF_STATE_ACTION;
8164 			filter = NULL;
8165 		}
8166 	}
8167 
8168 	if (state != IF_STATE_ACTION)
8169 		goto fail;
8170 
8171 	kfree(orig);
8172 
8173 	return 0;
8174 
8175 fail_free_name:
8176 	kfree(filename);
8177 fail:
8178 	free_filters_list(filters);
8179 	kfree(orig);
8180 
8181 	return ret;
8182 }
8183 
8184 static int
8185 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8186 {
8187 	LIST_HEAD(filters);
8188 	int ret;
8189 
8190 	/*
8191 	 * Since this is called in perf_ioctl() path, we're already holding
8192 	 * ctx::mutex.
8193 	 */
8194 	lockdep_assert_held(&event->ctx->mutex);
8195 
8196 	if (WARN_ON_ONCE(event->parent))
8197 		return -EINVAL;
8198 
8199 	/*
8200 	 * For now, we only support filtering in per-task events; doing so
8201 	 * for CPU-wide events requires additional context switching trickery,
8202 	 * since same object code will be mapped at different virtual
8203 	 * addresses in different processes.
8204 	 */
8205 	if (!event->ctx->task)
8206 		return -EOPNOTSUPP;
8207 
8208 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8209 	if (ret)
8210 		return ret;
8211 
8212 	ret = event->pmu->addr_filters_validate(&filters);
8213 	if (ret) {
8214 		free_filters_list(&filters);
8215 		return ret;
8216 	}
8217 
8218 	/* remove existing filters, if any */
8219 	perf_addr_filters_splice(event, &filters);
8220 
8221 	/* install new filters */
8222 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8223 
8224 	return ret;
8225 }
8226 
8227 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8228 {
8229 	char *filter_str;
8230 	int ret = -EINVAL;
8231 
8232 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8233 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8234 	    !has_addr_filter(event))
8235 		return -EINVAL;
8236 
8237 	filter_str = strndup_user(arg, PAGE_SIZE);
8238 	if (IS_ERR(filter_str))
8239 		return PTR_ERR(filter_str);
8240 
8241 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8242 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8243 		ret = ftrace_profile_set_filter(event, event->attr.config,
8244 						filter_str);
8245 	else if (has_addr_filter(event))
8246 		ret = perf_event_set_addr_filter(event, filter_str);
8247 
8248 	kfree(filter_str);
8249 	return ret;
8250 }
8251 
8252 /*
8253  * hrtimer based swevent callback
8254  */
8255 
8256 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8257 {
8258 	enum hrtimer_restart ret = HRTIMER_RESTART;
8259 	struct perf_sample_data data;
8260 	struct pt_regs *regs;
8261 	struct perf_event *event;
8262 	u64 period;
8263 
8264 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8265 
8266 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8267 		return HRTIMER_NORESTART;
8268 
8269 	event->pmu->read(event);
8270 
8271 	perf_sample_data_init(&data, 0, event->hw.last_period);
8272 	regs = get_irq_regs();
8273 
8274 	if (regs && !perf_exclude_event(event, regs)) {
8275 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8276 			if (__perf_event_overflow(event, 1, &data, regs))
8277 				ret = HRTIMER_NORESTART;
8278 	}
8279 
8280 	period = max_t(u64, 10000, event->hw.sample_period);
8281 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8282 
8283 	return ret;
8284 }
8285 
8286 static void perf_swevent_start_hrtimer(struct perf_event *event)
8287 {
8288 	struct hw_perf_event *hwc = &event->hw;
8289 	s64 period;
8290 
8291 	if (!is_sampling_event(event))
8292 		return;
8293 
8294 	period = local64_read(&hwc->period_left);
8295 	if (period) {
8296 		if (period < 0)
8297 			period = 10000;
8298 
8299 		local64_set(&hwc->period_left, 0);
8300 	} else {
8301 		period = max_t(u64, 10000, hwc->sample_period);
8302 	}
8303 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8304 		      HRTIMER_MODE_REL_PINNED);
8305 }
8306 
8307 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8308 {
8309 	struct hw_perf_event *hwc = &event->hw;
8310 
8311 	if (is_sampling_event(event)) {
8312 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8313 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8314 
8315 		hrtimer_cancel(&hwc->hrtimer);
8316 	}
8317 }
8318 
8319 static void perf_swevent_init_hrtimer(struct perf_event *event)
8320 {
8321 	struct hw_perf_event *hwc = &event->hw;
8322 
8323 	if (!is_sampling_event(event))
8324 		return;
8325 
8326 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8327 	hwc->hrtimer.function = perf_swevent_hrtimer;
8328 
8329 	/*
8330 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8331 	 * mapping and avoid the whole period adjust feedback stuff.
8332 	 */
8333 	if (event->attr.freq) {
8334 		long freq = event->attr.sample_freq;
8335 
8336 		event->attr.sample_period = NSEC_PER_SEC / freq;
8337 		hwc->sample_period = event->attr.sample_period;
8338 		local64_set(&hwc->period_left, hwc->sample_period);
8339 		hwc->last_period = hwc->sample_period;
8340 		event->attr.freq = 0;
8341 	}
8342 }
8343 
8344 /*
8345  * Software event: cpu wall time clock
8346  */
8347 
8348 static void cpu_clock_event_update(struct perf_event *event)
8349 {
8350 	s64 prev;
8351 	u64 now;
8352 
8353 	now = local_clock();
8354 	prev = local64_xchg(&event->hw.prev_count, now);
8355 	local64_add(now - prev, &event->count);
8356 }
8357 
8358 static void cpu_clock_event_start(struct perf_event *event, int flags)
8359 {
8360 	local64_set(&event->hw.prev_count, local_clock());
8361 	perf_swevent_start_hrtimer(event);
8362 }
8363 
8364 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8365 {
8366 	perf_swevent_cancel_hrtimer(event);
8367 	cpu_clock_event_update(event);
8368 }
8369 
8370 static int cpu_clock_event_add(struct perf_event *event, int flags)
8371 {
8372 	if (flags & PERF_EF_START)
8373 		cpu_clock_event_start(event, flags);
8374 	perf_event_update_userpage(event);
8375 
8376 	return 0;
8377 }
8378 
8379 static void cpu_clock_event_del(struct perf_event *event, int flags)
8380 {
8381 	cpu_clock_event_stop(event, flags);
8382 }
8383 
8384 static void cpu_clock_event_read(struct perf_event *event)
8385 {
8386 	cpu_clock_event_update(event);
8387 }
8388 
8389 static int cpu_clock_event_init(struct perf_event *event)
8390 {
8391 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8392 		return -ENOENT;
8393 
8394 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8395 		return -ENOENT;
8396 
8397 	/*
8398 	 * no branch sampling for software events
8399 	 */
8400 	if (has_branch_stack(event))
8401 		return -EOPNOTSUPP;
8402 
8403 	perf_swevent_init_hrtimer(event);
8404 
8405 	return 0;
8406 }
8407 
8408 static struct pmu perf_cpu_clock = {
8409 	.task_ctx_nr	= perf_sw_context,
8410 
8411 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8412 
8413 	.event_init	= cpu_clock_event_init,
8414 	.add		= cpu_clock_event_add,
8415 	.del		= cpu_clock_event_del,
8416 	.start		= cpu_clock_event_start,
8417 	.stop		= cpu_clock_event_stop,
8418 	.read		= cpu_clock_event_read,
8419 };
8420 
8421 /*
8422  * Software event: task time clock
8423  */
8424 
8425 static void task_clock_event_update(struct perf_event *event, u64 now)
8426 {
8427 	u64 prev;
8428 	s64 delta;
8429 
8430 	prev = local64_xchg(&event->hw.prev_count, now);
8431 	delta = now - prev;
8432 	local64_add(delta, &event->count);
8433 }
8434 
8435 static void task_clock_event_start(struct perf_event *event, int flags)
8436 {
8437 	local64_set(&event->hw.prev_count, event->ctx->time);
8438 	perf_swevent_start_hrtimer(event);
8439 }
8440 
8441 static void task_clock_event_stop(struct perf_event *event, int flags)
8442 {
8443 	perf_swevent_cancel_hrtimer(event);
8444 	task_clock_event_update(event, event->ctx->time);
8445 }
8446 
8447 static int task_clock_event_add(struct perf_event *event, int flags)
8448 {
8449 	if (flags & PERF_EF_START)
8450 		task_clock_event_start(event, flags);
8451 	perf_event_update_userpage(event);
8452 
8453 	return 0;
8454 }
8455 
8456 static void task_clock_event_del(struct perf_event *event, int flags)
8457 {
8458 	task_clock_event_stop(event, PERF_EF_UPDATE);
8459 }
8460 
8461 static void task_clock_event_read(struct perf_event *event)
8462 {
8463 	u64 now = perf_clock();
8464 	u64 delta = now - event->ctx->timestamp;
8465 	u64 time = event->ctx->time + delta;
8466 
8467 	task_clock_event_update(event, time);
8468 }
8469 
8470 static int task_clock_event_init(struct perf_event *event)
8471 {
8472 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8473 		return -ENOENT;
8474 
8475 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8476 		return -ENOENT;
8477 
8478 	/*
8479 	 * no branch sampling for software events
8480 	 */
8481 	if (has_branch_stack(event))
8482 		return -EOPNOTSUPP;
8483 
8484 	perf_swevent_init_hrtimer(event);
8485 
8486 	return 0;
8487 }
8488 
8489 static struct pmu perf_task_clock = {
8490 	.task_ctx_nr	= perf_sw_context,
8491 
8492 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8493 
8494 	.event_init	= task_clock_event_init,
8495 	.add		= task_clock_event_add,
8496 	.del		= task_clock_event_del,
8497 	.start		= task_clock_event_start,
8498 	.stop		= task_clock_event_stop,
8499 	.read		= task_clock_event_read,
8500 };
8501 
8502 static void perf_pmu_nop_void(struct pmu *pmu)
8503 {
8504 }
8505 
8506 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8507 {
8508 }
8509 
8510 static int perf_pmu_nop_int(struct pmu *pmu)
8511 {
8512 	return 0;
8513 }
8514 
8515 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8516 
8517 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8518 {
8519 	__this_cpu_write(nop_txn_flags, flags);
8520 
8521 	if (flags & ~PERF_PMU_TXN_ADD)
8522 		return;
8523 
8524 	perf_pmu_disable(pmu);
8525 }
8526 
8527 static int perf_pmu_commit_txn(struct pmu *pmu)
8528 {
8529 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8530 
8531 	__this_cpu_write(nop_txn_flags, 0);
8532 
8533 	if (flags & ~PERF_PMU_TXN_ADD)
8534 		return 0;
8535 
8536 	perf_pmu_enable(pmu);
8537 	return 0;
8538 }
8539 
8540 static void perf_pmu_cancel_txn(struct pmu *pmu)
8541 {
8542 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8543 
8544 	__this_cpu_write(nop_txn_flags, 0);
8545 
8546 	if (flags & ~PERF_PMU_TXN_ADD)
8547 		return;
8548 
8549 	perf_pmu_enable(pmu);
8550 }
8551 
8552 static int perf_event_idx_default(struct perf_event *event)
8553 {
8554 	return 0;
8555 }
8556 
8557 /*
8558  * Ensures all contexts with the same task_ctx_nr have the same
8559  * pmu_cpu_context too.
