1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_proc_update_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 /* 1841 * Since perf_event_validate_size() limits this to 16k and inhibits 1842 * adding more siblings, this will never overflow. 1843 */ 1844 return size + nr * entry; 1845 } 1846 1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1848 { 1849 struct perf_sample_data *data; 1850 u16 size = 0; 1851 1852 if (sample_type & PERF_SAMPLE_IP) 1853 size += sizeof(data->ip); 1854 1855 if (sample_type & PERF_SAMPLE_ADDR) 1856 size += sizeof(data->addr); 1857 1858 if (sample_type & PERF_SAMPLE_PERIOD) 1859 size += sizeof(data->period); 1860 1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1862 size += sizeof(data->weight.full); 1863 1864 if (sample_type & PERF_SAMPLE_READ) 1865 size += event->read_size; 1866 1867 if (sample_type & PERF_SAMPLE_DATA_SRC) 1868 size += sizeof(data->data_src.val); 1869 1870 if (sample_type & PERF_SAMPLE_TRANSACTION) 1871 size += sizeof(data->txn); 1872 1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1874 size += sizeof(data->phys_addr); 1875 1876 if (sample_type & PERF_SAMPLE_CGROUP) 1877 size += sizeof(data->cgroup); 1878 1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1880 size += sizeof(data->data_page_size); 1881 1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1883 size += sizeof(data->code_page_size); 1884 1885 event->header_size = size; 1886 } 1887 1888 /* 1889 * Called at perf_event creation and when events are attached/detached from a 1890 * group. 1891 */ 1892 static void perf_event__header_size(struct perf_event *event) 1893 { 1894 event->read_size = 1895 __perf_event_read_size(event->attr.read_format, 1896 event->group_leader->nr_siblings); 1897 __perf_event_header_size(event, event->attr.sample_type); 1898 } 1899 1900 static void perf_event__id_header_size(struct perf_event *event) 1901 { 1902 struct perf_sample_data *data; 1903 u64 sample_type = event->attr.sample_type; 1904 u16 size = 0; 1905 1906 if (sample_type & PERF_SAMPLE_TID) 1907 size += sizeof(data->tid_entry); 1908 1909 if (sample_type & PERF_SAMPLE_TIME) 1910 size += sizeof(data->time); 1911 1912 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1913 size += sizeof(data->id); 1914 1915 if (sample_type & PERF_SAMPLE_ID) 1916 size += sizeof(data->id); 1917 1918 if (sample_type & PERF_SAMPLE_STREAM_ID) 1919 size += sizeof(data->stream_id); 1920 1921 if (sample_type & PERF_SAMPLE_CPU) 1922 size += sizeof(data->cpu_entry); 1923 1924 event->id_header_size = size; 1925 } 1926 1927 /* 1928 * Check that adding an event to the group does not result in anybody 1929 * overflowing the 64k event limit imposed by the output buffer. 1930 * 1931 * Specifically, check that the read_size for the event does not exceed 16k, 1932 * read_size being the one term that grows with groups size. Since read_size 1933 * depends on per-event read_format, also (re)check the existing events. 1934 * 1935 * This leaves 48k for the constant size fields and things like callchains, 1936 * branch stacks and register sets. 1937 */ 1938 static bool perf_event_validate_size(struct perf_event *event) 1939 { 1940 struct perf_event *sibling, *group_leader = event->group_leader; 1941 1942 if (__perf_event_read_size(event->attr.read_format, 1943 group_leader->nr_siblings + 1) > 16*1024) 1944 return false; 1945 1946 if (__perf_event_read_size(group_leader->attr.read_format, 1947 group_leader->nr_siblings + 1) > 16*1024) 1948 return false; 1949 1950 /* 1951 * When creating a new group leader, group_leader->ctx is initialized 1952 * after the size has been validated, but we cannot safely use 1953 * for_each_sibling_event() until group_leader->ctx is set. A new group 1954 * leader cannot have any siblings yet, so we can safely skip checking 1955 * the non-existent siblings. 1956 */ 1957 if (event == group_leader) 1958 return true; 1959 1960 for_each_sibling_event(sibling, group_leader) { 1961 if (__perf_event_read_size(sibling->attr.read_format, 1962 group_leader->nr_siblings + 1) > 16*1024) 1963 return false; 1964 } 1965 1966 return true; 1967 } 1968 1969 static void perf_group_attach(struct perf_event *event) 1970 { 1971 struct perf_event *group_leader = event->group_leader, *pos; 1972 1973 lockdep_assert_held(&event->ctx->lock); 1974 1975 /* 1976 * We can have double attach due to group movement (move_group) in 1977 * perf_event_open(). 1978 */ 1979 if (event->attach_state & PERF_ATTACH_GROUP) 1980 return; 1981 1982 event->attach_state |= PERF_ATTACH_GROUP; 1983 1984 if (group_leader == event) 1985 return; 1986 1987 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1988 1989 group_leader->group_caps &= event->event_caps; 1990 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1992 group_leader->nr_siblings++; 1993 group_leader->group_generation++; 1994 1995 perf_event__header_size(group_leader); 1996 1997 for_each_sibling_event(pos, group_leader) 1998 perf_event__header_size(pos); 1999 } 2000 2001 /* 2002 * Remove an event from the lists for its context. 2003 * Must be called with ctx->mutex and ctx->lock held. 2004 */ 2005 static void 2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2007 { 2008 WARN_ON_ONCE(event->ctx != ctx); 2009 lockdep_assert_held(&ctx->lock); 2010 2011 /* 2012 * We can have double detach due to exit/hot-unplug + close. 2013 */ 2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2015 return; 2016 2017 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2018 2019 ctx->nr_events--; 2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2021 ctx->nr_user--; 2022 if (event->attr.inherit_stat) 2023 ctx->nr_stat--; 2024 2025 list_del_rcu(&event->event_entry); 2026 2027 if (event->group_leader == event) 2028 del_event_from_groups(event, ctx); 2029 2030 /* 2031 * If event was in error state, then keep it 2032 * that way, otherwise bogus counts will be 2033 * returned on read(). The only way to get out 2034 * of error state is by explicit re-enabling 2035 * of the event 2036 */ 2037 if (event->state > PERF_EVENT_STATE_OFF) { 2038 perf_cgroup_event_disable(event, ctx); 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2040 } 2041 2042 ctx->generation++; 2043 event->pmu_ctx->nr_events--; 2044 } 2045 2046 static int 2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2048 { 2049 if (!has_aux(aux_event)) 2050 return 0; 2051 2052 if (!event->pmu->aux_output_match) 2053 return 0; 2054 2055 return event->pmu->aux_output_match(aux_event); 2056 } 2057 2058 static void put_event(struct perf_event *event); 2059 static void event_sched_out(struct perf_event *event, 2060 struct perf_event_context *ctx); 2061 2062 static void perf_put_aux_event(struct perf_event *event) 2063 { 2064 struct perf_event_context *ctx = event->ctx; 2065 struct perf_event *iter; 2066 2067 /* 2068 * If event uses aux_event tear down the link 2069 */ 2070 if (event->aux_event) { 2071 iter = event->aux_event; 2072 event->aux_event = NULL; 2073 put_event(iter); 2074 return; 2075 } 2076 2077 /* 2078 * If the event is an aux_event, tear down all links to 2079 * it from other events. 2080 */ 2081 for_each_sibling_event(iter, event->group_leader) { 2082 if (iter->aux_event != event) 2083 continue; 2084 2085 iter->aux_event = NULL; 2086 put_event(event); 2087 2088 /* 2089 * If it's ACTIVE, schedule it out and put it into ERROR 2090 * state so that we don't try to schedule it again. Note 2091 * that perf_event_enable() will clear the ERROR status. 2092 */ 2093 event_sched_out(iter, ctx); 2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2095 } 2096 } 2097 2098 static bool perf_need_aux_event(struct perf_event *event) 2099 { 2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2101 } 2102 2103 static int perf_get_aux_event(struct perf_event *event, 2104 struct perf_event *group_leader) 2105 { 2106 /* 2107 * Our group leader must be an aux event if we want to be 2108 * an aux_output. This way, the aux event will precede its 2109 * aux_output events in the group, and therefore will always 2110 * schedule first. 2111 */ 2112 if (!group_leader) 2113 return 0; 2114 2115 /* 2116 * aux_output and aux_sample_size are mutually exclusive. 2117 */ 2118 if (event->attr.aux_output && event->attr.aux_sample_size) 2119 return 0; 2120 2121 if (event->attr.aux_output && 2122 !perf_aux_output_match(event, group_leader)) 2123 return 0; 2124 2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2126 return 0; 2127 2128 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2129 return 0; 2130 2131 /* 2132 * Link aux_outputs to their aux event; this is undone in 2133 * perf_group_detach() by perf_put_aux_event(). When the 2134 * group in torn down, the aux_output events loose their 2135 * link to the aux_event and can't schedule any more. 2136 */ 2137 event->aux_event = group_leader; 2138 2139 return 1; 2140 } 2141 2142 static inline struct list_head *get_event_list(struct perf_event *event) 2143 { 2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2145 &event->pmu_ctx->flexible_active; 2146 } 2147 2148 /* 2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2150 * cannot exist on their own, schedule them out and move them into the ERROR 2151 * state. Also see _perf_event_enable(), it will not be able to recover 2152 * this ERROR state. 2153 */ 2154 static inline void perf_remove_sibling_event(struct perf_event *event) 2155 { 2156 event_sched_out(event, event->ctx); 2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2158 } 2159 2160 static void perf_group_detach(struct perf_event *event) 2161 { 2162 struct perf_event *leader = event->group_leader; 2163 struct perf_event *sibling, *tmp; 2164 struct perf_event_context *ctx = event->ctx; 2165 2166 lockdep_assert_held(&ctx->lock); 2167 2168 /* 2169 * We can have double detach due to exit/hot-unplug + close. 2170 */ 2171 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2172 return; 2173 2174 event->attach_state &= ~PERF_ATTACH_GROUP; 2175 2176 perf_put_aux_event(event); 2177 2178 /* 2179 * If this is a sibling, remove it from its group. 2180 */ 2181 if (leader != event) { 2182 list_del_init(&event->sibling_list); 2183 event->group_leader->nr_siblings--; 2184 event->group_leader->group_generation++; 2185 goto out; 2186 } 2187 2188 /* 2189 * If this was a group event with sibling events then 2190 * upgrade the siblings to singleton events by adding them 2191 * to whatever list we are on. 2192 */ 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2194 2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2196 perf_remove_sibling_event(sibling); 2197 2198 sibling->group_leader = sibling; 2199 list_del_init(&sibling->sibling_list); 2200 2201 /* Inherit group flags from the previous leader */ 2202 sibling->group_caps = event->group_caps; 2203 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2205 add_event_to_groups(sibling, event->ctx); 2206 2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2208 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2209 } 2210 2211 WARN_ON_ONCE(sibling->ctx != event->ctx); 2212 } 2213 2214 out: 2215 for_each_sibling_event(tmp, leader) 2216 perf_event__header_size(tmp); 2217 2218 perf_event__header_size(leader); 2219 } 2220 2221 static void sync_child_event(struct perf_event *child_event); 2222 2223 static void perf_child_detach(struct perf_event *event) 2224 { 2225 struct perf_event *parent_event = event->parent; 2226 2227 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2228 return; 2229 2230 event->attach_state &= ~PERF_ATTACH_CHILD; 2231 2232 if (WARN_ON_ONCE(!parent_event)) 2233 return; 2234 2235 lockdep_assert_held(&parent_event->child_mutex); 2236 2237 sync_child_event(event); 2238 list_del_init(&event->child_list); 2239 } 2240 2241 static bool is_orphaned_event(struct perf_event *event) 2242 { 2243 return event->state == PERF_EVENT_STATE_DEAD; 2244 } 2245 2246 static inline int 2247 event_filter_match(struct perf_event *event) 2248 { 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2250 perf_cgroup_match(event); 2251 } 2252 2253 static void 2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2255 { 2256 struct perf_event_pmu_context *epc = event->pmu_ctx; 2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2259 2260 // XXX cpc serialization, probably per-cpu IRQ disabled 2261 2262 WARN_ON_ONCE(event->ctx != ctx); 2263 lockdep_assert_held(&ctx->lock); 2264 2265 if (event->state != PERF_EVENT_STATE_ACTIVE) 2266 return; 2267 2268 /* 2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2270 * we can schedule events _OUT_ individually through things like 2271 * __perf_remove_from_context(). 2272 */ 2273 list_del_init(&event->active_list); 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 event->pmu->del(event, 0); 2278 event->oncpu = -1; 2279 2280 if (event->pending_disable) { 2281 event->pending_disable = 0; 2282 perf_cgroup_event_disable(event, ctx); 2283 state = PERF_EVENT_STATE_OFF; 2284 } 2285 2286 if (event->pending_sigtrap) { 2287 bool dec = true; 2288 2289 event->pending_sigtrap = 0; 2290 if (state != PERF_EVENT_STATE_OFF && 2291 !event->pending_work) { 2292 event->pending_work = 1; 2293 dec = false; 2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2295 task_work_add(current, &event->pending_task, TWA_RESUME); 2296 } 2297 if (dec) 2298 local_dec(&event->ctx->nr_pending); 2299 } 2300 2301 perf_event_set_state(event, state); 2302 2303 if (!is_software_event(event)) 2304 cpc->active_oncpu--; 2305 if (event->attr.freq && event->attr.sample_freq) 2306 ctx->nr_freq--; 2307 if (event->attr.exclusive || !cpc->active_oncpu) 2308 cpc->exclusive = 0; 2309 2310 perf_pmu_enable(event->pmu); 2311 } 2312 2313 static void 2314 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2315 { 2316 struct perf_event *event; 2317 2318 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2319 return; 2320 2321 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2322 2323 event_sched_out(group_event, ctx); 2324 2325 /* 2326 * Schedule out siblings (if any): 2327 */ 2328 for_each_sibling_event(event, group_event) 2329 event_sched_out(event, ctx); 2330 } 2331 2332 #define DETACH_GROUP 0x01UL 2333 #define DETACH_CHILD 0x02UL 2334 #define DETACH_DEAD 0x04UL 2335 2336 /* 2337 * Cross CPU call to remove a performance event 2338 * 2339 * We disable the event on the hardware level first. After that we 2340 * remove it from the context list. 2341 */ 2342 static void 2343 __perf_remove_from_context(struct perf_event *event, 2344 struct perf_cpu_context *cpuctx, 2345 struct perf_event_context *ctx, 2346 void *info) 2347 { 2348 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2349 unsigned long flags = (unsigned long)info; 2350 2351 if (ctx->is_active & EVENT_TIME) { 2352 update_context_time(ctx); 2353 update_cgrp_time_from_cpuctx(cpuctx, false); 2354 } 2355 2356 /* 2357 * Ensure event_sched_out() switches to OFF, at the very least 2358 * this avoids raising perf_pending_task() at this time. 2359 */ 2360 if (flags & DETACH_DEAD) 2361 event->pending_disable = 1; 2362 event_sched_out(event, ctx); 2363 if (flags & DETACH_GROUP) 2364 perf_group_detach(event); 2365 if (flags & DETACH_CHILD) 2366 perf_child_detach(event); 2367 list_del_event(event, ctx); 2368 if (flags & DETACH_DEAD) 2369 event->state = PERF_EVENT_STATE_DEAD; 2370 2371 if (!pmu_ctx->nr_events) { 2372 pmu_ctx->rotate_necessary = 0; 2373 2374 if (ctx->task && ctx->is_active) { 2375 struct perf_cpu_pmu_context *cpc; 2376 2377 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2378 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2379 cpc->task_epc = NULL; 2380 } 2381 } 2382 2383 if (!ctx->nr_events && ctx->is_active) { 2384 if (ctx == &cpuctx->ctx) 2385 update_cgrp_time_from_cpuctx(cpuctx, true); 2386 2387 ctx->is_active = 0; 2388 if (ctx->task) { 2389 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2390 cpuctx->task_ctx = NULL; 2391 } 2392 } 2393 } 2394 2395 /* 2396 * Remove the event from a task's (or a CPU's) list of events. 2397 * 2398 * If event->ctx is a cloned context, callers must make sure that 2399 * every task struct that event->ctx->task could possibly point to 2400 * remains valid. This is OK when called from perf_release since 2401 * that only calls us on the top-level context, which can't be a clone. 2402 * When called from perf_event_exit_task, it's OK because the 2403 * context has been detached from its task. 2404 */ 2405 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2406 { 2407 struct perf_event_context *ctx = event->ctx; 2408 2409 lockdep_assert_held(&ctx->mutex); 2410 2411 /* 2412 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2413 * to work in the face of TASK_TOMBSTONE, unlike every other 2414 * event_function_call() user. 2415 */ 2416 raw_spin_lock_irq(&ctx->lock); 2417 if (!ctx->is_active) { 2418 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2419 ctx, (void *)flags); 2420 raw_spin_unlock_irq(&ctx->lock); 2421 return; 2422 } 2423 raw_spin_unlock_irq(&ctx->lock); 2424 2425 event_function_call(event, __perf_remove_from_context, (void *)flags); 2426 } 2427 2428 /* 2429 * Cross CPU call to disable a performance event 2430 */ 2431 static void __perf_event_disable(struct perf_event *event, 2432 struct perf_cpu_context *cpuctx, 2433 struct perf_event_context *ctx, 2434 void *info) 2435 { 2436 if (event->state < PERF_EVENT_STATE_INACTIVE) 2437 return; 2438 2439 if (ctx->is_active & EVENT_TIME) { 2440 update_context_time(ctx); 2441 update_cgrp_time_from_event(event); 2442 } 2443 2444 perf_pmu_disable(event->pmu_ctx->pmu); 2445 2446 if (event == event->group_leader) 2447 group_sched_out(event, ctx); 2448 else 2449 event_sched_out(event, ctx); 2450 2451 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2452 perf_cgroup_event_disable(event, ctx); 2453 2454 perf_pmu_enable(event->pmu_ctx->pmu); 2455 } 2456 2457 /* 2458 * Disable an event. 2459 * 2460 * If event->ctx is a cloned context, callers must make sure that 2461 * every task struct that event->ctx->task could possibly point to 2462 * remains valid. This condition is satisfied when called through 2463 * perf_event_for_each_child or perf_event_for_each because they 2464 * hold the top-level event's child_mutex, so any descendant that 2465 * goes to exit will block in perf_event_exit_event(). 2466 * 2467 * When called from perf_pending_irq it's OK because event->ctx 2468 * is the current context on this CPU and preemption is disabled, 2469 * hence we can't get into perf_event_task_sched_out for this context. 2470 */ 2471 static void _perf_event_disable(struct perf_event *event) 2472 { 2473 struct perf_event_context *ctx = event->ctx; 2474 2475 raw_spin_lock_irq(&ctx->lock); 2476 if (event->state <= PERF_EVENT_STATE_OFF) { 2477 raw_spin_unlock_irq(&ctx->lock); 2478 return; 2479 } 2480 raw_spin_unlock_irq(&ctx->lock); 2481 2482 event_function_call(event, __perf_event_disable, NULL); 2483 } 2484 2485 void perf_event_disable_local(struct perf_event *event) 2486 { 2487 event_function_local(event, __perf_event_disable, NULL); 2488 } 2489 2490 /* 2491 * Strictly speaking kernel users cannot create groups and therefore this 2492 * interface does not need the perf_event_ctx_lock() magic. 2493 */ 2494 void perf_event_disable(struct perf_event *event) 2495 { 2496 struct perf_event_context *ctx; 2497 2498 ctx = perf_event_ctx_lock(event); 2499 _perf_event_disable(event); 2500 perf_event_ctx_unlock(event, ctx); 2501 } 2502 EXPORT_SYMBOL_GPL(perf_event_disable); 2503 2504 void perf_event_disable_inatomic(struct perf_event *event) 2505 { 2506 event->pending_disable = 1; 2507 irq_work_queue(&event->pending_irq); 2508 } 2509 2510 #define MAX_INTERRUPTS (~0ULL) 2511 2512 static void perf_log_throttle(struct perf_event *event, int enable); 2513 static void perf_log_itrace_start(struct perf_event *event); 2514 2515 static int 2516 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2517 { 2518 struct perf_event_pmu_context *epc = event->pmu_ctx; 2519 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2520 int ret = 0; 2521 2522 WARN_ON_ONCE(event->ctx != ctx); 2523 2524 lockdep_assert_held(&ctx->lock); 2525 2526 if (event->state <= PERF_EVENT_STATE_OFF) 2527 return 0; 2528 2529 WRITE_ONCE(event->oncpu, smp_processor_id()); 2530 /* 2531 * Order event::oncpu write to happen before the ACTIVE state is 2532 * visible. This allows perf_event_{stop,read}() to observe the correct 2533 * ->oncpu if it sees ACTIVE. 2534 */ 2535 smp_wmb(); 2536 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2537 2538 /* 2539 * Unthrottle events, since we scheduled we might have missed several 2540 * ticks already, also for a heavily scheduling task there is little 2541 * guarantee it'll get a tick in a timely manner. 2542 */ 2543 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2544 perf_log_throttle(event, 1); 2545 event->hw.interrupts = 0; 2546 } 2547 2548 perf_pmu_disable(event->pmu); 2549 2550 perf_log_itrace_start(event); 2551 2552 if (event->pmu->add(event, PERF_EF_START)) { 2553 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2554 event->oncpu = -1; 2555 ret = -EAGAIN; 2556 goto out; 2557 } 2558 2559 if (!is_software_event(event)) 2560 cpc->active_oncpu++; 2561 if (event->attr.freq && event->attr.sample_freq) 2562 ctx->nr_freq++; 2563 2564 if (event->attr.exclusive) 2565 cpc->exclusive = 1; 2566 2567 out: 2568 perf_pmu_enable(event->pmu); 2569 2570 return ret; 2571 } 2572 2573 static int 2574 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2575 { 2576 struct perf_event *event, *partial_group = NULL; 2577 struct pmu *pmu = group_event->pmu_ctx->pmu; 2578 2579 if (group_event->state == PERF_EVENT_STATE_OFF) 2580 return 0; 2581 2582 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2583 2584 if (event_sched_in(group_event, ctx)) 2585 goto error; 2586 2587 /* 2588 * Schedule in siblings as one group (if any): 2589 */ 2590 for_each_sibling_event(event, group_event) { 2591 if (event_sched_in(event, ctx)) { 2592 partial_group = event; 2593 goto group_error; 2594 } 2595 } 2596 2597 if (!pmu->commit_txn(pmu)) 2598 return 0; 2599 2600 group_error: 2601 /* 2602 * Groups can be scheduled in as one unit only, so undo any 2603 * partial group before returning: 2604 * The events up to the failed event are scheduled out normally. 2605 */ 2606 for_each_sibling_event(event, group_event) { 2607 if (event == partial_group) 2608 break; 2609 2610 event_sched_out(event, ctx); 2611 } 2612 event_sched_out(group_event, ctx); 2613 2614 error: 2615 pmu->cancel_txn(pmu); 2616 return -EAGAIN; 2617 } 2618 2619 /* 2620 * Work out whether we can put this event group on the CPU now. 2621 */ 2622 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2623 { 2624 struct perf_event_pmu_context *epc = event->pmu_ctx; 2625 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2626 2627 /* 2628 * Groups consisting entirely of software events can always go on. 2629 */ 2630 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2631 return 1; 2632 /* 2633 * If an exclusive group is already on, no other hardware 2634 * events can go on. 2635 */ 2636 if (cpc->exclusive) 2637 return 0; 2638 /* 2639 * If this group is exclusive and there are already 2640 * events on the CPU, it can't go on. 2641 */ 2642 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2643 return 0; 2644 /* 2645 * Otherwise, try to add it if all previous groups were able 2646 * to go on. 2647 */ 2648 return can_add_hw; 2649 } 2650 2651 static void add_event_to_ctx(struct perf_event *event, 2652 struct perf_event_context *ctx) 2653 { 2654 list_add_event(event, ctx); 2655 perf_group_attach(event); 2656 } 2657 2658 static void task_ctx_sched_out(struct perf_event_context *ctx, 2659 enum event_type_t event_type) 2660 { 2661 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2662 2663 if (!cpuctx->task_ctx) 2664 return; 2665 2666 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2667 return; 2668 2669 ctx_sched_out(ctx, event_type); 2670 } 2671 2672 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2673 struct perf_event_context *ctx) 2674 { 2675 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2676 if (ctx) 2677 ctx_sched_in(ctx, EVENT_PINNED); 2678 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2679 if (ctx) 2680 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2681 } 2682 2683 /* 2684 * We want to maintain the following priority of scheduling: 2685 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2686 * - task pinned (EVENT_PINNED) 2687 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2688 * - task flexible (EVENT_FLEXIBLE). 2689 * 2690 * In order to avoid unscheduling and scheduling back in everything every 2691 * time an event is added, only do it for the groups of equal priority and 2692 * below. 2693 * 2694 * This can be called after a batch operation on task events, in which case 2695 * event_type is a bit mask of the types of events involved. For CPU events, 2696 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2697 */ 2698 /* 2699 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2700 * event to the context or enabling existing event in the context. We can 2701 * probably optimize it by rescheduling only affected pmu_ctx. 2702 */ 2703 static void ctx_resched(struct perf_cpu_context *cpuctx, 2704 struct perf_event_context *task_ctx, 2705 enum event_type_t event_type) 2706 { 2707 bool cpu_event = !!(event_type & EVENT_CPU); 2708 2709 /* 2710 * If pinned groups are involved, flexible groups also need to be 2711 * scheduled out. 2712 */ 2713 if (event_type & EVENT_PINNED) 2714 event_type |= EVENT_FLEXIBLE; 2715 2716 event_type &= EVENT_ALL; 2717 2718 perf_ctx_disable(&cpuctx->ctx, false); 2719 if (task_ctx) { 2720 perf_ctx_disable(task_ctx, false); 2721 task_ctx_sched_out(task_ctx, event_type); 2722 } 2723 2724 /* 2725 * Decide which cpu ctx groups to schedule out based on the types 2726 * of events that caused rescheduling: 2727 * - EVENT_CPU: schedule out corresponding groups; 2728 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2729 * - otherwise, do nothing more. 2730 */ 2731 if (cpu_event) 2732 ctx_sched_out(&cpuctx->ctx, event_type); 2733 else if (event_type & EVENT_PINNED) 2734 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2735 2736 perf_event_sched_in(cpuctx, task_ctx); 2737 2738 perf_ctx_enable(&cpuctx->ctx, false); 2739 if (task_ctx) 2740 perf_ctx_enable(task_ctx, false); 2741 } 2742 2743 void perf_pmu_resched(struct pmu *pmu) 2744 { 2745 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2746 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2747 2748 perf_ctx_lock(cpuctx, task_ctx); 2749 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2750 perf_ctx_unlock(cpuctx, task_ctx); 2751 } 2752 2753 /* 2754 * Cross CPU call to install and enable a performance event 2755 * 2756 * Very similar to remote_function() + event_function() but cannot assume that 2757 * things like ctx->is_active and cpuctx->task_ctx are set. 2758 */ 2759 static int __perf_install_in_context(void *info) 2760 { 2761 struct perf_event *event = info; 2762 struct perf_event_context *ctx = event->ctx; 2763 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2764 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2765 bool reprogram = true; 2766 int ret = 0; 2767 2768 raw_spin_lock(&cpuctx->ctx.lock); 2769 if (ctx->task) { 2770 raw_spin_lock(&ctx->lock); 2771 task_ctx = ctx; 2772 2773 reprogram = (ctx->task == current); 2774 2775 /* 2776 * If the task is running, it must be running on this CPU, 2777 * otherwise we cannot reprogram things. 2778 * 2779 * If its not running, we don't care, ctx->lock will 2780 * serialize against it becoming runnable. 2781 */ 2782 if (task_curr(ctx->task) && !reprogram) { 2783 ret = -ESRCH; 2784 goto unlock; 2785 } 2786 2787 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2788 } else if (task_ctx) { 2789 raw_spin_lock(&task_ctx->lock); 2790 } 2791 2792 #ifdef CONFIG_CGROUP_PERF 2793 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2794 /* 2795 * If the current cgroup doesn't match the event's 2796 * cgroup, we should not try to schedule it. 2797 */ 2798 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2799 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2800 event->cgrp->css.cgroup); 2801 } 2802 #endif 2803 2804 if (reprogram) { 2805 ctx_sched_out(ctx, EVENT_TIME); 2806 add_event_to_ctx(event, ctx); 2807 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2808 } else { 2809 add_event_to_ctx(event, ctx); 2810 } 2811 2812 unlock: 2813 perf_ctx_unlock(cpuctx, task_ctx); 2814 2815 return ret; 2816 } 2817 2818 static bool exclusive_event_installable(struct perf_event *event, 2819 struct perf_event_context *ctx); 2820 2821 /* 2822 * Attach a performance event to a context. 2823 * 2824 * Very similar to event_function_call, see comment there. 2825 */ 2826 static void 2827 perf_install_in_context(struct perf_event_context *ctx, 2828 struct perf_event *event, 2829 int cpu) 2830 { 2831 struct task_struct *task = READ_ONCE(ctx->task); 2832 2833 lockdep_assert_held(&ctx->mutex); 2834 2835 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2836 2837 if (event->cpu != -1) 2838 WARN_ON_ONCE(event->cpu != cpu); 2839 2840 /* 2841 * Ensures that if we can observe event->ctx, both the event and ctx 2842 * will be 'complete'. See perf_iterate_sb_cpu(). 2843 */ 2844 smp_store_release(&event->ctx, ctx); 2845 2846 /* 2847 * perf_event_attr::disabled events will not run and can be initialized 2848 * without IPI. Except when this is the first event for the context, in 2849 * that case we need the magic of the IPI to set ctx->is_active. 2850 * 2851 * The IOC_ENABLE that is sure to follow the creation of a disabled 2852 * event will issue the IPI and reprogram the hardware. 2853 */ 2854 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2855 ctx->nr_events && !is_cgroup_event(event)) { 2856 raw_spin_lock_irq(&ctx->lock); 2857 if (ctx->task == TASK_TOMBSTONE) { 2858 raw_spin_unlock_irq(&ctx->lock); 2859 return; 2860 } 2861 add_event_to_ctx(event, ctx); 2862 raw_spin_unlock_irq(&ctx->lock); 2863 return; 2864 } 2865 2866 if (!task) { 2867 cpu_function_call(cpu, __perf_install_in_context, event); 2868 return; 2869 } 2870 2871 /* 2872 * Should not happen, we validate the ctx is still alive before calling. 2873 */ 2874 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2875 return; 2876 2877 /* 2878 * Installing events is tricky because we cannot rely on ctx->is_active 2879 * to be set in case this is the nr_events 0 -> 1 transition. 2880 * 2881 * Instead we use task_curr(), which tells us if the task is running. 2882 * However, since we use task_curr() outside of rq::lock, we can race 2883 * against the actual state. This means the result can be wrong. 2884 * 2885 * If we get a false positive, we retry, this is harmless. 2886 * 2887 * If we get a false negative, things are complicated. If we are after 2888 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2889 * value must be correct. If we're before, it doesn't matter since 2890 * perf_event_context_sched_in() will program the counter. 2891 * 2892 * However, this hinges on the remote context switch having observed 2893 * our task->perf_event_ctxp[] store, such that it will in fact take 2894 * ctx::lock in perf_event_context_sched_in(). 2895 * 2896 * We do this by task_function_call(), if the IPI fails to hit the task 2897 * we know any future context switch of task must see the 2898 * perf_event_ctpx[] store. 2899 */ 2900 2901 /* 2902 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2903 * task_cpu() load, such that if the IPI then does not find the task 2904 * running, a future context switch of that task must observe the 2905 * store. 2906 */ 2907 smp_mb(); 2908 again: 2909 if (!task_function_call(task, __perf_install_in_context, event)) 2910 return; 2911 2912 raw_spin_lock_irq(&ctx->lock); 2913 task = ctx->task; 2914 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2915 /* 2916 * Cannot happen because we already checked above (which also 2917 * cannot happen), and we hold ctx->mutex, which serializes us 2918 * against perf_event_exit_task_context(). 2919 */ 2920 raw_spin_unlock_irq(&ctx->lock); 2921 return; 2922 } 2923 /* 2924 * If the task is not running, ctx->lock will avoid it becoming so, 2925 * thus we can safely install the event. 2926 */ 2927 if (task_curr(task)) { 2928 raw_spin_unlock_irq(&ctx->lock); 2929 goto again; 2930 } 2931 add_event_to_ctx(event, ctx); 2932 raw_spin_unlock_irq(&ctx->lock); 2933 } 2934 2935 /* 2936 * Cross CPU call to enable a performance event 2937 */ 2938 static void __perf_event_enable(struct perf_event *event, 2939 struct perf_cpu_context *cpuctx, 2940 struct perf_event_context *ctx, 2941 void *info) 2942 { 2943 struct perf_event *leader = event->group_leader; 2944 struct perf_event_context *task_ctx; 2945 2946 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2947 event->state <= PERF_EVENT_STATE_ERROR) 2948 return; 2949 2950 if (ctx->is_active) 2951 ctx_sched_out(ctx, EVENT_TIME); 2952 2953 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2954 perf_cgroup_event_enable(event, ctx); 2955 2956 if (!ctx->is_active) 2957 return; 2958 2959 if (!event_filter_match(event)) { 2960 ctx_sched_in(ctx, EVENT_TIME); 2961 return; 2962 } 2963 2964 /* 2965 * If the event is in a group and isn't the group leader, 2966 * then don't put it on unless the group is on. 2967 */ 2968 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2969 ctx_sched_in(ctx, EVENT_TIME); 2970 return; 2971 } 2972 2973 task_ctx = cpuctx->task_ctx; 2974 if (ctx->task) 2975 WARN_ON_ONCE(task_ctx != ctx); 2976 2977 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2978 } 2979 2980 /* 2981 * Enable an event. 2982 * 2983 * If event->ctx is a cloned context, callers must make sure that 2984 * every task struct that event->ctx->task could possibly point to 2985 * remains valid. This condition is satisfied when called through 2986 * perf_event_for_each_child or perf_event_for_each as described 2987 * for perf_event_disable. 2988 */ 2989 static void _perf_event_enable(struct perf_event *event) 2990 { 2991 struct perf_event_context *ctx = event->ctx; 2992 2993 raw_spin_lock_irq(&ctx->lock); 2994 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2995 event->state < PERF_EVENT_STATE_ERROR) { 2996 out: 2997 raw_spin_unlock_irq(&ctx->lock); 2998 return; 2999 } 3000 3001 /* 3002 * If the event is in error state, clear that first. 3003 * 3004 * That way, if we see the event in error state below, we know that it 3005 * has gone back into error state, as distinct from the task having 3006 * been scheduled away before the cross-call arrived. 3007 */ 3008 if (event->state == PERF_EVENT_STATE_ERROR) { 3009 /* 3010 * Detached SIBLING events cannot leave ERROR state. 3011 */ 3012 if (event->event_caps & PERF_EV_CAP_SIBLING && 3013 event->group_leader == event) 3014 goto out; 3015 3016 event->state = PERF_EVENT_STATE_OFF; 3017 } 3018 raw_spin_unlock_irq(&ctx->lock); 3019 3020 event_function_call(event, __perf_event_enable, NULL); 3021 } 3022 3023 /* 3024 * See perf_event_disable(); 3025 */ 3026 void perf_event_enable(struct perf_event *event) 3027 { 3028 struct perf_event_context *ctx; 3029 3030 ctx = perf_event_ctx_lock(event); 3031 _perf_event_enable(event); 3032 perf_event_ctx_unlock(event, ctx); 3033 } 3034 EXPORT_SYMBOL_GPL(perf_event_enable); 3035 3036 struct stop_event_data { 3037 struct perf_event *event; 3038 unsigned int restart; 3039 }; 3040 3041 static int __perf_event_stop(void *info) 3042 { 3043 struct stop_event_data *sd = info; 3044 struct perf_event *event = sd->event; 3045 3046 /* if it's already INACTIVE, do nothing */ 3047 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3048 return 0; 3049 3050 /* matches smp_wmb() in event_sched_in() */ 3051 smp_rmb(); 3052 3053 /* 3054 * There is a window with interrupts enabled before we get here, 3055 * so we need to check again lest we try to stop another CPU's event. 3056 */ 3057 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3058 return -EAGAIN; 3059 3060 event->pmu->stop(event, PERF_EF_UPDATE); 3061 3062 /* 3063 * May race with the actual stop (through perf_pmu_output_stop()), 3064 * but it is only used for events with AUX ring buffer, and such 3065 * events will refuse to restart because of rb::aux_mmap_count==0, 3066 * see comments in perf_aux_output_begin(). 3067 * 3068 * Since this is happening on an event-local CPU, no trace is lost 3069 * while restarting. 3070 */ 3071 if (sd->restart) 3072 event->pmu->start(event, 0); 3073 3074 return 0; 3075 } 3076 3077 static int perf_event_stop(struct perf_event *event, int restart) 3078 { 3079 struct stop_event_data sd = { 3080 .event = event, 3081 .restart = restart, 3082 }; 3083 int ret = 0; 3084 3085 do { 3086 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3087 return 0; 3088 3089 /* matches smp_wmb() in event_sched_in() */ 3090 smp_rmb(); 3091 3092 /* 3093 * We only want to restart ACTIVE events, so if the event goes 3094 * inactive here (event->oncpu==-1), there's nothing more to do; 3095 * fall through with ret==-ENXIO. 3096 */ 3097 ret = cpu_function_call(READ_ONCE(event->oncpu), 3098 __perf_event_stop, &sd); 3099 } while (ret == -EAGAIN); 3100 3101 return ret; 3102 } 3103 3104 /* 3105 * In order to contain the amount of racy and tricky in the address filter 3106 * configuration management, it is a two part process: 3107 * 3108 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3109 * we update the addresses of corresponding vmas in 3110 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3111 * (p2) when an event is scheduled in (pmu::add), it calls 3112 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3113 * if the generation has changed since the previous call. 3114 * 3115 * If (p1) happens while the event is active, we restart it to force (p2). 3116 * 3117 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3118 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3119 * ioctl; 3120 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3121 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3122 * for reading; 3123 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3124 * of exec. 3125 */ 3126 void perf_event_addr_filters_sync(struct perf_event *event) 3127 { 3128 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3129 3130 if (!has_addr_filter(event)) 3131 return; 3132 3133 raw_spin_lock(&ifh->lock); 3134 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3135 event->pmu->addr_filters_sync(event); 3136 event->hw.addr_filters_gen = event->addr_filters_gen; 3137 } 3138 raw_spin_unlock(&ifh->lock); 3139 } 3140 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3141 3142 static int _perf_event_refresh(struct perf_event *event, int refresh) 3143 { 3144 /* 3145 * not supported on inherited events 3146 */ 3147 if (event->attr.inherit || !is_sampling_event(event)) 3148 return -EINVAL; 3149 3150 atomic_add(refresh, &event->event_limit); 3151 _perf_event_enable(event); 3152 3153 return 0; 3154 } 3155 3156 /* 3157 * See perf_event_disable() 3158 */ 3159 int perf_event_refresh(struct perf_event *event, int refresh) 3160 { 3161 struct perf_event_context *ctx; 3162 int ret; 3163 3164 ctx = perf_event_ctx_lock(event); 3165 ret = _perf_event_refresh(event, refresh); 3166 perf_event_ctx_unlock(event, ctx); 3167 3168 return ret; 3169 } 3170 EXPORT_SYMBOL_GPL(perf_event_refresh); 3171 3172 static int perf_event_modify_breakpoint(struct perf_event *bp, 3173 struct perf_event_attr *attr) 3174 { 3175 int err; 3176 3177 _perf_event_disable(bp); 3178 3179 err = modify_user_hw_breakpoint_check(bp, attr, true); 3180 3181 if (!bp->attr.disabled) 3182 _perf_event_enable(bp); 3183 3184 return err; 3185 } 3186 3187 /* 3188 * Copy event-type-independent attributes that may be modified. 3189 */ 3190 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3191 const struct perf_event_attr *from) 3192 { 3193 to->sig_data = from->sig_data; 3194 } 3195 3196 static int perf_event_modify_attr(struct perf_event *event, 3197 struct perf_event_attr *attr) 3198 { 3199 int (*func)(struct perf_event *, struct perf_event_attr *); 3200 struct perf_event *child; 3201 int err; 3202 3203 if (event->attr.type != attr->type) 3204 return -EINVAL; 3205 3206 switch (event->attr.type) { 3207 case PERF_TYPE_BREAKPOINT: 3208 func = perf_event_modify_breakpoint; 3209 break; 3210 default: 3211 /* Place holder for future additions. */ 3212 return -EOPNOTSUPP; 3213 } 3214 3215 WARN_ON_ONCE(event->ctx->parent_ctx); 3216 3217 mutex_lock(&event->child_mutex); 3218 /* 3219 * Event-type-independent attributes must be copied before event-type 3220 * modification, which will validate that final attributes match the 3221 * source attributes after all relevant attributes have been copied. 3222 */ 3223 perf_event_modify_copy_attr(&event->attr, attr); 3224 err = func(event, attr); 3225 if (err) 3226 goto out; 3227 list_for_each_entry(child, &event->child_list, child_list) { 3228 perf_event_modify_copy_attr(&child->attr, attr); 3229 err = func(child, attr); 3230 if (err) 3231 goto out; 3232 } 3233 out: 3234 mutex_unlock(&event->child_mutex); 3235 return err; 3236 } 3237 3238 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3239 enum event_type_t event_type) 3240 { 3241 struct perf_event_context *ctx = pmu_ctx->ctx; 3242 struct perf_event *event, *tmp; 3243 struct pmu *pmu = pmu_ctx->pmu; 3244 3245 if (ctx->task && !ctx->is_active) { 3246 struct perf_cpu_pmu_context *cpc; 3247 3248 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3249 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3250 cpc->task_epc = NULL; 3251 } 3252 3253 if (!event_type) 3254 return; 3255 3256 perf_pmu_disable(pmu); 3257 if (event_type & EVENT_PINNED) { 3258 list_for_each_entry_safe(event, tmp, 3259 &pmu_ctx->pinned_active, 3260 active_list) 3261 group_sched_out(event, ctx); 3262 } 3263 3264 if (event_type & EVENT_FLEXIBLE) { 3265 list_for_each_entry_safe(event, tmp, 3266 &pmu_ctx->flexible_active, 3267 active_list) 3268 group_sched_out(event, ctx); 3269 /* 3270 * Since we cleared EVENT_FLEXIBLE, also clear 3271 * rotate_necessary, is will be reset by 3272 * ctx_flexible_sched_in() when needed. 