xref: /openbmc/linux/kernel/events/core.c (revision f35e839a)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 
43 #include "internal.h"
44 
45 #include <asm/irq_regs.h>
46 
47 struct remote_function_call {
48 	struct task_struct	*p;
49 	int			(*func)(void *info);
50 	void			*info;
51 	int			ret;
52 };
53 
54 static void remote_function(void *data)
55 {
56 	struct remote_function_call *tfc = data;
57 	struct task_struct *p = tfc->p;
58 
59 	if (p) {
60 		tfc->ret = -EAGAIN;
61 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 			return;
63 	}
64 
65 	tfc->ret = tfc->func(tfc->info);
66 }
67 
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:		the task to evaluate
71  * @func:	the function to be called
72  * @info:	the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *	    -ESRCH  - when the process isn't running
79  *	    -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 	struct remote_function_call data = {
85 		.p	= p,
86 		.func	= func,
87 		.info	= info,
88 		.ret	= -ESRCH, /* No such (running) process */
89 	};
90 
91 	if (task_curr(p))
92 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93 
94 	return data.ret;
95 }
96 
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 	struct remote_function_call data = {
109 		.p	= NULL,
110 		.func	= func,
111 		.info	= info,
112 		.ret	= -ENXIO, /* No such CPU */
113 	};
114 
115 	smp_call_function_single(cpu, remote_function, &data, 1);
116 
117 	return data.ret;
118 }
119 
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 		       PERF_FLAG_FD_OUTPUT  |\
122 		       PERF_FLAG_PID_CGROUP)
123 
124 /*
125  * branch priv levels that need permission checks
126  */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 	(PERF_SAMPLE_BRANCH_KERNEL |\
129 	 PERF_SAMPLE_BRANCH_HV)
130 
131 enum event_type_t {
132 	EVENT_FLEXIBLE = 0x1,
133 	EVENT_PINNED = 0x2,
134 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136 
137 /*
138  * perf_sched_events : >0 events exist
139  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140  */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144 
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 
149 static LIST_HEAD(pmus);
150 static DEFINE_MUTEX(pmus_lock);
151 static struct srcu_struct pmus_srcu;
152 
153 /*
154  * perf event paranoia level:
155  *  -1 - not paranoid at all
156  *   0 - disallow raw tracepoint access for unpriv
157  *   1 - disallow cpu events for unpriv
158  *   2 - disallow kernel profiling for unpriv
159  */
160 int sysctl_perf_event_paranoid __read_mostly = 1;
161 
162 /* Minimum for 512 kiB + 1 user control page */
163 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 
165 /*
166  * max perf event sample rate
167  */
168 #define DEFAULT_MAX_SAMPLE_RATE 100000
169 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
170 static int max_samples_per_tick __read_mostly =
171 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
172 
173 int perf_proc_update_handler(struct ctl_table *table, int write,
174 		void __user *buffer, size_t *lenp,
175 		loff_t *ppos)
176 {
177 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
178 
179 	if (ret || !write)
180 		return ret;
181 
182 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
183 
184 	return 0;
185 }
186 
187 static atomic64_t perf_event_id;
188 
189 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
190 			      enum event_type_t event_type);
191 
192 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
193 			     enum event_type_t event_type,
194 			     struct task_struct *task);
195 
196 static void update_context_time(struct perf_event_context *ctx);
197 static u64 perf_event_time(struct perf_event *event);
198 
199 static void ring_buffer_attach(struct perf_event *event,
200 			       struct ring_buffer *rb);
201 
202 void __weak perf_event_print_debug(void)	{ }
203 
204 extern __weak const char *perf_pmu_name(void)
205 {
206 	return "pmu";
207 }
208 
209 static inline u64 perf_clock(void)
210 {
211 	return local_clock();
212 }
213 
214 static inline struct perf_cpu_context *
215 __get_cpu_context(struct perf_event_context *ctx)
216 {
217 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
218 }
219 
220 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
221 			  struct perf_event_context *ctx)
222 {
223 	raw_spin_lock(&cpuctx->ctx.lock);
224 	if (ctx)
225 		raw_spin_lock(&ctx->lock);
226 }
227 
228 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
229 			    struct perf_event_context *ctx)
230 {
231 	if (ctx)
232 		raw_spin_unlock(&ctx->lock);
233 	raw_spin_unlock(&cpuctx->ctx.lock);
234 }
235 
236 #ifdef CONFIG_CGROUP_PERF
237 
238 /*
239  * perf_cgroup_info keeps track of time_enabled for a cgroup.
240  * This is a per-cpu dynamically allocated data structure.
241  */
242 struct perf_cgroup_info {
243 	u64				time;
244 	u64				timestamp;
245 };
246 
247 struct perf_cgroup {
248 	struct cgroup_subsys_state	css;
249 	struct perf_cgroup_info	__percpu *info;
250 };
251 
252 /*
253  * Must ensure cgroup is pinned (css_get) before calling
254  * this function. In other words, we cannot call this function
255  * if there is no cgroup event for the current CPU context.
256  */
257 static inline struct perf_cgroup *
258 perf_cgroup_from_task(struct task_struct *task)
259 {
260 	return container_of(task_subsys_state(task, perf_subsys_id),
261 			struct perf_cgroup, css);
262 }
263 
264 static inline bool
265 perf_cgroup_match(struct perf_event *event)
266 {
267 	struct perf_event_context *ctx = event->ctx;
268 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
269 
270 	/* @event doesn't care about cgroup */
271 	if (!event->cgrp)
272 		return true;
273 
274 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
275 	if (!cpuctx->cgrp)
276 		return false;
277 
278 	/*
279 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
280 	 * also enabled for all its descendant cgroups.  If @cpuctx's
281 	 * cgroup is a descendant of @event's (the test covers identity
282 	 * case), it's a match.
283 	 */
284 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
285 				    event->cgrp->css.cgroup);
286 }
287 
288 static inline bool perf_tryget_cgroup(struct perf_event *event)
289 {
290 	return css_tryget(&event->cgrp->css);
291 }
292 
293 static inline void perf_put_cgroup(struct perf_event *event)
294 {
295 	css_put(&event->cgrp->css);
296 }
297 
298 static inline void perf_detach_cgroup(struct perf_event *event)
299 {
300 	perf_put_cgroup(event);
301 	event->cgrp = NULL;
302 }
303 
304 static inline int is_cgroup_event(struct perf_event *event)
305 {
306 	return event->cgrp != NULL;
307 }
308 
309 static inline u64 perf_cgroup_event_time(struct perf_event *event)
310 {
311 	struct perf_cgroup_info *t;
312 
313 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
314 	return t->time;
315 }
316 
317 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
318 {
319 	struct perf_cgroup_info *info;
320 	u64 now;
321 
322 	now = perf_clock();
323 
324 	info = this_cpu_ptr(cgrp->info);
325 
326 	info->time += now - info->timestamp;
327 	info->timestamp = now;
328 }
329 
330 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
331 {
332 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
333 	if (cgrp_out)
334 		__update_cgrp_time(cgrp_out);
335 }
336 
337 static inline void update_cgrp_time_from_event(struct perf_event *event)
338 {
339 	struct perf_cgroup *cgrp;
340 
341 	/*
342 	 * ensure we access cgroup data only when needed and
343 	 * when we know the cgroup is pinned (css_get)
344 	 */
345 	if (!is_cgroup_event(event))
346 		return;
347 
348 	cgrp = perf_cgroup_from_task(current);
349 	/*
350 	 * Do not update time when cgroup is not active
351 	 */
352 	if (cgrp == event->cgrp)
353 		__update_cgrp_time(event->cgrp);
354 }
355 
356 static inline void
357 perf_cgroup_set_timestamp(struct task_struct *task,
358 			  struct perf_event_context *ctx)
359 {
360 	struct perf_cgroup *cgrp;
361 	struct perf_cgroup_info *info;
362 
363 	/*
364 	 * ctx->lock held by caller
365 	 * ensure we do not access cgroup data
366 	 * unless we have the cgroup pinned (css_get)
367 	 */
368 	if (!task || !ctx->nr_cgroups)
369 		return;
370 
371 	cgrp = perf_cgroup_from_task(task);
372 	info = this_cpu_ptr(cgrp->info);
373 	info->timestamp = ctx->timestamp;
374 }
375 
376 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
377 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
378 
379 /*
380  * reschedule events based on the cgroup constraint of task.
381  *
382  * mode SWOUT : schedule out everything
383  * mode SWIN : schedule in based on cgroup for next
384  */
385 void perf_cgroup_switch(struct task_struct *task, int mode)
386 {
387 	struct perf_cpu_context *cpuctx;
388 	struct pmu *pmu;
389 	unsigned long flags;
390 
391 	/*
392 	 * disable interrupts to avoid geting nr_cgroup
393 	 * changes via __perf_event_disable(). Also
394 	 * avoids preemption.
395 	 */
396 	local_irq_save(flags);
397 
398 	/*
399 	 * we reschedule only in the presence of cgroup
400 	 * constrained events.
401 	 */
402 	rcu_read_lock();
403 
404 	list_for_each_entry_rcu(pmu, &pmus, entry) {
405 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
406 		if (cpuctx->unique_pmu != pmu)
407 			continue; /* ensure we process each cpuctx once */
408 
409 		/*
410 		 * perf_cgroup_events says at least one
411 		 * context on this CPU has cgroup events.
412 		 *
413 		 * ctx->nr_cgroups reports the number of cgroup
414 		 * events for a context.
415 		 */
416 		if (cpuctx->ctx.nr_cgroups > 0) {
417 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
418 			perf_pmu_disable(cpuctx->ctx.pmu);
419 
420 			if (mode & PERF_CGROUP_SWOUT) {
421 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
422 				/*
423 				 * must not be done before ctxswout due
424 				 * to event_filter_match() in event_sched_out()
425 				 */
426 				cpuctx->cgrp = NULL;
427 			}
428 
429 			if (mode & PERF_CGROUP_SWIN) {
430 				WARN_ON_ONCE(cpuctx->cgrp);
431 				/*
432 				 * set cgrp before ctxsw in to allow
433 				 * event_filter_match() to not have to pass
434 				 * task around
435 				 */
436 				cpuctx->cgrp = perf_cgroup_from_task(task);
437 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
438 			}
439 			perf_pmu_enable(cpuctx->ctx.pmu);
440 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
441 		}
442 	}
443 
444 	rcu_read_unlock();
445 
446 	local_irq_restore(flags);
447 }
448 
449 static inline void perf_cgroup_sched_out(struct task_struct *task,
450 					 struct task_struct *next)
451 {
452 	struct perf_cgroup *cgrp1;
453 	struct perf_cgroup *cgrp2 = NULL;
454 
455 	/*
456 	 * we come here when we know perf_cgroup_events > 0
457 	 */
458 	cgrp1 = perf_cgroup_from_task(task);
459 
460 	/*
461 	 * next is NULL when called from perf_event_enable_on_exec()
462 	 * that will systematically cause a cgroup_switch()
463 	 */
464 	if (next)
465 		cgrp2 = perf_cgroup_from_task(next);
466 
467 	/*
468 	 * only schedule out current cgroup events if we know
469 	 * that we are switching to a different cgroup. Otherwise,
470 	 * do no touch the cgroup events.
471 	 */
472 	if (cgrp1 != cgrp2)
473 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
474 }
475 
476 static inline void perf_cgroup_sched_in(struct task_struct *prev,
477 					struct task_struct *task)
478 {
479 	struct perf_cgroup *cgrp1;
480 	struct perf_cgroup *cgrp2 = NULL;
481 
482 	/*
483 	 * we come here when we know perf_cgroup_events > 0
484 	 */
485 	cgrp1 = perf_cgroup_from_task(task);
486 
487 	/* prev can never be NULL */
488 	cgrp2 = perf_cgroup_from_task(prev);
489 
490 	/*
491 	 * only need to schedule in cgroup events if we are changing
492 	 * cgroup during ctxsw. Cgroup events were not scheduled
493 	 * out of ctxsw out if that was not the case.
494 	 */
495 	if (cgrp1 != cgrp2)
496 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
497 }
498 
499 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
500 				      struct perf_event_attr *attr,
501 				      struct perf_event *group_leader)
502 {
503 	struct perf_cgroup *cgrp;
504 	struct cgroup_subsys_state *css;
505 	struct fd f = fdget(fd);
506 	int ret = 0;
507 
508 	if (!f.file)
509 		return -EBADF;
510 
511 	css = cgroup_css_from_dir(f.file, perf_subsys_id);
512 	if (IS_ERR(css)) {
513 		ret = PTR_ERR(css);
514 		goto out;
515 	}
516 
517 	cgrp = container_of(css, struct perf_cgroup, css);
518 	event->cgrp = cgrp;
519 
520 	/* must be done before we fput() the file */
521 	if (!perf_tryget_cgroup(event)) {
522 		event->cgrp = NULL;
523 		ret = -ENOENT;
524 		goto out;
525 	}
526 
527 	/*
528 	 * all events in a group must monitor
529 	 * the same cgroup because a task belongs
530 	 * to only one perf cgroup at a time
531 	 */
532 	if (group_leader && group_leader->cgrp != cgrp) {
533 		perf_detach_cgroup(event);
534 		ret = -EINVAL;
535 	}
536 out:
537 	fdput(f);
538 	return ret;
539 }
540 
541 static inline void
542 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
543 {
544 	struct perf_cgroup_info *t;
545 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
546 	event->shadow_ctx_time = now - t->timestamp;
547 }
548 
549 static inline void
550 perf_cgroup_defer_enabled(struct perf_event *event)
551 {
552 	/*
553 	 * when the current task's perf cgroup does not match
554 	 * the event's, we need to remember to call the
555 	 * perf_mark_enable() function the first time a task with
556 	 * a matching perf cgroup is scheduled in.
557 	 */
558 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
559 		event->cgrp_defer_enabled = 1;
560 }
561 
562 static inline void
563 perf_cgroup_mark_enabled(struct perf_event *event,
564 			 struct perf_event_context *ctx)
565 {
566 	struct perf_event *sub;
567 	u64 tstamp = perf_event_time(event);
568 
569 	if (!event->cgrp_defer_enabled)
570 		return;
571 
572 	event->cgrp_defer_enabled = 0;
573 
574 	event->tstamp_enabled = tstamp - event->total_time_enabled;
575 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
576 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
577 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
578 			sub->cgrp_defer_enabled = 0;
579 		}
580 	}
581 }
582 #else /* !CONFIG_CGROUP_PERF */
583 
584 static inline bool
585 perf_cgroup_match(struct perf_event *event)
586 {
587 	return true;
588 }
589 
590 static inline void perf_detach_cgroup(struct perf_event *event)
591 {}
592 
593 static inline int is_cgroup_event(struct perf_event *event)
594 {
595 	return 0;
596 }
597 
598 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
599 {
600 	return 0;
601 }
602 
603 static inline void update_cgrp_time_from_event(struct perf_event *event)
604 {
605 }
606 
607 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
608 {
609 }
610 
611 static inline void perf_cgroup_sched_out(struct task_struct *task,
612 					 struct task_struct *next)
613 {
614 }
615 
616 static inline void perf_cgroup_sched_in(struct task_struct *prev,
617 					struct task_struct *task)
618 {
619 }
620 
621 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
622 				      struct perf_event_attr *attr,
623 				      struct perf_event *group_leader)
624 {
625 	return -EINVAL;
626 }
627 
628 static inline void
629 perf_cgroup_set_timestamp(struct task_struct *task,
630 			  struct perf_event_context *ctx)
631 {
632 }
633 
634 void
635 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
636 {
637 }
638 
639 static inline void
640 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
641 {
642 }
643 
644 static inline u64 perf_cgroup_event_time(struct perf_event *event)
645 {
646 	return 0;
647 }
648 
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 }
653 
654 static inline void
655 perf_cgroup_mark_enabled(struct perf_event *event,
656 			 struct perf_event_context *ctx)
657 {
658 }
659 #endif
660 
661 void perf_pmu_disable(struct pmu *pmu)
662 {
663 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
664 	if (!(*count)++)
665 		pmu->pmu_disable(pmu);
666 }
667 
668 void perf_pmu_enable(struct pmu *pmu)
669 {
670 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
671 	if (!--(*count))
672 		pmu->pmu_enable(pmu);
673 }
674 
675 static DEFINE_PER_CPU(struct list_head, rotation_list);
676 
677 /*
678  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
679  * because they're strictly cpu affine and rotate_start is called with IRQs
680  * disabled, while rotate_context is called from IRQ context.
681  */
682 static void perf_pmu_rotate_start(struct pmu *pmu)
683 {
684 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
685 	struct list_head *head = &__get_cpu_var(rotation_list);
686 
687 	WARN_ON(!irqs_disabled());
688 
689 	if (list_empty(&cpuctx->rotation_list)) {
690 		int was_empty = list_empty(head);
691 		list_add(&cpuctx->rotation_list, head);
692 		if (was_empty)
693 			tick_nohz_full_kick();
694 	}
695 }
696 
697 static void get_ctx(struct perf_event_context *ctx)
698 {
699 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
700 }
701 
702 static void put_ctx(struct perf_event_context *ctx)
703 {
704 	if (atomic_dec_and_test(&ctx->refcount)) {
705 		if (ctx->parent_ctx)
706 			put_ctx(ctx->parent_ctx);
707 		if (ctx->task)
708 			put_task_struct(ctx->task);
709 		kfree_rcu(ctx, rcu_head);
710 	}
711 }
712 
713 static void unclone_ctx(struct perf_event_context *ctx)
714 {
715 	if (ctx->parent_ctx) {
716 		put_ctx(ctx->parent_ctx);
717 		ctx->parent_ctx = NULL;
718 	}
719 }
720 
721 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
722 {
723 	/*
724 	 * only top level events have the pid namespace they were created in
725 	 */
726 	if (event->parent)
727 		event = event->parent;
728 
729 	return task_tgid_nr_ns(p, event->ns);
730 }
731 
732 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
733 {
734 	/*
735 	 * only top level events have the pid namespace they were created in
736 	 */
737 	if (event->parent)
738 		event = event->parent;
739 
740 	return task_pid_nr_ns(p, event->ns);
741 }
742 
743 /*
744  * If we inherit events we want to return the parent event id
745  * to userspace.
746  */
747 static u64 primary_event_id(struct perf_event *event)
748 {
749 	u64 id = event->id;
750 
751 	if (event->parent)
752 		id = event->parent->id;
753 
754 	return id;
755 }
756 
757 /*
758  * Get the perf_event_context for a task and lock it.
759  * This has to cope with with the fact that until it is locked,
760  * the context could get moved to another task.
761  */
762 static struct perf_event_context *
763 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
764 {
765 	struct perf_event_context *ctx;
766 
767 	rcu_read_lock();
768 retry:
769 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
770 	if (ctx) {
771 		/*
772 		 * If this context is a clone of another, it might
773 		 * get swapped for another underneath us by
774 		 * perf_event_task_sched_out, though the
775 		 * rcu_read_lock() protects us from any context
776 		 * getting freed.  Lock the context and check if it
777 		 * got swapped before we could get the lock, and retry
778 		 * if so.  If we locked the right context, then it
779 		 * can't get swapped on us any more.
780 		 */
781 		raw_spin_lock_irqsave(&ctx->lock, *flags);
782 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
783 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
784 			goto retry;
785 		}
786 
787 		if (!atomic_inc_not_zero(&ctx->refcount)) {
788 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
789 			ctx = NULL;
790 		}
791 	}
792 	rcu_read_unlock();
793 	return ctx;
794 }
795 
796 /*
797  * Get the context for a task and increment its pin_count so it
798  * can't get swapped to another task.  This also increments its
799  * reference count so that the context can't get freed.
800  */
801 static struct perf_event_context *
802 perf_pin_task_context(struct task_struct *task, int ctxn)
803 {
804 	struct perf_event_context *ctx;
805 	unsigned long flags;
806 
807 	ctx = perf_lock_task_context(task, ctxn, &flags);
808 	if (ctx) {
809 		++ctx->pin_count;
810 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
811 	}
812 	return ctx;
813 }
814 
815 static void perf_unpin_context(struct perf_event_context *ctx)
816 {
817 	unsigned long flags;
818 
819 	raw_spin_lock_irqsave(&ctx->lock, flags);
820 	--ctx->pin_count;
821 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
822 }
823 
824 /*
825  * Update the record of the current time in a context.
826  */
827 static void update_context_time(struct perf_event_context *ctx)
828 {
829 	u64 now = perf_clock();
830 
831 	ctx->time += now - ctx->timestamp;
832 	ctx->timestamp = now;
833 }
834 
835 static u64 perf_event_time(struct perf_event *event)
836 {
837 	struct perf_event_context *ctx = event->ctx;
838 
839 	if (is_cgroup_event(event))
840 		return perf_cgroup_event_time(event);
841 
842 	return ctx ? ctx->time : 0;
843 }
844 
845 /*
846  * Update the total_time_enabled and total_time_running fields for a event.
847  * The caller of this function needs to hold the ctx->lock.
848  */
849 static void update_event_times(struct perf_event *event)
850 {
851 	struct perf_event_context *ctx = event->ctx;
852 	u64 run_end;
853 
854 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
855 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
856 		return;
857 	/*
858 	 * in cgroup mode, time_enabled represents
859 	 * the time the event was enabled AND active
860 	 * tasks were in the monitored cgroup. This is
861 	 * independent of the activity of the context as
862 	 * there may be a mix of cgroup and non-cgroup events.
863 	 *
864 	 * That is why we treat cgroup events differently
865 	 * here.
866 	 */
867 	if (is_cgroup_event(event))
868 		run_end = perf_cgroup_event_time(event);
869 	else if (ctx->is_active)
870 		run_end = ctx->time;
871 	else
872 		run_end = event->tstamp_stopped;
873 
874 	event->total_time_enabled = run_end - event->tstamp_enabled;
875 
876 	if (event->state == PERF_EVENT_STATE_INACTIVE)
877 		run_end = event->tstamp_stopped;
878 	else
879 		run_end = perf_event_time(event);
880 
881 	event->total_time_running = run_end - event->tstamp_running;
882 
883 }
884 
885 /*
886  * Update total_time_enabled and total_time_running for all events in a group.
887  */
888 static void update_group_times(struct perf_event *leader)
889 {
890 	struct perf_event *event;
891 
892 	update_event_times(leader);
893 	list_for_each_entry(event, &leader->sibling_list, group_entry)
894 		update_event_times(event);
895 }
896 
897 static struct list_head *
898 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
899 {
900 	if (event->attr.pinned)
901 		return &ctx->pinned_groups;
902 	else
903 		return &ctx->flexible_groups;
904 }
905 
906 /*
907  * Add a event from the lists for its context.
908  * Must be called with ctx->mutex and ctx->lock held.
909  */
910 static void
911 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
912 {
913 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
914 	event->attach_state |= PERF_ATTACH_CONTEXT;
915 
916 	/*
917 	 * If we're a stand alone event or group leader, we go to the context
918 	 * list, group events are kept attached to the group so that
919 	 * perf_group_detach can, at all times, locate all siblings.
920 	 */
921 	if (event->group_leader == event) {
922 		struct list_head *list;
923 
924 		if (is_software_event(event))
925 			event->group_flags |= PERF_GROUP_SOFTWARE;
926 
927 		list = ctx_group_list(event, ctx);
928 		list_add_tail(&event->group_entry, list);
929 	}
930 
931 	if (is_cgroup_event(event))
932 		ctx->nr_cgroups++;
933 
934 	if (has_branch_stack(event))
935 		ctx->nr_branch_stack++;
936 
937 	list_add_rcu(&event->event_entry, &ctx->event_list);
938 	if (!ctx->nr_events)
939 		perf_pmu_rotate_start(ctx->pmu);
940 	ctx->nr_events++;
941 	if (event->attr.inherit_stat)
942 		ctx->nr_stat++;
943 }
944 
945 /*
946  * Initialize event state based on the perf_event_attr::disabled.
947  */
948 static inline void perf_event__state_init(struct perf_event *event)
949 {
950 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
951 					      PERF_EVENT_STATE_INACTIVE;
952 }
953 
954 /*
955  * Called at perf_event creation and when events are attached/detached from a
956  * group.
957  */
958 static void perf_event__read_size(struct perf_event *event)
959 {
960 	int entry = sizeof(u64); /* value */
961 	int size = 0;
962 	int nr = 1;
963 
964 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
965 		size += sizeof(u64);
966 
967 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
968 		size += sizeof(u64);
969 
970 	if (event->attr.read_format & PERF_FORMAT_ID)
971 		entry += sizeof(u64);
972 
973 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
974 		nr += event->group_leader->nr_siblings;
975 		size += sizeof(u64);
976 	}
977 
978 	size += entry * nr;
979 	event->read_size = size;
980 }
981 
982 static void perf_event__header_size(struct perf_event *event)
983 {
984 	struct perf_sample_data *data;
985 	u64 sample_type = event->attr.sample_type;
986 	u16 size = 0;
987 
988 	perf_event__read_size(event);
989 
990 	if (sample_type & PERF_SAMPLE_IP)
991 		size += sizeof(data->ip);
992 
993 	if (sample_type & PERF_SAMPLE_ADDR)
994 		size += sizeof(data->addr);
995 
996 	if (sample_type & PERF_SAMPLE_PERIOD)
997 		size += sizeof(data->period);
998 
999 	if (sample_type & PERF_SAMPLE_WEIGHT)
1000 		size += sizeof(data->weight);
1001 
1002 	if (sample_type & PERF_SAMPLE_READ)
1003 		size += event->read_size;
1004 
1005 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1006 		size += sizeof(data->data_src.val);
1007 
1008 	event->header_size = size;
1009 }
1010 
1011 static void perf_event__id_header_size(struct perf_event *event)
1012 {
1013 	struct perf_sample_data *data;
1014 	u64 sample_type = event->attr.sample_type;
1015 	u16 size = 0;
1016 
1017 	if (sample_type & PERF_SAMPLE_TID)
1018 		size += sizeof(data->tid_entry);
1019 
1020 	if (sample_type & PERF_SAMPLE_TIME)
1021 		size += sizeof(data->time);
1022 
1023 	if (sample_type & PERF_SAMPLE_ID)
1024 		size += sizeof(data->id);
1025 
1026 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1027 		size += sizeof(data->stream_id);
1028 
1029 	if (sample_type & PERF_SAMPLE_CPU)
1030 		size += sizeof(data->cpu_entry);
1031 
1032 	event->id_header_size = size;
1033 }
1034 
1035 static void perf_group_attach(struct perf_event *event)
1036 {
1037 	struct perf_event *group_leader = event->group_leader, *pos;
1038 
1039 	/*
1040 	 * We can have double attach due to group movement in perf_event_open.
1041 	 */
1042 	if (event->attach_state & PERF_ATTACH_GROUP)
1043 		return;
1044 
1045 	event->attach_state |= PERF_ATTACH_GROUP;
1046 
1047 	if (group_leader == event)
1048 		return;
1049 
1050 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1051 			!is_software_event(event))
1052 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1053 
1054 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1055 	group_leader->nr_siblings++;
1056 
1057 	perf_event__header_size(group_leader);
1058 
1059 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1060 		perf_event__header_size(pos);
1061 }
1062 
1063 /*
1064  * Remove a event from the lists for its context.
1065  * Must be called with ctx->mutex and ctx->lock held.
1066  */
1067 static void
1068 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 	struct perf_cpu_context *cpuctx;
1071 	/*
1072 	 * We can have double detach due to exit/hot-unplug + close.
1073 	 */
1074 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1075 		return;
1076 
1077 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1078 
1079 	if (is_cgroup_event(event)) {
1080 		ctx->nr_cgroups--;
1081 		cpuctx = __get_cpu_context(ctx);
1082 		/*
1083 		 * if there are no more cgroup events
1084 		 * then cler cgrp to avoid stale pointer
1085 		 * in update_cgrp_time_from_cpuctx()
1086 		 */
1087 		if (!ctx->nr_cgroups)
1088 			cpuctx->cgrp = NULL;
1089 	}
1090 
1091 	if (has_branch_stack(event))
1092 		ctx->nr_branch_stack--;
1093 
1094 	ctx->nr_events--;
1095 	if (event->attr.inherit_stat)
1096 		ctx->nr_stat--;
1097 
1098 	list_del_rcu(&event->event_entry);
1099 
1100 	if (event->group_leader == event)
1101 		list_del_init(&event->group_entry);
1102 
1103 	update_group_times(event);
1104 
1105 	/*
1106 	 * If event was in error state, then keep it
1107 	 * that way, otherwise bogus counts will be
1108 	 * returned on read(). The only way to get out
1109 	 * of error state is by explicit re-enabling
1110 	 * of the event
1111 	 */
1112 	if (event->state > PERF_EVENT_STATE_OFF)
1113 		event->state = PERF_EVENT_STATE_OFF;
1114 }
1115 
1116 static void perf_group_detach(struct perf_event *event)
1117 {
1118 	struct perf_event *sibling, *tmp;
1119 	struct list_head *list = NULL;
1120 
1121 	/*
1122 	 * We can have double detach due to exit/hot-unplug + close.