8560  */
8561 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8562 {
8563 	struct pmu *pmu;
8564 
8565 	if (ctxn < 0)
8566 		return NULL;
8567 
8568 	list_for_each_entry(pmu, &pmus, entry) {
8569 		if (pmu->task_ctx_nr == ctxn)
8570 			return pmu->pmu_cpu_context;
8571 	}
8572 
8573 	return NULL;
8574 }
8575 
8576 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8577 {
8578 	int cpu;
8579 
8580 	for_each_possible_cpu(cpu) {
8581 		struct perf_cpu_context *cpuctx;
8582 
8583 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8584 
8585 		if (cpuctx->unique_pmu == old_pmu)
8586 			cpuctx->unique_pmu = pmu;
8587 	}
8588 }
8589 
8590 static void free_pmu_context(struct pmu *pmu)
8591 {
8592 	struct pmu *i;
8593 
8594 	mutex_lock(&pmus_lock);
8595 	/*
8596 	 * Like a real lame refcount.
8597 	 */
8598 	list_for_each_entry(i, &pmus, entry) {
8599 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8600 			update_pmu_context(i, pmu);
8601 			goto out;
8602 		}
8603 	}
8604 
8605 	free_percpu(pmu->pmu_cpu_context);
8606 out:
8607 	mutex_unlock(&pmus_lock);
8608 }
8609 
8610 /*
8611  * Let userspace know that this PMU supports address range filtering:
8612  */
8613 static ssize_t nr_addr_filters_show(struct device *dev,
8614 				    struct device_attribute *attr,
8615 				    char *page)
8616 {
8617 	struct pmu *pmu = dev_get_drvdata(dev);
8618 
8619 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8620 }
8621 DEVICE_ATTR_RO(nr_addr_filters);
8622 
8623 static struct idr pmu_idr;
8624 
8625 static ssize_t
8626 type_show(struct device *dev, struct device_attribute *attr, char *page)
8627 {
8628 	struct pmu *pmu = dev_get_drvdata(dev);
8629 
8630 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8631 }
8632 static DEVICE_ATTR_RO(type);
8633 
8634 static ssize_t
8635 perf_event_mux_interval_ms_show(struct device *dev,
8636 				struct device_attribute *attr,
8637 				char *page)
8638 {
8639 	struct pmu *pmu = dev_get_drvdata(dev);
8640 
8641 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8642 }
8643 
8644 static DEFINE_MUTEX(mux_interval_mutex);
8645 
8646 static ssize_t
8647 perf_event_mux_interval_ms_store(struct device *dev,
8648 				 struct device_attribute *attr,
8649 				 const char *buf, size_t count)
8650 {
8651 	struct pmu *pmu = dev_get_drvdata(dev);
8652 	int timer, cpu, ret;
8653 
8654 	ret = kstrtoint(buf, 0, &timer);
8655 	if (ret)
8656 		return ret;
8657 
8658 	if (timer < 1)
8659 		return -EINVAL;
8660 
8661 	/* same value, noting to do */
8662 	if (timer == pmu->hrtimer_interval_ms)
8663 		return count;
8664 
8665 	mutex_lock(&mux_interval_mutex);
8666 	pmu->hrtimer_interval_ms = timer;
8667 
8668 	/* update all cpuctx for this PMU */
8669 	get_online_cpus();
8670 	for_each_online_cpu(cpu) {
8671 		struct perf_cpu_context *cpuctx;
8672 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8673 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8674 
8675 		cpu_function_call(cpu,
8676 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8677 	}
8678 	put_online_cpus();
8679 	mutex_unlock(&mux_interval_mutex);
8680 
8681 	return count;
8682 }
8683 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8684 
8685 static struct attribute *pmu_dev_attrs[] = {
8686 	&dev_attr_type.attr,
8687 	&dev_attr_perf_event_mux_interval_ms.attr,
8688 	NULL,
8689 };
8690 ATTRIBUTE_GROUPS(pmu_dev);
8691 
8692 static int pmu_bus_running;
8693 static struct bus_type pmu_bus = {
8694 	.name		= "event_source",
8695 	.dev_groups	= pmu_dev_groups,
8696 };
8697 
8698 static void pmu_dev_release(struct device *dev)
8699 {
8700 	kfree(dev);
8701 }
8702 
8703 static int pmu_dev_alloc(struct pmu *pmu)
8704 {
8705 	int ret = -ENOMEM;
8706 
8707 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8708 	if (!pmu->dev)
8709 		goto out;
8710 
8711 	pmu->dev->groups = pmu->attr_groups;
8712 	device_initialize(pmu->dev);
8713 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8714 	if (ret)
8715 		goto free_dev;
8716 
8717 	dev_set_drvdata(pmu->dev, pmu);
8718 	pmu->dev->bus = &pmu_bus;
8719 	pmu->dev->release = pmu_dev_release;
8720 	ret = device_add(pmu->dev);
8721 	if (ret)
8722 		goto free_dev;
8723 
8724 	/* For PMUs with address filters, throw in an extra attribute: */
8725 	if (pmu->nr_addr_filters)
8726 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8727 
8728 	if (ret)
8729 		goto del_dev;
8730 
8731 out:
8732 	return ret;
8733 
8734 del_dev:
8735 	device_del(pmu->dev);
8736 
8737 free_dev:
8738 	put_device(pmu->dev);
8739 	goto out;
8740 }
8741 
8742 static struct lock_class_key cpuctx_mutex;
8743 static struct lock_class_key cpuctx_lock;
8744 
8745 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8746 {
8747 	int cpu, ret;
8748 
8749 	mutex_lock(&pmus_lock);
8750 	ret = -ENOMEM;
8751 	pmu->pmu_disable_count = alloc_percpu(int);
8752 	if (!pmu->pmu_disable_count)
8753 		goto unlock;
8754 
8755 	pmu->type = -1;
8756 	if (!name)
8757 		goto skip_type;
8758 	pmu->name = name;
8759 
8760 	if (type < 0) {
8761 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8762 		if (type < 0) {
8763 			ret = type;
8764 			goto free_pdc;
8765 		}
8766 	}
8767 	pmu->type = type;
8768 
8769 	if (pmu_bus_running) {
8770 		ret = pmu_dev_alloc(pmu);
8771 		if (ret)
8772 			goto free_idr;
8773 	}
8774 
8775 skip_type:
8776 	if (pmu->task_ctx_nr == perf_hw_context) {
8777 		static int hw_context_taken = 0;
8778 
8779 		/*
8780 		 * Other than systems with heterogeneous CPUs, it never makes
8781 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8782 		 * uncore must use perf_invalid_context.
8783 		 */
8784 		if (WARN_ON_ONCE(hw_context_taken &&
8785 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8786 			pmu->task_ctx_nr = perf_invalid_context;
8787 
8788 		hw_context_taken = 1;
8789 	}
8790 
8791 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8792 	if (pmu->pmu_cpu_context)
8793 		goto got_cpu_context;
8794 
8795 	ret = -ENOMEM;
8796 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8797 	if (!pmu->pmu_cpu_context)
8798 		goto free_dev;
8799 
8800 	for_each_possible_cpu(cpu) {
8801 		struct perf_cpu_context *cpuctx;
8802 
8803 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8804 		__perf_event_init_context(&cpuctx->ctx);
8805 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8806 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8807 		cpuctx->ctx.pmu = pmu;
8808 
8809 		__perf_mux_hrtimer_init(cpuctx, cpu);
8810 
8811 		cpuctx->unique_pmu = pmu;
8812 	}
8813 
8814 got_cpu_context:
8815 	if (!pmu->start_txn) {
8816 		if (pmu->pmu_enable) {
8817 			/*
8818 			 * If we have pmu_enable/pmu_disable calls, install
8819 			 * transaction stubs that use that to try and batch
8820 			 * hardware accesses.
8821 			 */
8822 			pmu->start_txn  = perf_pmu_start_txn;
8823 			pmu->commit_txn = perf_pmu_commit_txn;
8824 			pmu->cancel_txn = perf_pmu_cancel_txn;
8825 		} else {
8826 			pmu->start_txn  = perf_pmu_nop_txn;
8827 			pmu->commit_txn = perf_pmu_nop_int;
8828 			pmu->cancel_txn = perf_pmu_nop_void;
8829 		}
8830 	}
8831 
8832 	if (!pmu->pmu_enable) {
8833 		pmu->pmu_enable  = perf_pmu_nop_void;
8834 		pmu->pmu_disable = perf_pmu_nop_void;
8835 	}
8836 
8837 	if (!pmu->event_idx)
8838 		pmu->event_idx = perf_event_idx_default;
8839 
8840 	list_add_rcu(&pmu->entry, &pmus);
8841 	atomic_set(&pmu->exclusive_cnt, 0);
8842 	ret = 0;
8843 unlock:
8844 	mutex_unlock(&pmus_lock);
8845 
8846 	return ret;
8847 
8848 free_dev:
8849 	device_del(pmu->dev);
8850 	put_device(pmu->dev);
8851 
8852 free_idr:
8853 	if (pmu->type >= PERF_TYPE_MAX)
8854 		idr_remove(&pmu_idr, pmu->type);
8855 
8856 free_pdc:
8857 	free_percpu(pmu->pmu_disable_count);
8858 	goto unlock;
8859 }
8860 EXPORT_SYMBOL_GPL(perf_pmu_register);
8861 
8862 void perf_pmu_unregister(struct pmu *pmu)
8863 {
8864 	int remove_device;
8865 
8866 	mutex_lock(&pmus_lock);
8867 	remove_device = pmu_bus_running;
8868 	list_del_rcu(&pmu->entry);
8869 	mutex_unlock(&pmus_lock);
8870 
8871 	/*
8872 	 * We dereference the pmu list under both SRCU and regular RCU, so
8873 	 * synchronize against both of those.