3273 */ 3274 pmu_ctx->rotate_necessary = 0; 3275 } 3276 perf_pmu_enable(pmu); 3277 } 3278 3279 static void 3280 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3281 { 3282 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3283 struct perf_event_pmu_context *pmu_ctx; 3284 int is_active = ctx->is_active; 3285 bool cgroup = event_type & EVENT_CGROUP; 3286 3287 event_type &= ~EVENT_CGROUP; 3288 3289 lockdep_assert_held(&ctx->lock); 3290 3291 if (likely(!ctx->nr_events)) { 3292 /* 3293 * See __perf_remove_from_context(). 3294 */ 3295 WARN_ON_ONCE(ctx->is_active); 3296 if (ctx->task) 3297 WARN_ON_ONCE(cpuctx->task_ctx); 3298 return; 3299 } 3300 3301 /* 3302 * Always update time if it was set; not only when it changes. 3303 * Otherwise we can 'forget' to update time for any but the last 3304 * context we sched out. For example: 3305 * 3306 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3307 * ctx_sched_out(.event_type = EVENT_PINNED) 3308 * 3309 * would only update time for the pinned events. 3310 */ 3311 if (is_active & EVENT_TIME) { 3312 /* update (and stop) ctx time */ 3313 update_context_time(ctx); 3314 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3315 /* 3316 * CPU-release for the below ->is_active store, 3317 * see __load_acquire() in perf_event_time_now() 3318 */ 3319 barrier(); 3320 } 3321 3322 ctx->is_active &= ~event_type; 3323 if (!(ctx->is_active & EVENT_ALL)) 3324 ctx->is_active = 0; 3325 3326 if (ctx->task) { 3327 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3328 if (!ctx->is_active) 3329 cpuctx->task_ctx = NULL; 3330 } 3331 3332 is_active ^= ctx->is_active; /* changed bits */ 3333 3334 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3335 if (cgroup && !pmu_ctx->nr_cgroups) 3336 continue; 3337 __pmu_ctx_sched_out(pmu_ctx, is_active); 3338 } 3339 } 3340 3341 /* 3342 * Test whether two contexts are equivalent, i.e. whether they have both been 3343 * cloned from the same version of the same context. 3344 * 3345 * Equivalence is measured using a generation number in the context that is 3346 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3347 * and list_del_event(). 3348 */ 3349 static int context_equiv(struct perf_event_context *ctx1, 3350 struct perf_event_context *ctx2) 3351 { 3352 lockdep_assert_held(&ctx1->lock); 3353 lockdep_assert_held(&ctx2->lock); 3354 3355 /* Pinning disables the swap optimization */ 3356 if (ctx1->pin_count || ctx2->pin_count) 3357 return 0; 3358 3359 /* If ctx1 is the parent of ctx2 */ 3360 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3361 return 1; 3362 3363 /* If ctx2 is the parent of ctx1 */ 3364 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3365 return 1; 3366 3367 /* 3368 * If ctx1 and ctx2 have the same parent; we flatten the parent 3369 * hierarchy, see perf_event_init_context(). 3370 */ 3371 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3372 ctx1->parent_gen == ctx2->parent_gen) 3373 return 1; 3374 3375 /* Unmatched */ 3376 return 0; 3377 } 3378 3379 static void __perf_event_sync_stat(struct perf_event *event, 3380 struct perf_event *next_event) 3381 { 3382 u64 value; 3383 3384 if (!event->attr.inherit_stat) 3385 return; 3386 3387 /* 3388 * Update the event value, we cannot use perf_event_read() 3389 * because we're in the middle of a context switch and have IRQs 3390 * disabled, which upsets smp_call_function_single(), however 3391 * we know the event must be on the current CPU, therefore we 3392 * don't need to use it. 3393 */ 3394 if (event->state == PERF_EVENT_STATE_ACTIVE) 3395 event->pmu->read(event); 3396 3397 perf_event_update_time(event); 3398 3399 /* 3400 * In order to keep per-task stats reliable we need to flip the event 3401 * values when we flip the contexts. 3402 */ 3403 value = local64_read(&next_event->count); 3404 value = local64_xchg(&event->count, value); 3405 local64_set(&next_event->count, value); 3406 3407 swap(event->total_time_enabled, next_event->total_time_enabled); 3408 swap(event->total_time_running, next_event->total_time_running); 3409 3410 /* 3411 * Since we swizzled the values, update the user visible data too. 3412 */ 3413 perf_event_update_userpage(event); 3414 perf_event_update_userpage(next_event); 3415 } 3416 3417 static void perf_event_sync_stat(struct perf_event_context *ctx, 3418 struct perf_event_context *next_ctx) 3419 { 3420 struct perf_event *event, *next_event; 3421 3422 if (!ctx->nr_stat) 3423 return; 3424 3425 update_context_time(ctx); 3426 3427 event = list_first_entry(&ctx->event_list, 3428 struct perf_event, event_entry); 3429 3430 next_event = list_first_entry(&next_ctx->event_list, 3431 struct perf_event, event_entry); 3432 3433 while (&event->event_entry != &ctx->event_list && 3434 &next_event->event_entry != &next_ctx->event_list) { 3435 3436 __perf_event_sync_stat(event, next_event); 3437 3438 event = list_next_entry(event, event_entry); 3439 next_event = list_next_entry(next_event, event_entry); 3440 } 3441 } 3442 3443 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3444 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3445 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3446 !list_entry_is_head(pos1, head1, member) && \ 3447 !list_entry_is_head(pos2, head2, member); \ 3448 pos1 = list_next_entry(pos1, member), \ 3449 pos2 = list_next_entry(pos2, member)) 3450 3451 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3452 struct perf_event_context *next_ctx) 3453 { 3454 struct perf_event_pmu_context *prev_epc, *next_epc; 3455 3456 if (!prev_ctx->nr_task_data) 3457 return; 3458 3459 double_list_for_each_entry(prev_epc, next_epc, 3460 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3461 pmu_ctx_entry) { 3462 3463 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3464 continue; 3465 3466 /* 3467 * PMU specific parts of task perf context can require 3468 * additional synchronization. As an example of such 3469 * synchronization see implementation details of Intel 3470 * LBR call stack data profiling; 3471 */ 3472 if (prev_epc->pmu->swap_task_ctx) 3473 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3474 else 3475 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3476 } 3477 } 3478 3479 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3480 { 3481 struct perf_event_pmu_context *pmu_ctx; 3482 struct perf_cpu_pmu_context *cpc; 3483 3484 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3485 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3486 3487 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3488 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3489 } 3490 } 3491 3492 static void 3493 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3494 { 3495 struct perf_event_context *ctx = task->perf_event_ctxp; 3496 struct perf_event_context *next_ctx; 3497 struct perf_event_context *parent, *next_parent; 3498 int do_switch = 1; 3499 3500 if (likely(!ctx)) 3501 return; 3502 3503 rcu_read_lock(); 3504 next_ctx = rcu_dereference(next->perf_event_ctxp); 3505 if (!next_ctx) 3506 goto unlock; 3507 3508 parent = rcu_dereference(ctx->parent_ctx); 3509 next_parent = rcu_dereference(next_ctx->parent_ctx); 3510 3511 /* If neither context have a parent context; they cannot be clones. */ 3512 if (!parent && !next_parent) 3513 goto unlock; 3514 3515 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3516 /* 3517 * Looks like the two contexts are clones, so we might be 3518 * able to optimize the context switch. We lock both 3519 * contexts and check that they are clones under the 3520 * lock (including re-checking that neither has been 3521 * uncloned in the meantime). It doesn't matter which 3522 * order we take the locks because no other cpu could 3523 * be trying to lock both of these tasks. 3524 */ 3525 raw_spin_lock(&ctx->lock); 3526 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3527 if (context_equiv(ctx, next_ctx)) { 3528 3529 perf_ctx_disable(ctx, false); 3530 3531 /* PMIs are disabled; ctx->nr_pending is stable. */ 3532 if (local_read(&ctx->nr_pending) || 3533 local_read(&next_ctx->nr_pending)) { 3534 /* 3535 * Must not swap out ctx when there's pending 3536 * events that rely on the ctx->task relation. 3537 */ 3538 raw_spin_unlock(&next_ctx->lock); 3539 rcu_read_unlock(); 3540 goto inside_switch; 3541 } 3542 3543 WRITE_ONCE(ctx->task, next); 3544 WRITE_ONCE(next_ctx->task, task); 3545 3546 perf_ctx_sched_task_cb(ctx, false); 3547 perf_event_swap_task_ctx_data(ctx, next_ctx); 3548 3549 perf_ctx_enable(ctx, false); 3550 3551 /* 3552 * RCU_INIT_POINTER here is safe because we've not 3553 * modified the ctx and the above modification of 3554 * ctx->task and ctx->task_ctx_data are immaterial 3555 * since those values are always verified under 3556 * ctx->lock which we're now holding. 3557 */ 3558 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3559 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3560 3561 do_switch = 0; 3562 3563 perf_event_sync_stat(ctx, next_ctx); 3564 } 3565 raw_spin_unlock(&next_ctx->lock); 3566 raw_spin_unlock(&ctx->lock); 3567 } 3568 unlock: 3569 rcu_read_unlock(); 3570 3571 if (do_switch) { 3572 raw_spin_lock(&ctx->lock); 3573 perf_ctx_disable(ctx, false); 3574 3575 inside_switch: 3576 perf_ctx_sched_task_cb(ctx, false); 3577 task_ctx_sched_out(ctx, EVENT_ALL); 3578 3579 perf_ctx_enable(ctx, false); 3580 raw_spin_unlock(&ctx->lock); 3581 } 3582 } 3583 3584 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3585 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3586 3587 void perf_sched_cb_dec(struct pmu *pmu) 3588 { 3589 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3590 3591 this_cpu_dec(perf_sched_cb_usages); 3592 barrier(); 3593 3594 if (!--cpc->sched_cb_usage) 3595 list_del(&cpc->sched_cb_entry); 3596 } 3597 3598 3599 void perf_sched_cb_inc(struct pmu *pmu) 3600 { 3601 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3602 3603 if (!cpc->sched_cb_usage++) 3604 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3605 3606 barrier(); 3607 this_cpu_inc(perf_sched_cb_usages); 3608 } 3609 3610 /* 3611 * This function provides the context switch callback to the lower code 3612 * layer. It is invoked ONLY when the context switch callback is enabled. 3613 * 3614 * This callback is relevant even to per-cpu events; for example multi event 3615 * PEBS requires this to provide PID/TID information. This requires we flush 3616 * all queued PEBS records before we context switch to a new task. 3617 */ 3618 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3619 { 3620 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3621 struct pmu *pmu; 3622 3623 pmu = cpc->epc.pmu; 3624 3625 /* software PMUs will not have sched_task */ 3626 if (WARN_ON_ONCE(!pmu->sched_task)) 3627 return; 3628 3629 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3630 perf_pmu_disable(pmu); 3631 3632 pmu->sched_task(cpc->task_epc, sched_in); 3633 3634 perf_pmu_enable(pmu); 3635 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3636 } 3637 3638 static void perf_pmu_sched_task(struct task_struct *prev, 3639 struct task_struct *next, 3640 bool sched_in) 3641 { 3642 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3643 struct perf_cpu_pmu_context *cpc; 3644 3645 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3646 if (prev == next || cpuctx->task_ctx) 3647 return; 3648 3649 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3650 __perf_pmu_sched_task(cpc, sched_in); 3651 } 3652 3653 static void perf_event_switch(struct task_struct *task, 3654 struct task_struct *next_prev, bool sched_in); 3655 3656 /* 3657 * Called from scheduler to remove the events of the current task, 3658 * with interrupts disabled. 3659 * 3660 * We stop each event and update the event value in event->count. 3661 * 3662 * This does not protect us against NMI, but disable() 3663 * sets the disabled bit in the control field of event _before_ 3664 * accessing the event control register. If a NMI hits, then it will 3665 * not restart the event. 3666 */ 3667 void __perf_event_task_sched_out(struct task_struct *task, 3668 struct task_struct *next) 3669 { 3670 if (__this_cpu_read(perf_sched_cb_usages)) 3671 perf_pmu_sched_task(task, next, false); 3672 3673 if (atomic_read(&nr_switch_events)) 3674 perf_event_switch(task, next, false); 3675 3676 perf_event_context_sched_out(task, next); 3677 3678 /* 3679 * if cgroup events exist on this CPU, then we need 3680 * to check if we have to switch out PMU state. 3681 * cgroup event are system-wide mode only 3682 */ 3683 perf_cgroup_switch(next); 3684 } 3685 3686 static bool perf_less_group_idx(const void *l, const void *r) 3687 { 3688 const struct perf_event *le = *(const struct perf_event **)l; 3689 const struct perf_event *re = *(const struct perf_event **)r; 3690 3691 return le->group_index < re->group_index; 3692 } 3693 3694 static void swap_ptr(void *l, void *r) 3695 { 3696 void **lp = l, **rp = r; 3697 3698 swap(*lp, *rp); 3699 } 3700 3701 static const struct min_heap_callbacks perf_min_heap = { 3702 .elem_size = sizeof(struct perf_event *), 3703 .less = perf_less_group_idx, 3704 .swp = swap_ptr, 3705 }; 3706 3707 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3708 { 3709 struct perf_event **itrs = heap->data; 3710 3711 if (event) { 3712 itrs[heap->nr] = event; 3713 heap->nr++; 3714 } 3715 } 3716 3717 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3718 { 3719 struct perf_cpu_pmu_context *cpc; 3720 3721 if (!pmu_ctx->ctx->task) 3722 return; 3723 3724 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3725 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3726 cpc->task_epc = pmu_ctx; 3727 } 3728 3729 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3730 struct perf_event_groups *groups, int cpu, 3731 struct pmu *pmu, 3732 int (*func)(struct perf_event *, void *), 3733 void *data) 3734 { 3735 #ifdef CONFIG_CGROUP_PERF 3736 struct cgroup_subsys_state *css = NULL; 3737 #endif 3738 struct perf_cpu_context *cpuctx = NULL; 3739 /* Space for per CPU and/or any CPU event iterators. */ 3740 struct perf_event *itrs[2]; 3741 struct min_heap event_heap; 3742 struct perf_event **evt; 3743 int ret; 3744 3745 if (pmu->filter && pmu->filter(pmu, cpu)) 3746 return 0; 3747 3748 if (!ctx->task) { 3749 cpuctx = this_cpu_ptr(&perf_cpu_context); 3750 event_heap = (struct min_heap){ 3751 .data = cpuctx->heap, 3752 .nr = 0, 3753 .size = cpuctx->heap_size, 3754 }; 3755 3756 lockdep_assert_held(&cpuctx->ctx.lock); 3757 3758 #ifdef CONFIG_CGROUP_PERF 3759 if (cpuctx->cgrp) 3760 css = &cpuctx->cgrp->css; 3761 #endif 3762 } else { 3763 event_heap = (struct min_heap){ 3764 .data = itrs, 3765 .nr = 0, 3766 .size = ARRAY_SIZE(itrs), 3767 }; 3768 /* Events not within a CPU context may be on any CPU. */ 3769 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3770 } 3771 evt = event_heap.data; 3772 3773 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3774 3775 #ifdef CONFIG_CGROUP_PERF 3776 for (; css; css = css->parent) 3777 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3778 #endif 3779 3780 if (event_heap.nr) { 3781 __link_epc((*evt)->pmu_ctx); 3782 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3783 } 3784 3785 min_heapify_all(&event_heap, &perf_min_heap); 3786 3787 while (event_heap.nr) { 3788 ret = func(*evt, data); 3789 if (ret) 3790 return ret; 3791 3792 *evt = perf_event_groups_next(*evt, pmu); 3793 if (*evt) 3794 min_heapify(&event_heap, 0, &perf_min_heap); 3795 else 3796 min_heap_pop(&event_heap, &perf_min_heap); 3797 } 3798 3799 return 0; 3800 } 3801 3802 /* 3803 * Because the userpage is strictly per-event (there is no concept of context, 3804 * so there cannot be a context indirection), every userpage must be updated 3805 * when context time starts :-( 3806 * 3807 * IOW, we must not miss EVENT_TIME edges. 3808 */ 3809 static inline bool event_update_userpage(struct perf_event *event) 3810 { 3811 if (likely(!atomic_read(&event->mmap_count))) 3812 return false; 3813 3814 perf_event_update_time(event); 3815 perf_event_update_userpage(event); 3816 3817 return true; 3818 } 3819 3820 static inline void group_update_userpage(struct perf_event *group_event) 3821 { 3822 struct perf_event *event; 3823 3824 if (!event_update_userpage(group_event)) 3825 return; 3826 3827 for_each_sibling_event(event, group_event) 3828 event_update_userpage(event); 3829 } 3830 3831 static int merge_sched_in(struct perf_event *event, void *data) 3832 { 3833 struct perf_event_context *ctx = event->ctx; 3834 int *can_add_hw = data; 3835 3836 if (event->state <= PERF_EVENT_STATE_OFF) 3837 return 0; 3838 3839 if (!event_filter_match(event)) 3840 return 0; 3841 3842 if (group_can_go_on(event, *can_add_hw)) { 3843 if (!group_sched_in(event, ctx)) 3844 list_add_tail(&event->active_list, get_event_list(event)); 3845 } 3846 3847 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3848 *can_add_hw = 0; 3849 if (event->attr.pinned) { 3850 perf_cgroup_event_disable(event, ctx); 3851 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3852 } else { 3853 struct perf_cpu_pmu_context *cpc; 3854 3855 event->pmu_ctx->rotate_necessary = 1; 3856 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3857 perf_mux_hrtimer_restart(cpc); 3858 group_update_userpage(event); 3859 } 3860 } 3861 3862 return 0; 3863 } 3864 3865 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3866 struct perf_event_groups *groups, 3867 struct pmu *pmu) 3868 { 3869 int can_add_hw = 1; 3870 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3871 merge_sched_in, &can_add_hw); 3872 } 3873 3874 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3875 struct perf_event_groups *groups, 3876 bool cgroup) 3877 { 3878 struct perf_event_pmu_context *pmu_ctx; 3879 3880 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3881 if (cgroup && !pmu_ctx->nr_cgroups) 3882 continue; 3883 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3884 } 3885 } 3886 3887 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3888 struct pmu *pmu) 3889 { 3890 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3891 } 3892 3893 static void 3894 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3895 { 3896 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3897 int is_active = ctx->is_active; 3898 bool cgroup = event_type & EVENT_CGROUP; 3899 3900 event_type &= ~EVENT_CGROUP; 3901 3902 lockdep_assert_held(&ctx->lock); 3903 3904 if (likely(!ctx->nr_events)) 3905 return; 3906 3907 if (!(is_active & EVENT_TIME)) { 3908 /* start ctx time */ 3909 __update_context_time(ctx, false); 3910 perf_cgroup_set_timestamp(cpuctx); 3911 /* 3912 * CPU-release for the below ->is_active store, 3913 * see __load_acquire() in perf_event_time_now() 3914 */ 3915 barrier(); 3916 } 3917 3918 ctx->is_active |= (event_type | EVENT_TIME); 3919 if (ctx->task) { 3920 if (!is_active) 3921 cpuctx->task_ctx = ctx; 3922 else 3923 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3924 } 3925 3926 is_active ^= ctx->is_active; /* changed bits */ 3927 3928 /* 3929 * First go through the list and put on any pinned groups 3930 * in order to give them the best chance of going on. 3931 */ 3932 if (is_active & EVENT_PINNED) 3933 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3934 3935 /* Then walk through the lower prio flexible groups */ 3936 if (is_active & EVENT_FLEXIBLE) 3937 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3938 } 3939 3940 static void perf_event_context_sched_in(struct task_struct *task) 3941 { 3942 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3943 struct perf_event_context *ctx; 3944 3945 rcu_read_lock(); 3946 ctx = rcu_dereference(task->perf_event_ctxp); 3947 if (!ctx) 3948 goto rcu_unlock; 3949 3950 if (cpuctx->task_ctx == ctx) { 3951 perf_ctx_lock(cpuctx, ctx); 3952 perf_ctx_disable(ctx, false); 3953 3954 perf_ctx_sched_task_cb(ctx, true); 3955 3956 perf_ctx_enable(ctx, false); 3957 perf_ctx_unlock(cpuctx, ctx); 3958 goto rcu_unlock; 3959 } 3960 3961 perf_ctx_lock(cpuctx, ctx); 3962 /* 3963 * We must check ctx->nr_events while holding ctx->lock, such 3964 * that we serialize against perf_install_in_context(). 3965 */ 3966 if (!ctx->nr_events) 3967 goto unlock; 3968 3969 perf_ctx_disable(ctx, false); 3970 /* 3971 * We want to keep the following priority order: 3972 * cpu pinned (that don't need to move), task pinned, 3973 * cpu flexible, task flexible. 3974 * 3975 * However, if task's ctx is not carrying any pinned 3976 * events, no need to flip the cpuctx's events around. 3977 */ 3978 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3979 perf_ctx_disable(&cpuctx->ctx, false); 3980 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3981 } 3982 3983 perf_event_sched_in(cpuctx, ctx); 3984 3985 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3986 3987 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3988 perf_ctx_enable(&cpuctx->ctx, false); 3989 3990 perf_ctx_enable(ctx, false); 3991 3992 unlock: 3993 perf_ctx_unlock(cpuctx, ctx); 3994 rcu_unlock: 3995 rcu_read_unlock(); 3996 } 3997 3998 /* 3999 * Called from scheduler to add the events of the current task 4000 * with interrupts disabled. 4001 * 4002 * We restore the event value and then enable it. 4003 * 4004 * This does not protect us against NMI, but enable() 4005 * sets the enabled bit in the control field of event _before_ 4006 * accessing the event control register. If a NMI hits, then it will 4007 * keep the event running. 4008 */ 4009 void __perf_event_task_sched_in(struct task_struct *prev, 4010 struct task_struct *task) 4011 { 4012 perf_event_context_sched_in(task); 4013 4014 if (atomic_read(&nr_switch_events)) 4015 perf_event_switch(task, prev, true); 4016 4017 if (__this_cpu_read(perf_sched_cb_usages)) 4018 perf_pmu_sched_task(prev, task, true); 4019 } 4020 4021 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4022 { 4023 u64 frequency = event->attr.sample_freq; 4024 u64 sec = NSEC_PER_SEC; 4025 u64 divisor, dividend; 4026 4027 int count_fls, nsec_fls, frequency_fls, sec_fls; 4028 4029 count_fls = fls64(count); 4030 nsec_fls = fls64(nsec); 4031 frequency_fls = fls64(frequency); 4032 sec_fls = 30; 4033 4034 /* 4035 * We got @count in @nsec, with a target of sample_freq HZ 4036 * the target period becomes: 4037 * 4038 * @count * 10^9 4039 * period = ------------------- 4040 * @nsec * sample_freq 4041 * 4042 */ 4043 4044 /* 4045 * Reduce accuracy by one bit such that @a and @b converge 4046 * to a similar magnitude. 4047 */ 4048 #define REDUCE_FLS(a, b) \ 4049 do { \ 4050 if (a##_fls > b##_fls) { \ 4051 a >>= 1; \ 4052 a##_fls--; \ 4053 } else { \ 4054 b >>= 1; \ 4055 b##_fls--; \ 4056 } \ 4057 } while (0) 4058 4059 /* 4060 * Reduce accuracy until either term fits in a u64, then proceed with 4061 * the other, so that finally we can do a u64/u64 division. 4062 */ 4063 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4064 REDUCE_FLS(nsec, frequency); 4065 REDUCE_FLS(sec, count); 4066 } 4067 4068 if (count_fls + sec_fls > 64) { 4069 divisor = nsec * frequency; 4070 4071 while (count_fls + sec_fls > 64) { 4072 REDUCE_FLS(count, sec); 4073 divisor >>= 1; 4074 } 4075 4076 dividend = count * sec; 4077 } else { 4078 dividend = count * sec; 4079 4080 while (nsec_fls + frequency_fls > 64) { 4081 REDUCE_FLS(nsec, frequency); 4082 dividend >>= 1; 4083 } 4084 4085 divisor = nsec * frequency; 4086 } 4087 4088 if (!divisor) 4089 return dividend; 4090 4091 return div64_u64(dividend, divisor); 4092 } 4093 4094 static DEFINE_PER_CPU(int, perf_throttled_count); 4095 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4096 4097 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4098 { 4099 struct hw_perf_event *hwc = &event->hw; 4100 s64 period, sample_period; 4101 s64 delta; 4102 4103 period = perf_calculate_period(event, nsec, count); 4104 4105 delta = (s64)(period - hwc->sample_period); 4106 delta = (delta + 7) / 8; /* low pass filter */ 4107 4108 sample_period = hwc->sample_period + delta; 4109 4110 if (!sample_period) 4111 sample_period = 1; 4112 4113 hwc->sample_period = sample_period; 4114 4115 if (local64_read(&hwc->period_left) > 8*sample_period) { 4116 if (disable) 4117 event->pmu->stop(event, PERF_EF_UPDATE); 4118 4119 local64_set(&hwc->period_left, 0); 4120 4121 if (disable) 4122 event->pmu->start(event, PERF_EF_RELOAD); 4123 } 4124 } 4125 4126 /* 4127 * combine freq adjustment with unthrottling to avoid two passes over the 4128 * events. At the same time, make sure, having freq events does not change 4129 * the rate of unthrottling as that would introduce bias. 4130 */ 4131 static void 4132 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4133 { 4134 struct perf_event *event; 4135 struct hw_perf_event *hwc; 4136 u64 now, period = TICK_NSEC; 4137 s64 delta; 4138 4139 /* 4140 * only need to iterate over all events iff: 4141 * - context have events in frequency mode (needs freq adjust) 4142 * - there are events to unthrottle on this cpu 4143 */ 4144 if (!(ctx->nr_freq || unthrottle)) 4145 return; 4146 4147 raw_spin_lock(&ctx->lock); 4148 4149 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4150 if (event->state != PERF_EVENT_STATE_ACTIVE) 4151 continue; 4152 4153 // XXX use visit thingy to avoid the -1,cpu match 4154 if (!event_filter_match(event)) 4155 continue; 4156 4157 perf_pmu_disable(event->pmu); 4158 4159 hwc = &event->hw; 4160 4161 if (hwc->interrupts == MAX_INTERRUPTS) { 4162 hwc->interrupts = 0; 4163 perf_log_throttle(event, 1); 4164 event->pmu->start(event, 0); 4165 } 4166 4167 if (!event->attr.freq || !event->attr.sample_freq) 4168 goto next; 4169 4170 /* 4171 * stop the event and update event->count 4172 */ 4173 event->pmu->stop(event, PERF_EF_UPDATE); 4174 4175 now = local64_read(&event->count); 4176 delta = now - hwc->freq_count_stamp; 4177 hwc->freq_count_stamp = now; 4178 4179 /* 4180 * restart the event 4181 * reload only if value has changed 4182 * we have stopped the event so tell that 4183 * to perf_adjust_period() to avoid stopping it 4184 * twice. 4185 */ 4186 if (delta > 0) 4187 perf_adjust_period(event, period, delta, false); 4188 4189 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4190 next: 4191 perf_pmu_enable(event->pmu); 4192 } 4193 4194 raw_spin_unlock(&ctx->lock); 4195 } 4196 4197 /* 4198 * Move @event to the tail of the @ctx's elegible events. 4199 */ 4200 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4201 { 4202 /* 4203 * Rotate the first entry last of non-pinned groups. Rotation might be 4204 * disabled by the inheritance code. 4205 */ 4206 if (ctx->rotate_disable) 4207 return; 4208 4209 perf_event_groups_delete(&ctx->flexible_groups, event); 4210 perf_event_groups_insert(&ctx->flexible_groups, event); 4211 } 4212 4213 /* pick an event from the flexible_groups to rotate */ 4214 static inline struct perf_event * 4215 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4216 { 4217 struct perf_event *event; 4218 struct rb_node *node; 4219 struct rb_root *tree; 4220 struct __group_key key = { 4221 .pmu = pmu_ctx->pmu, 4222 }; 4223 4224 /* pick the first active flexible event */ 4225 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4226 struct perf_event, active_list); 4227 if (event) 4228 goto out; 4229 4230 /* if no active flexible event, pick the first event */ 4231 tree = &pmu_ctx->ctx->flexible_groups.tree; 4232 4233 if (!pmu_ctx->ctx->task) { 4234 key.cpu = smp_processor_id(); 4235 4236 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4237 if (node) 4238 event = __node_2_pe(node); 4239 goto out; 4240 } 4241 4242 key.cpu = -1; 4243 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4244 if (node) { 4245 event = __node_2_pe(node); 4246 goto out; 4247 } 4248 4249 key.cpu = smp_processor_id(); 4250 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4251 if (node) 4252 event = __node_2_pe(node); 4253 4254 out: 4255 /* 4256 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4257 * finds there are unschedulable events, it will set it again. 4258 */ 4259 pmu_ctx->rotate_necessary = 0; 4260 4261 return event; 4262 } 4263 4264 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4265 { 4266 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4267 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4268 struct perf_event *cpu_event = NULL, *task_event = NULL; 4269 int cpu_rotate, task_rotate; 4270 struct pmu *pmu; 4271 4272 /* 4273 * Since we run this from IRQ context, nobody can install new 4274 * events, thus the event count values are stable. 4275 */ 4276 4277 cpu_epc = &cpc->epc; 4278 pmu = cpu_epc->pmu; 4279 task_epc = cpc->task_epc; 4280 4281 cpu_rotate = cpu_epc->rotate_necessary; 4282 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4283 4284 if (!(cpu_rotate || task_rotate)) 4285 return false; 4286 4287 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4288 perf_pmu_disable(pmu); 4289 4290 if (task_rotate) 4291 task_event = ctx_event_to_rotate(task_epc); 4292 if (cpu_rotate) 4293 cpu_event = ctx_event_to_rotate(cpu_epc); 4294 4295 /* 4296 * As per the order given at ctx_resched() first 'pop' task flexible 4297 * and then, if needed CPU flexible. 4298 */ 4299 if (task_event || (task_epc && cpu_event)) { 4300 update_context_time(task_epc->ctx); 4301 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4302 } 4303 4304 if (cpu_event) { 4305 update_context_time(&cpuctx->ctx); 4306 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4307 rotate_ctx(&cpuctx->ctx, cpu_event); 4308 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4309 } 4310 4311 if (task_event) 4312 rotate_ctx(task_epc->ctx, task_event); 4313 4314 if (task_event || (task_epc && cpu_event)) 4315 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4316 4317 perf_pmu_enable(pmu); 4318 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4319 4320 return true; 4321 } 4322 4323 void perf_event_task_tick(void) 4324 { 4325 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4326 struct perf_event_context *ctx; 4327 int throttled; 4328 4329 lockdep_assert_irqs_disabled(); 4330 4331 __this_cpu_inc(perf_throttled_seq); 4332 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4333 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4334 4335 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4336 4337 rcu_read_lock(); 4338 ctx = rcu_dereference(current->perf_event_ctxp); 4339 if (ctx) 4340 perf_adjust_freq_unthr_context(ctx, !!throttled); 4341 rcu_read_unlock(); 4342 } 4343 4344 static int event_enable_on_exec(struct perf_event *event, 4345 struct perf_event_context *ctx) 4346 { 4347 if (!event->attr.enable_on_exec) 4348 return 0; 4349 4350 event->attr.enable_on_exec = 0; 4351 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4352 return 0; 4353 4354 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4355 4356 return 1; 4357 } 4358 4359 /* 4360 * Enable all of a task's events that have been marked enable-on-exec. 4361 * This expects task == current. 4362 */ 4363 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4364 { 4365 struct perf_event_context *clone_ctx = NULL; 4366 enum event_type_t event_type = 0; 4367 struct perf_cpu_context *cpuctx; 4368 struct perf_event *event; 4369 unsigned long flags; 4370 int enabled = 0; 4371 4372 local_irq_save(flags); 4373 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4374 goto out; 4375 4376 if (!ctx->nr_events) 4377 goto out; 4378 4379 cpuctx = this_cpu_ptr(&perf_cpu_context); 4380 perf_ctx_lock(cpuctx, ctx); 4381 ctx_sched_out(ctx, EVENT_TIME); 4382 4383 list_for_each_entry(event, &ctx->event_list, event_entry) { 4384 enabled |= event_enable_on_exec(event, ctx); 4385 event_type |= get_event_type(event); 4386 } 4387 4388 /* 4389 * Unclone and reschedule this context if we enabled any event. 4390 */ 4391 if (enabled) { 4392 clone_ctx = unclone_ctx(ctx); 4393 ctx_resched(cpuctx, ctx, event_type); 4394 } else { 4395 ctx_sched_in(ctx, EVENT_TIME); 4396 } 4397 perf_ctx_unlock(cpuctx, ctx); 4398 4399 out: 4400 local_irq_restore(flags); 4401 4402 if (clone_ctx) 4403 put_ctx(clone_ctx); 4404 } 4405 4406 static void perf_remove_from_owner(struct perf_event *event); 4407 static void perf_event_exit_event(struct perf_event *event, 4408 struct perf_event_context *ctx); 4409 4410 /* 4411 * Removes all events from the current task that have been marked 4412 * remove-on-exec, and feeds their values back to parent events. 4413 */ 4414 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4415 { 4416 struct perf_event_context *clone_ctx = NULL; 4417 struct perf_event *event, *next; 4418 unsigned long flags; 4419 bool modified = false; 4420 4421 mutex_lock(&ctx->mutex); 4422 4423 if (WARN_ON_ONCE(ctx->task != current)) 4424 goto unlock; 4425 4426 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4427 if (!event->attr.remove_on_exec) 4428 continue; 4429 4430 if (!is_kernel_event(event)) 4431 perf_remove_from_owner(event); 4432 4433 modified = true; 4434 4435 perf_event_exit_event(event, ctx); 4436 } 4437 4438 raw_spin_lock_irqsave(&ctx->lock, flags); 4439 if (modified) 4440 clone_ctx = unclone_ctx(ctx); 4441 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4442 4443 unlock: 4444 mutex_unlock(&ctx->mutex); 4445 4446 if (clone_ctx) 4447 put_ctx(clone_ctx); 4448 } 4449 4450 struct perf_read_data { 4451 struct perf_event *event; 4452 bool group; 4453 int ret; 4454 }; 4455 4456 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4457 { 4458 u16 local_pkg, event_pkg; 4459 4460 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4461 int local_cpu = smp_processor_id(); 4462 4463 event_pkg = topology_physical_package_id(event_cpu); 4464 local_pkg = topology_physical_package_id(local_cpu); 4465 4466 if (event_pkg == local_pkg) 4467 return local_cpu; 4468 } 4469 4470 return event_cpu; 4471 } 4472 4473 /* 4474 * Cross CPU call to read the hardware event 4475 */ 4476 static void __perf_event_read(void *info) 4477 { 4478 struct perf_read_data *data = info; 4479 struct perf_event *sub, *event = data->event; 4480 struct perf_event_context *ctx = event->ctx; 4481 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4482 struct pmu *pmu = event->pmu; 4483 4484 /* 4485 * If this is a task context, we need to check whether it is 4486 * the current task context of this cpu. If not it has been 4487 * scheduled out before the smp call arrived. In that case 4488 * event->count would have been updated to a recent sample 4489 * when the event was scheduled out. 4490 */ 4491 if (ctx->task && cpuctx->task_ctx != ctx) 4492 return; 4493 4494 raw_spin_lock(&ctx->lock); 4495 if (ctx->is_active & EVENT_TIME) { 4496 update_context_time(ctx); 4497 update_cgrp_time_from_event(event); 4498 } 4499 4500 perf_event_update_time(event); 4501 if (data->group) 4502 perf_event_update_sibling_time(event); 4503 4504 if (event->state != PERF_EVENT_STATE_ACTIVE) 4505 goto unlock; 4506 4507 if (!data->group) { 4508 pmu->read(event); 4509 data->ret = 0; 4510 goto unlock; 4511 } 4512 4513 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4514 4515 pmu->read(event); 4516 4517 for_each_sibling_event(sub, event) { 4518 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4519 /* 4520 * Use sibling's PMU rather than @event's since 4521 * sibling could be on different (eg: software) PMU. 4522 */ 4523 sub->pmu->read(sub); 4524 } 4525 } 4526 4527 data->ret = pmu->commit_txn(pmu); 4528 4529 unlock: 4530 raw_spin_unlock(&ctx->lock); 4531 } 4532 4533 static inline u64 perf_event_count(struct perf_event *event) 4534 { 4535 return local64_read(&event->count) + atomic64_read(&event->child_count); 4536 } 4537 4538 static void calc_timer_values(struct perf_event *event, 4539 u64 *now, 4540 u64 *enabled, 4541 u64 *running) 4542 { 4543 u64 ctx_time; 4544 4545 *now = perf_clock(); 4546 ctx_time = perf_event_time_now(event, *now); 4547 __perf_update_times(event, ctx_time, enabled, running); 4548 } 4549 4550 /* 4551 * NMI-safe method to read a local event, that is an event that 4552 * is: 4553 * - either for the current task, or for this CPU 4554 * - does not have inherit set, for inherited task events 4555 * will not be local and we cannot read them atomically 4556 * - must not have a pmu::count method 4557 */ 4558 int perf_event_read_local(struct perf_event *event, u64 *value, 4559 u64 *enabled, u64 *running) 4560 { 4561 unsigned long flags; 4562 int ret = 0; 4563 4564 /* 4565 * Disabling interrupts avoids all counter scheduling (context 4566 * switches, timer based rotation and IPIs). 4567 */ 4568 local_irq_save(flags); 4569 4570 /* 4571 * It must not be an event with inherit set, we cannot read 4572 * all child counters from atomic context. 4573 */ 4574 if (event->attr.inherit) { 4575 ret = -EOPNOTSUPP; 4576 goto out; 4577 } 4578 4579 /* If this is a per-task event, it must be for current */ 4580 if ((event->attach_state & PERF_ATTACH_TASK) && 4581 event->hw.target != current) { 4582 ret = -EINVAL; 4583 goto out; 4584 } 4585 4586 /* If this is a per-CPU event, it must be for this CPU */ 4587 if (!(event->attach_state & PERF_ATTACH_TASK) && 4588 event->cpu != smp_processor_id()) { 4589 ret = -EINVAL; 4590 goto out; 4591 } 4592 4593 /* If this is a pinned event it must be running on this CPU */ 4594 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4595 ret = -EBUSY; 4596 goto out; 4597 } 4598 4599 /* 4600 * If the event is currently on this CPU, its either a per-task event, 4601 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4602 * oncpu == -1). 4603 */ 4604 if (event->oncpu == smp_processor_id()) 4605 event->pmu->read(event); 4606 4607 *value = local64_read(&event->count); 4608 if (enabled || running) { 4609 u64 __enabled, __running, __now; 4610 4611 calc_timer_values(event, &__now, &__enabled, &__running); 4612 if (enabled) 4613 *enabled = __enabled; 4614 if (running) 4615 *running = __running; 4616 } 4617 out: 4618 local_irq_restore(flags); 4619 4620 return ret; 4621 } 4622 4623 static int perf_event_read(struct perf_event *event, bool group) 4624 { 4625 enum perf_event_state state = READ_ONCE(event->state); 4626 int event_cpu, ret = 0; 4627 4628 /* 4629 * If event is enabled and currently active on a CPU, update the 4630 * value in the event structure: 4631 */ 4632 again: 4633 if (state == PERF_EVENT_STATE_ACTIVE) { 4634 struct perf_read_data data; 4635 4636 /* 4637 * Orders the ->state and ->oncpu loads such that if we see 4638 * ACTIVE we must also see the right ->oncpu. 4639 * 4640 * Matches the smp_wmb() from event_sched_in(). 4641 */ 4642 smp_rmb(); 4643 4644 event_cpu = READ_ONCE(event->oncpu); 4645 if ((unsigned)event_cpu >= nr_cpu_ids) 4646 return 0; 4647 4648 data = (struct perf_read_data){ 4649 .event = event, 4650 .group = group, 4651 .ret = 0, 4652 }; 4653 4654 preempt_disable(); 4655 event_cpu = __perf_event_read_cpu(event, event_cpu); 4656 4657 /* 4658 * Purposely ignore the smp_call_function_single() return 4659 * value. 4660 * 4661 * If event_cpu isn't a valid CPU it means the event got 4662 * scheduled out and that will have updated the event count. 4663 * 4664 * Therefore, either way, we'll have an up-to-date event count 4665 * after this. 4666 */ 4667 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4668 preempt_enable(); 4669 ret = data.ret; 4670 4671 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4672 struct perf_event_context *ctx = event->ctx; 4673 unsigned long flags; 4674 4675 raw_spin_lock_irqsave(&ctx->lock, flags); 4676 state = event->state; 4677 if (state != PERF_EVENT_STATE_INACTIVE) { 4678 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4679 goto again; 4680 } 4681 4682 /* 4683 * May read while context is not active (e.g., thread is 4684 * blocked), in that case we cannot update context time 4685 */ 4686 if (ctx->is_active & EVENT_TIME) { 4687 update_context_time(ctx); 4688 update_cgrp_time_from_event(event); 4689 } 4690 4691 perf_event_update_time(event); 4692 if (group) 4693 perf_event_update_sibling_time(event); 4694 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4695 } 4696 4697 return ret; 4698 } 4699 4700 /* 4701 * Initialize the perf_event context in a task_struct: 4702 */ 4703 static void __perf_event_init_context(struct perf_event_context *ctx) 4704 { 4705 raw_spin_lock_init(&ctx->lock); 4706 mutex_init(&ctx->mutex); 4707 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4708 perf_event_groups_init(&ctx->pinned_groups); 4709 perf_event_groups_init(&ctx->flexible_groups); 4710 INIT_LIST_HEAD(&ctx->event_list); 4711 refcount_set(&ctx->refcount, 1); 4712 } 4713 4714 static void 4715 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4716 { 4717 epc->pmu = pmu; 4718 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4719 INIT_LIST_HEAD(&epc->pinned_active); 4720 INIT_LIST_HEAD(&epc->flexible_active); 4721 atomic_set(&epc->refcount, 1); 4722 } 4723 4724 static struct perf_event_context * 4725 alloc_perf_context(struct task_struct *task) 4726 { 4727 struct perf_event_context *ctx; 4728 4729 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4730 if (!ctx) 4731 return NULL; 4732 4733 __perf_event_init_context(ctx); 4734 if (task) 4735 ctx->task = get_task_struct(task); 4736 4737 return ctx; 4738 } 4739 4740 static struct task_struct * 4741 find_lively_task_by_vpid(pid_t vpid) 4742 { 4743 struct task_struct *task; 4744 4745 rcu_read_lock(); 4746 if (!vpid) 4747 task = current; 4748 else 4749 task = find_task_by_vpid(vpid); 4750 if (task) 4751 get_task_struct(task); 4752 rcu_read_unlock(); 4753 4754 if (!task) 4755 return ERR_PTR(-ESRCH); 4756 4757 return task; 4758 } 4759 4760 /* 4761 * Returns a matching context with refcount and pincount. 