1123 	 */
1124 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1125 		return;
1126 
1127 	event->attach_state &= ~PERF_ATTACH_GROUP;
1128 
1129 	/*
1130 	 * If this is a sibling, remove it from its group.
1131 	 */
1132 	if (event->group_leader != event) {
1133 		list_del_init(&event->group_entry);
1134 		event->group_leader->nr_siblings--;
1135 		goto out;
1136 	}
1137 
1138 	if (!list_empty(&event->group_entry))
1139 		list = &event->group_entry;
1140 
1141 	/*
1142 	 * If this was a group event with sibling events then
1143 	 * upgrade the siblings to singleton events by adding them
1144 	 * to whatever list we are on.
1145 	 */
1146 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1147 		if (list)
1148 			list_move_tail(&sibling->group_entry, list);
1149 		sibling->group_leader = sibling;
1150 
1151 		/* Inherit group flags from the previous leader */
1152 		sibling->group_flags = event->group_flags;
1153 	}
1154 
1155 out:
1156 	perf_event__header_size(event->group_leader);
1157 
1158 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1159 		perf_event__header_size(tmp);
1160 }
1161 
1162 static inline int
1163 event_filter_match(struct perf_event *event)
1164 {
1165 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1166 	    && perf_cgroup_match(event);
1167 }
1168 
1169 static void
1170 event_sched_out(struct perf_event *event,
1171 		  struct perf_cpu_context *cpuctx,
1172 		  struct perf_event_context *ctx)
1173 {
1174 	u64 tstamp = perf_event_time(event);
1175 	u64 delta;
1176 	/*
1177 	 * An event which could not be activated because of
1178 	 * filter mismatch still needs to have its timings
1179 	 * maintained, otherwise bogus information is return
1180 	 * via read() for time_enabled, time_running:
1181 	 */
1182 	if (event->state == PERF_EVENT_STATE_INACTIVE
1183 	    && !event_filter_match(event)) {
1184 		delta = tstamp - event->tstamp_stopped;
1185 		event->tstamp_running += delta;
1186 		event->tstamp_stopped = tstamp;
1187 	}
1188 
1189 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1190 		return;
1191 
1192 	event->state = PERF_EVENT_STATE_INACTIVE;
1193 	if (event->pending_disable) {
1194 		event->pending_disable = 0;
1195 		event->state = PERF_EVENT_STATE_OFF;
1196 	}
1197 	event->tstamp_stopped = tstamp;
1198 	event->pmu->del(event, 0);
1199 	event->oncpu = -1;
1200 
1201 	if (!is_software_event(event))
1202 		cpuctx->active_oncpu--;
1203 	ctx->nr_active--;
1204 	if (event->attr.freq && event->attr.sample_freq)
1205 		ctx->nr_freq--;
1206 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1207 		cpuctx->exclusive = 0;
1208 }
1209 
1210 static void
1211 group_sched_out(struct perf_event *group_event,
1212 		struct perf_cpu_context *cpuctx,
1213 		struct perf_event_context *ctx)
1214 {
1215 	struct perf_event *event;
1216 	int state = group_event->state;
1217 
1218 	event_sched_out(group_event, cpuctx, ctx);
1219 
1220 	/*
1221 	 * Schedule out siblings (if any):
1222 	 */
1223 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1224 		event_sched_out(event, cpuctx, ctx);
1225 
1226 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1227 		cpuctx->exclusive = 0;
1228 }
1229 
1230 /*
1231  * Cross CPU call to remove a performance event
1232  *
1233  * We disable the event on the hardware level first. After that we
1234  * remove it from the context list.
1235  */
1236 static int __perf_remove_from_context(void *info)
1237 {
1238 	struct perf_event *event = info;
1239 	struct perf_event_context *ctx = event->ctx;
1240 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1241 
1242 	raw_spin_lock(&ctx->lock);
1243 	event_sched_out(event, cpuctx, ctx);
1244 	list_del_event(event, ctx);
1245 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1246 		ctx->is_active = 0;
1247 		cpuctx->task_ctx = NULL;
1248 	}
1249 	raw_spin_unlock(&ctx->lock);
1250 
1251 	return 0;
1252 }
1253 
1254 
1255 /*
1256  * Remove the event from a task's (or a CPU's) list of events.
1257  *
1258  * CPU events are removed with a smp call. For task events we only
1259  * call when the task is on a CPU.
1260  *
1261  * If event->ctx is a cloned context, callers must make sure that
1262  * every task struct that event->ctx->task could possibly point to
1263  * remains valid.  This is OK when called from perf_release since
1264  * that only calls us on the top-level context, which can't be a clone.
1265  * When called from perf_event_exit_task, it's OK because the
1266  * context has been detached from its task.
1267  */
1268 static void perf_remove_from_context(struct perf_event *event)
1269 {
1270 	struct perf_event_context *ctx = event->ctx;
1271 	struct task_struct *task = ctx->task;
1272 
1273 	lockdep_assert_held(&ctx->mutex);
1274 
1275 	if (!task) {
1276 		/*
1277 		 * Per cpu events are removed via an smp call and
1278 		 * the removal is always successful.
1279 		 */
1280 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1281 		return;
1282 	}
1283 
1284 retry:
1285 	if (!task_function_call(task, __perf_remove_from_context, event))
1286 		return;
1287 
1288 	raw_spin_lock_irq(&ctx->lock);
1289 	/*
1290 	 * If we failed to find a running task, but find the context active now
1291 	 * that we've acquired the ctx->lock, retry.
1292 	 */
1293 	if (ctx->is_active) {
1294 		raw_spin_unlock_irq(&ctx->lock);
1295 		goto retry;
1296 	}
1297 
1298 	/*
1299 	 * Since the task isn't running, its safe to remove the event, us
1300 	 * holding the ctx->lock ensures the task won't get scheduled in.
1301 	 */
1302 	list_del_event(event, ctx);
1303 	raw_spin_unlock_irq(&ctx->lock);
1304 }
1305 
1306 /*
1307  * Cross CPU call to disable a performance event
1308  */
1309 int __perf_event_disable(void *info)
1310 {
1311 	struct perf_event *event = info;
1312 	struct perf_event_context *ctx = event->ctx;
1313 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1314 
1315 	/*
1316 	 * If this is a per-task event, need to check whether this
1317 	 * event's task is the current task on this cpu.
1318 	 *
1319 	 * Can trigger due to concurrent perf_event_context_sched_out()
1320 	 * flipping contexts around.
1321 	 */
1322 	if (ctx->task && cpuctx->task_ctx != ctx)
1323 		return -EINVAL;
1324 
1325 	raw_spin_lock(&ctx->lock);
1326 
1327 	/*
1328 	 * If the event is on, turn it off.
1329 	 * If it is in error state, leave it in error state.
1330 	 */
1331 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1332 		update_context_time(ctx);
1333 		update_cgrp_time_from_event(event);
1334 		update_group_times(event);
1335 		if (event == event->group_leader)
1336 			group_sched_out(event, cpuctx, ctx);
1337 		else
1338 			event_sched_out(event, cpuctx, ctx);
1339 		event->state = PERF_EVENT_STATE_OFF;
1340 	}
1341 
1342 	raw_spin_unlock(&ctx->lock);
1343 
1344 	return 0;
1345 }
1346 
1347 /*
1348  * Disable a event.
1349  *
1350  * If event->ctx is a cloned context, callers must make sure that
1351  * every task struct that event->ctx->task could possibly point to
1352  * remains valid.  This condition is satisifed when called through
1353  * perf_event_for_each_child or perf_event_for_each because they
1354  * hold the top-level event's child_mutex, so any descendant that
1355  * goes to exit will block in sync_child_event.
1356  * When called from perf_pending_event it's OK because event->ctx
1357  * is the current context on this CPU and preemption is disabled,
1358  * hence we can't get into perf_event_task_sched_out for this context.
1359  */
1360 void perf_event_disable(struct perf_event *event)
1361 {
1362 	struct perf_event_context *ctx = event->ctx;
1363 	struct task_struct *task = ctx->task;
1364 
1365 	if (!task) {
1366 		/*
1367 		 * Disable the event on the cpu that it's on
1368 		 */
1369 		cpu_function_call(event->cpu, __perf_event_disable, event);
1370 		return;
1371 	}
1372 
1373 retry:
1374 	if (!task_function_call(task, __perf_event_disable, event))
1375 		return;
1376 
1377 	raw_spin_lock_irq(&ctx->lock);
1378 	/*
1379 	 * If the event is still active, we need to retry the cross-call.
1380 	 */
1381 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1382 		raw_spin_unlock_irq(&ctx->lock);
1383 		/*
1384 		 * Reload the task pointer, it might have been changed by
1385 		 * a concurrent perf_event_context_sched_out().
1386 		 */
1387 		task = ctx->task;
1388 		goto retry;
1389 	}
1390 
1391 	/*
1392 	 * Since we have the lock this context can't be scheduled
1393 	 * in, so we can change the state safely.
1394 	 */
1395 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1396 		update_group_times(event);
1397 		event->state = PERF_EVENT_STATE_OFF;
1398 	}
1399 	raw_spin_unlock_irq(&ctx->lock);
1400 }
1401 EXPORT_SYMBOL_GPL(perf_event_disable);
1402 
1403 static void perf_set_shadow_time(struct perf_event *event,
1404 				 struct perf_event_context *ctx,
1405 				 u64 tstamp)
1406 {
1407 	/*
1408 	 * use the correct time source for the time snapshot
1409 	 *
1410 	 * We could get by without this by leveraging the
1411 	 * fact that to get to this function, the caller
1412 	 * has most likely already called update_context_time()
1413 	 * and update_cgrp_time_xx() and thus both timestamp
1414 	 * are identical (or very close). Given that tstamp is,
1415 	 * already adjusted for cgroup, we could say that:
1416 	 *    tstamp - ctx->timestamp
1417 	 * is equivalent to
1418 	 *    tstamp - cgrp->timestamp.
1419 	 *
1420 	 * Then, in perf_output_read(), the calculation would
1421 	 * work with no changes because:
1422 	 * - event is guaranteed scheduled in
1423 	 * - no scheduled out in between
1424 	 * - thus the timestamp would be the same
1425 	 *
1426 	 * But this is a bit hairy.
1427 	 *
1428 	 * So instead, we have an explicit cgroup call to remain
1429 	 * within the time time source all along. We believe it
1430 	 * is cleaner and simpler to understand.
1431 	 */
1432 	if (is_cgroup_event(event))
1433 		perf_cgroup_set_shadow_time(event, tstamp);
1434 	else
1435 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1436 }
1437 
1438 #define MAX_INTERRUPTS (~0ULL)
1439 
1440 static void perf_log_throttle(struct perf_event *event, int enable);
1441 
1442 static int
1443 event_sched_in(struct perf_event *event,
1444 		 struct perf_cpu_context *cpuctx,
1445 		 struct perf_event_context *ctx)
1446 {
1447 	u64 tstamp = perf_event_time(event);
1448 
1449 	if (event->state <= PERF_EVENT_STATE_OFF)
1450 		return 0;
1451 
1452 	event->state = PERF_EVENT_STATE_ACTIVE;
1453 	event->oncpu = smp_processor_id();
1454 
1455 	/*
1456 	 * Unthrottle events, since we scheduled we might have missed several
1457 	 * ticks already, also for a heavily scheduling task there is little
1458 	 * guarantee it'll get a tick in a timely manner.
1459 	 */
1460 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1461 		perf_log_throttle(event, 1);
1462 		event->hw.interrupts = 0;
1463 	}
1464 
1465 	/*
1466 	 * The new state must be visible before we turn it on in the hardware:
1467 	 */
1468 	smp_wmb();
1469 
1470 	if (event->pmu->add(event, PERF_EF_START)) {
1471 		event->state = PERF_EVENT_STATE_INACTIVE;
1472 		event->oncpu = -1;
1473 		return -EAGAIN;
1474 	}
1475 
1476 	event->tstamp_running += tstamp - event->tstamp_stopped;
1477 
1478 	perf_set_shadow_time(event, ctx, tstamp);
1479 
1480 	if (!is_software_event(event))
1481 		cpuctx->active_oncpu++;
1482 	ctx->nr_active++;
1483 	if (event->attr.freq && event->attr.sample_freq)
1484 		ctx->nr_freq++;
1485 
1486 	if (event->attr.exclusive)
1487 		cpuctx->exclusive = 1;
1488 
1489 	return 0;
1490 }
1491 
1492 static int
1493 group_sched_in(struct perf_event *group_event,
1494 	       struct perf_cpu_context *cpuctx,
1495 	       struct perf_event_context *ctx)
1496 {
1497 	struct perf_event *event, *partial_group = NULL;
1498 	struct pmu *pmu = group_event->pmu;
1499 	u64 now = ctx->time;
1500 	bool simulate = false;
1501 
1502 	if (group_event->state == PERF_EVENT_STATE_OFF)
1503 		return 0;
1504 
1505 	pmu->start_txn(pmu);
1506 
1507 	if (event_sched_in(group_event, cpuctx, ctx)) {
1508 		pmu->cancel_txn(pmu);
1509 		return -EAGAIN;
1510 	}
1511 
1512 	/*
1513 	 * Schedule in siblings as one group (if any):
1514 	 */
1515 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1516 		if (event_sched_in(event, cpuctx, ctx)) {
1517 			partial_group = event;
1518 			goto group_error;
1519 		}
1520 	}
1521 
1522 	if (!pmu->commit_txn(pmu))
1523 		return 0;
1524 
1525 group_error:
1526 	/*
1527 	 * Groups can be scheduled in as one unit only, so undo any
1528 	 * partial group before returning:
1529 	 * The events up to the failed event are scheduled out normally,
1530 	 * tstamp_stopped will be updated.
1531 	 *
1532 	 * The failed events and the remaining siblings need to have
1533 	 * their timings updated as if they had gone thru event_sched_in()
1534 	 * and event_sched_out(). This is required to get consistent timings
1535 	 * across the group. This also takes care of the case where the group
1536 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1537 	 * the time the event was actually stopped, such that time delta
1538 	 * calculation in update_event_times() is correct.
1539 	 */
1540 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1541 		if (event == partial_group)
1542 			simulate = true;
1543 
1544 		if (simulate) {
1545 			event->tstamp_running += now - event->tstamp_stopped;
1546 			event->tstamp_stopped = now;
1547 		} else {
1548 			event_sched_out(event, cpuctx, ctx);
1549 		}
1550 	}
1551 	event_sched_out(group_event, cpuctx, ctx);
1552 
1553 	pmu->cancel_txn(pmu);
1554 
1555 	return -EAGAIN;
1556 }
1557 
1558 /*
1559  * Work out whether we can put this event group on the CPU now.
1560  */
1561 static int group_can_go_on(struct perf_event *event,
1562 			   struct perf_cpu_context *cpuctx,
1563 			   int can_add_hw)
1564 {
1565 	/*
1566 	 * Groups consisting entirely of software events can always go on.
1567 	 */
1568 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1569 		return 1;
1570 	/*
1571 	 * If an exclusive group is already on, no other hardware
1572 	 * events can go on.
1573 	 */
1574 	if (cpuctx->exclusive)
1575 		return 0;
1576 	/*
1577 	 * If this group is exclusive and there are already
1578 	 * events on the CPU, it can't go on.
1579 	 */
1580 	if (event->attr.exclusive && cpuctx->active_oncpu)
1581 		return 0;
1582 	/*
1583 	 * Otherwise, try to add it if all previous groups were able
1584 	 * to go on.
1585 	 */
1586 	return can_add_hw;
1587 }
1588 
1589 static void add_event_to_ctx(struct perf_event *event,
1590 			       struct perf_event_context *ctx)
1591 {
1592 	u64 tstamp = perf_event_time(event);
1593 
1594 	list_add_event(event, ctx);
1595 	perf_group_attach(event);
1596 	event->tstamp_enabled = tstamp;
1597 	event->tstamp_running = tstamp;
1598 	event->tstamp_stopped = tstamp;
1599 }
1600 
1601 static void task_ctx_sched_out(struct perf_event_context *ctx);
1602 static void
1603 ctx_sched_in(struct perf_event_context *ctx,
1604 	     struct perf_cpu_context *cpuctx,
1605 	     enum event_type_t event_type,
1606 	     struct task_struct *task);
1607 
1608 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1609 				struct perf_event_context *ctx,
1610 				struct task_struct *task)
1611 {
1612 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1613 	if (ctx)
1614 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1615 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1616 	if (ctx)
1617 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1618 }
1619 
1620 /*
1621  * Cross CPU call to install and enable a performance event
1622  *
1623  * Must be called with ctx->mutex held
1624  */
1625 static int  __perf_install_in_context(void *info)
1626 {
1627 	struct perf_event *event = info;
1628 	struct perf_event_context *ctx = event->ctx;
1629 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1630 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1631 	struct task_struct *task = current;
1632 
1633 	perf_ctx_lock(cpuctx, task_ctx);
1634 	perf_pmu_disable(cpuctx->ctx.pmu);
1635 
1636 	/*
1637 	 * If there was an active task_ctx schedule it out.
1638 	 */
1639 	if (task_ctx)
1640 		task_ctx_sched_out(task_ctx);
1641 
1642 	/*
1643 	 * If the context we're installing events in is not the
1644 	 * active task_ctx, flip them.
1645 	 */
1646 	if (ctx->task && task_ctx != ctx) {
1647 		if (task_ctx)
1648 			raw_spin_unlock(&task_ctx->lock);
1649 		raw_spin_lock(&ctx->lock);
1650 		task_ctx = ctx;
1651 	}
1652 
1653 	if (task_ctx) {
1654 		cpuctx->task_ctx = task_ctx;
1655 		task = task_ctx->task;
1656 	}
1657 
1658 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1659 
1660 	update_context_time(ctx);
1661 	/*
1662 	 * update cgrp time only if current cgrp
1663 	 * matches event->cgrp. Must be done before
1664 	 * calling add_event_to_ctx()
1665 	 */
1666 	update_cgrp_time_from_event(event);
1667 
1668 	add_event_to_ctx(event, ctx);
1669 
1670 	/*
1671 	 * Schedule everything back in
1672 	 */
1673 	perf_event_sched_in(cpuctx, task_ctx, task);
1674 
1675 	perf_pmu_enable(cpuctx->ctx.pmu);
1676 	perf_ctx_unlock(cpuctx, task_ctx);
1677 
1678 	return 0;
1679 }
1680 
1681 /*
1682  * Attach a performance event to a context
1683  *
1684  * First we add the event to the list with the hardware enable bit
1685  * in event->hw_config cleared.
1686  *
1687  * If the event is attached to a task which is on a CPU we use a smp
1688  * call to enable it in the task context. The task might have been
1689  * scheduled away, but we check this in the smp call again.
1690  */
1691 static void
1692 perf_install_in_context(struct perf_event_context *ctx,
1693 			struct perf_event *event,
1694 			int cpu)
1695 {
1696 	struct task_struct *task = ctx->task;
1697 
1698 	lockdep_assert_held(&ctx->mutex);
1699 
1700 	event->ctx = ctx;
1701 	if (event->cpu != -1)
1702 		event->cpu = cpu;
1703 
1704 	if (!task) {
1705 		/*
1706 		 * Per cpu events are installed via an smp call and
1707 		 * the install is always successful.
1708 		 */
1709 		cpu_function_call(cpu, __perf_install_in_context, event);
1710 		return;
1711 	}
1712 
1713 retry:
1714 	if (!task_function_call(task, __perf_install_in_context, event))
1715 		return;
1716 
1717 	raw_spin_lock_irq(&ctx->lock);
1718 	/*
1719 	 * If we failed to find a running task, but find the context active now
1720 	 * that we've acquired the ctx->lock, retry.
1721 	 */
1722 	if (ctx->is_active) {
1723 		raw_spin_unlock_irq(&ctx->lock);
1724 		goto retry;
1725 	}
1726 
1727 	/*
1728 	 * Since the task isn't running, its safe to add the event, us holding
1729 	 * the ctx->lock ensures the task won't get scheduled in.
1730 	 */
1731 	add_event_to_ctx(event, ctx);
1732 	raw_spin_unlock_irq(&ctx->lock);
1733 }
1734 
1735 /*
1736  * Put a event into inactive state and update time fields.
1737  * Enabling the leader of a group effectively enables all
1738  * the group members that aren't explicitly disabled, so we
1739  * have to update their ->tstamp_enabled also.
1740  * Note: this works for group members as well as group leaders
1741  * since the non-leader members' sibling_lists will be empty.
1742  */
1743 static void __perf_event_mark_enabled(struct perf_event *event)
1744 {
1745 	struct perf_event *sub;
1746 	u64 tstamp = perf_event_time(event);
1747 
1748 	event->state = PERF_EVENT_STATE_INACTIVE;
1749 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1750 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1751 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1752 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1753 	}
1754 }
1755 
1756 /*
1757  * Cross CPU call to enable a performance event
1758  */
1759 static int __perf_event_enable(void *info)
1760 {
1761 	struct perf_event *event = info;
1762 	struct perf_event_context *ctx = event->ctx;
1763 	struct perf_event *leader = event->group_leader;
1764 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1765 	int err;
1766 
1767 	if (WARN_ON_ONCE(!ctx->is_active))
1768 		return -EINVAL;
1769 
1770 	raw_spin_lock(&ctx->lock);
1771 	update_context_time(ctx);
1772 
1773 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1774 		goto unlock;
1775 
1776 	/*
1777 	 * set current task's cgroup time reference point
1778 	 */
1779 	perf_cgroup_set_timestamp(current, ctx);
1780 
1781 	__perf_event_mark_enabled(event);
1782 
1783 	if (!event_filter_match(event)) {
1784 		if (is_cgroup_event(event))
1785 			perf_cgroup_defer_enabled(event);
1786 		goto unlock;
1787 	}
1788 
1789 	/*
1790 	 * If the event is in a group and isn't the group leader,
1791 	 * then don't put it on unless the group is on.
1792 	 */
1793 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1794 		goto unlock;
1795 
1796 	if (!group_can_go_on(event, cpuctx, 1)) {
1797 		err = -EEXIST;
1798 	} else {
1799 		if (event == leader)
1800 			err = group_sched_in(event, cpuctx, ctx);
1801 		else
1802 			err = event_sched_in(event, cpuctx, ctx);
1803 	}
1804 
1805 	if (err) {
1806 		/*
1807 		 * If this event can't go on and it's part of a
1808 		 * group, then the whole group has to come off.
1809 		 */
1810 		if (leader != event)
1811 			group_sched_out(leader, cpuctx, ctx);
1812 		if (leader->attr.pinned) {
1813 			update_group_times(leader);
1814 			leader->state = PERF_EVENT_STATE_ERROR;
1815 		}
1816 	}
1817 
1818 unlock:
1819 	raw_spin_unlock(&ctx->lock);
1820 
1821 	return 0;
1822 }
1823 
1824 /*
1825  * Enable a event.
1826  *
1827  * If event->ctx is a cloned context, callers must make sure that
1828  * every task struct that event->ctx->task could possibly point to
1829  * remains valid.  This condition is satisfied when called through
1830  * perf_event_for_each_child or perf_event_for_each as described
1831  * for perf_event_disable.
1832  */
1833 void perf_event_enable(struct perf_event *event)
1834 {
1835 	struct perf_event_context *ctx = event->ctx;
1836 	struct task_struct *task = ctx->task;
1837 
1838 	if (!task) {
1839 		/*
1840 		 * Enable the event on the cpu that it's on
1841 		 */
1842 		cpu_function_call(event->cpu, __perf_event_enable, event);
1843 		return;
1844 	}
1845 
1846 	raw_spin_lock_irq(&ctx->lock);
1847 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1848 		goto out;
1849 
1850 	/*
1851 	 * If the event is in error state, clear that first.
1852 	 * That way, if we see the event in error state below, we
1853 	 * know that it has gone back into error state, as distinct
1854 	 * from the task having been scheduled away before the
1855 	 * cross-call arrived.
1856 	 */
1857 	if (event->state == PERF_EVENT_STATE_ERROR)
1858 		event->state = PERF_EVENT_STATE_OFF;
1859 
1860 retry:
1861 	if (!ctx->is_active) {
1862 		__perf_event_mark_enabled(event);
1863 		goto out;
1864 	}
1865 
1866 	raw_spin_unlock_irq(&ctx->lock);
1867 
1868 	if (!task_function_call(task, __perf_event_enable, event))
1869 		return;
1870 
1871 	raw_spin_lock_irq(&ctx->lock);
1872 
1873 	/*
1874 	 * If the context is active and the event is still off,
1875 	 * we need to retry the cross-call.
1876 	 */
1877 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1878 		/*
1879 		 * task could have been flipped by a concurrent
1880 		 * perf_event_context_sched_out()
1881 		 */
1882 		task = ctx->task;
1883 		goto retry;
1884 	}
1885 
1886 out:
1887 	raw_spin_unlock_irq(&ctx->lock);
1888 }
1889 EXPORT_SYMBOL_GPL(perf_event_enable);
1890 
1891 int perf_event_refresh(struct perf_event *event, int refresh)
1892 {
1893 	/*
1894 	 * not supported on inherited events
1895 	 */
1896 	if (event->attr.inherit || !is_sampling_event(event))
1897 		return -EINVAL;
1898 
1899 	atomic_add(refresh, &event->event_limit);
1900 	perf_event_enable(event);
1901 
1902 	return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(perf_event_refresh);
1905 
1906 static void ctx_sched_out(struct perf_event_context *ctx,
1907 			  struct perf_cpu_context *cpuctx,
1908 			  enum event_type_t event_type)
1909 {
1910 	struct perf_event *event;
1911 	int is_active = ctx->is_active;
1912 
1913 	ctx->is_active &= ~event_type;
1914 	if (likely(!ctx->nr_events))
1915 		return;
1916 
1917 	update_context_time(ctx);
1918 	update_cgrp_time_from_cpuctx(cpuctx);
1919 	if (!ctx->nr_active)
1920 		return;
1921 
1922 	perf_pmu_disable(ctx->pmu);
1923 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1924 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1925 			group_sched_out(event, cpuctx, ctx);
1926 	}
1927 
1928 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1929 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1930 			group_sched_out(event, cpuctx, ctx);
1931 	}
1932 	perf_pmu_enable(ctx->pmu);
1933 }
1934 
1935 /*
1936  * Test whether two contexts are equivalent, i.e. whether they
1937  * have both been cloned from the same version of the same context
1938  * and they both have the same number of enabled events.
1939  * If the number of enabled events is the same, then the set
1940  * of enabled events should be the same, because these are both
1941  * inherited contexts, therefore we can't access individual events
1942  * in them directly with an fd; we can only enable/disable all
1943  * events via prctl, or enable/disable all events in a family
1944  * via ioctl, which will have the same effect on both contexts.
1945  */
1946 static int context_equiv(struct perf_event_context *ctx1,
1947 			 struct perf_event_context *ctx2)
1948 {
1949 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1950 		&& ctx1->parent_gen == ctx2->parent_gen
1951 		&& !ctx1->pin_count && !ctx2->pin_count;
1952 }
1953 
1954 static void __perf_event_sync_stat(struct perf_event *event,
1955 				     struct perf_event *next_event)
1956 {
1957 	u64 value;
1958 
1959 	if (!event->attr.inherit_stat)
1960 		return;
1961 
1962 	/*
1963 	 * Update the event value, we cannot use perf_event_read()
1964 	 * because we're in the middle of a context switch and have IRQs
1965 	 * disabled, which upsets smp_call_function_single(), however
1966 	 * we know the event must be on the current CPU, therefore we
1967 	 * don't need to use it.
1968 	 */
1969 	switch (event->state) {
1970 	case PERF_EVENT_STATE_ACTIVE:
1971 		event->pmu->read(event);
1972 		/* fall-through */
1973 
1974 	case PERF_EVENT_STATE_INACTIVE:
1975 		update_event_times(event);
1976 		break;
1977 
1978 	default:
1979 		break;
1980 	}
1981 
1982 	/*
1983 	 * In order to keep per-task stats reliable we need to flip the event
1984 	 * values when we flip the contexts.