8874 	 */
8875 	synchronize_srcu(&pmus_srcu);
8876 	synchronize_rcu();
8877 
8878 	free_percpu(pmu->pmu_disable_count);
8879 	if (pmu->type >= PERF_TYPE_MAX)
8880 		idr_remove(&pmu_idr, pmu->type);
8881 	if (remove_device) {
8882 		if (pmu->nr_addr_filters)
8883 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8884 		device_del(pmu->dev);
8885 		put_device(pmu->dev);
8886 	}
8887 	free_pmu_context(pmu);
8888 }
8889 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8890 
8891 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8892 {
8893 	struct perf_event_context *ctx = NULL;
8894 	int ret;
8895 
8896 	if (!try_module_get(pmu->module))
8897 		return -ENODEV;
8898 
8899 	if (event->group_leader != event) {
8900 		/*
8901 		 * This ctx->mutex can nest when we're called through
8902 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8903 		 */
8904 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8905 						 SINGLE_DEPTH_NESTING);
8906 		BUG_ON(!ctx);
8907 	}
8908 
8909 	event->pmu = pmu;
8910 	ret = pmu->event_init(event);
8911 
8912 	if (ctx)
8913 		perf_event_ctx_unlock(event->group_leader, ctx);
8914 
8915 	if (ret)
8916 		module_put(pmu->module);
8917 
8918 	return ret;
8919 }
8920 
8921 static struct pmu *perf_init_event(struct perf_event *event)
8922 {
8923 	struct pmu *pmu = NULL;
8924 	int idx;
8925 	int ret;
8926 
8927 	idx = srcu_read_lock(&pmus_srcu);
8928 
8929 	rcu_read_lock();
8930 	pmu = idr_find(&pmu_idr, event->attr.type);
8931 	rcu_read_unlock();
8932 	if (pmu) {
8933 		ret = perf_try_init_event(pmu, event);
8934 		if (ret)
8935 			pmu = ERR_PTR(ret);
8936 		goto unlock;
8937 	}
8938 
8939 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8940 		ret = perf_try_init_event(pmu, event);
8941 		if (!ret)
8942 			goto unlock;
8943 
8944 		if (ret != -ENOENT) {
8945 			pmu = ERR_PTR(ret);
8946 			goto unlock;
8947 		}
8948 	}
8949 	pmu = ERR_PTR(-ENOENT);
8950 unlock:
8951 	srcu_read_unlock(&pmus_srcu, idx);
8952 
8953 	return pmu;
8954 }
8955 
8956 static void attach_sb_event(struct perf_event *event)
8957 {
8958 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8959 
8960 	raw_spin_lock(&pel->lock);
8961 	list_add_rcu(&event->sb_list, &pel->list);
8962 	raw_spin_unlock(&pel->lock);
8963 }
8964 
8965 /*
8966  * We keep a list of all !task (and therefore per-cpu) events
8967  * that need to receive side-band records.
8968  *
8969  * This avoids having to scan all the various PMU per-cpu contexts
8970  * looking for them.
8971  */
8972 static void account_pmu_sb_event(struct perf_event *event)
8973 {
8974 	if (is_sb_event(event))
8975 		attach_sb_event(event);
8976 }
8977 
8978 static void account_event_cpu(struct perf_event *event, int cpu)
8979 {
8980 	if (event->parent)
8981 		return;
8982 
8983 	if (is_cgroup_event(event))
8984 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8985 }
8986 
8987 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8988 static void account_freq_event_nohz(void)
8989 {
8990 #ifdef CONFIG_NO_HZ_FULL
8991 	/* Lock so we don't race with concurrent unaccount */
8992 	spin_lock(&nr_freq_lock);
8993 	if (atomic_inc_return(&nr_freq_events) == 1)
8994 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8995 	spin_unlock(&nr_freq_lock);
8996 #endif
8997 }
8998 
8999 static void account_freq_event(void)
9000 {
9001 	if (tick_nohz_full_enabled())
9002 		account_freq_event_nohz();
9003 	else
9004 		atomic_inc(&nr_freq_events);
9005 }
9006 
9007 
9008 static void account_event(struct perf_event *event)
9009 {
9010 	bool inc = false;
9011 
9012 	if (event->parent)
9013 		return;
9014 
9015 	if (event->attach_state & PERF_ATTACH_TASK)
9016 		inc = true;
9017 	if (event->attr.mmap || event->attr.mmap_data)
9018 		atomic_inc(&nr_mmap_events);
9019 	if (event->attr.comm)
9020 		atomic_inc(&nr_comm_events);
9021 	if (event->attr.task)
9022 		atomic_inc(&nr_task_events);
9023 	if (event->attr.freq)
9024 		account_freq_event();
9025 	if (event->attr.context_switch) {
9026 		atomic_inc(&nr_switch_events);
9027 		inc = true;
9028 	}
9029 	if (has_branch_stack(event))
9030 		inc = true;
9031 	if (is_cgroup_event(event))
9032 		inc = true;
9033 
9034 	if (inc) {
9035 		if (atomic_inc_not_zero(&perf_sched_count))
9036 			goto enabled;
9037 
9038 		mutex_lock(&perf_sched_mutex);
9039 		if (!atomic_read(&perf_sched_count)) {
9040 			static_branch_enable(&perf_sched_events);
9041 			/*
9042 			 * Guarantee that all CPUs observe they key change and
9043 			 * call the perf scheduling hooks before proceeding to
9044 			 * install events that need them.
9045 			 */
9046 			synchronize_sched();
9047 		}
9048 		/*
9049 		 * Now that we have waited for the sync_sched(), allow further
9050 		 * increments to by-pass the mutex.
9051 		 */
9052 		atomic_inc(&perf_sched_count);
9053 		mutex_unlock(&perf_sched_mutex);
9054 	}
9055 enabled:
9056 
9057 	account_event_cpu(event, event->cpu);
9058 
9059 	account_pmu_sb_event(event);
9060 }
9061 
9062 /*
9063  * Allocate and initialize a event structure
9064  */
9065 static struct perf_event *
9066 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9067 		 struct task_struct *task,
9068 		 struct perf_event *group_leader,
9069 		 struct perf_event *parent_event,
9070 		 perf_overflow_handler_t overflow_handler,
9071 		 void *context, int cgroup_fd)
9072 {
9073 	struct pmu *pmu;
9074 	struct perf_event *event;
9075 	struct hw_perf_event *hwc;
9076 	long err = -EINVAL;
9077 
9078 	if ((unsigned)cpu >= nr_cpu_ids) {
9079 		if (!task || cpu != -1)
9080 			return ERR_PTR(-EINVAL);
9081 	}
9082 
9083 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9084 	if (!event)
9085 		return ERR_PTR(-ENOMEM);
9086 
9087 	/*
9088 	 * Single events are their own group leaders, with an
9089 	 * empty sibling list:
9090 	 */
9091 	if (!group_leader)
9092 		group_leader = event;
9093 
9094 	mutex_init(&event->child_mutex);
9095 	INIT_LIST_HEAD(&event->child_list);
9096 
9097 	INIT_LIST_HEAD(&event->group_entry);
9098 	INIT_LIST_HEAD(&event->event_entry);
9099 	INIT_LIST_HEAD(&event->sibling_list);
9100 	INIT_LIST_HEAD(&event->rb_entry);
9101 	INIT_LIST_HEAD(&event->active_entry);
9102 	INIT_LIST_HEAD(&event->addr_filters.list);
9103 	INIT_HLIST_NODE(&event->hlist_entry);
9104 
9105 
9106 	init_waitqueue_head(&event->waitq);
9107 	init_irq_work(&event->pending, perf_pending_event);
9108 
9109 	mutex_init(&event->mmap_mutex);
9110 	raw_spin_lock_init(&event->addr_filters.lock);
9111 
9112 	atomic_long_set(&event->refcount, 1);
9113 	event->cpu		= cpu;
9114 	event->attr		= *attr;
9115 	event->group_leader	= group_leader;
9116 	event->pmu		= NULL;
9117 	event->oncpu		= -1;
9118 
9119 	event->parent		= parent_event;
9120 
9121 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9122 	event->id		= atomic64_inc_return(&perf_event_id);
9123 
9124 	event->state		= PERF_EVENT_STATE_INACTIVE;
9125 
9126 	if (task) {
9127 		event->attach_state = PERF_ATTACH_TASK;
9128 		/*
9129 		 * XXX pmu::event_init needs to know what task to account to
9130 		 * and we cannot use the ctx information because we need the
9131 		 * pmu before we get a ctx.