4762 */ 4763 static struct perf_event_context * 4764 find_get_context(struct task_struct *task, struct perf_event *event) 4765 { 4766 struct perf_event_context *ctx, *clone_ctx = NULL; 4767 struct perf_cpu_context *cpuctx; 4768 unsigned long flags; 4769 int err; 4770 4771 if (!task) { 4772 /* Must be root to operate on a CPU event: */ 4773 err = perf_allow_cpu(&event->attr); 4774 if (err) 4775 return ERR_PTR(err); 4776 4777 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4778 ctx = &cpuctx->ctx; 4779 get_ctx(ctx); 4780 raw_spin_lock_irqsave(&ctx->lock, flags); 4781 ++ctx->pin_count; 4782 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4783 4784 return ctx; 4785 } 4786 4787 err = -EINVAL; 4788 retry: 4789 ctx = perf_lock_task_context(task, &flags); 4790 if (ctx) { 4791 clone_ctx = unclone_ctx(ctx); 4792 ++ctx->pin_count; 4793 4794 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4795 4796 if (clone_ctx) 4797 put_ctx(clone_ctx); 4798 } else { 4799 ctx = alloc_perf_context(task); 4800 err = -ENOMEM; 4801 if (!ctx) 4802 goto errout; 4803 4804 err = 0; 4805 mutex_lock(&task->perf_event_mutex); 4806 /* 4807 * If it has already passed perf_event_exit_task(). 4808 * we must see PF_EXITING, it takes this mutex too. 4809 */ 4810 if (task->flags & PF_EXITING) 4811 err = -ESRCH; 4812 else if (task->perf_event_ctxp) 4813 err = -EAGAIN; 4814 else { 4815 get_ctx(ctx); 4816 ++ctx->pin_count; 4817 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4818 } 4819 mutex_unlock(&task->perf_event_mutex); 4820 4821 if (unlikely(err)) { 4822 put_ctx(ctx); 4823 4824 if (err == -EAGAIN) 4825 goto retry; 4826 goto errout; 4827 } 4828 } 4829 4830 return ctx; 4831 4832 errout: 4833 return ERR_PTR(err); 4834 } 4835 4836 static struct perf_event_pmu_context * 4837 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4838 struct perf_event *event) 4839 { 4840 struct perf_event_pmu_context *new = NULL, *epc; 4841 void *task_ctx_data = NULL; 4842 4843 if (!ctx->task) { 4844 /* 4845 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4846 * relies on the fact that find_get_pmu_context() cannot fail 4847 * for CPU contexts. 4848 */ 4849 struct perf_cpu_pmu_context *cpc; 4850 4851 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4852 epc = &cpc->epc; 4853 raw_spin_lock_irq(&ctx->lock); 4854 if (!epc->ctx) { 4855 atomic_set(&epc->refcount, 1); 4856 epc->embedded = 1; 4857 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4858 epc->ctx = ctx; 4859 } else { 4860 WARN_ON_ONCE(epc->ctx != ctx); 4861 atomic_inc(&epc->refcount); 4862 } 4863 raw_spin_unlock_irq(&ctx->lock); 4864 return epc; 4865 } 4866 4867 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4868 if (!new) 4869 return ERR_PTR(-ENOMEM); 4870 4871 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4872 task_ctx_data = alloc_task_ctx_data(pmu); 4873 if (!task_ctx_data) { 4874 kfree(new); 4875 return ERR_PTR(-ENOMEM); 4876 } 4877 } 4878 4879 __perf_init_event_pmu_context(new, pmu); 4880 4881 /* 4882 * XXX 4883 * 4884 * lockdep_assert_held(&ctx->mutex); 4885 * 4886 * can't because perf_event_init_task() doesn't actually hold the 4887 * child_ctx->mutex. 4888 */ 4889 4890 raw_spin_lock_irq(&ctx->lock); 4891 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4892 if (epc->pmu == pmu) { 4893 WARN_ON_ONCE(epc->ctx != ctx); 4894 atomic_inc(&epc->refcount); 4895 goto found_epc; 4896 } 4897 } 4898 4899 epc = new; 4900 new = NULL; 4901 4902 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4903 epc->ctx = ctx; 4904 4905 found_epc: 4906 if (task_ctx_data && !epc->task_ctx_data) { 4907 epc->task_ctx_data = task_ctx_data; 4908 task_ctx_data = NULL; 4909 ctx->nr_task_data++; 4910 } 4911 raw_spin_unlock_irq(&ctx->lock); 4912 4913 free_task_ctx_data(pmu, task_ctx_data); 4914 kfree(new); 4915 4916 return epc; 4917 } 4918 4919 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4920 { 4921 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4922 } 4923 4924 static void free_epc_rcu(struct rcu_head *head) 4925 { 4926 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4927 4928 kfree(epc->task_ctx_data); 4929 kfree(epc); 4930 } 4931 4932 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4933 { 4934 struct perf_event_context *ctx = epc->ctx; 4935 unsigned long flags; 4936 4937 /* 4938 * XXX 4939 * 4940 * lockdep_assert_held(&ctx->mutex); 4941 * 4942 * can't because of the call-site in _free_event()/put_event() 4943 * which isn't always called under ctx->mutex. 4944 */ 4945 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4946 return; 4947 4948 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4949 4950 list_del_init(&epc->pmu_ctx_entry); 4951 epc->ctx = NULL; 4952 4953 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4954 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4955 4956 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4957 4958 if (epc->embedded) 4959 return; 4960 4961 call_rcu(&epc->rcu_head, free_epc_rcu); 4962 } 4963 4964 static void perf_event_free_filter(struct perf_event *event); 4965 4966 static void free_event_rcu(struct rcu_head *head) 4967 { 4968 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4969 4970 if (event->ns) 4971 put_pid_ns(event->ns); 4972 perf_event_free_filter(event); 4973 kmem_cache_free(perf_event_cache, event); 4974 } 4975 4976 static void ring_buffer_attach(struct perf_event *event, 4977 struct perf_buffer *rb); 4978 4979 static void detach_sb_event(struct perf_event *event) 4980 { 4981 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4982 4983 raw_spin_lock(&pel->lock); 4984 list_del_rcu(&event->sb_list); 4985 raw_spin_unlock(&pel->lock); 4986 } 4987 4988 static bool is_sb_event(struct perf_event *event) 4989 { 4990 struct perf_event_attr *attr = &event->attr; 4991 4992 if (event->parent) 4993 return false; 4994 4995 if (event->attach_state & PERF_ATTACH_TASK) 4996 return false; 4997 4998 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4999 attr->comm || attr->comm_exec || 5000 attr->task || attr->ksymbol || 5001 attr->context_switch || attr->text_poke || 5002 attr->bpf_event) 5003 return true; 5004 return false; 5005 } 5006 5007 static void unaccount_pmu_sb_event(struct perf_event *event) 5008 { 5009 if (is_sb_event(event)) 5010 detach_sb_event(event); 5011 } 5012 5013 #ifdef CONFIG_NO_HZ_FULL 5014 static DEFINE_SPINLOCK(nr_freq_lock); 5015 #endif 5016 5017 static void unaccount_freq_event_nohz(void) 5018 { 5019 #ifdef CONFIG_NO_HZ_FULL 5020 spin_lock(&nr_freq_lock); 5021 if (atomic_dec_and_test(&nr_freq_events)) 5022 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5023 spin_unlock(&nr_freq_lock); 5024 #endif 5025 } 5026 5027 static void unaccount_freq_event(void) 5028 { 5029 if (tick_nohz_full_enabled()) 5030 unaccount_freq_event_nohz(); 5031 else 5032 atomic_dec(&nr_freq_events); 5033 } 5034 5035 static void unaccount_event(struct perf_event *event) 5036 { 5037 bool dec = false; 5038 5039 if (event->parent) 5040 return; 5041 5042 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5043 dec = true; 5044 if (event->attr.mmap || event->attr.mmap_data) 5045 atomic_dec(&nr_mmap_events); 5046 if (event->attr.build_id) 5047 atomic_dec(&nr_build_id_events); 5048 if (event->attr.comm) 5049 atomic_dec(&nr_comm_events); 5050 if (event->attr.namespaces) 5051 atomic_dec(&nr_namespaces_events); 5052 if (event->attr.cgroup) 5053 atomic_dec(&nr_cgroup_events); 5054 if (event->attr.task) 5055 atomic_dec(&nr_task_events); 5056 if (event->attr.freq) 5057 unaccount_freq_event(); 5058 if (event->attr.context_switch) { 5059 dec = true; 5060 atomic_dec(&nr_switch_events); 5061 } 5062 if (is_cgroup_event(event)) 5063 dec = true; 5064 if (has_branch_stack(event)) 5065 dec = true; 5066 if (event->attr.ksymbol) 5067 atomic_dec(&nr_ksymbol_events); 5068 if (event->attr.bpf_event) 5069 atomic_dec(&nr_bpf_events); 5070 if (event->attr.text_poke) 5071 atomic_dec(&nr_text_poke_events); 5072 5073 if (dec) { 5074 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5075 schedule_delayed_work(&perf_sched_work, HZ); 5076 } 5077 5078 unaccount_pmu_sb_event(event); 5079 } 5080 5081 static void perf_sched_delayed(struct work_struct *work) 5082 { 5083 mutex_lock(&perf_sched_mutex); 5084 if (atomic_dec_and_test(&perf_sched_count)) 5085 static_branch_disable(&perf_sched_events); 5086 mutex_unlock(&perf_sched_mutex); 5087 } 5088 5089 /* 5090 * The following implement mutual exclusion of events on "exclusive" pmus 5091 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5092 * at a time, so we disallow creating events that might conflict, namely: 5093 * 5094 * 1) cpu-wide events in the presence of per-task events, 5095 * 2) per-task events in the presence of cpu-wide events, 5096 * 3) two matching events on the same perf_event_context. 5097 * 5098 * The former two cases are handled in the allocation path (perf_event_alloc(), 5099 * _free_event()), the latter -- before the first perf_install_in_context(). 5100 */ 5101 static int exclusive_event_init(struct perf_event *event) 5102 { 5103 struct pmu *pmu = event->pmu; 5104 5105 if (!is_exclusive_pmu(pmu)) 5106 return 0; 5107 5108 /* 5109 * Prevent co-existence of per-task and cpu-wide events on the 5110 * same exclusive pmu. 5111 * 5112 * Negative pmu::exclusive_cnt means there are cpu-wide 5113 * events on this "exclusive" pmu, positive means there are 5114 * per-task events. 5115 * 5116 * Since this is called in perf_event_alloc() path, event::ctx 5117 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5118 * to mean "per-task event", because unlike other attach states it 5119 * never gets cleared. 5120 */ 5121 if (event->attach_state & PERF_ATTACH_TASK) { 5122 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5123 return -EBUSY; 5124 } else { 5125 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5126 return -EBUSY; 5127 } 5128 5129 return 0; 5130 } 5131 5132 static void exclusive_event_destroy(struct perf_event *event) 5133 { 5134 struct pmu *pmu = event->pmu; 5135 5136 if (!is_exclusive_pmu(pmu)) 5137 return; 5138 5139 /* see comment in exclusive_event_init() */ 5140 if (event->attach_state & PERF_ATTACH_TASK) 5141 atomic_dec(&pmu->exclusive_cnt); 5142 else 5143 atomic_inc(&pmu->exclusive_cnt); 5144 } 5145 5146 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5147 { 5148 if ((e1->pmu == e2->pmu) && 5149 (e1->cpu == e2->cpu || 5150 e1->cpu == -1 || 5151 e2->cpu == -1)) 5152 return true; 5153 return false; 5154 } 5155 5156 static bool exclusive_event_installable(struct perf_event *event, 5157 struct perf_event_context *ctx) 5158 { 5159 struct perf_event *iter_event; 5160 struct pmu *pmu = event->pmu; 5161 5162 lockdep_assert_held(&ctx->mutex); 5163 5164 if (!is_exclusive_pmu(pmu)) 5165 return true; 5166 5167 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5168 if (exclusive_event_match(iter_event, event)) 5169 return false; 5170 } 5171 5172 return true; 5173 } 5174 5175 static void perf_addr_filters_splice(struct perf_event *event, 5176 struct list_head *head); 5177 5178 static void _free_event(struct perf_event *event) 5179 { 5180 irq_work_sync(&event->pending_irq); 5181 5182 unaccount_event(event); 5183 5184 security_perf_event_free(event); 5185 5186 if (event->rb) { 5187 /* 5188 * Can happen when we close an event with re-directed output. 5189 * 5190 * Since we have a 0 refcount, perf_mmap_close() will skip 5191 * over us; possibly making our ring_buffer_put() the last. 5192 */ 5193 mutex_lock(&event->mmap_mutex); 5194 ring_buffer_attach(event, NULL); 5195 mutex_unlock(&event->mmap_mutex); 5196 } 5197 5198 if (is_cgroup_event(event)) 5199 perf_detach_cgroup(event); 5200 5201 if (!event->parent) { 5202 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5203 put_callchain_buffers(); 5204 } 5205 5206 perf_event_free_bpf_prog(event); 5207 perf_addr_filters_splice(event, NULL); 5208 kfree(event->addr_filter_ranges); 5209 5210 if (event->destroy) 5211 event->destroy(event); 5212 5213 /* 5214 * Must be after ->destroy(), due to uprobe_perf_close() using 5215 * hw.target. 5216 */ 5217 if (event->hw.target) 5218 put_task_struct(event->hw.target); 5219 5220 if (event->pmu_ctx) 5221 put_pmu_ctx(event->pmu_ctx); 5222 5223 /* 5224 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5225 * all task references must be cleaned up. 5226 */ 5227 if (event->ctx) 5228 put_ctx(event->ctx); 5229 5230 exclusive_event_destroy(event); 5231 module_put(event->pmu->module); 5232 5233 call_rcu(&event->rcu_head, free_event_rcu); 5234 } 5235 5236 /* 5237 * Used to free events which have a known refcount of 1, such as in error paths 5238 * where the event isn't exposed yet and inherited events. 5239 */ 5240 static void free_event(struct perf_event *event) 5241 { 5242 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5243 "unexpected event refcount: %ld; ptr=%p\n", 5244 atomic_long_read(&event->refcount), event)) { 5245 /* leak to avoid use-after-free */ 5246 return; 5247 } 5248 5249 _free_event(event); 5250 } 5251 5252 /* 5253 * Remove user event from the owner task. 5254 */ 5255 static void perf_remove_from_owner(struct perf_event *event) 5256 { 5257 struct task_struct *owner; 5258 5259 rcu_read_lock(); 5260 /* 5261 * Matches the smp_store_release() in perf_event_exit_task(). If we 5262 * observe !owner it means the list deletion is complete and we can 5263 * indeed free this event, otherwise we need to serialize on 5264 * owner->perf_event_mutex. 5265 */ 5266 owner = READ_ONCE(event->owner); 5267 if (owner) { 5268 /* 5269 * Since delayed_put_task_struct() also drops the last 5270 * task reference we can safely take a new reference 5271 * while holding the rcu_read_lock(). 5272 */ 5273 get_task_struct(owner); 5274 } 5275 rcu_read_unlock(); 5276 5277 if (owner) { 5278 /* 5279 * If we're here through perf_event_exit_task() we're already 5280 * holding ctx->mutex which would be an inversion wrt. the 5281 * normal lock order. 5282 * 5283 * However we can safely take this lock because its the child 5284 * ctx->mutex. 5285 */ 5286 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5287 5288 /* 5289 * We have to re-check the event->owner field, if it is cleared 5290 * we raced with perf_event_exit_task(), acquiring the mutex 5291 * ensured they're done, and we can proceed with freeing the 5292 * event. 5293 */ 5294 if (event->owner) { 5295 list_del_init(&event->owner_entry); 5296 smp_store_release(&event->owner, NULL); 5297 } 5298 mutex_unlock(&owner->perf_event_mutex); 5299 put_task_struct(owner); 5300 } 5301 } 5302 5303 static void put_event(struct perf_event *event) 5304 { 5305 if (!atomic_long_dec_and_test(&event->refcount)) 5306 return; 5307 5308 _free_event(event); 5309 } 5310 5311 /* 5312 * Kill an event dead; while event:refcount will preserve the event 5313 * object, it will not preserve its functionality. Once the last 'user' 5314 * gives up the object, we'll destroy the thing. 5315 */ 5316 int perf_event_release_kernel(struct perf_event *event) 5317 { 5318 struct perf_event_context *ctx = event->ctx; 5319 struct perf_event *child, *tmp; 5320 LIST_HEAD(free_list); 5321 5322 /* 5323 * If we got here through err_alloc: free_event(event); we will not 5324 * have attached to a context yet. 5325 */ 5326 if (!ctx) { 5327 WARN_ON_ONCE(event->attach_state & 5328 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5329 goto no_ctx; 5330 } 5331 5332 if (!is_kernel_event(event)) 5333 perf_remove_from_owner(event); 5334 5335 ctx = perf_event_ctx_lock(event); 5336 WARN_ON_ONCE(ctx->parent_ctx); 5337 5338 /* 5339 * Mark this event as STATE_DEAD, there is no external reference to it 5340 * anymore. 5341 * 5342 * Anybody acquiring event->child_mutex after the below loop _must_ 5343 * also see this, most importantly inherit_event() which will avoid 5344 * placing more children on the list. 5345 * 5346 * Thus this guarantees that we will in fact observe and kill _ALL_ 5347 * child events. 5348 */ 5349 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5350 5351 perf_event_ctx_unlock(event, ctx); 5352 5353 again: 5354 mutex_lock(&event->child_mutex); 5355 list_for_each_entry(child, &event->child_list, child_list) { 5356 5357 /* 5358 * Cannot change, child events are not migrated, see the 5359 * comment with perf_event_ctx_lock_nested(). 5360 */ 5361 ctx = READ_ONCE(child->ctx); 5362 /* 5363 * Since child_mutex nests inside ctx::mutex, we must jump 5364 * through hoops. We start by grabbing a reference on the ctx. 5365 * 5366 * Since the event cannot get freed while we hold the 5367 * child_mutex, the context must also exist and have a !0 5368 * reference count. 5369 */ 5370 get_ctx(ctx); 5371 5372 /* 5373 * Now that we have a ctx ref, we can drop child_mutex, and 5374 * acquire ctx::mutex without fear of it going away. Then we 5375 * can re-acquire child_mutex. 5376 */ 5377 mutex_unlock(&event->child_mutex); 5378 mutex_lock(&ctx->mutex); 5379 mutex_lock(&event->child_mutex); 5380 5381 /* 5382 * Now that we hold ctx::mutex and child_mutex, revalidate our 5383 * state, if child is still the first entry, it didn't get freed 5384 * and we can continue doing so. 5385 */ 5386 tmp = list_first_entry_or_null(&event->child_list, 5387 struct perf_event, child_list); 5388 if (tmp == child) { 5389 perf_remove_from_context(child, DETACH_GROUP); 5390 list_move(&child->child_list, &free_list); 5391 /* 5392 * This matches the refcount bump in inherit_event(); 5393 * this can't be the last reference. 5394 */ 5395 put_event(event); 5396 } 5397 5398 mutex_unlock(&event->child_mutex); 5399 mutex_unlock(&ctx->mutex); 5400 put_ctx(ctx); 5401 goto again; 5402 } 5403 mutex_unlock(&event->child_mutex); 5404 5405 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5406 void *var = &child->ctx->refcount; 5407 5408 list_del(&child->child_list); 5409 free_event(child); 5410 5411 /* 5412 * Wake any perf_event_free_task() waiting for this event to be 5413 * freed. 5414 */ 5415 smp_mb(); /* pairs with wait_var_event() */ 5416 wake_up_var(var); 5417 } 5418 5419 no_ctx: 5420 put_event(event); /* Must be the 'last' reference */ 5421 return 0; 5422 } 5423 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5424 5425 /* 5426 * Called when the last reference to the file is gone. 5427 */ 5428 static int perf_release(struct inode *inode, struct file *file) 5429 { 5430 perf_event_release_kernel(file->private_data); 5431 return 0; 5432 } 5433 5434 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5435 { 5436 struct perf_event *child; 5437 u64 total = 0; 5438 5439 *enabled = 0; 5440 *running = 0; 5441 5442 mutex_lock(&event->child_mutex); 5443 5444 (void)perf_event_read(event, false); 5445 total += perf_event_count(event); 5446 5447 *enabled += event->total_time_enabled + 5448 atomic64_read(&event->child_total_time_enabled); 5449 *running += event->total_time_running + 5450 atomic64_read(&event->child_total_time_running); 5451 5452 list_for_each_entry(child, &event->child_list, child_list) { 5453 (void)perf_event_read(child, false); 5454 total += perf_event_count(child); 5455 *enabled += child->total_time_enabled; 5456 *running += child->total_time_running; 5457 } 5458 mutex_unlock(&event->child_mutex); 5459 5460 return total; 5461 } 5462 5463 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5464 { 5465 struct perf_event_context *ctx; 5466 u64 count; 5467 5468 ctx = perf_event_ctx_lock(event); 5469 count = __perf_event_read_value(event, enabled, running); 5470 perf_event_ctx_unlock(event, ctx); 5471 5472 return count; 5473 } 5474 EXPORT_SYMBOL_GPL(perf_event_read_value); 5475 5476 static int __perf_read_group_add(struct perf_event *leader, 5477 u64 read_format, u64 *values) 5478 { 5479 struct perf_event_context *ctx = leader->ctx; 5480 struct perf_event *sub, *parent; 5481 unsigned long flags; 5482 int n = 1; /* skip @nr */ 5483 int ret; 5484 5485 ret = perf_event_read(leader, true); 5486 if (ret) 5487 return ret; 5488 5489 raw_spin_lock_irqsave(&ctx->lock, flags); 5490 /* 5491 * Verify the grouping between the parent and child (inherited) 5492 * events is still in tact. 5493 * 5494 * Specifically: 5495 * - leader->ctx->lock pins leader->sibling_list 5496 * - parent->child_mutex pins parent->child_list 5497 * - parent->ctx->mutex pins parent->sibling_list 5498 * 5499 * Because parent->ctx != leader->ctx (and child_list nests inside 5500 * ctx->mutex), group destruction is not atomic between children, also 5501 * see perf_event_release_kernel(). Additionally, parent can grow the 5502 * group. 5503 * 5504 * Therefore it is possible to have parent and child groups in a 5505 * different configuration and summing over such a beast makes no sense 5506 * what so ever. 5507 * 5508 * Reject this. 5509 */ 5510 parent = leader->parent; 5511 if (parent && 5512 (parent->group_generation != leader->group_generation || 5513 parent->nr_siblings != leader->nr_siblings)) { 5514 ret = -ECHILD; 5515 goto unlock; 5516 } 5517 5518 /* 5519 * Since we co-schedule groups, {enabled,running} times of siblings 5520 * will be identical to those of the leader, so we only publish one 5521 * set. 5522 */ 5523 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5524 values[n++] += leader->total_time_enabled + 5525 atomic64_read(&leader->child_total_time_enabled); 5526 } 5527 5528 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5529 values[n++] += leader->total_time_running + 5530 atomic64_read(&leader->child_total_time_running); 5531 } 5532 5533 /* 5534 * Write {count,id} tuples for every sibling. 5535 */ 5536 values[n++] += perf_event_count(leader); 5537 if (read_format & PERF_FORMAT_ID) 5538 values[n++] = primary_event_id(leader); 5539 if (read_format & PERF_FORMAT_LOST) 5540 values[n++] = atomic64_read(&leader->lost_samples); 5541 5542 for_each_sibling_event(sub, leader) { 5543 values[n++] += perf_event_count(sub); 5544 if (read_format & PERF_FORMAT_ID) 5545 values[n++] = primary_event_id(sub); 5546 if (read_format & PERF_FORMAT_LOST) 5547 values[n++] = atomic64_read(&sub->lost_samples); 5548 } 5549 5550 unlock: 5551 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5552 return ret; 5553 } 5554 5555 static int perf_read_group(struct perf_event *event, 5556 u64 read_format, char __user *buf) 5557 { 5558 struct perf_event *leader = event->group_leader, *child; 5559 struct perf_event_context *ctx = leader->ctx; 5560 int ret; 5561 u64 *values; 5562 5563 lockdep_assert_held(&ctx->mutex); 5564 5565 values = kzalloc(event->read_size, GFP_KERNEL); 5566 if (!values) 5567 return -ENOMEM; 5568 5569 values[0] = 1 + leader->nr_siblings; 5570 5571 mutex_lock(&leader->child_mutex); 5572 5573 ret = __perf_read_group_add(leader, read_format, values); 5574 if (ret) 5575 goto unlock; 5576 5577 list_for_each_entry(child, &leader->child_list, child_list) { 5578 ret = __perf_read_group_add(child, read_format, values); 5579 if (ret) 5580 goto unlock; 5581 } 5582 5583 mutex_unlock(&leader->child_mutex); 5584 5585 ret = event->read_size; 5586 if (copy_to_user(buf, values, event->read_size)) 5587 ret = -EFAULT; 5588 goto out; 5589 5590 unlock: 5591 mutex_unlock(&leader->child_mutex); 5592 out: 5593 kfree(values); 5594 return ret; 5595 } 5596 5597 static int perf_read_one(struct perf_event *event, 5598 u64 read_format, char __user *buf) 5599 { 5600 u64 enabled, running; 5601 u64 values[5]; 5602 int n = 0; 5603 5604 values[n++] = __perf_event_read_value(event, &enabled, &running); 5605 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5606 values[n++] = enabled; 5607 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5608 values[n++] = running; 5609 if (read_format & PERF_FORMAT_ID) 5610 values[n++] = primary_event_id(event); 5611 if (read_format & PERF_FORMAT_LOST) 5612 values[n++] = atomic64_read(&event->lost_samples); 5613 5614 if (copy_to_user(buf, values, n * sizeof(u64))) 5615 return -EFAULT; 5616 5617 return n * sizeof(u64); 5618 } 5619 5620 static bool is_event_hup(struct perf_event *event) 5621 { 5622 bool no_children; 5623 5624 if (event->state > PERF_EVENT_STATE_EXIT) 5625 return false; 5626 5627 mutex_lock(&event->child_mutex); 5628 no_children = list_empty(&event->child_list); 5629 mutex_unlock(&event->child_mutex); 5630 return no_children; 5631 } 5632 5633 /* 5634 * Read the performance event - simple non blocking version for now 5635 */ 5636 static ssize_t 5637 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5638 { 5639 u64 read_format = event->attr.read_format; 5640 int ret; 5641 5642 /* 5643 * Return end-of-file for a read on an event that is in 5644 * error state (i.e. because it was pinned but it couldn't be 5645 * scheduled on to the CPU at some point). 5646 */ 5647 if (event->state == PERF_EVENT_STATE_ERROR) 5648 return 0; 5649 5650 if (count < event->read_size) 5651 return -ENOSPC; 5652 5653 WARN_ON_ONCE(event->ctx->parent_ctx); 5654 if (read_format & PERF_FORMAT_GROUP) 5655 ret = perf_read_group(event, read_format, buf); 5656 else 5657 ret = perf_read_one(event, read_format, buf); 5658 5659 return ret; 5660 } 5661 5662 static ssize_t 5663 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5664 { 5665 struct perf_event *event = file->private_data; 5666 struct perf_event_context *ctx; 5667 int ret; 5668 5669 ret = security_perf_event_read(event); 5670 if (ret) 5671 return ret; 5672 5673 ctx = perf_event_ctx_lock(event); 5674 ret = __perf_read(event, buf, count); 5675 perf_event_ctx_unlock(event, ctx); 5676 5677 return ret; 5678 } 5679 5680 static __poll_t perf_poll(struct file *file, poll_table *wait) 5681 { 5682 struct perf_event *event = file->private_data; 5683 struct perf_buffer *rb; 5684 __poll_t events = EPOLLHUP; 5685 5686 poll_wait(file, &event->waitq, wait); 5687 5688 if (is_event_hup(event)) 5689 return events; 5690 5691 /* 5692 * Pin the event->rb by taking event->mmap_mutex; otherwise 5693 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5694 */ 5695 mutex_lock(&event->mmap_mutex); 5696 rb = event->rb; 5697 if (rb) 5698 events = atomic_xchg(&rb->poll, 0); 5699 mutex_unlock(&event->mmap_mutex); 5700 return events; 5701 } 5702 5703 static void _perf_event_reset(struct perf_event *event) 5704 { 5705 (void)perf_event_read(event, false); 5706 local64_set(&event->count, 0); 5707 perf_event_update_userpage(event); 5708 } 5709 5710 /* Assume it's not an event with inherit set. */ 5711 u64 perf_event_pause(struct perf_event *event, bool reset) 5712 { 5713 struct perf_event_context *ctx; 5714 u64 count; 5715 5716 ctx = perf_event_ctx_lock(event); 5717 WARN_ON_ONCE(event->attr.inherit); 5718 _perf_event_disable(event); 5719 count = local64_read(&event->count); 5720 if (reset) 5721 local64_set(&event->count, 0); 5722 perf_event_ctx_unlock(event, ctx); 5723 5724 return count; 5725 } 5726 EXPORT_SYMBOL_GPL(perf_event_pause); 5727 5728 /* 5729 * Holding the top-level event's child_mutex means that any 5730 * descendant process that has inherited this event will block 5731 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5732 * task existence requirements of perf_event_enable/disable. 5733 */ 5734 static void perf_event_for_each_child(struct perf_event *event, 5735 void (*func)(struct perf_event *)) 5736 { 5737 struct perf_event *child; 5738 5739 WARN_ON_ONCE(event->ctx->parent_ctx); 5740 5741 mutex_lock(&event->child_mutex); 5742 func(event); 5743 list_for_each_entry(child, &event->child_list, child_list) 5744 func(child); 5745 mutex_unlock(&event->child_mutex); 5746 } 5747 5748 static void perf_event_for_each(struct perf_event *event, 5749 void (*func)(struct perf_event *)) 5750 { 5751 struct perf_event_context *ctx = event->ctx; 5752 struct perf_event *sibling; 5753 5754 lockdep_assert_held(&ctx->mutex); 5755 5756 event = event->group_leader; 5757 5758 perf_event_for_each_child(event, func); 5759 for_each_sibling_event(sibling, event) 5760 perf_event_for_each_child(sibling, func); 5761 } 5762 5763 static void __perf_event_period(struct perf_event *event, 5764 struct perf_cpu_context *cpuctx, 5765 struct perf_event_context *ctx, 5766 void *info) 5767 { 5768 u64 value = *((u64 *)info); 5769 bool active; 5770 5771 if (event->attr.freq) { 5772 event->attr.sample_freq = value; 5773 } else { 5774 event->attr.sample_period = value; 5775 event->hw.sample_period = value; 5776 } 5777 5778 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5779 if (active) { 5780 perf_pmu_disable(event->pmu); 5781 /* 5782 * We could be throttled; unthrottle now to avoid the tick 5783 * trying to unthrottle while we already re-started the event. 5784 */ 5785 if (event->hw.interrupts == MAX_INTERRUPTS) { 5786 event->hw.interrupts = 0; 5787 perf_log_throttle(event, 1); 5788 } 5789 event->pmu->stop(event, PERF_EF_UPDATE); 5790 } 5791 5792 local64_set(&event->hw.period_left, 0); 5793 5794 if (active) { 5795 event->pmu->start(event, PERF_EF_RELOAD); 5796 perf_pmu_enable(event->pmu); 5797 } 5798 } 5799 5800 static int perf_event_check_period(struct perf_event *event, u64 value) 5801 { 5802 return event->pmu->check_period(event, value); 5803 } 5804 5805 static int _perf_event_period(struct perf_event *event, u64 value) 5806 { 5807 if (!is_sampling_event(event)) 5808 return -EINVAL; 5809 5810 if (!value) 5811 return -EINVAL; 5812 5813 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5814 return -EINVAL; 5815 5816 if (perf_event_check_period(event, value)) 5817 return -EINVAL; 5818 5819 if (!event->attr.freq && (value & (1ULL << 63))) 5820 return -EINVAL; 5821 5822 event_function_call(event, __perf_event_period, &value); 5823 5824 return 0; 5825 } 5826 5827 int perf_event_period(struct perf_event *event, u64 value) 5828 { 5829 struct perf_event_context *ctx; 5830 int ret; 5831 5832 ctx = perf_event_ctx_lock(event); 5833 ret = _perf_event_period(event, value); 5834 perf_event_ctx_unlock(event, ctx); 5835 5836 return ret; 5837 } 5838 EXPORT_SYMBOL_GPL(perf_event_period); 5839 5840 static const struct file_operations perf_fops; 5841 5842 static inline int perf_fget_light(int fd, struct fd *p) 5843 { 5844 struct fd f = fdget(fd); 5845 if (!f.file) 5846 return -EBADF; 5847 5848 if (f.file->f_op != &perf_fops) { 5849 fdput(f); 5850 return -EBADF; 5851 } 5852 *p = f; 5853 return 0; 5854 } 5855 5856 static int perf_event_set_output(struct perf_event *event, 5857 struct perf_event *output_event); 5858 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5859 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5860 struct perf_event_attr *attr); 5861 5862 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5863 { 5864 void (*func)(struct perf_event *); 5865 u32 flags = arg; 5866 5867 switch (cmd) { 5868 case PERF_EVENT_IOC_ENABLE: 5869 func = _perf_event_enable; 5870 break; 5871 case PERF_EVENT_IOC_DISABLE: 5872 func = _perf_event_disable; 5873 break; 5874 case PERF_EVENT_IOC_RESET: 5875 func = _perf_event_reset; 5876 break; 5877 5878 case PERF_EVENT_IOC_REFRESH: 5879 return _perf_event_refresh(event, arg); 5880 5881 case PERF_EVENT_IOC_PERIOD: 5882 { 5883 u64 value; 5884 5885 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5886 return -EFAULT; 5887 5888 return _perf_event_period(event, value); 5889 } 5890 case PERF_EVENT_IOC_ID: 5891 { 5892 u64 id = primary_event_id(event); 5893 5894 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5895 return -EFAULT; 5896 return 0; 5897 } 5898 5899 case PERF_EVENT_IOC_SET_OUTPUT: 5900 { 5901 int ret; 5902 if (arg != -1) { 5903 struct perf_event *output_event; 5904 struct fd output; 5905 ret = perf_fget_light(arg, &output); 5906 if (ret) 5907 return ret; 5908 output_event = output.file->private_data; 5909 ret = perf_event_set_output(event, output_event); 5910 fdput(output); 5911 } else { 5912 ret = perf_event_set_output(event, NULL); 5913 } 5914 return ret; 5915 } 5916 5917 case PERF_EVENT_IOC_SET_FILTER: 5918 return perf_event_set_filter(event, (void __user *)arg); 5919 5920 case PERF_EVENT_IOC_SET_BPF: 5921 { 5922 struct bpf_prog *prog; 5923 int err; 5924 5925 prog = bpf_prog_get(arg); 5926 if (IS_ERR(prog)) 5927 return PTR_ERR(prog); 5928 5929 err = perf_event_set_bpf_prog(event, prog, 0); 5930 if (err) { 5931 bpf_prog_put(prog); 5932 return err; 5933 } 5934 5935 return 0; 5936 } 5937 5938 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5939 struct perf_buffer *rb; 5940 5941 rcu_read_lock(); 5942 rb = rcu_dereference(event->rb); 5943 if (!rb || !rb->nr_pages) { 5944 rcu_read_unlock(); 5945 return -EINVAL; 5946 } 5947 rb_toggle_paused(rb, !!arg); 5948 rcu_read_unlock(); 5949 return 0; 5950 } 5951 5952 case PERF_EVENT_IOC_QUERY_BPF: 5953 return perf_event_query_prog_array(event, (void __user *)arg); 5954 5955 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5956 struct perf_event_attr new_attr; 5957 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5958 &new_attr); 5959 5960 if (err) 5961 return err; 5962 5963 return perf_event_modify_attr(event, &new_attr); 5964 } 5965 default: 5966 return -ENOTTY; 5967 } 5968 5969 if (flags & PERF_IOC_FLAG_GROUP) 5970 perf_event_for_each(event, func); 5971 else 5972 perf_event_for_each_child(event, func); 5973 5974 return 0; 5975 } 5976 5977 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5978 { 5979 struct perf_event *event = file->private_data; 5980 struct perf_event_context *ctx; 5981 long ret; 5982 5983 /* Treat ioctl like writes as it is likely a mutating operation. */ 5984 ret = security_perf_event_write(event); 5985 if (ret) 5986 return ret; 5987 5988 ctx = perf_event_ctx_lock(event); 5989 ret = _perf_ioctl(event, cmd, arg); 5990 perf_event_ctx_unlock(event, ctx); 5991 5992 return ret; 5993 } 5994 5995 #ifdef CONFIG_COMPAT 5996 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5997 unsigned long arg) 5998 { 5999 switch (_IOC_NR(cmd)) { 6000 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6001 case _IOC_NR(PERF_EVENT_IOC_ID): 6002 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6003 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6004 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6005 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6006 cmd &= ~IOCSIZE_MASK; 6007 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6008 } 6009 break; 6010 } 6011 return perf_ioctl(file, cmd, arg); 6012 } 6013 #else 6014 # define perf_compat_ioctl NULL 6015 #endif 6016 6017 int perf_event_task_enable(void) 6018 { 6019 struct perf_event_context *ctx; 6020 struct perf_event *event; 6021 6022 mutex_lock(¤t->perf_event_mutex); 6023 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6024 ctx = perf_event_ctx_lock(event); 6025 perf_event_for_each_child(event, _perf_event_enable); 6026 perf_event_ctx_unlock(event, ctx); 6027 } 6028 mutex_unlock(¤t->perf_event_mutex); 6029 6030 return 0; 6031 } 6032 6033 int perf_event_task_disable(void) 6034 { 6035 struct perf_event_context *ctx; 6036 struct perf_event *event; 6037 6038 mutex_lock(¤t->perf_event_mutex); 6039 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6040 ctx = perf_event_ctx_lock(event); 6041 perf_event_for_each_child(event, _perf_event_disable); 6042 perf_event_ctx_unlock(event, ctx); 6043 } 6044 mutex_unlock(¤t->perf_event_mutex); 6045 6046 return 0; 6047 } 6048 6049 static int perf_event_index(struct perf_event *event) 6050 { 6051 if (event->hw.state & PERF_HES_STOPPED) 6052 return 0; 6053 6054 if (event->state != PERF_EVENT_STATE_ACTIVE) 6055 return 0; 6056 6057 return event->pmu->event_idx(event); 6058 } 6059 6060 static void perf_event_init_userpage(struct perf_event *event) 6061 { 6062 struct perf_event_mmap_page *userpg; 6063 struct perf_buffer *rb; 6064 6065 rcu_read_lock(); 6066 rb = rcu_dereference(event->rb); 6067 if (!rb) 6068 goto unlock; 6069 6070 userpg = rb->user_page; 6071 6072 /* Allow new userspace to detect that bit 0 is deprecated */ 6073 userpg->cap_bit0_is_deprecated = 1; 6074 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6075 userpg->data_offset = PAGE_SIZE; 6076 userpg->data_size = perf_data_size(rb); 6077 6078 unlock: 6079 rcu_read_unlock(); 6080 } 6081 6082 void __weak arch_perf_update_userpage( 6083 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6084 { 6085 } 6086 6087 /* 6088 * Callers need to ensure there can be no nesting of this function, otherwise 6089 * the seqlock logic goes bad. We can not serialize this because the arch 6090 * code calls this from NMI context. 6091 */ 6092 void perf_event_update_userpage(struct perf_event *event) 6093 { 6094 struct perf_event_mmap_page *userpg; 6095 struct perf_buffer *rb; 6096 u64 enabled, running, now; 6097 6098 rcu_read_lock(); 6099 rb = rcu_dereference(event->rb); 6100 if (!rb) 6101 goto unlock; 6102 6103 /* 6104 * compute total_time_enabled, total_time_running 6105 * based on snapshot values taken when the event 6106 * was last scheduled in. 6107 * 6108 * we cannot simply called update_context_time() 6109 * because of locking issue as we can be called in 6110 * NMI context 6111 */ 6112 calc_timer_values(event, &now, &enabled, &running); 6113 6114 userpg = rb->user_page; 6115 /* 6116 * Disable preemption to guarantee consistent time stamps are stored to 6117 * the user page. 6118 */ 6119 preempt_disable(); 6120 ++userpg->lock; 6121 barrier(); 6122 userpg->index = perf_event_index(event); 6123 userpg->offset = perf_event_count(event); 6124 if (userpg->index) 6125 userpg->offset -= local64_read(&event->hw.prev_count); 6126 6127 userpg->time_enabled = enabled + 6128 atomic64_read(&event->child_total_time_enabled); 6129 6130 userpg->time_running = running + 6131 atomic64_read(&event->child_total_time_running); 6132 6133 arch_perf_update_userpage(event, userpg, now); 6134 6135 barrier(); 6136 ++userpg->lock; 6137 preempt_enable(); 6138 unlock: 6139 rcu_read_unlock(); 6140 } 6141 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6142 6143 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6144 { 6145 struct perf_event *event = vmf->vma->vm_file->private_data; 6146 struct perf_buffer *rb; 6147 vm_fault_t ret = VM_FAULT_SIGBUS; 6148 6149 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6150 if (vmf->pgoff == 0) 6151 ret = 0; 6152 return ret; 6153 } 6154 6155 rcu_read_lock(); 6156 rb = rcu_dereference(event->rb); 6157 if (!rb) 6158 goto unlock; 6159 6160 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6161 goto unlock; 6162 6163 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6164 if (!vmf->page) 6165 goto unlock; 6166 6167 get_page(vmf->page); 6168 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6169 vmf->page->index = vmf->pgoff; 6170 6171 ret = 0; 6172 unlock: 6173 rcu_read_unlock(); 6174 6175 return ret; 6176 } 6177 6178 static void ring_buffer_attach(struct perf_event *event, 6179 struct perf_buffer *rb) 6180 { 6181 struct perf_buffer *old_rb = NULL; 6182 unsigned long flags; 6183 6184 WARN_ON_ONCE(event->parent); 6185 6186 if (event->rb) { 6187 /* 6188 * Should be impossible, we set this when removing 6189 * event->rb_entry and wait/clear when adding event->rb_entry. 6190 */ 6191 WARN_ON_ONCE(event->rcu_pending); 6192 6193 old_rb = event->rb; 6194 spin_lock_irqsave(&old_rb->event_lock, flags); 6195 list_del_rcu(&event->rb_entry); 6196 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6197 6198 event->rcu_batches = get_state_synchronize_rcu(); 6199 event->rcu_pending = 1; 6200 } 6201 6202 if (rb) { 6203 if (event->rcu_pending) { 6204 cond_synchronize_rcu(event->rcu_batches); 6205 event->rcu_pending = 0; 6206 } 6207 6208 spin_lock_irqsave(&rb->event_lock, flags); 6209 list_add_rcu(&event->rb_entry, &rb->event_list); 6210 spin_unlock_irqrestore(&rb->event_lock, flags); 6211 } 6212 6213 /* 6214 * Avoid racing with perf_mmap_close(AUX): stop the event 6215 * before swizzling the event::rb pointer; if it's getting 6216 * unmapped, its aux_mmap_count will be 0 and it won't 6217 * restart. See the comment in __perf_pmu_output_stop(). 6218 * 6219 * Data will inevitably be lost when set_output is done in 6220 * mid-air, but then again, whoever does it like this is 6221 * not in for the data anyway. 6222 */ 6223 if (has_aux(event)) 6224 perf_event_stop(event, 0); 6225 6226 rcu_assign_pointer(event->rb, rb); 6227 6228 if (old_rb) { 6229 ring_buffer_put(old_rb); 6230 /* 6231 * Since we detached before setting the new rb, so that we 6232 * could attach the new rb, we could have missed a wakeup. 6233 * Provide it now. 6234 */ 6235 wake_up_all(&event->waitq); 6236 } 6237 } 6238 6239 static void ring_buffer_wakeup(struct perf_event *event) 6240 { 6241 struct perf_buffer *rb; 6242 6243 if (event->parent) 6244 event = event->parent; 6245 6246 rcu_read_lock(); 6247 rb = rcu_dereference(event->rb); 6248 if (rb) { 6249 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6250 wake_up_all(&event->waitq); 6251 } 6252 rcu_read_unlock(); 6253 } 6254 6255 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6256 { 6257 struct perf_buffer *rb; 6258 6259 if (event->parent) 6260 event = event->parent; 6261 6262 rcu_read_lock(); 6263 rb = rcu_dereference(event->rb); 6264 if (rb) { 6265 if (!refcount_inc_not_zero(&rb->refcount)) 6266 rb = NULL; 6267 } 6268 rcu_read_unlock(); 6269 6270 return rb; 6271 } 6272 6273 void ring_buffer_put(struct perf_buffer *rb) 6274 { 6275 if (!refcount_dec_and_test(&rb->refcount)) 6276 return; 6277 6278 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6279 6280 call_rcu(&rb->rcu_head, rb_free_rcu); 6281 } 6282 6283 static void perf_mmap_open(struct vm_area_struct *vma) 6284 { 6285 struct perf_event *event = vma->vm_file->private_data; 6286 6287 atomic_inc(&event->mmap_count); 6288 atomic_inc(&event->rb->mmap_count); 6289 6290 if (vma->vm_pgoff) 6291 atomic_inc(&event->rb->aux_mmap_count); 6292 6293 if (event->pmu->event_mapped) 6294 event->pmu->event_mapped(event, vma->vm_mm); 6295 } 6296 6297 static void perf_pmu_output_stop(struct perf_event *event); 6298 6299 /* 6300 * A buffer can be mmap()ed multiple times; either directly through the same 6301 * event, or through other events by use of perf_event_set_output(). 