xref: /openbmc/linux/kernel/events/core.c (revision efe4a1ac)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	WARN_ON_ONCE(!irqs_disabled());
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	WARN_ON_ONCE(!irqs_disabled());
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 
393 /*
394  * perf event paranoia level:
395  *  -1 - not paranoid at all
396  *   0 - disallow raw tracepoint access for unpriv
397  *   1 - disallow cpu events for unpriv
398  *   2 - disallow kernel profiling for unpriv
399  */
400 int sysctl_perf_event_paranoid __read_mostly = 2;
401 
402 /* Minimum for 512 kiB + 1 user control page */
403 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
404 
405 /*
406  * max perf event sample rate
407  */
408 #define DEFAULT_MAX_SAMPLE_RATE		100000
409 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
410 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
411 
412 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
413 
414 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
415 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
416 
417 static int perf_sample_allowed_ns __read_mostly =
418 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
419 
420 static void update_perf_cpu_limits(void)
421 {
422 	u64 tmp = perf_sample_period_ns;
423 
424 	tmp *= sysctl_perf_cpu_time_max_percent;
425 	tmp = div_u64(tmp, 100);
426 	if (!tmp)
427 		tmp = 1;
428 
429 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
430 }
431 
432 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
433 
434 int perf_proc_update_handler(struct ctl_table *table, int write,
435 		void __user *buffer, size_t *lenp,
436 		loff_t *ppos)
437 {
438 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
439 
440 	if (ret || !write)
441 		return ret;
442 
443 	/*
444 	 * If throttling is disabled don't allow the write:
445 	 */
446 	if (sysctl_perf_cpu_time_max_percent == 100 ||
447 	    sysctl_perf_cpu_time_max_percent == 0)
448 		return -EINVAL;
449 
450 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
451 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
452 	update_perf_cpu_limits();
453 
454 	return 0;
455 }
456 
457 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
458 
459 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
460 				void __user *buffer, size_t *lenp,
461 				loff_t *ppos)
462 {
463 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 
465 	if (ret || !write)
466 		return ret;
467 
468 	if (sysctl_perf_cpu_time_max_percent == 100 ||
469 	    sysctl_perf_cpu_time_max_percent == 0) {
470 		printk(KERN_WARNING
471 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
472 		WRITE_ONCE(perf_sample_allowed_ns, 0);
473 	} else {
474 		update_perf_cpu_limits();
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * perf samples are done in some very critical code paths (NMIs).
482  * If they take too much CPU time, the system can lock up and not
483  * get any real work done.  This will drop the sample rate when
484  * we detect that events are taking too long.
485  */
486 #define NR_ACCUMULATED_SAMPLES 128
487 static DEFINE_PER_CPU(u64, running_sample_length);
488 
489 static u64 __report_avg;
490 static u64 __report_allowed;
491 
492 static void perf_duration_warn(struct irq_work *w)
493 {
494 	printk_ratelimited(KERN_INFO
495 		"perf: interrupt took too long (%lld > %lld), lowering "
496 		"kernel.perf_event_max_sample_rate to %d\n",
497 		__report_avg, __report_allowed,
498 		sysctl_perf_event_sample_rate);
499 }
500 
501 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
502 
503 void perf_sample_event_took(u64 sample_len_ns)
504 {
505 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
506 	u64 running_len;
507 	u64 avg_len;
508 	u32 max;
509 
510 	if (max_len == 0)
511 		return;
512 
513 	/* Decay the counter by 1 average sample. */
514 	running_len = __this_cpu_read(running_sample_length);
515 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
516 	running_len += sample_len_ns;
517 	__this_cpu_write(running_sample_length, running_len);
518 
519 	/*
520 	 * Note: this will be biased artifically low until we have
521 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
522 	 * from having to maintain a count.
523 	 */
524 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
525 	if (avg_len <= max_len)
526 		return;
527 
528 	__report_avg = avg_len;
529 	__report_allowed = max_len;
530 
531 	/*
532 	 * Compute a throttle threshold 25% below the current duration.
533 	 */
534 	avg_len += avg_len / 4;
535 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
536 	if (avg_len < max)
537 		max /= (u32)avg_len;
538 	else
539 		max = 1;
540 
541 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
542 	WRITE_ONCE(max_samples_per_tick, max);
543 
544 	sysctl_perf_event_sample_rate = max * HZ;
545 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
546 
547 	if (!irq_work_queue(&perf_duration_work)) {
548 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
549 			     "kernel.perf_event_max_sample_rate to %d\n",
550 			     __report_avg, __report_allowed,
551 			     sysctl_perf_event_sample_rate);
552 	}
553 }
554 
555 static atomic64_t perf_event_id;
556 
557 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
558 			      enum event_type_t event_type);
559 
560 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
561 			     enum event_type_t event_type,
562 			     struct task_struct *task);
563 
564 static void update_context_time(struct perf_event_context *ctx);
565 static u64 perf_event_time(struct perf_event *event);
566 
567 void __weak perf_event_print_debug(void)	{ }
568 
569 extern __weak const char *perf_pmu_name(void)
570 {
571 	return "pmu";
572 }
573 
574 static inline u64 perf_clock(void)
575 {
576 	return local_clock();
577 }
578 
579 static inline u64 perf_event_clock(struct perf_event *event)
580 {
581 	return event->clock();
582 }
583 
584 #ifdef CONFIG_CGROUP_PERF
585 
586 static inline bool
587 perf_cgroup_match(struct perf_event *event)
588 {
589 	struct perf_event_context *ctx = event->ctx;
590 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
591 
592 	/* @event doesn't care about cgroup */
593 	if (!event->cgrp)
594 		return true;
595 
596 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
597 	if (!cpuctx->cgrp)
598 		return false;
599 
600 	/*
601 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
602 	 * also enabled for all its descendant cgroups.  If @cpuctx's
603 	 * cgroup is a descendant of @event's (the test covers identity
604 	 * case), it's a match.
605 	 */
606 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
607 				    event->cgrp->css.cgroup);
608 }
609 
610 static inline void perf_detach_cgroup(struct perf_event *event)
611 {
612 	css_put(&event->cgrp->css);
613 	event->cgrp = NULL;
614 }
615 
616 static inline int is_cgroup_event(struct perf_event *event)
617 {
618 	return event->cgrp != NULL;
619 }
620 
621 static inline u64 perf_cgroup_event_time(struct perf_event *event)
622 {
623 	struct perf_cgroup_info *t;
624 
625 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
626 	return t->time;
627 }
628 
629 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
630 {
631 	struct perf_cgroup_info *info;
632 	u64 now;
633 
634 	now = perf_clock();
635 
636 	info = this_cpu_ptr(cgrp->info);
637 
638 	info->time += now - info->timestamp;
639 	info->timestamp = now;
640 }
641 
642 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
643 {
644 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
645 	if (cgrp_out)
646 		__update_cgrp_time(cgrp_out);
647 }
648 
649 static inline void update_cgrp_time_from_event(struct perf_event *event)
650 {
651 	struct perf_cgroup *cgrp;
652 
653 	/*
654 	 * ensure we access cgroup data only when needed and
655 	 * when we know the cgroup is pinned (css_get)
656 	 */
657 	if (!is_cgroup_event(event))
658 		return;
659 
660 	cgrp = perf_cgroup_from_task(current, event->ctx);
661 	/*
662 	 * Do not update time when cgroup is not active
663 	 */
664 	if (cgrp == event->cgrp)
665 		__update_cgrp_time(event->cgrp);
666 }
667 
668 static inline void
669 perf_cgroup_set_timestamp(struct task_struct *task,
670 			  struct perf_event_context *ctx)
671 {
672 	struct perf_cgroup *cgrp;
673 	struct perf_cgroup_info *info;
674 
675 	/*
676 	 * ctx->lock held by caller
677 	 * ensure we do not access cgroup data
678 	 * unless we have the cgroup pinned (css_get)
679 	 */
680 	if (!task || !ctx->nr_cgroups)
681 		return;
682 
683 	cgrp = perf_cgroup_from_task(task, ctx);
684 	info = this_cpu_ptr(cgrp->info);
685 	info->timestamp = ctx->timestamp;
686 }
687 
688 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
689 
690 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
691 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
692 
693 /*
694  * reschedule events based on the cgroup constraint of task.
695  *
696  * mode SWOUT : schedule out everything
697  * mode SWIN : schedule in based on cgroup for next
698  */
699 static void perf_cgroup_switch(struct task_struct *task, int mode)
700 {
701 	struct perf_cpu_context *cpuctx;
702 	struct list_head *list;
703 	unsigned long flags;
704 
705 	/*
706 	 * Disable interrupts and preemption to avoid this CPU's
707 	 * cgrp_cpuctx_entry to change under us.