9132 		 */
9133 		event->hw.target = task;
9134 	}
9135 
9136 	event->clock = &local_clock;
9137 	if (parent_event)
9138 		event->clock = parent_event->clock;
9139 
9140 	if (!overflow_handler && parent_event) {
9141 		overflow_handler = parent_event->overflow_handler;
9142 		context = parent_event->overflow_handler_context;
9143 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9144 		if (overflow_handler == bpf_overflow_handler) {
9145 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9146 
9147 			if (IS_ERR(prog)) {
9148 				err = PTR_ERR(prog);
9149 				goto err_ns;
9150 			}
9151 			event->prog = prog;
9152 			event->orig_overflow_handler =
9153 				parent_event->orig_overflow_handler;
9154 		}
9155 #endif
9156 	}
9157 
9158 	if (overflow_handler) {
9159 		event->overflow_handler	= overflow_handler;
9160 		event->overflow_handler_context = context;
9161 	} else if (is_write_backward(event)){
9162 		event->overflow_handler = perf_event_output_backward;
9163 		event->overflow_handler_context = NULL;
9164 	} else {
9165 		event->overflow_handler = perf_event_output_forward;
9166 		event->overflow_handler_context = NULL;
9167 	}
9168 
9169 	perf_event__state_init(event);
9170 
9171 	pmu = NULL;
9172 
9173 	hwc = &event->hw;
9174 	hwc->sample_period = attr->sample_period;
9175 	if (attr->freq && attr->sample_freq)
9176 		hwc->sample_period = 1;
9177 	hwc->last_period = hwc->sample_period;
9178 
9179 	local64_set(&hwc->period_left, hwc->sample_period);
9180 
9181 	/*
9182 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9183 	 */
9184 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9185 		goto err_ns;
9186 
9187 	if (!has_branch_stack(event))
9188 		event->attr.branch_sample_type = 0;
9189 
9190 	if (cgroup_fd != -1) {
9191 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9192 		if (err)
9193 			goto err_ns;
9194 	}
9195 
9196 	pmu = perf_init_event(event);
9197 	if (!pmu)
9198 		goto err_ns;
9199 	else if (IS_ERR(pmu)) {
9200 		err = PTR_ERR(pmu);
9201 		goto err_ns;
9202 	}
9203 
9204 	err = exclusive_event_init(event);
9205 	if (err)
9206 		goto err_pmu;
9207 
9208 	if (has_addr_filter(event)) {
9209 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9210 						   sizeof(unsigned long),
9211 						   GFP_KERNEL);
9212 		if (!event->addr_filters_offs)
9213 			goto err_per_task;
9214 
9215 		/* force hw sync on the address filters */
9216 		event->addr_filters_gen = 1;
9217 	}
9218 
9219 	if (!event->parent) {
9220 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9221 			err = get_callchain_buffers(attr->sample_max_stack);
9222 			if (err)
9223 				goto err_addr_filters;
9224 		}
9225 	}
9226 
9227 	/* symmetric to unaccount_event() in _free_event() */
9228 	account_event(event);
9229 
9230 	return event;
9231 
9232 err_addr_filters:
9233 	kfree(event->addr_filters_offs);
9234 
9235 err_per_task:
9236 	exclusive_event_destroy(event);
9237 
9238 err_pmu:
9239 	if (event->destroy)
9240 		event->destroy(event);
9241 	module_put(pmu->module);
9242 err_ns:
9243 	if (is_cgroup_event(event))
9244 		perf_detach_cgroup(event);
9245 	if (event->ns)
9246 		put_pid_ns(event->ns);
9247 	kfree(event);
9248 
9249 	return ERR_PTR(err);
9250 }
9251 
9252 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9253 			  struct perf_event_attr *attr)
9254 {
9255 	u32 size;
9256 	int ret;
9257 
9258 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9259 		return -EFAULT;
9260 
9261 	/*
9262 	 * zero the full structure, so that a short copy will be nice.
9263 	 */
9264 	memset(attr, 0, sizeof(*attr));
9265 
9266 	ret = get_user(size, &uattr->size);
9267 	if (ret)
9268 		return ret;
9269 
9270 	if (size > PAGE_SIZE)	/* silly large */
9271 		goto err_size;
9272 
9273 	if (!size)		/* abi compat */
9274 		size = PERF_ATTR_SIZE_VER0;
9275 
9276 	if (size < PERF_ATTR_SIZE_VER0)
9277 		goto err_size;
9278 
9279 	/*
9280 	 * If we're handed a bigger struct than we know of,
9281 	 * ensure all the unknown bits are 0 - i.e. new
9282 	 * user-space does not rely on any kernel feature
9283 	 * extensions we dont know about yet.
9284 	 */
9285 	if (size > sizeof(*attr)) {
9286 		unsigned char __user *addr;
9287 		unsigned char __user *end;
9288 		unsigned char val;
9289 
9290 		addr = (void __user *)uattr + sizeof(*attr);
9291 		end  = (void __user *)uattr + size;
9292 
9293 		for (; addr < end; addr++) {
9294 			ret = get_user(val, addr);
9295 			if (ret)
9296 				return ret;
9297 			if (val)
9298 				goto err_size;
9299 		}
9300 		size = sizeof(*attr);
9301 	}
9302 
9303 	ret = copy_from_user(attr, uattr, size);
9304 	if (ret)
9305 		return -EFAULT;
9306 
9307 	if (attr->__reserved_1)
9308 		return -EINVAL;
9309 
9310 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9311 		return -EINVAL;
9312 
9313 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9314 		return -EINVAL;
9315 
9316 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9317 		u64 mask = attr->branch_sample_type;
9318 
9319 		/* only using defined bits */
9320 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9321 			return -EINVAL;
9322 
9323 		/* at least one branch bit must be set */
9324 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9325 			return -EINVAL;
9326 
9327 		/* propagate priv level, when not set for branch */
9328 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9329 
9330 			/* exclude_kernel checked on syscall entry */
9331 			if (!attr->exclude_kernel)
9332 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9333 
9334 			if (!attr->exclude_user)
9335 				mask |= PERF_SAMPLE_BRANCH_USER;
9336 
9337 			if (!attr->exclude_hv)
9338 				mask |= PERF_SAMPLE_BRANCH_HV;
9339 			/*
9340 			 * adjust user setting (for HW filter setup)
9341 			 */
9342 			attr->branch_sample_type = mask;
9343 		}
9344 		/* privileged levels capture (kernel, hv): check permissions */
9345 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9346 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9347 			return -EACCES;
9348 	}
9349 
9350 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9351 		ret = perf_reg_validate(attr->sample_regs_user);
9352 		if (ret)
9353 			return ret;
9354 	}
9355 
9356 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9357 		if (!arch_perf_have_user_stack_dump())
9358 			return -ENOSYS;
9359 
9360 		/*
9361 		 * We have __u32 type for the size, but so far
9362 		 * we can only use __u16 as maximum due to the
9363 		 * __u16 sample size limit.
9364 		 */
9365 		if (attr->sample_stack_user >= USHRT_MAX)
9366 			ret = -EINVAL;
9367 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9368 			ret = -EINVAL;
9369 	}
9370 
9371 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9372 		ret = perf_reg_validate(attr->sample_regs_intr);
9373 out:
9374 	return ret;
9375 
9376 err_size:
9377 	put_user(sizeof(*attr), &uattr->size);
9378 	ret = -E2BIG;
9379 	goto out;
9380 }
9381 
9382 static int
9383 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9384 {
9385 	struct ring_buffer *rb = NULL;
9386 	int ret = -EINVAL;
9387 
9388 	if (!output_event)
9389 		goto set;
9390 
9391 	/* don't allow circular references */
9392 	if (event == output_event)
9393 		goto out;
9394 
9395 	/*
9396 	 * Don't allow cross-cpu buffers
9397 	 */
9398 	if (output_event->cpu != event->cpu)
9399 		goto out;
9400 
9401 	/*
9402 	 * If its not a per-cpu rb, it must be the same task.
9403 	 */
9404 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9405 		goto out;
9406 
9407 	/*
9408 	 * Mixing clocks in the same buffer is trouble you don't need.
9409 	 */
9410 	if (output_event->clock != event->clock)
9411 		goto out;
9412 
9413 	/*
9414 	 * Either writing ring buffer from beginning or from end.
9415 	 * Mixing is not allowed.
9416 	 */
9417 	if (is_write_backward(output_event) != is_write_backward(event))
9418 		goto out;
9419 
9420 	/*
9421 	 * If both events generate aux data, they must be on the same PMU
9422 	 */
9423 	if (has_aux(event) && has_aux(output_event) &&
9424 	    event->pmu != output_event->pmu)
9425 		goto out;
9426 
9427 set:
9428 	mutex_lock(&event->mmap_mutex);
9429 	/* Can't redirect output if we've got an active mmap() */
9430 	if (atomic_read(&event->mmap_count))
9431 		goto unlock;
9432 
9433 	if (output_event) {
9434 		/* get the rb we want to redirect to */
9435 		rb = ring_buffer_get(output_event);
9436 		if (!rb)
9437 			goto unlock;
9438 	}
9439 
9440 	ring_buffer_attach(event, rb);
9441 
9442 	ret = 0;
9443 unlock:
9444 	mutex_unlock(&event->mmap_mutex);
9445 
9446 out:
9447 	return ret;
9448 }
9449 
9450 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9451 {
9452 	if (b < a)
9453 		swap(a, b);
9454 
9455 	mutex_lock(a);
9456 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9457 }
9458 
9459 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9460 {
9461 	bool nmi_safe = false;
9462 
9463 	switch (clk_id) {
9464 	case CLOCK_MONOTONIC:
9465 		event->clock = &ktime_get_mono_fast_ns;
9466 		nmi_safe = true;
9467 		break;
9468 
9469 	case CLOCK_MONOTONIC_RAW:
9470 		event->clock = &ktime_get_raw_fast_ns;
9471 		nmi_safe = true;
9472 		break;
9473 
9474 	case CLOCK_REALTIME:
9475 		event->clock = &ktime_get_real_ns;
9476 		break;
9477 
9478 	case CLOCK_BOOTTIME:
9479 		event->clock = &ktime_get_boot_ns;
9480 		break;
9481 
9482 	case CLOCK_TAI:
9483 		event->clock = &ktime_get_tai_ns;
9484 		break;
9485 
9486 	default:
9487 		return -EINVAL;
9488 	}
9489 
9490 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9491 		return -EINVAL;
9492 
9493 	return 0;
9494 }
9495 
9496 /**
9497  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9498  *
9499  * @attr_uptr:	event_id type attributes for monitoring/sampling
9500  * @pid:		target pid
9501  * @cpu:		target cpu
9502  * @group_fd:		group leader event fd
9503  */
9504 SYSCALL_DEFINE5(perf_event_open,
9505 		struct perf_event_attr __user *, attr_uptr,
9506 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9507 {
9508 	struct perf_event *group_leader = NULL, *output_event = NULL;
9509 	struct perf_event *event, *sibling;
9510 	struct perf_event_attr attr;
9511 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9512 	struct file *event_file = NULL;
9513 	struct fd group = {NULL, 0};
9514 	struct task_struct *task = NULL;
9515 	struct pmu *pmu;
9516 	int event_fd;
9517 	int move_group = 0;
9518 	int err;
9519 	int f_flags = O_RDWR;
9520 	int cgroup_fd = -1;
9521 
9522 	/* for future expandability... */
9523 	if (flags & ~PERF_FLAG_ALL)
9524 		return -EINVAL;
9525 
9526 	err = perf_copy_attr(attr_uptr, &attr);
9527 	if (err)
9528 		return err;
9529 
9530 	if (!attr.exclude_kernel) {
9531 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9532 			return -EACCES;
9533 	}
9534 
9535 	if (attr.freq) {
9536 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9537 			return -EINVAL;
9538 	} else {
9539 		if (attr.sample_period & (1ULL << 63))
9540 			return -EINVAL;
9541 	}
9542 
9543 	if (!attr.sample_max_stack)
9544 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9545 
9546 	/*
9547 	 * In cgroup mode, the pid argument is used to pass the fd
9548 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9549 	 * designates the cpu on which to monitor threads from that
9550 	 * cgroup.