6302 * 6303 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6304 * the buffer here, where we still have a VM context. This means we need 6305 * to detach all events redirecting to us. 6306 */ 6307 static void perf_mmap_close(struct vm_area_struct *vma) 6308 { 6309 struct perf_event *event = vma->vm_file->private_data; 6310 struct perf_buffer *rb = ring_buffer_get(event); 6311 struct user_struct *mmap_user = rb->mmap_user; 6312 int mmap_locked = rb->mmap_locked; 6313 unsigned long size = perf_data_size(rb); 6314 bool detach_rest = false; 6315 6316 if (event->pmu->event_unmapped) 6317 event->pmu->event_unmapped(event, vma->vm_mm); 6318 6319 /* 6320 * rb->aux_mmap_count will always drop before rb->mmap_count and 6321 * event->mmap_count, so it is ok to use event->mmap_mutex to 6322 * serialize with perf_mmap here. 6323 */ 6324 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6325 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6326 /* 6327 * Stop all AUX events that are writing to this buffer, 6328 * so that we can free its AUX pages and corresponding PMU 6329 * data. Note that after rb::aux_mmap_count dropped to zero, 6330 * they won't start any more (see perf_aux_output_begin()). 6331 */ 6332 perf_pmu_output_stop(event); 6333 6334 /* now it's safe to free the pages */ 6335 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6336 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6337 6338 /* this has to be the last one */ 6339 rb_free_aux(rb); 6340 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6341 6342 mutex_unlock(&event->mmap_mutex); 6343 } 6344 6345 if (atomic_dec_and_test(&rb->mmap_count)) 6346 detach_rest = true; 6347 6348 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6349 goto out_put; 6350 6351 ring_buffer_attach(event, NULL); 6352 mutex_unlock(&event->mmap_mutex); 6353 6354 /* If there's still other mmap()s of this buffer, we're done. */ 6355 if (!detach_rest) 6356 goto out_put; 6357 6358 /* 6359 * No other mmap()s, detach from all other events that might redirect 6360 * into the now unreachable buffer. Somewhat complicated by the 6361 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6362 */ 6363 again: 6364 rcu_read_lock(); 6365 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6366 if (!atomic_long_inc_not_zero(&event->refcount)) { 6367 /* 6368 * This event is en-route to free_event() which will 6369 * detach it and remove it from the list. 6370 */ 6371 continue; 6372 } 6373 rcu_read_unlock(); 6374 6375 mutex_lock(&event->mmap_mutex); 6376 /* 6377 * Check we didn't race with perf_event_set_output() which can 6378 * swizzle the rb from under us while we were waiting to 6379 * acquire mmap_mutex. 6380 * 6381 * If we find a different rb; ignore this event, a next 6382 * iteration will no longer find it on the list. We have to 6383 * still restart the iteration to make sure we're not now 6384 * iterating the wrong list. 6385 */ 6386 if (event->rb == rb) 6387 ring_buffer_attach(event, NULL); 6388 6389 mutex_unlock(&event->mmap_mutex); 6390 put_event(event); 6391 6392 /* 6393 * Restart the iteration; either we're on the wrong list or 6394 * destroyed its integrity by doing a deletion. 6395 */ 6396 goto again; 6397 } 6398 rcu_read_unlock(); 6399 6400 /* 6401 * It could be there's still a few 0-ref events on the list; they'll 6402 * get cleaned up by free_event() -- they'll also still have their 6403 * ref on the rb and will free it whenever they are done with it. 6404 * 6405 * Aside from that, this buffer is 'fully' detached and unmapped, 6406 * undo the VM accounting. 6407 */ 6408 6409 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6410 &mmap_user->locked_vm); 6411 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6412 free_uid(mmap_user); 6413 6414 out_put: 6415 ring_buffer_put(rb); /* could be last */ 6416 } 6417 6418 static const struct vm_operations_struct perf_mmap_vmops = { 6419 .open = perf_mmap_open, 6420 .close = perf_mmap_close, /* non mergeable */ 6421 .fault = perf_mmap_fault, 6422 .page_mkwrite = perf_mmap_fault, 6423 }; 6424 6425 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6426 { 6427 struct perf_event *event = file->private_data; 6428 unsigned long user_locked, user_lock_limit; 6429 struct user_struct *user = current_user(); 6430 struct perf_buffer *rb = NULL; 6431 unsigned long locked, lock_limit; 6432 unsigned long vma_size; 6433 unsigned long nr_pages; 6434 long user_extra = 0, extra = 0; 6435 int ret = 0, flags = 0; 6436 6437 /* 6438 * Don't allow mmap() of inherited per-task counters. This would 6439 * create a performance issue due to all children writing to the 6440 * same rb. 6441 */ 6442 if (event->cpu == -1 && event->attr.inherit) 6443 return -EINVAL; 6444 6445 if (!(vma->vm_flags & VM_SHARED)) 6446 return -EINVAL; 6447 6448 ret = security_perf_event_read(event); 6449 if (ret) 6450 return ret; 6451 6452 vma_size = vma->vm_end - vma->vm_start; 6453 6454 if (vma->vm_pgoff == 0) { 6455 nr_pages = (vma_size / PAGE_SIZE) - 1; 6456 } else { 6457 /* 6458 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6459 * mapped, all subsequent mappings should have the same size 6460 * and offset. Must be above the normal perf buffer. 6461 */ 6462 u64 aux_offset, aux_size; 6463 6464 if (!event->rb) 6465 return -EINVAL; 6466 6467 nr_pages = vma_size / PAGE_SIZE; 6468 6469 mutex_lock(&event->mmap_mutex); 6470 ret = -EINVAL; 6471 6472 rb = event->rb; 6473 if (!rb) 6474 goto aux_unlock; 6475 6476 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6477 aux_size = READ_ONCE(rb->user_page->aux_size); 6478 6479 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6480 goto aux_unlock; 6481 6482 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6483 goto aux_unlock; 6484 6485 /* already mapped with a different offset */ 6486 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6487 goto aux_unlock; 6488 6489 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6490 goto aux_unlock; 6491 6492 /* already mapped with a different size */ 6493 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6494 goto aux_unlock; 6495 6496 if (!is_power_of_2(nr_pages)) 6497 goto aux_unlock; 6498 6499 if (!atomic_inc_not_zero(&rb->mmap_count)) 6500 goto aux_unlock; 6501 6502 if (rb_has_aux(rb)) { 6503 atomic_inc(&rb->aux_mmap_count); 6504 ret = 0; 6505 goto unlock; 6506 } 6507 6508 atomic_set(&rb->aux_mmap_count, 1); 6509 user_extra = nr_pages; 6510 6511 goto accounting; 6512 } 6513 6514 /* 6515 * If we have rb pages ensure they're a power-of-two number, so we 6516 * can do bitmasks instead of modulo. 6517 */ 6518 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6519 return -EINVAL; 6520 6521 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6522 return -EINVAL; 6523 6524 WARN_ON_ONCE(event->ctx->parent_ctx); 6525 again: 6526 mutex_lock(&event->mmap_mutex); 6527 if (event->rb) { 6528 if (data_page_nr(event->rb) != nr_pages) { 6529 ret = -EINVAL; 6530 goto unlock; 6531 } 6532 6533 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6534 /* 6535 * Raced against perf_mmap_close(); remove the 6536 * event and try again. 6537 */ 6538 ring_buffer_attach(event, NULL); 6539 mutex_unlock(&event->mmap_mutex); 6540 goto again; 6541 } 6542 6543 goto unlock; 6544 } 6545 6546 user_extra = nr_pages + 1; 6547 6548 accounting: 6549 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6550 6551 /* 6552 * Increase the limit linearly with more CPUs: 6553 */ 6554 user_lock_limit *= num_online_cpus(); 6555 6556 user_locked = atomic_long_read(&user->locked_vm); 6557 6558 /* 6559 * sysctl_perf_event_mlock may have changed, so that 6560 * user->locked_vm > user_lock_limit 6561 */ 6562 if (user_locked > user_lock_limit) 6563 user_locked = user_lock_limit; 6564 user_locked += user_extra; 6565 6566 if (user_locked > user_lock_limit) { 6567 /* 6568 * charge locked_vm until it hits user_lock_limit; 6569 * charge the rest from pinned_vm 6570 */ 6571 extra = user_locked - user_lock_limit; 6572 user_extra -= extra; 6573 } 6574 6575 lock_limit = rlimit(RLIMIT_MEMLOCK); 6576 lock_limit >>= PAGE_SHIFT; 6577 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6578 6579 if ((locked > lock_limit) && perf_is_paranoid() && 6580 !capable(CAP_IPC_LOCK)) { 6581 ret = -EPERM; 6582 goto unlock; 6583 } 6584 6585 WARN_ON(!rb && event->rb); 6586 6587 if (vma->vm_flags & VM_WRITE) 6588 flags |= RING_BUFFER_WRITABLE; 6589 6590 if (!rb) { 6591 rb = rb_alloc(nr_pages, 6592 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6593 event->cpu, flags); 6594 6595 if (!rb) { 6596 ret = -ENOMEM; 6597 goto unlock; 6598 } 6599 6600 atomic_set(&rb->mmap_count, 1); 6601 rb->mmap_user = get_current_user(); 6602 rb->mmap_locked = extra; 6603 6604 ring_buffer_attach(event, rb); 6605 6606 perf_event_update_time(event); 6607 perf_event_init_userpage(event); 6608 perf_event_update_userpage(event); 6609 } else { 6610 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6611 event->attr.aux_watermark, flags); 6612 if (!ret) 6613 rb->aux_mmap_locked = extra; 6614 } 6615 6616 unlock: 6617 if (!ret) { 6618 atomic_long_add(user_extra, &user->locked_vm); 6619 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6620 6621 atomic_inc(&event->mmap_count); 6622 } else if (rb) { 6623 atomic_dec(&rb->mmap_count); 6624 } 6625 aux_unlock: 6626 mutex_unlock(&event->mmap_mutex); 6627 6628 /* 6629 * Since pinned accounting is per vm we cannot allow fork() to copy our 6630 * vma. 6631 */ 6632 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6633 vma->vm_ops = &perf_mmap_vmops; 6634 6635 if (event->pmu->event_mapped) 6636 event->pmu->event_mapped(event, vma->vm_mm); 6637 6638 return ret; 6639 } 6640 6641 static int perf_fasync(int fd, struct file *filp, int on) 6642 { 6643 struct inode *inode = file_inode(filp); 6644 struct perf_event *event = filp->private_data; 6645 int retval; 6646 6647 inode_lock(inode); 6648 retval = fasync_helper(fd, filp, on, &event->fasync); 6649 inode_unlock(inode); 6650 6651 if (retval < 0) 6652 return retval; 6653 6654 return 0; 6655 } 6656 6657 static const struct file_operations perf_fops = { 6658 .llseek = no_llseek, 6659 .release = perf_release, 6660 .read = perf_read, 6661 .poll = perf_poll, 6662 .unlocked_ioctl = perf_ioctl, 6663 .compat_ioctl = perf_compat_ioctl, 6664 .mmap = perf_mmap, 6665 .fasync = perf_fasync, 6666 }; 6667 6668 /* 6669 * Perf event wakeup 6670 * 6671 * If there's data, ensure we set the poll() state and publish everything 6672 * to user-space before waking everybody up. 6673 */ 6674 6675 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6676 { 6677 /* only the parent has fasync state */ 6678 if (event->parent) 6679 event = event->parent; 6680 return &event->fasync; 6681 } 6682 6683 void perf_event_wakeup(struct perf_event *event) 6684 { 6685 ring_buffer_wakeup(event); 6686 6687 if (event->pending_kill) { 6688 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6689 event->pending_kill = 0; 6690 } 6691 } 6692 6693 static void perf_sigtrap(struct perf_event *event) 6694 { 6695 /* 6696 * We'd expect this to only occur if the irq_work is delayed and either 6697 * ctx->task or current has changed in the meantime. This can be the 6698 * case on architectures that do not implement arch_irq_work_raise(). 6699 */ 6700 if (WARN_ON_ONCE(event->ctx->task != current)) 6701 return; 6702 6703 /* 6704 * Both perf_pending_task() and perf_pending_irq() can race with the 6705 * task exiting. 6706 */ 6707 if (current->flags & PF_EXITING) 6708 return; 6709 6710 send_sig_perf((void __user *)event->pending_addr, 6711 event->orig_type, event->attr.sig_data); 6712 } 6713 6714 /* 6715 * Deliver the pending work in-event-context or follow the context. 6716 */ 6717 static void __perf_pending_irq(struct perf_event *event) 6718 { 6719 int cpu = READ_ONCE(event->oncpu); 6720 6721 /* 6722 * If the event isn't running; we done. event_sched_out() will have 6723 * taken care of things. 6724 */ 6725 if (cpu < 0) 6726 return; 6727 6728 /* 6729 * Yay, we hit home and are in the context of the event. 6730 */ 6731 if (cpu == smp_processor_id()) { 6732 if (event->pending_sigtrap) { 6733 event->pending_sigtrap = 0; 6734 perf_sigtrap(event); 6735 local_dec(&event->ctx->nr_pending); 6736 } 6737 if (event->pending_disable) { 6738 event->pending_disable = 0; 6739 perf_event_disable_local(event); 6740 } 6741 return; 6742 } 6743 6744 /* 6745 * CPU-A CPU-B 6746 * 6747 * perf_event_disable_inatomic() 6748 * @pending_disable = CPU-A; 6749 * irq_work_queue(); 6750 * 6751 * sched-out 6752 * @pending_disable = -1; 6753 * 6754 * sched-in 6755 * perf_event_disable_inatomic() 6756 * @pending_disable = CPU-B; 6757 * irq_work_queue(); // FAILS 6758 * 6759 * irq_work_run() 6760 * perf_pending_irq() 6761 * 6762 * But the event runs on CPU-B and wants disabling there. 6763 */ 6764 irq_work_queue_on(&event->pending_irq, cpu); 6765 } 6766 6767 static void perf_pending_irq(struct irq_work *entry) 6768 { 6769 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6770 int rctx; 6771 6772 /* 6773 * If we 'fail' here, that's OK, it means recursion is already disabled 6774 * and we won't recurse 'further'. 6775 */ 6776 rctx = perf_swevent_get_recursion_context(); 6777 6778 /* 6779 * The wakeup isn't bound to the context of the event -- it can happen 6780 * irrespective of where the event is. 6781 */ 6782 if (event->pending_wakeup) { 6783 event->pending_wakeup = 0; 6784 perf_event_wakeup(event); 6785 } 6786 6787 __perf_pending_irq(event); 6788 6789 if (rctx >= 0) 6790 perf_swevent_put_recursion_context(rctx); 6791 } 6792 6793 static void perf_pending_task(struct callback_head *head) 6794 { 6795 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6796 int rctx; 6797 6798 /* 6799 * If we 'fail' here, that's OK, it means recursion is already disabled 6800 * and we won't recurse 'further'. 6801 */ 6802 preempt_disable_notrace(); 6803 rctx = perf_swevent_get_recursion_context(); 6804 6805 if (event->pending_work) { 6806 event->pending_work = 0; 6807 perf_sigtrap(event); 6808 local_dec(&event->ctx->nr_pending); 6809 } 6810 6811 if (rctx >= 0) 6812 perf_swevent_put_recursion_context(rctx); 6813 preempt_enable_notrace(); 6814 6815 put_event(event); 6816 } 6817 6818 #ifdef CONFIG_GUEST_PERF_EVENTS 6819 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6820 6821 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6822 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6823 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6824 6825 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6826 { 6827 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6828 return; 6829 6830 rcu_assign_pointer(perf_guest_cbs, cbs); 6831 static_call_update(__perf_guest_state, cbs->state); 6832 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6833 6834 /* Implementing ->handle_intel_pt_intr is optional. */ 6835 if (cbs->handle_intel_pt_intr) 6836 static_call_update(__perf_guest_handle_intel_pt_intr, 6837 cbs->handle_intel_pt_intr); 6838 } 6839 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6840 6841 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6842 { 6843 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6844 return; 6845 6846 rcu_assign_pointer(perf_guest_cbs, NULL); 6847 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6848 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6849 static_call_update(__perf_guest_handle_intel_pt_intr, 6850 (void *)&__static_call_return0); 6851 synchronize_rcu(); 6852 } 6853 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6854 #endif 6855 6856 static void 6857 perf_output_sample_regs(struct perf_output_handle *handle, 6858 struct pt_regs *regs, u64 mask) 6859 { 6860 int bit; 6861 DECLARE_BITMAP(_mask, 64); 6862 6863 bitmap_from_u64(_mask, mask); 6864 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6865 u64 val; 6866 6867 val = perf_reg_value(regs, bit); 6868 perf_output_put(handle, val); 6869 } 6870 } 6871 6872 static void perf_sample_regs_user(struct perf_regs *regs_user, 6873 struct pt_regs *regs) 6874 { 6875 if (user_mode(regs)) { 6876 regs_user->abi = perf_reg_abi(current); 6877 regs_user->regs = regs; 6878 } else if (!(current->flags & PF_KTHREAD)) { 6879 perf_get_regs_user(regs_user, regs); 6880 } else { 6881 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6882 regs_user->regs = NULL; 6883 } 6884 } 6885 6886 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6887 struct pt_regs *regs) 6888 { 6889 regs_intr->regs = regs; 6890 regs_intr->abi = perf_reg_abi(current); 6891 } 6892 6893 6894 /* 6895 * Get remaining task size from user stack pointer. 6896 * 6897 * It'd be better to take stack vma map and limit this more 6898 * precisely, but there's no way to get it safely under interrupt, 6899 * so using TASK_SIZE as limit. 6900 */ 6901 static u64 perf_ustack_task_size(struct pt_regs *regs) 6902 { 6903 unsigned long addr = perf_user_stack_pointer(regs); 6904 6905 if (!addr || addr >= TASK_SIZE) 6906 return 0; 6907 6908 return TASK_SIZE - addr; 6909 } 6910 6911 static u16 6912 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6913 struct pt_regs *regs) 6914 { 6915 u64 task_size; 6916 6917 /* No regs, no stack pointer, no dump. */ 6918 if (!regs) 6919 return 0; 6920 6921 /* 6922 * Check if we fit in with the requested stack size into the: 6923 * - TASK_SIZE 6924 * If we don't, we limit the size to the TASK_SIZE. 6925 * 6926 * - remaining sample size 6927 * If we don't, we customize the stack size to 6928 * fit in to the remaining sample size. 6929 */ 6930 6931 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6932 stack_size = min(stack_size, (u16) task_size); 6933 6934 /* Current header size plus static size and dynamic size. */ 6935 header_size += 2 * sizeof(u64); 6936 6937 /* Do we fit in with the current stack dump size? */ 6938 if ((u16) (header_size + stack_size) < header_size) { 6939 /* 6940 * If we overflow the maximum size for the sample, 6941 * we customize the stack dump size to fit in. 6942 */ 6943 stack_size = USHRT_MAX - header_size - sizeof(u64); 6944 stack_size = round_up(stack_size, sizeof(u64)); 6945 } 6946 6947 return stack_size; 6948 } 6949 6950 static void 6951 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6952 struct pt_regs *regs) 6953 { 6954 /* Case of a kernel thread, nothing to dump */ 6955 if (!regs) { 6956 u64 size = 0; 6957 perf_output_put(handle, size); 6958 } else { 6959 unsigned long sp; 6960 unsigned int rem; 6961 u64 dyn_size; 6962 6963 /* 6964 * We dump: 6965 * static size 6966 * - the size requested by user or the best one we can fit 6967 * in to the sample max size 6968 * data 6969 * - user stack dump data 6970 * dynamic size 6971 * - the actual dumped size 6972 */ 6973 6974 /* Static size. */ 6975 perf_output_put(handle, dump_size); 6976 6977 /* Data. */ 6978 sp = perf_user_stack_pointer(regs); 6979 rem = __output_copy_user(handle, (void *) sp, dump_size); 6980 dyn_size = dump_size - rem; 6981 6982 perf_output_skip(handle, rem); 6983 6984 /* Dynamic size. */ 6985 perf_output_put(handle, dyn_size); 6986 } 6987 } 6988 6989 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6990 struct perf_sample_data *data, 6991 size_t size) 6992 { 6993 struct perf_event *sampler = event->aux_event; 6994 struct perf_buffer *rb; 6995 6996 data->aux_size = 0; 6997 6998 if (!sampler) 6999 goto out; 7000 7001 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7002 goto out; 7003 7004 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7005 goto out; 7006 7007 rb = ring_buffer_get(sampler); 7008 if (!rb) 7009 goto out; 7010 7011 /* 7012 * If this is an NMI hit inside sampling code, don't take 7013 * the sample. See also perf_aux_sample_output(). 7014 */ 7015 if (READ_ONCE(rb->aux_in_sampling)) { 7016 data->aux_size = 0; 7017 } else { 7018 size = min_t(size_t, size, perf_aux_size(rb)); 7019 data->aux_size = ALIGN(size, sizeof(u64)); 7020 } 7021 ring_buffer_put(rb); 7022 7023 out: 7024 return data->aux_size; 7025 } 7026 7027 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7028 struct perf_event *event, 7029 struct perf_output_handle *handle, 7030 unsigned long size) 7031 { 7032 unsigned long flags; 7033 long ret; 7034 7035 /* 7036 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7037 * paths. If we start calling them in NMI context, they may race with 7038 * the IRQ ones, that is, for example, re-starting an event that's just 7039 * been stopped, which is why we're using a separate callback that 7040 * doesn't change the event state. 7041 * 7042 * IRQs need to be disabled to prevent IPIs from racing with us. 7043 */ 7044 local_irq_save(flags); 7045 /* 7046 * Guard against NMI hits inside the critical section; 7047 * see also perf_prepare_sample_aux(). 7048 */ 7049 WRITE_ONCE(rb->aux_in_sampling, 1); 7050 barrier(); 7051 7052 ret = event->pmu->snapshot_aux(event, handle, size); 7053 7054 barrier(); 7055 WRITE_ONCE(rb->aux_in_sampling, 0); 7056 local_irq_restore(flags); 7057 7058 return ret; 7059 } 7060 7061 static void perf_aux_sample_output(struct perf_event *event, 7062 struct perf_output_handle *handle, 7063 struct perf_sample_data *data) 7064 { 7065 struct perf_event *sampler = event->aux_event; 7066 struct perf_buffer *rb; 7067 unsigned long pad; 7068 long size; 7069 7070 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7071 return; 7072 7073 rb = ring_buffer_get(sampler); 7074 if (!rb) 7075 return; 7076 7077 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7078 7079 /* 7080 * An error here means that perf_output_copy() failed (returned a 7081 * non-zero surplus that it didn't copy), which in its current 7082 * enlightened implementation is not possible. If that changes, we'd 7083 * like to know. 7084 */ 7085 if (WARN_ON_ONCE(size < 0)) 7086 goto out_put; 7087 7088 /* 7089 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7090 * perf_prepare_sample_aux(), so should not be more than that. 7091 */ 7092 pad = data->aux_size - size; 7093 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7094 pad = 8; 7095 7096 if (pad) { 7097 u64 zero = 0; 7098 perf_output_copy(handle, &zero, pad); 7099 } 7100 7101 out_put: 7102 ring_buffer_put(rb); 7103 } 7104 7105 /* 7106 * A set of common sample data types saved even for non-sample records 7107 * when event->attr.sample_id_all is set. 7108 */ 7109 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7110 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7111 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7112 7113 static void __perf_event_header__init_id(struct perf_sample_data *data, 7114 struct perf_event *event, 7115 u64 sample_type) 7116 { 7117 data->type = event->attr.sample_type; 7118 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7119 7120 if (sample_type & PERF_SAMPLE_TID) { 7121 /* namespace issues */ 7122 data->tid_entry.pid = perf_event_pid(event, current); 7123 data->tid_entry.tid = perf_event_tid(event, current); 7124 } 7125 7126 if (sample_type & PERF_SAMPLE_TIME) 7127 data->time = perf_event_clock(event); 7128 7129 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7130 data->id = primary_event_id(event); 7131 7132 if (sample_type & PERF_SAMPLE_STREAM_ID) 7133 data->stream_id = event->id; 7134 7135 if (sample_type & PERF_SAMPLE_CPU) { 7136 data->cpu_entry.cpu = raw_smp_processor_id(); 7137 data->cpu_entry.reserved = 0; 7138 } 7139 } 7140 7141 void perf_event_header__init_id(struct perf_event_header *header, 7142 struct perf_sample_data *data, 7143 struct perf_event *event) 7144 { 7145 if (event->attr.sample_id_all) { 7146 header->size += event->id_header_size; 7147 __perf_event_header__init_id(data, event, event->attr.sample_type); 7148 } 7149 } 7150 7151 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7152 struct perf_sample_data *data) 7153 { 7154 u64 sample_type = data->type; 7155 7156 if (sample_type & PERF_SAMPLE_TID) 7157 perf_output_put(handle, data->tid_entry); 7158 7159 if (sample_type & PERF_SAMPLE_TIME) 7160 perf_output_put(handle, data->time); 7161 7162 if (sample_type & PERF_SAMPLE_ID) 7163 perf_output_put(handle, data->id); 7164 7165 if (sample_type & PERF_SAMPLE_STREAM_ID) 7166 perf_output_put(handle, data->stream_id); 7167 7168 if (sample_type & PERF_SAMPLE_CPU) 7169 perf_output_put(handle, data->cpu_entry); 7170 7171 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7172 perf_output_put(handle, data->id); 7173 } 7174 7175 void perf_event__output_id_sample(struct perf_event *event, 7176 struct perf_output_handle *handle, 7177 struct perf_sample_data *sample) 7178 { 7179 if (event->attr.sample_id_all) 7180 __perf_event__output_id_sample(handle, sample); 7181 } 7182 7183 static void perf_output_read_one(struct perf_output_handle *handle, 7184 struct perf_event *event, 7185 u64 enabled, u64 running) 7186 { 7187 u64 read_format = event->attr.read_format; 7188 u64 values[5]; 7189 int n = 0; 7190 7191 values[n++] = perf_event_count(event); 7192 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7193 values[n++] = enabled + 7194 atomic64_read(&event->child_total_time_enabled); 7195 } 7196 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7197 values[n++] = running + 7198 atomic64_read(&event->child_total_time_running); 7199 } 7200 if (read_format & PERF_FORMAT_ID) 7201 values[n++] = primary_event_id(event); 7202 if (read_format & PERF_FORMAT_LOST) 7203 values[n++] = atomic64_read(&event->lost_samples); 7204 7205 __output_copy(handle, values, n * sizeof(u64)); 7206 } 7207 7208 static void perf_output_read_group(struct perf_output_handle *handle, 7209 struct perf_event *event, 7210 u64 enabled, u64 running) 7211 { 7212 struct perf_event *leader = event->group_leader, *sub; 7213 u64 read_format = event->attr.read_format; 7214 unsigned long flags; 7215 u64 values[6]; 7216 int n = 0; 7217 7218 /* 7219 * Disabling interrupts avoids all counter scheduling 7220 * (context switches, timer based rotation and IPIs). 7221 */ 7222 local_irq_save(flags); 7223 7224 values[n++] = 1 + leader->nr_siblings; 7225 7226 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7227 values[n++] = enabled; 7228 7229 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7230 values[n++] = running; 7231 7232 if ((leader != event) && 7233 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7234 leader->pmu->read(leader); 7235 7236 values[n++] = perf_event_count(leader); 7237 if (read_format & PERF_FORMAT_ID) 7238 values[n++] = primary_event_id(leader); 7239 if (read_format & PERF_FORMAT_LOST) 7240 values[n++] = atomic64_read(&leader->lost_samples); 7241 7242 __output_copy(handle, values, n * sizeof(u64)); 7243 7244 for_each_sibling_event(sub, leader) { 7245 n = 0; 7246 7247 if ((sub != event) && 7248 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7249 sub->pmu->read(sub); 7250 7251 values[n++] = perf_event_count(sub); 7252 if (read_format & PERF_FORMAT_ID) 7253 values[n++] = primary_event_id(sub); 7254 if (read_format & PERF_FORMAT_LOST) 7255 values[n++] = atomic64_read(&sub->lost_samples); 7256 7257 __output_copy(handle, values, n * sizeof(u64)); 7258 } 7259 7260 local_irq_restore(flags); 7261 } 7262 7263 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7264 PERF_FORMAT_TOTAL_TIME_RUNNING) 7265 7266 /* 7267 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7268 * 7269 * The problem is that its both hard and excessively expensive to iterate the 7270 * child list, not to mention that its impossible to IPI the children running 7271 * on another CPU, from interrupt/NMI context. 7272 */ 7273 static void perf_output_read(struct perf_output_handle *handle, 7274 struct perf_event *event) 7275 { 7276 u64 enabled = 0, running = 0, now; 7277 u64 read_format = event->attr.read_format; 7278 7279 /* 7280 * compute total_time_enabled, total_time_running 7281 * based on snapshot values taken when the event 7282 * was last scheduled in. 7283 * 7284 * we cannot simply called update_context_time() 7285 * because of locking issue as we are called in 7286 * NMI context 7287 */ 7288 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7289 calc_timer_values(event, &now, &enabled, &running); 7290 7291 if (event->attr.read_format & PERF_FORMAT_GROUP) 7292 perf_output_read_group(handle, event, enabled, running); 7293 else 7294 perf_output_read_one(handle, event, enabled, running); 7295 } 7296 7297 void perf_output_sample(struct perf_output_handle *handle, 7298 struct perf_event_header *header, 7299 struct perf_sample_data *data, 7300 struct perf_event *event) 7301 { 7302 u64 sample_type = data->type; 7303 7304 perf_output_put(handle, *header); 7305 7306 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7307 perf_output_put(handle, data->id); 7308 7309 if (sample_type & PERF_SAMPLE_IP) 7310 perf_output_put(handle, data->ip); 7311 7312 if (sample_type & PERF_SAMPLE_TID) 7313 perf_output_put(handle, data->tid_entry); 7314 7315 if (sample_type & PERF_SAMPLE_TIME) 7316 perf_output_put(handle, data->time); 7317 7318 if (sample_type & PERF_SAMPLE_ADDR) 7319 perf_output_put(handle, data->addr); 7320 7321 if (sample_type & PERF_SAMPLE_ID) 7322 perf_output_put(handle, data->id); 7323 7324 if (sample_type & PERF_SAMPLE_STREAM_ID) 7325 perf_output_put(handle, data->stream_id); 7326 7327 if (sample_type & PERF_SAMPLE_CPU) 7328 perf_output_put(handle, data->cpu_entry); 7329 7330 if (sample_type & PERF_SAMPLE_PERIOD) 7331 perf_output_put(handle, data->period); 7332 7333 if (sample_type & PERF_SAMPLE_READ) 7334 perf_output_read(handle, event); 7335 7336 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7337 int size = 1; 7338 7339 size += data->callchain->nr; 7340 size *= sizeof(u64); 7341 __output_copy(handle, data->callchain, size); 7342 } 7343 7344 if (sample_type & PERF_SAMPLE_RAW) { 7345 struct perf_raw_record *raw = data->raw; 7346 7347 if (raw) { 7348 struct perf_raw_frag *frag = &raw->frag; 7349 7350 perf_output_put(handle, raw->size); 7351 do { 7352 if (frag->copy) { 7353 __output_custom(handle, frag->copy, 7354 frag->data, frag->size); 7355 } else { 7356 __output_copy(handle, frag->data, 7357 frag->size); 7358 } 7359 if (perf_raw_frag_last(frag)) 7360 break; 7361 frag = frag->next; 7362 } while (1); 7363 if (frag->pad) 7364 __output_skip(handle, NULL, frag->pad); 7365 } else { 7366 struct { 7367 u32 size; 7368 u32 data; 7369 } raw = { 7370 .size = sizeof(u32), 7371 .data = 0, 7372 }; 7373 perf_output_put(handle, raw); 7374 } 7375 } 7376 7377 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7378 if (data->br_stack) { 7379 size_t size; 7380 7381 size = data->br_stack->nr 7382 * sizeof(struct perf_branch_entry); 7383 7384 perf_output_put(handle, data->br_stack->nr); 7385 if (branch_sample_hw_index(event)) 7386 perf_output_put(handle, data->br_stack->hw_idx); 7387 perf_output_copy(handle, data->br_stack->entries, size); 7388 } else { 7389 /* 7390 * we always store at least the value of nr 7391 */ 7392 u64 nr = 0; 7393 perf_output_put(handle, nr); 7394 } 7395 } 7396 7397 if (sample_type & PERF_SAMPLE_REGS_USER) { 7398 u64 abi = data->regs_user.abi; 7399 7400 /* 7401 * If there are no regs to dump, notice it through 7402 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7403 */ 7404 perf_output_put(handle, abi); 7405 7406 if (abi) { 7407 u64 mask = event->attr.sample_regs_user; 7408 perf_output_sample_regs(handle, 7409 data->regs_user.regs, 7410 mask); 7411 } 7412 } 7413 7414 if (sample_type & PERF_SAMPLE_STACK_USER) { 7415 perf_output_sample_ustack(handle, 7416 data->stack_user_size, 7417 data->regs_user.regs); 7418 } 7419 7420 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7421 perf_output_put(handle, data->weight.full); 7422 7423 if (sample_type & PERF_SAMPLE_DATA_SRC) 7424 perf_output_put(handle, data->data_src.val); 7425 7426 if (sample_type & PERF_SAMPLE_TRANSACTION) 7427 perf_output_put(handle, data->txn); 7428 7429 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7430 u64 abi = data->regs_intr.abi; 7431 /* 7432 * If there are no regs to dump, notice it through 7433 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7434 */ 7435 perf_output_put(handle, abi); 7436 7437 if (abi) { 7438 u64 mask = event->attr.sample_regs_intr; 7439 7440 perf_output_sample_regs(handle, 7441 data->regs_intr.regs, 7442 mask); 7443 } 7444 } 7445 7446 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7447 perf_output_put(handle, data->phys_addr); 7448 7449 if (sample_type & PERF_SAMPLE_CGROUP) 7450 perf_output_put(handle, data->cgroup); 7451 7452 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7453 perf_output_put(handle, data->data_page_size); 7454 7455 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7456 perf_output_put(handle, data->code_page_size); 7457 7458 if (sample_type & PERF_SAMPLE_AUX) { 7459 perf_output_put(handle, data->aux_size); 7460 7461 if (data->aux_size) 7462 perf_aux_sample_output(event, handle, data); 7463 } 7464 7465 if (!event->attr.watermark) { 7466 int wakeup_events = event->attr.wakeup_events; 7467 7468 if (wakeup_events) { 7469 struct perf_buffer *rb = handle->rb; 7470 int events = local_inc_return(&rb->events); 7471 7472 if (events >= wakeup_events) { 7473 local_sub(wakeup_events, &rb->events); 7474 local_inc(&rb->wakeup); 7475 } 7476 } 7477 } 7478 } 7479 7480 static u64 perf_virt_to_phys(u64 virt) 7481 { 7482 u64 phys_addr = 0; 7483 7484 if (!virt) 7485 return 0; 7486 7487 if (virt >= TASK_SIZE) { 7488 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7489 if (virt_addr_valid((void *)(uintptr_t)virt) && 7490 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7491 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7492 } else { 7493 /* 7494 * Walking the pages tables for user address. 7495 * Interrupts are disabled, so it prevents any tear down 7496 * of the page tables. 7497 * Try IRQ-safe get_user_page_fast_only first. 7498 * If failed, leave phys_addr as 0. 7499 */ 7500 if (current->mm != NULL) { 7501 struct page *p; 7502 7503 pagefault_disable(); 7504 if (get_user_page_fast_only(virt, 0, &p)) { 7505 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7506 put_page(p); 7507 } 7508 pagefault_enable(); 7509 } 7510 } 7511 7512 return phys_addr; 7513 } 7514 7515 /* 7516 * Return the pagetable size of a given virtual address. 7517 */ 7518 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7519 { 7520 u64 size = 0; 7521 7522 #ifdef CONFIG_HAVE_FAST_GUP 7523 pgd_t *pgdp, pgd; 7524 p4d_t *p4dp, p4d; 7525 pud_t *pudp, pud; 7526 pmd_t *pmdp, pmd; 7527 pte_t *ptep, pte; 7528 7529 pgdp = pgd_offset(mm, addr); 7530 pgd = READ_ONCE(*pgdp); 7531 if (pgd_none(pgd)) 7532 return 0; 7533 7534 if (pgd_leaf(pgd)) 7535 return pgd_leaf_size(pgd); 7536 7537 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7538 p4d = READ_ONCE(*p4dp); 7539 if (!p4d_present(p4d)) 7540 return 0; 7541 7542 if (p4d_leaf(p4d)) 7543 return p4d_leaf_size(p4d); 7544 7545 pudp = pud_offset_lockless(p4dp, p4d, addr); 7546 pud = READ_ONCE(*pudp); 7547 if (!pud_present(pud)) 7548 return 0; 7549 7550 if (pud_leaf(pud)) 7551 return pud_leaf_size(pud); 7552 7553 pmdp = pmd_offset_lockless(pudp, pud, addr); 7554 again: 7555 pmd = pmdp_get_lockless(pmdp); 7556 if (!pmd_present(pmd)) 7557 return 0; 7558 7559 if (pmd_leaf(pmd)) 7560 return pmd_leaf_size(pmd); 7561 7562 ptep = pte_offset_map(&pmd, addr); 7563 if (!ptep) 7564 goto again; 7565 7566 pte = ptep_get_lockless(ptep); 7567 if (pte_present(pte)) 7568 size = pte_leaf_size(pte); 7569 pte_unmap(ptep); 7570 #endif /* CONFIG_HAVE_FAST_GUP */ 7571 7572 return size; 7573 } 7574 7575 static u64 perf_get_page_size(unsigned long addr) 7576 { 7577 struct mm_struct *mm; 7578 unsigned long flags; 7579 u64 size; 7580 7581 if (!addr) 7582 return 0; 7583 7584 /* 7585 * Software page-table walkers must disable IRQs, 7586 * which prevents any tear down of the page tables. 7587 */ 7588 local_irq_save(flags); 7589 7590 mm = current->mm; 7591 if (!mm) { 7592 /* 7593 * For kernel threads and the like, use init_mm so that 7594 * we can find kernel memory. 7595 */ 7596 mm = &init_mm; 7597 } 7598 7599 size = perf_get_pgtable_size(mm, addr); 7600 7601 local_irq_restore(flags); 7602 7603 return size; 7604 } 7605 7606 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7607 7608 struct perf_callchain_entry * 7609 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7610 { 7611 bool kernel = !event->attr.exclude_callchain_kernel; 7612 bool user = !event->attr.exclude_callchain_user; 7613 /* Disallow cross-task user callchains. */ 7614 bool crosstask = event->ctx->task && event->ctx->task != current; 7615 const u32 max_stack = event->attr.sample_max_stack; 7616 struct perf_callchain_entry *callchain; 7617 7618 if (!kernel && !user) 7619 return &__empty_callchain; 7620 7621 callchain = get_perf_callchain(regs, 0, kernel, user, 7622 max_stack, crosstask, true); 7623 return callchain ?: &__empty_callchain; 7624 } 7625 7626 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7627 { 7628 return d * !!(flags & s); 7629 } 7630 7631 void perf_prepare_sample(struct perf_sample_data *data, 7632 struct perf_event *event, 7633 struct pt_regs *regs) 7634 { 7635 u64 sample_type = event->attr.sample_type; 7636 u64 filtered_sample_type; 7637 7638 /* 7639 * Add the sample flags that are dependent to others. And clear the 7640 * sample flags that have already been done by the PMU driver. 7641 */ 7642 filtered_sample_type = sample_type; 7643 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7644 PERF_SAMPLE_IP); 7645 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7646 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7647 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7648 PERF_SAMPLE_REGS_USER); 7649 filtered_sample_type &= ~data->sample_flags; 7650 7651 if (filtered_sample_type == 0) { 7652 /* Make sure it has the correct data->type for output */ 7653 data->type = event->attr.sample_type; 7654 return; 7655 } 7656 7657 __perf_event_header__init_id(data, event, filtered_sample_type); 7658 7659 if (filtered_sample_type & PERF_SAMPLE_IP) { 7660 data->ip = perf_instruction_pointer(regs); 7661 data->sample_flags |= PERF_SAMPLE_IP; 7662 } 7663 7664 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7665 perf_sample_save_callchain(data, event, regs); 7666 7667 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7668 data->raw = NULL; 7669 data->dyn_size += sizeof(u64); 7670 data->sample_flags |= PERF_SAMPLE_RAW; 7671 } 7672 7673 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7674 data->br_stack = NULL; 7675 data->dyn_size += sizeof(u64); 7676 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7677 } 7678 7679 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7680 perf_sample_regs_user(&data->regs_user, regs); 7681 7682 /* 7683 * It cannot use the filtered_sample_type here as REGS_USER can be set 7684 * by STACK_USER (using __cond_set() above) and we don't want to update 7685 * the dyn_size if it's not requested by users. 7686 */ 7687 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7688 /* regs dump ABI info */ 7689 int size = sizeof(u64); 7690 7691 if (data->regs_user.regs) { 7692 u64 mask = event->attr.sample_regs_user; 7693 size += hweight64(mask) * sizeof(u64); 7694 } 7695 7696 data->dyn_size += size; 7697 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7698 } 7699 7700 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7701 /* 7702 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7703 * processed as the last one or have additional check added 7704 * in case new sample type is added, because we could eat 7705 * up the rest of the sample size. 7706 */ 7707 u16 stack_size = event->attr.sample_stack_user; 7708 u16 header_size = perf_sample_data_size(data, event); 7709 u16 size = sizeof(u64); 7710 7711 stack_size = perf_sample_ustack_size(stack_size, header_size, 7712 data->regs_user.regs); 7713 7714 /* 7715 * If there is something to dump, add space for the dump 7716 * itself and for the field that tells the dynamic size, 7717 * which is how many have been actually dumped. 7718 */ 7719 if (stack_size) 7720 size += sizeof(u64) + stack_size; 7721 7722 data->stack_user_size = stack_size; 7723 data->dyn_size += size; 7724 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7725 } 7726 7727 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7728 data->weight.full = 0; 7729 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7730 } 7731 7732 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7733 data->data_src.val = PERF_MEM_NA; 7734 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7735 } 7736 7737 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7738 data->txn = 0; 7739 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7740 } 7741 7742 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7743 data->addr = 0; 7744 data->sample_flags |= PERF_SAMPLE_ADDR; 7745 } 7746 7747 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7748 /* regs dump ABI info */ 7749 int size = sizeof(u64); 7750 7751 perf_sample_regs_intr(&data->regs_intr, regs); 7752 7753 if (data->regs_intr.regs) { 7754 u64 mask = event->attr.sample_regs_intr; 7755 7756 size += hweight64(mask) * sizeof(u64); 7757 } 7758 7759 data->dyn_size += size; 7760 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7761 } 7762 7763 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7764 data->phys_addr = perf_virt_to_phys(data->addr); 7765 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7766 } 7767 7768 #ifdef CONFIG_CGROUP_PERF 7769 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7770 struct cgroup *cgrp; 7771 7772 /* protected by RCU */ 7773 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7774 data->cgroup = cgroup_id(cgrp); 7775 data->sample_flags |= PERF_SAMPLE_CGROUP; 7776 } 7777 #endif 7778 7779 /* 7780 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7781 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7782 * but the value will not dump to the userspace. 