1985 	 */
1986 	value = local64_read(&next_event->count);
1987 	value = local64_xchg(&event->count, value);
1988 	local64_set(&next_event->count, value);
1989 
1990 	swap(event->total_time_enabled, next_event->total_time_enabled);
1991 	swap(event->total_time_running, next_event->total_time_running);
1992 
1993 	/*
1994 	 * Since we swizzled the values, update the user visible data too.
1995 	 */
1996 	perf_event_update_userpage(event);
1997 	perf_event_update_userpage(next_event);
1998 }
1999 
2000 #define list_next_entry(pos, member) \
2001 	list_entry(pos->member.next, typeof(*pos), member)
2002 
2003 static void perf_event_sync_stat(struct perf_event_context *ctx,
2004 				   struct perf_event_context *next_ctx)
2005 {
2006 	struct perf_event *event, *next_event;
2007 
2008 	if (!ctx->nr_stat)
2009 		return;
2010 
2011 	update_context_time(ctx);
2012 
2013 	event = list_first_entry(&ctx->event_list,
2014 				   struct perf_event, event_entry);
2015 
2016 	next_event = list_first_entry(&next_ctx->event_list,
2017 					struct perf_event, event_entry);
2018 
2019 	while (&event->event_entry != &ctx->event_list &&
2020 	       &next_event->event_entry != &next_ctx->event_list) {
2021 
2022 		__perf_event_sync_stat(event, next_event);
2023 
2024 		event = list_next_entry(event, event_entry);
2025 		next_event = list_next_entry(next_event, event_entry);
2026 	}
2027 }
2028 
2029 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2030 					 struct task_struct *next)
2031 {
2032 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2033 	struct perf_event_context *next_ctx;
2034 	struct perf_event_context *parent;
2035 	struct perf_cpu_context *cpuctx;
2036 	int do_switch = 1;
2037 
2038 	if (likely(!ctx))
2039 		return;
2040 
2041 	cpuctx = __get_cpu_context(ctx);
2042 	if (!cpuctx->task_ctx)
2043 		return;
2044 
2045 	rcu_read_lock();
2046 	parent = rcu_dereference(ctx->parent_ctx);
2047 	next_ctx = next->perf_event_ctxp[ctxn];
2048 	if (parent && next_ctx &&
2049 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
2050 		/*
2051 		 * Looks like the two contexts are clones, so we might be
2052 		 * able to optimize the context switch.  We lock both
2053 		 * contexts and check that they are clones under the
2054 		 * lock (including re-checking that neither has been
2055 		 * uncloned in the meantime).  It doesn't matter which
2056 		 * order we take the locks because no other cpu could
2057 		 * be trying to lock both of these tasks.
2058 		 */
2059 		raw_spin_lock(&ctx->lock);
2060 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2061 		if (context_equiv(ctx, next_ctx)) {
2062 			/*
2063 			 * XXX do we need a memory barrier of sorts
2064 			 * wrt to rcu_dereference() of perf_event_ctxp
2065 			 */
2066 			task->perf_event_ctxp[ctxn] = next_ctx;
2067 			next->perf_event_ctxp[ctxn] = ctx;
2068 			ctx->task = next;
2069 			next_ctx->task = task;
2070 			do_switch = 0;
2071 
2072 			perf_event_sync_stat(ctx, next_ctx);
2073 		}
2074 		raw_spin_unlock(&next_ctx->lock);
2075 		raw_spin_unlock(&ctx->lock);
2076 	}
2077 	rcu_read_unlock();
2078 
2079 	if (do_switch) {
2080 		raw_spin_lock(&ctx->lock);
2081 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2082 		cpuctx->task_ctx = NULL;
2083 		raw_spin_unlock(&ctx->lock);
2084 	}
2085 }
2086 
2087 #define for_each_task_context_nr(ctxn)					\
2088 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2089 
2090 /*
2091  * Called from scheduler to remove the events of the current task,
2092  * with interrupts disabled.
2093  *
2094  * We stop each event and update the event value in event->count.
2095  *
2096  * This does not protect us against NMI, but disable()
2097  * sets the disabled bit in the control field of event _before_
2098  * accessing the event control register. If a NMI hits, then it will
2099  * not restart the event.
2100  */
2101 void __perf_event_task_sched_out(struct task_struct *task,
2102 				 struct task_struct *next)
2103 {
2104 	int ctxn;
2105 
2106 	for_each_task_context_nr(ctxn)
2107 		perf_event_context_sched_out(task, ctxn, next);
2108 
2109 	/*
2110 	 * if cgroup events exist on this CPU, then we need
2111 	 * to check if we have to switch out PMU state.
2112 	 * cgroup event are system-wide mode only
2113 	 */
2114 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2115 		perf_cgroup_sched_out(task, next);
2116 }
2117 
2118 static void task_ctx_sched_out(struct perf_event_context *ctx)
2119 {
2120 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2121 
2122 	if (!cpuctx->task_ctx)
2123 		return;
2124 
2125 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2126 		return;
2127 
2128 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2129 	cpuctx->task_ctx = NULL;
2130 }
2131 
2132 /*
2133  * Called with IRQs disabled
2134  */
2135 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2136 			      enum event_type_t event_type)
2137 {
2138 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2139 }
2140 
2141 static void
2142 ctx_pinned_sched_in(struct perf_event_context *ctx,
2143 		    struct perf_cpu_context *cpuctx)
2144 {
2145 	struct perf_event *event;
2146 
2147 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2148 		if (event->state <= PERF_EVENT_STATE_OFF)
2149 			continue;
2150 		if (!event_filter_match(event))
2151 			continue;
2152 
2153 		/* may need to reset tstamp_enabled */
2154 		if (is_cgroup_event(event))
2155 			perf_cgroup_mark_enabled(event, ctx);
2156 
2157 		if (group_can_go_on(event, cpuctx, 1))
2158 			group_sched_in(event, cpuctx, ctx);
2159 
2160 		/*
2161 		 * If this pinned group hasn't been scheduled,
2162 		 * put it in error state.
2163 		 */
2164 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2165 			update_group_times(event);
2166 			event->state = PERF_EVENT_STATE_ERROR;
2167 		}
2168 	}
2169 }
2170 
2171 static void
2172 ctx_flexible_sched_in(struct perf_event_context *ctx,
2173 		      struct perf_cpu_context *cpuctx)
2174 {
2175 	struct perf_event *event;
2176 	int can_add_hw = 1;
2177 
2178 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2179 		/* Ignore events in OFF or ERROR state */
2180 		if (event->state <= PERF_EVENT_STATE_OFF)
2181 			continue;
2182 		/*
2183 		 * Listen to the 'cpu' scheduling filter constraint
2184 		 * of events:
2185 		 */
2186 		if (!event_filter_match(event))
2187 			continue;
2188 
2189 		/* may need to reset tstamp_enabled */
2190 		if (is_cgroup_event(event))
2191 			perf_cgroup_mark_enabled(event, ctx);
2192 
2193 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2194 			if (group_sched_in(event, cpuctx, ctx))
2195 				can_add_hw = 0;
2196 		}
2197 	}
2198 }
2199 
2200 static void
2201 ctx_sched_in(struct perf_event_context *ctx,
2202 	     struct perf_cpu_context *cpuctx,
2203 	     enum event_type_t event_type,
2204 	     struct task_struct *task)
2205 {
2206 	u64 now;
2207 	int is_active = ctx->is_active;
2208 
2209 	ctx->is_active |= event_type;
2210 	if (likely(!ctx->nr_events))
2211 		return;
2212 
2213 	now = perf_clock();
2214 	ctx->timestamp = now;
2215 	perf_cgroup_set_timestamp(task, ctx);
2216 	/*
2217 	 * First go through the list and put on any pinned groups
2218 	 * in order to give them the best chance of going on.
2219 	 */
2220 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2221 		ctx_pinned_sched_in(ctx, cpuctx);
2222 
2223 	/* Then walk through the lower prio flexible groups */
2224 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2225 		ctx_flexible_sched_in(ctx, cpuctx);
2226 }
2227 
2228 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2229 			     enum event_type_t event_type,
2230 			     struct task_struct *task)
2231 {
2232 	struct perf_event_context *ctx = &cpuctx->ctx;
2233 
2234 	ctx_sched_in(ctx, cpuctx, event_type, task);
2235 }
2236 
2237 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2238 					struct task_struct *task)
2239 {
2240 	struct perf_cpu_context *cpuctx;
2241 
2242 	cpuctx = __get_cpu_context(ctx);
2243 	if (cpuctx->task_ctx == ctx)
2244 		return;
2245 
2246 	perf_ctx_lock(cpuctx, ctx);
2247 	perf_pmu_disable(ctx->pmu);
2248 	/*
2249 	 * We want to keep the following priority order:
2250 	 * cpu pinned (that don't need to move), task pinned,
2251 	 * cpu flexible, task flexible.
2252 	 */
2253 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2254 
2255 	if (ctx->nr_events)
2256 		cpuctx->task_ctx = ctx;
2257 
2258 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2259 
2260 	perf_pmu_enable(ctx->pmu);
2261 	perf_ctx_unlock(cpuctx, ctx);
2262 
2263 	/*
2264 	 * Since these rotations are per-cpu, we need to ensure the
2265 	 * cpu-context we got scheduled on is actually rotating.
2266 	 */
2267 	perf_pmu_rotate_start(ctx->pmu);
2268 }
2269 
2270 /*
2271  * When sampling the branck stack in system-wide, it may be necessary
2272  * to flush the stack on context switch. This happens when the branch
2273  * stack does not tag its entries with the pid of the current task.
2274  * Otherwise it becomes impossible to associate a branch entry with a
2275  * task. This ambiguity is more likely to appear when the branch stack
2276  * supports priv level filtering and the user sets it to monitor only
2277  * at the user level (which could be a useful measurement in system-wide
2278  * mode). In that case, the risk is high of having a branch stack with
2279  * branch from multiple tasks. Flushing may mean dropping the existing
2280  * entries or stashing them somewhere in the PMU specific code layer.
2281  *
2282  * This function provides the context switch callback to the lower code
2283  * layer. It is invoked ONLY when there is at least one system-wide context
2284  * with at least one active event using taken branch sampling.
2285  */
2286 static void perf_branch_stack_sched_in(struct task_struct *prev,
2287 				       struct task_struct *task)
2288 {
2289 	struct perf_cpu_context *cpuctx;
2290 	struct pmu *pmu;
2291 	unsigned long flags;
2292 
2293 	/* no need to flush branch stack if not changing task */
2294 	if (prev == task)
2295 		return;
2296 
2297 	local_irq_save(flags);
2298 
2299 	rcu_read_lock();
2300 
2301 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2302 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2303 
2304 		/*
2305 		 * check if the context has at least one
2306 		 * event using PERF_SAMPLE_BRANCH_STACK
2307 		 */
2308 		if (cpuctx->ctx.nr_branch_stack > 0
2309 		    && pmu->flush_branch_stack) {
2310 
2311 			pmu = cpuctx->ctx.pmu;
2312 
2313 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2314 
2315 			perf_pmu_disable(pmu);
2316 
2317 			pmu->flush_branch_stack();
2318 
2319 			perf_pmu_enable(pmu);
2320 
2321 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2322 		}
2323 	}
2324 
2325 	rcu_read_unlock();
2326 
2327 	local_irq_restore(flags);
2328 }
2329 
2330 /*
2331  * Called from scheduler to add the events of the current task
2332  * with interrupts disabled.
2333  *
2334  * We restore the event value and then enable it.
2335  *
2336  * This does not protect us against NMI, but enable()
2337  * sets the enabled bit in the control field of event _before_
2338  * accessing the event control register. If a NMI hits, then it will
2339  * keep the event running.
2340  */
2341 void __perf_event_task_sched_in(struct task_struct *prev,
2342 				struct task_struct *task)
2343 {
2344 	struct perf_event_context *ctx;
2345 	int ctxn;
2346 
2347 	for_each_task_context_nr(ctxn) {
2348 		ctx = task->perf_event_ctxp[ctxn];
2349 		if (likely(!ctx))
2350 			continue;
2351 
2352 		perf_event_context_sched_in(ctx, task);
2353 	}
2354 	/*
2355 	 * if cgroup events exist on this CPU, then we need
2356 	 * to check if we have to switch in PMU state.
2357 	 * cgroup event are system-wide mode only
2358 	 */
2359 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2360 		perf_cgroup_sched_in(prev, task);
2361 
2362 	/* check for system-wide branch_stack events */
2363 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2364 		perf_branch_stack_sched_in(prev, task);
2365 }
2366 
2367 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2368 {
2369 	u64 frequency = event->attr.sample_freq;
2370 	u64 sec = NSEC_PER_SEC;
2371 	u64 divisor, dividend;
2372 
2373 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2374 
2375 	count_fls = fls64(count);
2376 	nsec_fls = fls64(nsec);
2377 	frequency_fls = fls64(frequency);
2378 	sec_fls = 30;
2379 
2380 	/*
2381 	 * We got @count in @nsec, with a target of sample_freq HZ
2382 	 * the target period becomes:
2383 	 *
2384 	 *             @count * 10^9
2385 	 * period = -------------------
2386 	 *          @nsec * sample_freq
2387 	 *
2388 	 */
2389 
2390 	/*
2391 	 * Reduce accuracy by one bit such that @a and @b converge
2392 	 * to a similar magnitude.
2393 	 */
2394 #define REDUCE_FLS(a, b)		\
2395 do {					\
2396 	if (a##_fls > b##_fls) {	\
2397 		a >>= 1;		\
2398 		a##_fls--;		\
2399 	} else {			\
2400 		b >>= 1;		\
2401 		b##_fls--;		\
2402 	}				\
2403 } while (0)
2404 
2405 	/*
2406 	 * Reduce accuracy until either term fits in a u64, then proceed with
2407 	 * the other, so that finally we can do a u64/u64 division.
2408 	 */
2409 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2410 		REDUCE_FLS(nsec, frequency);
2411 		REDUCE_FLS(sec, count);
2412 	}
2413 
2414 	if (count_fls + sec_fls > 64) {
2415 		divisor = nsec * frequency;
2416 
2417 		while (count_fls + sec_fls > 64) {
2418 			REDUCE_FLS(count, sec);
2419 			divisor >>= 1;
2420 		}
2421 
2422 		dividend = count * sec;
2423 	} else {
2424 		dividend = count * sec;
2425 
2426 		while (nsec_fls + frequency_fls > 64) {
2427 			REDUCE_FLS(nsec, frequency);
2428 			dividend >>= 1;
2429 		}
2430 
2431 		divisor = nsec * frequency;
2432 	}
2433 
2434 	if (!divisor)
2435 		return dividend;
2436 
2437 	return div64_u64(dividend, divisor);
2438 }
2439 
2440 static DEFINE_PER_CPU(int, perf_throttled_count);
2441 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2442 
2443 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2444 {
2445 	struct hw_perf_event *hwc = &event->hw;
2446 	s64 period, sample_period;
2447 	s64 delta;
2448 
2449 	period = perf_calculate_period(event, nsec, count);
2450 
2451 	delta = (s64)(period - hwc->sample_period);
2452 	delta = (delta + 7) / 8; /* low pass filter */
2453 
2454 	sample_period = hwc->sample_period + delta;
2455 
2456 	if (!sample_period)
2457 		sample_period = 1;
2458 
2459 	hwc->sample_period = sample_period;
2460 
2461 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2462 		if (disable)
2463 			event->pmu->stop(event, PERF_EF_UPDATE);
2464 
2465 		local64_set(&hwc->period_left, 0);
2466 
2467 		if (disable)
2468 			event->pmu->start(event, PERF_EF_RELOAD);
2469 	}
2470 }
2471 
2472 /*
2473  * combine freq adjustment with unthrottling to avoid two passes over the
2474  * events. At the same time, make sure, having freq events does not change
2475  * the rate of unthrottling as that would introduce bias.
2476  */
2477 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2478 					   int needs_unthr)
2479 {
2480 	struct perf_event *event;
2481 	struct hw_perf_event *hwc;
2482 	u64 now, period = TICK_NSEC;
2483 	s64 delta;
2484 
2485 	/*
2486 	 * only need to iterate over all events iff:
2487 	 * - context have events in frequency mode (needs freq adjust)
2488 	 * - there are events to unthrottle on this cpu
2489 	 */
2490 	if (!(ctx->nr_freq || needs_unthr))
2491 		return;
2492 
2493 	raw_spin_lock(&ctx->lock);
2494 	perf_pmu_disable(ctx->pmu);
2495 
2496 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2497 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2498 			continue;
2499 
2500 		if (!event_filter_match(event))
2501 			continue;
2502 
2503 		hwc = &event->hw;
2504 
2505 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2506 			hwc->interrupts = 0;
2507 			perf_log_throttle(event, 1);
2508 			event->pmu->start(event, 0);
2509 		}
2510 
2511 		if (!event->attr.freq || !event->attr.sample_freq)
2512 			continue;
2513 
2514 		/*
2515 		 * stop the event and update event->count
2516 		 */
2517 		event->pmu->stop(event, PERF_EF_UPDATE);
2518 
2519 		now = local64_read(&event->count);
2520 		delta = now - hwc->freq_count_stamp;
2521 		hwc->freq_count_stamp = now;
2522 
2523 		/*
2524 		 * restart the event
2525 		 * reload only if value has changed
2526 		 * we have stopped the event so tell that
2527 		 * to perf_adjust_period() to avoid stopping it
2528 		 * twice.
2529 		 */
2530 		if (delta > 0)
2531 			perf_adjust_period(event, period, delta, false);
2532 
2533 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2534 	}
2535 
2536 	perf_pmu_enable(ctx->pmu);
2537 	raw_spin_unlock(&ctx->lock);
2538 }
2539 
2540 /*
2541  * Round-robin a context's events:
2542  */
2543 static void rotate_ctx(struct perf_event_context *ctx)
2544 {
2545 	/*
2546 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2547 	 * disabled by the inheritance code.
2548 	 */
2549 	if (!ctx->rotate_disable)
2550 		list_rotate_left(&ctx->flexible_groups);
2551 }
2552 
2553 /*
2554  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2555  * because they're strictly cpu affine and rotate_start is called with IRQs
2556  * disabled, while rotate_context is called from IRQ context.
2557  */
2558 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2559 {
2560 	struct perf_event_context *ctx = NULL;
2561 	int rotate = 0, remove = 1;
2562 
2563 	if (cpuctx->ctx.nr_events) {
2564 		remove = 0;
2565 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2566 			rotate = 1;
2567 	}
2568 
2569 	ctx = cpuctx->task_ctx;
2570 	if (ctx && ctx->nr_events) {
2571 		remove = 0;
2572 		if (ctx->nr_events != ctx->nr_active)
2573 			rotate = 1;
2574 	}
2575 
2576 	if (!rotate)
2577 		goto done;
2578 
2579 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2580 	perf_pmu_disable(cpuctx->ctx.pmu);
2581 
2582 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2583 	if (ctx)
2584 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2585 
2586 	rotate_ctx(&cpuctx->ctx);
2587 	if (ctx)
2588 		rotate_ctx(ctx);
2589 
2590 	perf_event_sched_in(cpuctx, ctx, current);
2591 
2592 	perf_pmu_enable(cpuctx->ctx.pmu);
2593 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2594 done:
2595 	if (remove)
2596 		list_del_init(&cpuctx->rotation_list);
2597 }
2598 
2599 #ifdef CONFIG_NO_HZ_FULL
2600 bool perf_event_can_stop_tick(void)
2601 {
2602 	if (list_empty(&__get_cpu_var(rotation_list)))
2603 		return true;
2604 	else
2605 		return false;
2606 }
2607 #endif
2608 
2609 void perf_event_task_tick(void)
2610 {
2611 	struct list_head *head = &__get_cpu_var(rotation_list);
2612 	struct perf_cpu_context *cpuctx, *tmp;
2613 	struct perf_event_context *ctx;
2614 	int throttled;
2615 
2616 	WARN_ON(!irqs_disabled());
2617 
2618 	__this_cpu_inc(perf_throttled_seq);
2619 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2620 
2621 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2622 		ctx = &cpuctx->ctx;
2623 		perf_adjust_freq_unthr_context(ctx, throttled);
2624 
2625 		ctx = cpuctx->task_ctx;
2626 		if (ctx)
2627 			perf_adjust_freq_unthr_context(ctx, throttled);
2628 
2629 		if (cpuctx->jiffies_interval == 1 ||
2630 				!(jiffies % cpuctx->jiffies_interval))
2631 			perf_rotate_context(cpuctx);
2632 	}
2633 }
2634 
2635 static int event_enable_on_exec(struct perf_event *event,
2636 				struct perf_event_context *ctx)
2637 {
2638 	if (!event->attr.enable_on_exec)
2639 		return 0;
2640 
2641 	event->attr.enable_on_exec = 0;
2642 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2643 		return 0;
2644 
2645 	__perf_event_mark_enabled(event);
2646 
2647 	return 1;
2648 }
2649 
2650 /*
2651  * Enable all of a task's events that have been marked enable-on-exec.
2652  * This expects task == current.
2653  */
2654 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2655 {
2656 	struct perf_event *event;
2657 	unsigned long flags;
2658 	int enabled = 0;
2659 	int ret;
2660 
2661 	local_irq_save(flags);
2662 	if (!ctx || !ctx->nr_events)
2663 		goto out;
2664 
2665 	/*
2666 	 * We must ctxsw out cgroup events to avoid conflict
2667 	 * when invoking perf_task_event_sched_in() later on
2668 	 * in this function. Otherwise we end up trying to
2669 	 * ctxswin cgroup events which are already scheduled
2670 	 * in.
2671 	 */
2672 	perf_cgroup_sched_out(current, NULL);
2673 
2674 	raw_spin_lock(&ctx->lock);
2675 	task_ctx_sched_out(ctx);
2676 
2677 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2678 		ret = event_enable_on_exec(event, ctx);
2679 		if (ret)
2680 			enabled = 1;
2681 	}
2682 
2683 	/*
2684 	 * Unclone this context if we enabled any event.
2685 	 */
2686 	if (enabled)
2687 		unclone_ctx(ctx);
2688 
2689 	raw_spin_unlock(&ctx->lock);
2690 
2691 	/*
2692 	 * Also calls ctxswin for cgroup events, if any:
2693 	 */
2694 	perf_event_context_sched_in(ctx, ctx->task);
2695 out:
2696 	local_irq_restore(flags);
2697 }
2698 
2699 /*
2700  * Cross CPU call to read the hardware event
2701  */
2702 static void __perf_event_read(void *info)
2703 {
2704 	struct perf_event *event = info;
2705 	struct perf_event_context *ctx = event->ctx;
2706 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2707 
2708 	/*
2709 	 * If this is a task context, we need to check whether it is
2710 	 * the current task context of this cpu.  If not it has been
2711 	 * scheduled out before the smp call arrived.  In that case
2712 	 * event->count would have been updated to a recent sample
2713 	 * when the event was scheduled out.
2714 	 */
2715 	if (ctx->task && cpuctx->task_ctx != ctx)
2716 		return;
2717 
2718 	raw_spin_lock(&ctx->lock);
2719 	if (ctx->is_active) {
2720 		update_context_time(ctx);
2721 		update_cgrp_time_from_event(event);
2722 	}
2723 	update_event_times(event);
2724 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2725 		event->pmu->read(event);
2726 	raw_spin_unlock(&ctx->lock);
2727 }
2728 
2729 static inline u64 perf_event_count(struct perf_event *event)
2730 {
2731 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2732 }
2733 
2734 static u64 perf_event_read(struct perf_event *event)
2735 {
2736 	/*
2737 	 * If event is enabled and currently active on a CPU, update the
2738 	 * value in the event structure:
2739 	 */
2740 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2741 		smp_call_function_single(event->oncpu,
2742 					 __perf_event_read, event, 1);
2743 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2744 		struct perf_event_context *ctx = event->ctx;
2745 		unsigned long flags;
2746 
2747 		raw_spin_lock_irqsave(&ctx->lock, flags);
2748 		/*
2749 		 * may read while context is not active
2750 		 * (e.g., thread is blocked), in that case
2751 		 * we cannot update context time
2752 		 */
2753 		if (ctx->is_active) {
2754 			update_context_time(ctx);
2755 			update_cgrp_time_from_event(event);
2756 		}
2757 		update_event_times(event);
2758 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2759 	}
2760 
2761 	return perf_event_count(event);
2762 }
2763 
2764 /*
2765  * Initialize the perf_event context in a task_struct:
2766  */
2767 static void __perf_event_init_context(struct perf_event_context *ctx)
2768 {
2769 	raw_spin_lock_init(&ctx->lock);
2770 	mutex_init(&ctx->mutex);
2771 	INIT_LIST_HEAD(&ctx->pinned_groups);
2772 	INIT_LIST_HEAD(&ctx->flexible_groups);
2773 	INIT_LIST_HEAD(&ctx->event_list);
2774 	atomic_set(&ctx->refcount, 1);
2775 }
2776 
2777 static struct perf_event_context *
2778 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2779 {
2780 	struct perf_event_context *ctx;
2781 
2782 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2783 	if (!ctx)
2784 		return NULL;
2785 
2786 	__perf_event_init_context(ctx);
2787 	if (task) {
2788 		ctx->task = task;
2789 		get_task_struct(task);
2790 	}
2791 	ctx->pmu = pmu;
2792 
2793 	return ctx;
2794 }
2795 
2796 static struct task_struct *
2797 find_lively_task_by_vpid(pid_t vpid)
2798 {
2799 	struct task_struct *task;
2800 	int err;
2801 
2802 	rcu_read_lock();
2803 	if (!vpid)
2804 		task = current;
2805 	else
2806 		task = find_task_by_vpid(vpid);
2807 	if (task)
2808 		get_task_struct(task);
2809 	rcu_read_unlock();
2810 
2811 	if (!task)
2812 		return ERR_PTR(-ESRCH);
2813 
2814 	/* Reuse ptrace permission checks for now. */
2815 	err = -EACCES;
2816 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2817 		goto errout;
2818 
2819 	return task;
2820 errout:
2821 	put_task_struct(task);
2822 	return ERR_PTR(err);
2823 
2824 }
2825 
2826 /*
2827  * Returns a matching context with refcount and pincount.
2828  */
2829 static struct perf_event_context *
2830 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2831 {
2832 	struct perf_event_context *ctx;
2833 	struct perf_cpu_context *cpuctx;
2834 	unsigned long flags;
2835 	int ctxn, err;
2836 
2837 	if (!task) {
2838 		/* Must be root to operate on a CPU event: */
2839 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2840 			return ERR_PTR(-EACCES);
2841 
2842 		/*
2843 		 * We could be clever and allow to attach a event to an
2844 		 * offline CPU and activate it when the CPU comes up, but
2845 		 * that's for later.
2846 		 */
2847 		if (!cpu_online(cpu))
2848 			return ERR_PTR(-ENODEV);
2849 
2850 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2851 		ctx = &cpuctx->ctx;
2852 		get_ctx(ctx);
2853 		++ctx->pin_count;
2854 
2855 		return ctx;
2856 	}
2857 
2858 	err = -EINVAL;
2859 	ctxn = pmu->task_ctx_nr;
2860 	if (ctxn < 0)
2861 		goto errout;
2862 
2863 retry:
2864 	ctx = perf_lock_task_context(task, ctxn, &flags);
2865 	if (ctx) {
2866 		unclone_ctx(ctx);
2867 		++ctx->pin_count;
2868 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2869 	} else {
2870 		ctx = alloc_perf_context(pmu, task);
2871 		err = -ENOMEM;
2872 		if (!ctx)
2873 			goto errout;
2874 
2875 		err = 0;
2876 		mutex_lock(&task->perf_event_mutex);
2877 		/*
2878 		 * If it has already passed perf_event_exit_task().
2879 		 * we must see PF_EXITING, it takes this mutex too.