708 	 */
709 	local_irq_save(flags);
710 
711 	list = this_cpu_ptr(&cgrp_cpuctx_list);
712 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
713 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
714 
715 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
716 		perf_pmu_disable(cpuctx->ctx.pmu);
717 
718 		if (mode & PERF_CGROUP_SWOUT) {
719 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
720 			/*
721 			 * must not be done before ctxswout due
722 			 * to event_filter_match() in event_sched_out()
723 			 */
724 			cpuctx->cgrp = NULL;
725 		}
726 
727 		if (mode & PERF_CGROUP_SWIN) {
728 			WARN_ON_ONCE(cpuctx->cgrp);
729 			/*
730 			 * set cgrp before ctxsw in to allow
731 			 * event_filter_match() to not have to pass
732 			 * task around
733 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
734 			 * because cgorup events are only per-cpu
735 			 */
736 			cpuctx->cgrp = perf_cgroup_from_task(task,
737 							     &cpuctx->ctx);
738 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
739 		}
740 		perf_pmu_enable(cpuctx->ctx.pmu);
741 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
742 	}
743 
744 	local_irq_restore(flags);
745 }
746 
747 static inline void perf_cgroup_sched_out(struct task_struct *task,
748 					 struct task_struct *next)
749 {
750 	struct perf_cgroup *cgrp1;
751 	struct perf_cgroup *cgrp2 = NULL;
752 
753 	rcu_read_lock();
754 	/*
755 	 * we come here when we know perf_cgroup_events > 0
756 	 * we do not need to pass the ctx here because we know
757 	 * we are holding the rcu lock
758 	 */
759 	cgrp1 = perf_cgroup_from_task(task, NULL);
760 	cgrp2 = perf_cgroup_from_task(next, NULL);
761 
762 	/*
763 	 * only schedule out current cgroup events if we know
764 	 * that we are switching to a different cgroup. Otherwise,
765 	 * do no touch the cgroup events.
766 	 */
767 	if (cgrp1 != cgrp2)
768 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
769 
770 	rcu_read_unlock();
771 }
772 
773 static inline void perf_cgroup_sched_in(struct task_struct *prev,
774 					struct task_struct *task)
775 {
776 	struct perf_cgroup *cgrp1;
777 	struct perf_cgroup *cgrp2 = NULL;
778 
779 	rcu_read_lock();
780 	/*
781 	 * we come here when we know perf_cgroup_events > 0
782 	 * we do not need to pass the ctx here because we know
783 	 * we are holding the rcu lock
784 	 */
785 	cgrp1 = perf_cgroup_from_task(task, NULL);
786 	cgrp2 = perf_cgroup_from_task(prev, NULL);
787 
788 	/*
789 	 * only need to schedule in cgroup events if we are changing
790 	 * cgroup during ctxsw. Cgroup events were not scheduled
791 	 * out of ctxsw out if that was not the case.
792 	 */
793 	if (cgrp1 != cgrp2)
794 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
795 
796 	rcu_read_unlock();
797 }
798 
799 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
800 				      struct perf_event_attr *attr,
801 				      struct perf_event *group_leader)
802 {
803 	struct perf_cgroup *cgrp;
804 	struct cgroup_subsys_state *css;
805 	struct fd f = fdget(fd);
806 	int ret = 0;
807 
808 	if (!f.file)
809 		return -EBADF;
810 
811 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
812 					 &perf_event_cgrp_subsys);
813 	if (IS_ERR(css)) {
814 		ret = PTR_ERR(css);
815 		goto out;
816 	}
817 
818 	cgrp = container_of(css, struct perf_cgroup, css);
819 	event->cgrp = cgrp;
820 
821 	/*
822 	 * all events in a group must monitor
823 	 * the same cgroup because a task belongs
824 	 * to only one perf cgroup at a time
825 	 */
826 	if (group_leader && group_leader->cgrp != cgrp) {
827 		perf_detach_cgroup(event);
828 		ret = -EINVAL;
829 	}
830 out:
831 	fdput(f);
832 	return ret;
833 }
834 
835 static inline void
836 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
837 {
838 	struct perf_cgroup_info *t;
839 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
840 	event->shadow_ctx_time = now - t->timestamp;
841 }
842 
843 static inline void
844 perf_cgroup_defer_enabled(struct perf_event *event)
845 {
846 	/*
847 	 * when the current task's perf cgroup does not match
848 	 * the event's, we need to remember to call the
849 	 * perf_mark_enable() function the first time a task with
850 	 * a matching perf cgroup is scheduled in.
851 	 */
852 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
853 		event->cgrp_defer_enabled = 1;
854 }
855 
856 static inline void
857 perf_cgroup_mark_enabled(struct perf_event *event,
858 			 struct perf_event_context *ctx)
859 {
860 	struct perf_event *sub;
861 	u64 tstamp = perf_event_time(event);
862 
863 	if (!event->cgrp_defer_enabled)
864 		return;
865 
866 	event->cgrp_defer_enabled = 0;
867 
868 	event->tstamp_enabled = tstamp - event->total_time_enabled;
869 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
870 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
871 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
872 			sub->cgrp_defer_enabled = 0;
873 		}
874 	}
875 }
876 
877 /*
878  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
879  * cleared when last cgroup event is removed.
880  */
881 static inline void
882 list_update_cgroup_event(struct perf_event *event,
883 			 struct perf_event_context *ctx, bool add)
884 {
885 	struct perf_cpu_context *cpuctx;
886 	struct list_head *cpuctx_entry;
887 
888 	if (!is_cgroup_event(event))
889 		return;
890 
891 	if (add && ctx->nr_cgroups++)
892 		return;
893 	else if (!add && --ctx->nr_cgroups)
894 		return;
895 	/*
896 	 * Because cgroup events are always per-cpu events,
897 	 * this will always be called from the right CPU.
898 	 */
899 	cpuctx = __get_cpu_context(ctx);
900 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
901 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
902 	if (add) {
903 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
904 		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
905 			cpuctx->cgrp = event->cgrp;
906 	} else {
907 		list_del(cpuctx_entry);
908 		cpuctx->cgrp = NULL;
909 	}
910 }
911 
912 #else /* !CONFIG_CGROUP_PERF */
913 
914 static inline bool
915 perf_cgroup_match(struct perf_event *event)
916 {
917 	return true;
918 }
919 
920 static inline void perf_detach_cgroup(struct perf_event *event)
921 {}
922 
923 static inline int is_cgroup_event(struct perf_event *event)
924 {
925 	return 0;
926 }
927 
928 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
929 {
930 	return 0;
931 }
932 
933 static inline void update_cgrp_time_from_event(struct perf_event *event)
934 {
935 }
936 
937 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
938 {
939 }
940 
941 static inline void perf_cgroup_sched_out(struct task_struct *task,
942 					 struct task_struct *next)
943 {
944 }
945 
946 static inline void perf_cgroup_sched_in(struct task_struct *prev,
947 					struct task_struct *task)
948 {
949 }
950 
951 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
952 				      struct perf_event_attr *attr,
953 				      struct perf_event *group_leader)
954 {
955 	return -EINVAL;
956 }
957 
958 static inline void
959 perf_cgroup_set_timestamp(struct task_struct *task,
960 			  struct perf_event_context *ctx)
961 {
962 }
963 
964 void
965 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
966 {
967 }
968 
969 static inline void
970 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
971 {
972 }
973 
974 static inline u64 perf_cgroup_event_time(struct perf_event *event)
975 {
976 	return 0;
977 }
978 
979 static inline void
980 perf_cgroup_defer_enabled(struct perf_event *event)
981 {
982 }
983 
984 static inline void
985 perf_cgroup_mark_enabled(struct perf_event *event,
986 			 struct perf_event_context *ctx)
987 {
988 }
989 
990 static inline void
991 list_update_cgroup_event(struct perf_event *event,
992 			 struct perf_event_context *ctx, bool add)
993 {
994 }
995 
996 #endif
997 
998 /*
999  * set default to be dependent on timer tick just
1000  * like original code
1001  */
1002 #define PERF_CPU_HRTIMER (1000 / HZ)
1003 /*
1004  * function must be called with interrupts disabled
1005  */
1006 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1007 {
1008 	struct perf_cpu_context *cpuctx;
1009 	int rotations = 0;
1010 
1011 	WARN_ON(!irqs_disabled());
1012 
1013 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1014 	rotations = perf_rotate_context(cpuctx);
1015 
1016 	raw_spin_lock(&cpuctx->hrtimer_lock);
1017 	if (rotations)
1018 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1019 	else
1020 		cpuctx->hrtimer_active = 0;
1021 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1022 
1023 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1024 }
1025 
1026 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1027 {
1028 	struct hrtimer *timer = &cpuctx->hrtimer;
1029 	struct pmu *pmu = cpuctx->ctx.pmu;
1030 	u64 interval;
1031 
1032 	/* no multiplexing needed for SW PMU */
1033 	if (pmu->task_ctx_nr == perf_sw_context)
1034 		return;
1035 
1036 	/*
1037 	 * check default is sane, if not set then force to
1038 	 * default interval (1/tick)
1039 	 */
1040 	interval = pmu->hrtimer_interval_ms;
1041 	if (interval < 1)
1042 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1043 
1044 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1045 
1046 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1047 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1048 	timer->function = perf_mux_hrtimer_handler;
1049 }
1050 
1051 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1052 {
1053 	struct hrtimer *timer = &cpuctx->hrtimer;
1054 	struct pmu *pmu = cpuctx->ctx.pmu;
1055 	unsigned long flags;
1056 
1057 	/* not for SW PMU */
1058 	if (pmu->task_ctx_nr == perf_sw_context)
1059 		return 0;
1060 
1061 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1062 	if (!cpuctx->hrtimer_active) {
1063 		cpuctx->hrtimer_active = 1;
1064 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1065 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1066 	}
1067 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1068 
1069 	return 0;
1070 }
1071 
1072 void perf_pmu_disable(struct pmu *pmu)
1073 {
1074 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1075 	if (!(*count)++)
1076 		pmu->pmu_disable(pmu);
1077 }
1078 
1079 void perf_pmu_enable(struct pmu *pmu)
1080 {
1081 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1082 	if (!--(*count))
1083 		pmu->pmu_enable(pmu);
1084 }
1085 
1086 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1087 
1088 /*
1089  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1090  * perf_event_task_tick() are fully serialized because they're strictly cpu
1091  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1092  * disabled, while perf_event_task_tick is called from IRQ context.