9551 	 */
9552 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9553 		return -EINVAL;
9554 
9555 	if (flags & PERF_FLAG_FD_CLOEXEC)
9556 		f_flags |= O_CLOEXEC;
9557 
9558 	event_fd = get_unused_fd_flags(f_flags);
9559 	if (event_fd < 0)
9560 		return event_fd;
9561 
9562 	if (group_fd != -1) {
9563 		err = perf_fget_light(group_fd, &group);
9564 		if (err)
9565 			goto err_fd;
9566 		group_leader = group.file->private_data;
9567 		if (flags & PERF_FLAG_FD_OUTPUT)
9568 			output_event = group_leader;
9569 		if (flags & PERF_FLAG_FD_NO_GROUP)
9570 			group_leader = NULL;
9571 	}
9572 
9573 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9574 		task = find_lively_task_by_vpid(pid);
9575 		if (IS_ERR(task)) {
9576 			err = PTR_ERR(task);
9577 			goto err_group_fd;
9578 		}
9579 	}
9580 
9581 	if (task && group_leader &&
9582 	    group_leader->attr.inherit != attr.inherit) {
9583 		err = -EINVAL;
9584 		goto err_task;
9585 	}
9586 
9587 	get_online_cpus();
9588 
9589 	if (task) {
9590 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9591 		if (err)
9592 			goto err_cpus;
9593 
9594 		/*
9595 		 * Reuse ptrace permission checks for now.
9596 		 *
9597 		 * We must hold cred_guard_mutex across this and any potential
9598 		 * perf_install_in_context() call for this new event to
9599 		 * serialize against exec() altering our credentials (and the
9600 		 * perf_event_exit_task() that could imply).
9601 		 */
9602 		err = -EACCES;
9603 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9604 			goto err_cred;
9605 	}
9606 
9607 	if (flags & PERF_FLAG_PID_CGROUP)
9608 		cgroup_fd = pid;
9609 
9610 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9611 				 NULL, NULL, cgroup_fd);
9612 	if (IS_ERR(event)) {
9613 		err = PTR_ERR(event);
9614 		goto err_cred;
9615 	}
9616 
9617 	if (is_sampling_event(event)) {
9618 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9619 			err = -EOPNOTSUPP;
9620 			goto err_alloc;
9621 		}
9622 	}
9623 
9624 	/*
9625 	 * Special case software events and allow them to be part of
9626 	 * any hardware group.
9627 	 */
9628 	pmu = event->pmu;
9629 
9630 	if (attr.use_clockid) {
9631 		err = perf_event_set_clock(event, attr.clockid);
9632 		if (err)
9633 			goto err_alloc;
9634 	}
9635 
9636 	if (pmu->task_ctx_nr == perf_sw_context)
9637 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9638 
9639 	if (group_leader &&
9640 	    (is_software_event(event) != is_software_event(group_leader))) {
9641 		if (is_software_event(event)) {
9642 			/*
9643 			 * If event and group_leader are not both a software
9644 			 * event, and event is, then group leader is not.
9645 			 *
9646 			 * Allow the addition of software events to !software
9647 			 * groups, this is safe because software events never
9648 			 * fail to schedule.
9649 			 */
9650 			pmu = group_leader->pmu;
9651 		} else if (is_software_event(group_leader) &&
9652 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9653 			/*
9654 			 * In case the group is a pure software group, and we
9655 			 * try to add a hardware event, move the whole group to
9656 			 * the hardware context.
9657 			 */
9658 			move_group = 1;
9659 		}
9660 	}
9661 
9662 	/*
9663 	 * Get the target context (task or percpu):
9664 	 */
9665 	ctx = find_get_context(pmu, task, event);
9666 	if (IS_ERR(ctx)) {
9667 		err = PTR_ERR(ctx);
9668 		goto err_alloc;
9669 	}
9670 
9671 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9672 		err = -EBUSY;
9673 		goto err_context;
9674 	}
9675 
9676 	/*
9677 	 * Look up the group leader (we will attach this event to it):
9678 	 */
9679 	if (group_leader) {
9680 		err = -EINVAL;
9681 
9682 		/*
9683 		 * Do not allow a recursive hierarchy (this new sibling
9684 		 * becoming part of another group-sibling):
9685 		 */
9686 		if (group_leader->group_leader != group_leader)
9687 			goto err_context;
9688 
9689 		/* All events in a group should have the same clock */
9690 		if (group_leader->clock != event->clock)
9691 			goto err_context;
9692 
9693 		/*
9694 		 * Do not allow to attach to a group in a different
9695 		 * task or CPU context:
9696 		 */
9697 		if (move_group) {
9698 			/*
9699 			 * Make sure we're both on the same task, or both
9700 			 * per-cpu events.
9701 			 */
9702 			if (group_leader->ctx->task != ctx->task)
9703 				goto err_context;
9704 
9705 			/*
9706 			 * Make sure we're both events for the same CPU;
9707 			 * grouping events for different CPUs is broken; since
9708 			 * you can never concurrently schedule them anyhow.
9709 			 */
9710 			if (group_leader->cpu != event->cpu)
9711 				goto err_context;
9712 		} else {
9713 			if (group_leader->ctx != ctx)
9714 				goto err_context;
9715 		}
9716 
9717 		/*
9718 		 * Only a group leader can be exclusive or pinned
9719 		 */
9720 		if (attr.exclusive || attr.pinned)
9721 			goto err_context;
9722 	}
9723 
9724 	if (output_event) {
9725 		err = perf_event_set_output(event, output_event);
9726 		if (err)
9727 			goto err_context;
9728 	}
9729 
9730 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9731 					f_flags);
9732 	if (IS_ERR(event_file)) {
9733 		err = PTR_ERR(event_file);
9734 		event_file = NULL;
9735 		goto err_context;
9736 	}
9737 
9738 	if (move_group) {
9739 		gctx = group_leader->ctx;
9740 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9741 		if (gctx->task == TASK_TOMBSTONE) {
9742 			err = -ESRCH;
9743 			goto err_locked;
9744 		}
9745 	} else {
9746 		mutex_lock(&ctx->mutex);
9747 	}
9748 
9749 	if (ctx->task == TASK_TOMBSTONE) {
9750 		err = -ESRCH;
9751 		goto err_locked;
9752 	}
9753 
9754 	if (!perf_event_validate_size(event)) {
9755 		err = -E2BIG;
9756 		goto err_locked;
9757 	}
9758 
9759 	/*
9760 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9761 	 * because we need to serialize with concurrent event creation.
9762 	 */
9763 	if (!exclusive_event_installable(event, ctx)) {
9764 		/* exclusive and group stuff are assumed mutually exclusive */
9765 		WARN_ON_ONCE(move_group);
9766 
9767 		err = -EBUSY;
9768 		goto err_locked;
9769 	}
9770 
9771 	WARN_ON_ONCE(ctx->parent_ctx);
9772 
9773 	/*
9774 	 * This is the point on no return; we cannot fail hereafter. This is
9775 	 * where we start modifying current state.
9776 	 */
9777 
9778 	if (move_group) {
9779 		/*
9780 		 * See perf_event_ctx_lock() for comments on the details
9781 		 * of swizzling perf_event::ctx.
9782 		 */
9783 		perf_remove_from_context(group_leader, 0);
9784 
9785 		list_for_each_entry(sibling, &group_leader->sibling_list,
9786 				    group_entry) {
9787 			perf_remove_from_context(sibling, 0);
9788 			put_ctx(gctx);
9789 		}
9790 
9791 		/*
9792 		 * Wait for everybody to stop referencing the events through
9793 		 * the old lists, before installing it on new lists.
9794 		 */
9795 		synchronize_rcu();
9796 
9797 		/*
9798 		 * Install the group siblings before the group leader.
9799 		 *
9800 		 * Because a group leader will try and install the entire group
9801 		 * (through the sibling list, which is still in-tact), we can
9802 		 * end up with siblings installed in the wrong context.
9803 		 *
9804 		 * By installing siblings first we NO-OP because they're not
9805 		 * reachable through the group lists.
9806 		 */
9807 		list_for_each_entry(sibling, &group_leader->sibling_list,
9808 				    group_entry) {
9809 			perf_event__state_init(sibling);
9810 			perf_install_in_context(ctx, sibling, sibling->cpu);
9811 			get_ctx(ctx);
9812 		}
9813 
9814 		/*
9815 		 * Removing from the context ends up with disabled
9816 		 * event. What we want here is event in the initial
9817 		 * startup state, ready to be add into new context.
9818 		 */
9819 		perf_event__state_init(group_leader);
9820 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9821 		get_ctx(ctx);
9822 
9823 		/*
9824 		 * Now that all events are installed in @ctx, nothing
9825 		 * references @gctx anymore, so drop the last reference we have
9826 		 * on it.