2880 		 */
2881 		if (task->flags & PF_EXITING)
2882 			err = -ESRCH;
2883 		else if (task->perf_event_ctxp[ctxn])
2884 			err = -EAGAIN;
2885 		else {
2886 			get_ctx(ctx);
2887 			++ctx->pin_count;
2888 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2889 		}
2890 		mutex_unlock(&task->perf_event_mutex);
2891 
2892 		if (unlikely(err)) {
2893 			put_ctx(ctx);
2894 
2895 			if (err == -EAGAIN)
2896 				goto retry;
2897 			goto errout;
2898 		}
2899 	}
2900 
2901 	return ctx;
2902 
2903 errout:
2904 	return ERR_PTR(err);
2905 }
2906 
2907 static void perf_event_free_filter(struct perf_event *event);
2908 
2909 static void free_event_rcu(struct rcu_head *head)
2910 {
2911 	struct perf_event *event;
2912 
2913 	event = container_of(head, struct perf_event, rcu_head);
2914 	if (event->ns)
2915 		put_pid_ns(event->ns);
2916 	perf_event_free_filter(event);
2917 	kfree(event);
2918 }
2919 
2920 static void ring_buffer_put(struct ring_buffer *rb);
2921 
2922 static void free_event(struct perf_event *event)
2923 {
2924 	irq_work_sync(&event->pending);
2925 
2926 	if (!event->parent) {
2927 		if (event->attach_state & PERF_ATTACH_TASK)
2928 			static_key_slow_dec_deferred(&perf_sched_events);
2929 		if (event->attr.mmap || event->attr.mmap_data)
2930 			atomic_dec(&nr_mmap_events);
2931 		if (event->attr.comm)
2932 			atomic_dec(&nr_comm_events);
2933 		if (event->attr.task)
2934 			atomic_dec(&nr_task_events);
2935 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2936 			put_callchain_buffers();
2937 		if (is_cgroup_event(event)) {
2938 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2939 			static_key_slow_dec_deferred(&perf_sched_events);
2940 		}
2941 
2942 		if (has_branch_stack(event)) {
2943 			static_key_slow_dec_deferred(&perf_sched_events);
2944 			/* is system-wide event */
2945 			if (!(event->attach_state & PERF_ATTACH_TASK))
2946 				atomic_dec(&per_cpu(perf_branch_stack_events,
2947 						    event->cpu));
2948 		}
2949 	}
2950 
2951 	if (event->rb) {
2952 		ring_buffer_put(event->rb);
2953 		event->rb = NULL;
2954 	}
2955 
2956 	if (is_cgroup_event(event))
2957 		perf_detach_cgroup(event);
2958 
2959 	if (event->destroy)
2960 		event->destroy(event);
2961 
2962 	if (event->ctx)
2963 		put_ctx(event->ctx);
2964 
2965 	call_rcu(&event->rcu_head, free_event_rcu);
2966 }
2967 
2968 int perf_event_release_kernel(struct perf_event *event)
2969 {
2970 	struct perf_event_context *ctx = event->ctx;
2971 
2972 	WARN_ON_ONCE(ctx->parent_ctx);
2973 	/*
2974 	 * There are two ways this annotation is useful:
2975 	 *
2976 	 *  1) there is a lock recursion from perf_event_exit_task
2977 	 *     see the comment there.
2978 	 *
2979 	 *  2) there is a lock-inversion with mmap_sem through
2980 	 *     perf_event_read_group(), which takes faults while
2981 	 *     holding ctx->mutex, however this is called after
2982 	 *     the last filedesc died, so there is no possibility
2983 	 *     to trigger the AB-BA case.
2984 	 */
2985 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2986 	raw_spin_lock_irq(&ctx->lock);
2987 	perf_group_detach(event);
2988 	raw_spin_unlock_irq(&ctx->lock);
2989 	perf_remove_from_context(event);
2990 	mutex_unlock(&ctx->mutex);
2991 
2992 	free_event(event);
2993 
2994 	return 0;
2995 }
2996 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2997 
2998 /*
2999  * Called when the last reference to the file is gone.
3000  */
3001 static void put_event(struct perf_event *event)
3002 {
3003 	struct task_struct *owner;
3004 
3005 	if (!atomic_long_dec_and_test(&event->refcount))
3006 		return;
3007 
3008 	rcu_read_lock();
3009 	owner = ACCESS_ONCE(event->owner);
3010 	/*
3011 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3012 	 * !owner it means the list deletion is complete and we can indeed
3013 	 * free this event, otherwise we need to serialize on
3014 	 * owner->perf_event_mutex.
3015 	 */
3016 	smp_read_barrier_depends();
3017 	if (owner) {
3018 		/*
3019 		 * Since delayed_put_task_struct() also drops the last
3020 		 * task reference we can safely take a new reference
3021 		 * while holding the rcu_read_lock().
3022 		 */
3023 		get_task_struct(owner);
3024 	}
3025 	rcu_read_unlock();
3026 
3027 	if (owner) {
3028 		mutex_lock(&owner->perf_event_mutex);
3029 		/*
3030 		 * We have to re-check the event->owner field, if it is cleared
3031 		 * we raced with perf_event_exit_task(), acquiring the mutex
3032 		 * ensured they're done, and we can proceed with freeing the
3033 		 * event.
3034 		 */
3035 		if (event->owner)
3036 			list_del_init(&event->owner_entry);
3037 		mutex_unlock(&owner->perf_event_mutex);
3038 		put_task_struct(owner);
3039 	}
3040 
3041 	perf_event_release_kernel(event);
3042 }
3043 
3044 static int perf_release(struct inode *inode, struct file *file)
3045 {
3046 	put_event(file->private_data);
3047 	return 0;
3048 }
3049 
3050 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3051 {
3052 	struct perf_event *child;
3053 	u64 total = 0;
3054 
3055 	*enabled = 0;
3056 	*running = 0;
3057 
3058 	mutex_lock(&event->child_mutex);
3059 	total += perf_event_read(event);
3060 	*enabled += event->total_time_enabled +
3061 			atomic64_read(&event->child_total_time_enabled);
3062 	*running += event->total_time_running +
3063 			atomic64_read(&event->child_total_time_running);
3064 
3065 	list_for_each_entry(child, &event->child_list, child_list) {
3066 		total += perf_event_read(child);
3067 		*enabled += child->total_time_enabled;
3068 		*running += child->total_time_running;
3069 	}
3070 	mutex_unlock(&event->child_mutex);
3071 
3072 	return total;
3073 }
3074 EXPORT_SYMBOL_GPL(perf_event_read_value);
3075 
3076 static int perf_event_read_group(struct perf_event *event,
3077 				   u64 read_format, char __user *buf)
3078 {
3079 	struct perf_event *leader = event->group_leader, *sub;
3080 	int n = 0, size = 0, ret = -EFAULT;
3081 	struct perf_event_context *ctx = leader->ctx;
3082 	u64 values[5];
3083 	u64 count, enabled, running;
3084 
3085 	mutex_lock(&ctx->mutex);
3086 	count = perf_event_read_value(leader, &enabled, &running);
3087 
3088 	values[n++] = 1 + leader->nr_siblings;
3089 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3090 		values[n++] = enabled;
3091 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3092 		values[n++] = running;
3093 	values[n++] = count;
3094 	if (read_format & PERF_FORMAT_ID)
3095 		values[n++] = primary_event_id(leader);
3096 
3097 	size = n * sizeof(u64);
3098 
3099 	if (copy_to_user(buf, values, size))
3100 		goto unlock;
3101 
3102 	ret = size;
3103 
3104 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3105 		n = 0;
3106 
3107 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3108 		if (read_format & PERF_FORMAT_ID)
3109 			values[n++] = primary_event_id(sub);
3110 
3111 		size = n * sizeof(u64);
3112 
3113 		if (copy_to_user(buf + ret, values, size)) {
3114 			ret = -EFAULT;
3115 			goto unlock;
3116 		}
3117 
3118 		ret += size;
3119 	}
3120 unlock:
3121 	mutex_unlock(&ctx->mutex);
3122 
3123 	return ret;
3124 }
3125 
3126 static int perf_event_read_one(struct perf_event *event,
3127 				 u64 read_format, char __user *buf)
3128 {
3129 	u64 enabled, running;
3130 	u64 values[4];
3131 	int n = 0;
3132 
3133 	values[n++] = perf_event_read_value(event, &enabled, &running);
3134 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3135 		values[n++] = enabled;
3136 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3137 		values[n++] = running;
3138 	if (read_format & PERF_FORMAT_ID)
3139 		values[n++] = primary_event_id(event);
3140 
3141 	if (copy_to_user(buf, values, n * sizeof(u64)))
3142 		return -EFAULT;
3143 
3144 	return n * sizeof(u64);
3145 }
3146 
3147 /*
3148  * Read the performance event - simple non blocking version for now
3149  */
3150 static ssize_t
3151 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3152 {
3153 	u64 read_format = event->attr.read_format;
3154 	int ret;
3155 
3156 	/*
3157 	 * Return end-of-file for a read on a event that is in
3158 	 * error state (i.e. because it was pinned but it couldn't be
3159 	 * scheduled on to the CPU at some point).
3160 	 */
3161 	if (event->state == PERF_EVENT_STATE_ERROR)
3162 		return 0;
3163 
3164 	if (count < event->read_size)
3165 		return -ENOSPC;
3166 
3167 	WARN_ON_ONCE(event->ctx->parent_ctx);
3168 	if (read_format & PERF_FORMAT_GROUP)
3169 		ret = perf_event_read_group(event, read_format, buf);
3170 	else
3171 		ret = perf_event_read_one(event, read_format, buf);
3172 
3173 	return ret;
3174 }
3175 
3176 static ssize_t
3177 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3178 {
3179 	struct perf_event *event = file->private_data;
3180 
3181 	return perf_read_hw(event, buf, count);
3182 }
3183 
3184 static unsigned int perf_poll(struct file *file, poll_table *wait)
3185 {
3186 	struct perf_event *event = file->private_data;
3187 	struct ring_buffer *rb;
3188 	unsigned int events = POLL_HUP;
3189 
3190 	/*
3191 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3192 	 * grabs the rb reference but perf_event_set_output() overrides it.
3193 	 * Here is the timeline for two threads T1, T2:
3194 	 * t0: T1, rb = rcu_dereference(event->rb)
3195 	 * t1: T2, old_rb = event->rb
3196 	 * t2: T2, event->rb = new rb
3197 	 * t3: T2, ring_buffer_detach(old_rb)
3198 	 * t4: T1, ring_buffer_attach(rb1)
3199 	 * t5: T1, poll_wait(event->waitq)
3200 	 *
3201 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3202 	 * thereby ensuring that the assignment of the new ring buffer
3203 	 * and the detachment of the old buffer appear atomic to perf_poll()
3204 	 */
3205 	mutex_lock(&event->mmap_mutex);
3206 
3207 	rcu_read_lock();
3208 	rb = rcu_dereference(event->rb);
3209 	if (rb) {
3210 		ring_buffer_attach(event, rb);
3211 		events = atomic_xchg(&rb->poll, 0);
3212 	}
3213 	rcu_read_unlock();
3214 
3215 	mutex_unlock(&event->mmap_mutex);
3216 
3217 	poll_wait(file, &event->waitq, wait);
3218 
3219 	return events;
3220 }
3221 
3222 static void perf_event_reset(struct perf_event *event)
3223 {
3224 	(void)perf_event_read(event);
3225 	local64_set(&event->count, 0);
3226 	perf_event_update_userpage(event);
3227 }
3228 
3229 /*
3230  * Holding the top-level event's child_mutex means that any
3231  * descendant process that has inherited this event will block
3232  * in sync_child_event if it goes to exit, thus satisfying the
3233  * task existence requirements of perf_event_enable/disable.
3234  */
3235 static void perf_event_for_each_child(struct perf_event *event,
3236 					void (*func)(struct perf_event *))
3237 {
3238 	struct perf_event *child;
3239 
3240 	WARN_ON_ONCE(event->ctx->parent_ctx);
3241 	mutex_lock(&event->child_mutex);
3242 	func(event);
3243 	list_for_each_entry(child, &event->child_list, child_list)
3244 		func(child);
3245 	mutex_unlock(&event->child_mutex);
3246 }
3247 
3248 static void perf_event_for_each(struct perf_event *event,
3249 				  void (*func)(struct perf_event *))
3250 {
3251 	struct perf_event_context *ctx = event->ctx;
3252 	struct perf_event *sibling;
3253 
3254 	WARN_ON_ONCE(ctx->parent_ctx);
3255 	mutex_lock(&ctx->mutex);
3256 	event = event->group_leader;
3257 
3258 	perf_event_for_each_child(event, func);
3259 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3260 		perf_event_for_each_child(sibling, func);
3261 	mutex_unlock(&ctx->mutex);
3262 }
3263 
3264 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3265 {
3266 	struct perf_event_context *ctx = event->ctx;
3267 	int ret = 0;
3268 	u64 value;
3269 
3270 	if (!is_sampling_event(event))
3271 		return -EINVAL;
3272 
3273 	if (copy_from_user(&value, arg, sizeof(value)))
3274 		return -EFAULT;
3275 
3276 	if (!value)
3277 		return -EINVAL;
3278 
3279 	raw_spin_lock_irq(&ctx->lock);
3280 	if (event->attr.freq) {
3281 		if (value > sysctl_perf_event_sample_rate) {
3282 			ret = -EINVAL;
3283 			goto unlock;
3284 		}
3285 
3286 		event->attr.sample_freq = value;
3287 	} else {
3288 		event->attr.sample_period = value;
3289 		event->hw.sample_period = value;
3290 	}
3291 unlock:
3292 	raw_spin_unlock_irq(&ctx->lock);
3293 
3294 	return ret;
3295 }
3296 
3297 static const struct file_operations perf_fops;
3298 
3299 static inline int perf_fget_light(int fd, struct fd *p)
3300 {
3301 	struct fd f = fdget(fd);
3302 	if (!f.file)
3303 		return -EBADF;
3304 
3305 	if (f.file->f_op != &perf_fops) {
3306 		fdput(f);
3307 		return -EBADF;
3308 	}
3309 	*p = f;
3310 	return 0;
3311 }
3312 
3313 static int perf_event_set_output(struct perf_event *event,
3314 				 struct perf_event *output_event);
3315 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3316 
3317 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3318 {
3319 	struct perf_event *event = file->private_data;
3320 	void (*func)(struct perf_event *);
3321 	u32 flags = arg;
3322 
3323 	switch (cmd) {
3324 	case PERF_EVENT_IOC_ENABLE:
3325 		func = perf_event_enable;
3326 		break;
3327 	case PERF_EVENT_IOC_DISABLE:
3328 		func = perf_event_disable;
3329 		break;
3330 	case PERF_EVENT_IOC_RESET:
3331 		func = perf_event_reset;
3332 		break;
3333 
3334 	case PERF_EVENT_IOC_REFRESH:
3335 		return perf_event_refresh(event, arg);
3336 
3337 	case PERF_EVENT_IOC_PERIOD:
3338 		return perf_event_period(event, (u64 __user *)arg);
3339 
3340 	case PERF_EVENT_IOC_SET_OUTPUT:
3341 	{
3342 		int ret;
3343 		if (arg != -1) {
3344 			struct perf_event *output_event;
3345 			struct fd output;
3346 			ret = perf_fget_light(arg, &output);
3347 			if (ret)
3348 				return ret;
3349 			output_event = output.file->private_data;
3350 			ret = perf_event_set_output(event, output_event);
3351 			fdput(output);
3352 		} else {
3353 			ret = perf_event_set_output(event, NULL);
3354 		}
3355 		return ret;
3356 	}
3357 
3358 	case PERF_EVENT_IOC_SET_FILTER:
3359 		return perf_event_set_filter(event, (void __user *)arg);
3360 
3361 	default:
3362 		return -ENOTTY;
3363 	}
3364 
3365 	if (flags & PERF_IOC_FLAG_GROUP)
3366 		perf_event_for_each(event, func);
3367 	else
3368 		perf_event_for_each_child(event, func);
3369 
3370 	return 0;
3371 }
3372 
3373 int perf_event_task_enable(void)
3374 {
3375 	struct perf_event *event;
3376 
3377 	mutex_lock(&current->perf_event_mutex);
3378 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3379 		perf_event_for_each_child(event, perf_event_enable);
3380 	mutex_unlock(&current->perf_event_mutex);
3381 
3382 	return 0;
3383 }
3384 
3385 int perf_event_task_disable(void)
3386 {
3387 	struct perf_event *event;
3388 
3389 	mutex_lock(&current->perf_event_mutex);
3390 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3391 		perf_event_for_each_child(event, perf_event_disable);
3392 	mutex_unlock(&current->perf_event_mutex);
3393 
3394 	return 0;
3395 }
3396 
3397 static int perf_event_index(struct perf_event *event)
3398 {
3399 	if (event->hw.state & PERF_HES_STOPPED)
3400 		return 0;
3401 
3402 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3403 		return 0;
3404 
3405 	return event->pmu->event_idx(event);
3406 }
3407 
3408 static void calc_timer_values(struct perf_event *event,
3409 				u64 *now,
3410 				u64 *enabled,
3411 				u64 *running)
3412 {
3413 	u64 ctx_time;
3414 
3415 	*now = perf_clock();
3416 	ctx_time = event->shadow_ctx_time + *now;
3417 	*enabled = ctx_time - event->tstamp_enabled;
3418 	*running = ctx_time - event->tstamp_running;
3419 }
3420 
3421 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3422 {
3423 }
3424 
3425 /*
3426  * Callers need to ensure there can be no nesting of this function, otherwise
3427  * the seqlock logic goes bad. We can not serialize this because the arch
3428  * code calls this from NMI context.
3429  */
3430 void perf_event_update_userpage(struct perf_event *event)
3431 {
3432 	struct perf_event_mmap_page *userpg;
3433 	struct ring_buffer *rb;
3434 	u64 enabled, running, now;
3435 
3436 	rcu_read_lock();
3437 	/*
3438 	 * compute total_time_enabled, total_time_running
3439 	 * based on snapshot values taken when the event
3440 	 * was last scheduled in.
3441 	 *
3442 	 * we cannot simply called update_context_time()
3443 	 * because of locking issue as we can be called in
3444 	 * NMI context
3445 	 */
3446 	calc_timer_values(event, &now, &enabled, &running);
3447 	rb = rcu_dereference(event->rb);
3448 	if (!rb)
3449 		goto unlock;
3450 
3451 	userpg = rb->user_page;
3452 
3453 	/*
3454 	 * Disable preemption so as to not let the corresponding user-space
3455 	 * spin too long if we get preempted.
3456 	 */
3457 	preempt_disable();
3458 	++userpg->lock;
3459 	barrier();
3460 	userpg->index = perf_event_index(event);
3461 	userpg->offset = perf_event_count(event);
3462 	if (userpg->index)
3463 		userpg->offset -= local64_read(&event->hw.prev_count);
3464 
3465 	userpg->time_enabled = enabled +
3466 			atomic64_read(&event->child_total_time_enabled);
3467 
3468 	userpg->time_running = running +
3469 			atomic64_read(&event->child_total_time_running);
3470 
3471 	arch_perf_update_userpage(userpg, now);
3472 
3473 	barrier();
3474 	++userpg->lock;
3475 	preempt_enable();
3476 unlock:
3477 	rcu_read_unlock();
3478 }
3479 
3480 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3481 {
3482 	struct perf_event *event = vma->vm_file->private_data;
3483 	struct ring_buffer *rb;
3484 	int ret = VM_FAULT_SIGBUS;
3485 
3486 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3487 		if (vmf->pgoff == 0)
3488 			ret = 0;
3489 		return ret;
3490 	}
3491 
3492 	rcu_read_lock();
3493 	rb = rcu_dereference(event->rb);
3494 	if (!rb)
3495 		goto unlock;
3496 
3497 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3498 		goto unlock;
3499 
3500 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3501 	if (!vmf->page)
3502 		goto unlock;
3503 
3504 	get_page(vmf->page);
3505 	vmf->page->mapping = vma->vm_file->f_mapping;
3506 	vmf->page->index   = vmf->pgoff;
3507 
3508 	ret = 0;
3509 unlock:
3510 	rcu_read_unlock();
3511 
3512 	return ret;
3513 }
3514 
3515 static void ring_buffer_attach(struct perf_event *event,
3516 			       struct ring_buffer *rb)
3517 {
3518 	unsigned long flags;
3519 
3520 	if (!list_empty(&event->rb_entry))
3521 		return;
3522 
3523 	spin_lock_irqsave(&rb->event_lock, flags);
3524 	if (!list_empty(&event->rb_entry))
3525 		goto unlock;
3526 
3527 	list_add(&event->rb_entry, &rb->event_list);
3528 unlock:
3529 	spin_unlock_irqrestore(&rb->event_lock, flags);
3530 }
3531 
3532 static void ring_buffer_detach(struct perf_event *event,
3533 			       struct ring_buffer *rb)
3534 {
3535 	unsigned long flags;
3536 
3537 	if (list_empty(&event->rb_entry))
3538 		return;
3539 
3540 	spin_lock_irqsave(&rb->event_lock, flags);
3541 	list_del_init(&event->rb_entry);
3542 	wake_up_all(&event->waitq);
3543 	spin_unlock_irqrestore(&rb->event_lock, flags);
3544 }
3545 
3546 static void ring_buffer_wakeup(struct perf_event *event)
3547 {
3548 	struct ring_buffer *rb;
3549 
3550 	rcu_read_lock();
3551 	rb = rcu_dereference(event->rb);
3552 	if (!rb)
3553 		goto unlock;
3554 
3555 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3556 		wake_up_all(&event->waitq);
3557 
3558 unlock:
3559 	rcu_read_unlock();
3560 }
3561 
3562 static void rb_free_rcu(struct rcu_head *rcu_head)
3563 {
3564 	struct ring_buffer *rb;
3565 
3566 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3567 	rb_free(rb);
3568 }
3569 
3570 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3571 {
3572 	struct ring_buffer *rb;
3573 
3574 	rcu_read_lock();
3575 	rb = rcu_dereference(event->rb);
3576 	if (rb) {
3577 		if (!atomic_inc_not_zero(&rb->refcount))
3578 			rb = NULL;
3579 	}
3580 	rcu_read_unlock();
3581 
3582 	return rb;
3583 }
3584 
3585 static void ring_buffer_put(struct ring_buffer *rb)
3586 {
3587 	struct perf_event *event, *n;
3588 	unsigned long flags;
3589 
3590 	if (!atomic_dec_and_test(&rb->refcount))
3591 		return;
3592 
3593 	spin_lock_irqsave(&rb->event_lock, flags);
3594 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3595 		list_del_init(&event->rb_entry);
3596 		wake_up_all(&event->waitq);
3597 	}
3598 	spin_unlock_irqrestore(&rb->event_lock, flags);
3599 
3600 	call_rcu(&rb->rcu_head, rb_free_rcu);
3601 }
3602 
3603 static void perf_mmap_open(struct vm_area_struct *vma)
3604 {
3605 	struct perf_event *event = vma->vm_file->private_data;
3606 
3607 	atomic_inc(&event->mmap_count);
3608 }
3609 
3610 static void perf_mmap_close(struct vm_area_struct *vma)
3611 {
3612 	struct perf_event *event = vma->vm_file->private_data;
3613 
3614 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3615 		unsigned long size = perf_data_size(event->rb);
3616 		struct user_struct *user = event->mmap_user;
3617 		struct ring_buffer *rb = event->rb;
3618 
3619 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3620 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3621 		rcu_assign_pointer(event->rb, NULL);
3622 		ring_buffer_detach(event, rb);
3623 		mutex_unlock(&event->mmap_mutex);
3624 
3625 		ring_buffer_put(rb);
3626 		free_uid(user);
3627 	}
3628 }
3629 
3630 static const struct vm_operations_struct perf_mmap_vmops = {
3631 	.open		= perf_mmap_open,
3632 	.close		= perf_mmap_close,
3633 	.fault		= perf_mmap_fault,
3634 	.page_mkwrite	= perf_mmap_fault,
3635 };
3636 
3637 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3638 {
3639 	struct perf_event *event = file->private_data;
3640 	unsigned long user_locked, user_lock_limit;
3641 	struct user_struct *user = current_user();
3642 	unsigned long locked, lock_limit;
3643 	struct ring_buffer *rb;
3644 	unsigned long vma_size;
3645 	unsigned long nr_pages;
3646 	long user_extra, extra;
3647 	int ret = 0, flags = 0;
3648 
3649 	/*
3650 	 * Don't allow mmap() of inherited per-task counters. This would
3651 	 * create a performance issue due to all children writing to the
3652 	 * same rb.
3653 	 */
3654 	if (event->cpu == -1 && event->attr.inherit)
3655 		return -EINVAL;
3656 
3657 	if (!(vma->vm_flags & VM_SHARED))
3658 		return -EINVAL;
3659 
3660 	vma_size = vma->vm_end - vma->vm_start;
3661 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3662 
3663 	/*
3664 	 * If we have rb pages ensure they're a power-of-two number, so we
3665 	 * can do bitmasks instead of modulo.
3666 	 */
3667 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3668 		return -EINVAL;
3669 
3670 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3671 		return -EINVAL;
3672 
3673 	if (vma->vm_pgoff != 0)
3674 		return -EINVAL;
3675 
3676 	WARN_ON_ONCE(event->ctx->parent_ctx);
3677 	mutex_lock(&event->mmap_mutex);
3678 	if (event->rb) {
3679 		if (event->rb->nr_pages == nr_pages)
3680 			atomic_inc(&event->rb->refcount);
3681 		else
3682 			ret = -EINVAL;
3683 		goto unlock;
3684 	}
3685 
3686 	user_extra = nr_pages + 1;
3687 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3688 
3689 	/*
3690 	 * Increase the limit linearly with more CPUs:
3691 	 */
3692 	user_lock_limit *= num_online_cpus();
3693 
3694 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3695 
3696 	extra = 0;
3697 	if (user_locked > user_lock_limit)
3698 		extra = user_locked - user_lock_limit;
3699 
3700 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3701 	lock_limit >>= PAGE_SHIFT;
3702 	locked = vma->vm_mm->pinned_vm + extra;
3703 
3704 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3705 		!capable(CAP_IPC_LOCK)) {
3706 		ret = -EPERM;
3707 		goto unlock;
3708 	}
3709 
3710 	WARN_ON(event->rb);
3711 
3712 	if (vma->vm_flags & VM_WRITE)
3713 		flags |= RING_BUFFER_WRITABLE;
3714 
3715 	rb = rb_alloc(nr_pages,
3716 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3717 		event->cpu, flags);
3718 
3719 	if (!rb) {
3720 		ret = -ENOMEM;
3721 		goto unlock;
3722 	}
3723 	rcu_assign_pointer(event->rb, rb);
3724 
3725 	atomic_long_add(user_extra, &user->locked_vm);
3726 	event->mmap_locked = extra;
3727 	event->mmap_user = get_current_user();
3728 	vma->vm_mm->pinned_vm += event->mmap_locked;
3729 
3730 	perf_event_update_userpage(event);
3731 
3732 unlock:
3733 	if (!ret)
3734 		atomic_inc(&event->mmap_count);
3735 	mutex_unlock(&event->mmap_mutex);
3736 
3737 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3738 	vma->vm_ops = &perf_mmap_vmops;
3739 
3740 	return ret;
3741 }
3742 
3743 static int perf_fasync(int fd, struct file *filp, int on)
3744 {
3745 	struct inode *inode = file_inode(filp);
3746 	struct perf_event *event = filp->private_data;
3747 	int retval;
3748 
3749 	mutex_lock(&inode->i_mutex);
3750 	retval = fasync_helper(fd, filp, on, &event->fasync);
3751 	mutex_unlock(&inode->i_mutex);
3752 
3753 	if (retval < 0)
3754 		return retval;
3755 
3756 	return 0;
3757 }
3758 
3759 static const struct file_operations perf_fops = {
3760 	.llseek			= no_llseek,
3761 	.release		= perf_release,
3762 	.read			= perf_read,
3763 	.poll			= perf_poll,
3764 	.unlocked_ioctl		= perf_ioctl,
3765 	.compat_ioctl		= perf_ioctl,
3766 	.mmap			= perf_mmap,
3767 	.fasync			= perf_fasync,
3768 };
3769 
3770 /*
3771  * Perf event wakeup
3772  *
3773  * If there's data, ensure we set the poll() state and publish everything
3774  * to user-space before waking everybody up.
3775  */
3776 
3777 void perf_event_wakeup(struct perf_event *event)
3778 {
3779 	ring_buffer_wakeup(event);
3780 
3781 	if (event->pending_kill) {
3782 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3783 		event->pending_kill = 0;
3784 	}
3785 }
3786 
3787 static void perf_pending_event(struct irq_work *entry)
3788 {
3789 	struct perf_event *event = container_of(entry,
3790 			struct perf_event, pending);
3791 
3792 	if (event->pending_disable) {
3793 		event->pending_disable = 0;
3794 		__perf_event_disable(event);
3795 	}
3796 
3797 	if (event->pending_wakeup) {
3798 		event->pending_wakeup = 0;
3799 		perf_event_wakeup(event);
3800 	}
3801 }
3802 
3803 /*
3804  * We assume there is only KVM supporting the callbacks.