1093  */
1094 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1095 {
1096 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1097 
1098 	WARN_ON(!irqs_disabled());
1099 
1100 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1101 
1102 	list_add(&ctx->active_ctx_list, head);
1103 }
1104 
1105 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1106 {
1107 	WARN_ON(!irqs_disabled());
1108 
1109 	WARN_ON(list_empty(&ctx->active_ctx_list));
1110 
1111 	list_del_init(&ctx->active_ctx_list);
1112 }
1113 
1114 static void get_ctx(struct perf_event_context *ctx)
1115 {
1116 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1117 }
1118 
1119 static void free_ctx(struct rcu_head *head)
1120 {
1121 	struct perf_event_context *ctx;
1122 
1123 	ctx = container_of(head, struct perf_event_context, rcu_head);
1124 	kfree(ctx->task_ctx_data);
1125 	kfree(ctx);
1126 }
1127 
1128 static void put_ctx(struct perf_event_context *ctx)
1129 {
1130 	if (atomic_dec_and_test(&ctx->refcount)) {
1131 		if (ctx->parent_ctx)
1132 			put_ctx(ctx->parent_ctx);
1133 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1134 			put_task_struct(ctx->task);
1135 		call_rcu(&ctx->rcu_head, free_ctx);
1136 	}
1137 }
1138 
1139 /*
1140  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1141  * perf_pmu_migrate_context() we need some magic.
1142  *
1143  * Those places that change perf_event::ctx will hold both
1144  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1145  *
1146  * Lock ordering is by mutex address. There are two other sites where
1147  * perf_event_context::mutex nests and those are:
1148  *
1149  *  - perf_event_exit_task_context()	[ child , 0 ]
1150  *      perf_event_exit_event()
1151  *        put_event()			[ parent, 1 ]
1152  *
1153  *  - perf_event_init_context()		[ parent, 0 ]
1154  *      inherit_task_group()
1155  *        inherit_group()
1156  *          inherit_event()
1157  *            perf_event_alloc()
1158  *              perf_init_event()
1159  *                perf_try_init_event()	[ child , 1 ]
1160  *
1161  * While it appears there is an obvious deadlock here -- the parent and child
1162  * nesting levels are inverted between the two. This is in fact safe because
1163  * life-time rules separate them. That is an exiting task cannot fork, and a
1164  * spawning task cannot (yet) exit.
1165  *
1166  * But remember that that these are parent<->child context relations, and
1167  * migration does not affect children, therefore these two orderings should not
1168  * interact.
1169  *
1170  * The change in perf_event::ctx does not affect children (as claimed above)
1171  * because the sys_perf_event_open() case will install a new event and break
1172  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1173  * concerned with cpuctx and that doesn't have children.
1174  *
1175  * The places that change perf_event::ctx will issue:
1176  *
1177  *   perf_remove_from_context();
1178  *   synchronize_rcu();
1179  *   perf_install_in_context();
1180  *
1181  * to affect the change. The remove_from_context() + synchronize_rcu() should
1182  * quiesce the event, after which we can install it in the new location. This
1183  * means that only external vectors (perf_fops, prctl) can perturb the event
1184  * while in transit. Therefore all such accessors should also acquire
1185  * perf_event_context::mutex to serialize against this.
1186  *
1187  * However; because event->ctx can change while we're waiting to acquire
1188  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1189  * function.
1190  *
1191  * Lock order:
1192  *    cred_guard_mutex
1193  *	task_struct::perf_event_mutex
1194  *	  perf_event_context::mutex
1195  *	    perf_event::child_mutex;
1196  *	      perf_event_context::lock
1197  *	    perf_event::mmap_mutex
1198  *	    mmap_sem
1199  */
1200 static struct perf_event_context *
1201 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1202 {
1203 	struct perf_event_context *ctx;
1204 
1205 again:
1206 	rcu_read_lock();
1207 	ctx = ACCESS_ONCE(event->ctx);
1208 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1209 		rcu_read_unlock();
1210 		goto again;
1211 	}
1212 	rcu_read_unlock();
1213 
1214 	mutex_lock_nested(&ctx->mutex, nesting);
1215 	if (event->ctx != ctx) {
1216 		mutex_unlock(&ctx->mutex);
1217 		put_ctx(ctx);
1218 		goto again;
1219 	}
1220 
1221 	return ctx;
1222 }
1223 
1224 static inline struct perf_event_context *
1225 perf_event_ctx_lock(struct perf_event *event)
1226 {
1227 	return perf_event_ctx_lock_nested(event, 0);
1228 }
1229 
1230 static void perf_event_ctx_unlock(struct perf_event *event,
1231 				  struct perf_event_context *ctx)
1232 {
1233 	mutex_unlock(&ctx->mutex);
1234 	put_ctx(ctx);
1235 }
1236 
1237 /*
1238  * This must be done under the ctx->lock, such as to serialize against
1239  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1240  * calling scheduler related locks and ctx->lock nests inside those.
1241  */
1242 static __must_check struct perf_event_context *
1243 unclone_ctx(struct perf_event_context *ctx)
1244 {
1245 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1246 
1247 	lockdep_assert_held(&ctx->lock);
1248 
1249 	if (parent_ctx)
1250 		ctx->parent_ctx = NULL;
1251 	ctx->generation++;
1252 
1253 	return parent_ctx;
1254 }
1255 
1256 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1257 {
1258 	/*
1259 	 * only top level events have the pid namespace they were created in
1260 	 */
1261 	if (event->parent)
1262 		event = event->parent;
1263 
1264 	return task_tgid_nr_ns(p, event->ns);
1265 }
1266 
1267 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1268 {
1269 	/*
1270 	 * only top level events have the pid namespace they were created in
1271 	 */
1272 	if (event->parent)
1273 		event = event->parent;
1274 
1275 	return task_pid_nr_ns(p, event->ns);
1276 }
1277 
1278 /*
1279  * If we inherit events we want to return the parent event id
1280  * to userspace.
1281  */
1282 static u64 primary_event_id(struct perf_event *event)
1283 {
1284 	u64 id = event->id;
1285 
1286 	if (event->parent)
1287 		id = event->parent->id;
1288 
1289 	return id;
1290 }
1291 
1292 /*
1293  * Get the perf_event_context for a task and lock it.
1294  *
1295  * This has to cope with with the fact that until it is locked,
1296  * the context could get moved to another task.
1297  */
1298 static struct perf_event_context *
1299 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1300 {
1301 	struct perf_event_context *ctx;
1302 
1303 retry:
1304 	/*
1305 	 * One of the few rules of preemptible RCU is that one cannot do
1306 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1307 	 * part of the read side critical section was irqs-enabled -- see
1308 	 * rcu_read_unlock_special().
1309 	 *
1310 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1311 	 * side critical section has interrupts disabled.