9827 		 */
9828 		put_ctx(gctx);
9829 	}
9830 
9831 	/*
9832 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9833 	 * that we're serialized against further additions and before
9834 	 * perf_install_in_context() which is the point the event is active and
9835 	 * can use these values.
9836 	 */
9837 	perf_event__header_size(event);
9838 	perf_event__id_header_size(event);
9839 
9840 	event->owner = current;
9841 
9842 	perf_install_in_context(ctx, event, event->cpu);
9843 	perf_unpin_context(ctx);
9844 
9845 	if (move_group)
9846 		mutex_unlock(&gctx->mutex);
9847 	mutex_unlock(&ctx->mutex);
9848 
9849 	if (task) {
9850 		mutex_unlock(&task->signal->cred_guard_mutex);
9851 		put_task_struct(task);
9852 	}
9853 
9854 	put_online_cpus();
9855 
9856 	mutex_lock(&current->perf_event_mutex);
9857 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9858 	mutex_unlock(&current->perf_event_mutex);
9859 
9860 	/*
9861 	 * Drop the reference on the group_event after placing the
9862 	 * new event on the sibling_list. This ensures destruction
9863 	 * of the group leader will find the pointer to itself in
9864 	 * perf_group_detach().
9865 	 */
9866 	fdput(group);
9867 	fd_install(event_fd, event_file);
9868 	return event_fd;
9869 
9870 err_locked:
9871 	if (move_group)
9872 		mutex_unlock(&gctx->mutex);
9873 	mutex_unlock(&ctx->mutex);
9874 /* err_file: */
9875 	fput(event_file);
9876 err_context:
9877 	perf_unpin_context(ctx);
9878 	put_ctx(ctx);
9879 err_alloc:
9880 	/*
9881 	 * If event_file is set, the fput() above will have called ->release()
9882 	 * and that will take care of freeing the event.
9883 	 */
9884 	if (!event_file)
9885 		free_event(event);
9886 err_cred:
9887 	if (task)
9888 		mutex_unlock(&task->signal->cred_guard_mutex);
9889 err_cpus:
9890 	put_online_cpus();
9891 err_task:
9892 	if (task)
9893 		put_task_struct(task);
9894 err_group_fd:
9895 	fdput(group);
9896 err_fd:
9897 	put_unused_fd(event_fd);
9898 	return err;
9899 }
9900 
9901 /**
9902  * perf_event_create_kernel_counter
9903  *
9904  * @attr: attributes of the counter to create
9905  * @cpu: cpu in which the counter is bound
9906  * @task: task to profile (NULL for percpu)
9907  */
9908 struct perf_event *
9909 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9910 				 struct task_struct *task,
9911 				 perf_overflow_handler_t overflow_handler,
9912 				 void *context)
9913 {
9914 	struct perf_event_context *ctx;
9915 	struct perf_event *event;
9916 	int err;
9917 
9918 	/*
9919 	 * Get the target context (task or percpu):
9920 	 */
9921 
9922 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9923 				 overflow_handler, context, -1);
9924 	if (IS_ERR(event)) {
9925 		err = PTR_ERR(event);
9926 		goto err;
9927 	}
9928 
9929 	/* Mark owner so we could distinguish it from user events. */
9930 	event->owner = TASK_TOMBSTONE;
9931 
9932 	ctx = find_get_context(event->pmu, task, event);
9933 	if (IS_ERR(ctx)) {
9934 		err = PTR_ERR(ctx);
9935 		goto err_free;
9936 	}
9937 
9938 	WARN_ON_ONCE(ctx->parent_ctx);
9939 	mutex_lock(&ctx->mutex);
9940 	if (ctx->task == TASK_TOMBSTONE) {
9941 		err = -ESRCH;
9942 		goto err_unlock;
9943 	}
9944 
9945 	if (!exclusive_event_installable(event, ctx)) {
9946 		err = -EBUSY;
9947 		goto err_unlock;
9948 	}
9949 
9950 	perf_install_in_context(ctx, event, cpu);
9951 	perf_unpin_context(ctx);
9952 	mutex_unlock(&ctx->mutex);
9953 
9954 	return event;
9955 
9956 err_unlock:
9957 	mutex_unlock(&ctx->mutex);
9958 	perf_unpin_context(ctx);
9959 	put_ctx(ctx);
9960 err_free:
9961 	free_event(event);
9962 err:
9963 	return ERR_PTR(err);
9964 }
9965 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9966 
9967 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9968 {
9969 	struct perf_event_context *src_ctx;
9970 	struct perf_event_context *dst_ctx;
9971 	struct perf_event *event, *tmp;
9972 	LIST_HEAD(events);
9973 
9974 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9975 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9976 
9977 	/*
9978 	 * See perf_event_ctx_lock() for comments on the details
9979 	 * of swizzling perf_event::ctx.
9980 	 */
9981 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9982 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9983 				 event_entry) {
9984 		perf_remove_from_context(event, 0);
9985 		unaccount_event_cpu(event, src_cpu);
9986 		put_ctx(src_ctx);
9987 		list_add(&event->migrate_entry, &events);
9988 	}
9989 
9990 	/*
9991 	 * Wait for the events to quiesce before re-instating them.
9992 	 */
9993 	synchronize_rcu();
9994 
9995 	/*
9996 	 * Re-instate events in 2 passes.
9997 	 *
9998 	 * Skip over group leaders and only install siblings on this first
9999 	 * pass, siblings will not get enabled without a leader, however a
10000 	 * leader will enable its siblings, even if those are still on the old
10001 	 * context.
10002 	 */
10003 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10004 		if (event->group_leader == event)
10005 			continue;
10006 
10007 		list_del(&event->migrate_entry);
10008 		if (event->state >= PERF_EVENT_STATE_OFF)
10009 			event->state = PERF_EVENT_STATE_INACTIVE;
10010 		account_event_cpu(event, dst_cpu);
10011 		perf_install_in_context(dst_ctx, event, dst_cpu);
10012 		get_ctx(dst_ctx);
10013 	}
10014 
10015 	/*
10016 	 * Once all the siblings are setup properly, install the group leaders
10017 	 * to make it go.
10018 	 */
10019 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10020 		list_del(&event->migrate_entry);
10021 		if (event->state >= PERF_EVENT_STATE_OFF)
10022 			event->state = PERF_EVENT_STATE_INACTIVE;
10023 		account_event_cpu(event, dst_cpu);
10024 		perf_install_in_context(dst_ctx, event, dst_cpu);
10025 		get_ctx(dst_ctx);
10026 	}
10027 	mutex_unlock(&dst_ctx->mutex);
10028 	mutex_unlock(&src_ctx->mutex);
10029 }
10030 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10031 
10032 static void sync_child_event(struct perf_event *child_event,
10033 			       struct task_struct *child)
10034 {
10035 	struct perf_event *parent_event = child_event->parent;
10036 	u64 child_val;
10037 
10038 	if (child_event->attr.inherit_stat)
10039 		perf_event_read_event(child_event, child);
10040 
10041 	child_val = perf_event_count(child_event);
10042 
10043 	/*
10044 	 * Add back the child's count to the parent's count:
10045 	 */
10046 	atomic64_add(child_val, &parent_event->child_count);
10047 	atomic64_add(child_event->total_time_enabled,
10048 		     &parent_event->child_total_time_enabled);
10049 	atomic64_add(child_event->total_time_running,
10050 		     &parent_event->child_total_time_running);
10051 }
10052 
10053 static void
10054 perf_event_exit_event(struct perf_event *child_event,
10055 		      struct perf_event_context *child_ctx,
10056 		      struct task_struct *child)
10057 {
10058 	struct perf_event *parent_event = child_event->parent;
10059 
10060 	/*
10061 	 * Do not destroy the 'original' grouping; because of the context
10062 	 * switch optimization the original events could've ended up in a
10063 	 * random child task.
10064 	 *
10065 	 * If we were to destroy the original group, all group related
10066 	 * operations would cease to function properly after this random
10067 	 * child dies.
10068 	 *
10069 	 * Do destroy all inherited groups, we don't care about those
10070 	 * and being thorough is better.
10071 	 */
10072 	raw_spin_lock_irq(&child_ctx->lock);
10073 	WARN_ON_ONCE(child_ctx->is_active);
10074 
10075 	if (parent_event)
10076 		perf_group_detach(child_event);
10077 	list_del_event(child_event, child_ctx);
10078 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10079 	raw_spin_unlock_irq(&child_ctx->lock);
10080 
10081 	/*
10082 	 * Parent events are governed by their filedesc, retain them.
10083 	 */
10084 	if (!parent_event) {
10085 		perf_event_wakeup(child_event);
10086 		return;
10087 	}
10088 	/*
10089 	 * Child events can be cleaned up.
10090 	 */
10091 
10092 	sync_child_event(child_event, child);
10093 
10094 	/*
10095 	 * Remove this event from the parent's list
10096 	 */
10097 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10098 	mutex_lock(&parent_event->child_mutex);
10099 	list_del_init(&child_event->child_list);
10100 	mutex_unlock(&parent_event->child_mutex);
10101 
10102 	/*
10103 	 * Kick perf_poll() for is_event_hup().
10104 	 */
10105 	perf_event_wakeup(parent_event);
10106 	free_event(child_event);
10107 	put_event(parent_event);
10108 }
10109 
10110 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10111 {
10112 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10113 	struct perf_event *child_event, *next;
10114 
10115 	WARN_ON_ONCE(child != current);
10116 
10117 	child_ctx = perf_pin_task_context(child, ctxn);
10118 	if (!child_ctx)
10119 		return;
10120 
10121 	/*
10122 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10123 	 * ctx::mutex over the entire thing. This serializes against almost
10124 	 * everything that wants to access the ctx.
10125 	 *
10126 	 * The exception is sys_perf_event_open() /
10127 	 * perf_event_create_kernel_count() which does find_get_context()
10128 	 * without ctx::mutex (it cannot because of the move_group double mutex
10129 	 * lock thing). See the comments in perf_install_in_context().
10130 	 */
10131 	mutex_lock(&child_ctx->mutex);
10132 
10133 	/*
10134 	 * In a single ctx::lock section, de-schedule the events and detach the
10135 	 * context from the task such that we cannot ever get it scheduled back
10136 	 * in.