7783 */ 7784 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7785 data->data_page_size = perf_get_page_size(data->addr); 7786 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7787 } 7788 7789 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7790 data->code_page_size = perf_get_page_size(data->ip); 7791 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7792 } 7793 7794 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7795 u64 size; 7796 u16 header_size = perf_sample_data_size(data, event); 7797 7798 header_size += sizeof(u64); /* size */ 7799 7800 /* 7801 * Given the 16bit nature of header::size, an AUX sample can 7802 * easily overflow it, what with all the preceding sample bits. 7803 * Make sure this doesn't happen by using up to U16_MAX bytes 7804 * per sample in total (rounded down to 8 byte boundary). 7805 */ 7806 size = min_t(size_t, U16_MAX - header_size, 7807 event->attr.aux_sample_size); 7808 size = rounddown(size, 8); 7809 size = perf_prepare_sample_aux(event, data, size); 7810 7811 WARN_ON_ONCE(size + header_size > U16_MAX); 7812 data->dyn_size += size + sizeof(u64); /* size above */ 7813 data->sample_flags |= PERF_SAMPLE_AUX; 7814 } 7815 } 7816 7817 void perf_prepare_header(struct perf_event_header *header, 7818 struct perf_sample_data *data, 7819 struct perf_event *event, 7820 struct pt_regs *regs) 7821 { 7822 header->type = PERF_RECORD_SAMPLE; 7823 header->size = perf_sample_data_size(data, event); 7824 header->misc = perf_misc_flags(regs); 7825 7826 /* 7827 * If you're adding more sample types here, you likely need to do 7828 * something about the overflowing header::size, like repurpose the 7829 * lowest 3 bits of size, which should be always zero at the moment. 7830 * This raises a more important question, do we really need 512k sized 7831 * samples and why, so good argumentation is in order for whatever you 7832 * do here next. 7833 */ 7834 WARN_ON_ONCE(header->size & 7); 7835 } 7836 7837 static __always_inline int 7838 __perf_event_output(struct perf_event *event, 7839 struct perf_sample_data *data, 7840 struct pt_regs *regs, 7841 int (*output_begin)(struct perf_output_handle *, 7842 struct perf_sample_data *, 7843 struct perf_event *, 7844 unsigned int)) 7845 { 7846 struct perf_output_handle handle; 7847 struct perf_event_header header; 7848 int err; 7849 7850 /* protect the callchain buffers */ 7851 rcu_read_lock(); 7852 7853 perf_prepare_sample(data, event, regs); 7854 perf_prepare_header(&header, data, event, regs); 7855 7856 err = output_begin(&handle, data, event, header.size); 7857 if (err) 7858 goto exit; 7859 7860 perf_output_sample(&handle, &header, data, event); 7861 7862 perf_output_end(&handle); 7863 7864 exit: 7865 rcu_read_unlock(); 7866 return err; 7867 } 7868 7869 void 7870 perf_event_output_forward(struct perf_event *event, 7871 struct perf_sample_data *data, 7872 struct pt_regs *regs) 7873 { 7874 __perf_event_output(event, data, regs, perf_output_begin_forward); 7875 } 7876 7877 void 7878 perf_event_output_backward(struct perf_event *event, 7879 struct perf_sample_data *data, 7880 struct pt_regs *regs) 7881 { 7882 __perf_event_output(event, data, regs, perf_output_begin_backward); 7883 } 7884 7885 int 7886 perf_event_output(struct perf_event *event, 7887 struct perf_sample_data *data, 7888 struct pt_regs *regs) 7889 { 7890 return __perf_event_output(event, data, regs, perf_output_begin); 7891 } 7892 7893 /* 7894 * read event_id 7895 */ 7896 7897 struct perf_read_event { 7898 struct perf_event_header header; 7899 7900 u32 pid; 7901 u32 tid; 7902 }; 7903 7904 static void 7905 perf_event_read_event(struct perf_event *event, 7906 struct task_struct *task) 7907 { 7908 struct perf_output_handle handle; 7909 struct perf_sample_data sample; 7910 struct perf_read_event read_event = { 7911 .header = { 7912 .type = PERF_RECORD_READ, 7913 .misc = 0, 7914 .size = sizeof(read_event) + event->read_size, 7915 }, 7916 .pid = perf_event_pid(event, task), 7917 .tid = perf_event_tid(event, task), 7918 }; 7919 int ret; 7920 7921 perf_event_header__init_id(&read_event.header, &sample, event); 7922 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7923 if (ret) 7924 return; 7925 7926 perf_output_put(&handle, read_event); 7927 perf_output_read(&handle, event); 7928 perf_event__output_id_sample(event, &handle, &sample); 7929 7930 perf_output_end(&handle); 7931 } 7932 7933 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7934 7935 static void 7936 perf_iterate_ctx(struct perf_event_context *ctx, 7937 perf_iterate_f output, 7938 void *data, bool all) 7939 { 7940 struct perf_event *event; 7941 7942 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7943 if (!all) { 7944 if (event->state < PERF_EVENT_STATE_INACTIVE) 7945 continue; 7946 if (!event_filter_match(event)) 7947 continue; 7948 } 7949 7950 output(event, data); 7951 } 7952 } 7953 7954 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7955 { 7956 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7957 struct perf_event *event; 7958 7959 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7960 /* 7961 * Skip events that are not fully formed yet; ensure that 7962 * if we observe event->ctx, both event and ctx will be 7963 * complete enough. See perf_install_in_context(). 7964 */ 7965 if (!smp_load_acquire(&event->ctx)) 7966 continue; 7967 7968 if (event->state < PERF_EVENT_STATE_INACTIVE) 7969 continue; 7970 if (!event_filter_match(event)) 7971 continue; 7972 output(event, data); 7973 } 7974 } 7975 7976 /* 7977 * Iterate all events that need to receive side-band events. 7978 * 7979 * For new callers; ensure that account_pmu_sb_event() includes 7980 * your event, otherwise it might not get delivered. 7981 */ 7982 static void 7983 perf_iterate_sb(perf_iterate_f output, void *data, 7984 struct perf_event_context *task_ctx) 7985 { 7986 struct perf_event_context *ctx; 7987 7988 rcu_read_lock(); 7989 preempt_disable(); 7990 7991 /* 7992 * If we have task_ctx != NULL we only notify the task context itself. 7993 * The task_ctx is set only for EXIT events before releasing task 7994 * context. 7995 */ 7996 if (task_ctx) { 7997 perf_iterate_ctx(task_ctx, output, data, false); 7998 goto done; 7999 } 8000 8001 perf_iterate_sb_cpu(output, data); 8002 8003 ctx = rcu_dereference(current->perf_event_ctxp); 8004 if (ctx) 8005 perf_iterate_ctx(ctx, output, data, false); 8006 done: 8007 preempt_enable(); 8008 rcu_read_unlock(); 8009 } 8010 8011 /* 8012 * Clear all file-based filters at exec, they'll have to be 8013 * re-instated when/if these objects are mmapped again. 8014 */ 8015 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8016 { 8017 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8018 struct perf_addr_filter *filter; 8019 unsigned int restart = 0, count = 0; 8020 unsigned long flags; 8021 8022 if (!has_addr_filter(event)) 8023 return; 8024 8025 raw_spin_lock_irqsave(&ifh->lock, flags); 8026 list_for_each_entry(filter, &ifh->list, entry) { 8027 if (filter->path.dentry) { 8028 event->addr_filter_ranges[count].start = 0; 8029 event->addr_filter_ranges[count].size = 0; 8030 restart++; 8031 } 8032 8033 count++; 8034 } 8035 8036 if (restart) 8037 event->addr_filters_gen++; 8038 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8039 8040 if (restart) 8041 perf_event_stop(event, 1); 8042 } 8043 8044 void perf_event_exec(void) 8045 { 8046 struct perf_event_context *ctx; 8047 8048 ctx = perf_pin_task_context(current); 8049 if (!ctx) 8050 return; 8051 8052 perf_event_enable_on_exec(ctx); 8053 perf_event_remove_on_exec(ctx); 8054 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8055 8056 perf_unpin_context(ctx); 8057 put_ctx(ctx); 8058 } 8059 8060 struct remote_output { 8061 struct perf_buffer *rb; 8062 int err; 8063 }; 8064 8065 static void __perf_event_output_stop(struct perf_event *event, void *data) 8066 { 8067 struct perf_event *parent = event->parent; 8068 struct remote_output *ro = data; 8069 struct perf_buffer *rb = ro->rb; 8070 struct stop_event_data sd = { 8071 .event = event, 8072 }; 8073 8074 if (!has_aux(event)) 8075 return; 8076 8077 if (!parent) 8078 parent = event; 8079 8080 /* 8081 * In case of inheritance, it will be the parent that links to the 8082 * ring-buffer, but it will be the child that's actually using it. 8083 * 8084 * We are using event::rb to determine if the event should be stopped, 8085 * however this may race with ring_buffer_attach() (through set_output), 8086 * which will make us skip the event that actually needs to be stopped. 8087 * So ring_buffer_attach() has to stop an aux event before re-assigning 8088 * its rb pointer. 8089 */ 8090 if (rcu_dereference(parent->rb) == rb) 8091 ro->err = __perf_event_stop(&sd); 8092 } 8093 8094 static int __perf_pmu_output_stop(void *info) 8095 { 8096 struct perf_event *event = info; 8097 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8098 struct remote_output ro = { 8099 .rb = event->rb, 8100 }; 8101 8102 rcu_read_lock(); 8103 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8104 if (cpuctx->task_ctx) 8105 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8106 &ro, false); 8107 rcu_read_unlock(); 8108 8109 return ro.err; 8110 } 8111 8112 static void perf_pmu_output_stop(struct perf_event *event) 8113 { 8114 struct perf_event *iter; 8115 int err, cpu; 8116 8117 restart: 8118 rcu_read_lock(); 8119 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8120 /* 8121 * For per-CPU events, we need to make sure that neither they 8122 * nor their children are running; for cpu==-1 events it's 8123 * sufficient to stop the event itself if it's active, since 8124 * it can't have children. 8125 */ 8126 cpu = iter->cpu; 8127 if (cpu == -1) 8128 cpu = READ_ONCE(iter->oncpu); 8129 8130 if (cpu == -1) 8131 continue; 8132 8133 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8134 if (err == -EAGAIN) { 8135 rcu_read_unlock(); 8136 goto restart; 8137 } 8138 } 8139 rcu_read_unlock(); 8140 } 8141 8142 /* 8143 * task tracking -- fork/exit 8144 * 8145 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8146 */ 8147 8148 struct perf_task_event { 8149 struct task_struct *task; 8150 struct perf_event_context *task_ctx; 8151 8152 struct { 8153 struct perf_event_header header; 8154 8155 u32 pid; 8156 u32 ppid; 8157 u32 tid; 8158 u32 ptid; 8159 u64 time; 8160 } event_id; 8161 }; 8162 8163 static int perf_event_task_match(struct perf_event *event) 8164 { 8165 return event->attr.comm || event->attr.mmap || 8166 event->attr.mmap2 || event->attr.mmap_data || 8167 event->attr.task; 8168 } 8169 8170 static void perf_event_task_output(struct perf_event *event, 8171 void *data) 8172 { 8173 struct perf_task_event *task_event = data; 8174 struct perf_output_handle handle; 8175 struct perf_sample_data sample; 8176 struct task_struct *task = task_event->task; 8177 int ret, size = task_event->event_id.header.size; 8178 8179 if (!perf_event_task_match(event)) 8180 return; 8181 8182 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8183 8184 ret = perf_output_begin(&handle, &sample, event, 8185 task_event->event_id.header.size); 8186 if (ret) 8187 goto out; 8188 8189 task_event->event_id.pid = perf_event_pid(event, task); 8190 task_event->event_id.tid = perf_event_tid(event, task); 8191 8192 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8193 task_event->event_id.ppid = perf_event_pid(event, 8194 task->real_parent); 8195 task_event->event_id.ptid = perf_event_pid(event, 8196 task->real_parent); 8197 } else { /* PERF_RECORD_FORK */ 8198 task_event->event_id.ppid = perf_event_pid(event, current); 8199 task_event->event_id.ptid = perf_event_tid(event, current); 8200 } 8201 8202 task_event->event_id.time = perf_event_clock(event); 8203 8204 perf_output_put(&handle, task_event->event_id); 8205 8206 perf_event__output_id_sample(event, &handle, &sample); 8207 8208 perf_output_end(&handle); 8209 out: 8210 task_event->event_id.header.size = size; 8211 } 8212 8213 static void perf_event_task(struct task_struct *task, 8214 struct perf_event_context *task_ctx, 8215 int new) 8216 { 8217 struct perf_task_event task_event; 8218 8219 if (!atomic_read(&nr_comm_events) && 8220 !atomic_read(&nr_mmap_events) && 8221 !atomic_read(&nr_task_events)) 8222 return; 8223 8224 task_event = (struct perf_task_event){ 8225 .task = task, 8226 .task_ctx = task_ctx, 8227 .event_id = { 8228 .header = { 8229 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8230 .misc = 0, 8231 .size = sizeof(task_event.event_id), 8232 }, 8233 /* .pid */ 8234 /* .ppid */ 8235 /* .tid */ 8236 /* .ptid */ 8237 /* .time */ 8238 }, 8239 }; 8240 8241 perf_iterate_sb(perf_event_task_output, 8242 &task_event, 8243 task_ctx); 8244 } 8245 8246 void perf_event_fork(struct task_struct *task) 8247 { 8248 perf_event_task(task, NULL, 1); 8249 perf_event_namespaces(task); 8250 } 8251 8252 /* 8253 * comm tracking 8254 */ 8255 8256 struct perf_comm_event { 8257 struct task_struct *task; 8258 char *comm; 8259 int comm_size; 8260 8261 struct { 8262 struct perf_event_header header; 8263 8264 u32 pid; 8265 u32 tid; 8266 } event_id; 8267 }; 8268 8269 static int perf_event_comm_match(struct perf_event *event) 8270 { 8271 return event->attr.comm; 8272 } 8273 8274 static void perf_event_comm_output(struct perf_event *event, 8275 void *data) 8276 { 8277 struct perf_comm_event *comm_event = data; 8278 struct perf_output_handle handle; 8279 struct perf_sample_data sample; 8280 int size = comm_event->event_id.header.size; 8281 int ret; 8282 8283 if (!perf_event_comm_match(event)) 8284 return; 8285 8286 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8287 ret = perf_output_begin(&handle, &sample, event, 8288 comm_event->event_id.header.size); 8289 8290 if (ret) 8291 goto out; 8292 8293 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8294 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8295 8296 perf_output_put(&handle, comm_event->event_id); 8297 __output_copy(&handle, comm_event->comm, 8298 comm_event->comm_size); 8299 8300 perf_event__output_id_sample(event, &handle, &sample); 8301 8302 perf_output_end(&handle); 8303 out: 8304 comm_event->event_id.header.size = size; 8305 } 8306 8307 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8308 { 8309 char comm[TASK_COMM_LEN]; 8310 unsigned int size; 8311 8312 memset(comm, 0, sizeof(comm)); 8313 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8314 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8315 8316 comm_event->comm = comm; 8317 comm_event->comm_size = size; 8318 8319 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8320 8321 perf_iterate_sb(perf_event_comm_output, 8322 comm_event, 8323 NULL); 8324 } 8325 8326 void perf_event_comm(struct task_struct *task, bool exec) 8327 { 8328 struct perf_comm_event comm_event; 8329 8330 if (!atomic_read(&nr_comm_events)) 8331 return; 8332 8333 comm_event = (struct perf_comm_event){ 8334 .task = task, 8335 /* .comm */ 8336 /* .comm_size */ 8337 .event_id = { 8338 .header = { 8339 .type = PERF_RECORD_COMM, 8340 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8341 /* .size */ 8342 }, 8343 /* .pid */ 8344 /* .tid */ 8345 }, 8346 }; 8347 8348 perf_event_comm_event(&comm_event); 8349 } 8350 8351 /* 8352 * namespaces tracking 8353 */ 8354 8355 struct perf_namespaces_event { 8356 struct task_struct *task; 8357 8358 struct { 8359 struct perf_event_header header; 8360 8361 u32 pid; 8362 u32 tid; 8363 u64 nr_namespaces; 8364 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8365 } event_id; 8366 }; 8367 8368 static int perf_event_namespaces_match(struct perf_event *event) 8369 { 8370 return event->attr.namespaces; 8371 } 8372 8373 static void perf_event_namespaces_output(struct perf_event *event, 8374 void *data) 8375 { 8376 struct perf_namespaces_event *namespaces_event = data; 8377 struct perf_output_handle handle; 8378 struct perf_sample_data sample; 8379 u16 header_size = namespaces_event->event_id.header.size; 8380 int ret; 8381 8382 if (!perf_event_namespaces_match(event)) 8383 return; 8384 8385 perf_event_header__init_id(&namespaces_event->event_id.header, 8386 &sample, event); 8387 ret = perf_output_begin(&handle, &sample, event, 8388 namespaces_event->event_id.header.size); 8389 if (ret) 8390 goto out; 8391 8392 namespaces_event->event_id.pid = perf_event_pid(event, 8393 namespaces_event->task); 8394 namespaces_event->event_id.tid = perf_event_tid(event, 8395 namespaces_event->task); 8396 8397 perf_output_put(&handle, namespaces_event->event_id); 8398 8399 perf_event__output_id_sample(event, &handle, &sample); 8400 8401 perf_output_end(&handle); 8402 out: 8403 namespaces_event->event_id.header.size = header_size; 8404 } 8405 8406 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8407 struct task_struct *task, 8408 const struct proc_ns_operations *ns_ops) 8409 { 8410 struct path ns_path; 8411 struct inode *ns_inode; 8412 int error; 8413 8414 error = ns_get_path(&ns_path, task, ns_ops); 8415 if (!error) { 8416 ns_inode = ns_path.dentry->d_inode; 8417 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8418 ns_link_info->ino = ns_inode->i_ino; 8419 path_put(&ns_path); 8420 } 8421 } 8422 8423 void perf_event_namespaces(struct task_struct *task) 8424 { 8425 struct perf_namespaces_event namespaces_event; 8426 struct perf_ns_link_info *ns_link_info; 8427 8428 if (!atomic_read(&nr_namespaces_events)) 8429 return; 8430 8431 namespaces_event = (struct perf_namespaces_event){ 8432 .task = task, 8433 .event_id = { 8434 .header = { 8435 .type = PERF_RECORD_NAMESPACES, 8436 .misc = 0, 8437 .size = sizeof(namespaces_event.event_id), 8438 }, 8439 /* .pid */ 8440 /* .tid */ 8441 .nr_namespaces = NR_NAMESPACES, 8442 /* .link_info[NR_NAMESPACES] */ 8443 }, 8444 }; 8445 8446 ns_link_info = namespaces_event.event_id.link_info; 8447 8448 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8449 task, &mntns_operations); 8450 8451 #ifdef CONFIG_USER_NS 8452 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8453 task, &userns_operations); 8454 #endif 8455 #ifdef CONFIG_NET_NS 8456 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8457 task, &netns_operations); 8458 #endif 8459 #ifdef CONFIG_UTS_NS 8460 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8461 task, &utsns_operations); 8462 #endif 8463 #ifdef CONFIG_IPC_NS 8464 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8465 task, &ipcns_operations); 8466 #endif 8467 #ifdef CONFIG_PID_NS 8468 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8469 task, &pidns_operations); 8470 #endif 8471 #ifdef CONFIG_CGROUPS 8472 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8473 task, &cgroupns_operations); 8474 #endif 8475 8476 perf_iterate_sb(perf_event_namespaces_output, 8477 &namespaces_event, 8478 NULL); 8479 } 8480 8481 /* 8482 * cgroup tracking 8483 */ 8484 #ifdef CONFIG_CGROUP_PERF 8485 8486 struct perf_cgroup_event { 8487 char *path; 8488 int path_size; 8489 struct { 8490 struct perf_event_header header; 8491 u64 id; 8492 char path[]; 8493 } event_id; 8494 }; 8495 8496 static int perf_event_cgroup_match(struct perf_event *event) 8497 { 8498 return event->attr.cgroup; 8499 } 8500 8501 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8502 { 8503 struct perf_cgroup_event *cgroup_event = data; 8504 struct perf_output_handle handle; 8505 struct perf_sample_data sample; 8506 u16 header_size = cgroup_event->event_id.header.size; 8507 int ret; 8508 8509 if (!perf_event_cgroup_match(event)) 8510 return; 8511 8512 perf_event_header__init_id(&cgroup_event->event_id.header, 8513 &sample, event); 8514 ret = perf_output_begin(&handle, &sample, event, 8515 cgroup_event->event_id.header.size); 8516 if (ret) 8517 goto out; 8518 8519 perf_output_put(&handle, cgroup_event->event_id); 8520 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8521 8522 perf_event__output_id_sample(event, &handle, &sample); 8523 8524 perf_output_end(&handle); 8525 out: 8526 cgroup_event->event_id.header.size = header_size; 8527 } 8528 8529 static void perf_event_cgroup(struct cgroup *cgrp) 8530 { 8531 struct perf_cgroup_event cgroup_event; 8532 char path_enomem[16] = "//enomem"; 8533 char *pathname; 8534 size_t size; 8535 8536 if (!atomic_read(&nr_cgroup_events)) 8537 return; 8538 8539 cgroup_event = (struct perf_cgroup_event){ 8540 .event_id = { 8541 .header = { 8542 .type = PERF_RECORD_CGROUP, 8543 .misc = 0, 8544 .size = sizeof(cgroup_event.event_id), 8545 }, 8546 .id = cgroup_id(cgrp), 8547 }, 8548 }; 8549 8550 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8551 if (pathname == NULL) { 8552 cgroup_event.path = path_enomem; 8553 } else { 8554 /* just to be sure to have enough space for alignment */ 8555 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8556 cgroup_event.path = pathname; 8557 } 8558 8559 /* 8560 * Since our buffer works in 8 byte units we need to align our string 8561 * size to a multiple of 8. However, we must guarantee the tail end is 8562 * zero'd out to avoid leaking random bits to userspace. 8563 */ 8564 size = strlen(cgroup_event.path) + 1; 8565 while (!IS_ALIGNED(size, sizeof(u64))) 8566 cgroup_event.path[size++] = '\0'; 8567 8568 cgroup_event.event_id.header.size += size; 8569 cgroup_event.path_size = size; 8570 8571 perf_iterate_sb(perf_event_cgroup_output, 8572 &cgroup_event, 8573 NULL); 8574 8575 kfree(pathname); 8576 } 8577 8578 #endif 8579 8580 /* 8581 * mmap tracking 8582 */ 8583 8584 struct perf_mmap_event { 8585 struct vm_area_struct *vma; 8586 8587 const char *file_name; 8588 int file_size; 8589 int maj, min; 8590 u64 ino; 8591 u64 ino_generation; 8592 u32 prot, flags; 8593 u8 build_id[BUILD_ID_SIZE_MAX]; 8594 u32 build_id_size; 8595 8596 struct { 8597 struct perf_event_header header; 8598 8599 u32 pid; 8600 u32 tid; 8601 u64 start; 8602 u64 len; 8603 u64 pgoff; 8604 } event_id; 8605 }; 8606 8607 static int perf_event_mmap_match(struct perf_event *event, 8608 void *data) 8609 { 8610 struct perf_mmap_event *mmap_event = data; 8611 struct vm_area_struct *vma = mmap_event->vma; 8612 int executable = vma->vm_flags & VM_EXEC; 8613 8614 return (!executable && event->attr.mmap_data) || 8615 (executable && (event->attr.mmap || event->attr.mmap2)); 8616 } 8617 8618 static void perf_event_mmap_output(struct perf_event *event, 8619 void *data) 8620 { 8621 struct perf_mmap_event *mmap_event = data; 8622 struct perf_output_handle handle; 8623 struct perf_sample_data sample; 8624 int size = mmap_event->event_id.header.size; 8625 u32 type = mmap_event->event_id.header.type; 8626 bool use_build_id; 8627 int ret; 8628 8629 if (!perf_event_mmap_match(event, data)) 8630 return; 8631 8632 if (event->attr.mmap2) { 8633 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8634 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8635 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8636 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8637 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8638 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8639 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8640 } 8641 8642 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8643 ret = perf_output_begin(&handle, &sample, event, 8644 mmap_event->event_id.header.size); 8645 if (ret) 8646 goto out; 8647 8648 mmap_event->event_id.pid = perf_event_pid(event, current); 8649 mmap_event->event_id.tid = perf_event_tid(event, current); 8650 8651 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8652 8653 if (event->attr.mmap2 && use_build_id) 8654 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8655 8656 perf_output_put(&handle, mmap_event->event_id); 8657 8658 if (event->attr.mmap2) { 8659 if (use_build_id) { 8660 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8661 8662 __output_copy(&handle, size, 4); 8663 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8664 } else { 8665 perf_output_put(&handle, mmap_event->maj); 8666 perf_output_put(&handle, mmap_event->min); 8667 perf_output_put(&handle, mmap_event->ino); 8668 perf_output_put(&handle, mmap_event->ino_generation); 8669 } 8670 perf_output_put(&handle, mmap_event->prot); 8671 perf_output_put(&handle, mmap_event->flags); 8672 } 8673 8674 __output_copy(&handle, mmap_event->file_name, 8675 mmap_event->file_size); 8676 8677 perf_event__output_id_sample(event, &handle, &sample); 8678 8679 perf_output_end(&handle); 8680 out: 8681 mmap_event->event_id.header.size = size; 8682 mmap_event->event_id.header.type = type; 8683 } 8684 8685 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8686 { 8687 struct vm_area_struct *vma = mmap_event->vma; 8688 struct file *file = vma->vm_file; 8689 int maj = 0, min = 0; 8690 u64 ino = 0, gen = 0; 8691 u32 prot = 0, flags = 0; 8692 unsigned int size; 8693 char tmp[16]; 8694 char *buf = NULL; 8695 char *name = NULL; 8696 8697 if (vma->vm_flags & VM_READ) 8698 prot |= PROT_READ; 8699 if (vma->vm_flags & VM_WRITE) 8700 prot |= PROT_WRITE; 8701 if (vma->vm_flags & VM_EXEC) 8702 prot |= PROT_EXEC; 8703 8704 if (vma->vm_flags & VM_MAYSHARE) 8705 flags = MAP_SHARED; 8706 else 8707 flags = MAP_PRIVATE; 8708 8709 if (vma->vm_flags & VM_LOCKED) 8710 flags |= MAP_LOCKED; 8711 if (is_vm_hugetlb_page(vma)) 8712 flags |= MAP_HUGETLB; 8713 8714 if (file) { 8715 struct inode *inode; 8716 dev_t dev; 8717 8718 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8719 if (!buf) { 8720 name = "//enomem"; 8721 goto cpy_name; 8722 } 8723 /* 8724 * d_path() works from the end of the rb backwards, so we 8725 * need to add enough zero bytes after the string to handle 8726 * the 64bit alignment we do later. 8727 */ 8728 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8729 if (IS_ERR(name)) { 8730 name = "//toolong"; 8731 goto cpy_name; 8732 } 8733 inode = file_inode(vma->vm_file); 8734 dev = inode->i_sb->s_dev; 8735 ino = inode->i_ino; 8736 gen = inode->i_generation; 8737 maj = MAJOR(dev); 8738 min = MINOR(dev); 8739 8740 goto got_name; 8741 } else { 8742 if (vma->vm_ops && vma->vm_ops->name) 8743 name = (char *) vma->vm_ops->name(vma); 8744 if (!name) 8745 name = (char *)arch_vma_name(vma); 8746 if (!name) { 8747 if (vma_is_initial_heap(vma)) 8748 name = "[heap]"; 8749 else if (vma_is_initial_stack(vma)) 8750 name = "[stack]"; 8751 else 8752 name = "//anon"; 8753 } 8754 } 8755 8756 cpy_name: 8757 strscpy(tmp, name, sizeof(tmp)); 8758 name = tmp; 8759 got_name: 8760 /* 8761 * Since our buffer works in 8 byte units we need to align our string 8762 * size to a multiple of 8. However, we must guarantee the tail end is 8763 * zero'd out to avoid leaking random bits to userspace. 8764 */ 8765 size = strlen(name)+1; 8766 while (!IS_ALIGNED(size, sizeof(u64))) 8767 name[size++] = '\0'; 8768 8769 mmap_event->file_name = name; 8770 mmap_event->file_size = size; 8771 mmap_event->maj = maj; 8772 mmap_event->min = min; 8773 mmap_event->ino = ino; 8774 mmap_event->ino_generation = gen; 8775 mmap_event->prot = prot; 8776 mmap_event->flags = flags; 8777 8778 if (!(vma->vm_flags & VM_EXEC)) 8779 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8780 8781 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8782 8783 if (atomic_read(&nr_build_id_events)) 8784 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8785 8786 perf_iterate_sb(perf_event_mmap_output, 8787 mmap_event, 8788 NULL); 8789 8790 kfree(buf); 8791 } 8792 8793 /* 8794 * Check whether inode and address range match filter criteria. 8795 */ 8796 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8797 struct file *file, unsigned long offset, 8798 unsigned long size) 8799 { 8800 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8801 if (!filter->path.dentry) 8802 return false; 8803 8804 if (d_inode(filter->path.dentry) != file_inode(file)) 8805 return false; 8806 8807 if (filter->offset > offset + size) 8808 return false; 8809 8810 if (filter->offset + filter->size < offset) 8811 return false; 8812 8813 return true; 8814 } 8815 8816 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8817 struct vm_area_struct *vma, 8818 struct perf_addr_filter_range *fr) 8819 { 8820 unsigned long vma_size = vma->vm_end - vma->vm_start; 8821 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8822 struct file *file = vma->vm_file; 8823 8824 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8825 return false; 8826 8827 if (filter->offset < off) { 8828 fr->start = vma->vm_start; 8829 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8830 } else { 8831 fr->start = vma->vm_start + filter->offset - off; 8832 fr->size = min(vma->vm_end - fr->start, filter->size); 8833 } 8834 8835 return true; 8836 } 8837 8838 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8839 { 8840 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8841 struct vm_area_struct *vma = data; 8842 struct perf_addr_filter *filter; 8843 unsigned int restart = 0, count = 0; 8844 unsigned long flags; 8845 8846 if (!has_addr_filter(event)) 8847 return; 8848 8849 if (!vma->vm_file) 8850 return; 8851 8852 raw_spin_lock_irqsave(&ifh->lock, flags); 8853 list_for_each_entry(filter, &ifh->list, entry) { 8854 if (perf_addr_filter_vma_adjust(filter, vma, 8855 &event->addr_filter_ranges[count])) 8856 restart++; 8857 8858 count++; 8859 } 8860 8861 if (restart) 8862 event->addr_filters_gen++; 8863 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8864 8865 if (restart) 8866 perf_event_stop(event, 1); 8867 } 8868 8869 /* 8870 * Adjust all task's events' filters to the new vma 8871 */ 8872 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8873 { 8874 struct perf_event_context *ctx; 8875 8876 /* 8877 * Data tracing isn't supported yet and as such there is no need 8878 * to keep track of anything that isn't related to executable code: 8879 */ 8880 if (!(vma->vm_flags & VM_EXEC)) 8881 return; 8882 8883 rcu_read_lock(); 8884 ctx = rcu_dereference(current->perf_event_ctxp); 8885 if (ctx) 8886 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8887 rcu_read_unlock(); 8888 } 8889 8890 void perf_event_mmap(struct vm_area_struct *vma) 8891 { 8892 struct perf_mmap_event mmap_event; 8893 8894 if (!atomic_read(&nr_mmap_events)) 8895 return; 8896 8897 mmap_event = (struct perf_mmap_event){ 8898 .vma = vma, 8899 /* .file_name */ 8900 /* .file_size */ 8901 .event_id = { 8902 .header = { 8903 .type = PERF_RECORD_MMAP, 8904 .misc = PERF_RECORD_MISC_USER, 8905 /* .size */ 8906 }, 8907 /* .pid */ 8908 /* .tid */ 8909 .start = vma->vm_start, 8910 .len = vma->vm_end - vma->vm_start, 8911 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8912 }, 8913 /* .maj (attr_mmap2 only) */ 8914 /* .min (attr_mmap2 only) */ 8915 /* .ino (attr_mmap2 only) */ 8916 /* .ino_generation (attr_mmap2 only) */ 8917 /* .prot (attr_mmap2 only) */ 8918 /* .flags (attr_mmap2 only) */ 8919 }; 8920 8921 perf_addr_filters_adjust(vma); 8922 perf_event_mmap_event(&mmap_event); 8923 } 8924 8925 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8926 unsigned long size, u64 flags) 8927 { 8928 struct perf_output_handle handle; 8929 struct perf_sample_data sample; 8930 struct perf_aux_event { 8931 struct perf_event_header header; 8932 u64 offset; 8933 u64 size; 8934 u64 flags; 8935 } rec = { 8936 .header = { 8937 .type = PERF_RECORD_AUX, 8938 .misc = 0, 8939 .size = sizeof(rec), 8940 }, 8941 .offset = head, 8942 .size = size, 8943 .flags = flags, 8944 }; 8945 int ret; 8946 8947 perf_event_header__init_id(&rec.header, &sample, event); 8948 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8949 8950 if (ret) 8951 return; 8952 8953 perf_output_put(&handle, rec); 8954 perf_event__output_id_sample(event, &handle, &sample); 8955 8956 perf_output_end(&handle); 8957 } 8958 8959 /* 8960 * Lost/dropped samples logging 8961 */ 8962 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8963 { 8964 struct perf_output_handle handle; 8965 struct perf_sample_data sample; 8966 int ret; 8967 8968 struct { 8969 struct perf_event_header header; 8970 u64 lost; 8971 } lost_samples_event = { 8972 .header = { 8973 .type = PERF_RECORD_LOST_SAMPLES, 8974 .misc = 0, 8975 .size = sizeof(lost_samples_event), 8976 }, 8977 .lost = lost, 8978 }; 8979 8980 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8981 8982 ret = perf_output_begin(&handle, &sample, event, 8983 lost_samples_event.header.size); 8984 if (ret) 8985 return; 8986 8987 perf_output_put(&handle, lost_samples_event); 8988 perf_event__output_id_sample(event, &handle, &sample); 8989 perf_output_end(&handle); 8990 } 8991 8992 /* 8993 * context_switch tracking 8994 */ 8995 8996 struct perf_switch_event { 8997 struct task_struct *task; 8998 struct task_struct *next_prev; 8999 9000 struct { 9001 struct perf_event_header header; 9002 u32 next_prev_pid; 9003 u32 next_prev_tid; 9004 } event_id; 9005 }; 9006 9007 static int perf_event_switch_match(struct perf_event *event) 9008 { 9009 return event->attr.context_switch; 9010 } 9011 9012 static void perf_event_switch_output(struct perf_event *event, void *data) 9013 { 9014 struct perf_switch_event *se = data; 9015 struct perf_output_handle handle; 9016 struct perf_sample_data sample; 9017 int ret; 9018 9019 if (!perf_event_switch_match(event)) 9020 return; 9021 9022 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9023 if (event->ctx->task) { 9024 se->event_id.header.type = PERF_RECORD_SWITCH; 9025 se->event_id.header.size = sizeof(se->event_id.header); 9026 } else { 9027 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9028 se->event_id.header.size = sizeof(se->event_id); 9029 se->event_id.next_prev_pid = 9030 perf_event_pid(event, se->next_prev); 9031 se->event_id.next_prev_tid = 9032 perf_event_tid(event, se->next_prev); 9033 } 9034 9035 perf_event_header__init_id(&se->event_id.header, &sample, event); 9036 9037 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9038 if (ret) 9039 return; 9040 9041 if (event->ctx->task) 9042 perf_output_put(&handle, se->event_id.header); 9043 else 9044 perf_output_put(&handle, se->event_id); 9045 9046 perf_event__output_id_sample(event, &handle, &sample); 9047 9048 perf_output_end(&handle); 9049 } 9050 9051 static void perf_event_switch(struct task_struct *task, 9052 struct task_struct *next_prev, bool sched_in) 9053 { 9054 struct perf_switch_event switch_event; 9055 9056 /* N.B. caller checks nr_switch_events != 0 */ 9057 9058 switch_event = (struct perf_switch_event){ 9059 .task = task, 9060 .next_prev = next_prev, 9061 .event_id = { 9062 .header = { 9063 /* .type */ 9064 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9065 /* .size */ 9066 }, 9067 /* .next_prev_pid */ 9068 /* .next_prev_tid */ 9069 }, 9070 }; 9071 9072 if (!sched_in && task->on_rq) { 9073 switch_event.event_id.header.misc |= 9074 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9075 } 9076 9077 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9078 } 9079 9080 /* 9081 * IRQ throttle logging 9082 */ 9083 9084 static void perf_log_throttle(struct perf_event *event, int enable) 9085 { 9086 struct perf_output_handle handle; 9087 struct perf_sample_data sample; 9088 int ret; 9089 9090 struct { 9091 struct perf_event_header header; 9092 u64 time; 9093 u64 id; 9094 u64 stream_id; 9095 } throttle_event = { 9096 .header = { 9097 .type = PERF_RECORD_THROTTLE, 9098 .misc = 0, 9099 .size = sizeof(throttle_event), 9100 }, 9101 .time = perf_event_clock(event), 9102 .id = primary_event_id(event), 9103 .stream_id = event->id, 9104 }; 9105 9106 if (enable) 9107 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9108 9109 perf_event_header__init_id(&throttle_event.header, &sample, event); 9110 9111 ret = perf_output_begin(&handle, &sample, event, 9112 throttle_event.header.size); 9113 if (ret) 9114 return; 9115 9116 perf_output_put(&handle, throttle_event); 9117 perf_event__output_id_sample(event, &handle, &sample); 9118 perf_output_end(&handle); 9119 } 9120 9121 /* 9122 * ksymbol register/unregister tracking 9123 */ 9124 9125 struct perf_ksymbol_event { 9126 const char *name; 9127 int name_len; 9128 struct { 9129 struct perf_event_header header; 9130 u64 addr; 9131 u32 len; 9132 u16 ksym_type; 9133 u16 flags; 9134 } event_id; 9135 }; 9136 9137 static int perf_event_ksymbol_match(struct perf_event *event) 9138 { 9139 return event->attr.ksymbol; 9140 } 9141 9142 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9143 { 9144 struct perf_ksymbol_event *ksymbol_event = data; 9145 struct perf_output_handle handle; 9146 struct perf_sample_data sample; 9147 int ret; 9148 9149 if (!perf_event_ksymbol_match(event)) 9150 return; 9151 9152 perf_event_header__init_id(&ksymbol_event->event_id.header, 9153 &sample, event); 9154 ret = perf_output_begin(&handle, &sample, event, 9155 ksymbol_event->event_id.header.size); 9156 if (ret) 9157 return; 9158 9159 perf_output_put(&handle, ksymbol_event->event_id); 9160 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9161 perf_event__output_id_sample(event, &handle, &sample); 9162 9163 perf_output_end(&handle); 9164 } 9165 9166 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9167 const char *sym) 9168 { 9169 struct perf_ksymbol_event ksymbol_event; 9170 char name[KSYM_NAME_LEN]; 9171 u16 flags = 0; 9172 int name_len; 9173 9174 if (!atomic_read(&nr_ksymbol_events)) 9175 return; 9176 9177 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9178 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9179 goto err; 9180 9181 strscpy(name, sym, KSYM_NAME_LEN); 9182 name_len = strlen(name) + 1; 9183 while (!IS_ALIGNED(name_len, sizeof(u64))) 9184 name[name_len++] = '\0'; 9185 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9186 9187 if (unregister) 9188 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9189 9190 ksymbol_event = (struct perf_ksymbol_event){ 9191 .name = name, 9192 .name_len = name_len, 9193 .event_id = { 9194 .header = { 9195 .type = PERF_RECORD_KSYMBOL, 9196 .size = sizeof(ksymbol_event.event_id) + 9197 name_len, 9198 }, 9199 .addr = addr, 9200 .len = len, 9201 .ksym_type = ksym_type, 9202 .flags = flags, 9203 }, 9204 }; 9205 9206 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9207 return; 9208 err: 9209 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9210 } 9211 9212 /* 9213 * bpf program load/unload tracking 9214 */ 9215 9216 struct perf_bpf_event { 9217 struct bpf_prog *prog; 9218 struct { 9219 struct perf_event_header header; 9220 u16 type; 9221 u16 flags; 9222 u32 id; 9223 u8 tag[BPF_TAG_SIZE]; 9224 } event_id; 9225 }; 9226 9227 static int perf_event_bpf_match(struct perf_event *event) 9228 { 9229 return event->attr.bpf_event; 9230 } 9231 9232 static void perf_event_bpf_output(struct perf_event *event, void *data) 9233 { 9234 struct perf_bpf_event *bpf_event = data; 9235 struct perf_output_handle handle; 9236 struct perf_sample_data sample; 9237 int ret; 9238 9239 if (!perf_event_bpf_match(event)) 9240 return; 9241 9242 perf_event_header__init_id(&bpf_event->event_id.header, 9243 &sample, event); 9244 ret = perf_output_begin(&handle, &sample, event, 9245 bpf_event->event_id.header.size); 9246 if (ret) 9247 return; 9248 9249 perf_output_put(&handle, bpf_event->event_id); 9250 perf_event__output_id_sample(event, &handle, &sample); 9251 9252 perf_output_end(&handle); 9253 } 9254 9255 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9256 enum perf_bpf_event_type type) 9257 { 9258 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9259 int i; 9260 9261 if (prog->aux->func_cnt == 0) { 9262 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9263 (u64)(unsigned long)prog->bpf_func, 9264 prog->jited_len, unregister, 9265 prog->aux->ksym.name); 9266 } else { 9267 for (i = 0; i < prog->aux->func_cnt; i++) { 9268 struct bpf_prog *subprog = prog->aux->func[i]; 9269 9270 perf_event_ksymbol( 9271 PERF_RECORD_KSYMBOL_TYPE_BPF, 9272 (u64)(unsigned long)subprog->bpf_func, 9273 subprog->jited_len, unregister, 9274 subprog->aux->ksym.name); 9275 } 9276 } 9277 } 9278 9279 void perf_event_bpf_event(struct bpf_prog *prog, 9280 enum perf_bpf_event_type type, 9281 u16 flags) 9282 { 9283 struct perf_bpf_event bpf_event; 9284 9285 if (type <= PERF_BPF_EVENT_UNKNOWN || 9286 type >= PERF_BPF_EVENT_MAX) 9287 return; 9288 9289 switch (type) { 9290 case PERF_BPF_EVENT_PROG_LOAD: 9291 case PERF_BPF_EVENT_PROG_UNLOAD: 9292 if (atomic_read(&nr_ksymbol_events)) 9293 perf_event_bpf_emit_ksymbols(prog, type); 9294 break; 9295 default: 9296 break; 9297 } 9298 9299 if (!atomic_read(&nr_bpf_events)) 9300 return; 9301 9302 bpf_event = (struct perf_bpf_event){ 9303 .prog = prog, 9304 .event_id = { 9305 .header = { 9306 .type = PERF_RECORD_BPF_EVENT, 9307 .size = sizeof(bpf_event.event_id), 9308 }, 9309 .type = type, 9310 .flags = flags, 9311 .id = prog->aux->id, 9312 }, 9313 }; 9314 9315 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9316 9317 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9318 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9319 } 9320 9321 struct perf_text_poke_event { 9322 const void *old_bytes; 9323 const void *new_bytes; 9324 size_t pad; 9325 u16 old_len; 9326 u16 new_len; 9327 9328 struct { 9329 struct perf_event_header header; 9330 9331 u64 addr; 9332 } event_id; 9333 }; 9334 9335 static int perf_event_text_poke_match(struct perf_event *event) 9336 { 9337 return event->attr.text_poke; 9338 } 9339 9340 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9341 { 9342 struct perf_text_poke_event *text_poke_event = data; 9343 struct perf_output_handle handle; 9344 struct perf_sample_data sample; 9345 u64 padding = 0; 9346 int ret; 9347 9348 if (!perf_event_text_poke_match(event)) 9349 return; 9350 9351 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9352 9353 ret = perf_output_begin(&handle, &sample, event, 9354 text_poke_event->event_id.header.size); 9355 if (ret) 9356 return; 9357 9358 perf_output_put(&handle, text_poke_event->event_id); 9359 perf_output_put(&handle, text_poke_event->old_len); 9360 perf_output_put(&handle, text_poke_event->new_len); 9361 9362 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9363 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9364 9365 if (text_poke_event->pad) 9366 __output_copy(&handle, &padding, text_poke_event->pad); 9367 9368 perf_event__output_id_sample(event, &handle, &sample); 9369 9370 perf_output_end(&handle); 9371 } 9372 9373 void perf_event_text_poke(const void *addr, const void *old_bytes, 9374 size_t old_len, const void *new_bytes, size_t new_len) 9375 { 9376 struct perf_text_poke_event text_poke_event; 9377 size_t tot, pad; 9378 9379 if (!atomic_read(&nr_text_poke_events)) 9380 return; 9381 9382 tot = sizeof(text_poke_event.old_len) + old_len; 9383 tot += sizeof(text_poke_event.new_len) + new_len; 9384 pad = ALIGN(tot, sizeof(u64)) - tot; 9385 9386 text_poke_event = (struct perf_text_poke_event){ 9387 .old_bytes = old_bytes, 9388 .new_bytes = new_bytes, 9389 .pad = pad, 9390 .old_len = old_len, 9391 .new_len = new_len, 9392 .event_id = { 9393 .header = { 9394 .type = PERF_RECORD_TEXT_POKE, 9395 .misc = PERF_RECORD_MISC_KERNEL, 9396 .size = sizeof(text_poke_event.event_id) + tot + pad, 9397 }, 9398 .addr = (unsigned long)addr, 9399 }, 9400 }; 9401 9402 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9403 } 9404 9405 void perf_event_itrace_started(struct perf_event *event) 9406 { 9407 event->attach_state |= PERF_ATTACH_ITRACE; 9408 } 9409 9410 static void perf_log_itrace_start(struct perf_event *event) 9411 { 9412 struct perf_output_handle handle; 9413 struct perf_sample_data sample; 9414 struct perf_aux_event { 9415 struct perf_event_header header; 9416 u32 pid; 9417 u32 tid; 9418 } rec; 9419 int ret; 9420 9421 if (event->parent) 9422 event = event->parent; 9423 9424 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9425 event->attach_state & PERF_ATTACH_ITRACE) 9426 return; 9427 9428 rec.header.type = PERF_RECORD_ITRACE_START; 9429 rec.header.misc = 0; 9430 rec.header.size = sizeof(rec); 9431 rec.pid = perf_event_pid(event, current); 9432 rec.tid = perf_event_tid(event, current); 9433 9434 perf_event_header__init_id(&rec.header, &sample, event); 9435 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9436 9437 if (ret) 9438 return; 9439 9440 perf_output_put(&handle, rec); 9441 perf_event__output_id_sample(event, &handle, &sample); 9442 9443 perf_output_end(&handle); 9444 } 9445 9446 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9447 { 9448 struct perf_output_handle handle; 9449 struct perf_sample_data sample; 9450 struct perf_aux_event { 9451 struct perf_event_header header; 9452 u64 hw_id; 9453 } rec; 9454 int ret; 9455 9456 if (event->parent) 9457 event = event->parent; 9458 9459 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9460 rec.header.misc = 0; 9461 rec.header.size = sizeof(rec); 9462 rec.hw_id = hw_id; 9463 9464 perf_event_header__init_id(&rec.header, &sample, event); 9465 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9466 9467 if (ret) 9468 return; 9469 9470 perf_output_put(&handle, rec); 9471 perf_event__output_id_sample(event, &handle, &sample); 9472 9473 perf_output_end(&handle); 9474 } 9475 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9476 9477 static int 9478 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9479 { 9480 struct hw_perf_event *hwc = &event->hw; 9481 int ret = 0; 9482 u64 seq; 9483 9484 seq = __this_cpu_read(perf_throttled_seq); 9485 if (seq != hwc->interrupts_seq) { 9486 hwc->interrupts_seq = seq; 9487 hwc->interrupts = 1; 9488 } else { 9489 hwc->interrupts++; 9490 if (unlikely(throttle && 9491 hwc->interrupts > max_samples_per_tick)) { 9492 __this_cpu_inc(perf_throttled_count); 9493 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9494 hwc->interrupts = MAX_INTERRUPTS; 9495 perf_log_throttle(event, 0); 9496 ret = 1; 9497 } 9498 } 9499 9500 if (event->attr.freq) { 9501 u64 now = perf_clock(); 9502 s64 delta = now - hwc->freq_time_stamp; 9503 9504 hwc->freq_time_stamp = now; 9505 9506 if (delta > 0 && delta < 2*TICK_NSEC) 9507 perf_adjust_period(event, delta, hwc->last_period, true); 9508 } 9509 9510 return ret; 9511 } 9512 9513 int perf_event_account_interrupt(struct perf_event *event) 9514 { 9515 return __perf_event_account_interrupt(event, 1); 9516 } 9517 9518 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9519 { 9520 /* 9521 * Due to interrupt latency (AKA "skid"), we may enter the 9522 * kernel before taking an overflow, even if the PMU is only 9523 * counting user events. 