1312 	 */
1313 	local_irq_save(*flags);
1314 	rcu_read_lock();
1315 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1316 	if (ctx) {
1317 		/*
1318 		 * If this context is a clone of another, it might
1319 		 * get swapped for another underneath us by
1320 		 * perf_event_task_sched_out, though the
1321 		 * rcu_read_lock() protects us from any context
1322 		 * getting freed.  Lock the context and check if it
1323 		 * got swapped before we could get the lock, and retry
1324 		 * if so.  If we locked the right context, then it
1325 		 * can't get swapped on us any more.
1326 		 */
1327 		raw_spin_lock(&ctx->lock);
1328 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1329 			raw_spin_unlock(&ctx->lock);
1330 			rcu_read_unlock();
1331 			local_irq_restore(*flags);
1332 			goto retry;
1333 		}
1334 
1335 		if (ctx->task == TASK_TOMBSTONE ||
1336 		    !atomic_inc_not_zero(&ctx->refcount)) {
1337 			raw_spin_unlock(&ctx->lock);
1338 			ctx = NULL;
1339 		} else {
1340 			WARN_ON_ONCE(ctx->task != task);
1341 		}
1342 	}
1343 	rcu_read_unlock();
1344 	if (!ctx)
1345 		local_irq_restore(*flags);
1346 	return ctx;
1347 }
1348 
1349 /*
1350  * Get the context for a task and increment its pin_count so it
1351  * can't get swapped to another task.  This also increments its
1352  * reference count so that the context can't get freed.
1353  */
1354 static struct perf_event_context *
1355 perf_pin_task_context(struct task_struct *task, int ctxn)
1356 {
1357 	struct perf_event_context *ctx;
1358 	unsigned long flags;
1359 
1360 	ctx = perf_lock_task_context(task, ctxn, &flags);
1361 	if (ctx) {
1362 		++ctx->pin_count;
1363 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1364 	}
1365 	return ctx;
1366 }
1367 
1368 static void perf_unpin_context(struct perf_event_context *ctx)
1369 {
1370 	unsigned long flags;
1371 
1372 	raw_spin_lock_irqsave(&ctx->lock, flags);
1373 	--ctx->pin_count;
1374 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1375 }
1376 
1377 /*
1378  * Update the record of the current time in a context.
1379  */
1380 static void update_context_time(struct perf_event_context *ctx)
1381 {
1382 	u64 now = perf_clock();
1383 
1384 	ctx->time += now - ctx->timestamp;
1385 	ctx->timestamp = now;
1386 }
1387 
1388 static u64 perf_event_time(struct perf_event *event)
1389 {
1390 	struct perf_event_context *ctx = event->ctx;
1391 
1392 	if (is_cgroup_event(event))
1393 		return perf_cgroup_event_time(event);
1394 
1395 	return ctx ? ctx->time : 0;
1396 }
1397 
1398 /*
1399  * Update the total_time_enabled and total_time_running fields for a event.
1400  */
1401 static void update_event_times(struct perf_event *event)
1402 {
1403 	struct perf_event_context *ctx = event->ctx;
1404 	u64 run_end;
1405 
1406 	lockdep_assert_held(&ctx->lock);
1407 
1408 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1409 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1410 		return;
1411 
1412 	/*
1413 	 * in cgroup mode, time_enabled represents
1414 	 * the time the event was enabled AND active
1415 	 * tasks were in the monitored cgroup. This is
1416 	 * independent of the activity of the context as
1417 	 * there may be a mix of cgroup and non-cgroup events.
1418 	 *
1419 	 * That is why we treat cgroup events differently
1420 	 * here.
1421 	 */
1422 	if (is_cgroup_event(event))
1423 		run_end = perf_cgroup_event_time(event);
1424 	else if (ctx->is_active)
1425 		run_end = ctx->time;
1426 	else
1427 		run_end = event->tstamp_stopped;
1428 
1429 	event->total_time_enabled = run_end - event->tstamp_enabled;
1430 
1431 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1432 		run_end = event->tstamp_stopped;
1433 	else
1434 		run_end = perf_event_time(event);
1435 
1436 	event->total_time_running = run_end - event->tstamp_running;
1437 
1438 }
1439 
1440 /*
1441  * Update total_time_enabled and total_time_running for all events in a group.
1442  */
1443 static void update_group_times(struct perf_event *leader)
1444 {
1445 	struct perf_event *event;
1446 
1447 	update_event_times(leader);
1448 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1449 		update_event_times(event);
1450 }
1451 
1452 static enum event_type_t get_event_type(struct perf_event *event)
1453 {
1454 	struct perf_event_context *ctx = event->ctx;
1455 	enum event_type_t event_type;
1456 
1457 	lockdep_assert_held(&ctx->lock);
1458 
1459 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1460 	if (!ctx->task)
1461 		event_type |= EVENT_CPU;
1462 
1463 	return event_type;
1464 }
1465 
1466 static struct list_head *
1467 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1468 {
1469 	if (event->attr.pinned)
1470 		return &ctx->pinned_groups;
1471 	else
1472 		return &ctx->flexible_groups;
1473 }
1474 
1475 /*
1476  * Add a event from the lists for its context.
1477  * Must be called with ctx->mutex and ctx->lock held.
1478  */
1479 static void
1480 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1481 {
1482 	lockdep_assert_held(&ctx->lock);
1483 
1484 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1485 	event->attach_state |= PERF_ATTACH_CONTEXT;
1486 
1487 	/*
1488 	 * If we're a stand alone event or group leader, we go to the context
1489 	 * list, group events are kept attached to the group so that
1490 	 * perf_group_detach can, at all times, locate all siblings.
1491 	 */
1492 	if (event->group_leader == event) {
1493 		struct list_head *list;
1494 
1495 		event->group_caps = event->event_caps;
1496 
1497 		list = ctx_group_list(event, ctx);
1498 		list_add_tail(&event->group_entry, list);
1499 	}
1500 
1501 	list_update_cgroup_event(event, ctx, true);
1502 
1503 	list_add_rcu(&event->event_entry, &ctx->event_list);
1504 	ctx->nr_events++;
1505 	if (event->attr.inherit_stat)
1506 		ctx->nr_stat++;
1507 
1508 	ctx->generation++;
1509 }
1510 
1511 /*
1512  * Initialize event state based on the perf_event_attr::disabled.
1513  */
1514 static inline void perf_event__state_init(struct perf_event *event)
1515 {
1516 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1517 					      PERF_EVENT_STATE_INACTIVE;
1518 }
1519 
1520 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1521 {
1522 	int entry = sizeof(u64); /* value */
1523 	int size = 0;
1524 	int nr = 1;
1525 
1526 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1527 		size += sizeof(u64);
1528 
1529 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1530 		size += sizeof(u64);
1531 
1532 	if (event->attr.read_format & PERF_FORMAT_ID)
1533 		entry += sizeof(u64);
1534 
1535 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1536 		nr += nr_siblings;
1537 		size += sizeof(u64);
1538 	}
1539 
1540 	size += entry * nr;
1541 	event->read_size = size;
1542 }
1543 
1544 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1545 {
1546 	struct perf_sample_data *data;
1547 	u16 size = 0;
1548 
1549 	if (sample_type & PERF_SAMPLE_IP)
1550 		size += sizeof(data->ip);
1551 
1552 	if (sample_type & PERF_SAMPLE_ADDR)
1553 		size += sizeof(data->addr);
1554 
1555 	if (sample_type & PERF_SAMPLE_PERIOD)
1556 		size += sizeof(data->period);
1557 
1558 	if (sample_type & PERF_SAMPLE_WEIGHT)
1559 		size += sizeof(data->weight);
1560 
1561 	if (sample_type & PERF_SAMPLE_READ)
1562 		size += event->read_size;
1563 
1564 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1565 		size += sizeof(data->data_src.val);
1566 
1567 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1568 		size += sizeof(data->txn);
1569 
1570 	event->header_size = size;
1571 }
1572 
1573 /*
1574  * Called at perf_event creation and when events are attached/detached from a
1575  * group.
1576  */
1577 static void perf_event__header_size(struct perf_event *event)
1578 {
1579 	__perf_event_read_size(event,
1580 			       event->group_leader->nr_siblings);
1581 	__perf_event_header_size(event, event->attr.sample_type);
1582 }
1583 
1584 static void perf_event__id_header_size(struct perf_event *event)
1585 {
1586 	struct perf_sample_data *data;
1587 	u64 sample_type = event->attr.sample_type;
1588 	u16 size = 0;
1589 
1590 	if (sample_type & PERF_SAMPLE_TID)
1591 		size += sizeof(data->tid_entry);
1592 
1593 	if (sample_type & PERF_SAMPLE_TIME)
1594 		size += sizeof(data->time);
1595 
1596 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1597 		size += sizeof(data->id);
1598 
1599 	if (sample_type & PERF_SAMPLE_ID)
1600 		size += sizeof(data->id);
1601 
1602 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1603 		size += sizeof(data->stream_id);
1604 
1605 	if (sample_type & PERF_SAMPLE_CPU)
1606 		size += sizeof(data->cpu_entry);
1607 
1608 	event->id_header_size = size;
1609 }
1610 
1611 static bool perf_event_validate_size(struct perf_event *event)
1612 {
1613 	/*
1614 	 * The values computed here will be over-written when we actually
1615 	 * attach the event.