10137 	 */
10138 	raw_spin_lock_irq(&child_ctx->lock);
10139 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10140 
10141 	/*
10142 	 * Now that the context is inactive, destroy the task <-> ctx relation
10143 	 * and mark the context dead.
10144 	 */
10145 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10146 	put_ctx(child_ctx); /* cannot be last */
10147 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10148 	put_task_struct(current); /* cannot be last */
10149 
10150 	clone_ctx = unclone_ctx(child_ctx);
10151 	raw_spin_unlock_irq(&child_ctx->lock);
10152 
10153 	if (clone_ctx)
10154 		put_ctx(clone_ctx);
10155 
10156 	/*
10157 	 * Report the task dead after unscheduling the events so that we
10158 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10159 	 * get a few PERF_RECORD_READ events.
10160 	 */
10161 	perf_event_task(child, child_ctx, 0);
10162 
10163 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10164 		perf_event_exit_event(child_event, child_ctx, child);
10165 
10166 	mutex_unlock(&child_ctx->mutex);
10167 
10168 	put_ctx(child_ctx);
10169 }
10170 
10171 /*
10172  * When a child task exits, feed back event values to parent events.
10173  *
10174  * Can be called with cred_guard_mutex held when called from
10175  * install_exec_creds().
10176  */
10177 void perf_event_exit_task(struct task_struct *child)
10178 {
10179 	struct perf_event *event, *tmp;
10180 	int ctxn;
10181 
10182 	mutex_lock(&child->perf_event_mutex);
10183 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10184 				 owner_entry) {
10185 		list_del_init(&event->owner_entry);
10186 
10187 		/*
10188 		 * Ensure the list deletion is visible before we clear
10189 		 * the owner, closes a race against perf_release() where
10190 		 * we need to serialize on the owner->perf_event_mutex.
10191 		 */
10192 		smp_store_release(&event->owner, NULL);
10193 	}
10194 	mutex_unlock(&child->perf_event_mutex);
10195 
10196 	for_each_task_context_nr(ctxn)
10197 		perf_event_exit_task_context(child, ctxn);
10198 
10199 	/*
10200 	 * The perf_event_exit_task_context calls perf_event_task
10201 	 * with child's task_ctx, which generates EXIT events for
10202 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10203 	 * At this point we need to send EXIT events to cpu contexts.
10204 	 */
10205 	perf_event_task(child, NULL, 0);
10206 }
10207 
10208 static void perf_free_event(struct perf_event *event,
10209 			    struct perf_event_context *ctx)
10210 {
10211 	struct perf_event *parent = event->parent;
10212 
10213 	if (WARN_ON_ONCE(!parent))
10214 		return;
10215 
10216 	mutex_lock(&parent->child_mutex);
10217 	list_del_init(&event->child_list);
10218 	mutex_unlock(&parent->child_mutex);
10219 
10220 	put_event(parent);
10221 
10222 	raw_spin_lock_irq(&ctx->lock);
10223 	perf_group_detach(event);
10224 	list_del_event(event, ctx);
10225 	raw_spin_unlock_irq(&ctx->lock);
10226 	free_event(event);
10227 }
10228 
10229 /*
10230  * Free an unexposed, unused context as created by inheritance by
10231  * perf_event_init_task below, used by fork() in case of fail.
10232  *
10233  * Not all locks are strictly required, but take them anyway to be nice and
10234  * help out with the lockdep assertions.
10235  */
10236 void perf_event_free_task(struct task_struct *task)
10237 {
10238 	struct perf_event_context *ctx;
10239 	struct perf_event *event, *tmp;
10240 	int ctxn;
10241 
10242 	for_each_task_context_nr(ctxn) {
10243 		ctx = task->perf_event_ctxp[ctxn];
10244 		if (!ctx)
10245 			continue;
10246 
10247 		mutex_lock(&ctx->mutex);
10248 again:
10249 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10250 				group_entry)
10251 			perf_free_event(event, ctx);
10252 
10253 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10254 				group_entry)
10255 			perf_free_event(event, ctx);
10256 
10257 		if (!list_empty(&ctx->pinned_groups) ||
10258 				!list_empty(&ctx->flexible_groups))
10259 			goto again;
10260 
10261 		mutex_unlock(&ctx->mutex);
10262 
10263 		put_ctx(ctx);
10264 	}
10265 }
10266 
10267 void perf_event_delayed_put(struct task_struct *task)
10268 {
10269 	int ctxn;
10270 
10271 	for_each_task_context_nr(ctxn)
10272 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10273 }
10274 
10275 struct file *perf_event_get(unsigned int fd)
10276 {
10277 	struct file *file;
10278 
10279 	file = fget_raw(fd);
10280 	if (!file)
10281 		return ERR_PTR(-EBADF);
10282 
10283 	if (file->f_op != &perf_fops) {
10284 		fput(file);
10285 		return ERR_PTR(-EBADF);
10286 	}
10287 
10288 	return file;
10289 }
10290 
10291 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10292 {
10293 	if (!event)
10294 		return ERR_PTR(-EINVAL);
10295 
10296 	return &event->attr;
10297 }
10298 
10299 /*
10300  * inherit a event from parent task to child task:
10301  */
10302 static struct perf_event *
10303 inherit_event(struct perf_event *parent_event,
10304 	      struct task_struct *parent,
10305 	      struct perf_event_context *parent_ctx,
10306 	      struct task_struct *child,
10307 	      struct perf_event *group_leader,
10308 	      struct perf_event_context *child_ctx)
10309 {
10310 	enum perf_event_active_state parent_state = parent_event->state;
10311 	struct perf_event *child_event;
10312 	unsigned long flags;
10313 
10314 	/*
10315 	 * Instead of creating recursive hierarchies of events,
10316 	 * we link inherited events back to the original parent,
10317 	 * which has a filp for sure, which we use as the reference
10318 	 * count:
10319 	 */
10320 	if (parent_event->parent)
10321 		parent_event = parent_event->parent;
10322 
10323 	child_event = perf_event_alloc(&parent_event->attr,
10324 					   parent_event->cpu,
10325 					   child,
10326 					   group_leader, parent_event,
10327 					   NULL, NULL, -1);
10328 	if (IS_ERR(child_event))
10329 		return child_event;
10330 
10331 	/*
10332 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10333 	 * must be under the same lock in order to serialize against
10334 	 * perf_event_release_kernel(), such that either we must observe
10335 	 * is_orphaned_event() or they will observe us on the child_list.
10336 	 */
10337 	mutex_lock(&parent_event->child_mutex);
10338 	if (is_orphaned_event(parent_event) ||
10339 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10340 		mutex_unlock(&parent_event->child_mutex);
10341 		free_event(child_event);
10342 		return NULL;
10343 	}
10344 
10345 	get_ctx(child_ctx);
10346 
10347 	/*
10348 	 * Make the child state follow the state of the parent event,
10349 	 * not its attr.disabled bit.  We hold the parent's mutex,
10350 	 * so we won't race with perf_event_{en, dis}able_family.
10351 	 */
10352 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10353 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10354 	else
10355 		child_event->state = PERF_EVENT_STATE_OFF;
10356 
10357 	if (parent_event->attr.freq) {
10358 		u64 sample_period = parent_event->hw.sample_period;
10359 		struct hw_perf_event *hwc = &child_event->hw;
10360 
10361 		hwc->sample_period = sample_period;
10362 		hwc->last_period   = sample_period;
10363 
10364 		local64_set(&hwc->period_left, sample_period);
10365 	}
10366 
10367 	child_event->ctx = child_ctx;
10368 	child_event->overflow_handler = parent_event->overflow_handler;
10369 	child_event->overflow_handler_context
10370 		= parent_event->overflow_handler_context;
10371 
10372 	/*
10373 	 * Precalculate sample_data sizes
10374 	 */
10375 	perf_event__header_size(child_event);
10376 	perf_event__id_header_size(child_event);
10377 
10378 	/*
10379 	 * Link it up in the child's context:
10380 	 */
10381 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10382 	add_event_to_ctx(child_event, child_ctx);
10383 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10384 
10385 	/*
10386 	 * Link this into the parent event's child list
10387 	 */
10388 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10389 	mutex_unlock(&parent_event->child_mutex);
10390 
10391 	return child_event;
10392 }
10393 
10394 static int inherit_group(struct perf_event *parent_event,
10395 	      struct task_struct *parent,
10396 	      struct perf_event_context *parent_ctx,
10397 	      struct task_struct *child,
10398 	      struct perf_event_context *child_ctx)
10399 {
10400 	struct perf_event *leader;
10401 	struct perf_event *sub;
10402 	struct perf_event *child_ctr;
10403 
10404 	leader = inherit_event(parent_event, parent, parent_ctx,
10405 				 child, NULL, child_ctx);
10406 	if (IS_ERR(leader))
10407 		return PTR_ERR(leader);
10408 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10409 		child_ctr = inherit_event(sub, parent, parent_ctx,
10410 					    child, leader, child_ctx);
10411 		if (IS_ERR(child_ctr))
10412 			return PTR_ERR(child_ctr);
10413 	}
10414 	return 0;
10415 }
10416 
10417 static int
10418 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10419 		   struct perf_event_context *parent_ctx,
10420 		   struct task_struct *child, int ctxn,
10421 		   int *inherited_all)
10422 {
10423 	int ret;
10424 	struct perf_event_context *child_ctx;
10425 
10426 	if (!event->attr.inherit) {
10427 		*inherited_all = 0;
10428 		return 0;
10429 	}
10430 
10431 	child_ctx = child->perf_event_ctxp[ctxn];
10432 	if (!child_ctx) {
10433 		/*
10434 		 * This is executed from the parent task context, so
10435 		 * inherit events that have been marked for cloning.
10436 		 * First allocate and initialize a context for the
10437 		 * child.