3805  * Later on, we might change it to a list if there is
3806  * another virtualization implementation supporting the callbacks.
3807  */
3808 struct perf_guest_info_callbacks *perf_guest_cbs;
3809 
3810 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3811 {
3812 	perf_guest_cbs = cbs;
3813 	return 0;
3814 }
3815 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3816 
3817 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3818 {
3819 	perf_guest_cbs = NULL;
3820 	return 0;
3821 }
3822 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3823 
3824 static void
3825 perf_output_sample_regs(struct perf_output_handle *handle,
3826 			struct pt_regs *regs, u64 mask)
3827 {
3828 	int bit;
3829 
3830 	for_each_set_bit(bit, (const unsigned long *) &mask,
3831 			 sizeof(mask) * BITS_PER_BYTE) {
3832 		u64 val;
3833 
3834 		val = perf_reg_value(regs, bit);
3835 		perf_output_put(handle, val);
3836 	}
3837 }
3838 
3839 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3840 				  struct pt_regs *regs)
3841 {
3842 	if (!user_mode(regs)) {
3843 		if (current->mm)
3844 			regs = task_pt_regs(current);
3845 		else
3846 			regs = NULL;
3847 	}
3848 
3849 	if (regs) {
3850 		regs_user->regs = regs;
3851 		regs_user->abi  = perf_reg_abi(current);
3852 	}
3853 }
3854 
3855 /*
3856  * Get remaining task size from user stack pointer.
3857  *
3858  * It'd be better to take stack vma map and limit this more
3859  * precisly, but there's no way to get it safely under interrupt,
3860  * so using TASK_SIZE as limit.
3861  */
3862 static u64 perf_ustack_task_size(struct pt_regs *regs)
3863 {
3864 	unsigned long addr = perf_user_stack_pointer(regs);
3865 
3866 	if (!addr || addr >= TASK_SIZE)
3867 		return 0;
3868 
3869 	return TASK_SIZE - addr;
3870 }
3871 
3872 static u16
3873 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3874 			struct pt_regs *regs)
3875 {
3876 	u64 task_size;
3877 
3878 	/* No regs, no stack pointer, no dump. */
3879 	if (!regs)
3880 		return 0;
3881 
3882 	/*
3883 	 * Check if we fit in with the requested stack size into the:
3884 	 * - TASK_SIZE
3885 	 *   If we don't, we limit the size to the TASK_SIZE.
3886 	 *
3887 	 * - remaining sample size
3888 	 *   If we don't, we customize the stack size to
3889 	 *   fit in to the remaining sample size.
3890 	 */
3891 
3892 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3893 	stack_size = min(stack_size, (u16) task_size);
3894 
3895 	/* Current header size plus static size and dynamic size. */
3896 	header_size += 2 * sizeof(u64);
3897 
3898 	/* Do we fit in with the current stack dump size? */
3899 	if ((u16) (header_size + stack_size) < header_size) {
3900 		/*
3901 		 * If we overflow the maximum size for the sample,
3902 		 * we customize the stack dump size to fit in.
3903 		 */
3904 		stack_size = USHRT_MAX - header_size - sizeof(u64);
3905 		stack_size = round_up(stack_size, sizeof(u64));
3906 	}
3907 
3908 	return stack_size;
3909 }
3910 
3911 static void
3912 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3913 			  struct pt_regs *regs)
3914 {
3915 	/* Case of a kernel thread, nothing to dump */
3916 	if (!regs) {
3917 		u64 size = 0;
3918 		perf_output_put(handle, size);
3919 	} else {
3920 		unsigned long sp;
3921 		unsigned int rem;
3922 		u64 dyn_size;
3923 
3924 		/*
3925 		 * We dump:
3926 		 * static size
3927 		 *   - the size requested by user or the best one we can fit
3928 		 *     in to the sample max size
3929 		 * data
3930 		 *   - user stack dump data
3931 		 * dynamic size
3932 		 *   - the actual dumped size
3933 		 */
3934 
3935 		/* Static size. */
3936 		perf_output_put(handle, dump_size);
3937 
3938 		/* Data. */
3939 		sp = perf_user_stack_pointer(regs);
3940 		rem = __output_copy_user(handle, (void *) sp, dump_size);
3941 		dyn_size = dump_size - rem;
3942 
3943 		perf_output_skip(handle, rem);
3944 
3945 		/* Dynamic size. */
3946 		perf_output_put(handle, dyn_size);
3947 	}
3948 }
3949 
3950 static void __perf_event_header__init_id(struct perf_event_header *header,
3951 					 struct perf_sample_data *data,
3952 					 struct perf_event *event)
3953 {
3954 	u64 sample_type = event->attr.sample_type;
3955 
3956 	data->type = sample_type;
3957 	header->size += event->id_header_size;
3958 
3959 	if (sample_type & PERF_SAMPLE_TID) {
3960 		/* namespace issues */
3961 		data->tid_entry.pid = perf_event_pid(event, current);
3962 		data->tid_entry.tid = perf_event_tid(event, current);
3963 	}
3964 
3965 	if (sample_type & PERF_SAMPLE_TIME)
3966 		data->time = perf_clock();
3967 
3968 	if (sample_type & PERF_SAMPLE_ID)
3969 		data->id = primary_event_id(event);
3970 
3971 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3972 		data->stream_id = event->id;
3973 
3974 	if (sample_type & PERF_SAMPLE_CPU) {
3975 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3976 		data->cpu_entry.reserved = 0;
3977 	}
3978 }
3979 
3980 void perf_event_header__init_id(struct perf_event_header *header,
3981 				struct perf_sample_data *data,
3982 				struct perf_event *event)
3983 {
3984 	if (event->attr.sample_id_all)
3985 		__perf_event_header__init_id(header, data, event);
3986 }
3987 
3988 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3989 					   struct perf_sample_data *data)
3990 {
3991 	u64 sample_type = data->type;
3992 
3993 	if (sample_type & PERF_SAMPLE_TID)
3994 		perf_output_put(handle, data->tid_entry);
3995 
3996 	if (sample_type & PERF_SAMPLE_TIME)
3997 		perf_output_put(handle, data->time);
3998 
3999 	if (sample_type & PERF_SAMPLE_ID)
4000 		perf_output_put(handle, data->id);
4001 
4002 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4003 		perf_output_put(handle, data->stream_id);
4004 
4005 	if (sample_type & PERF_SAMPLE_CPU)
4006 		perf_output_put(handle, data->cpu_entry);
4007 }
4008 
4009 void perf_event__output_id_sample(struct perf_event *event,
4010 				  struct perf_output_handle *handle,
4011 				  struct perf_sample_data *sample)
4012 {
4013 	if (event->attr.sample_id_all)
4014 		__perf_event__output_id_sample(handle, sample);
4015 }
4016 
4017 static void perf_output_read_one(struct perf_output_handle *handle,
4018 				 struct perf_event *event,
4019 				 u64 enabled, u64 running)
4020 {
4021 	u64 read_format = event->attr.read_format;
4022 	u64 values[4];
4023 	int n = 0;
4024 
4025 	values[n++] = perf_event_count(event);
4026 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4027 		values[n++] = enabled +
4028 			atomic64_read(&event->child_total_time_enabled);
4029 	}
4030 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4031 		values[n++] = running +
4032 			atomic64_read(&event->child_total_time_running);
4033 	}
4034 	if (read_format & PERF_FORMAT_ID)
4035 		values[n++] = primary_event_id(event);
4036 
4037 	__output_copy(handle, values, n * sizeof(u64));
4038 }
4039 
4040 /*
4041  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4042  */
4043 static void perf_output_read_group(struct perf_output_handle *handle,
4044 			    struct perf_event *event,
4045 			    u64 enabled, u64 running)
4046 {
4047 	struct perf_event *leader = event->group_leader, *sub;
4048 	u64 read_format = event->attr.read_format;
4049 	u64 values[5];
4050 	int n = 0;
4051 
4052 	values[n++] = 1 + leader->nr_siblings;
4053 
4054 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4055 		values[n++] = enabled;
4056 
4057 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4058 		values[n++] = running;
4059 
4060 	if (leader != event)
4061 		leader->pmu->read(leader);
4062 
4063 	values[n++] = perf_event_count(leader);
4064 	if (read_format & PERF_FORMAT_ID)
4065 		values[n++] = primary_event_id(leader);
4066 
4067 	__output_copy(handle, values, n * sizeof(u64));
4068 
4069 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4070 		n = 0;
4071 
4072 		if (sub != event)
4073 			sub->pmu->read(sub);
4074 
4075 		values[n++] = perf_event_count(sub);
4076 		if (read_format & PERF_FORMAT_ID)
4077 			values[n++] = primary_event_id(sub);
4078 
4079 		__output_copy(handle, values, n * sizeof(u64));
4080 	}
4081 }
4082 
4083 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4084 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4085 
4086 static void perf_output_read(struct perf_output_handle *handle,
4087 			     struct perf_event *event)
4088 {
4089 	u64 enabled = 0, running = 0, now;
4090 	u64 read_format = event->attr.read_format;
4091 
4092 	/*
4093 	 * compute total_time_enabled, total_time_running
4094 	 * based on snapshot values taken when the event
4095 	 * was last scheduled in.
4096 	 *
4097 	 * we cannot simply called update_context_time()
4098 	 * because of locking issue as we are called in
4099 	 * NMI context
4100 	 */
4101 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4102 		calc_timer_values(event, &now, &enabled, &running);
4103 
4104 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4105 		perf_output_read_group(handle, event, enabled, running);
4106 	else
4107 		perf_output_read_one(handle, event, enabled, running);
4108 }
4109 
4110 void perf_output_sample(struct perf_output_handle *handle,
4111 			struct perf_event_header *header,
4112 			struct perf_sample_data *data,
4113 			struct perf_event *event)
4114 {
4115 	u64 sample_type = data->type;
4116 
4117 	perf_output_put(handle, *header);
4118 
4119 	if (sample_type & PERF_SAMPLE_IP)
4120 		perf_output_put(handle, data->ip);
4121 
4122 	if (sample_type & PERF_SAMPLE_TID)
4123 		perf_output_put(handle, data->tid_entry);
4124 
4125 	if (sample_type & PERF_SAMPLE_TIME)
4126 		perf_output_put(handle, data->time);
4127 
4128 	if (sample_type & PERF_SAMPLE_ADDR)
4129 		perf_output_put(handle, data->addr);
4130 
4131 	if (sample_type & PERF_SAMPLE_ID)
4132 		perf_output_put(handle, data->id);
4133 
4134 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4135 		perf_output_put(handle, data->stream_id);
4136 
4137 	if (sample_type & PERF_SAMPLE_CPU)
4138 		perf_output_put(handle, data->cpu_entry);
4139 
4140 	if (sample_type & PERF_SAMPLE_PERIOD)
4141 		perf_output_put(handle, data->period);
4142 
4143 	if (sample_type & PERF_SAMPLE_READ)
4144 		perf_output_read(handle, event);
4145 
4146 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4147 		if (data->callchain) {
4148 			int size = 1;
4149 
4150 			if (data->callchain)
4151 				size += data->callchain->nr;
4152 
4153 			size *= sizeof(u64);
4154 
4155 			__output_copy(handle, data->callchain, size);
4156 		} else {
4157 			u64 nr = 0;
4158 			perf_output_put(handle, nr);
4159 		}
4160 	}
4161 
4162 	if (sample_type & PERF_SAMPLE_RAW) {
4163 		if (data->raw) {
4164 			perf_output_put(handle, data->raw->size);
4165 			__output_copy(handle, data->raw->data,
4166 					   data->raw->size);
4167 		} else {
4168 			struct {
4169 				u32	size;
4170 				u32	data;
4171 			} raw = {
4172 				.size = sizeof(u32),
4173 				.data = 0,
4174 			};
4175 			perf_output_put(handle, raw);
4176 		}
4177 	}
4178 
4179 	if (!event->attr.watermark) {
4180 		int wakeup_events = event->attr.wakeup_events;
4181 
4182 		if (wakeup_events) {
4183 			struct ring_buffer *rb = handle->rb;
4184 			int events = local_inc_return(&rb->events);
4185 
4186 			if (events >= wakeup_events) {
4187 				local_sub(wakeup_events, &rb->events);
4188 				local_inc(&rb->wakeup);
4189 			}
4190 		}
4191 	}
4192 
4193 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4194 		if (data->br_stack) {
4195 			size_t size;
4196 
4197 			size = data->br_stack->nr
4198 			     * sizeof(struct perf_branch_entry);
4199 
4200 			perf_output_put(handle, data->br_stack->nr);
4201 			perf_output_copy(handle, data->br_stack->entries, size);
4202 		} else {
4203 			/*
4204 			 * we always store at least the value of nr
4205 			 */
4206 			u64 nr = 0;
4207 			perf_output_put(handle, nr);
4208 		}
4209 	}
4210 
4211 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4212 		u64 abi = data->regs_user.abi;
4213 
4214 		/*
4215 		 * If there are no regs to dump, notice it through
4216 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4217 		 */
4218 		perf_output_put(handle, abi);
4219 
4220 		if (abi) {
4221 			u64 mask = event->attr.sample_regs_user;
4222 			perf_output_sample_regs(handle,
4223 						data->regs_user.regs,
4224 						mask);
4225 		}
4226 	}
4227 
4228 	if (sample_type & PERF_SAMPLE_STACK_USER)
4229 		perf_output_sample_ustack(handle,
4230 					  data->stack_user_size,
4231 					  data->regs_user.regs);
4232 
4233 	if (sample_type & PERF_SAMPLE_WEIGHT)
4234 		perf_output_put(handle, data->weight);
4235 
4236 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4237 		perf_output_put(handle, data->data_src.val);
4238 }
4239 
4240 void perf_prepare_sample(struct perf_event_header *header,
4241 			 struct perf_sample_data *data,
4242 			 struct perf_event *event,
4243 			 struct pt_regs *regs)
4244 {
4245 	u64 sample_type = event->attr.sample_type;
4246 
4247 	header->type = PERF_RECORD_SAMPLE;
4248 	header->size = sizeof(*header) + event->header_size;
4249 
4250 	header->misc = 0;
4251 	header->misc |= perf_misc_flags(regs);
4252 
4253 	__perf_event_header__init_id(header, data, event);
4254 
4255 	if (sample_type & PERF_SAMPLE_IP)
4256 		data->ip = perf_instruction_pointer(regs);
4257 
4258 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4259 		int size = 1;
4260 
4261 		data->callchain = perf_callchain(event, regs);
4262 
4263 		if (data->callchain)
4264 			size += data->callchain->nr;
4265 
4266 		header->size += size * sizeof(u64);
4267 	}
4268 
4269 	if (sample_type & PERF_SAMPLE_RAW) {
4270 		int size = sizeof(u32);
4271 
4272 		if (data->raw)
4273 			size += data->raw->size;
4274 		else
4275 			size += sizeof(u32);
4276 
4277 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4278 		header->size += size;
4279 	}
4280 
4281 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4282 		int size = sizeof(u64); /* nr */
4283 		if (data->br_stack) {
4284 			size += data->br_stack->nr
4285 			      * sizeof(struct perf_branch_entry);
4286 		}
4287 		header->size += size;
4288 	}
4289 
4290 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4291 		/* regs dump ABI info */
4292 		int size = sizeof(u64);
4293 
4294 		perf_sample_regs_user(&data->regs_user, regs);
4295 
4296 		if (data->regs_user.regs) {
4297 			u64 mask = event->attr.sample_regs_user;
4298 			size += hweight64(mask) * sizeof(u64);
4299 		}
4300 
4301 		header->size += size;
4302 	}
4303 
4304 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4305 		/*
4306 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4307 		 * processed as the last one or have additional check added
4308 		 * in case new sample type is added, because we could eat
4309 		 * up the rest of the sample size.
4310 		 */
4311 		struct perf_regs_user *uregs = &data->regs_user;
4312 		u16 stack_size = event->attr.sample_stack_user;
4313 		u16 size = sizeof(u64);
4314 
4315 		if (!uregs->abi)
4316 			perf_sample_regs_user(uregs, regs);
4317 
4318 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4319 						     uregs->regs);
4320 
4321 		/*
4322 		 * If there is something to dump, add space for the dump
4323 		 * itself and for the field that tells the dynamic size,
4324 		 * which is how many have been actually dumped.
4325 		 */
4326 		if (stack_size)
4327 			size += sizeof(u64) + stack_size;
4328 
4329 		data->stack_user_size = stack_size;
4330 		header->size += size;
4331 	}
4332 }
4333 
4334 static void perf_event_output(struct perf_event *event,
4335 				struct perf_sample_data *data,
4336 				struct pt_regs *regs)
4337 {
4338 	struct perf_output_handle handle;
4339 	struct perf_event_header header;
4340 
4341 	/* protect the callchain buffers */
4342 	rcu_read_lock();
4343 
4344 	perf_prepare_sample(&header, data, event, regs);
4345 
4346 	if (perf_output_begin(&handle, event, header.size))
4347 		goto exit;
4348 
4349 	perf_output_sample(&handle, &header, data, event);
4350 
4351 	perf_output_end(&handle);
4352 
4353 exit:
4354 	rcu_read_unlock();
4355 }
4356 
4357 /*
4358  * read event_id
4359  */
4360 
4361 struct perf_read_event {
4362 	struct perf_event_header	header;
4363 
4364 	u32				pid;
4365 	u32				tid;
4366 };
4367 
4368 static void
4369 perf_event_read_event(struct perf_event *event,
4370 			struct task_struct *task)
4371 {
4372 	struct perf_output_handle handle;
4373 	struct perf_sample_data sample;
4374 	struct perf_read_event read_event = {
4375 		.header = {
4376 			.type = PERF_RECORD_READ,
4377 			.misc = 0,
4378 			.size = sizeof(read_event) + event->read_size,
4379 		},
4380 		.pid = perf_event_pid(event, task),
4381 		.tid = perf_event_tid(event, task),
4382 	};
4383 	int ret;
4384 
4385 	perf_event_header__init_id(&read_event.header, &sample, event);
4386 	ret = perf_output_begin(&handle, event, read_event.header.size);
4387 	if (ret)
4388 		return;
4389 
4390 	perf_output_put(&handle, read_event);
4391 	perf_output_read(&handle, event);
4392 	perf_event__output_id_sample(event, &handle, &sample);
4393 
4394 	perf_output_end(&handle);
4395 }
4396 
4397 /*
4398  * task tracking -- fork/exit
4399  *
4400  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4401  */
4402 
4403 struct perf_task_event {
4404 	struct task_struct		*task;
4405 	struct perf_event_context	*task_ctx;
4406 
4407 	struct {
4408 		struct perf_event_header	header;
4409 
4410 		u32				pid;
4411 		u32				ppid;
4412 		u32				tid;
4413 		u32				ptid;
4414 		u64				time;
4415 	} event_id;
4416 };
4417 
4418 static void perf_event_task_output(struct perf_event *event,
4419 				     struct perf_task_event *task_event)
4420 {
4421 	struct perf_output_handle handle;
4422 	struct perf_sample_data	sample;
4423 	struct task_struct *task = task_event->task;
4424 	int ret, size = task_event->event_id.header.size;
4425 
4426 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4427 
4428 	ret = perf_output_begin(&handle, event,
4429 				task_event->event_id.header.size);
4430 	if (ret)
4431 		goto out;
4432 
4433 	task_event->event_id.pid = perf_event_pid(event, task);
4434 	task_event->event_id.ppid = perf_event_pid(event, current);
4435 
4436 	task_event->event_id.tid = perf_event_tid(event, task);
4437 	task_event->event_id.ptid = perf_event_tid(event, current);
4438 
4439 	perf_output_put(&handle, task_event->event_id);
4440 
4441 	perf_event__output_id_sample(event, &handle, &sample);
4442 
4443 	perf_output_end(&handle);
4444 out:
4445 	task_event->event_id.header.size = size;
4446 }
4447 
4448 static int perf_event_task_match(struct perf_event *event)
4449 {
4450 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4451 		return 0;
4452 
4453 	if (!event_filter_match(event))
4454 		return 0;
4455 
4456 	if (event->attr.comm || event->attr.mmap ||
4457 	    event->attr.mmap_data || event->attr.task)
4458 		return 1;
4459 
4460 	return 0;
4461 }
4462 
4463 static void perf_event_task_ctx(struct perf_event_context *ctx,
4464 				  struct perf_task_event *task_event)
4465 {
4466 	struct perf_event *event;
4467 
4468 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4469 		if (perf_event_task_match(event))
4470 			perf_event_task_output(event, task_event);
4471 	}
4472 }
4473 
4474 static void perf_event_task_event(struct perf_task_event *task_event)
4475 {
4476 	struct perf_cpu_context *cpuctx;
4477 	struct perf_event_context *ctx;
4478 	struct pmu *pmu;
4479 	int ctxn;
4480 
4481 	rcu_read_lock();
4482 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4483 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4484 		if (cpuctx->unique_pmu != pmu)
4485 			goto next;
4486 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4487 
4488 		ctx = task_event->task_ctx;
4489 		if (!ctx) {
4490 			ctxn = pmu->task_ctx_nr;
4491 			if (ctxn < 0)
4492 				goto next;
4493 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4494 			if (ctx)
4495 				perf_event_task_ctx(ctx, task_event);
4496 		}
4497 next:
4498 		put_cpu_ptr(pmu->pmu_cpu_context);
4499 	}
4500 	if (task_event->task_ctx)
4501 		perf_event_task_ctx(task_event->task_ctx, task_event);
4502 
4503 	rcu_read_unlock();
4504 }
4505 
4506 static void perf_event_task(struct task_struct *task,
4507 			      struct perf_event_context *task_ctx,
4508 			      int new)
4509 {
4510 	struct perf_task_event task_event;
4511 
4512 	if (!atomic_read(&nr_comm_events) &&
4513 	    !atomic_read(&nr_mmap_events) &&
4514 	    !atomic_read(&nr_task_events))
4515 		return;
4516 
4517 	task_event = (struct perf_task_event){
4518 		.task	  = task,
4519 		.task_ctx = task_ctx,
4520 		.event_id    = {
4521 			.header = {
4522 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4523 				.misc = 0,
4524 				.size = sizeof(task_event.event_id),
4525 			},
4526 			/* .pid  */
4527 			/* .ppid */
4528 			/* .tid  */
4529 			/* .ptid */
4530 			.time = perf_clock(),
4531 		},
4532 	};
4533 
4534 	perf_event_task_event(&task_event);
4535 }
4536 
4537 void perf_event_fork(struct task_struct *task)
4538 {
4539 	perf_event_task(task, NULL, 1);
4540 }
4541 
4542 /*
4543  * comm tracking
4544  */
4545 
4546 struct perf_comm_event {
4547 	struct task_struct	*task;
4548 	char			*comm;
4549 	int			comm_size;
4550 
4551 	struct {
4552 		struct perf_event_header	header;
4553 
4554 		u32				pid;
4555 		u32				tid;
4556 	} event_id;
4557 };
4558 
4559 static void perf_event_comm_output(struct perf_event *event,
4560 				     struct perf_comm_event *comm_event)
4561 {
4562 	struct perf_output_handle handle;
4563 	struct perf_sample_data sample;
4564 	int size = comm_event->event_id.header.size;
4565 	int ret;
4566 
4567 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4568 	ret = perf_output_begin(&handle, event,
4569 				comm_event->event_id.header.size);
4570 
4571 	if (ret)
4572 		goto out;
4573 
4574 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4575 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4576 
4577 	perf_output_put(&handle, comm_event->event_id);
4578 	__output_copy(&handle, comm_event->comm,
4579 				   comm_event->comm_size);
4580 
4581 	perf_event__output_id_sample(event, &handle, &sample);
4582 
4583 	perf_output_end(&handle);
4584 out:
4585 	comm_event->event_id.header.size = size;
4586 }
4587 
4588 static int perf_event_comm_match(struct perf_event *event)
4589 {
4590 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4591 		return 0;
4592 
4593 	if (!event_filter_match(event))
4594 		return 0;
4595 
4596 	if (event->attr.comm)
4597 		return 1;
4598 
4599 	return 0;
4600 }
4601 
4602 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4603 				  struct perf_comm_event *comm_event)
4604 {
4605 	struct perf_event *event;
4606 
4607 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4608 		if (perf_event_comm_match(event))
4609 			perf_event_comm_output(event, comm_event);
4610 	}
4611 }
4612 
4613 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4614 {
4615 	struct perf_cpu_context *cpuctx;
4616 	struct perf_event_context *ctx;
4617 	char comm[TASK_COMM_LEN];
4618 	unsigned int size;
4619 	struct pmu *pmu;
4620 	int ctxn;
4621 
4622 	memset(comm, 0, sizeof(comm));
4623 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4624 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4625 
4626 	comm_event->comm = comm;
4627 	comm_event->comm_size = size;
4628 
4629 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4630 	rcu_read_lock();
4631 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4632 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4633 		if (cpuctx->unique_pmu != pmu)
4634 			goto next;
4635 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4636 
4637 		ctxn = pmu->task_ctx_nr;
4638 		if (ctxn < 0)
4639 			goto next;
4640 
4641 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4642 		if (ctx)
4643 			perf_event_comm_ctx(ctx, comm_event);
4644 next:
4645 		put_cpu_ptr(pmu->pmu_cpu_context);
4646 	}
4647 	rcu_read_unlock();
4648 }
4649 
4650 void perf_event_comm(struct task_struct *task)
4651 {
4652 	struct perf_comm_event comm_event;
4653 	struct perf_event_context *ctx;
4654 	int ctxn;
4655 
4656 	rcu_read_lock();
4657 	for_each_task_context_nr(ctxn) {
4658 		ctx = task->perf_event_ctxp[ctxn];
4659 		if (!ctx)
4660 			continue;
4661 
4662 		perf_event_enable_on_exec(ctx);
4663 	}
4664 	rcu_read_unlock();
4665 
4666 	if (!atomic_read(&nr_comm_events))
4667 		return;
4668 
4669 	comm_event = (struct perf_comm_event){
4670 		.task	= task,
4671 		/* .comm      */
4672 		/* .comm_size */
4673 		.event_id  = {
4674 			.header = {
4675 				.type = PERF_RECORD_COMM,
4676 				.misc = 0,
4677 				/* .size */
4678 			},
4679 			/* .pid */
4680 			/* .tid */
4681 		},
4682 	};
4683 
4684 	perf_event_comm_event(&comm_event);
4685 }
4686 
4687 /*
4688  * mmap tracking
4689  */
4690 
4691 struct perf_mmap_event {
4692 	struct vm_area_struct	*vma;
4693 
4694 	const char		*file_name;
4695 	int			file_size;
4696 
4697 	struct {
4698 		struct perf_event_header	header;
4699 
4700 		u32				pid;
4701 		u32				tid;
4702 		u64				start;
4703 		u64				len;
4704 		u64				pgoff;
4705 	} event_id;
4706 };
4707 
4708 static void perf_event_mmap_output(struct perf_event *event,
4709 				     struct perf_mmap_event *mmap_event)
4710 {
4711 	struct perf_output_handle handle;
4712 	struct perf_sample_data sample;
4713 	int size = mmap_event->event_id.header.size;
4714 	int ret;
4715 
4716 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4717 	ret = perf_output_begin(&handle, event,
4718 				mmap_event->event_id.header.size);
4719 	if (ret)
4720 		goto out;
4721 
4722 	mmap_event->event_id.pid = perf_event_pid(event, current);
4723 	mmap_event->event_id.tid = perf_event_tid(event, current);
4724 
4725 	perf_output_put(&handle, mmap_event->event_id);
4726 	__output_copy(&handle, mmap_event->file_name,
4727 				   mmap_event->file_size);
4728 
4729 	perf_event__output_id_sample(event, &handle, &sample);
4730 
4731 	perf_output_end(&handle);
4732 out:
4733 	mmap_event->event_id.header.size = size;
4734 }
4735 
4736 static int perf_event_mmap_match(struct perf_event *event,
4737 				   struct perf_mmap_event *mmap_event,
4738 				   int executable)
4739 {
4740 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4741 		return 0;
4742 
4743 	if (!event_filter_match(event))
4744 		return 0;
4745 
4746 	if ((!executable && event->attr.mmap_data) ||
4747 	    (executable && event->attr.mmap))
4748 		return 1;
4749 
4750 	return 0;
4751 }
4752 
4753 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4754 				  struct perf_mmap_event *mmap_event,
4755 				  int executable)
4756 {
4757 	struct perf_event *event;
4758 
4759 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4760 		if (perf_event_mmap_match(event, mmap_event, executable))
4761 			perf_event_mmap_output(event, mmap_event);
4762 	}
4763 }
4764 
4765 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4766 {
4767 	struct perf_cpu_context *cpuctx;
4768 	struct perf_event_context *ctx;
4769 	struct vm_area_struct *vma = mmap_event->vma;
4770 	struct file *file = vma->vm_file;
4771 	unsigned int size;
4772 	char tmp[16];
4773 	char *buf = NULL;
4774 	const char *name;
4775 	struct pmu *pmu;
4776 	int ctxn;
4777 
4778 	memset(tmp, 0, sizeof(tmp));
4779 
4780 	if (file) {
4781 		/*
4782 		 * d_path works from the end of the rb backwards, so we
4783 		 * need to add enough zero bytes after the string to handle
4784 		 * the 64bit alignment we do later.