1616 	 */
1617 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1618 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1619 	perf_event__id_header_size(event);
1620 
1621 	/*
1622 	 * Sum the lot; should not exceed the 64k limit we have on records.
1623 	 * Conservative limit to allow for callchains and other variable fields.
1624 	 */
1625 	if (event->read_size + event->header_size +
1626 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1627 		return false;
1628 
1629 	return true;
1630 }
1631 
1632 static void perf_group_attach(struct perf_event *event)
1633 {
1634 	struct perf_event *group_leader = event->group_leader, *pos;
1635 
1636 	lockdep_assert_held(&event->ctx->lock);
1637 
1638 	/*
1639 	 * We can have double attach due to group movement in perf_event_open.
1640 	 */
1641 	if (event->attach_state & PERF_ATTACH_GROUP)
1642 		return;
1643 
1644 	event->attach_state |= PERF_ATTACH_GROUP;
1645 
1646 	if (group_leader == event)
1647 		return;
1648 
1649 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1650 
1651 	group_leader->group_caps &= event->event_caps;
1652 
1653 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1654 	group_leader->nr_siblings++;
1655 
1656 	perf_event__header_size(group_leader);
1657 
1658 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1659 		perf_event__header_size(pos);
1660 }
1661 
1662 /*
1663  * Remove a event from the lists for its context.
1664  * Must be called with ctx->mutex and ctx->lock held.
1665  */
1666 static void
1667 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1668 {
1669 	WARN_ON_ONCE(event->ctx != ctx);
1670 	lockdep_assert_held(&ctx->lock);
1671 
1672 	/*
1673 	 * We can have double detach due to exit/hot-unplug + close.
1674 	 */
1675 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1676 		return;
1677 
1678 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1679 
1680 	list_update_cgroup_event(event, ctx, false);
1681 
1682 	ctx->nr_events--;
1683 	if (event->attr.inherit_stat)
1684 		ctx->nr_stat--;
1685 
1686 	list_del_rcu(&event->event_entry);
1687 
1688 	if (event->group_leader == event)
1689 		list_del_init(&event->group_entry);
1690 
1691 	update_group_times(event);
1692 
1693 	/*
1694 	 * If event was in error state, then keep it
1695 	 * that way, otherwise bogus counts will be
1696 	 * returned on read(). The only way to get out
1697 	 * of error state is by explicit re-enabling
1698 	 * of the event
1699 	 */
1700 	if (event->state > PERF_EVENT_STATE_OFF)
1701 		event->state = PERF_EVENT_STATE_OFF;
1702 
1703 	ctx->generation++;
1704 }
1705 
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708 	struct perf_event *sibling, *tmp;
1709 	struct list_head *list = NULL;
1710 
1711 	lockdep_assert_held(&event->ctx->lock);
1712 
1713 	/*
1714 	 * We can have double detach due to exit/hot-unplug + close.
1715 	 */
1716 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 		return;
1718 
1719 	event->attach_state &= ~PERF_ATTACH_GROUP;
1720 
1721 	/*
1722 	 * If this is a sibling, remove it from its group.
1723 	 */
1724 	if (event->group_leader != event) {
1725 		list_del_init(&event->group_entry);
1726 		event->group_leader->nr_siblings--;
1727 		goto out;
1728 	}
1729 
1730 	if (!list_empty(&event->group_entry))
1731 		list = &event->group_entry;
1732 
1733 	/*
1734 	 * If this was a group event with sibling events then
1735 	 * upgrade the siblings to singleton events by adding them
1736 	 * to whatever list we are on.
1737 	 */
1738 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739 		if (list)
1740 			list_move_tail(&sibling->group_entry, list);
1741 		sibling->group_leader = sibling;
1742 
1743 		/* Inherit group flags from the previous leader */
1744 		sibling->group_caps = event->group_caps;
1745 
1746 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1747 	}
1748 
1749 out:
1750 	perf_event__header_size(event->group_leader);
1751 
1752 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 		perf_event__header_size(tmp);
1754 }
1755 
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758 	return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760 
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763 	struct pmu *pmu = event->pmu;
1764 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766 
1767 /*
1768  * Check whether we should attempt to schedule an event group based on
1769  * PMU-specific filtering. An event group can consist of HW and SW events,
1770  * potentially with a SW leader, so we must check all the filters, to
1771  * determine whether a group is schedulable:
1772  */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775 	struct perf_event *child;
1776 
1777 	if (!__pmu_filter_match(event))
1778 		return 0;
1779 
1780 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 		if (!__pmu_filter_match(child))
1782 			return 0;
1783 	}
1784 
1785 	return 1;
1786 }
1787 
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 	       perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794 
1795 static void
1796 event_sched_out(struct perf_event *event,
1797 		  struct perf_cpu_context *cpuctx,
1798 		  struct perf_event_context *ctx)
1799 {
1800 	u64 tstamp = perf_event_time(event);
1801 	u64 delta;
1802 
1803 	WARN_ON_ONCE(event->ctx != ctx);
1804 	lockdep_assert_held(&ctx->lock);
1805 
1806 	/*
1807 	 * An event which could not be activated because of
1808 	 * filter mismatch still needs to have its timings
1809 	 * maintained, otherwise bogus information is return
1810 	 * via read() for time_enabled, time_running:
1811 	 */
1812 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1813 	    !event_filter_match(event)) {
1814 		delta = tstamp - event->tstamp_stopped;
1815 		event->tstamp_running += delta;
1816 		event->tstamp_stopped = tstamp;
1817 	}
1818 
1819 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1820 		return;
1821 
1822 	perf_pmu_disable(event->pmu);
1823 
1824 	event->tstamp_stopped = tstamp;
1825 	event->pmu->del(event, 0);
1826 	event->oncpu = -1;
1827 	event->state = PERF_EVENT_STATE_INACTIVE;
1828 	if (event->pending_disable) {
1829 		event->pending_disable = 0;
1830 		event->state = PERF_EVENT_STATE_OFF;
1831 	}
1832 
1833 	if (!is_software_event(event))
1834 		cpuctx->active_oncpu--;
1835 	if (!--ctx->nr_active)
1836 		perf_event_ctx_deactivate(ctx);
1837 	if (event->attr.freq && event->attr.sample_freq)
1838 		ctx->nr_freq--;
1839 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1840 		cpuctx->exclusive = 0;
1841 
1842 	perf_pmu_enable(event->pmu);
1843 }
1844 
1845 static void
1846 group_sched_out(struct perf_event *group_event,
1847 		struct perf_cpu_context *cpuctx,
1848 		struct perf_event_context *ctx)
1849 {
1850 	struct perf_event *event;
1851 	int state = group_event->state;
1852 
1853 	perf_pmu_disable(ctx->pmu);
1854 
1855 	event_sched_out(group_event, cpuctx, ctx);
1856 
1857 	/*
1858 	 * Schedule out siblings (if any):
1859 	 */
1860 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1861 		event_sched_out(event, cpuctx, ctx);
1862 
1863 	perf_pmu_enable(ctx->pmu);
1864 
1865 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1866 		cpuctx->exclusive = 0;
1867 }
1868 
1869 #define DETACH_GROUP	0x01UL
1870 
1871 /*
1872  * Cross CPU call to remove a performance event
1873  *
1874  * We disable the event on the hardware level first. After that we
1875  * remove it from the context list.
1876  */
1877 static void
1878 __perf_remove_from_context(struct perf_event *event,
1879 			   struct perf_cpu_context *cpuctx,
1880 			   struct perf_event_context *ctx,
1881 			   void *info)
1882 {
1883 	unsigned long flags = (unsigned long)info;
1884 
1885 	event_sched_out(event, cpuctx, ctx);
1886 	if (flags & DETACH_GROUP)
1887 		perf_group_detach(event);
1888 	list_del_event(event, ctx);
1889 
1890 	if (!ctx->nr_events && ctx->is_active) {
1891 		ctx->is_active = 0;
1892 		if (ctx->task) {
1893 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1894 			cpuctx->task_ctx = NULL;
1895 		}
1896 	}
1897 }
1898 
1899 /*
1900  * Remove the event from a task's (or a CPU's) list of events.
1901  *
1902  * If event->ctx is a cloned context, callers must make sure that
1903  * every task struct that event->ctx->task could possibly point to
1904  * remains valid.  This is OK when called from perf_release since
1905  * that only calls us on the top-level context, which can't be a clone.