9524 */ 9525 if (event->attr.exclude_kernel && !user_mode(regs)) 9526 return false; 9527 9528 return true; 9529 } 9530 9531 /* 9532 * Generic event overflow handling, sampling. 9533 */ 9534 9535 static int __perf_event_overflow(struct perf_event *event, 9536 int throttle, struct perf_sample_data *data, 9537 struct pt_regs *regs) 9538 { 9539 int events = atomic_read(&event->event_limit); 9540 int ret = 0; 9541 9542 /* 9543 * Non-sampling counters might still use the PMI to fold short 9544 * hardware counters, ignore those. 9545 */ 9546 if (unlikely(!is_sampling_event(event))) 9547 return 0; 9548 9549 ret = __perf_event_account_interrupt(event, throttle); 9550 9551 /* 9552 * XXX event_limit might not quite work as expected on inherited 9553 * events 9554 */ 9555 9556 event->pending_kill = POLL_IN; 9557 if (events && atomic_dec_and_test(&event->event_limit)) { 9558 ret = 1; 9559 event->pending_kill = POLL_HUP; 9560 perf_event_disable_inatomic(event); 9561 } 9562 9563 if (event->attr.sigtrap) { 9564 /* 9565 * The desired behaviour of sigtrap vs invalid samples is a bit 9566 * tricky; on the one hand, one should not loose the SIGTRAP if 9567 * it is the first event, on the other hand, we should also not 9568 * trigger the WARN or override the data address. 9569 */ 9570 bool valid_sample = sample_is_allowed(event, regs); 9571 unsigned int pending_id = 1; 9572 9573 if (regs) 9574 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9575 if (!event->pending_sigtrap) { 9576 event->pending_sigtrap = pending_id; 9577 local_inc(&event->ctx->nr_pending); 9578 } else if (event->attr.exclude_kernel && valid_sample) { 9579 /* 9580 * Should not be able to return to user space without 9581 * consuming pending_sigtrap; with exceptions: 9582 * 9583 * 1. Where !exclude_kernel, events can overflow again 9584 * in the kernel without returning to user space. 9585 * 9586 * 2. Events that can overflow again before the IRQ- 9587 * work without user space progress (e.g. hrtimer). 9588 * To approximate progress (with false negatives), 9589 * check 32-bit hash of the current IP. 9590 */ 9591 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9592 } 9593 9594 event->pending_addr = 0; 9595 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9596 event->pending_addr = data->addr; 9597 irq_work_queue(&event->pending_irq); 9598 } 9599 9600 READ_ONCE(event->overflow_handler)(event, data, regs); 9601 9602 if (*perf_event_fasync(event) && event->pending_kill) { 9603 event->pending_wakeup = 1; 9604 irq_work_queue(&event->pending_irq); 9605 } 9606 9607 return ret; 9608 } 9609 9610 int perf_event_overflow(struct perf_event *event, 9611 struct perf_sample_data *data, 9612 struct pt_regs *regs) 9613 { 9614 return __perf_event_overflow(event, 1, data, regs); 9615 } 9616 9617 /* 9618 * Generic software event infrastructure 9619 */ 9620 9621 struct swevent_htable { 9622 struct swevent_hlist *swevent_hlist; 9623 struct mutex hlist_mutex; 9624 int hlist_refcount; 9625 9626 /* Recursion avoidance in each contexts */ 9627 int recursion[PERF_NR_CONTEXTS]; 9628 }; 9629 9630 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9631 9632 /* 9633 * We directly increment event->count and keep a second value in 9634 * event->hw.period_left to count intervals. This period event 9635 * is kept in the range [-sample_period, 0] so that we can use the 9636 * sign as trigger. 9637 */ 9638 9639 u64 perf_swevent_set_period(struct perf_event *event) 9640 { 9641 struct hw_perf_event *hwc = &event->hw; 9642 u64 period = hwc->last_period; 9643 u64 nr, offset; 9644 s64 old, val; 9645 9646 hwc->last_period = hwc->sample_period; 9647 9648 old = local64_read(&hwc->period_left); 9649 do { 9650 val = old; 9651 if (val < 0) 9652 return 0; 9653 9654 nr = div64_u64(period + val, period); 9655 offset = nr * period; 9656 val -= offset; 9657 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9658 9659 return nr; 9660 } 9661 9662 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9663 struct perf_sample_data *data, 9664 struct pt_regs *regs) 9665 { 9666 struct hw_perf_event *hwc = &event->hw; 9667 int throttle = 0; 9668 9669 if (!overflow) 9670 overflow = perf_swevent_set_period(event); 9671 9672 if (hwc->interrupts == MAX_INTERRUPTS) 9673 return; 9674 9675 for (; overflow; overflow--) { 9676 if (__perf_event_overflow(event, throttle, 9677 data, regs)) { 9678 /* 9679 * We inhibit the overflow from happening when 9680 * hwc->interrupts == MAX_INTERRUPTS. 9681 */ 9682 break; 9683 } 9684 throttle = 1; 9685 } 9686 } 9687 9688 static void perf_swevent_event(struct perf_event *event, u64 nr, 9689 struct perf_sample_data *data, 9690 struct pt_regs *regs) 9691 { 9692 struct hw_perf_event *hwc = &event->hw; 9693 9694 local64_add(nr, &event->count); 9695 9696 if (!regs) 9697 return; 9698 9699 if (!is_sampling_event(event)) 9700 return; 9701 9702 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9703 data->period = nr; 9704 return perf_swevent_overflow(event, 1, data, regs); 9705 } else 9706 data->period = event->hw.last_period; 9707 9708 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9709 return perf_swevent_overflow(event, 1, data, regs); 9710 9711 if (local64_add_negative(nr, &hwc->period_left)) 9712 return; 9713 9714 perf_swevent_overflow(event, 0, data, regs); 9715 } 9716 9717 static int perf_exclude_event(struct perf_event *event, 9718 struct pt_regs *regs) 9719 { 9720 if (event->hw.state & PERF_HES_STOPPED) 9721 return 1; 9722 9723 if (regs) { 9724 if (event->attr.exclude_user && user_mode(regs)) 9725 return 1; 9726 9727 if (event->attr.exclude_kernel && !user_mode(regs)) 9728 return 1; 9729 } 9730 9731 return 0; 9732 } 9733 9734 static int perf_swevent_match(struct perf_event *event, 9735 enum perf_type_id type, 9736 u32 event_id, 9737 struct perf_sample_data *data, 9738 struct pt_regs *regs) 9739 { 9740 if (event->attr.type != type) 9741 return 0; 9742 9743 if (event->attr.config != event_id) 9744 return 0; 9745 9746 if (perf_exclude_event(event, regs)) 9747 return 0; 9748 9749 return 1; 9750 } 9751 9752 static inline u64 swevent_hash(u64 type, u32 event_id) 9753 { 9754 u64 val = event_id | (type << 32); 9755 9756 return hash_64(val, SWEVENT_HLIST_BITS); 9757 } 9758 9759 static inline struct hlist_head * 9760 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9761 { 9762 u64 hash = swevent_hash(type, event_id); 9763 9764 return &hlist->heads[hash]; 9765 } 9766 9767 /* For the read side: events when they trigger */ 9768 static inline struct hlist_head * 9769 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9770 { 9771 struct swevent_hlist *hlist; 9772 9773 hlist = rcu_dereference(swhash->swevent_hlist); 9774 if (!hlist) 9775 return NULL; 9776 9777 return __find_swevent_head(hlist, type, event_id); 9778 } 9779 9780 /* For the event head insertion and removal in the hlist */ 9781 static inline struct hlist_head * 9782 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9783 { 9784 struct swevent_hlist *hlist; 9785 u32 event_id = event->attr.config; 9786 u64 type = event->attr.type; 9787 9788 /* 9789 * Event scheduling is always serialized against hlist allocation 9790 * and release. Which makes the protected version suitable here. 9791 * The context lock guarantees that. 9792 */ 9793 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9794 lockdep_is_held(&event->ctx->lock)); 9795 if (!hlist) 9796 return NULL; 9797 9798 return __find_swevent_head(hlist, type, event_id); 9799 } 9800 9801 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9802 u64 nr, 9803 struct perf_sample_data *data, 9804 struct pt_regs *regs) 9805 { 9806 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9807 struct perf_event *event; 9808 struct hlist_head *head; 9809 9810 rcu_read_lock(); 9811 head = find_swevent_head_rcu(swhash, type, event_id); 9812 if (!head) 9813 goto end; 9814 9815 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9816 if (perf_swevent_match(event, type, event_id, data, regs)) 9817 perf_swevent_event(event, nr, data, regs); 9818 } 9819 end: 9820 rcu_read_unlock(); 9821 } 9822 9823 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9824 9825 int perf_swevent_get_recursion_context(void) 9826 { 9827 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9828 9829 return get_recursion_context(swhash->recursion); 9830 } 9831 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9832 9833 void perf_swevent_put_recursion_context(int rctx) 9834 { 9835 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9836 9837 put_recursion_context(swhash->recursion, rctx); 9838 } 9839 9840 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9841 { 9842 struct perf_sample_data data; 9843 9844 if (WARN_ON_ONCE(!regs)) 9845 return; 9846 9847 perf_sample_data_init(&data, addr, 0); 9848 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9849 } 9850 9851 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9852 { 9853 int rctx; 9854 9855 preempt_disable_notrace(); 9856 rctx = perf_swevent_get_recursion_context(); 9857 if (unlikely(rctx < 0)) 9858 goto fail; 9859 9860 ___perf_sw_event(event_id, nr, regs, addr); 9861 9862 perf_swevent_put_recursion_context(rctx); 9863 fail: 9864 preempt_enable_notrace(); 9865 } 9866 9867 static void perf_swevent_read(struct perf_event *event) 9868 { 9869 } 9870 9871 static int perf_swevent_add(struct perf_event *event, int flags) 9872 { 9873 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9874 struct hw_perf_event *hwc = &event->hw; 9875 struct hlist_head *head; 9876 9877 if (is_sampling_event(event)) { 9878 hwc->last_period = hwc->sample_period; 9879 perf_swevent_set_period(event); 9880 } 9881 9882 hwc->state = !(flags & PERF_EF_START); 9883 9884 head = find_swevent_head(swhash, event); 9885 if (WARN_ON_ONCE(!head)) 9886 return -EINVAL; 9887 9888 hlist_add_head_rcu(&event->hlist_entry, head); 9889 perf_event_update_userpage(event); 9890 9891 return 0; 9892 } 9893 9894 static void perf_swevent_del(struct perf_event *event, int flags) 9895 { 9896 hlist_del_rcu(&event->hlist_entry); 9897 } 9898 9899 static void perf_swevent_start(struct perf_event *event, int flags) 9900 { 9901 event->hw.state = 0; 9902 } 9903 9904 static void perf_swevent_stop(struct perf_event *event, int flags) 9905 { 9906 event->hw.state = PERF_HES_STOPPED; 9907 } 9908 9909 /* Deref the hlist from the update side */ 9910 static inline struct swevent_hlist * 9911 swevent_hlist_deref(struct swevent_htable *swhash) 9912 { 9913 return rcu_dereference_protected(swhash->swevent_hlist, 9914 lockdep_is_held(&swhash->hlist_mutex)); 9915 } 9916 9917 static void swevent_hlist_release(struct swevent_htable *swhash) 9918 { 9919 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9920 9921 if (!hlist) 9922 return; 9923 9924 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9925 kfree_rcu(hlist, rcu_head); 9926 } 9927 9928 static void swevent_hlist_put_cpu(int cpu) 9929 { 9930 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9931 9932 mutex_lock(&swhash->hlist_mutex); 9933 9934 if (!--swhash->hlist_refcount) 9935 swevent_hlist_release(swhash); 9936 9937 mutex_unlock(&swhash->hlist_mutex); 9938 } 9939 9940 static void swevent_hlist_put(void) 9941 { 9942 int cpu; 9943 9944 for_each_possible_cpu(cpu) 9945 swevent_hlist_put_cpu(cpu); 9946 } 9947 9948 static int swevent_hlist_get_cpu(int cpu) 9949 { 9950 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9951 int err = 0; 9952 9953 mutex_lock(&swhash->hlist_mutex); 9954 if (!swevent_hlist_deref(swhash) && 9955 cpumask_test_cpu(cpu, perf_online_mask)) { 9956 struct swevent_hlist *hlist; 9957 9958 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9959 if (!hlist) { 9960 err = -ENOMEM; 9961 goto exit; 9962 } 9963 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9964 } 9965 swhash->hlist_refcount++; 9966 exit: 9967 mutex_unlock(&swhash->hlist_mutex); 9968 9969 return err; 9970 } 9971 9972 static int swevent_hlist_get(void) 9973 { 9974 int err, cpu, failed_cpu; 9975 9976 mutex_lock(&pmus_lock); 9977 for_each_possible_cpu(cpu) { 9978 err = swevent_hlist_get_cpu(cpu); 9979 if (err) { 9980 failed_cpu = cpu; 9981 goto fail; 9982 } 9983 } 9984 mutex_unlock(&pmus_lock); 9985 return 0; 9986 fail: 9987 for_each_possible_cpu(cpu) { 9988 if (cpu == failed_cpu) 9989 break; 9990 swevent_hlist_put_cpu(cpu); 9991 } 9992 mutex_unlock(&pmus_lock); 9993 return err; 9994 } 9995 9996 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9997 9998 static void sw_perf_event_destroy(struct perf_event *event) 9999 { 10000 u64 event_id = event->attr.config; 10001 10002 WARN_ON(event->parent); 10003 10004 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10005 swevent_hlist_put(); 10006 } 10007 10008 static struct pmu perf_cpu_clock; /* fwd declaration */ 10009 static struct pmu perf_task_clock; 10010 10011 static int perf_swevent_init(struct perf_event *event) 10012 { 10013 u64 event_id = event->attr.config; 10014 10015 if (event->attr.type != PERF_TYPE_SOFTWARE) 10016 return -ENOENT; 10017 10018 /* 10019 * no branch sampling for software events 10020 */ 10021 if (has_branch_stack(event)) 10022 return -EOPNOTSUPP; 10023 10024 switch (event_id) { 10025 case PERF_COUNT_SW_CPU_CLOCK: 10026 event->attr.type = perf_cpu_clock.type; 10027 return -ENOENT; 10028 case PERF_COUNT_SW_TASK_CLOCK: 10029 event->attr.type = perf_task_clock.type; 10030 return -ENOENT; 10031 10032 default: 10033 break; 10034 } 10035 10036 if (event_id >= PERF_COUNT_SW_MAX) 10037 return -ENOENT; 10038 10039 if (!event->parent) { 10040 int err; 10041 10042 err = swevent_hlist_get(); 10043 if (err) 10044 return err; 10045 10046 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10047 event->destroy = sw_perf_event_destroy; 10048 } 10049 10050 return 0; 10051 } 10052 10053 static struct pmu perf_swevent = { 10054 .task_ctx_nr = perf_sw_context, 10055 10056 .capabilities = PERF_PMU_CAP_NO_NMI, 10057 10058 .event_init = perf_swevent_init, 10059 .add = perf_swevent_add, 10060 .del = perf_swevent_del, 10061 .start = perf_swevent_start, 10062 .stop = perf_swevent_stop, 10063 .read = perf_swevent_read, 10064 }; 10065 10066 #ifdef CONFIG_EVENT_TRACING 10067 10068 static void tp_perf_event_destroy(struct perf_event *event) 10069 { 10070 perf_trace_destroy(event); 10071 } 10072 10073 static int perf_tp_event_init(struct perf_event *event) 10074 { 10075 int err; 10076 10077 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10078 return -ENOENT; 10079 10080 /* 10081 * no branch sampling for tracepoint events 10082 */ 10083 if (has_branch_stack(event)) 10084 return -EOPNOTSUPP; 10085 10086 err = perf_trace_init(event); 10087 if (err) 10088 return err; 10089 10090 event->destroy = tp_perf_event_destroy; 10091 10092 return 0; 10093 } 10094 10095 static struct pmu perf_tracepoint = { 10096 .task_ctx_nr = perf_sw_context, 10097 10098 .event_init = perf_tp_event_init, 10099 .add = perf_trace_add, 10100 .del = perf_trace_del, 10101 .start = perf_swevent_start, 10102 .stop = perf_swevent_stop, 10103 .read = perf_swevent_read, 10104 }; 10105 10106 static int perf_tp_filter_match(struct perf_event *event, 10107 struct perf_sample_data *data) 10108 { 10109 void *record = data->raw->frag.data; 10110 10111 /* only top level events have filters set */ 10112 if (event->parent) 10113 event = event->parent; 10114 10115 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10116 return 1; 10117 return 0; 10118 } 10119 10120 static int perf_tp_event_match(struct perf_event *event, 10121 struct perf_sample_data *data, 10122 struct pt_regs *regs) 10123 { 10124 if (event->hw.state & PERF_HES_STOPPED) 10125 return 0; 10126 /* 10127 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10128 */ 10129 if (event->attr.exclude_kernel && !user_mode(regs)) 10130 return 0; 10131 10132 if (!perf_tp_filter_match(event, data)) 10133 return 0; 10134 10135 return 1; 10136 } 10137 10138 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10139 struct trace_event_call *call, u64 count, 10140 struct pt_regs *regs, struct hlist_head *head, 10141 struct task_struct *task) 10142 { 10143 if (bpf_prog_array_valid(call)) { 10144 *(struct pt_regs **)raw_data = regs; 10145 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10146 perf_swevent_put_recursion_context(rctx); 10147 return; 10148 } 10149 } 10150 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10151 rctx, task); 10152 } 10153 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10154 10155 static void __perf_tp_event_target_task(u64 count, void *record, 10156 struct pt_regs *regs, 10157 struct perf_sample_data *data, 10158 struct perf_event *event) 10159 { 10160 struct trace_entry *entry = record; 10161 10162 if (event->attr.config != entry->type) 10163 return; 10164 /* Cannot deliver synchronous signal to other task. */ 10165 if (event->attr.sigtrap) 10166 return; 10167 if (perf_tp_event_match(event, data, regs)) 10168 perf_swevent_event(event, count, data, regs); 10169 } 10170 10171 static void perf_tp_event_target_task(u64 count, void *record, 10172 struct pt_regs *regs, 10173 struct perf_sample_data *data, 10174 struct perf_event_context *ctx) 10175 { 10176 unsigned int cpu = smp_processor_id(); 10177 struct pmu *pmu = &perf_tracepoint; 10178 struct perf_event *event, *sibling; 10179 10180 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10181 __perf_tp_event_target_task(count, record, regs, data, event); 10182 for_each_sibling_event(sibling, event) 10183 __perf_tp_event_target_task(count, record, regs, data, sibling); 10184 } 10185 10186 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10187 __perf_tp_event_target_task(count, record, regs, data, event); 10188 for_each_sibling_event(sibling, event) 10189 __perf_tp_event_target_task(count, record, regs, data, sibling); 10190 } 10191 } 10192 10193 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10194 struct pt_regs *regs, struct hlist_head *head, int rctx, 10195 struct task_struct *task) 10196 { 10197 struct perf_sample_data data; 10198 struct perf_event *event; 10199 10200 struct perf_raw_record raw = { 10201 .frag = { 10202 .size = entry_size, 10203 .data = record, 10204 }, 10205 }; 10206 10207 perf_sample_data_init(&data, 0, 0); 10208 perf_sample_save_raw_data(&data, &raw); 10209 10210 perf_trace_buf_update(record, event_type); 10211 10212 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10213 if (perf_tp_event_match(event, &data, regs)) { 10214 perf_swevent_event(event, count, &data, regs); 10215 10216 /* 10217 * Here use the same on-stack perf_sample_data, 10218 * some members in data are event-specific and 10219 * need to be re-computed for different sweveents. 10220 * Re-initialize data->sample_flags safely to avoid 10221 * the problem that next event skips preparing data 10222 * because data->sample_flags is set. 10223 */ 10224 perf_sample_data_init(&data, 0, 0); 10225 perf_sample_save_raw_data(&data, &raw); 10226 } 10227 } 10228 10229 /* 10230 * If we got specified a target task, also iterate its context and 10231 * deliver this event there too. 10232 */ 10233 if (task && task != current) { 10234 struct perf_event_context *ctx; 10235 10236 rcu_read_lock(); 10237 ctx = rcu_dereference(task->perf_event_ctxp); 10238 if (!ctx) 10239 goto unlock; 10240 10241 raw_spin_lock(&ctx->lock); 10242 perf_tp_event_target_task(count, record, regs, &data, ctx); 10243 raw_spin_unlock(&ctx->lock); 10244 unlock: 10245 rcu_read_unlock(); 10246 } 10247 10248 perf_swevent_put_recursion_context(rctx); 10249 } 10250 EXPORT_SYMBOL_GPL(perf_tp_event); 10251 10252 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10253 /* 10254 * Flags in config, used by dynamic PMU kprobe and uprobe 10255 * The flags should match following PMU_FORMAT_ATTR(). 10256 * 10257 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10258 * if not set, create kprobe/uprobe 10259 * 10260 * The following values specify a reference counter (or semaphore in the 10261 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10262 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10263 * 10264 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10265 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10266 */ 10267 enum perf_probe_config { 10268 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10269 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10270 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10271 }; 10272 10273 PMU_FORMAT_ATTR(retprobe, "config:0"); 10274 #endif 10275 10276 #ifdef CONFIG_KPROBE_EVENTS 10277 static struct attribute *kprobe_attrs[] = { 10278 &format_attr_retprobe.attr, 10279 NULL, 10280 }; 10281 10282 static struct attribute_group kprobe_format_group = { 10283 .name = "format", 10284 .attrs = kprobe_attrs, 10285 }; 10286 10287 static const struct attribute_group *kprobe_attr_groups[] = { 10288 &kprobe_format_group, 10289 NULL, 10290 }; 10291 10292 static int perf_kprobe_event_init(struct perf_event *event); 10293 static struct pmu perf_kprobe = { 10294 .task_ctx_nr = perf_sw_context, 10295 .event_init = perf_kprobe_event_init, 10296 .add = perf_trace_add, 10297 .del = perf_trace_del, 10298 .start = perf_swevent_start, 10299 .stop = perf_swevent_stop, 10300 .read = perf_swevent_read, 10301 .attr_groups = kprobe_attr_groups, 10302 }; 10303 10304 static int perf_kprobe_event_init(struct perf_event *event) 10305 { 10306 int err; 10307 bool is_retprobe; 10308 10309 if (event->attr.type != perf_kprobe.type) 10310 return -ENOENT; 10311 10312 if (!perfmon_capable()) 10313 return -EACCES; 10314 10315 /* 10316 * no branch sampling for probe events 10317 */ 10318 if (has_branch_stack(event)) 10319 return -EOPNOTSUPP; 10320 10321 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10322 err = perf_kprobe_init(event, is_retprobe); 10323 if (err) 10324 return err; 10325 10326 event->destroy = perf_kprobe_destroy; 10327 10328 return 0; 10329 } 10330 #endif /* CONFIG_KPROBE_EVENTS */ 10331 10332 #ifdef CONFIG_UPROBE_EVENTS 10333 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10334 10335 static struct attribute *uprobe_attrs[] = { 10336 &format_attr_retprobe.attr, 10337 &format_attr_ref_ctr_offset.attr, 10338 NULL, 10339 }; 10340 10341 static struct attribute_group uprobe_format_group = { 10342 .name = "format", 10343 .attrs = uprobe_attrs, 10344 }; 10345 10346 static const struct attribute_group *uprobe_attr_groups[] = { 10347 &uprobe_format_group, 10348 NULL, 10349 }; 10350 10351 static int perf_uprobe_event_init(struct perf_event *event); 10352 static struct pmu perf_uprobe = { 10353 .task_ctx_nr = perf_sw_context, 10354 .event_init = perf_uprobe_event_init, 10355 .add = perf_trace_add, 10356 .del = perf_trace_del, 10357 .start = perf_swevent_start, 10358 .stop = perf_swevent_stop, 10359 .read = perf_swevent_read, 10360 .attr_groups = uprobe_attr_groups, 10361 }; 10362 10363 static int perf_uprobe_event_init(struct perf_event *event) 10364 { 10365 int err; 10366 unsigned long ref_ctr_offset; 10367 bool is_retprobe; 10368 10369 if (event->attr.type != perf_uprobe.type) 10370 return -ENOENT; 10371 10372 if (!perfmon_capable()) 10373 return -EACCES; 10374 10375 /* 10376 * no branch sampling for probe events 10377 */ 10378 if (has_branch_stack(event)) 10379 return -EOPNOTSUPP; 10380 10381 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10382 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10383 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10384 if (err) 10385 return err; 10386 10387 event->destroy = perf_uprobe_destroy; 10388 10389 return 0; 10390 } 10391 #endif /* CONFIG_UPROBE_EVENTS */ 10392 10393 static inline void perf_tp_register(void) 10394 { 10395 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10396 #ifdef CONFIG_KPROBE_EVENTS 10397 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10398 #endif 10399 #ifdef CONFIG_UPROBE_EVENTS 10400 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10401 #endif 10402 } 10403 10404 static void perf_event_free_filter(struct perf_event *event) 10405 { 10406 ftrace_profile_free_filter(event); 10407 } 10408 10409 #ifdef CONFIG_BPF_SYSCALL 10410 static void bpf_overflow_handler(struct perf_event *event, 10411 struct perf_sample_data *data, 10412 struct pt_regs *regs) 10413 { 10414 struct bpf_perf_event_data_kern ctx = { 10415 .data = data, 10416 .event = event, 10417 }; 10418 struct bpf_prog *prog; 10419 int ret = 0; 10420 10421 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10422 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10423 goto out; 10424 rcu_read_lock(); 10425 prog = READ_ONCE(event->prog); 10426 if (prog) { 10427 perf_prepare_sample(data, event, regs); 10428 ret = bpf_prog_run(prog, &ctx); 10429 } 10430 rcu_read_unlock(); 10431 out: 10432 __this_cpu_dec(bpf_prog_active); 10433 if (!ret) 10434 return; 10435 10436 event->orig_overflow_handler(event, data, regs); 10437 } 10438 10439 static int perf_event_set_bpf_handler(struct perf_event *event, 10440 struct bpf_prog *prog, 10441 u64 bpf_cookie) 10442 { 10443 if (event->overflow_handler_context) 10444 /* hw breakpoint or kernel counter */ 10445 return -EINVAL; 10446 10447 if (event->prog) 10448 return -EEXIST; 10449 10450 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10451 return -EINVAL; 10452 10453 if (event->attr.precise_ip && 10454 prog->call_get_stack && 10455 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10456 event->attr.exclude_callchain_kernel || 10457 event->attr.exclude_callchain_user)) { 10458 /* 10459 * On perf_event with precise_ip, calling bpf_get_stack() 10460 * may trigger unwinder warnings and occasional crashes. 10461 * bpf_get_[stack|stackid] works around this issue by using 10462 * callchain attached to perf_sample_data. If the 10463 * perf_event does not full (kernel and user) callchain 10464 * attached to perf_sample_data, do not allow attaching BPF 10465 * program that calls bpf_get_[stack|stackid]. 10466 */ 10467 return -EPROTO; 10468 } 10469 10470 event->prog = prog; 10471 event->bpf_cookie = bpf_cookie; 10472 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10473 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10474 return 0; 10475 } 10476 10477 static void perf_event_free_bpf_handler(struct perf_event *event) 10478 { 10479 struct bpf_prog *prog = event->prog; 10480 10481 if (!prog) 10482 return; 10483 10484 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10485 event->prog = NULL; 10486 bpf_prog_put(prog); 10487 } 10488 #else 10489 static int perf_event_set_bpf_handler(struct perf_event *event, 10490 struct bpf_prog *prog, 10491 u64 bpf_cookie) 10492 { 10493 return -EOPNOTSUPP; 10494 } 10495 static void perf_event_free_bpf_handler(struct perf_event *event) 10496 { 10497 } 10498 #endif 10499 10500 /* 10501 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10502 * with perf_event_open() 10503 */ 10504 static inline bool perf_event_is_tracing(struct perf_event *event) 10505 { 10506 if (event->pmu == &perf_tracepoint) 10507 return true; 10508 #ifdef CONFIG_KPROBE_EVENTS 10509 if (event->pmu == &perf_kprobe) 10510 return true; 10511 #endif 10512 #ifdef CONFIG_UPROBE_EVENTS 10513 if (event->pmu == &perf_uprobe) 10514 return true; 10515 #endif 10516 return false; 10517 } 10518 10519 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10520 u64 bpf_cookie) 10521 { 10522 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10523 10524 if (!perf_event_is_tracing(event)) 10525 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10526 10527 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10528 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10529 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10530 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10531 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10532 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10533 return -EINVAL; 10534 10535 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10536 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10537 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10538 return -EINVAL; 10539 10540 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10541 /* only uprobe programs are allowed to be sleepable */ 10542 return -EINVAL; 10543 10544 /* Kprobe override only works for kprobes, not uprobes. */ 10545 if (prog->kprobe_override && !is_kprobe) 10546 return -EINVAL; 10547 10548 if (is_tracepoint || is_syscall_tp) { 10549 int off = trace_event_get_offsets(event->tp_event); 10550 10551 if (prog->aux->max_ctx_offset > off) 10552 return -EACCES; 10553 } 10554 10555 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10556 } 10557 10558 void perf_event_free_bpf_prog(struct perf_event *event) 10559 { 10560 if (!perf_event_is_tracing(event)) { 10561 perf_event_free_bpf_handler(event); 10562 return; 10563 } 10564 perf_event_detach_bpf_prog(event); 10565 } 10566 10567 #else 10568 10569 static inline void perf_tp_register(void) 10570 { 10571 } 10572 10573 static void perf_event_free_filter(struct perf_event *event) 10574 { 10575 } 10576 10577 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10578 u64 bpf_cookie) 10579 { 10580 return -ENOENT; 10581 } 10582 10583 void perf_event_free_bpf_prog(struct perf_event *event) 10584 { 10585 } 10586 #endif /* CONFIG_EVENT_TRACING */ 10587 10588 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10589 void perf_bp_event(struct perf_event *bp, void *data) 10590 { 10591 struct perf_sample_data sample; 10592 struct pt_regs *regs = data; 10593 10594 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10595 10596 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10597 perf_swevent_event(bp, 1, &sample, regs); 10598 } 10599 #endif 10600 10601 /* 10602 * Allocate a new address filter 10603 */ 10604 static struct perf_addr_filter * 10605 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10606 { 10607 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10608 struct perf_addr_filter *filter; 10609 10610 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10611 if (!filter) 10612 return NULL; 10613 10614 INIT_LIST_HEAD(&filter->entry); 10615 list_add_tail(&filter->entry, filters); 10616 10617 return filter; 10618 } 10619 10620 static void free_filters_list(struct list_head *filters) 10621 { 10622 struct perf_addr_filter *filter, *iter; 10623 10624 list_for_each_entry_safe(filter, iter, filters, entry) { 10625 path_put(&filter->path); 10626 list_del(&filter->entry); 10627 kfree(filter); 10628 } 10629 } 10630 10631 /* 10632 * Free existing address filters and optionally install new ones 10633 */ 10634 static void perf_addr_filters_splice(struct perf_event *event, 10635 struct list_head *head) 10636 { 10637 unsigned long flags; 10638 LIST_HEAD(list); 10639 10640 if (!has_addr_filter(event)) 10641 return; 10642 10643 /* don't bother with children, they don't have their own filters */ 10644 if (event->parent) 10645 return; 10646 10647 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10648 10649 list_splice_init(&event->addr_filters.list, &list); 10650 if (head) 10651 list_splice(head, &event->addr_filters.list); 10652 10653 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10654 10655 free_filters_list(&list); 10656 } 10657 10658 /* 10659 * Scan through mm's vmas and see if one of them matches the 10660 * @filter; if so, adjust filter's address range. 10661 * Called with mm::mmap_lock down for reading. 10662 */ 10663 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10664 struct mm_struct *mm, 10665 struct perf_addr_filter_range *fr) 10666 { 10667 struct vm_area_struct *vma; 10668 VMA_ITERATOR(vmi, mm, 0); 10669 10670 for_each_vma(vmi, vma) { 10671 if (!vma->vm_file) 10672 continue; 10673 10674 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10675 return; 10676 } 10677 } 10678 10679 /* 10680 * Update event's address range filters based on the 10681 * task's existing mappings, if any. 10682 */ 10683 static void perf_event_addr_filters_apply(struct perf_event *event) 10684 { 10685 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10686 struct task_struct *task = READ_ONCE(event->ctx->task); 10687 struct perf_addr_filter *filter; 10688 struct mm_struct *mm = NULL; 10689 unsigned int count = 0; 10690 unsigned long flags; 10691 10692 /* 10693 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10694 * will stop on the parent's child_mutex that our caller is also holding 10695 */ 10696 if (task == TASK_TOMBSTONE) 10697 return; 10698 10699 if (ifh->nr_file_filters) { 10700 mm = get_task_mm(task); 10701 if (!mm) 10702 goto restart; 10703 10704 mmap_read_lock(mm); 10705 } 10706 10707 raw_spin_lock_irqsave(&ifh->lock, flags); 10708 list_for_each_entry(filter, &ifh->list, entry) { 10709 if (filter->path.dentry) { 10710 /* 10711 * Adjust base offset if the filter is associated to a 10712 * binary that needs to be mapped: 10713 */ 10714 event->addr_filter_ranges[count].start = 0; 10715 event->addr_filter_ranges[count].size = 0; 10716 10717 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10718 } else { 10719 event->addr_filter_ranges[count].start = filter->offset; 10720 event->addr_filter_ranges[count].size = filter->size; 10721 } 10722 10723 count++; 10724 } 10725 10726 event->addr_filters_gen++; 10727 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10728 10729 if (ifh->nr_file_filters) { 10730 mmap_read_unlock(mm); 10731 10732 mmput(mm); 10733 } 10734 10735 restart: 10736 perf_event_stop(event, 1); 10737 } 10738 10739 /* 10740 * Address range filtering: limiting the data to certain 10741 * instruction address ranges. Filters are ioctl()ed to us from 10742 * userspace as ascii strings. 10743 * 10744 * Filter string format: 10745 * 10746 * ACTION RANGE_SPEC 10747 * where ACTION is one of the 10748 * * "filter": limit the trace to this region 10749 * * "start": start tracing from this address 10750 * * "stop": stop tracing at this address/region; 10751 * RANGE_SPEC is 10752 * * for kernel addresses: <start address>[/<size>] 10753 * * for object files: <start address>[/<size>]@</path/to/object/file> 10754 * 10755 * if <size> is not specified or is zero, the range is treated as a single 10756 * address; not valid for ACTION=="filter". 10757 */ 10758 enum { 10759 IF_ACT_NONE = -1, 10760 IF_ACT_FILTER, 10761 IF_ACT_START, 10762 IF_ACT_STOP, 10763 IF_SRC_FILE, 10764 IF_SRC_KERNEL, 10765 IF_SRC_FILEADDR, 10766 IF_SRC_KERNELADDR, 10767 }; 10768 10769 enum { 10770 IF_STATE_ACTION = 0, 10771 IF_STATE_SOURCE, 10772 IF_STATE_END, 10773 }; 10774 10775 static const match_table_t if_tokens = { 10776 { IF_ACT_FILTER, "filter" }, 10777 { IF_ACT_START, "start" }, 10778 { IF_ACT_STOP, "stop" }, 10779 { IF_SRC_FILE, "%u/%u@%s" }, 10780 { IF_SRC_KERNEL, "%u/%u" }, 10781 { IF_SRC_FILEADDR, "%u@%s" }, 10782 { IF_SRC_KERNELADDR, "%u" }, 10783 { IF_ACT_NONE, NULL }, 10784 }; 10785 10786 /* 10787 * Address filter string parser 10788 */ 10789 static int 10790 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10791 struct list_head *filters) 10792 { 10793 struct perf_addr_filter *filter = NULL; 10794 char *start, *orig, *filename = NULL; 10795 substring_t args[MAX_OPT_ARGS]; 10796 int state = IF_STATE_ACTION, token; 10797 unsigned int kernel = 0; 10798 int ret = -EINVAL; 10799 10800 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10801 if (!fstr) 10802 return -ENOMEM; 10803 10804 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10805 static const enum perf_addr_filter_action_t actions[] = { 10806 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10807 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10808 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10809 }; 10810 ret = -EINVAL; 10811 10812 if (!*start) 10813 continue; 10814 10815 /* filter definition begins */ 10816 if (state == IF_STATE_ACTION) { 10817 filter = perf_addr_filter_new(event, filters); 10818 if (!filter) 10819 goto fail; 10820 } 10821 10822 token = match_token(start, if_tokens, args); 10823 switch (token) { 10824 case IF_ACT_FILTER: 10825 case IF_ACT_START: 10826 case IF_ACT_STOP: 10827 if (state != IF_STATE_ACTION) 10828 goto fail; 10829 10830 filter->action = actions[token]; 10831 state = IF_STATE_SOURCE; 10832 break; 10833 10834 case IF_SRC_KERNELADDR: 10835 case IF_SRC_KERNEL: 10836 kernel = 1; 10837 fallthrough; 10838 10839 case IF_SRC_FILEADDR: 10840 case IF_SRC_FILE: 10841 if (state != IF_STATE_SOURCE) 10842 goto fail; 10843 10844 *args[0].to = 0; 10845 ret = kstrtoul(args[0].from, 0, &filter->offset); 10846 if (ret) 10847 goto fail; 10848 10849 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10850 *args[1].to = 0; 10851 ret = kstrtoul(args[1].from, 0, &filter->size); 10852 if (ret) 10853 goto fail; 10854 } 10855 10856 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10857 int fpos = token == IF_SRC_FILE ? 2 : 1; 10858 10859 kfree(filename); 10860 filename = match_strdup(&args[fpos]); 10861 if (!filename) { 10862 ret = -ENOMEM; 10863 goto fail; 10864 } 10865 } 10866 10867 state = IF_STATE_END; 10868 break; 10869 10870 default: 10871 goto fail; 10872 } 10873 10874 /* 10875 * Filter definition is fully parsed, validate and install it. 10876 * Make sure that it doesn't contradict itself or the event's 10877 * attribute. 10878 */ 10879 if (state == IF_STATE_END) { 10880 ret = -EINVAL; 10881 10882 /* 10883 * ACTION "filter" must have a non-zero length region 10884 * specified. 10885 */ 10886 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10887 !filter->size) 10888 goto fail; 10889 10890 if (!kernel) { 10891 if (!filename) 10892 goto fail; 10893 10894 /* 10895 * For now, we only support file-based filters 10896 * in per-task events; doing so for CPU-wide 10897 * events requires additional context switching 10898 * trickery, since same object code will be 10899 * mapped at different virtual addresses in 10900 * different processes. 