4785 		 */
4786 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4787 		if (!buf) {
4788 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4789 			goto got_name;
4790 		}
4791 		name = d_path(&file->f_path, buf, PATH_MAX);
4792 		if (IS_ERR(name)) {
4793 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4794 			goto got_name;
4795 		}
4796 	} else {
4797 		if (arch_vma_name(mmap_event->vma)) {
4798 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4799 				       sizeof(tmp) - 1);
4800 			tmp[sizeof(tmp) - 1] = '\0';
4801 			goto got_name;
4802 		}
4803 
4804 		if (!vma->vm_mm) {
4805 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4806 			goto got_name;
4807 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4808 				vma->vm_end >= vma->vm_mm->brk) {
4809 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4810 			goto got_name;
4811 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4812 				vma->vm_end >= vma->vm_mm->start_stack) {
4813 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4814 			goto got_name;
4815 		}
4816 
4817 		name = strncpy(tmp, "//anon", sizeof(tmp));
4818 		goto got_name;
4819 	}
4820 
4821 got_name:
4822 	size = ALIGN(strlen(name)+1, sizeof(u64));
4823 
4824 	mmap_event->file_name = name;
4825 	mmap_event->file_size = size;
4826 
4827 	if (!(vma->vm_flags & VM_EXEC))
4828 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
4829 
4830 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4831 
4832 	rcu_read_lock();
4833 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4834 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4835 		if (cpuctx->unique_pmu != pmu)
4836 			goto next;
4837 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4838 					vma->vm_flags & VM_EXEC);
4839 
4840 		ctxn = pmu->task_ctx_nr;
4841 		if (ctxn < 0)
4842 			goto next;
4843 
4844 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4845 		if (ctx) {
4846 			perf_event_mmap_ctx(ctx, mmap_event,
4847 					vma->vm_flags & VM_EXEC);
4848 		}
4849 next:
4850 		put_cpu_ptr(pmu->pmu_cpu_context);
4851 	}
4852 	rcu_read_unlock();
4853 
4854 	kfree(buf);
4855 }
4856 
4857 void perf_event_mmap(struct vm_area_struct *vma)
4858 {
4859 	struct perf_mmap_event mmap_event;
4860 
4861 	if (!atomic_read(&nr_mmap_events))
4862 		return;
4863 
4864 	mmap_event = (struct perf_mmap_event){
4865 		.vma	= vma,
4866 		/* .file_name */
4867 		/* .file_size */
4868 		.event_id  = {
4869 			.header = {
4870 				.type = PERF_RECORD_MMAP,
4871 				.misc = PERF_RECORD_MISC_USER,
4872 				/* .size */
4873 			},
4874 			/* .pid */
4875 			/* .tid */
4876 			.start  = vma->vm_start,
4877 			.len    = vma->vm_end - vma->vm_start,
4878 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4879 		},
4880 	};
4881 
4882 	perf_event_mmap_event(&mmap_event);
4883 }
4884 
4885 /*
4886  * IRQ throttle logging
4887  */
4888 
4889 static void perf_log_throttle(struct perf_event *event, int enable)
4890 {
4891 	struct perf_output_handle handle;
4892 	struct perf_sample_data sample;
4893 	int ret;
4894 
4895 	struct {
4896 		struct perf_event_header	header;
4897 		u64				time;
4898 		u64				id;
4899 		u64				stream_id;
4900 	} throttle_event = {
4901 		.header = {
4902 			.type = PERF_RECORD_THROTTLE,
4903 			.misc = 0,
4904 			.size = sizeof(throttle_event),
4905 		},
4906 		.time		= perf_clock(),
4907 		.id		= primary_event_id(event),
4908 		.stream_id	= event->id,
4909 	};
4910 
4911 	if (enable)
4912 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4913 
4914 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4915 
4916 	ret = perf_output_begin(&handle, event,
4917 				throttle_event.header.size);
4918 	if (ret)
4919 		return;
4920 
4921 	perf_output_put(&handle, throttle_event);
4922 	perf_event__output_id_sample(event, &handle, &sample);
4923 	perf_output_end(&handle);
4924 }
4925 
4926 /*
4927  * Generic event overflow handling, sampling.
4928  */
4929 
4930 static int __perf_event_overflow(struct perf_event *event,
4931 				   int throttle, struct perf_sample_data *data,
4932 				   struct pt_regs *regs)
4933 {
4934 	int events = atomic_read(&event->event_limit);
4935 	struct hw_perf_event *hwc = &event->hw;
4936 	u64 seq;
4937 	int ret = 0;
4938 
4939 	/*
4940 	 * Non-sampling counters might still use the PMI to fold short
4941 	 * hardware counters, ignore those.
4942 	 */
4943 	if (unlikely(!is_sampling_event(event)))
4944 		return 0;
4945 
4946 	seq = __this_cpu_read(perf_throttled_seq);
4947 	if (seq != hwc->interrupts_seq) {
4948 		hwc->interrupts_seq = seq;
4949 		hwc->interrupts = 1;
4950 	} else {
4951 		hwc->interrupts++;
4952 		if (unlikely(throttle
4953 			     && hwc->interrupts >= max_samples_per_tick)) {
4954 			__this_cpu_inc(perf_throttled_count);
4955 			hwc->interrupts = MAX_INTERRUPTS;
4956 			perf_log_throttle(event, 0);
4957 			ret = 1;
4958 		}
4959 	}
4960 
4961 	if (event->attr.freq) {
4962 		u64 now = perf_clock();
4963 		s64 delta = now - hwc->freq_time_stamp;
4964 
4965 		hwc->freq_time_stamp = now;
4966 
4967 		if (delta > 0 && delta < 2*TICK_NSEC)
4968 			perf_adjust_period(event, delta, hwc->last_period, true);
4969 	}
4970 
4971 	/*
4972 	 * XXX event_limit might not quite work as expected on inherited
4973 	 * events
4974 	 */
4975 
4976 	event->pending_kill = POLL_IN;
4977 	if (events && atomic_dec_and_test(&event->event_limit)) {
4978 		ret = 1;
4979 		event->pending_kill = POLL_HUP;
4980 		event->pending_disable = 1;
4981 		irq_work_queue(&event->pending);
4982 	}
4983 
4984 	if (event->overflow_handler)
4985 		event->overflow_handler(event, data, regs);
4986 	else
4987 		perf_event_output(event, data, regs);
4988 
4989 	if (event->fasync && event->pending_kill) {
4990 		event->pending_wakeup = 1;
4991 		irq_work_queue(&event->pending);
4992 	}
4993 
4994 	return ret;
4995 }
4996 
4997 int perf_event_overflow(struct perf_event *event,
4998 			  struct perf_sample_data *data,
4999 			  struct pt_regs *regs)
5000 {
5001 	return __perf_event_overflow(event, 1, data, regs);
5002 }
5003 
5004 /*
5005  * Generic software event infrastructure
5006  */
5007 
5008 struct swevent_htable {
5009 	struct swevent_hlist		*swevent_hlist;
5010 	struct mutex			hlist_mutex;
5011 	int				hlist_refcount;
5012 
5013 	/* Recursion avoidance in each contexts */
5014 	int				recursion[PERF_NR_CONTEXTS];
5015 };
5016 
5017 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5018 
5019 /*
5020  * We directly increment event->count and keep a second value in
5021  * event->hw.period_left to count intervals. This period event
5022  * is kept in the range [-sample_period, 0] so that we can use the
5023  * sign as trigger.
5024  */
5025 
5026 static u64 perf_swevent_set_period(struct perf_event *event)
5027 {
5028 	struct hw_perf_event *hwc = &event->hw;
5029 	u64 period = hwc->last_period;
5030 	u64 nr, offset;
5031 	s64 old, val;
5032 
5033 	hwc->last_period = hwc->sample_period;
5034 
5035 again:
5036 	old = val = local64_read(&hwc->period_left);
5037 	if (val < 0)
5038 		return 0;
5039 
5040 	nr = div64_u64(period + val, period);
5041 	offset = nr * period;
5042 	val -= offset;
5043 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5044 		goto again;
5045 
5046 	return nr;
5047 }
5048 
5049 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5050 				    struct perf_sample_data *data,
5051 				    struct pt_regs *regs)
5052 {
5053 	struct hw_perf_event *hwc = &event->hw;
5054 	int throttle = 0;
5055 
5056 	if (!overflow)
5057 		overflow = perf_swevent_set_period(event);
5058 
5059 	if (hwc->interrupts == MAX_INTERRUPTS)
5060 		return;
5061 
5062 	for (; overflow; overflow--) {
5063 		if (__perf_event_overflow(event, throttle,
5064 					    data, regs)) {
5065 			/*
5066 			 * We inhibit the overflow from happening when
5067 			 * hwc->interrupts == MAX_INTERRUPTS.
5068 			 */
5069 			break;
5070 		}
5071 		throttle = 1;
5072 	}
5073 }
5074 
5075 static void perf_swevent_event(struct perf_event *event, u64 nr,
5076 			       struct perf_sample_data *data,
5077 			       struct pt_regs *regs)
5078 {
5079 	struct hw_perf_event *hwc = &event->hw;
5080 
5081 	local64_add(nr, &event->count);
5082 
5083 	if (!regs)
5084 		return;
5085 
5086 	if (!is_sampling_event(event))
5087 		return;
5088 
5089 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5090 		data->period = nr;
5091 		return perf_swevent_overflow(event, 1, data, regs);
5092 	} else
5093 		data->period = event->hw.last_period;
5094 
5095 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5096 		return perf_swevent_overflow(event, 1, data, regs);
5097 
5098 	if (local64_add_negative(nr, &hwc->period_left))
5099 		return;
5100 
5101 	perf_swevent_overflow(event, 0, data, regs);
5102 }
5103 
5104 static int perf_exclude_event(struct perf_event *event,
5105 			      struct pt_regs *regs)
5106 {
5107 	if (event->hw.state & PERF_HES_STOPPED)
5108 		return 1;
5109 
5110 	if (regs) {
5111 		if (event->attr.exclude_user && user_mode(regs))
5112 			return 1;
5113 
5114 		if (event->attr.exclude_kernel && !user_mode(regs))
5115 			return 1;
5116 	}
5117 
5118 	return 0;
5119 }
5120 
5121 static int perf_swevent_match(struct perf_event *event,
5122 				enum perf_type_id type,
5123 				u32 event_id,
5124 				struct perf_sample_data *data,
5125 				struct pt_regs *regs)
5126 {
5127 	if (event->attr.type != type)
5128 		return 0;
5129 
5130 	if (event->attr.config != event_id)
5131 		return 0;
5132 
5133 	if (perf_exclude_event(event, regs))
5134 		return 0;
5135 
5136 	return 1;
5137 }
5138 
5139 static inline u64 swevent_hash(u64 type, u32 event_id)
5140 {
5141 	u64 val = event_id | (type << 32);
5142 
5143 	return hash_64(val, SWEVENT_HLIST_BITS);
5144 }
5145 
5146 static inline struct hlist_head *
5147 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5148 {
5149 	u64 hash = swevent_hash(type, event_id);
5150 
5151 	return &hlist->heads[hash];
5152 }
5153 
5154 /* For the read side: events when they trigger */
5155 static inline struct hlist_head *
5156 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5157 {
5158 	struct swevent_hlist *hlist;
5159 
5160 	hlist = rcu_dereference(swhash->swevent_hlist);
5161 	if (!hlist)
5162 		return NULL;
5163 
5164 	return __find_swevent_head(hlist, type, event_id);
5165 }
5166 
5167 /* For the event head insertion and removal in the hlist */
5168 static inline struct hlist_head *
5169 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5170 {
5171 	struct swevent_hlist *hlist;
5172 	u32 event_id = event->attr.config;
5173 	u64 type = event->attr.type;
5174 
5175 	/*
5176 	 * Event scheduling is always serialized against hlist allocation
5177 	 * and release. Which makes the protected version suitable here.
5178 	 * The context lock guarantees that.
5179 	 */
5180 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5181 					  lockdep_is_held(&event->ctx->lock));
5182 	if (!hlist)
5183 		return NULL;
5184 
5185 	return __find_swevent_head(hlist, type, event_id);
5186 }
5187 
5188 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5189 				    u64 nr,
5190 				    struct perf_sample_data *data,
5191 				    struct pt_regs *regs)
5192 {
5193 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5194 	struct perf_event *event;
5195 	struct hlist_head *head;
5196 
5197 	rcu_read_lock();
5198 	head = find_swevent_head_rcu(swhash, type, event_id);
5199 	if (!head)
5200 		goto end;
5201 
5202 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5203 		if (perf_swevent_match(event, type, event_id, data, regs))
5204 			perf_swevent_event(event, nr, data, regs);
5205 	}
5206 end:
5207 	rcu_read_unlock();
5208 }
5209 
5210 int perf_swevent_get_recursion_context(void)
5211 {
5212 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5213 
5214 	return get_recursion_context(swhash->recursion);
5215 }
5216 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5217 
5218 inline void perf_swevent_put_recursion_context(int rctx)
5219 {
5220 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5221 
5222 	put_recursion_context(swhash->recursion, rctx);
5223 }
5224 
5225 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5226 {
5227 	struct perf_sample_data data;
5228 	int rctx;
5229 
5230 	preempt_disable_notrace();
5231 	rctx = perf_swevent_get_recursion_context();
5232 	if (rctx < 0)
5233 		return;
5234 
5235 	perf_sample_data_init(&data, addr, 0);
5236 
5237 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5238 
5239 	perf_swevent_put_recursion_context(rctx);
5240 	preempt_enable_notrace();
5241 }
5242 
5243 static void perf_swevent_read(struct perf_event *event)
5244 {
5245 }
5246 
5247 static int perf_swevent_add(struct perf_event *event, int flags)
5248 {
5249 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5250 	struct hw_perf_event *hwc = &event->hw;
5251 	struct hlist_head *head;
5252 
5253 	if (is_sampling_event(event)) {
5254 		hwc->last_period = hwc->sample_period;
5255 		perf_swevent_set_period(event);
5256 	}
5257 
5258 	hwc->state = !(flags & PERF_EF_START);
5259 
5260 	head = find_swevent_head(swhash, event);
5261 	if (WARN_ON_ONCE(!head))
5262 		return -EINVAL;
5263 
5264 	hlist_add_head_rcu(&event->hlist_entry, head);
5265 
5266 	return 0;
5267 }
5268 
5269 static void perf_swevent_del(struct perf_event *event, int flags)
5270 {
5271 	hlist_del_rcu(&event->hlist_entry);
5272 }
5273 
5274 static void perf_swevent_start(struct perf_event *event, int flags)
5275 {
5276 	event->hw.state = 0;
5277 }
5278 
5279 static void perf_swevent_stop(struct perf_event *event, int flags)
5280 {
5281 	event->hw.state = PERF_HES_STOPPED;
5282 }
5283 
5284 /* Deref the hlist from the update side */
5285 static inline struct swevent_hlist *
5286 swevent_hlist_deref(struct swevent_htable *swhash)
5287 {
5288 	return rcu_dereference_protected(swhash->swevent_hlist,
5289 					 lockdep_is_held(&swhash->hlist_mutex));
5290 }
5291 
5292 static void swevent_hlist_release(struct swevent_htable *swhash)
5293 {
5294 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5295 
5296 	if (!hlist)
5297 		return;
5298 
5299 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5300 	kfree_rcu(hlist, rcu_head);
5301 }
5302 
5303 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5304 {
5305 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5306 
5307 	mutex_lock(&swhash->hlist_mutex);
5308 
5309 	if (!--swhash->hlist_refcount)
5310 		swevent_hlist_release(swhash);
5311 
5312 	mutex_unlock(&swhash->hlist_mutex);
5313 }
5314 
5315 static void swevent_hlist_put(struct perf_event *event)
5316 {
5317 	int cpu;
5318 
5319 	if (event->cpu != -1) {
5320 		swevent_hlist_put_cpu(event, event->cpu);
5321 		return;
5322 	}
5323 
5324 	for_each_possible_cpu(cpu)
5325 		swevent_hlist_put_cpu(event, cpu);
5326 }
5327 
5328 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5329 {
5330 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5331 	int err = 0;
5332 
5333 	mutex_lock(&swhash->hlist_mutex);
5334 
5335 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5336 		struct swevent_hlist *hlist;
5337 
5338 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5339 		if (!hlist) {
5340 			err = -ENOMEM;
5341 			goto exit;
5342 		}
5343 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5344 	}
5345 	swhash->hlist_refcount++;
5346 exit:
5347 	mutex_unlock(&swhash->hlist_mutex);
5348 
5349 	return err;
5350 }
5351 
5352 static int swevent_hlist_get(struct perf_event *event)
5353 {
5354 	int err;
5355 	int cpu, failed_cpu;
5356 
5357 	if (event->cpu != -1)
5358 		return swevent_hlist_get_cpu(event, event->cpu);
5359 
5360 	get_online_cpus();
5361 	for_each_possible_cpu(cpu) {
5362 		err = swevent_hlist_get_cpu(event, cpu);
5363 		if (err) {
5364 			failed_cpu = cpu;
5365 			goto fail;
5366 		}
5367 	}
5368 	put_online_cpus();
5369 
5370 	return 0;
5371 fail:
5372 	for_each_possible_cpu(cpu) {
5373 		if (cpu == failed_cpu)
5374 			break;
5375 		swevent_hlist_put_cpu(event, cpu);
5376 	}
5377 
5378 	put_online_cpus();
5379 	return err;
5380 }
5381 
5382 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5383 
5384 static void sw_perf_event_destroy(struct perf_event *event)
5385 {
5386 	u64 event_id = event->attr.config;
5387 
5388 	WARN_ON(event->parent);
5389 
5390 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5391 	swevent_hlist_put(event);
5392 }
5393 
5394 static int perf_swevent_init(struct perf_event *event)
5395 {
5396 	u64 event_id = event->attr.config;
5397 
5398 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5399 		return -ENOENT;
5400 
5401 	/*
5402 	 * no branch sampling for software events
5403 	 */
5404 	if (has_branch_stack(event))
5405 		return -EOPNOTSUPP;
5406 
5407 	switch (event_id) {
5408 	case PERF_COUNT_SW_CPU_CLOCK:
5409 	case PERF_COUNT_SW_TASK_CLOCK:
5410 		return -ENOENT;
5411 
5412 	default:
5413 		break;
5414 	}
5415 
5416 	if (event_id >= PERF_COUNT_SW_MAX)
5417 		return -ENOENT;
5418 
5419 	if (!event->parent) {
5420 		int err;
5421 
5422 		err = swevent_hlist_get(event);
5423 		if (err)
5424 			return err;
5425 
5426 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5427 		event->destroy = sw_perf_event_destroy;
5428 	}
5429 
5430 	return 0;
5431 }
5432 
5433 static int perf_swevent_event_idx(struct perf_event *event)
5434 {
5435 	return 0;
5436 }
5437 
5438 static struct pmu perf_swevent = {
5439 	.task_ctx_nr	= perf_sw_context,
5440 
5441 	.event_init	= perf_swevent_init,
5442 	.add		= perf_swevent_add,
5443 	.del		= perf_swevent_del,
5444 	.start		= perf_swevent_start,
5445 	.stop		= perf_swevent_stop,
5446 	.read		= perf_swevent_read,
5447 
5448 	.event_idx	= perf_swevent_event_idx,
5449 };
5450 
5451 #ifdef CONFIG_EVENT_TRACING
5452 
5453 static int perf_tp_filter_match(struct perf_event *event,
5454 				struct perf_sample_data *data)
5455 {
5456 	void *record = data->raw->data;
5457 
5458 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5459 		return 1;
5460 	return 0;
5461 }
5462 
5463 static int perf_tp_event_match(struct perf_event *event,
5464 				struct perf_sample_data *data,
5465 				struct pt_regs *regs)
5466 {
5467 	if (event->hw.state & PERF_HES_STOPPED)
5468 		return 0;
5469 	/*
5470 	 * All tracepoints are from kernel-space.
5471 	 */
5472 	if (event->attr.exclude_kernel)
5473 		return 0;
5474 
5475 	if (!perf_tp_filter_match(event, data))
5476 		return 0;
5477 
5478 	return 1;
5479 }
5480 
5481 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5482 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5483 		   struct task_struct *task)
5484 {
5485 	struct perf_sample_data data;
5486 	struct perf_event *event;
5487 
5488 	struct perf_raw_record raw = {
5489 		.size = entry_size,
5490 		.data = record,
5491 	};
5492 
5493 	perf_sample_data_init(&data, addr, 0);
5494 	data.raw = &raw;
5495 
5496 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5497 		if (perf_tp_event_match(event, &data, regs))
5498 			perf_swevent_event(event, count, &data, regs);
5499 	}
5500 
5501 	/*
5502 	 * If we got specified a target task, also iterate its context and
5503 	 * deliver this event there too.
5504 	 */
5505 	if (task && task != current) {
5506 		struct perf_event_context *ctx;
5507 		struct trace_entry *entry = record;
5508 
5509 		rcu_read_lock();
5510 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5511 		if (!ctx)
5512 			goto unlock;
5513 
5514 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5515 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5516 				continue;
5517 			if (event->attr.config != entry->type)
5518 				continue;
5519 			if (perf_tp_event_match(event, &data, regs))
5520 				perf_swevent_event(event, count, &data, regs);
5521 		}
5522 unlock:
5523 		rcu_read_unlock();
5524 	}
5525 
5526 	perf_swevent_put_recursion_context(rctx);
5527 }
5528 EXPORT_SYMBOL_GPL(perf_tp_event);
5529 
5530 static void tp_perf_event_destroy(struct perf_event *event)
5531 {
5532 	perf_trace_destroy(event);
5533 }
5534 
5535 static int perf_tp_event_init(struct perf_event *event)
5536 {
5537 	int err;
5538 
5539 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5540 		return -ENOENT;
5541 
5542 	/*
5543 	 * no branch sampling for tracepoint events
5544 	 */
5545 	if (has_branch_stack(event))
5546 		return -EOPNOTSUPP;
5547 
5548 	err = perf_trace_init(event);
5549 	if (err)
5550 		return err;
5551 
5552 	event->destroy = tp_perf_event_destroy;
5553 
5554 	return 0;
5555 }
5556 
5557 static struct pmu perf_tracepoint = {
5558 	.task_ctx_nr	= perf_sw_context,
5559 
5560 	.event_init	= perf_tp_event_init,
5561 	.add		= perf_trace_add,
5562 	.del		= perf_trace_del,
5563 	.start		= perf_swevent_start,
5564 	.stop		= perf_swevent_stop,
5565 	.read		= perf_swevent_read,
5566 
5567 	.event_idx	= perf_swevent_event_idx,
5568 };
5569 
5570 static inline void perf_tp_register(void)
5571 {
5572 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5573 }
5574 
5575 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5576 {
5577 	char *filter_str;
5578 	int ret;
5579 
5580 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5581 		return -EINVAL;
5582 
5583 	filter_str = strndup_user(arg, PAGE_SIZE);
5584 	if (IS_ERR(filter_str))
5585 		return PTR_ERR(filter_str);
5586 
5587 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5588 
5589 	kfree(filter_str);
5590 	return ret;
5591 }
5592 
5593 static void perf_event_free_filter(struct perf_event *event)
5594 {
5595 	ftrace_profile_free_filter(event);
5596 }
5597 
5598 #else
5599 
5600 static inline void perf_tp_register(void)
5601 {
5602 }
5603 
5604 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5605 {
5606 	return -ENOENT;
5607 }
5608 
5609 static void perf_event_free_filter(struct perf_event *event)
5610 {
5611 }
5612 
5613 #endif /* CONFIG_EVENT_TRACING */
5614 
5615 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5616 void perf_bp_event(struct perf_event *bp, void *data)
5617 {
5618 	struct perf_sample_data sample;
5619 	struct pt_regs *regs = data;
5620 
5621 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5622 
5623 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5624 		perf_swevent_event(bp, 1, &sample, regs);
5625 }
5626 #endif
5627 
5628 /*
5629  * hrtimer based swevent callback
5630  */
5631 
5632 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5633 {
5634 	enum hrtimer_restart ret = HRTIMER_RESTART;
5635 	struct perf_sample_data data;
5636 	struct pt_regs *regs;
5637 	struct perf_event *event;
5638 	u64 period;
5639 
5640 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5641 
5642 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5643 		return HRTIMER_NORESTART;
5644 
5645 	event->pmu->read(event);
5646 
5647 	perf_sample_data_init(&data, 0, event->hw.last_period);
5648 	regs = get_irq_regs();
5649 
5650 	if (regs && !perf_exclude_event(event, regs)) {
5651 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5652 			if (__perf_event_overflow(event, 1, &data, regs))
5653 				ret = HRTIMER_NORESTART;
5654 	}
5655 
5656 	period = max_t(u64, 10000, event->hw.sample_period);
5657 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5658 
5659 	return ret;
5660 }
5661 
5662 static void perf_swevent_start_hrtimer(struct perf_event *event)
5663 {
5664 	struct hw_perf_event *hwc = &event->hw;
5665 	s64 period;
5666 
5667 	if (!is_sampling_event(event))
5668 		return;
5669 
5670 	period = local64_read(&hwc->period_left);
5671 	if (period) {
5672 		if (period < 0)
5673 			period = 10000;
5674 
5675 		local64_set(&hwc->period_left, 0);
5676 	} else {
5677 		period = max_t(u64, 10000, hwc->sample_period);
5678 	}
5679 	__hrtimer_start_range_ns(&hwc->hrtimer,
5680 				ns_to_ktime(period), 0,
5681 				HRTIMER_MODE_REL_PINNED, 0);
5682 }
5683 
5684 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5685 {
5686 	struct hw_perf_event *hwc = &event->hw;
5687 
5688 	if (is_sampling_event(event)) {
5689 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5690 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5691 
5692 		hrtimer_cancel(&hwc->hrtimer);
5693 	}
5694 }
5695 
5696 static void perf_swevent_init_hrtimer(struct perf_event *event)
5697 {
5698 	struct hw_perf_event *hwc = &event->hw;
5699 
5700 	if (!is_sampling_event(event))
5701 		return;
5702 
5703 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5704 	hwc->hrtimer.function = perf_swevent_hrtimer;
5705 
5706 	/*
5707 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5708 	 * mapping and avoid the whole period adjust feedback stuff.