1906  * When called from perf_event_exit_task, it's OK because the
1907  * context has been detached from its task.
1908  */
1909 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1910 {
1911 	struct perf_event_context *ctx = event->ctx;
1912 
1913 	lockdep_assert_held(&ctx->mutex);
1914 
1915 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1916 
1917 	/*
1918 	 * The above event_function_call() can NO-OP when it hits
1919 	 * TASK_TOMBSTONE. In that case we must already have been detached
1920 	 * from the context (by perf_event_exit_event()) but the grouping
1921 	 * might still be in-tact.
1922 	 */
1923 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1924 	if ((flags & DETACH_GROUP) &&
1925 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1926 		/*
1927 		 * Since in that case we cannot possibly be scheduled, simply
1928 		 * detach now.
1929 		 */
1930 		raw_spin_lock_irq(&ctx->lock);
1931 		perf_group_detach(event);
1932 		raw_spin_unlock_irq(&ctx->lock);
1933 	}
1934 }
1935 
1936 /*
1937  * Cross CPU call to disable a performance event
1938  */
1939 static void __perf_event_disable(struct perf_event *event,
1940 				 struct perf_cpu_context *cpuctx,
1941 				 struct perf_event_context *ctx,
1942 				 void *info)
1943 {
1944 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1945 		return;
1946 
1947 	update_context_time(ctx);
1948 	update_cgrp_time_from_event(event);
1949 	update_group_times(event);
1950 	if (event == event->group_leader)
1951 		group_sched_out(event, cpuctx, ctx);
1952 	else
1953 		event_sched_out(event, cpuctx, ctx);
1954 	event->state = PERF_EVENT_STATE_OFF;
1955 }
1956 
1957 /*
1958  * Disable a event.
1959  *
1960  * If event->ctx is a cloned context, callers must make sure that
1961  * every task struct that event->ctx->task could possibly point to
1962  * remains valid.  This condition is satisifed when called through
1963  * perf_event_for_each_child or perf_event_for_each because they
1964  * hold the top-level event's child_mutex, so any descendant that
1965  * goes to exit will block in perf_event_exit_event().
1966  *
1967  * When called from perf_pending_event it's OK because event->ctx
1968  * is the current context on this CPU and preemption is disabled,
1969  * hence we can't get into perf_event_task_sched_out for this context.
1970  */
1971 static void _perf_event_disable(struct perf_event *event)
1972 {
1973 	struct perf_event_context *ctx = event->ctx;
1974 
1975 	raw_spin_lock_irq(&ctx->lock);
1976 	if (event->state <= PERF_EVENT_STATE_OFF) {
1977 		raw_spin_unlock_irq(&ctx->lock);
1978 		return;
1979 	}
1980 	raw_spin_unlock_irq(&ctx->lock);
1981 
1982 	event_function_call(event, __perf_event_disable, NULL);
1983 }
1984 
1985 void perf_event_disable_local(struct perf_event *event)
1986 {
1987 	event_function_local(event, __perf_event_disable, NULL);
1988 }
1989 
1990 /*
1991  * Strictly speaking kernel users cannot create groups and therefore this
1992  * interface does not need the perf_event_ctx_lock() magic.
1993  */
1994 void perf_event_disable(struct perf_event *event)
1995 {
1996 	struct perf_event_context *ctx;
1997 
1998 	ctx = perf_event_ctx_lock(event);
1999 	_perf_event_disable(event);
2000 	perf_event_ctx_unlock(event, ctx);
2001 }
2002 EXPORT_SYMBOL_GPL(perf_event_disable);
2003 
2004 void perf_event_disable_inatomic(struct perf_event *event)
2005 {
2006 	event->pending_disable = 1;
2007 	irq_work_queue(&event->pending);
2008 }
2009 
2010 static void perf_set_shadow_time(struct perf_event *event,
2011 				 struct perf_event_context *ctx,
2012 				 u64 tstamp)
2013 {
2014 	/*
2015 	 * use the correct time source for the time snapshot
2016 	 *
2017 	 * We could get by without this by leveraging the
2018 	 * fact that to get to this function, the caller
2019 	 * has most likely already called update_context_time()
2020 	 * and update_cgrp_time_xx() and thus both timestamp
2021 	 * are identical (or very close). Given that tstamp is,
2022 	 * already adjusted for cgroup, we could say that:
2023 	 *    tstamp - ctx->timestamp
2024 	 * is equivalent to
2025 	 *    tstamp - cgrp->timestamp.
2026 	 *
2027 	 * Then, in perf_output_read(), the calculation would
2028 	 * work with no changes because:
2029 	 * - event is guaranteed scheduled in
2030 	 * - no scheduled out in between
2031 	 * - thus the timestamp would be the same
2032 	 *
2033 	 * But this is a bit hairy.
2034 	 *
2035 	 * So instead, we have an explicit cgroup call to remain
2036 	 * within the time time source all along. We believe it
2037 	 * is cleaner and simpler to understand.
2038 	 */
2039 	if (is_cgroup_event(event))
2040 		perf_cgroup_set_shadow_time(event, tstamp);
2041 	else
2042 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2043 }
2044 
2045 #define MAX_INTERRUPTS (~0ULL)
2046 
2047 static void perf_log_throttle(struct perf_event *event, int enable);
2048 static void perf_log_itrace_start(struct perf_event *event);
2049 
2050 static int
2051 event_sched_in(struct perf_event *event,
2052 		 struct perf_cpu_context *cpuctx,
2053 		 struct perf_event_context *ctx)
2054 {
2055 	u64 tstamp = perf_event_time(event);
2056 	int ret = 0;
2057 
2058 	lockdep_assert_held(&ctx->lock);
2059 
2060 	if (event->state <= PERF_EVENT_STATE_OFF)
2061 		return 0;
2062 
2063 	WRITE_ONCE(event->oncpu, smp_processor_id());
2064 	/*
2065 	 * Order event::oncpu write to happen before the ACTIVE state
2066 	 * is visible.
2067 	 */
2068 	smp_wmb();
2069 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2070 
2071 	/*
2072 	 * Unthrottle events, since we scheduled we might have missed several
2073 	 * ticks already, also for a heavily scheduling task there is little
2074 	 * guarantee it'll get a tick in a timely manner.
2075 	 */
2076 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2077 		perf_log_throttle(event, 1);
2078 		event->hw.interrupts = 0;
2079 	}
2080 
2081 	/*
2082 	 * The new state must be visible before we turn it on in the hardware:
2083 	 */
2084 	smp_wmb();
2085 
2086 	perf_pmu_disable(event->pmu);
2087 
2088 	perf_set_shadow_time(event, ctx, tstamp);
2089 
2090 	perf_log_itrace_start(event);
2091 
2092 	if (event->pmu->add(event, PERF_EF_START)) {
2093 		event->state = PERF_EVENT_STATE_INACTIVE;
2094 		event->oncpu = -1;
2095 		ret = -EAGAIN;
2096 		goto out;
2097 	}
2098 
2099 	event->tstamp_running += tstamp - event->tstamp_stopped;
2100 
2101 	if (!is_software_event(event))
2102 		cpuctx->active_oncpu++;
2103 	if (!ctx->nr_active++)
2104 		perf_event_ctx_activate(ctx);
2105 	if (event->attr.freq && event->attr.sample_freq)
2106 		ctx->nr_freq++;
2107 
2108 	if (event->attr.exclusive)
2109 		cpuctx->exclusive = 1;
2110 
2111 out:
2112 	perf_pmu_enable(event->pmu);
2113 
2114 	return ret;
2115 }
2116 
2117 static int
2118 group_sched_in(struct perf_event *group_event,
2119 	       struct perf_cpu_context *cpuctx,
2120 	       struct perf_event_context *ctx)
2121 {
2122 	struct perf_event *event, *partial_group = NULL;
2123 	struct pmu *pmu = ctx->pmu;
2124 	u64 now = ctx->time;
2125 	bool simulate = false;
2126 
2127 	if (group_event->state == PERF_EVENT_STATE_OFF)
2128 		return 0;
2129 
2130 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2131 
2132 	if (event_sched_in(group_event, cpuctx, ctx)) {
2133 		pmu->cancel_txn(pmu);
2134 		perf_mux_hrtimer_restart(cpuctx);
2135 		return -EAGAIN;
2136 	}
2137 
2138 	/*
2139 	 * Schedule in siblings as one group (if any):
2140 	 */
2141 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2142 		if (event_sched_in(event, cpuctx, ctx)) {
2143 			partial_group = event;
2144 			goto group_error;
2145 		}
2146 	}
2147 
2148 	if (!pmu->commit_txn(pmu))
2149 		return 0;
2150 
2151 group_error:
2152 	/*
2153 	 * Groups can be scheduled in as one unit only, so undo any
2154 	 * partial group before returning:
2155 	 * The events up to the failed event are scheduled out normally,
2156 	 * tstamp_stopped will be updated.