10438 		 */
10439 
10440 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10441 		if (!child_ctx)
10442 			return -ENOMEM;
10443 
10444 		child->perf_event_ctxp[ctxn] = child_ctx;
10445 	}
10446 
10447 	ret = inherit_group(event, parent, parent_ctx,
10448 			    child, child_ctx);
10449 
10450 	if (ret)
10451 		*inherited_all = 0;
10452 
10453 	return ret;
10454 }
10455 
10456 /*
10457  * Initialize the perf_event context in task_struct
10458  */
10459 static int perf_event_init_context(struct task_struct *child, int ctxn)
10460 {
10461 	struct perf_event_context *child_ctx, *parent_ctx;
10462 	struct perf_event_context *cloned_ctx;
10463 	struct perf_event *event;
10464 	struct task_struct *parent = current;
10465 	int inherited_all = 1;
10466 	unsigned long flags;
10467 	int ret = 0;
10468 
10469 	if (likely(!parent->perf_event_ctxp[ctxn]))
10470 		return 0;
10471 
10472 	/*
10473 	 * If the parent's context is a clone, pin it so it won't get
10474 	 * swapped under us.
10475 	 */
10476 	parent_ctx = perf_pin_task_context(parent, ctxn);
10477 	if (!parent_ctx)
10478 		return 0;
10479 
10480 	/*
10481 	 * No need to check if parent_ctx != NULL here; since we saw
10482 	 * it non-NULL earlier, the only reason for it to become NULL
10483 	 * is if we exit, and since we're currently in the middle of
10484 	 * a fork we can't be exiting at the same time.
10485 	 */
10486 
10487 	/*
10488 	 * Lock the parent list. No need to lock the child - not PID
10489 	 * hashed yet and not running, so nobody can access it.
10490 	 */
10491 	mutex_lock(&parent_ctx->mutex);
10492 
10493 	/*
10494 	 * We dont have to disable NMIs - we are only looking at
10495 	 * the list, not manipulating it:
10496 	 */
10497 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10498 		ret = inherit_task_group(event, parent, parent_ctx,
10499 					 child, ctxn, &inherited_all);
10500 		if (ret)
10501 			break;
10502 	}
10503 
10504 	/*
10505 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10506 	 * to allocations, but we need to prevent rotation because
10507 	 * rotate_ctx() will change the list from interrupt context.
10508 	 */
10509 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10510 	parent_ctx->rotate_disable = 1;
10511 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10512 
10513 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10514 		ret = inherit_task_group(event, parent, parent_ctx,
10515 					 child, ctxn, &inherited_all);
10516 		if (ret)
10517 			break;
10518 	}
10519 
10520 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10521 	parent_ctx->rotate_disable = 0;
10522 
10523 	child_ctx = child->perf_event_ctxp[ctxn];
10524 
10525 	if (child_ctx && inherited_all) {
10526 		/*
10527 		 * Mark the child context as a clone of the parent
10528 		 * context, or of whatever the parent is a clone of.
10529 		 *
10530 		 * Note that if the parent is a clone, the holding of
10531 		 * parent_ctx->lock avoids it from being uncloned.
10532 		 */
10533 		cloned_ctx = parent_ctx->parent_ctx;
10534 		if (cloned_ctx) {
10535 			child_ctx->parent_ctx = cloned_ctx;
10536 			child_ctx->parent_gen = parent_ctx->parent_gen;
10537 		} else {
10538 			child_ctx->parent_ctx = parent_ctx;
10539 			child_ctx->parent_gen = parent_ctx->generation;
10540 		}
10541 		get_ctx(child_ctx->parent_ctx);
10542 	}
10543 
10544 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10545 	mutex_unlock(&parent_ctx->mutex);
10546 
10547 	perf_unpin_context(parent_ctx);
10548 	put_ctx(parent_ctx);
10549 
10550 	return ret;
10551 }
10552 
10553 /*
10554  * Initialize the perf_event context in task_struct
10555  */
10556 int perf_event_init_task(struct task_struct *child)
10557 {
10558 	int ctxn, ret;
10559 
10560 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10561 	mutex_init(&child->perf_event_mutex);
10562 	INIT_LIST_HEAD(&child->perf_event_list);
10563 
10564 	for_each_task_context_nr(ctxn) {
10565 		ret = perf_event_init_context(child, ctxn);
10566 		if (ret) {
10567 			perf_event_free_task(child);
10568 			return ret;
10569 		}
10570 	}
10571 
10572 	return 0;
10573 }
10574 
10575 static void __init perf_event_init_all_cpus(void)
10576 {
10577 	struct swevent_htable *swhash;
10578 	int cpu;
10579 
10580 	for_each_possible_cpu(cpu) {
10581 		swhash = &per_cpu(swevent_htable, cpu);
10582 		mutex_init(&swhash->hlist_mutex);
10583 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10584 
10585 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10586 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10587 
10588 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10589 	}
10590 }
10591 
10592 int perf_event_init_cpu(unsigned int cpu)
10593 {
10594 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10595 
10596 	mutex_lock(&swhash->hlist_mutex);
10597 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10598 		struct swevent_hlist *hlist;
10599 
10600 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10601 		WARN_ON(!hlist);
10602 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10603 	}
10604 	mutex_unlock(&swhash->hlist_mutex);
10605 	return 0;
10606 }
10607 
10608 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10609 static void __perf_event_exit_context(void *__info)
10610 {
10611 	struct perf_event_context *ctx = __info;
10612 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10613 	struct perf_event *event;
10614 
10615 	raw_spin_lock(&ctx->lock);
10616 	list_for_each_entry(event, &ctx->event_list, event_entry)
10617 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10618 	raw_spin_unlock(&ctx->lock);
10619 }
10620 
10621 static void perf_event_exit_cpu_context(int cpu)
10622 {
10623 	struct perf_event_context *ctx;
10624 	struct pmu *pmu;
10625 	int idx;
10626 
10627 	idx = srcu_read_lock(&pmus_srcu);
10628 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10629 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10630 
10631 		mutex_lock(&ctx->mutex);
10632 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10633 		mutex_unlock(&ctx->mutex);
10634 	}
10635 	srcu_read_unlock(&pmus_srcu, idx);
10636 }
10637 #else
10638 
10639 static void perf_event_exit_cpu_context(int cpu) { }
10640 
10641 #endif
10642 
10643 int perf_event_exit_cpu(unsigned int cpu)
10644 {
10645 	perf_event_exit_cpu_context(cpu);
10646 	return 0;
10647 }
10648 
10649 static int
10650 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10651 {
10652 	int cpu;
10653 
10654 	for_each_online_cpu(cpu)
10655 		perf_event_exit_cpu(cpu);
10656 
10657 	return NOTIFY_OK;
10658 }
10659 
10660 /*
10661  * Run the perf reboot notifier at the very last possible moment so that
10662  * the generic watchdog code runs as long as possible.
10663  */
10664 static struct notifier_block perf_reboot_notifier = {
10665 	.notifier_call = perf_reboot,
10666 	.priority = INT_MIN,
10667 };
10668 
10669 void __init perf_event_init(void)
10670 {
10671 	int ret;
10672 
10673 	idr_init(&pmu_idr);
10674 
10675 	perf_event_init_all_cpus();
10676 	init_srcu_struct(&pmus_srcu);
10677 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10678 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10679 	perf_pmu_register(&perf_task_clock, NULL, -1);
10680 	perf_tp_register();
10681 	perf_event_init_cpu(smp_processor_id());
10682 	register_reboot_notifier(&perf_reboot_notifier);
10683 
10684 	ret = init_hw_breakpoint();
10685 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10686 
10687 	/*
10688 	 * Build time assertion that we keep the data_head at the intended
10689 	 * location.  IOW, validation we got the __reserved[] size right.
10690 	 */
10691 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10692 		     != 1024);
10693 }
10694 
10695 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10696 			      char *page)
10697 {
10698 	struct perf_pmu_events_attr *pmu_attr =
10699 		container_of(attr, struct perf_pmu_events_attr, attr);
10700 
10701 	if (pmu_attr->event_str)
10702 		return sprintf(page, "%s\n", pmu_attr->event_str);
10703 
10704 	return 0;
10705 }
10706 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10707 
10708 static int __init perf_event_sysfs_init(void)
10709 {
10710 	struct pmu *pmu;
10711 	int ret;
10712 
10713 	mutex_lock(&pmus_lock);
10714 
10715 	ret = bus_register(&pmu_bus);
10716 	if (ret)
10717 		goto unlock;
10718 
10719 	list_for_each_entry(pmu, &pmus, entry) {
10720 		if (!pmu->name || pmu->type < 0)
10721 			continue;
10722 
10723 		ret = pmu_dev_alloc(pmu);
10724 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10725 	}
10726 	pmu_bus_running = 1;
10727 	ret = 0;
10728 
10729 unlock:
10730 	mutex_unlock(&pmus_lock);
10731 
10732 	return ret;
10733 }
10734 device_initcall(perf_event_sysfs_init);
10735 
10736 #ifdef CONFIG_CGROUP_PERF
10737 static struct cgroup_subsys_state *
10738 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10739 {
10740 	struct perf_cgroup *jc;
10741 
10742 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10743 	if (!jc)
10744 		return ERR_PTR(-ENOMEM);
10745 
10746 	jc->info = alloc_percpu(struct perf_cgroup_info);
10747 	if (!jc->info) {
10748 		kfree(jc);
10749 		return ERR_PTR(-ENOMEM);
10750 	}
10751 
10752 	return &jc->css;
10753 }
10754 
10755 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10756 {
10757 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10758 
10759 	free_percpu(jc->info);
10760 	kfree(jc);
10761 }
10762 
10763 static int __perf_cgroup_move(void *info)
10764 {
10765 	struct task_struct *task = info;
10766 	rcu_read_lock();
10767 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10768 	rcu_read_unlock();
10769 	return 0;
10770 }
10771 
10772 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10773 {
10774 	struct task_struct *task;
10775 	struct cgroup_subsys_state *css;
10776 
10777 	cgroup_taskset_for_each(task, css, tset)
10778 		task_function_call(task, __perf_cgroup_move, task);
10779 }
10780 
10781 struct cgroup_subsys perf_event_cgrp_subsys = {
10782 	.css_alloc	= perf_cgroup_css_alloc,
10783 	.css_free	= perf_cgroup_css_free,
10784 	.attach		= perf_cgroup_attach,
10785 };
10786 #endif /* CONFIG_CGROUP_PERF */
10787