5709 	 */
5710 	if (event->attr.freq) {
5711 		long freq = event->attr.sample_freq;
5712 
5713 		event->attr.sample_period = NSEC_PER_SEC / freq;
5714 		hwc->sample_period = event->attr.sample_period;
5715 		local64_set(&hwc->period_left, hwc->sample_period);
5716 		hwc->last_period = hwc->sample_period;
5717 		event->attr.freq = 0;
5718 	}
5719 }
5720 
5721 /*
5722  * Software event: cpu wall time clock
5723  */
5724 
5725 static void cpu_clock_event_update(struct perf_event *event)
5726 {
5727 	s64 prev;
5728 	u64 now;
5729 
5730 	now = local_clock();
5731 	prev = local64_xchg(&event->hw.prev_count, now);
5732 	local64_add(now - prev, &event->count);
5733 }
5734 
5735 static void cpu_clock_event_start(struct perf_event *event, int flags)
5736 {
5737 	local64_set(&event->hw.prev_count, local_clock());
5738 	perf_swevent_start_hrtimer(event);
5739 }
5740 
5741 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5742 {
5743 	perf_swevent_cancel_hrtimer(event);
5744 	cpu_clock_event_update(event);
5745 }
5746 
5747 static int cpu_clock_event_add(struct perf_event *event, int flags)
5748 {
5749 	if (flags & PERF_EF_START)
5750 		cpu_clock_event_start(event, flags);
5751 
5752 	return 0;
5753 }
5754 
5755 static void cpu_clock_event_del(struct perf_event *event, int flags)
5756 {
5757 	cpu_clock_event_stop(event, flags);
5758 }
5759 
5760 static void cpu_clock_event_read(struct perf_event *event)
5761 {
5762 	cpu_clock_event_update(event);
5763 }
5764 
5765 static int cpu_clock_event_init(struct perf_event *event)
5766 {
5767 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5768 		return -ENOENT;
5769 
5770 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5771 		return -ENOENT;
5772 
5773 	/*
5774 	 * no branch sampling for software events
5775 	 */
5776 	if (has_branch_stack(event))
5777 		return -EOPNOTSUPP;
5778 
5779 	perf_swevent_init_hrtimer(event);
5780 
5781 	return 0;
5782 }
5783 
5784 static struct pmu perf_cpu_clock = {
5785 	.task_ctx_nr	= perf_sw_context,
5786 
5787 	.event_init	= cpu_clock_event_init,
5788 	.add		= cpu_clock_event_add,
5789 	.del		= cpu_clock_event_del,
5790 	.start		= cpu_clock_event_start,
5791 	.stop		= cpu_clock_event_stop,
5792 	.read		= cpu_clock_event_read,
5793 
5794 	.event_idx	= perf_swevent_event_idx,
5795 };
5796 
5797 /*
5798  * Software event: task time clock
5799  */
5800 
5801 static void task_clock_event_update(struct perf_event *event, u64 now)
5802 {
5803 	u64 prev;
5804 	s64 delta;
5805 
5806 	prev = local64_xchg(&event->hw.prev_count, now);
5807 	delta = now - prev;
5808 	local64_add(delta, &event->count);
5809 }
5810 
5811 static void task_clock_event_start(struct perf_event *event, int flags)
5812 {
5813 	local64_set(&event->hw.prev_count, event->ctx->time);
5814 	perf_swevent_start_hrtimer(event);
5815 }
5816 
5817 static void task_clock_event_stop(struct perf_event *event, int flags)
5818 {
5819 	perf_swevent_cancel_hrtimer(event);
5820 	task_clock_event_update(event, event->ctx->time);
5821 }
5822 
5823 static int task_clock_event_add(struct perf_event *event, int flags)
5824 {
5825 	if (flags & PERF_EF_START)
5826 		task_clock_event_start(event, flags);
5827 
5828 	return 0;
5829 }
5830 
5831 static void task_clock_event_del(struct perf_event *event, int flags)
5832 {
5833 	task_clock_event_stop(event, PERF_EF_UPDATE);
5834 }
5835 
5836 static void task_clock_event_read(struct perf_event *event)
5837 {
5838 	u64 now = perf_clock();
5839 	u64 delta = now - event->ctx->timestamp;
5840 	u64 time = event->ctx->time + delta;
5841 
5842 	task_clock_event_update(event, time);
5843 }
5844 
5845 static int task_clock_event_init(struct perf_event *event)
5846 {
5847 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5848 		return -ENOENT;
5849 
5850 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5851 		return -ENOENT;
5852 
5853 	/*
5854 	 * no branch sampling for software events
5855 	 */
5856 	if (has_branch_stack(event))
5857 		return -EOPNOTSUPP;
5858 
5859 	perf_swevent_init_hrtimer(event);
5860 
5861 	return 0;
5862 }
5863 
5864 static struct pmu perf_task_clock = {
5865 	.task_ctx_nr	= perf_sw_context,
5866 
5867 	.event_init	= task_clock_event_init,
5868 	.add		= task_clock_event_add,
5869 	.del		= task_clock_event_del,
5870 	.start		= task_clock_event_start,
5871 	.stop		= task_clock_event_stop,
5872 	.read		= task_clock_event_read,
5873 
5874 	.event_idx	= perf_swevent_event_idx,
5875 };
5876 
5877 static void perf_pmu_nop_void(struct pmu *pmu)
5878 {
5879 }
5880 
5881 static int perf_pmu_nop_int(struct pmu *pmu)
5882 {
5883 	return 0;
5884 }
5885 
5886 static void perf_pmu_start_txn(struct pmu *pmu)
5887 {
5888 	perf_pmu_disable(pmu);
5889 }
5890 
5891 static int perf_pmu_commit_txn(struct pmu *pmu)
5892 {
5893 	perf_pmu_enable(pmu);
5894 	return 0;
5895 }
5896 
5897 static void perf_pmu_cancel_txn(struct pmu *pmu)
5898 {
5899 	perf_pmu_enable(pmu);
5900 }
5901 
5902 static int perf_event_idx_default(struct perf_event *event)
5903 {
5904 	return event->hw.idx + 1;
5905 }
5906 
5907 /*
5908  * Ensures all contexts with the same task_ctx_nr have the same
5909  * pmu_cpu_context too.
5910  */
5911 static void *find_pmu_context(int ctxn)
5912 {
5913 	struct pmu *pmu;
5914 
5915 	if (ctxn < 0)
5916 		return NULL;
5917 
5918 	list_for_each_entry(pmu, &pmus, entry) {
5919 		if (pmu->task_ctx_nr == ctxn)
5920 			return pmu->pmu_cpu_context;
5921 	}
5922 
5923 	return NULL;
5924 }
5925 
5926 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5927 {
5928 	int cpu;
5929 
5930 	for_each_possible_cpu(cpu) {
5931 		struct perf_cpu_context *cpuctx;
5932 
5933 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5934 
5935 		if (cpuctx->unique_pmu == old_pmu)
5936 			cpuctx->unique_pmu = pmu;
5937 	}
5938 }
5939 
5940 static void free_pmu_context(struct pmu *pmu)
5941 {
5942 	struct pmu *i;
5943 
5944 	mutex_lock(&pmus_lock);
5945 	/*
5946 	 * Like a real lame refcount.
5947 	 */
5948 	list_for_each_entry(i, &pmus, entry) {
5949 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5950 			update_pmu_context(i, pmu);
5951 			goto out;
5952 		}
5953 	}
5954 
5955 	free_percpu(pmu->pmu_cpu_context);
5956 out:
5957 	mutex_unlock(&pmus_lock);
5958 }
5959 static struct idr pmu_idr;
5960 
5961 static ssize_t
5962 type_show(struct device *dev, struct device_attribute *attr, char *page)
5963 {
5964 	struct pmu *pmu = dev_get_drvdata(dev);
5965 
5966 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5967 }
5968 
5969 static struct device_attribute pmu_dev_attrs[] = {
5970        __ATTR_RO(type),
5971        __ATTR_NULL,
5972 };
5973 
5974 static int pmu_bus_running;
5975 static struct bus_type pmu_bus = {
5976 	.name		= "event_source",
5977 	.dev_attrs	= pmu_dev_attrs,
5978 };
5979 
5980 static void pmu_dev_release(struct device *dev)
5981 {
5982 	kfree(dev);
5983 }
5984 
5985 static int pmu_dev_alloc(struct pmu *pmu)
5986 {
5987 	int ret = -ENOMEM;
5988 
5989 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5990 	if (!pmu->dev)
5991 		goto out;
5992 
5993 	pmu->dev->groups = pmu->attr_groups;
5994 	device_initialize(pmu->dev);
5995 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5996 	if (ret)
5997 		goto free_dev;
5998 
5999 	dev_set_drvdata(pmu->dev, pmu);
6000 	pmu->dev->bus = &pmu_bus;
6001 	pmu->dev->release = pmu_dev_release;
6002 	ret = device_add(pmu->dev);
6003 	if (ret)
6004 		goto free_dev;
6005 
6006 out:
6007 	return ret;
6008 
6009 free_dev:
6010 	put_device(pmu->dev);
6011 	goto out;
6012 }
6013 
6014 static struct lock_class_key cpuctx_mutex;
6015 static struct lock_class_key cpuctx_lock;
6016 
6017 int perf_pmu_register(struct pmu *pmu, char *name, int type)
6018 {
6019 	int cpu, ret;
6020 
6021 	mutex_lock(&pmus_lock);
6022 	ret = -ENOMEM;
6023 	pmu->pmu_disable_count = alloc_percpu(int);
6024 	if (!pmu->pmu_disable_count)
6025 		goto unlock;
6026 
6027 	pmu->type = -1;
6028 	if (!name)
6029 		goto skip_type;
6030 	pmu->name = name;
6031 
6032 	if (type < 0) {
6033 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6034 		if (type < 0) {
6035 			ret = type;
6036 			goto free_pdc;
6037 		}
6038 	}
6039 	pmu->type = type;
6040 
6041 	if (pmu_bus_running) {
6042 		ret = pmu_dev_alloc(pmu);
6043 		if (ret)
6044 			goto free_idr;
6045 	}
6046 
6047 skip_type:
6048 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6049 	if (pmu->pmu_cpu_context)
6050 		goto got_cpu_context;
6051 
6052 	ret = -ENOMEM;
6053 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6054 	if (!pmu->pmu_cpu_context)
6055 		goto free_dev;
6056 
6057 	for_each_possible_cpu(cpu) {
6058 		struct perf_cpu_context *cpuctx;
6059 
6060 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6061 		__perf_event_init_context(&cpuctx->ctx);
6062 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6063 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6064 		cpuctx->ctx.type = cpu_context;
6065 		cpuctx->ctx.pmu = pmu;
6066 		cpuctx->jiffies_interval = 1;
6067 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6068 		cpuctx->unique_pmu = pmu;
6069 	}
6070 
6071 got_cpu_context:
6072 	if (!pmu->start_txn) {
6073 		if (pmu->pmu_enable) {
6074 			/*
6075 			 * If we have pmu_enable/pmu_disable calls, install
6076 			 * transaction stubs that use that to try and batch
6077 			 * hardware accesses.
6078 			 */
6079 			pmu->start_txn  = perf_pmu_start_txn;
6080 			pmu->commit_txn = perf_pmu_commit_txn;
6081 			pmu->cancel_txn = perf_pmu_cancel_txn;
6082 		} else {
6083 			pmu->start_txn  = perf_pmu_nop_void;
6084 			pmu->commit_txn = perf_pmu_nop_int;
6085 			pmu->cancel_txn = perf_pmu_nop_void;
6086 		}
6087 	}
6088 
6089 	if (!pmu->pmu_enable) {
6090 		pmu->pmu_enable  = perf_pmu_nop_void;
6091 		pmu->pmu_disable = perf_pmu_nop_void;
6092 	}
6093 
6094 	if (!pmu->event_idx)
6095 		pmu->event_idx = perf_event_idx_default;
6096 
6097 	list_add_rcu(&pmu->entry, &pmus);
6098 	ret = 0;
6099 unlock:
6100 	mutex_unlock(&pmus_lock);
6101 
6102 	return ret;
6103 
6104 free_dev:
6105 	device_del(pmu->dev);
6106 	put_device(pmu->dev);
6107 
6108 free_idr:
6109 	if (pmu->type >= PERF_TYPE_MAX)
6110 		idr_remove(&pmu_idr, pmu->type);
6111 
6112 free_pdc:
6113 	free_percpu(pmu->pmu_disable_count);
6114 	goto unlock;
6115 }
6116 
6117 void perf_pmu_unregister(struct pmu *pmu)
6118 {
6119 	mutex_lock(&pmus_lock);
6120 	list_del_rcu(&pmu->entry);
6121 	mutex_unlock(&pmus_lock);
6122 
6123 	/*
6124 	 * We dereference the pmu list under both SRCU and regular RCU, so
6125 	 * synchronize against both of those.
6126 	 */
6127 	synchronize_srcu(&pmus_srcu);
6128 	synchronize_rcu();
6129 
6130 	free_percpu(pmu->pmu_disable_count);
6131 	if (pmu->type >= PERF_TYPE_MAX)
6132 		idr_remove(&pmu_idr, pmu->type);
6133 	device_del(pmu->dev);
6134 	put_device(pmu->dev);
6135 	free_pmu_context(pmu);
6136 }
6137 
6138 struct pmu *perf_init_event(struct perf_event *event)
6139 {
6140 	struct pmu *pmu = NULL;
6141 	int idx;
6142 	int ret;
6143 
6144 	idx = srcu_read_lock(&pmus_srcu);
6145 
6146 	rcu_read_lock();
6147 	pmu = idr_find(&pmu_idr, event->attr.type);
6148 	rcu_read_unlock();
6149 	if (pmu) {
6150 		event->pmu = pmu;
6151 		ret = pmu->event_init(event);
6152 		if (ret)
6153 			pmu = ERR_PTR(ret);
6154 		goto unlock;
6155 	}
6156 
6157 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6158 		event->pmu = pmu;
6159 		ret = pmu->event_init(event);
6160 		if (!ret)
6161 			goto unlock;
6162 
6163 		if (ret != -ENOENT) {
6164 			pmu = ERR_PTR(ret);
6165 			goto unlock;
6166 		}
6167 	}
6168 	pmu = ERR_PTR(-ENOENT);
6169 unlock:
6170 	srcu_read_unlock(&pmus_srcu, idx);
6171 
6172 	return pmu;
6173 }
6174 
6175 /*
6176  * Allocate and initialize a event structure
6177  */
6178 static struct perf_event *
6179 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6180 		 struct task_struct *task,
6181 		 struct perf_event *group_leader,
6182 		 struct perf_event *parent_event,
6183 		 perf_overflow_handler_t overflow_handler,
6184 		 void *context)
6185 {
6186 	struct pmu *pmu;
6187 	struct perf_event *event;
6188 	struct hw_perf_event *hwc;
6189 	long err;
6190 
6191 	if ((unsigned)cpu >= nr_cpu_ids) {
6192 		if (!task || cpu != -1)
6193 			return ERR_PTR(-EINVAL);
6194 	}
6195 
6196 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6197 	if (!event)
6198 		return ERR_PTR(-ENOMEM);
6199 
6200 	/*
6201 	 * Single events are their own group leaders, with an
6202 	 * empty sibling list:
6203 	 */
6204 	if (!group_leader)
6205 		group_leader = event;
6206 
6207 	mutex_init(&event->child_mutex);
6208 	INIT_LIST_HEAD(&event->child_list);
6209 
6210 	INIT_LIST_HEAD(&event->group_entry);
6211 	INIT_LIST_HEAD(&event->event_entry);
6212 	INIT_LIST_HEAD(&event->sibling_list);
6213 	INIT_LIST_HEAD(&event->rb_entry);
6214 
6215 	init_waitqueue_head(&event->waitq);
6216 	init_irq_work(&event->pending, perf_pending_event);
6217 
6218 	mutex_init(&event->mmap_mutex);
6219 
6220 	atomic_long_set(&event->refcount, 1);
6221 	event->cpu		= cpu;
6222 	event->attr		= *attr;
6223 	event->group_leader	= group_leader;
6224 	event->pmu		= NULL;
6225 	event->oncpu		= -1;
6226 
6227 	event->parent		= parent_event;
6228 
6229 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6230 	event->id		= atomic64_inc_return(&perf_event_id);
6231 
6232 	event->state		= PERF_EVENT_STATE_INACTIVE;
6233 
6234 	if (task) {
6235 		event->attach_state = PERF_ATTACH_TASK;
6236 
6237 		if (attr->type == PERF_TYPE_TRACEPOINT)
6238 			event->hw.tp_target = task;
6239 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6240 		/*
6241 		 * hw_breakpoint is a bit difficult here..
6242 		 */
6243 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6244 			event->hw.bp_target = task;
6245 #endif
6246 	}
6247 
6248 	if (!overflow_handler && parent_event) {
6249 		overflow_handler = parent_event->overflow_handler;
6250 		context = parent_event->overflow_handler_context;
6251 	}
6252 
6253 	event->overflow_handler	= overflow_handler;
6254 	event->overflow_handler_context = context;
6255 
6256 	perf_event__state_init(event);
6257 
6258 	pmu = NULL;
6259 
6260 	hwc = &event->hw;
6261 	hwc->sample_period = attr->sample_period;
6262 	if (attr->freq && attr->sample_freq)
6263 		hwc->sample_period = 1;
6264 	hwc->last_period = hwc->sample_period;
6265 
6266 	local64_set(&hwc->period_left, hwc->sample_period);
6267 
6268 	/*
6269 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6270 	 */
6271 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6272 		goto done;
6273 
6274 	pmu = perf_init_event(event);
6275 
6276 done:
6277 	err = 0;
6278 	if (!pmu)
6279 		err = -EINVAL;
6280 	else if (IS_ERR(pmu))
6281 		err = PTR_ERR(pmu);
6282 
6283 	if (err) {
6284 		if (event->ns)
6285 			put_pid_ns(event->ns);
6286 		kfree(event);
6287 		return ERR_PTR(err);
6288 	}
6289 
6290 	if (!event->parent) {
6291 		if (event->attach_state & PERF_ATTACH_TASK)
6292 			static_key_slow_inc(&perf_sched_events.key);
6293 		if (event->attr.mmap || event->attr.mmap_data)
6294 			atomic_inc(&nr_mmap_events);
6295 		if (event->attr.comm)
6296 			atomic_inc(&nr_comm_events);
6297 		if (event->attr.task)
6298 			atomic_inc(&nr_task_events);
6299 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6300 			err = get_callchain_buffers();
6301 			if (err) {
6302 				free_event(event);
6303 				return ERR_PTR(err);
6304 			}
6305 		}
6306 		if (has_branch_stack(event)) {
6307 			static_key_slow_inc(&perf_sched_events.key);
6308 			if (!(event->attach_state & PERF_ATTACH_TASK))
6309 				atomic_inc(&per_cpu(perf_branch_stack_events,
6310 						    event->cpu));
6311 		}
6312 	}
6313 
6314 	return event;
6315 }
6316 
6317 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6318 			  struct perf_event_attr *attr)
6319 {
6320 	u32 size;
6321 	int ret;
6322 
6323 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6324 		return -EFAULT;
6325 
6326 	/*
6327 	 * zero the full structure, so that a short copy will be nice.
6328 	 */
6329 	memset(attr, 0, sizeof(*attr));
6330 
6331 	ret = get_user(size, &uattr->size);
6332 	if (ret)
6333 		return ret;
6334 
6335 	if (size > PAGE_SIZE)	/* silly large */
6336 		goto err_size;
6337 
6338 	if (!size)		/* abi compat */
6339 		size = PERF_ATTR_SIZE_VER0;
6340 
6341 	if (size < PERF_ATTR_SIZE_VER0)
6342 		goto err_size;
6343 
6344 	/*
6345 	 * If we're handed a bigger struct than we know of,
6346 	 * ensure all the unknown bits are 0 - i.e. new
6347 	 * user-space does not rely on any kernel feature
6348 	 * extensions we dont know about yet.
6349 	 */
6350 	if (size > sizeof(*attr)) {
6351 		unsigned char __user *addr;
6352 		unsigned char __user *end;
6353 		unsigned char val;
6354 
6355 		addr = (void __user *)uattr + sizeof(*attr);
6356 		end  = (void __user *)uattr + size;
6357 
6358 		for (; addr < end; addr++) {
6359 			ret = get_user(val, addr);
6360 			if (ret)
6361 				return ret;
6362 			if (val)
6363 				goto err_size;
6364 		}
6365 		size = sizeof(*attr);
6366 	}
6367 
6368 	ret = copy_from_user(attr, uattr, size);
6369 	if (ret)
6370 		return -EFAULT;
6371 
6372 	if (attr->__reserved_1)
6373 		return -EINVAL;
6374 
6375 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6376 		return -EINVAL;
6377 
6378 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6379 		return -EINVAL;
6380 
6381 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6382 		u64 mask = attr->branch_sample_type;
6383 
6384 		/* only using defined bits */
6385 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6386 			return -EINVAL;
6387 
6388 		/* at least one branch bit must be set */
6389 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6390 			return -EINVAL;
6391 
6392 		/* kernel level capture: check permissions */
6393 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6394 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6395 			return -EACCES;
6396 
6397 		/* propagate priv level, when not set for branch */
6398 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6399 
6400 			/* exclude_kernel checked on syscall entry */
6401 			if (!attr->exclude_kernel)
6402 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6403 
6404 			if (!attr->exclude_user)
6405 				mask |= PERF_SAMPLE_BRANCH_USER;
6406 
6407 			if (!attr->exclude_hv)
6408 				mask |= PERF_SAMPLE_BRANCH_HV;
6409 			/*
6410 			 * adjust user setting (for HW filter setup)
6411 			 */
6412 			attr->branch_sample_type = mask;
6413 		}
6414 	}
6415 
6416 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6417 		ret = perf_reg_validate(attr->sample_regs_user);
6418 		if (ret)
6419 			return ret;
6420 	}
6421 
6422 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6423 		if (!arch_perf_have_user_stack_dump())
6424 			return -ENOSYS;
6425 
6426 		/*
6427 		 * We have __u32 type for the size, but so far
6428 		 * we can only use __u16 as maximum due to the
6429 		 * __u16 sample size limit.
6430 		 */
6431 		if (attr->sample_stack_user >= USHRT_MAX)
6432 			ret = -EINVAL;
6433 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6434 			ret = -EINVAL;
6435 	}
6436 
6437 out:
6438 	return ret;
6439 
6440 err_size:
6441 	put_user(sizeof(*attr), &uattr->size);
6442 	ret = -E2BIG;
6443 	goto out;
6444 }
6445 
6446 static int
6447 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6448 {
6449 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6450 	int ret = -EINVAL;
6451 
6452 	if (!output_event)
6453 		goto set;
6454 
6455 	/* don't allow circular references */
6456 	if (event == output_event)
6457 		goto out;
6458 
6459 	/*
6460 	 * Don't allow cross-cpu buffers
6461 	 */
6462 	if (output_event->cpu != event->cpu)
6463 		goto out;
6464 
6465 	/*
6466 	 * If its not a per-cpu rb, it must be the same task.
6467 	 */
6468 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6469 		goto out;
6470 
6471 set:
6472 	mutex_lock(&event->mmap_mutex);
6473 	/* Can't redirect output if we've got an active mmap() */
6474 	if (atomic_read(&event->mmap_count))
6475 		goto unlock;
6476 
6477 	if (output_event) {
6478 		/* get the rb we want to redirect to */
6479 		rb = ring_buffer_get(output_event);
6480 		if (!rb)
6481 			goto unlock;
6482 	}
6483 
6484 	old_rb = event->rb;
6485 	rcu_assign_pointer(event->rb, rb);
6486 	if (old_rb)
6487 		ring_buffer_detach(event, old_rb);
6488 	ret = 0;
6489 unlock:
6490 	mutex_unlock(&event->mmap_mutex);
6491 
6492 	if (old_rb)
6493 		ring_buffer_put(old_rb);
6494 out:
6495 	return ret;
6496 }
6497 
6498 /**
6499  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6500  *
6501  * @attr_uptr:	event_id type attributes for monitoring/sampling
6502  * @pid:		target pid
6503  * @cpu:		target cpu
6504  * @group_fd:		group leader event fd
6505  */
6506 SYSCALL_DEFINE5(perf_event_open,
6507 		struct perf_event_attr __user *, attr_uptr,
6508 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6509 {
6510 	struct perf_event *group_leader = NULL, *output_event = NULL;
6511 	struct perf_event *event, *sibling;
6512 	struct perf_event_attr attr;
6513 	struct perf_event_context *ctx;
6514 	struct file *event_file = NULL;
6515 	struct fd group = {NULL, 0};
6516 	struct task_struct *task = NULL;
6517 	struct pmu *pmu;
6518 	int event_fd;
6519 	int move_group = 0;
6520 	int err;
6521 
6522 	/* for future expandability... */
6523 	if (flags & ~PERF_FLAG_ALL)
6524 		return -EINVAL;
6525 
6526 	err = perf_copy_attr(attr_uptr, &attr);
6527 	if (err)
6528 		return err;
6529 
6530 	if (!attr.exclude_kernel) {
6531 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6532 			return -EACCES;
6533 	}
6534 
6535 	if (attr.freq) {
6536 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6537 			return -EINVAL;
6538 	}
6539 
6540 	/*
6541 	 * In cgroup mode, the pid argument is used to pass the fd
6542 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6543 	 * designates the cpu on which to monitor threads from that
6544 	 * cgroup.
6545 	 */
6546 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6547 		return -EINVAL;
6548 
6549 	event_fd = get_unused_fd();
6550 	if (event_fd < 0)
6551 		return event_fd;
6552 
6553 	if (group_fd != -1) {
6554 		err = perf_fget_light(group_fd, &group);
6555 		if (err)
6556 			goto err_fd;
6557 		group_leader = group.file->private_data;
6558 		if (flags & PERF_FLAG_FD_OUTPUT)
6559 			output_event = group_leader;
6560 		if (flags & PERF_FLAG_FD_NO_GROUP)
6561 			group_leader = NULL;
6562 	}
6563 
6564 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6565 		task = find_lively_task_by_vpid(pid);
6566 		if (IS_ERR(task)) {
6567 			err = PTR_ERR(task);
6568 			goto err_group_fd;
6569 		}
6570 	}
6571 
6572 	get_online_cpus();
6573 
6574 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6575 				 NULL, NULL);
6576 	if (IS_ERR(event)) {
6577 		err = PTR_ERR(event);
6578 		goto err_task;
6579 	}
6580 
6581 	if (flags & PERF_FLAG_PID_CGROUP) {
6582 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6583 		if (err)
6584 			goto err_alloc;
6585 		/*
6586 		 * one more event:
6587 		 * - that has cgroup constraint on event->cpu
6588 		 * - that may need work on context switch
6589 		 */
6590 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6591 		static_key_slow_inc(&perf_sched_events.key);
6592 	}
6593 
6594 	/*
6595 	 * Special case software events and allow them to be part of
6596 	 * any hardware group.
6597 	 */
6598 	pmu = event->pmu;
6599 
6600 	if (group_leader &&
6601 	    (is_software_event(event) != is_software_event(group_leader))) {
6602 		if (is_software_event(event)) {
6603 			/*
6604 			 * If event and group_leader are not both a software
6605 			 * event, and event is, then group leader is not.
6606 			 *
6607 			 * Allow the addition of software events to !software
6608 			 * groups, this is safe because software events never
6609 			 * fail to schedule.
6610 			 */
6611 			pmu = group_leader->pmu;
6612 		} else if (is_software_event(group_leader) &&
6613 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6614 			/*
6615 			 * In case the group is a pure software group, and we
6616 			 * try to add a hardware event, move the whole group to
6617 			 * the hardware context.
6618 			 */
6619 			move_group = 1;
6620 		}
6621 	}
6622 
6623 	/*
6624 	 * Get the target context (task or percpu):
6625 	 */
6626 	ctx = find_get_context(pmu, task, event->cpu);
6627 	if (IS_ERR(ctx)) {
6628 		err = PTR_ERR(ctx);
6629 		goto err_alloc;
6630 	}
6631 
6632 	if (task) {
6633 		put_task_struct(task);
6634 		task = NULL;
6635 	}
6636 
6637 	/*
6638 	 * Look up the group leader (we will attach this event to it):
6639 	 */
6640 	if (group_leader) {
6641 		err = -EINVAL;
6642 
6643 		/*
6644 		 * Do not allow a recursive hierarchy (this new sibling
6645 		 * becoming part of another group-sibling):
6646 		 */
6647 		if (group_leader->group_leader != group_leader)
6648 			goto err_context;
6649 		/*
6650 		 * Do not allow to attach to a group in a different
6651 		 * task or CPU context:
6652 		 */
6653 		if (move_group) {
6654 			if (group_leader->ctx->type != ctx->type)
6655 				goto err_context;
6656 		} else {
6657 			if (group_leader->ctx != ctx)
6658 				goto err_context;
6659 		}
6660 
6661 		/*
6662 		 * Only a group leader can be exclusive or pinned
6663 		 */
6664 		if (attr.exclusive || attr.pinned)
6665 			goto err_context;
6666 	}
6667 
6668 	if (output_event) {
6669 		err = perf_event_set_output(event, output_event);
6670 		if (err)
6671 			goto err_context;
6672 	}
6673 
6674 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6675 	if (IS_ERR(event_file)) {
6676 		err = PTR_ERR(event_file);
6677 		goto err_context;
6678 	}
6679 
6680 	if (move_group) {
6681 		struct perf_event_context *gctx = group_leader->ctx;
6682 
6683 		mutex_lock(&gctx->mutex);
6684 		perf_remove_from_context(group_leader);
6685 
6686 		/*
6687 		 * Removing from the context ends up with disabled
6688 		 * event. What we want here is event in the initial
6689 		 * startup state, ready to be add into new context.