2157 	 *
2158 	 * The failed events and the remaining siblings need to have
2159 	 * their timings updated as if they had gone thru event_sched_in()
2160 	 * and event_sched_out(). This is required to get consistent timings
2161 	 * across the group. This also takes care of the case where the group
2162 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2163 	 * the time the event was actually stopped, such that time delta
2164 	 * calculation in update_event_times() is correct.
2165 	 */
2166 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2167 		if (event == partial_group)
2168 			simulate = true;
2169 
2170 		if (simulate) {
2171 			event->tstamp_running += now - event->tstamp_stopped;
2172 			event->tstamp_stopped = now;
2173 		} else {
2174 			event_sched_out(event, cpuctx, ctx);
2175 		}
2176 	}
2177 	event_sched_out(group_event, cpuctx, ctx);
2178 
2179 	pmu->cancel_txn(pmu);
2180 
2181 	perf_mux_hrtimer_restart(cpuctx);
2182 
2183 	return -EAGAIN;
2184 }
2185 
2186 /*
2187  * Work out whether we can put this event group on the CPU now.
2188  */
2189 static int group_can_go_on(struct perf_event *event,
2190 			   struct perf_cpu_context *cpuctx,
2191 			   int can_add_hw)
2192 {
2193 	/*
2194 	 * Groups consisting entirely of software events can always go on.
2195 	 */
2196 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2197 		return 1;
2198 	/*
2199 	 * If an exclusive group is already on, no other hardware
2200 	 * events can go on.
2201 	 */
2202 	if (cpuctx->exclusive)
2203 		return 0;
2204 	/*
2205 	 * If this group is exclusive and there are already
2206 	 * events on the CPU, it can't go on.
2207 	 */
2208 	if (event->attr.exclusive && cpuctx->active_oncpu)
2209 		return 0;
2210 	/*
2211 	 * Otherwise, try to add it if all previous groups were able
2212 	 * to go on.
2213 	 */
2214 	return can_add_hw;
2215 }
2216 
2217 static void add_event_to_ctx(struct perf_event *event,
2218 			       struct perf_event_context *ctx)
2219 {
2220 	u64 tstamp = perf_event_time(event);
2221 
2222 	list_add_event(event, ctx);
2223 	perf_group_attach(event);
2224 	event->tstamp_enabled = tstamp;
2225 	event->tstamp_running = tstamp;
2226 	event->tstamp_stopped = tstamp;
2227 }
2228 
2229 static void ctx_sched_out(struct perf_event_context *ctx,
2230 			  struct perf_cpu_context *cpuctx,
2231 			  enum event_type_t event_type);
2232 static void
2233 ctx_sched_in(struct perf_event_context *ctx,
2234 	     struct perf_cpu_context *cpuctx,
2235 	     enum event_type_t event_type,
2236 	     struct task_struct *task);
2237 
2238 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2239 			       struct perf_event_context *ctx,
2240 			       enum event_type_t event_type)
2241 {
2242 	if (!cpuctx->task_ctx)
2243 		return;
2244 
2245 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2246 		return;
2247 
2248 	ctx_sched_out(ctx, cpuctx, event_type);
2249 }
2250 
2251 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2252 				struct perf_event_context *ctx,
2253 				struct task_struct *task)
2254 {
2255 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2256 	if (ctx)
2257 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2258 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2259 	if (ctx)
2260 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2261 }
2262 
2263 /*
2264  * We want to maintain the following priority of scheduling:
2265  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2266  *  - task pinned (EVENT_PINNED)
2267  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2268  *  - task flexible (EVENT_FLEXIBLE).
2269  *
2270  * In order to avoid unscheduling and scheduling back in everything every
2271  * time an event is added, only do it for the groups of equal priority and
2272  * below.
2273  *
2274  * This can be called after a batch operation on task events, in which case
2275  * event_type is a bit mask of the types of events involved. For CPU events,
2276  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2277  */
2278 static void ctx_resched(struct perf_cpu_context *cpuctx,
2279 			struct perf_event_context *task_ctx,
2280 			enum event_type_t event_type)
2281 {
2282 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2283 	bool cpu_event = !!(event_type & EVENT_CPU);
2284 
2285 	/*
2286 	 * If pinned groups are involved, flexible groups also need to be
2287 	 * scheduled out.
2288 	 */
2289 	if (event_type & EVENT_PINNED)
2290 		event_type |= EVENT_FLEXIBLE;
2291 
2292 	perf_pmu_disable(cpuctx->ctx.pmu);
2293 	if (task_ctx)
2294 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2295 
2296 	/*
2297 	 * Decide which cpu ctx groups to schedule out based on the types
2298 	 * of events that caused rescheduling:
2299 	 *  - EVENT_CPU: schedule out corresponding groups;
2300 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2301 	 *  - otherwise, do nothing more.
2302 	 */
2303 	if (cpu_event)
2304 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2305 	else if (ctx_event_type & EVENT_PINNED)
2306 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2307 
2308 	perf_event_sched_in(cpuctx, task_ctx, current);
2309 	perf_pmu_enable(cpuctx->ctx.pmu);
2310 }
2311 
2312 /*
2313  * Cross CPU call to install and enable a performance event
2314  *
2315  * Very similar to remote_function() + event_function() but cannot assume that
2316  * things like ctx->is_active and cpuctx->task_ctx are set.
2317  */
2318 static int  __perf_install_in_context(void *info)
2319 {
2320 	struct perf_event *event = info;
2321 	struct perf_event_context *ctx = event->ctx;
2322 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2323 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2324 	bool reprogram = true;
2325 	int ret = 0;
2326 
2327 	raw_spin_lock(&cpuctx->ctx.lock);
2328 	if (ctx->task) {
2329 		raw_spin_lock(&ctx->lock);
2330 		task_ctx = ctx;
2331 
2332 		reprogram = (ctx->task == current);
2333 
2334 		/*
2335 		 * If the task is running, it must be running on this CPU,
2336 		 * otherwise we cannot reprogram things.
2337 		 *
2338 		 * If its not running, we don't care, ctx->lock will
2339 		 * serialize against it becoming runnable.
2340 		 */
2341 		if (task_curr(ctx->task) && !reprogram) {
2342 			ret = -ESRCH;
2343 			goto unlock;
2344 		}
2345 
2346 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2347 	} else if (task_ctx) {
2348 		raw_spin_lock(&task_ctx->lock);
2349 	}
2350 
2351 	if (reprogram) {
2352 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2353 		add_event_to_ctx(event, ctx);
2354 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2355 	} else {
2356 		add_event_to_ctx(event, ctx);
2357 	}
2358 
2359 unlock:
2360 	perf_ctx_unlock(cpuctx, task_ctx);
2361 
2362 	return ret;
2363 }
2364 
2365 /*
2366  * Attach a performance event to a context.
2367  *
2368  * Very similar to event_function_call, see comment there.
2369  */
2370 static void
2371 perf_install_in_context(struct perf_event_context *ctx,
2372 			struct perf_event *event,
2373 			int cpu)
2374 {
2375 	struct task_struct *task = READ_ONCE(ctx->task);
2376 
2377 	lockdep_assert_held(&ctx->mutex);
2378 
2379 	if (event->cpu != -1)
2380 		event->cpu = cpu;
2381 
2382 	/*
2383 	 * Ensures that if we can observe event->ctx, both the event and ctx
2384 	 * will be 'complete'. See perf_iterate_sb_cpu().
2385 	 */
2386 	smp_store_release(&event->ctx, ctx);
2387 
2388 	if (!task) {
2389 		cpu_function_call(cpu, __perf_install_in_context, event);
2390 		return;
2391 	}
2392 
2393 	/*
2394 	 * Should not happen, we validate the ctx is still alive before calling.
2395 	 */
2396 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2397 		return;
2398 
2399 	/*
2400 	 * Installing events is tricky because we cannot rely on ctx->is_active
2401 	 * to be set in case this is the nr_events 0 -> 1 transition.
2402 	 *
2403 	 * Instead we use task_curr(), which tells us if the task is running.
2404 	 * However, since we use task_curr() outside of rq::lock, we can race
2405 	 * against the actual state. This means the result can be wrong.
2406 	 *
2407 	 * If we get a false positive, we retry, this is harmless.
2408 	 *
2409 	 * If we get a false negative, things are complicated. If we are after
2410 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2411 	 * value must be correct. If we're before, it doesn't matter since
2412 	 * perf_event_context_sched_in() will program the counter.