10901 */ 10902 ret = -EOPNOTSUPP; 10903 if (!event->ctx->task) 10904 goto fail; 10905 10906 /* look up the path and grab its inode */ 10907 ret = kern_path(filename, LOOKUP_FOLLOW, 10908 &filter->path); 10909 if (ret) 10910 goto fail; 10911 10912 ret = -EINVAL; 10913 if (!filter->path.dentry || 10914 !S_ISREG(d_inode(filter->path.dentry) 10915 ->i_mode)) 10916 goto fail; 10917 10918 event->addr_filters.nr_file_filters++; 10919 } 10920 10921 /* ready to consume more filters */ 10922 kfree(filename); 10923 filename = NULL; 10924 state = IF_STATE_ACTION; 10925 filter = NULL; 10926 kernel = 0; 10927 } 10928 } 10929 10930 if (state != IF_STATE_ACTION) 10931 goto fail; 10932 10933 kfree(filename); 10934 kfree(orig); 10935 10936 return 0; 10937 10938 fail: 10939 kfree(filename); 10940 free_filters_list(filters); 10941 kfree(orig); 10942 10943 return ret; 10944 } 10945 10946 static int 10947 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10948 { 10949 LIST_HEAD(filters); 10950 int ret; 10951 10952 /* 10953 * Since this is called in perf_ioctl() path, we're already holding 10954 * ctx::mutex. 10955 */ 10956 lockdep_assert_held(&event->ctx->mutex); 10957 10958 if (WARN_ON_ONCE(event->parent)) 10959 return -EINVAL; 10960 10961 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10962 if (ret) 10963 goto fail_clear_files; 10964 10965 ret = event->pmu->addr_filters_validate(&filters); 10966 if (ret) 10967 goto fail_free_filters; 10968 10969 /* remove existing filters, if any */ 10970 perf_addr_filters_splice(event, &filters); 10971 10972 /* install new filters */ 10973 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10974 10975 return ret; 10976 10977 fail_free_filters: 10978 free_filters_list(&filters); 10979 10980 fail_clear_files: 10981 event->addr_filters.nr_file_filters = 0; 10982 10983 return ret; 10984 } 10985 10986 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10987 { 10988 int ret = -EINVAL; 10989 char *filter_str; 10990 10991 filter_str = strndup_user(arg, PAGE_SIZE); 10992 if (IS_ERR(filter_str)) 10993 return PTR_ERR(filter_str); 10994 10995 #ifdef CONFIG_EVENT_TRACING 10996 if (perf_event_is_tracing(event)) { 10997 struct perf_event_context *ctx = event->ctx; 10998 10999 /* 11000 * Beware, here be dragons!! 11001 * 11002 * the tracepoint muck will deadlock against ctx->mutex, but 11003 * the tracepoint stuff does not actually need it. So 11004 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11005 * already have a reference on ctx. 11006 * 11007 * This can result in event getting moved to a different ctx, 11008 * but that does not affect the tracepoint state. 11009 */ 11010 mutex_unlock(&ctx->mutex); 11011 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11012 mutex_lock(&ctx->mutex); 11013 } else 11014 #endif 11015 if (has_addr_filter(event)) 11016 ret = perf_event_set_addr_filter(event, filter_str); 11017 11018 kfree(filter_str); 11019 return ret; 11020 } 11021 11022 /* 11023 * hrtimer based swevent callback 11024 */ 11025 11026 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11027 { 11028 enum hrtimer_restart ret = HRTIMER_RESTART; 11029 struct perf_sample_data data; 11030 struct pt_regs *regs; 11031 struct perf_event *event; 11032 u64 period; 11033 11034 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11035 11036 if (event->state != PERF_EVENT_STATE_ACTIVE) 11037 return HRTIMER_NORESTART; 11038 11039 event->pmu->read(event); 11040 11041 perf_sample_data_init(&data, 0, event->hw.last_period); 11042 regs = get_irq_regs(); 11043 11044 if (regs && !perf_exclude_event(event, regs)) { 11045 if (!(event->attr.exclude_idle && is_idle_task(current))) 11046 if (__perf_event_overflow(event, 1, &data, regs)) 11047 ret = HRTIMER_NORESTART; 11048 } 11049 11050 period = max_t(u64, 10000, event->hw.sample_period); 11051 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11052 11053 return ret; 11054 } 11055 11056 static void perf_swevent_start_hrtimer(struct perf_event *event) 11057 { 11058 struct hw_perf_event *hwc = &event->hw; 11059 s64 period; 11060 11061 if (!is_sampling_event(event)) 11062 return; 11063 11064 period = local64_read(&hwc->period_left); 11065 if (period) { 11066 if (period < 0) 11067 period = 10000; 11068 11069 local64_set(&hwc->period_left, 0); 11070 } else { 11071 period = max_t(u64, 10000, hwc->sample_period); 11072 } 11073 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11074 HRTIMER_MODE_REL_PINNED_HARD); 11075 } 11076 11077 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11078 { 11079 struct hw_perf_event *hwc = &event->hw; 11080 11081 if (is_sampling_event(event)) { 11082 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11083 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11084 11085 hrtimer_cancel(&hwc->hrtimer); 11086 } 11087 } 11088 11089 static void perf_swevent_init_hrtimer(struct perf_event *event) 11090 { 11091 struct hw_perf_event *hwc = &event->hw; 11092 11093 if (!is_sampling_event(event)) 11094 return; 11095 11096 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11097 hwc->hrtimer.function = perf_swevent_hrtimer; 11098 11099 /* 11100 * Since hrtimers have a fixed rate, we can do a static freq->period 11101 * mapping and avoid the whole period adjust feedback stuff. 11102 */ 11103 if (event->attr.freq) { 11104 long freq = event->attr.sample_freq; 11105 11106 event->attr.sample_period = NSEC_PER_SEC / freq; 11107 hwc->sample_period = event->attr.sample_period; 11108 local64_set(&hwc->period_left, hwc->sample_period); 11109 hwc->last_period = hwc->sample_period; 11110 event->attr.freq = 0; 11111 } 11112 } 11113 11114 /* 11115 * Software event: cpu wall time clock 11116 */ 11117 11118 static void cpu_clock_event_update(struct perf_event *event) 11119 { 11120 s64 prev; 11121 u64 now; 11122 11123 now = local_clock(); 11124 prev = local64_xchg(&event->hw.prev_count, now); 11125 local64_add(now - prev, &event->count); 11126 } 11127 11128 static void cpu_clock_event_start(struct perf_event *event, int flags) 11129 { 11130 local64_set(&event->hw.prev_count, local_clock()); 11131 perf_swevent_start_hrtimer(event); 11132 } 11133 11134 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11135 { 11136 perf_swevent_cancel_hrtimer(event); 11137 cpu_clock_event_update(event); 11138 } 11139 11140 static int cpu_clock_event_add(struct perf_event *event, int flags) 11141 { 11142 if (flags & PERF_EF_START) 11143 cpu_clock_event_start(event, flags); 11144 perf_event_update_userpage(event); 11145 11146 return 0; 11147 } 11148 11149 static void cpu_clock_event_del(struct perf_event *event, int flags) 11150 { 11151 cpu_clock_event_stop(event, flags); 11152 } 11153 11154 static void cpu_clock_event_read(struct perf_event *event) 11155 { 11156 cpu_clock_event_update(event); 11157 } 11158 11159 static int cpu_clock_event_init(struct perf_event *event) 11160 { 11161 if (event->attr.type != perf_cpu_clock.type) 11162 return -ENOENT; 11163 11164 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11165 return -ENOENT; 11166 11167 /* 11168 * no branch sampling for software events 11169 */ 11170 if (has_branch_stack(event)) 11171 return -EOPNOTSUPP; 11172 11173 perf_swevent_init_hrtimer(event); 11174 11175 return 0; 11176 } 11177 11178 static struct pmu perf_cpu_clock = { 11179 .task_ctx_nr = perf_sw_context, 11180 11181 .capabilities = PERF_PMU_CAP_NO_NMI, 11182 .dev = PMU_NULL_DEV, 11183 11184 .event_init = cpu_clock_event_init, 11185 .add = cpu_clock_event_add, 11186 .del = cpu_clock_event_del, 11187 .start = cpu_clock_event_start, 11188 .stop = cpu_clock_event_stop, 11189 .read = cpu_clock_event_read, 11190 }; 11191 11192 /* 11193 * Software event: task time clock 11194 */ 11195 11196 static void task_clock_event_update(struct perf_event *event, u64 now) 11197 { 11198 u64 prev; 11199 s64 delta; 11200 11201 prev = local64_xchg(&event->hw.prev_count, now); 11202 delta = now - prev; 11203 local64_add(delta, &event->count); 11204 } 11205 11206 static void task_clock_event_start(struct perf_event *event, int flags) 11207 { 11208 local64_set(&event->hw.prev_count, event->ctx->time); 11209 perf_swevent_start_hrtimer(event); 11210 } 11211 11212 static void task_clock_event_stop(struct perf_event *event, int flags) 11213 { 11214 perf_swevent_cancel_hrtimer(event); 11215 task_clock_event_update(event, event->ctx->time); 11216 } 11217 11218 static int task_clock_event_add(struct perf_event *event, int flags) 11219 { 11220 if (flags & PERF_EF_START) 11221 task_clock_event_start(event, flags); 11222 perf_event_update_userpage(event); 11223 11224 return 0; 11225 } 11226 11227 static void task_clock_event_del(struct perf_event *event, int flags) 11228 { 11229 task_clock_event_stop(event, PERF_EF_UPDATE); 11230 } 11231 11232 static void task_clock_event_read(struct perf_event *event) 11233 { 11234 u64 now = perf_clock(); 11235 u64 delta = now - event->ctx->timestamp; 11236 u64 time = event->ctx->time + delta; 11237 11238 task_clock_event_update(event, time); 11239 } 11240 11241 static int task_clock_event_init(struct perf_event *event) 11242 { 11243 if (event->attr.type != perf_task_clock.type) 11244 return -ENOENT; 11245 11246 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11247 return -ENOENT; 11248 11249 /* 11250 * no branch sampling for software events 11251 */ 11252 if (has_branch_stack(event)) 11253 return -EOPNOTSUPP; 11254 11255 perf_swevent_init_hrtimer(event); 11256 11257 return 0; 11258 } 11259 11260 static struct pmu perf_task_clock = { 11261 .task_ctx_nr = perf_sw_context, 11262 11263 .capabilities = PERF_PMU_CAP_NO_NMI, 11264 .dev = PMU_NULL_DEV, 11265 11266 .event_init = task_clock_event_init, 11267 .add = task_clock_event_add, 11268 .del = task_clock_event_del, 11269 .start = task_clock_event_start, 11270 .stop = task_clock_event_stop, 11271 .read = task_clock_event_read, 11272 }; 11273 11274 static void perf_pmu_nop_void(struct pmu *pmu) 11275 { 11276 } 11277 11278 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11279 { 11280 } 11281 11282 static int perf_pmu_nop_int(struct pmu *pmu) 11283 { 11284 return 0; 11285 } 11286 11287 static int perf_event_nop_int(struct perf_event *event, u64 value) 11288 { 11289 return 0; 11290 } 11291 11292 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11293 11294 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11295 { 11296 __this_cpu_write(nop_txn_flags, flags); 11297 11298 if (flags & ~PERF_PMU_TXN_ADD) 11299 return; 11300 11301 perf_pmu_disable(pmu); 11302 } 11303 11304 static int perf_pmu_commit_txn(struct pmu *pmu) 11305 { 11306 unsigned int flags = __this_cpu_read(nop_txn_flags); 11307 11308 __this_cpu_write(nop_txn_flags, 0); 11309 11310 if (flags & ~PERF_PMU_TXN_ADD) 11311 return 0; 11312 11313 perf_pmu_enable(pmu); 11314 return 0; 11315 } 11316 11317 static void perf_pmu_cancel_txn(struct pmu *pmu) 11318 { 11319 unsigned int flags = __this_cpu_read(nop_txn_flags); 11320 11321 __this_cpu_write(nop_txn_flags, 0); 11322 11323 if (flags & ~PERF_PMU_TXN_ADD) 11324 return; 11325 11326 perf_pmu_enable(pmu); 11327 } 11328 11329 static int perf_event_idx_default(struct perf_event *event) 11330 { 11331 return 0; 11332 } 11333 11334 static void free_pmu_context(struct pmu *pmu) 11335 { 11336 free_percpu(pmu->cpu_pmu_context); 11337 } 11338 11339 /* 11340 * Let userspace know that this PMU supports address range filtering: 11341 */ 11342 static ssize_t nr_addr_filters_show(struct device *dev, 11343 struct device_attribute *attr, 11344 char *page) 11345 { 11346 struct pmu *pmu = dev_get_drvdata(dev); 11347 11348 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11349 } 11350 DEVICE_ATTR_RO(nr_addr_filters); 11351 11352 static struct idr pmu_idr; 11353 11354 static ssize_t 11355 type_show(struct device *dev, struct device_attribute *attr, char *page) 11356 { 11357 struct pmu *pmu = dev_get_drvdata(dev); 11358 11359 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11360 } 11361 static DEVICE_ATTR_RO(type); 11362 11363 static ssize_t 11364 perf_event_mux_interval_ms_show(struct device *dev, 11365 struct device_attribute *attr, 11366 char *page) 11367 { 11368 struct pmu *pmu = dev_get_drvdata(dev); 11369 11370 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11371 } 11372 11373 static DEFINE_MUTEX(mux_interval_mutex); 11374 11375 static ssize_t 11376 perf_event_mux_interval_ms_store(struct device *dev, 11377 struct device_attribute *attr, 11378 const char *buf, size_t count) 11379 { 11380 struct pmu *pmu = dev_get_drvdata(dev); 11381 int timer, cpu, ret; 11382 11383 ret = kstrtoint(buf, 0, &timer); 11384 if (ret) 11385 return ret; 11386 11387 if (timer < 1) 11388 return -EINVAL; 11389 11390 /* same value, noting to do */ 11391 if (timer == pmu->hrtimer_interval_ms) 11392 return count; 11393 11394 mutex_lock(&mux_interval_mutex); 11395 pmu->hrtimer_interval_ms = timer; 11396 11397 /* update all cpuctx for this PMU */ 11398 cpus_read_lock(); 11399 for_each_online_cpu(cpu) { 11400 struct perf_cpu_pmu_context *cpc; 11401 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11402 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11403 11404 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11405 } 11406 cpus_read_unlock(); 11407 mutex_unlock(&mux_interval_mutex); 11408 11409 return count; 11410 } 11411 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11412 11413 static struct attribute *pmu_dev_attrs[] = { 11414 &dev_attr_type.attr, 11415 &dev_attr_perf_event_mux_interval_ms.attr, 11416 &dev_attr_nr_addr_filters.attr, 11417 NULL, 11418 }; 11419 11420 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11421 { 11422 struct device *dev = kobj_to_dev(kobj); 11423 struct pmu *pmu = dev_get_drvdata(dev); 11424 11425 if (n == 2 && !pmu->nr_addr_filters) 11426 return 0; 11427 11428 return a->mode; 11429 } 11430 11431 static struct attribute_group pmu_dev_attr_group = { 11432 .is_visible = pmu_dev_is_visible, 11433 .attrs = pmu_dev_attrs, 11434 }; 11435 11436 static const struct attribute_group *pmu_dev_groups[] = { 11437 &pmu_dev_attr_group, 11438 NULL, 11439 }; 11440 11441 static int pmu_bus_running; 11442 static struct bus_type pmu_bus = { 11443 .name = "event_source", 11444 .dev_groups = pmu_dev_groups, 11445 }; 11446 11447 static void pmu_dev_release(struct device *dev) 11448 { 11449 kfree(dev); 11450 } 11451 11452 static int pmu_dev_alloc(struct pmu *pmu) 11453 { 11454 int ret = -ENOMEM; 11455 11456 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11457 if (!pmu->dev) 11458 goto out; 11459 11460 pmu->dev->groups = pmu->attr_groups; 11461 device_initialize(pmu->dev); 11462 11463 dev_set_drvdata(pmu->dev, pmu); 11464 pmu->dev->bus = &pmu_bus; 11465 pmu->dev->parent = pmu->parent; 11466 pmu->dev->release = pmu_dev_release; 11467 11468 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11469 if (ret) 11470 goto free_dev; 11471 11472 ret = device_add(pmu->dev); 11473 if (ret) 11474 goto free_dev; 11475 11476 if (pmu->attr_update) { 11477 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11478 if (ret) 11479 goto del_dev; 11480 } 11481 11482 out: 11483 return ret; 11484 11485 del_dev: 11486 device_del(pmu->dev); 11487 11488 free_dev: 11489 put_device(pmu->dev); 11490 goto out; 11491 } 11492 11493 static struct lock_class_key cpuctx_mutex; 11494 static struct lock_class_key cpuctx_lock; 11495 11496 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11497 { 11498 int cpu, ret, max = PERF_TYPE_MAX; 11499 11500 mutex_lock(&pmus_lock); 11501 ret = -ENOMEM; 11502 pmu->pmu_disable_count = alloc_percpu(int); 11503 if (!pmu->pmu_disable_count) 11504 goto unlock; 11505 11506 pmu->type = -1; 11507 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11508 ret = -EINVAL; 11509 goto free_pdc; 11510 } 11511 11512 pmu->name = name; 11513 11514 if (type >= 0) 11515 max = type; 11516 11517 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11518 if (ret < 0) 11519 goto free_pdc; 11520 11521 WARN_ON(type >= 0 && ret != type); 11522 11523 type = ret; 11524 pmu->type = type; 11525 11526 if (pmu_bus_running && !pmu->dev) { 11527 ret = pmu_dev_alloc(pmu); 11528 if (ret) 11529 goto free_idr; 11530 } 11531 11532 ret = -ENOMEM; 11533 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11534 if (!pmu->cpu_pmu_context) 11535 goto free_dev; 11536 11537 for_each_possible_cpu(cpu) { 11538 struct perf_cpu_pmu_context *cpc; 11539 11540 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11541 __perf_init_event_pmu_context(&cpc->epc, pmu); 11542 __perf_mux_hrtimer_init(cpc, cpu); 11543 } 11544 11545 if (!pmu->start_txn) { 11546 if (pmu->pmu_enable) { 11547 /* 11548 * If we have pmu_enable/pmu_disable calls, install 11549 * transaction stubs that use that to try and batch 11550 * hardware accesses. 11551 */ 11552 pmu->start_txn = perf_pmu_start_txn; 11553 pmu->commit_txn = perf_pmu_commit_txn; 11554 pmu->cancel_txn = perf_pmu_cancel_txn; 11555 } else { 11556 pmu->start_txn = perf_pmu_nop_txn; 11557 pmu->commit_txn = perf_pmu_nop_int; 11558 pmu->cancel_txn = perf_pmu_nop_void; 11559 } 11560 } 11561 11562 if (!pmu->pmu_enable) { 11563 pmu->pmu_enable = perf_pmu_nop_void; 11564 pmu->pmu_disable = perf_pmu_nop_void; 11565 } 11566 11567 if (!pmu->check_period) 11568 pmu->check_period = perf_event_nop_int; 11569 11570 if (!pmu->event_idx) 11571 pmu->event_idx = perf_event_idx_default; 11572 11573 list_add_rcu(&pmu->entry, &pmus); 11574 atomic_set(&pmu->exclusive_cnt, 0); 11575 ret = 0; 11576 unlock: 11577 mutex_unlock(&pmus_lock); 11578 11579 return ret; 11580 11581 free_dev: 11582 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11583 device_del(pmu->dev); 11584 put_device(pmu->dev); 11585 } 11586 11587 free_idr: 11588 idr_remove(&pmu_idr, pmu->type); 11589 11590 free_pdc: 11591 free_percpu(pmu->pmu_disable_count); 11592 goto unlock; 11593 } 11594 EXPORT_SYMBOL_GPL(perf_pmu_register); 11595 11596 void perf_pmu_unregister(struct pmu *pmu) 11597 { 11598 mutex_lock(&pmus_lock); 11599 list_del_rcu(&pmu->entry); 11600 11601 /* 11602 * We dereference the pmu list under both SRCU and regular RCU, so 11603 * synchronize against both of those. 11604 */ 11605 synchronize_srcu(&pmus_srcu); 11606 synchronize_rcu(); 11607 11608 free_percpu(pmu->pmu_disable_count); 11609 idr_remove(&pmu_idr, pmu->type); 11610 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11611 if (pmu->nr_addr_filters) 11612 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11613 device_del(pmu->dev); 11614 put_device(pmu->dev); 11615 } 11616 free_pmu_context(pmu); 11617 mutex_unlock(&pmus_lock); 11618 } 11619 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11620 11621 static inline bool has_extended_regs(struct perf_event *event) 11622 { 11623 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11624 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11625 } 11626 11627 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11628 { 11629 struct perf_event_context *ctx = NULL; 11630 int ret; 11631 11632 if (!try_module_get(pmu->module)) 11633 return -ENODEV; 11634 11635 /* 11636 * A number of pmu->event_init() methods iterate the sibling_list to, 11637 * for example, validate if the group fits on the PMU. Therefore, 11638 * if this is a sibling event, acquire the ctx->mutex to protect 11639 * the sibling_list. 11640 */ 11641 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11642 /* 11643 * This ctx->mutex can nest when we're called through 11644 * inheritance. See the perf_event_ctx_lock_nested() comment. 11645 */ 11646 ctx = perf_event_ctx_lock_nested(event->group_leader, 11647 SINGLE_DEPTH_NESTING); 11648 BUG_ON(!ctx); 11649 } 11650 11651 event->pmu = pmu; 11652 ret = pmu->event_init(event); 11653 11654 if (ctx) 11655 perf_event_ctx_unlock(event->group_leader, ctx); 11656 11657 if (!ret) { 11658 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11659 has_extended_regs(event)) 11660 ret = -EOPNOTSUPP; 11661 11662 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11663 event_has_any_exclude_flag(event)) 11664 ret = -EINVAL; 11665 11666 if (ret && event->destroy) 11667 event->destroy(event); 11668 } 11669 11670 if (ret) 11671 module_put(pmu->module); 11672 11673 return ret; 11674 } 11675 11676 static struct pmu *perf_init_event(struct perf_event *event) 11677 { 11678 bool extended_type = false; 11679 int idx, type, ret; 11680 struct pmu *pmu; 11681 11682 idx = srcu_read_lock(&pmus_srcu); 11683 11684 /* 11685 * Save original type before calling pmu->event_init() since certain 11686 * pmus overwrites event->attr.type to forward event to another pmu. 11687 */ 11688 event->orig_type = event->attr.type; 11689 11690 /* Try parent's PMU first: */ 11691 if (event->parent && event->parent->pmu) { 11692 pmu = event->parent->pmu; 11693 ret = perf_try_init_event(pmu, event); 11694 if (!ret) 11695 goto unlock; 11696 } 11697 11698 /* 11699 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11700 * are often aliases for PERF_TYPE_RAW. 11701 */ 11702 type = event->attr.type; 11703 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11704 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11705 if (!type) { 11706 type = PERF_TYPE_RAW; 11707 } else { 11708 extended_type = true; 11709 event->attr.config &= PERF_HW_EVENT_MASK; 11710 } 11711 } 11712 11713 again: 11714 rcu_read_lock(); 11715 pmu = idr_find(&pmu_idr, type); 11716 rcu_read_unlock(); 11717 if (pmu) { 11718 if (event->attr.type != type && type != PERF_TYPE_RAW && 11719 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11720 goto fail; 11721 11722 ret = perf_try_init_event(pmu, event); 11723 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11724 type = event->attr.type; 11725 goto again; 11726 } 11727 11728 if (ret) 11729 pmu = ERR_PTR(ret); 11730 11731 goto unlock; 11732 } 11733 11734 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11735 ret = perf_try_init_event(pmu, event); 11736 if (!ret) 11737 goto unlock; 11738 11739 if (ret != -ENOENT) { 11740 pmu = ERR_PTR(ret); 11741 goto unlock; 11742 } 11743 } 11744 fail: 11745 pmu = ERR_PTR(-ENOENT); 11746 unlock: 11747 srcu_read_unlock(&pmus_srcu, idx); 11748 11749 return pmu; 11750 } 11751 11752 static void attach_sb_event(struct perf_event *event) 11753 { 11754 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11755 11756 raw_spin_lock(&pel->lock); 11757 list_add_rcu(&event->sb_list, &pel->list); 11758 raw_spin_unlock(&pel->lock); 11759 } 11760 11761 /* 11762 * We keep a list of all !task (and therefore per-cpu) events 11763 * that need to receive side-band records. 11764 * 11765 * This avoids having to scan all the various PMU per-cpu contexts 11766 * looking for them. 11767 */ 11768 static void account_pmu_sb_event(struct perf_event *event) 11769 { 11770 if (is_sb_event(event)) 11771 attach_sb_event(event); 11772 } 11773 11774 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11775 static void account_freq_event_nohz(void) 11776 { 11777 #ifdef CONFIG_NO_HZ_FULL 11778 /* Lock so we don't race with concurrent unaccount */ 11779 spin_lock(&nr_freq_lock); 11780 if (atomic_inc_return(&nr_freq_events) == 1) 11781 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11782 spin_unlock(&nr_freq_lock); 11783 #endif 11784 } 11785 11786 static void account_freq_event(void) 11787 { 11788 if (tick_nohz_full_enabled()) 11789 account_freq_event_nohz(); 11790 else 11791 atomic_inc(&nr_freq_events); 11792 } 11793 11794 11795 static void account_event(struct perf_event *event) 11796 { 11797 bool inc = false; 11798 11799 if (event->parent) 11800 return; 11801 11802 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11803 inc = true; 11804 if (event->attr.mmap || event->attr.mmap_data) 11805 atomic_inc(&nr_mmap_events); 11806 if (event->attr.build_id) 11807 atomic_inc(&nr_build_id_events); 11808 if (event->attr.comm) 11809 atomic_inc(&nr_comm_events); 11810 if (event->attr.namespaces) 11811 atomic_inc(&nr_namespaces_events); 11812 if (event->attr.cgroup) 11813 atomic_inc(&nr_cgroup_events); 11814 if (event->attr.task) 11815 atomic_inc(&nr_task_events); 11816 if (event->attr.freq) 11817 account_freq_event(); 11818 if (event->attr.context_switch) { 11819 atomic_inc(&nr_switch_events); 11820 inc = true; 11821 } 11822 if (has_branch_stack(event)) 11823 inc = true; 11824 if (is_cgroup_event(event)) 11825 inc = true; 11826 if (event->attr.ksymbol) 11827 atomic_inc(&nr_ksymbol_events); 11828 if (event->attr.bpf_event) 11829 atomic_inc(&nr_bpf_events); 11830 if (event->attr.text_poke) 11831 atomic_inc(&nr_text_poke_events); 11832 11833 if (inc) { 11834 /* 11835 * We need the mutex here because static_branch_enable() 11836 * must complete *before* the perf_sched_count increment 11837 * becomes visible. 11838 */ 11839 if (atomic_inc_not_zero(&perf_sched_count)) 11840 goto enabled; 11841 11842 mutex_lock(&perf_sched_mutex); 11843 if (!atomic_read(&perf_sched_count)) { 11844 static_branch_enable(&perf_sched_events); 11845 /* 11846 * Guarantee that all CPUs observe they key change and 11847 * call the perf scheduling hooks before proceeding to 11848 * install events that need them. 11849 */ 11850 synchronize_rcu(); 11851 } 11852 /* 11853 * Now that we have waited for the sync_sched(), allow further 11854 * increments to by-pass the mutex. 11855 */ 11856 atomic_inc(&perf_sched_count); 11857 mutex_unlock(&perf_sched_mutex); 11858 } 11859 enabled: 11860 11861 account_pmu_sb_event(event); 11862 } 11863 11864 /* 11865 * Allocate and initialize an event structure 11866 */ 11867 static struct perf_event * 11868 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11869 struct task_struct *task, 11870 struct perf_event *group_leader, 11871 struct perf_event *parent_event, 11872 perf_overflow_handler_t overflow_handler, 11873 void *context, int cgroup_fd) 11874 { 11875 struct pmu *pmu; 11876 struct perf_event *event; 11877 struct hw_perf_event *hwc; 11878 long err = -EINVAL; 11879 int node; 11880 11881 if ((unsigned)cpu >= nr_cpu_ids) { 11882 if (!task || cpu != -1) 11883 return ERR_PTR(-EINVAL); 11884 } 11885 if (attr->sigtrap && !task) { 11886 /* Requires a task: avoid signalling random tasks. */ 11887 return ERR_PTR(-EINVAL); 11888 } 11889 11890 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11891 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11892 node); 11893 if (!event) 11894 return ERR_PTR(-ENOMEM); 11895 11896 /* 11897 * Single events are their own group leaders, with an 11898 * empty sibling list: 11899 */ 11900 if (!group_leader) 11901 group_leader = event; 11902 11903 mutex_init(&event->child_mutex); 11904 INIT_LIST_HEAD(&event->child_list); 11905 11906 INIT_LIST_HEAD(&event->event_entry); 11907 INIT_LIST_HEAD(&event->sibling_list); 11908 INIT_LIST_HEAD(&event->active_list); 11909 init_event_group(event); 11910 INIT_LIST_HEAD(&event->rb_entry); 11911 INIT_LIST_HEAD(&event->active_entry); 11912 INIT_LIST_HEAD(&event->addr_filters.list); 11913 INIT_HLIST_NODE(&event->hlist_entry); 11914 11915 11916 init_waitqueue_head(&event->waitq); 11917 init_irq_work(&event->pending_irq, perf_pending_irq); 11918 init_task_work(&event->pending_task, perf_pending_task); 11919 11920 mutex_init(&event->mmap_mutex); 11921 raw_spin_lock_init(&event->addr_filters.lock); 11922 11923 atomic_long_set(&event->refcount, 1); 11924 event->cpu = cpu; 11925 event->attr = *attr; 11926 event->group_leader = group_leader; 11927 event->pmu = NULL; 11928 event->oncpu = -1; 11929 11930 event->parent = parent_event; 11931 11932 event->ns = get_pid_ns(task_active_pid_ns(current)); 11933 event->id = atomic64_inc_return(&perf_event_id); 11934 11935 event->state = PERF_EVENT_STATE_INACTIVE; 11936 11937 if (parent_event) 11938 event->event_caps = parent_event->event_caps; 11939 11940 if (task) { 11941 event->attach_state = PERF_ATTACH_TASK; 11942 /* 11943 * XXX pmu::event_init needs to know what task to account to 11944 * and we cannot use the ctx information because we need the 11945 * pmu before we get a ctx. 11946 */ 11947 event->hw.target = get_task_struct(task); 11948 } 11949 11950 event->clock = &local_clock; 11951 if (parent_event) 11952 event->clock = parent_event->clock; 11953 11954 if (!overflow_handler && parent_event) { 11955 overflow_handler = parent_event->overflow_handler; 11956 context = parent_event->overflow_handler_context; 11957 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11958 if (overflow_handler == bpf_overflow_handler) { 11959 struct bpf_prog *prog = parent_event->prog; 11960 11961 bpf_prog_inc(prog); 11962 event->prog = prog; 11963 event->orig_overflow_handler = 11964 parent_event->orig_overflow_handler; 11965 } 11966 #endif 11967 } 11968 11969 if (overflow_handler) { 11970 event->overflow_handler = overflow_handler; 11971 event->overflow_handler_context = context; 11972 } else if (is_write_backward(event)){ 11973 event->overflow_handler = perf_event_output_backward; 11974 event->overflow_handler_context = NULL; 11975 } else { 11976 event->overflow_handler = perf_event_output_forward; 11977 event->overflow_handler_context = NULL; 11978 } 11979 11980 perf_event__state_init(event); 11981 11982 pmu = NULL; 11983 11984 hwc = &event->hw; 11985 hwc->sample_period = attr->sample_period; 11986 if (attr->freq && attr->sample_freq) 11987 hwc->sample_period = 1; 11988 hwc->last_period = hwc->sample_period; 11989 11990 local64_set(&hwc->period_left, hwc->sample_period); 11991 11992 /* 11993 * We currently do not support PERF_SAMPLE_READ on inherited events. 11994 * See perf_output_read(). 11995 */ 11996 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11997 goto err_ns; 11998 11999 if (!has_branch_stack(event)) 12000 event->attr.branch_sample_type = 0; 12001 12002 pmu = perf_init_event(event); 12003 if (IS_ERR(pmu)) { 12004 err = PTR_ERR(pmu); 12005 goto err_ns; 12006 } 12007 12008 /* 12009 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12010 * events (they don't make sense as the cgroup will be different 12011 * on other CPUs in the uncore mask). 12012 */ 12013 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12014 err = -EINVAL; 12015 goto err_pmu; 12016 } 12017 12018 if (event->attr.aux_output && 12019 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12020 err = -EOPNOTSUPP; 12021 goto err_pmu; 12022 } 12023 12024 if (cgroup_fd != -1) { 12025 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12026 if (err) 12027 goto err_pmu; 12028 } 12029 12030 err = exclusive_event_init(event); 12031 if (err) 12032 goto err_pmu; 12033 12034 if (has_addr_filter(event)) { 12035 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12036 sizeof(struct perf_addr_filter_range), 12037 GFP_KERNEL); 12038 if (!event->addr_filter_ranges) { 12039 err = -ENOMEM; 12040 goto err_per_task; 12041 } 12042 12043 /* 12044 * Clone the parent's vma offsets: they are valid until exec() 12045 * even if the mm is not shared with the parent. 12046 */ 12047 if (event->parent) { 12048 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12049 12050 raw_spin_lock_irq(&ifh->lock); 12051 memcpy(event->addr_filter_ranges, 12052 event->parent->addr_filter_ranges, 12053 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12054 raw_spin_unlock_irq(&ifh->lock); 12055 } 12056 12057 /* force hw sync on the address filters */ 12058 event->addr_filters_gen = 1; 12059 } 12060 12061 if (!event->parent) { 12062 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12063 err = get_callchain_buffers(attr->sample_max_stack); 12064 if (err) 12065 goto err_addr_filters; 12066 } 12067 } 12068 12069 err = security_perf_event_alloc(event); 12070 if (err) 12071 goto err_callchain_buffer; 12072 12073 /* symmetric to unaccount_event() in _free_event() */ 12074 account_event(event); 12075 12076 return event; 12077 12078 err_callchain_buffer: 12079 if (!event->parent) { 12080 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12081 put_callchain_buffers(); 12082 } 12083 err_addr_filters: 12084 kfree(event->addr_filter_ranges); 12085 12086 err_per_task: 12087 exclusive_event_destroy(event); 12088 12089 err_pmu: 12090 if (is_cgroup_event(event)) 12091 perf_detach_cgroup(event); 12092 if (event->destroy) 12093 event->destroy(event); 12094 module_put(pmu->module); 12095 err_ns: 12096 if (event->hw.target) 12097 put_task_struct(event->hw.target); 12098 call_rcu(&event->rcu_head, free_event_rcu); 12099 12100 return ERR_PTR(err); 12101 } 12102 12103 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12104 struct perf_event_attr *attr) 12105 { 12106 u32 size; 12107 int ret; 12108 12109 /* Zero the full structure, so that a short copy will be nice. */ 12110 memset(attr, 0, sizeof(*attr)); 12111 12112 ret = get_user(size, &uattr->size); 12113 if (ret) 12114 return ret; 12115 12116 /* ABI compatibility quirk: */ 12117 if (!size) 12118 size = PERF_ATTR_SIZE_VER0; 12119 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12120 goto err_size; 12121 12122 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12123 if (ret) { 12124 if (ret == -E2BIG) 12125 goto err_size; 12126 return ret; 12127 } 12128 12129 attr->size = size; 12130 12131 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12132 return -EINVAL; 12133 12134 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12135 return -EINVAL; 12136 12137 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12138 return -EINVAL; 12139 12140 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12141 u64 mask = attr->branch_sample_type; 12142 12143 /* only using defined bits */ 12144 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12145 return -EINVAL; 12146 12147 /* at least one branch bit must be set */ 12148 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12149 return -EINVAL; 12150 12151 /* propagate priv level, when not set for branch */ 12152 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12153 12154 /* exclude_kernel checked on syscall entry */ 12155 if (!attr->exclude_kernel) 12156 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12157 12158 if (!attr->exclude_user) 12159 mask |= PERF_SAMPLE_BRANCH_USER; 12160 12161 if (!attr->exclude_hv) 12162 mask |= PERF_SAMPLE_BRANCH_HV; 12163 /* 12164 * adjust user setting (for HW filter setup) 12165 */ 12166 attr->branch_sample_type = mask; 12167 } 12168 /* privileged levels capture (kernel, hv): check permissions */ 12169 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12170 ret = perf_allow_kernel(attr); 12171 if (ret) 12172 return ret; 12173 } 12174 } 12175 12176 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12177 ret = perf_reg_validate(attr->sample_regs_user); 12178 if (ret) 12179 return ret; 12180 } 12181 12182 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12183 if (!arch_perf_have_user_stack_dump()) 12184 return -ENOSYS; 12185 12186 /* 12187 * We have __u32 type for the size, but so far 12188 * we can only use __u16 as maximum due to the 12189 * __u16 sample size limit. 12190 */ 12191 if (attr->sample_stack_user >= USHRT_MAX) 12192 return -EINVAL; 12193 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12194 return -EINVAL; 12195 } 12196 12197 if (!attr->sample_max_stack) 12198 attr->sample_max_stack = sysctl_perf_event_max_stack; 12199 12200 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12201 ret = perf_reg_validate(attr->sample_regs_intr); 12202 12203 #ifndef CONFIG_CGROUP_PERF 12204 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12205 return -EINVAL; 12206 #endif 12207 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12208 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12209 return -EINVAL; 12210 12211 if (!attr->inherit && attr->inherit_thread) 12212 return -EINVAL; 12213 12214 if (attr->remove_on_exec && attr->enable_on_exec) 12215 return -EINVAL; 12216 12217 if (attr->sigtrap && !attr->remove_on_exec) 12218 return -EINVAL; 12219 12220 out: 12221 return ret; 12222 12223 err_size: 12224 put_user(sizeof(*attr), &uattr->size); 12225 ret = -E2BIG; 12226 goto out; 12227 } 12228 12229 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12230 { 12231 if (b < a) 12232 swap(a, b); 12233 12234 mutex_lock(a); 12235 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12236 } 12237 12238 static int 12239 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12240 { 12241 struct perf_buffer *rb = NULL; 12242 int ret = -EINVAL; 12243 12244 if (!output_event) { 12245 mutex_lock(&event->mmap_mutex); 12246 goto set; 12247 } 12248 12249 /* don't allow circular references */ 12250 if (event == output_event) 12251 goto out; 12252 12253 /* 12254 * Don't allow cross-cpu buffers 12255 */ 12256 if (output_event->cpu != event->cpu) 12257 goto out; 12258 12259 /* 12260 * If its not a per-cpu rb, it must be the same task. 12261 */ 12262 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12263 goto out; 12264 12265 /* 12266 * Mixing clocks in the same buffer is trouble you don't need. 12267 */ 12268 if (output_event->clock != event->clock) 12269 goto out; 12270 12271 /* 12272 * Either writing ring buffer from beginning or from end. 12273 * Mixing is not allowed. 12274 */ 12275 if (is_write_backward(output_event) != is_write_backward(event)) 12276 goto out; 12277 12278 /* 12279 * If both events generate aux data, they must be on the same PMU 12280 */ 12281 if (has_aux(event) && has_aux(output_event) && 12282 event->pmu != output_event->pmu) 12283 goto out; 12284 12285 /* 12286 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12287 * output_event is already on rb->event_list, and the list iteration 12288 * restarts after every removal, it is guaranteed this new event is 12289 * observed *OR* if output_event is already removed, it's guaranteed we 12290 * observe !rb->mmap_count. 12291 */ 12292 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12293 set: 12294 /* Can't redirect output if we've got an active mmap() */ 12295 if (atomic_read(&event->mmap_count)) 12296 goto unlock; 12297 12298 if (output_event) { 12299 /* get the rb we want to redirect to */ 12300 rb = ring_buffer_get(output_event); 12301 if (!rb) 12302 goto unlock; 12303 12304 /* did we race against perf_mmap_close() */ 12305 if (!atomic_read(&rb->mmap_count)) { 12306 ring_buffer_put(rb); 12307 goto unlock; 12308 } 12309 } 12310 12311 ring_buffer_attach(event, rb); 12312 12313 ret = 0; 12314 unlock: 12315 mutex_unlock(&event->mmap_mutex); 12316 if (output_event) 12317 mutex_unlock(&output_event->mmap_mutex); 12318 12319 out: 12320 return ret; 12321 } 12322 12323 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12324 { 12325 bool nmi_safe = false; 12326 12327 switch (clk_id) { 12328 case CLOCK_MONOTONIC: 12329 event->clock = &ktime_get_mono_fast_ns; 12330 nmi_safe = true; 12331 break; 12332 12333 case CLOCK_MONOTONIC_RAW: 12334 event->clock = &ktime_get_raw_fast_ns; 12335 nmi_safe = true; 12336 break; 12337 12338 case CLOCK_REALTIME: 12339 event->clock = &ktime_get_real_ns; 12340 break; 12341 12342 case CLOCK_BOOTTIME: 12343 event->clock = &ktime_get_boottime_ns; 12344 break; 12345 12346 case CLOCK_TAI: 12347 event->clock = &ktime_get_clocktai_ns; 12348 break; 12349 12350 default: 12351 return -EINVAL; 12352 } 12353 12354 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12355 return -EINVAL; 12356 12357 return 0; 12358 } 12359 12360 static bool 12361 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12362 { 12363 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12364 bool is_capable = perfmon_capable(); 12365 12366 if (attr->sigtrap) { 12367 /* 12368 * perf_event_attr::sigtrap sends signals to the other task. 12369 * Require the current task to also have CAP_KILL. 12370 */ 12371 rcu_read_lock(); 12372 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12373 rcu_read_unlock(); 12374 12375 /* 12376 * If the required capabilities aren't available, checks for 12377 * ptrace permissions: upgrade to ATTACH, since sending signals 12378 * can effectively change the target task. 12379 */ 12380 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12381 } 12382 12383 /* 12384 * Preserve ptrace permission check for backwards compatibility. The 12385 * ptrace check also includes checks that the current task and other 12386 * task have matching uids, and is therefore not done here explicitly. 12387 */ 12388 return is_capable || ptrace_may_access(task, ptrace_mode); 12389 } 12390 12391 /** 12392 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12393 * 12394 * @attr_uptr: event_id type attributes for monitoring/sampling 12395 * @pid: target pid 12396 * @cpu: target cpu 12397 * @group_fd: group leader event fd 12398 * @flags: perf event open flags 12399 */ 12400 SYSCALL_DEFINE5(perf_event_open, 12401 struct perf_event_attr __user *, attr_uptr, 12402 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12403 { 12404 struct perf_event *group_leader = NULL, *output_event = NULL; 12405 struct perf_event_pmu_context *pmu_ctx; 12406 struct perf_event *event, *sibling; 12407 struct perf_event_attr attr; 12408 struct perf_event_context *ctx; 12409 struct file *event_file = NULL; 12410 struct fd group = {NULL, 0}; 12411 struct task_struct *task = NULL; 12412 struct pmu *pmu; 12413 int event_fd; 12414 int move_group = 0; 12415 int err; 12416 int f_flags = O_RDWR; 12417 int cgroup_fd = -1; 12418 12419 /* for future expandability... */ 12420 if (flags & ~PERF_FLAG_ALL) 12421 return -EINVAL; 12422 12423 err = perf_copy_attr(attr_uptr, &attr); 12424 if (err) 12425 return err; 12426 12427 /* Do we allow access to perf_event_open(2) ? */ 12428 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12429 if (err) 12430 return err; 12431 12432 if (!attr.exclude_kernel) { 12433 err = perf_allow_kernel(&attr); 12434 if (err) 12435 return err; 12436 } 12437 12438 if (attr.namespaces) { 12439 if (!perfmon_capable()) 12440 return -EACCES; 12441 } 12442 12443 if (attr.freq) { 12444 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12445 return -EINVAL; 12446 } else { 12447 if (attr.sample_period & (1ULL << 63)) 12448 return -EINVAL; 12449 } 12450 12451 /* Only privileged users can get physical addresses */ 12452 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12453 err = perf_allow_kernel(&attr); 12454 if (err) 12455 return err; 12456 } 12457 12458 /* REGS_INTR can leak data, lockdown must prevent this */ 12459 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12460 err = security_locked_down(LOCKDOWN_PERF); 12461 if (err) 12462 return err; 12463 } 12464 12465 /* 12466 * In cgroup mode, the pid argument is used to pass the fd 12467 * opened to the cgroup directory in cgroupfs. The cpu argument 12468 * designates the cpu on which to monitor threads from that 12469 * cgroup. 