6690 		 */
6691 		perf_event__state_init(group_leader);
6692 		list_for_each_entry(sibling, &group_leader->sibling_list,
6693 				    group_entry) {
6694 			perf_remove_from_context(sibling);
6695 			perf_event__state_init(sibling);
6696 			put_ctx(gctx);
6697 		}
6698 		mutex_unlock(&gctx->mutex);
6699 		put_ctx(gctx);
6700 	}
6701 
6702 	WARN_ON_ONCE(ctx->parent_ctx);
6703 	mutex_lock(&ctx->mutex);
6704 
6705 	if (move_group) {
6706 		synchronize_rcu();
6707 		perf_install_in_context(ctx, group_leader, event->cpu);
6708 		get_ctx(ctx);
6709 		list_for_each_entry(sibling, &group_leader->sibling_list,
6710 				    group_entry) {
6711 			perf_install_in_context(ctx, sibling, event->cpu);
6712 			get_ctx(ctx);
6713 		}
6714 	}
6715 
6716 	perf_install_in_context(ctx, event, event->cpu);
6717 	++ctx->generation;
6718 	perf_unpin_context(ctx);
6719 	mutex_unlock(&ctx->mutex);
6720 
6721 	put_online_cpus();
6722 
6723 	event->owner = current;
6724 
6725 	mutex_lock(&current->perf_event_mutex);
6726 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6727 	mutex_unlock(&current->perf_event_mutex);
6728 
6729 	/*
6730 	 * Precalculate sample_data sizes
6731 	 */
6732 	perf_event__header_size(event);
6733 	perf_event__id_header_size(event);
6734 
6735 	/*
6736 	 * Drop the reference on the group_event after placing the
6737 	 * new event on the sibling_list. This ensures destruction
6738 	 * of the group leader will find the pointer to itself in
6739 	 * perf_group_detach().
6740 	 */
6741 	fdput(group);
6742 	fd_install(event_fd, event_file);
6743 	return event_fd;
6744 
6745 err_context:
6746 	perf_unpin_context(ctx);
6747 	put_ctx(ctx);
6748 err_alloc:
6749 	free_event(event);
6750 err_task:
6751 	put_online_cpus();
6752 	if (task)
6753 		put_task_struct(task);
6754 err_group_fd:
6755 	fdput(group);
6756 err_fd:
6757 	put_unused_fd(event_fd);
6758 	return err;
6759 }
6760 
6761 /**
6762  * perf_event_create_kernel_counter
6763  *
6764  * @attr: attributes of the counter to create
6765  * @cpu: cpu in which the counter is bound
6766  * @task: task to profile (NULL for percpu)
6767  */
6768 struct perf_event *
6769 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6770 				 struct task_struct *task,
6771 				 perf_overflow_handler_t overflow_handler,
6772 				 void *context)
6773 {
6774 	struct perf_event_context *ctx;
6775 	struct perf_event *event;
6776 	int err;
6777 
6778 	/*
6779 	 * Get the target context (task or percpu):
6780 	 */
6781 
6782 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6783 				 overflow_handler, context);
6784 	if (IS_ERR(event)) {
6785 		err = PTR_ERR(event);
6786 		goto err;
6787 	}
6788 
6789 	ctx = find_get_context(event->pmu, task, cpu);
6790 	if (IS_ERR(ctx)) {
6791 		err = PTR_ERR(ctx);
6792 		goto err_free;
6793 	}
6794 
6795 	WARN_ON_ONCE(ctx->parent_ctx);
6796 	mutex_lock(&ctx->mutex);
6797 	perf_install_in_context(ctx, event, cpu);
6798 	++ctx->generation;
6799 	perf_unpin_context(ctx);
6800 	mutex_unlock(&ctx->mutex);
6801 
6802 	return event;
6803 
6804 err_free:
6805 	free_event(event);
6806 err:
6807 	return ERR_PTR(err);
6808 }
6809 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6810 
6811 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6812 {
6813 	struct perf_event_context *src_ctx;
6814 	struct perf_event_context *dst_ctx;
6815 	struct perf_event *event, *tmp;
6816 	LIST_HEAD(events);
6817 
6818 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6819 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6820 
6821 	mutex_lock(&src_ctx->mutex);
6822 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6823 				 event_entry) {
6824 		perf_remove_from_context(event);
6825 		put_ctx(src_ctx);
6826 		list_add(&event->event_entry, &events);
6827 	}
6828 	mutex_unlock(&src_ctx->mutex);
6829 
6830 	synchronize_rcu();
6831 
6832 	mutex_lock(&dst_ctx->mutex);
6833 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
6834 		list_del(&event->event_entry);
6835 		if (event->state >= PERF_EVENT_STATE_OFF)
6836 			event->state = PERF_EVENT_STATE_INACTIVE;
6837 		perf_install_in_context(dst_ctx, event, dst_cpu);
6838 		get_ctx(dst_ctx);
6839 	}
6840 	mutex_unlock(&dst_ctx->mutex);
6841 }
6842 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6843 
6844 static void sync_child_event(struct perf_event *child_event,
6845 			       struct task_struct *child)
6846 {
6847 	struct perf_event *parent_event = child_event->parent;
6848 	u64 child_val;
6849 
6850 	if (child_event->attr.inherit_stat)
6851 		perf_event_read_event(child_event, child);
6852 
6853 	child_val = perf_event_count(child_event);
6854 
6855 	/*
6856 	 * Add back the child's count to the parent's count:
6857 	 */
6858 	atomic64_add(child_val, &parent_event->child_count);
6859 	atomic64_add(child_event->total_time_enabled,
6860 		     &parent_event->child_total_time_enabled);
6861 	atomic64_add(child_event->total_time_running,
6862 		     &parent_event->child_total_time_running);
6863 
6864 	/*
6865 	 * Remove this event from the parent's list
6866 	 */
6867 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6868 	mutex_lock(&parent_event->child_mutex);
6869 	list_del_init(&child_event->child_list);
6870 	mutex_unlock(&parent_event->child_mutex);
6871 
6872 	/*
6873 	 * Release the parent event, if this was the last
6874 	 * reference to it.
6875 	 */
6876 	put_event(parent_event);
6877 }
6878 
6879 static void
6880 __perf_event_exit_task(struct perf_event *child_event,
6881 			 struct perf_event_context *child_ctx,
6882 			 struct task_struct *child)
6883 {
6884 	if (child_event->parent) {
6885 		raw_spin_lock_irq(&child_ctx->lock);
6886 		perf_group_detach(child_event);
6887 		raw_spin_unlock_irq(&child_ctx->lock);
6888 	}
6889 
6890 	perf_remove_from_context(child_event);
6891 
6892 	/*
6893 	 * It can happen that the parent exits first, and has events
6894 	 * that are still around due to the child reference. These
6895 	 * events need to be zapped.
6896 	 */
6897 	if (child_event->parent) {
6898 		sync_child_event(child_event, child);
6899 		free_event(child_event);
6900 	}
6901 }
6902 
6903 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6904 {
6905 	struct perf_event *child_event, *tmp;
6906 	struct perf_event_context *child_ctx;
6907 	unsigned long flags;
6908 
6909 	if (likely(!child->perf_event_ctxp[ctxn])) {
6910 		perf_event_task(child, NULL, 0);
6911 		return;
6912 	}
6913 
6914 	local_irq_save(flags);
6915 	/*
6916 	 * We can't reschedule here because interrupts are disabled,
6917 	 * and either child is current or it is a task that can't be
6918 	 * scheduled, so we are now safe from rescheduling changing
6919 	 * our context.
6920 	 */
6921 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6922 
6923 	/*
6924 	 * Take the context lock here so that if find_get_context is
6925 	 * reading child->perf_event_ctxp, we wait until it has
6926 	 * incremented the context's refcount before we do put_ctx below.
6927 	 */
6928 	raw_spin_lock(&child_ctx->lock);
6929 	task_ctx_sched_out(child_ctx);
6930 	child->perf_event_ctxp[ctxn] = NULL;
6931 	/*
6932 	 * If this context is a clone; unclone it so it can't get
6933 	 * swapped to another process while we're removing all
6934 	 * the events from it.
6935 	 */
6936 	unclone_ctx(child_ctx);
6937 	update_context_time(child_ctx);
6938 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6939 
6940 	/*
6941 	 * Report the task dead after unscheduling the events so that we
6942 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6943 	 * get a few PERF_RECORD_READ events.
6944 	 */
6945 	perf_event_task(child, child_ctx, 0);
6946 
6947 	/*
6948 	 * We can recurse on the same lock type through:
6949 	 *
6950 	 *   __perf_event_exit_task()
6951 	 *     sync_child_event()
6952 	 *       put_event()
6953 	 *         mutex_lock(&ctx->mutex)
6954 	 *
6955 	 * But since its the parent context it won't be the same instance.
6956 	 */
6957 	mutex_lock(&child_ctx->mutex);
6958 
6959 again:
6960 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6961 				 group_entry)
6962 		__perf_event_exit_task(child_event, child_ctx, child);
6963 
6964 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6965 				 group_entry)
6966 		__perf_event_exit_task(child_event, child_ctx, child);
6967 
6968 	/*
6969 	 * If the last event was a group event, it will have appended all
6970 	 * its siblings to the list, but we obtained 'tmp' before that which
6971 	 * will still point to the list head terminating the iteration.
6972 	 */
6973 	if (!list_empty(&child_ctx->pinned_groups) ||
6974 	    !list_empty(&child_ctx->flexible_groups))
6975 		goto again;
6976 
6977 	mutex_unlock(&child_ctx->mutex);
6978 
6979 	put_ctx(child_ctx);
6980 }
6981 
6982 /*
6983  * When a child task exits, feed back event values to parent events.
6984  */
6985 void perf_event_exit_task(struct task_struct *child)
6986 {
6987 	struct perf_event *event, *tmp;
6988 	int ctxn;
6989 
6990 	mutex_lock(&child->perf_event_mutex);
6991 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6992 				 owner_entry) {
6993 		list_del_init(&event->owner_entry);
6994 
6995 		/*
6996 		 * Ensure the list deletion is visible before we clear
6997 		 * the owner, closes a race against perf_release() where
6998 		 * we need to serialize on the owner->perf_event_mutex.
6999 		 */
7000 		smp_wmb();
7001 		event->owner = NULL;
7002 	}
7003 	mutex_unlock(&child->perf_event_mutex);
7004 
7005 	for_each_task_context_nr(ctxn)
7006 		perf_event_exit_task_context(child, ctxn);
7007 }
7008 
7009 static void perf_free_event(struct perf_event *event,
7010 			    struct perf_event_context *ctx)
7011 {
7012 	struct perf_event *parent = event->parent;
7013 
7014 	if (WARN_ON_ONCE(!parent))
7015 		return;
7016 
7017 	mutex_lock(&parent->child_mutex);
7018 	list_del_init(&event->child_list);
7019 	mutex_unlock(&parent->child_mutex);
7020 
7021 	put_event(parent);
7022 
7023 	perf_group_detach(event);
7024 	list_del_event(event, ctx);
7025 	free_event(event);
7026 }
7027 
7028 /*
7029  * free an unexposed, unused context as created by inheritance by
7030  * perf_event_init_task below, used by fork() in case of fail.
7031  */
7032 void perf_event_free_task(struct task_struct *task)
7033 {
7034 	struct perf_event_context *ctx;
7035 	struct perf_event *event, *tmp;
7036 	int ctxn;
7037 
7038 	for_each_task_context_nr(ctxn) {
7039 		ctx = task->perf_event_ctxp[ctxn];
7040 		if (!ctx)
7041 			continue;
7042 
7043 		mutex_lock(&ctx->mutex);
7044 again:
7045 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7046 				group_entry)
7047 			perf_free_event(event, ctx);
7048 
7049 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7050 				group_entry)
7051 			perf_free_event(event, ctx);
7052 
7053 		if (!list_empty(&ctx->pinned_groups) ||
7054 				!list_empty(&ctx->flexible_groups))
7055 			goto again;
7056 
7057 		mutex_unlock(&ctx->mutex);
7058 
7059 		put_ctx(ctx);
7060 	}
7061 }
7062 
7063 void perf_event_delayed_put(struct task_struct *task)
7064 {
7065 	int ctxn;
7066 
7067 	for_each_task_context_nr(ctxn)
7068 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7069 }
7070 
7071 /*
7072  * inherit a event from parent task to child task:
7073  */
7074 static struct perf_event *
7075 inherit_event(struct perf_event *parent_event,
7076 	      struct task_struct *parent,
7077 	      struct perf_event_context *parent_ctx,
7078 	      struct task_struct *child,
7079 	      struct perf_event *group_leader,
7080 	      struct perf_event_context *child_ctx)
7081 {
7082 	struct perf_event *child_event;
7083 	unsigned long flags;
7084 
7085 	/*
7086 	 * Instead of creating recursive hierarchies of events,
7087 	 * we link inherited events back to the original parent,
7088 	 * which has a filp for sure, which we use as the reference
7089 	 * count:
7090 	 */
7091 	if (parent_event->parent)
7092 		parent_event = parent_event->parent;
7093 
7094 	child_event = perf_event_alloc(&parent_event->attr,
7095 					   parent_event->cpu,
7096 					   child,
7097 					   group_leader, parent_event,
7098 				           NULL, NULL);
7099 	if (IS_ERR(child_event))
7100 		return child_event;
7101 
7102 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7103 		free_event(child_event);
7104 		return NULL;
7105 	}
7106 
7107 	get_ctx(child_ctx);
7108 
7109 	/*
7110 	 * Make the child state follow the state of the parent event,
7111 	 * not its attr.disabled bit.  We hold the parent's mutex,
7112 	 * so we won't race with perf_event_{en, dis}able_family.
7113 	 */
7114 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7115 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7116 	else
7117 		child_event->state = PERF_EVENT_STATE_OFF;
7118 
7119 	if (parent_event->attr.freq) {
7120 		u64 sample_period = parent_event->hw.sample_period;
7121 		struct hw_perf_event *hwc = &child_event->hw;
7122 
7123 		hwc->sample_period = sample_period;
7124 		hwc->last_period   = sample_period;
7125 
7126 		local64_set(&hwc->period_left, sample_period);
7127 	}
7128 
7129 	child_event->ctx = child_ctx;
7130 	child_event->overflow_handler = parent_event->overflow_handler;
7131 	child_event->overflow_handler_context
7132 		= parent_event->overflow_handler_context;
7133 
7134 	/*
7135 	 * Precalculate sample_data sizes
7136 	 */
7137 	perf_event__header_size(child_event);
7138 	perf_event__id_header_size(child_event);
7139 
7140 	/*
7141 	 * Link it up in the child's context:
7142 	 */
7143 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7144 	add_event_to_ctx(child_event, child_ctx);
7145 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7146 
7147 	/*
7148 	 * Link this into the parent event's child list
7149 	 */
7150 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7151 	mutex_lock(&parent_event->child_mutex);
7152 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7153 	mutex_unlock(&parent_event->child_mutex);
7154 
7155 	return child_event;
7156 }
7157 
7158 static int inherit_group(struct perf_event *parent_event,
7159 	      struct task_struct *parent,
7160 	      struct perf_event_context *parent_ctx,
7161 	      struct task_struct *child,
7162 	      struct perf_event_context *child_ctx)
7163 {
7164 	struct perf_event *leader;
7165 	struct perf_event *sub;
7166 	struct perf_event *child_ctr;
7167 
7168 	leader = inherit_event(parent_event, parent, parent_ctx,
7169 				 child, NULL, child_ctx);
7170 	if (IS_ERR(leader))
7171 		return PTR_ERR(leader);
7172 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7173 		child_ctr = inherit_event(sub, parent, parent_ctx,
7174 					    child, leader, child_ctx);
7175 		if (IS_ERR(child_ctr))
7176 			return PTR_ERR(child_ctr);
7177 	}
7178 	return 0;
7179 }
7180 
7181 static int
7182 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7183 		   struct perf_event_context *parent_ctx,
7184 		   struct task_struct *child, int ctxn,
7185 		   int *inherited_all)
7186 {
7187 	int ret;
7188 	struct perf_event_context *child_ctx;
7189 
7190 	if (!event->attr.inherit) {
7191 		*inherited_all = 0;
7192 		return 0;
7193 	}
7194 
7195 	child_ctx = child->perf_event_ctxp[ctxn];
7196 	if (!child_ctx) {
7197 		/*
7198 		 * This is executed from the parent task context, so
7199 		 * inherit events that have been marked for cloning.
7200 		 * First allocate and initialize a context for the
7201 		 * child.
7202 		 */
7203 
7204 		child_ctx = alloc_perf_context(event->pmu, child);
7205 		if (!child_ctx)
7206 			return -ENOMEM;
7207 
7208 		child->perf_event_ctxp[ctxn] = child_ctx;
7209 	}
7210 
7211 	ret = inherit_group(event, parent, parent_ctx,
7212 			    child, child_ctx);
7213 
7214 	if (ret)
7215 		*inherited_all = 0;
7216 
7217 	return ret;
7218 }
7219 
7220 /*
7221  * Initialize the perf_event context in task_struct
7222  */
7223 int perf_event_init_context(struct task_struct *child, int ctxn)
7224 {
7225 	struct perf_event_context *child_ctx, *parent_ctx;
7226 	struct perf_event_context *cloned_ctx;
7227 	struct perf_event *event;
7228 	struct task_struct *parent = current;
7229 	int inherited_all = 1;
7230 	unsigned long flags;
7231 	int ret = 0;
7232 
7233 	if (likely(!parent->perf_event_ctxp[ctxn]))
7234 		return 0;
7235 
7236 	/*
7237 	 * If the parent's context is a clone, pin it so it won't get
7238 	 * swapped under us.
7239 	 */
7240 	parent_ctx = perf_pin_task_context(parent, ctxn);
7241 
7242 	/*
7243 	 * No need to check if parent_ctx != NULL here; since we saw
7244 	 * it non-NULL earlier, the only reason for it to become NULL
7245 	 * is if we exit, and since we're currently in the middle of
7246 	 * a fork we can't be exiting at the same time.
7247 	 */
7248 
7249 	/*
7250 	 * Lock the parent list. No need to lock the child - not PID
7251 	 * hashed yet and not running, so nobody can access it.
7252 	 */
7253 	mutex_lock(&parent_ctx->mutex);
7254 
7255 	/*
7256 	 * We dont have to disable NMIs - we are only looking at
7257 	 * the list, not manipulating it:
7258 	 */
7259 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7260 		ret = inherit_task_group(event, parent, parent_ctx,
7261 					 child, ctxn, &inherited_all);
7262 		if (ret)
7263 			break;
7264 	}
7265 
7266 	/*
7267 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7268 	 * to allocations, but we need to prevent rotation because
7269 	 * rotate_ctx() will change the list from interrupt context.
7270 	 */
7271 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7272 	parent_ctx->rotate_disable = 1;
7273 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7274 
7275 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7276 		ret = inherit_task_group(event, parent, parent_ctx,
7277 					 child, ctxn, &inherited_all);
7278 		if (ret)
7279 			break;
7280 	}
7281 
7282 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7283 	parent_ctx->rotate_disable = 0;
7284 
7285 	child_ctx = child->perf_event_ctxp[ctxn];
7286 
7287 	if (child_ctx && inherited_all) {
7288 		/*
7289 		 * Mark the child context as a clone of the parent
7290 		 * context, or of whatever the parent is a clone of.
7291 		 *
7292 		 * Note that if the parent is a clone, the holding of
7293 		 * parent_ctx->lock avoids it from being uncloned.
7294 		 */
7295 		cloned_ctx = parent_ctx->parent_ctx;
7296 		if (cloned_ctx) {
7297 			child_ctx->parent_ctx = cloned_ctx;
7298 			child_ctx->parent_gen = parent_ctx->parent_gen;
7299 		} else {
7300 			child_ctx->parent_ctx = parent_ctx;
7301 			child_ctx->parent_gen = parent_ctx->generation;
7302 		}
7303 		get_ctx(child_ctx->parent_ctx);
7304 	}
7305 
7306 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7307 	mutex_unlock(&parent_ctx->mutex);
7308 
7309 	perf_unpin_context(parent_ctx);
7310 	put_ctx(parent_ctx);
7311 
7312 	return ret;
7313 }
7314 
7315 /*
7316  * Initialize the perf_event context in task_struct
7317  */
7318 int perf_event_init_task(struct task_struct *child)
7319 {
7320 	int ctxn, ret;
7321 
7322 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7323 	mutex_init(&child->perf_event_mutex);
7324 	INIT_LIST_HEAD(&child->perf_event_list);
7325 
7326 	for_each_task_context_nr(ctxn) {
7327 		ret = perf_event_init_context(child, ctxn);
7328 		if (ret)
7329 			return ret;
7330 	}
7331 
7332 	return 0;
7333 }
7334 
7335 static void __init perf_event_init_all_cpus(void)
7336 {
7337 	struct swevent_htable *swhash;
7338 	int cpu;
7339 
7340 	for_each_possible_cpu(cpu) {
7341 		swhash = &per_cpu(swevent_htable, cpu);
7342 		mutex_init(&swhash->hlist_mutex);
7343 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7344 	}
7345 }
7346 
7347 static void __cpuinit perf_event_init_cpu(int cpu)
7348 {
7349 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7350 
7351 	mutex_lock(&swhash->hlist_mutex);
7352 	if (swhash->hlist_refcount > 0) {
7353 		struct swevent_hlist *hlist;
7354 
7355 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7356 		WARN_ON(!hlist);
7357 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7358 	}
7359 	mutex_unlock(&swhash->hlist_mutex);
7360 }
7361 
7362 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7363 static void perf_pmu_rotate_stop(struct pmu *pmu)
7364 {
7365 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7366 
7367 	WARN_ON(!irqs_disabled());
7368 
7369 	list_del_init(&cpuctx->rotation_list);
7370 }
7371 
7372 static void __perf_event_exit_context(void *__info)
7373 {
7374 	struct perf_event_context *ctx = __info;
7375 	struct perf_event *event, *tmp;
7376 
7377 	perf_pmu_rotate_stop(ctx->pmu);
7378 
7379 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7380 		__perf_remove_from_context(event);
7381 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7382 		__perf_remove_from_context(event);
7383 }
7384 
7385 static void perf_event_exit_cpu_context(int cpu)
7386 {
7387 	struct perf_event_context *ctx;
7388 	struct pmu *pmu;
7389 	int idx;
7390 
7391 	idx = srcu_read_lock(&pmus_srcu);
7392 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7393 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7394 
7395 		mutex_lock(&ctx->mutex);
7396 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7397 		mutex_unlock(&ctx->mutex);
7398 	}
7399 	srcu_read_unlock(&pmus_srcu, idx);
7400 }
7401 
7402 static void perf_event_exit_cpu(int cpu)
7403 {
7404 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7405 
7406 	mutex_lock(&swhash->hlist_mutex);
7407 	swevent_hlist_release(swhash);
7408 	mutex_unlock(&swhash->hlist_mutex);
7409 
7410 	perf_event_exit_cpu_context(cpu);
7411 }
7412 #else
7413 static inline void perf_event_exit_cpu(int cpu) { }
7414 #endif
7415 
7416 static int
7417 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7418 {
7419 	int cpu;
7420 
7421 	for_each_online_cpu(cpu)
7422 		perf_event_exit_cpu(cpu);
7423 
7424 	return NOTIFY_OK;
7425 }
7426 
7427 /*
7428  * Run the perf reboot notifier at the very last possible moment so that
7429  * the generic watchdog code runs as long as possible.
7430  */
7431 static struct notifier_block perf_reboot_notifier = {
7432 	.notifier_call = perf_reboot,
7433 	.priority = INT_MIN,
7434 };
7435 
7436 static int __cpuinit
7437 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7438 {
7439 	unsigned int cpu = (long)hcpu;
7440 
7441 	switch (action & ~CPU_TASKS_FROZEN) {
7442 
7443 	case CPU_UP_PREPARE:
7444 	case CPU_DOWN_FAILED:
7445 		perf_event_init_cpu(cpu);
7446 		break;
7447 
7448 	case CPU_UP_CANCELED:
7449 	case CPU_DOWN_PREPARE:
7450 		perf_event_exit_cpu(cpu);
7451 		break;
7452 
7453 	default:
7454 		break;
7455 	}
7456 
7457 	return NOTIFY_OK;
7458 }
7459 
7460 void __init perf_event_init(void)
7461 {
7462 	int ret;
7463 
7464 	idr_init(&pmu_idr);
7465 
7466 	perf_event_init_all_cpus();
7467 	init_srcu_struct(&pmus_srcu);
7468 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7469 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7470 	perf_pmu_register(&perf_task_clock, NULL, -1);
7471 	perf_tp_register();
7472 	perf_cpu_notifier(perf_cpu_notify);
7473 	register_reboot_notifier(&perf_reboot_notifier);
7474 
7475 	ret = init_hw_breakpoint();
7476 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7477 
7478 	/* do not patch jump label more than once per second */
7479 	jump_label_rate_limit(&perf_sched_events, HZ);
7480 
7481 	/*
7482 	 * Build time assertion that we keep the data_head at the intended
7483 	 * location.  IOW, validation we got the __reserved[] size right.
7484 	 */
7485 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7486 		     != 1024);
7487 }
7488 
7489 static int __init perf_event_sysfs_init(void)
7490 {
7491 	struct pmu *pmu;
7492 	int ret;
7493 
7494 	mutex_lock(&pmus_lock);
7495 
7496 	ret = bus_register(&pmu_bus);
7497 	if (ret)
7498 		goto unlock;
7499 
7500 	list_for_each_entry(pmu, &pmus, entry) {
7501 		if (!pmu->name || pmu->type < 0)
7502 			continue;
7503 
7504 		ret = pmu_dev_alloc(pmu);
7505 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7506 	}
7507 	pmu_bus_running = 1;
7508 	ret = 0;
7509 
7510 unlock:
7511 	mutex_unlock(&pmus_lock);
7512 
7513 	return ret;
7514 }
7515 device_initcall(perf_event_sysfs_init);
7516 
7517 #ifdef CONFIG_CGROUP_PERF
7518 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7519 {
7520 	struct perf_cgroup *jc;
7521 
7522 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7523 	if (!jc)
7524 		return ERR_PTR(-ENOMEM);
7525 
7526 	jc->info = alloc_percpu(struct perf_cgroup_info);
7527 	if (!jc->info) {
7528 		kfree(jc);
7529 		return ERR_PTR(-ENOMEM);
7530 	}
7531 
7532 	return &jc->css;
7533 }
7534 
7535 static void perf_cgroup_css_free(struct cgroup *cont)
7536 {
7537 	struct perf_cgroup *jc;
7538 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7539 			  struct perf_cgroup, css);
7540 	free_percpu(jc->info);
7541 	kfree(jc);
7542 }
7543 
7544 static int __perf_cgroup_move(void *info)
7545 {
7546 	struct task_struct *task = info;
7547 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7548 	return 0;
7549 }
7550 
7551 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7552 {
7553 	struct task_struct *task;
7554 
7555 	cgroup_taskset_for_each(task, cgrp, tset)
7556 		task_function_call(task, __perf_cgroup_move, task);
7557 }
7558 
7559 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7560 			     struct task_struct *task)
7561 {
7562 	/*
7563 	 * cgroup_exit() is called in the copy_process() failure path.
7564 	 * Ignore this case since the task hasn't ran yet, this avoids
7565 	 * trying to poke a half freed task state from generic code.
7566 	 */
7567 	if (!(task->flags & PF_EXITING))
7568 		return;
7569 
7570 	task_function_call(task, __perf_cgroup_move, task);
7571 }
7572 
7573 struct cgroup_subsys perf_subsys = {
7574 	.name		= "perf_event",
7575 	.subsys_id	= perf_subsys_id,
7576 	.css_alloc	= perf_cgroup_css_alloc,
7577 	.css_free	= perf_cgroup_css_free,
7578 	.exit		= perf_cgroup_exit,
7579 	.attach		= perf_cgroup_attach,
7580 };
7581 #endif /* CONFIG_CGROUP_PERF */
7582