12470 */ 12471 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12472 return -EINVAL; 12473 12474 if (flags & PERF_FLAG_FD_CLOEXEC) 12475 f_flags |= O_CLOEXEC; 12476 12477 event_fd = get_unused_fd_flags(f_flags); 12478 if (event_fd < 0) 12479 return event_fd; 12480 12481 if (group_fd != -1) { 12482 err = perf_fget_light(group_fd, &group); 12483 if (err) 12484 goto err_fd; 12485 group_leader = group.file->private_data; 12486 if (flags & PERF_FLAG_FD_OUTPUT) 12487 output_event = group_leader; 12488 if (flags & PERF_FLAG_FD_NO_GROUP) 12489 group_leader = NULL; 12490 } 12491 12492 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12493 task = find_lively_task_by_vpid(pid); 12494 if (IS_ERR(task)) { 12495 err = PTR_ERR(task); 12496 goto err_group_fd; 12497 } 12498 } 12499 12500 if (task && group_leader && 12501 group_leader->attr.inherit != attr.inherit) { 12502 err = -EINVAL; 12503 goto err_task; 12504 } 12505 12506 if (flags & PERF_FLAG_PID_CGROUP) 12507 cgroup_fd = pid; 12508 12509 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12510 NULL, NULL, cgroup_fd); 12511 if (IS_ERR(event)) { 12512 err = PTR_ERR(event); 12513 goto err_task; 12514 } 12515 12516 if (is_sampling_event(event)) { 12517 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12518 err = -EOPNOTSUPP; 12519 goto err_alloc; 12520 } 12521 } 12522 12523 /* 12524 * Special case software events and allow them to be part of 12525 * any hardware group. 12526 */ 12527 pmu = event->pmu; 12528 12529 if (attr.use_clockid) { 12530 err = perf_event_set_clock(event, attr.clockid); 12531 if (err) 12532 goto err_alloc; 12533 } 12534 12535 if (pmu->task_ctx_nr == perf_sw_context) 12536 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12537 12538 if (task) { 12539 err = down_read_interruptible(&task->signal->exec_update_lock); 12540 if (err) 12541 goto err_alloc; 12542 12543 /* 12544 * We must hold exec_update_lock across this and any potential 12545 * perf_install_in_context() call for this new event to 12546 * serialize against exec() altering our credentials (and the 12547 * perf_event_exit_task() that could imply). 12548 */ 12549 err = -EACCES; 12550 if (!perf_check_permission(&attr, task)) 12551 goto err_cred; 12552 } 12553 12554 /* 12555 * Get the target context (task or percpu): 12556 */ 12557 ctx = find_get_context(task, event); 12558 if (IS_ERR(ctx)) { 12559 err = PTR_ERR(ctx); 12560 goto err_cred; 12561 } 12562 12563 mutex_lock(&ctx->mutex); 12564 12565 if (ctx->task == TASK_TOMBSTONE) { 12566 err = -ESRCH; 12567 goto err_locked; 12568 } 12569 12570 if (!task) { 12571 /* 12572 * Check if the @cpu we're creating an event for is online. 12573 * 12574 * We use the perf_cpu_context::ctx::mutex to serialize against 12575 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12576 */ 12577 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12578 12579 if (!cpuctx->online) { 12580 err = -ENODEV; 12581 goto err_locked; 12582 } 12583 } 12584 12585 if (group_leader) { 12586 err = -EINVAL; 12587 12588 /* 12589 * Do not allow a recursive hierarchy (this new sibling 12590 * becoming part of another group-sibling): 12591 */ 12592 if (group_leader->group_leader != group_leader) 12593 goto err_locked; 12594 12595 /* All events in a group should have the same clock */ 12596 if (group_leader->clock != event->clock) 12597 goto err_locked; 12598 12599 /* 12600 * Make sure we're both events for the same CPU; 12601 * grouping events for different CPUs is broken; since 12602 * you can never concurrently schedule them anyhow. 12603 */ 12604 if (group_leader->cpu != event->cpu) 12605 goto err_locked; 12606 12607 /* 12608 * Make sure we're both on the same context; either task or cpu. 12609 */ 12610 if (group_leader->ctx != ctx) 12611 goto err_locked; 12612 12613 /* 12614 * Only a group leader can be exclusive or pinned 12615 */ 12616 if (attr.exclusive || attr.pinned) 12617 goto err_locked; 12618 12619 if (is_software_event(event) && 12620 !in_software_context(group_leader)) { 12621 /* 12622 * If the event is a sw event, but the group_leader 12623 * is on hw context. 12624 * 12625 * Allow the addition of software events to hw 12626 * groups, this is safe because software events 12627 * never fail to schedule. 12628 * 12629 * Note the comment that goes with struct 12630 * perf_event_pmu_context. 12631 */ 12632 pmu = group_leader->pmu_ctx->pmu; 12633 } else if (!is_software_event(event)) { 12634 if (is_software_event(group_leader) && 12635 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12636 /* 12637 * In case the group is a pure software group, and we 12638 * try to add a hardware event, move the whole group to 12639 * the hardware context. 12640 */ 12641 move_group = 1; 12642 } 12643 12644 /* Don't allow group of multiple hw events from different pmus */ 12645 if (!in_software_context(group_leader) && 12646 group_leader->pmu_ctx->pmu != pmu) 12647 goto err_locked; 12648 } 12649 } 12650 12651 /* 12652 * Now that we're certain of the pmu; find the pmu_ctx. 12653 */ 12654 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12655 if (IS_ERR(pmu_ctx)) { 12656 err = PTR_ERR(pmu_ctx); 12657 goto err_locked; 12658 } 12659 event->pmu_ctx = pmu_ctx; 12660 12661 if (output_event) { 12662 err = perf_event_set_output(event, output_event); 12663 if (err) 12664 goto err_context; 12665 } 12666 12667 if (!perf_event_validate_size(event)) { 12668 err = -E2BIG; 12669 goto err_context; 12670 } 12671 12672 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12673 err = -EINVAL; 12674 goto err_context; 12675 } 12676 12677 /* 12678 * Must be under the same ctx::mutex as perf_install_in_context(), 12679 * because we need to serialize with concurrent event creation. 12680 */ 12681 if (!exclusive_event_installable(event, ctx)) { 12682 err = -EBUSY; 12683 goto err_context; 12684 } 12685 12686 WARN_ON_ONCE(ctx->parent_ctx); 12687 12688 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12689 if (IS_ERR(event_file)) { 12690 err = PTR_ERR(event_file); 12691 event_file = NULL; 12692 goto err_context; 12693 } 12694 12695 /* 12696 * This is the point on no return; we cannot fail hereafter. This is 12697 * where we start modifying current state. 12698 */ 12699 12700 if (move_group) { 12701 perf_remove_from_context(group_leader, 0); 12702 put_pmu_ctx(group_leader->pmu_ctx); 12703 12704 for_each_sibling_event(sibling, group_leader) { 12705 perf_remove_from_context(sibling, 0); 12706 put_pmu_ctx(sibling->pmu_ctx); 12707 } 12708 12709 /* 12710 * Install the group siblings before the group leader. 12711 * 12712 * Because a group leader will try and install the entire group 12713 * (through the sibling list, which is still in-tact), we can 12714 * end up with siblings installed in the wrong context. 12715 * 12716 * By installing siblings first we NO-OP because they're not 12717 * reachable through the group lists. 12718 */ 12719 for_each_sibling_event(sibling, group_leader) { 12720 sibling->pmu_ctx = pmu_ctx; 12721 get_pmu_ctx(pmu_ctx); 12722 perf_event__state_init(sibling); 12723 perf_install_in_context(ctx, sibling, sibling->cpu); 12724 } 12725 12726 /* 12727 * Removing from the context ends up with disabled 12728 * event. What we want here is event in the initial 12729 * startup state, ready to be add into new context. 12730 */ 12731 group_leader->pmu_ctx = pmu_ctx; 12732 get_pmu_ctx(pmu_ctx); 12733 perf_event__state_init(group_leader); 12734 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12735 } 12736 12737 /* 12738 * Precalculate sample_data sizes; do while holding ctx::mutex such 12739 * that we're serialized against further additions and before 12740 * perf_install_in_context() which is the point the event is active and 12741 * can use these values. 12742 */ 12743 perf_event__header_size(event); 12744 perf_event__id_header_size(event); 12745 12746 event->owner = current; 12747 12748 perf_install_in_context(ctx, event, event->cpu); 12749 perf_unpin_context(ctx); 12750 12751 mutex_unlock(&ctx->mutex); 12752 12753 if (task) { 12754 up_read(&task->signal->exec_update_lock); 12755 put_task_struct(task); 12756 } 12757 12758 mutex_lock(¤t->perf_event_mutex); 12759 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12760 mutex_unlock(¤t->perf_event_mutex); 12761 12762 /* 12763 * Drop the reference on the group_event after placing the 12764 * new event on the sibling_list. This ensures destruction 12765 * of the group leader will find the pointer to itself in 12766 * perf_group_detach(). 12767 */ 12768 fdput(group); 12769 fd_install(event_fd, event_file); 12770 return event_fd; 12771 12772 err_context: 12773 put_pmu_ctx(event->pmu_ctx); 12774 event->pmu_ctx = NULL; /* _free_event() */ 12775 err_locked: 12776 mutex_unlock(&ctx->mutex); 12777 perf_unpin_context(ctx); 12778 put_ctx(ctx); 12779 err_cred: 12780 if (task) 12781 up_read(&task->signal->exec_update_lock); 12782 err_alloc: 12783 free_event(event); 12784 err_task: 12785 if (task) 12786 put_task_struct(task); 12787 err_group_fd: 12788 fdput(group); 12789 err_fd: 12790 put_unused_fd(event_fd); 12791 return err; 12792 } 12793 12794 /** 12795 * perf_event_create_kernel_counter 12796 * 12797 * @attr: attributes of the counter to create 12798 * @cpu: cpu in which the counter is bound 12799 * @task: task to profile (NULL for percpu) 12800 * @overflow_handler: callback to trigger when we hit the event 12801 * @context: context data could be used in overflow_handler callback 12802 */ 12803 struct perf_event * 12804 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12805 struct task_struct *task, 12806 perf_overflow_handler_t overflow_handler, 12807 void *context) 12808 { 12809 struct perf_event_pmu_context *pmu_ctx; 12810 struct perf_event_context *ctx; 12811 struct perf_event *event; 12812 struct pmu *pmu; 12813 int err; 12814 12815 /* 12816 * Grouping is not supported for kernel events, neither is 'AUX', 12817 * make sure the caller's intentions are adjusted. 12818 */ 12819 if (attr->aux_output) 12820 return ERR_PTR(-EINVAL); 12821 12822 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12823 overflow_handler, context, -1); 12824 if (IS_ERR(event)) { 12825 err = PTR_ERR(event); 12826 goto err; 12827 } 12828 12829 /* Mark owner so we could distinguish it from user events. */ 12830 event->owner = TASK_TOMBSTONE; 12831 pmu = event->pmu; 12832 12833 if (pmu->task_ctx_nr == perf_sw_context) 12834 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12835 12836 /* 12837 * Get the target context (task or percpu): 12838 */ 12839 ctx = find_get_context(task, event); 12840 if (IS_ERR(ctx)) { 12841 err = PTR_ERR(ctx); 12842 goto err_alloc; 12843 } 12844 12845 WARN_ON_ONCE(ctx->parent_ctx); 12846 mutex_lock(&ctx->mutex); 12847 if (ctx->task == TASK_TOMBSTONE) { 12848 err = -ESRCH; 12849 goto err_unlock; 12850 } 12851 12852 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12853 if (IS_ERR(pmu_ctx)) { 12854 err = PTR_ERR(pmu_ctx); 12855 goto err_unlock; 12856 } 12857 event->pmu_ctx = pmu_ctx; 12858 12859 if (!task) { 12860 /* 12861 * Check if the @cpu we're creating an event for is online. 12862 * 12863 * We use the perf_cpu_context::ctx::mutex to serialize against 12864 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12865 */ 12866 struct perf_cpu_context *cpuctx = 12867 container_of(ctx, struct perf_cpu_context, ctx); 12868 if (!cpuctx->online) { 12869 err = -ENODEV; 12870 goto err_pmu_ctx; 12871 } 12872 } 12873 12874 if (!exclusive_event_installable(event, ctx)) { 12875 err = -EBUSY; 12876 goto err_pmu_ctx; 12877 } 12878 12879 perf_install_in_context(ctx, event, event->cpu); 12880 perf_unpin_context(ctx); 12881 mutex_unlock(&ctx->mutex); 12882 12883 return event; 12884 12885 err_pmu_ctx: 12886 put_pmu_ctx(pmu_ctx); 12887 event->pmu_ctx = NULL; /* _free_event() */ 12888 err_unlock: 12889 mutex_unlock(&ctx->mutex); 12890 perf_unpin_context(ctx); 12891 put_ctx(ctx); 12892 err_alloc: 12893 free_event(event); 12894 err: 12895 return ERR_PTR(err); 12896 } 12897 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12898 12899 static void __perf_pmu_remove(struct perf_event_context *ctx, 12900 int cpu, struct pmu *pmu, 12901 struct perf_event_groups *groups, 12902 struct list_head *events) 12903 { 12904 struct perf_event *event, *sibling; 12905 12906 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12907 perf_remove_from_context(event, 0); 12908 put_pmu_ctx(event->pmu_ctx); 12909 list_add(&event->migrate_entry, events); 12910 12911 for_each_sibling_event(sibling, event) { 12912 perf_remove_from_context(sibling, 0); 12913 put_pmu_ctx(sibling->pmu_ctx); 12914 list_add(&sibling->migrate_entry, events); 12915 } 12916 } 12917 } 12918 12919 static void __perf_pmu_install_event(struct pmu *pmu, 12920 struct perf_event_context *ctx, 12921 int cpu, struct perf_event *event) 12922 { 12923 struct perf_event_pmu_context *epc; 12924 struct perf_event_context *old_ctx = event->ctx; 12925 12926 get_ctx(ctx); /* normally find_get_context() */ 12927 12928 event->cpu = cpu; 12929 epc = find_get_pmu_context(pmu, ctx, event); 12930 event->pmu_ctx = epc; 12931 12932 if (event->state >= PERF_EVENT_STATE_OFF) 12933 event->state = PERF_EVENT_STATE_INACTIVE; 12934 perf_install_in_context(ctx, event, cpu); 12935 12936 /* 12937 * Now that event->ctx is updated and visible, put the old ctx. 12938 */ 12939 put_ctx(old_ctx); 12940 } 12941 12942 static void __perf_pmu_install(struct perf_event_context *ctx, 12943 int cpu, struct pmu *pmu, struct list_head *events) 12944 { 12945 struct perf_event *event, *tmp; 12946 12947 /* 12948 * Re-instate events in 2 passes. 12949 * 12950 * Skip over group leaders and only install siblings on this first 12951 * pass, siblings will not get enabled without a leader, however a 12952 * leader will enable its siblings, even if those are still on the old 12953 * context. 12954 */ 12955 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12956 if (event->group_leader == event) 12957 continue; 12958 12959 list_del(&event->migrate_entry); 12960 __perf_pmu_install_event(pmu, ctx, cpu, event); 12961 } 12962 12963 /* 12964 * Once all the siblings are setup properly, install the group leaders 12965 * to make it go. 12966 */ 12967 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12968 list_del(&event->migrate_entry); 12969 __perf_pmu_install_event(pmu, ctx, cpu, event); 12970 } 12971 } 12972 12973 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12974 { 12975 struct perf_event_context *src_ctx, *dst_ctx; 12976 LIST_HEAD(events); 12977 12978 /* 12979 * Since per-cpu context is persistent, no need to grab an extra 12980 * reference. 12981 */ 12982 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12983 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12984 12985 /* 12986 * See perf_event_ctx_lock() for comments on the details 12987 * of swizzling perf_event::ctx. 12988 */ 12989 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12990 12991 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 12992 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 12993 12994 if (!list_empty(&events)) { 12995 /* 12996 * Wait for the events to quiesce before re-instating them. 12997 */ 12998 synchronize_rcu(); 12999 13000 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13001 } 13002 13003 mutex_unlock(&dst_ctx->mutex); 13004 mutex_unlock(&src_ctx->mutex); 13005 } 13006 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13007 13008 static void sync_child_event(struct perf_event *child_event) 13009 { 13010 struct perf_event *parent_event = child_event->parent; 13011 u64 child_val; 13012 13013 if (child_event->attr.inherit_stat) { 13014 struct task_struct *task = child_event->ctx->task; 13015 13016 if (task && task != TASK_TOMBSTONE) 13017 perf_event_read_event(child_event, task); 13018 } 13019 13020 child_val = perf_event_count(child_event); 13021 13022 /* 13023 * Add back the child's count to the parent's count: 13024 */ 13025 atomic64_add(child_val, &parent_event->child_count); 13026 atomic64_add(child_event->total_time_enabled, 13027 &parent_event->child_total_time_enabled); 13028 atomic64_add(child_event->total_time_running, 13029 &parent_event->child_total_time_running); 13030 } 13031 13032 static void 13033 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13034 { 13035 struct perf_event *parent_event = event->parent; 13036 unsigned long detach_flags = 0; 13037 13038 if (parent_event) { 13039 /* 13040 * Do not destroy the 'original' grouping; because of the 13041 * context switch optimization the original events could've 13042 * ended up in a random child task. 13043 * 13044 * If we were to destroy the original group, all group related 13045 * operations would cease to function properly after this 13046 * random child dies. 13047 * 13048 * Do destroy all inherited groups, we don't care about those 13049 * and being thorough is better. 13050 */ 13051 detach_flags = DETACH_GROUP | DETACH_CHILD; 13052 mutex_lock(&parent_event->child_mutex); 13053 } 13054 13055 perf_remove_from_context(event, detach_flags); 13056 13057 raw_spin_lock_irq(&ctx->lock); 13058 if (event->state > PERF_EVENT_STATE_EXIT) 13059 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13060 raw_spin_unlock_irq(&ctx->lock); 13061 13062 /* 13063 * Child events can be freed. 13064 */ 13065 if (parent_event) { 13066 mutex_unlock(&parent_event->child_mutex); 13067 /* 13068 * Kick perf_poll() for is_event_hup(); 13069 */ 13070 perf_event_wakeup(parent_event); 13071 free_event(event); 13072 put_event(parent_event); 13073 return; 13074 } 13075 13076 /* 13077 * Parent events are governed by their filedesc, retain them. 13078 */ 13079 perf_event_wakeup(event); 13080 } 13081 13082 static void perf_event_exit_task_context(struct task_struct *child) 13083 { 13084 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13085 struct perf_event *child_event, *next; 13086 13087 WARN_ON_ONCE(child != current); 13088 13089 child_ctx = perf_pin_task_context(child); 13090 if (!child_ctx) 13091 return; 13092 13093 /* 13094 * In order to reduce the amount of tricky in ctx tear-down, we hold 13095 * ctx::mutex over the entire thing. This serializes against almost 13096 * everything that wants to access the ctx. 13097 * 13098 * The exception is sys_perf_event_open() / 13099 * perf_event_create_kernel_count() which does find_get_context() 13100 * without ctx::mutex (it cannot because of the move_group double mutex 13101 * lock thing). See the comments in perf_install_in_context(). 13102 */ 13103 mutex_lock(&child_ctx->mutex); 13104 13105 /* 13106 * In a single ctx::lock section, de-schedule the events and detach the 13107 * context from the task such that we cannot ever get it scheduled back 13108 * in. 13109 */ 13110 raw_spin_lock_irq(&child_ctx->lock); 13111 task_ctx_sched_out(child_ctx, EVENT_ALL); 13112 13113 /* 13114 * Now that the context is inactive, destroy the task <-> ctx relation 13115 * and mark the context dead. 13116 */ 13117 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13118 put_ctx(child_ctx); /* cannot be last */ 13119 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13120 put_task_struct(current); /* cannot be last */ 13121 13122 clone_ctx = unclone_ctx(child_ctx); 13123 raw_spin_unlock_irq(&child_ctx->lock); 13124 13125 if (clone_ctx) 13126 put_ctx(clone_ctx); 13127 13128 /* 13129 * Report the task dead after unscheduling the events so that we 13130 * won't get any samples after PERF_RECORD_EXIT. We can however still 13131 * get a few PERF_RECORD_READ events. 13132 */ 13133 perf_event_task(child, child_ctx, 0); 13134 13135 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13136 perf_event_exit_event(child_event, child_ctx); 13137 13138 mutex_unlock(&child_ctx->mutex); 13139 13140 put_ctx(child_ctx); 13141 } 13142 13143 /* 13144 * When a child task exits, feed back event values to parent events. 13145 * 13146 * Can be called with exec_update_lock held when called from 13147 * setup_new_exec(). 13148 */ 13149 void perf_event_exit_task(struct task_struct *child) 13150 { 13151 struct perf_event *event, *tmp; 13152 13153 mutex_lock(&child->perf_event_mutex); 13154 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13155 owner_entry) { 13156 list_del_init(&event->owner_entry); 13157 13158 /* 13159 * Ensure the list deletion is visible before we clear 13160 * the owner, closes a race against perf_release() where 13161 * we need to serialize on the owner->perf_event_mutex. 13162 */ 13163 smp_store_release(&event->owner, NULL); 13164 } 13165 mutex_unlock(&child->perf_event_mutex); 13166 13167 perf_event_exit_task_context(child); 13168 13169 /* 13170 * The perf_event_exit_task_context calls perf_event_task 13171 * with child's task_ctx, which generates EXIT events for 13172 * child contexts and sets child->perf_event_ctxp[] to NULL. 13173 * At this point we need to send EXIT events to cpu contexts. 13174 */ 13175 perf_event_task(child, NULL, 0); 13176 } 13177 13178 static void perf_free_event(struct perf_event *event, 13179 struct perf_event_context *ctx) 13180 { 13181 struct perf_event *parent = event->parent; 13182 13183 if (WARN_ON_ONCE(!parent)) 13184 return; 13185 13186 mutex_lock(&parent->child_mutex); 13187 list_del_init(&event->child_list); 13188 mutex_unlock(&parent->child_mutex); 13189 13190 put_event(parent); 13191 13192 raw_spin_lock_irq(&ctx->lock); 13193 perf_group_detach(event); 13194 list_del_event(event, ctx); 13195 raw_spin_unlock_irq(&ctx->lock); 13196 free_event(event); 13197 } 13198 13199 /* 13200 * Free a context as created by inheritance by perf_event_init_task() below, 13201 * used by fork() in case of fail. 13202 * 13203 * Even though the task has never lived, the context and events have been 13204 * exposed through the child_list, so we must take care tearing it all down. 13205 */ 13206 void perf_event_free_task(struct task_struct *task) 13207 { 13208 struct perf_event_context *ctx; 13209 struct perf_event *event, *tmp; 13210 13211 ctx = rcu_access_pointer(task->perf_event_ctxp); 13212 if (!ctx) 13213 return; 13214 13215 mutex_lock(&ctx->mutex); 13216 raw_spin_lock_irq(&ctx->lock); 13217 /* 13218 * Destroy the task <-> ctx relation and mark the context dead. 13219 * 13220 * This is important because even though the task hasn't been 13221 * exposed yet the context has been (through child_list). 13222 */ 13223 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13224 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13225 put_task_struct(task); /* cannot be last */ 13226 raw_spin_unlock_irq(&ctx->lock); 13227 13228 13229 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13230 perf_free_event(event, ctx); 13231 13232 mutex_unlock(&ctx->mutex); 13233 13234 /* 13235 * perf_event_release_kernel() could've stolen some of our 13236 * child events and still have them on its free_list. In that 13237 * case we must wait for these events to have been freed (in 13238 * particular all their references to this task must've been 13239 * dropped). 13240 * 13241 * Without this copy_process() will unconditionally free this 13242 * task (irrespective of its reference count) and 13243 * _free_event()'s put_task_struct(event->hw.target) will be a 13244 * use-after-free. 13245 * 13246 * Wait for all events to drop their context reference. 13247 */ 13248 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13249 put_ctx(ctx); /* must be last */ 13250 } 13251 13252 void perf_event_delayed_put(struct task_struct *task) 13253 { 13254 WARN_ON_ONCE(task->perf_event_ctxp); 13255 } 13256 13257 struct file *perf_event_get(unsigned int fd) 13258 { 13259 struct file *file = fget(fd); 13260 if (!file) 13261 return ERR_PTR(-EBADF); 13262 13263 if (file->f_op != &perf_fops) { 13264 fput(file); 13265 return ERR_PTR(-EBADF); 13266 } 13267 13268 return file; 13269 } 13270 13271 const struct perf_event *perf_get_event(struct file *file) 13272 { 13273 if (file->f_op != &perf_fops) 13274 return ERR_PTR(-EINVAL); 13275 13276 return file->private_data; 13277 } 13278 13279 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13280 { 13281 if (!event) 13282 return ERR_PTR(-EINVAL); 13283 13284 return &event->attr; 13285 } 13286 13287 /* 13288 * Inherit an event from parent task to child task. 13289 * 13290 * Returns: 13291 * - valid pointer on success 13292 * - NULL for orphaned events 13293 * - IS_ERR() on error 13294 */ 13295 static struct perf_event * 13296 inherit_event(struct perf_event *parent_event, 13297 struct task_struct *parent, 13298 struct perf_event_context *parent_ctx, 13299 struct task_struct *child, 13300 struct perf_event *group_leader, 13301 struct perf_event_context *child_ctx) 13302 { 13303 enum perf_event_state parent_state = parent_event->state; 13304 struct perf_event_pmu_context *pmu_ctx; 13305 struct perf_event *child_event; 13306 unsigned long flags; 13307 13308 /* 13309 * Instead of creating recursive hierarchies of events, 13310 * we link inherited events back to the original parent, 13311 * which has a filp for sure, which we use as the reference 13312 * count: 13313 */ 13314 if (parent_event->parent) 13315 parent_event = parent_event->parent; 13316 13317 child_event = perf_event_alloc(&parent_event->attr, 13318 parent_event->cpu, 13319 child, 13320 group_leader, parent_event, 13321 NULL, NULL, -1); 13322 if (IS_ERR(child_event)) 13323 return child_event; 13324 13325 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13326 if (IS_ERR(pmu_ctx)) { 13327 free_event(child_event); 13328 return ERR_CAST(pmu_ctx); 13329 } 13330 child_event->pmu_ctx = pmu_ctx; 13331 13332 /* 13333 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13334 * must be under the same lock in order to serialize against 13335 * perf_event_release_kernel(), such that either we must observe 13336 * is_orphaned_event() or they will observe us on the child_list. 13337 */ 13338 mutex_lock(&parent_event->child_mutex); 13339 if (is_orphaned_event(parent_event) || 13340 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13341 mutex_unlock(&parent_event->child_mutex); 13342 /* task_ctx_data is freed with child_ctx */ 13343 free_event(child_event); 13344 return NULL; 13345 } 13346 13347 get_ctx(child_ctx); 13348 13349 /* 13350 * Make the child state follow the state of the parent event, 13351 * not its attr.disabled bit. We hold the parent's mutex, 13352 * so we won't race with perf_event_{en, dis}able_family. 13353 */ 13354 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13355 child_event->state = PERF_EVENT_STATE_INACTIVE; 13356 else 13357 child_event->state = PERF_EVENT_STATE_OFF; 13358 13359 if (parent_event->attr.freq) { 13360 u64 sample_period = parent_event->hw.sample_period; 13361 struct hw_perf_event *hwc = &child_event->hw; 13362 13363 hwc->sample_period = sample_period; 13364 hwc->last_period = sample_period; 13365 13366 local64_set(&hwc->period_left, sample_period); 13367 } 13368 13369 child_event->ctx = child_ctx; 13370 child_event->overflow_handler = parent_event->overflow_handler; 13371 child_event->overflow_handler_context 13372 = parent_event->overflow_handler_context; 13373 13374 /* 13375 * Precalculate sample_data sizes 13376 */ 13377 perf_event__header_size(child_event); 13378 perf_event__id_header_size(child_event); 13379 13380 /* 13381 * Link it up in the child's context: 13382 */ 13383 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13384 add_event_to_ctx(child_event, child_ctx); 13385 child_event->attach_state |= PERF_ATTACH_CHILD; 13386 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13387 13388 /* 13389 * Link this into the parent event's child list 13390 */ 13391 list_add_tail(&child_event->child_list, &parent_event->child_list); 13392 mutex_unlock(&parent_event->child_mutex); 13393 13394 return child_event; 13395 } 13396 13397 /* 13398 * Inherits an event group. 13399 * 13400 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13401 * This matches with perf_event_release_kernel() removing all child events. 13402 * 13403 * Returns: 13404 * - 0 on success 13405 * - <0 on error 13406 */ 13407 static int inherit_group(struct perf_event *parent_event, 13408 struct task_struct *parent, 13409 struct perf_event_context *parent_ctx, 13410 struct task_struct *child, 13411 struct perf_event_context *child_ctx) 13412 { 13413 struct perf_event *leader; 13414 struct perf_event *sub; 13415 struct perf_event *child_ctr; 13416 13417 leader = inherit_event(parent_event, parent, parent_ctx, 13418 child, NULL, child_ctx); 13419 if (IS_ERR(leader)) 13420 return PTR_ERR(leader); 13421 /* 13422 * @leader can be NULL here because of is_orphaned_event(). In this 13423 * case inherit_event() will create individual events, similar to what 13424 * perf_group_detach() would do anyway. 13425 */ 13426 for_each_sibling_event(sub, parent_event) { 13427 child_ctr = inherit_event(sub, parent, parent_ctx, 13428 child, leader, child_ctx); 13429 if (IS_ERR(child_ctr)) 13430 return PTR_ERR(child_ctr); 13431 13432 if (sub->aux_event == parent_event && child_ctr && 13433 !perf_get_aux_event(child_ctr, leader)) 13434 return -EINVAL; 13435 } 13436 if (leader) 13437 leader->group_generation = parent_event->group_generation; 13438 return 0; 13439 } 13440 13441 /* 13442 * Creates the child task context and tries to inherit the event-group. 13443 * 13444 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13445 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13446 * consistent with perf_event_release_kernel() removing all child events. 13447 * 13448 * Returns: 13449 * - 0 on success 13450 * - <0 on error 13451 */ 13452 static int 13453 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13454 struct perf_event_context *parent_ctx, 13455 struct task_struct *child, 13456 u64 clone_flags, int *inherited_all) 13457 { 13458 struct perf_event_context *child_ctx; 13459 int ret; 13460 13461 if (!event->attr.inherit || 13462 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13463 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13464 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13465 *inherited_all = 0; 13466 return 0; 13467 } 13468 13469 child_ctx = child->perf_event_ctxp; 13470 if (!child_ctx) { 13471 /* 13472 * This is executed from the parent task context, so 13473 * inherit events that have been marked for cloning. 13474 * First allocate and initialize a context for the 13475 * child. 13476 */ 13477 child_ctx = alloc_perf_context(child); 13478 if (!child_ctx) 13479 return -ENOMEM; 13480 13481 child->perf_event_ctxp = child_ctx; 13482 } 13483 13484 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13485 if (ret) 13486 *inherited_all = 0; 13487 13488 return ret; 13489 } 13490 13491 /* 13492 * Initialize the perf_event context in task_struct 13493 */ 13494 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13495 { 13496 struct perf_event_context *child_ctx, *parent_ctx; 13497 struct perf_event_context *cloned_ctx; 13498 struct perf_event *event; 13499 struct task_struct *parent = current; 13500 int inherited_all = 1; 13501 unsigned long flags; 13502 int ret = 0; 13503 13504 if (likely(!parent->perf_event_ctxp)) 13505 return 0; 13506 13507 /* 13508 * If the parent's context is a clone, pin it so it won't get 13509 * swapped under us. 13510 */ 13511 parent_ctx = perf_pin_task_context(parent); 13512 if (!parent_ctx) 13513 return 0; 13514 13515 /* 13516 * No need to check if parent_ctx != NULL here; since we saw 13517 * it non-NULL earlier, the only reason for it to become NULL 13518 * is if we exit, and since we're currently in the middle of 13519 * a fork we can't be exiting at the same time. 13520 */ 13521 13522 /* 13523 * Lock the parent list. No need to lock the child - not PID 13524 * hashed yet and not running, so nobody can access it. 13525 */ 13526 mutex_lock(&parent_ctx->mutex); 13527 13528 /* 13529 * We dont have to disable NMIs - we are only looking at 13530 * the list, not manipulating it: 13531 */ 13532 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13533 ret = inherit_task_group(event, parent, parent_ctx, 13534 child, clone_flags, &inherited_all); 13535 if (ret) 13536 goto out_unlock; 13537 } 13538 13539 /* 13540 * We can't hold ctx->lock when iterating the ->flexible_group list due 13541 * to allocations, but we need to prevent rotation because 13542 * rotate_ctx() will change the list from interrupt context. 13543 */ 13544 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13545 parent_ctx->rotate_disable = 1; 13546 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13547 13548 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13549 ret = inherit_task_group(event, parent, parent_ctx, 13550 child, clone_flags, &inherited_all); 13551 if (ret) 13552 goto out_unlock; 13553 } 13554 13555 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13556 parent_ctx->rotate_disable = 0; 13557 13558 child_ctx = child->perf_event_ctxp; 13559 13560 if (child_ctx && inherited_all) { 13561 /* 13562 * Mark the child context as a clone of the parent 13563 * context, or of whatever the parent is a clone of. 13564 * 13565 * Note that if the parent is a clone, the holding of 13566 * parent_ctx->lock avoids it from being uncloned. 13567 */ 13568 cloned_ctx = parent_ctx->parent_ctx; 13569 if (cloned_ctx) { 13570 child_ctx->parent_ctx = cloned_ctx; 13571 child_ctx->parent_gen = parent_ctx->parent_gen; 13572 } else { 13573 child_ctx->parent_ctx = parent_ctx; 13574 child_ctx->parent_gen = parent_ctx->generation; 13575 } 13576 get_ctx(child_ctx->parent_ctx); 13577 } 13578 13579 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13580 out_unlock: 13581 mutex_unlock(&parent_ctx->mutex); 13582 13583 perf_unpin_context(parent_ctx); 13584 put_ctx(parent_ctx); 13585 13586 return ret; 13587 } 13588 13589 /* 13590 * Initialize the perf_event context in task_struct 13591 */ 13592 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13593 { 13594 int ret; 13595 13596 child->perf_event_ctxp = NULL; 13597 mutex_init(&child->perf_event_mutex); 13598 INIT_LIST_HEAD(&child->perf_event_list); 13599 13600 ret = perf_event_init_context(child, clone_flags); 13601 if (ret) { 13602 perf_event_free_task(child); 13603 return ret; 13604 } 13605 13606 return 0; 13607 } 13608 13609 static void __init perf_event_init_all_cpus(void) 13610 { 13611 struct swevent_htable *swhash; 13612 struct perf_cpu_context *cpuctx; 13613 int cpu; 13614 13615 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13616 13617 for_each_possible_cpu(cpu) { 13618 swhash = &per_cpu(swevent_htable, cpu); 13619 mutex_init(&swhash->hlist_mutex); 13620 13621 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13622 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13623 13624 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13625 13626 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13627 __perf_event_init_context(&cpuctx->ctx); 13628 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13629 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13630 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13631 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13632 cpuctx->heap = cpuctx->heap_default; 13633 } 13634 } 13635 13636 static void perf_swevent_init_cpu(unsigned int cpu) 13637 { 13638 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13639 13640 mutex_lock(&swhash->hlist_mutex); 13641 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13642 struct swevent_hlist *hlist; 13643 13644 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13645 WARN_ON(!hlist); 13646 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13647 } 13648 mutex_unlock(&swhash->hlist_mutex); 13649 } 13650 13651 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13652 static void __perf_event_exit_context(void *__info) 13653 { 13654 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13655 struct perf_event_context *ctx = __info; 13656 struct perf_event *event; 13657 13658 raw_spin_lock(&ctx->lock); 13659 ctx_sched_out(ctx, EVENT_TIME); 13660 list_for_each_entry(event, &ctx->event_list, event_entry) 13661 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13662 raw_spin_unlock(&ctx->lock); 13663 } 13664 13665 static void perf_event_exit_cpu_context(int cpu) 13666 { 13667 struct perf_cpu_context *cpuctx; 13668 struct perf_event_context *ctx; 13669 13670 // XXX simplify cpuctx->online 13671 mutex_lock(&pmus_lock); 13672 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13673 ctx = &cpuctx->ctx; 13674 13675 mutex_lock(&ctx->mutex); 13676 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13677 cpuctx->online = 0; 13678 mutex_unlock(&ctx->mutex); 13679 cpumask_clear_cpu(cpu, perf_online_mask); 13680 mutex_unlock(&pmus_lock); 13681 } 13682 #else 13683 13684 static void perf_event_exit_cpu_context(int cpu) { } 13685 13686 #endif 13687 13688 int perf_event_init_cpu(unsigned int cpu) 13689 { 13690 struct perf_cpu_context *cpuctx; 13691 struct perf_event_context *ctx; 13692 13693 perf_swevent_init_cpu(cpu); 13694 13695 mutex_lock(&pmus_lock); 13696 cpumask_set_cpu(cpu, perf_online_mask); 13697 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13698 ctx = &cpuctx->ctx; 13699 13700 mutex_lock(&ctx->mutex); 13701 cpuctx->online = 1; 13702 mutex_unlock(&ctx->mutex); 13703 mutex_unlock(&pmus_lock); 13704 13705 return 0; 13706 } 13707 13708 int perf_event_exit_cpu(unsigned int cpu) 13709 { 13710 perf_event_exit_cpu_context(cpu); 13711 return 0; 13712 } 13713 13714 static int 13715 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13716 { 13717 int cpu; 13718 13719 for_each_online_cpu(cpu) 13720 perf_event_exit_cpu(cpu); 13721 13722 return NOTIFY_OK; 13723 } 13724 13725 /* 13726 * Run the perf reboot notifier at the very last possible moment so that 13727 * the generic watchdog code runs as long as possible. 13728 */ 13729 static struct notifier_block perf_reboot_notifier = { 13730 .notifier_call = perf_reboot, 13731 .priority = INT_MIN, 13732 }; 13733 13734 void __init perf_event_init(void) 13735 { 13736 int ret; 13737 13738 idr_init(&pmu_idr); 13739 13740 perf_event_init_all_cpus(); 13741 init_srcu_struct(&pmus_srcu); 13742 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13743 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13744 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13745 perf_tp_register(); 13746 perf_event_init_cpu(smp_processor_id()); 13747 register_reboot_notifier(&perf_reboot_notifier); 13748 13749 ret = init_hw_breakpoint(); 13750 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13751 13752 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13753 13754 /* 13755 * Build time assertion that we keep the data_head at the intended 13756 * location. IOW, validation we got the __reserved[] size right. 13757 */ 13758 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13759 != 1024); 13760 } 13761 13762 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13763 char *page) 13764 { 13765 struct perf_pmu_events_attr *pmu_attr = 13766 container_of(attr, struct perf_pmu_events_attr, attr); 13767 13768 if (pmu_attr->event_str) 13769 return sprintf(page, "%s\n", pmu_attr->event_str); 13770 13771 return 0; 13772 } 13773 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13774 13775 static int __init perf_event_sysfs_init(void) 13776 { 13777 struct pmu *pmu; 13778 int ret; 13779 13780 mutex_lock(&pmus_lock); 13781 13782 ret = bus_register(&pmu_bus); 13783 if (ret) 13784 goto unlock; 13785 13786 list_for_each_entry(pmu, &pmus, entry) { 13787 if (pmu->dev) 13788 continue; 13789 13790 ret = pmu_dev_alloc(pmu); 13791 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13792 } 13793 pmu_bus_running = 1; 13794 ret = 0; 13795 13796 unlock: 13797 mutex_unlock(&pmus_lock); 13798 13799 return ret; 13800 } 13801 device_initcall(perf_event_sysfs_init); 13802 13803 #ifdef CONFIG_CGROUP_PERF 13804 static struct cgroup_subsys_state * 13805 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13806 { 13807 struct perf_cgroup *jc; 13808 13809 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13810 if (!jc) 13811 return ERR_PTR(-ENOMEM); 13812 13813 jc->info = alloc_percpu(struct perf_cgroup_info); 13814 if (!jc->info) { 13815 kfree(jc); 13816 return ERR_PTR(-ENOMEM); 13817 } 13818 13819 return &jc->css; 13820 } 13821 13822 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13823 { 13824 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13825 13826 free_percpu(jc->info); 13827 kfree(jc); 13828 } 13829 13830 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13831 { 13832 perf_event_cgroup(css->cgroup); 13833 return 0; 13834 } 13835 13836 static int __perf_cgroup_move(void *info) 13837 { 13838 struct task_struct *task = info; 13839 13840 preempt_disable(); 13841 perf_cgroup_switch(task); 13842 preempt_enable(); 13843 13844 return 0; 13845 } 13846 13847 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13848 { 13849 struct task_struct *task; 13850 struct cgroup_subsys_state *css; 13851 13852 cgroup_taskset_for_each(task, css, tset) 13853 task_function_call(task, __perf_cgroup_move, task); 13854 } 13855 13856 struct cgroup_subsys perf_event_cgrp_subsys = { 13857 .css_alloc = perf_cgroup_css_alloc, 13858 .css_free = perf_cgroup_css_free, 13859 .css_online = perf_cgroup_css_online, 13860 .attach = perf_cgroup_attach, 13861 /* 13862 * Implicitly enable on dfl hierarchy so that perf events can 13863 * always be filtered by cgroup2 path as long as perf_event 13864 * controller is not mounted on a legacy hierarchy. 13865 */ 13866 .implicit_on_dfl = true, 13867 .threaded = true, 13868 }; 13869 #endif /* CONFIG_CGROUP_PERF */ 13870 13871 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13872