2413 	 *
2414 	 * However, this hinges on the remote context switch having observed
2415 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2416 	 * ctx::lock in perf_event_context_sched_in().
2417 	 *
2418 	 * We do this by task_function_call(), if the IPI fails to hit the task
2419 	 * we know any future context switch of task must see the
2420 	 * perf_event_ctpx[] store.
2421 	 */
2422 
2423 	/*
2424 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2425 	 * task_cpu() load, such that if the IPI then does not find the task
2426 	 * running, a future context switch of that task must observe the
2427 	 * store.
2428 	 */
2429 	smp_mb();
2430 again:
2431 	if (!task_function_call(task, __perf_install_in_context, event))
2432 		return;
2433 
2434 	raw_spin_lock_irq(&ctx->lock);
2435 	task = ctx->task;
2436 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2437 		/*
2438 		 * Cannot happen because we already checked above (which also
2439 		 * cannot happen), and we hold ctx->mutex, which serializes us
2440 		 * against perf_event_exit_task_context().
2441 		 */
2442 		raw_spin_unlock_irq(&ctx->lock);
2443 		return;
2444 	}
2445 	/*
2446 	 * If the task is not running, ctx->lock will avoid it becoming so,
2447 	 * thus we can safely install the event.
2448 	 */
2449 	if (task_curr(task)) {
2450 		raw_spin_unlock_irq(&ctx->lock);
2451 		goto again;
2452 	}
2453 	add_event_to_ctx(event, ctx);
2454 	raw_spin_unlock_irq(&ctx->lock);
2455 }
2456 
2457 /*
2458  * Put a event into inactive state and update time fields.
2459  * Enabling the leader of a group effectively enables all
2460  * the group members that aren't explicitly disabled, so we
2461  * have to update their ->tstamp_enabled also.
2462  * Note: this works for group members as well as group leaders
2463  * since the non-leader members' sibling_lists will be empty.
2464  */
2465 static void __perf_event_mark_enabled(struct perf_event *event)
2466 {
2467 	struct perf_event *sub;
2468 	u64 tstamp = perf_event_time(event);
2469 
2470 	event->state = PERF_EVENT_STATE_INACTIVE;
2471 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2472 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2473 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2474 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2475 	}
2476 }
2477 
2478 /*
2479  * Cross CPU call to enable a performance event
2480  */
2481 static void __perf_event_enable(struct perf_event *event,
2482 				struct perf_cpu_context *cpuctx,
2483 				struct perf_event_context *ctx,
2484 				void *info)
2485 {
2486 	struct perf_event *leader = event->group_leader;
2487 	struct perf_event_context *task_ctx;
2488 
2489 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490 	    event->state <= PERF_EVENT_STATE_ERROR)
2491 		return;
2492 
2493 	if (ctx->is_active)
2494 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2495 
2496 	__perf_event_mark_enabled(event);
2497 
2498 	if (!ctx->is_active)
2499 		return;
2500 
2501 	if (!event_filter_match(event)) {
2502 		if (is_cgroup_event(event))
2503 			perf_cgroup_defer_enabled(event);
2504 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2505 		return;
2506 	}
2507 
2508 	/*
2509 	 * If the event is in a group and isn't the group leader,
2510 	 * then don't put it on unless the group is on.
2511 	 */
2512 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2513 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2514 		return;
2515 	}
2516 
2517 	task_ctx = cpuctx->task_ctx;
2518 	if (ctx->task)
2519 		WARN_ON_ONCE(task_ctx != ctx);
2520 
2521 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2522 }
2523 
2524 /*
2525  * Enable a event.
2526  *
2527  * If event->ctx is a cloned context, callers must make sure that
2528  * every task struct that event->ctx->task could possibly point to
2529  * remains valid.  This condition is satisfied when called through
2530  * perf_event_for_each_child or perf_event_for_each as described
2531  * for perf_event_disable.
2532  */
2533 static void _perf_event_enable(struct perf_event *event)
2534 {
2535 	struct perf_event_context *ctx = event->ctx;
2536 
2537 	raw_spin_lock_irq(&ctx->lock);
2538 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2539 	    event->state <  PERF_EVENT_STATE_ERROR) {
2540 		raw_spin_unlock_irq(&ctx->lock);
2541 		return;
2542 	}
2543 
2544 	/*
2545 	 * If the event is in error state, clear that first.
2546 	 *
2547 	 * That way, if we see the event in error state below, we know that it
2548 	 * has gone back into error state, as distinct from the task having
2549 	 * been scheduled away before the cross-call arrived.
2550 	 */
2551 	if (event->state == PERF_EVENT_STATE_ERROR)
2552 		event->state = PERF_EVENT_STATE_OFF;
2553 	raw_spin_unlock_irq(&ctx->lock);
2554 
2555 	event_function_call(event, __perf_event_enable, NULL);
2556 }
2557 
2558 /*
2559  * See perf_event_disable();
2560  */
2561 void perf_event_enable(struct perf_event *event)
2562 {
2563 	struct perf_event_context *ctx;
2564 
2565 	ctx = perf_event_ctx_lock(event);
2566 	_perf_event_enable(event);
2567 	perf_event_ctx_unlock(event, ctx);
2568 }
2569 EXPORT_SYMBOL_GPL(perf_event_enable);
2570 
2571 struct stop_event_data {
2572 	struct perf_event	*event;
2573 	unsigned int		restart;
2574 };
2575 
2576 static int __perf_event_stop(void *info)
2577 {
2578 	struct stop_event_data *sd = info;
2579 	struct perf_event *event = sd->event;
2580 
2581 	/* if it's already INACTIVE, do nothing */
2582 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2583 		return 0;
2584 
2585 	/* matches smp_wmb() in event_sched_in() */
2586 	smp_rmb();
2587 
2588 	/*
2589 	 * There is a window with interrupts enabled before we get here,
2590 	 * so we need to check again lest we try to stop another CPU's event.
2591 	 */
2592 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2593 		return -EAGAIN;
2594 
2595 	event->pmu->stop(event, PERF_EF_UPDATE);
2596 
2597 	/*
2598 	 * May race with the actual stop (through perf_pmu_output_stop()),
2599 	 * but it is only used for events with AUX ring buffer, and such
2600 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2601 	 * see comments in perf_aux_output_begin().
2602 	 *
2603 	 * Since this is happening on a event-local CPU, no trace is lost
2604 	 * while restarting.
2605 	 */
2606 	if (sd->restart)
2607 		event->pmu->start(event, 0);
2608 
2609 	return 0;
2610 }
2611 
2612 static int perf_event_stop(struct perf_event *event, int restart)
2613 {
2614 	struct stop_event_data sd = {
2615 		.event		= event,
2616 		.restart	= restart,
2617 	};
2618 	int ret = 0;
2619 
2620 	do {
2621 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2622 			return 0;
2623 
2624 		/* matches smp_wmb() in event_sched_in() */
2625 		smp_rmb();
2626 
2627 		/*
2628 		 * We only want to restart ACTIVE events, so if the event goes
2629 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2630 		 * fall through with ret==-ENXIO.
2631 		 */
2632 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2633 					__perf_event_stop, &sd);
2634 	} while (ret == -EAGAIN);
2635 
2636 	return ret;
2637 }
2638 
2639 /*
2640  * In order to contain the amount of racy and tricky in the address filter
2641  * configuration management, it is a two part process:
2642  *
2643  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2644  *      we update the addresses of corresponding vmas in
2645  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2646  * (p2) when an event is scheduled in (pmu::add), it calls
2647  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2648  *      if the generation has changed since the previous call.
2649  *
2650  * If (p1) happens while the event is active, we restart it to force (p2).
2651  *
2652  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2653  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2654  *     ioctl;
2655  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2656  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2657  *     for reading;
2658  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2659  *     of exec.
2660  */
2661 void perf_event_addr_filters_sync(struct perf_event *event)
2662 {
2663 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2664 
2665 	if (!has_addr_filter(event))
2666 		return;
2667 
2668 	raw_spin_lock(&ifh->lock);
2669 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2670 		event->pmu->addr_filters_sync(event);
2671 		event->hw.addr_filters_gen = event->addr_filters_gen;
2672 	}
2673 	raw_spin_unlock(&ifh->lock);
2674 }
2675 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2676 
2677 static int _perf_event_refresh(struct perf_event *event, int refresh)
2678 {
2679 	/*
2680 	 * not supported on inherited events
2681 	 */
2682 	if (event->attr.inherit || !is_sampling_event(event))
2683 		return -EINVAL;
2684 
2685 	atomic_add(refresh, &event->event_limit);
2686 	_perf_event_enable(event);
2687 
2688 	return 0;
2689 }
2690 
2691 /*
2692  * See perf_event_disable()
2693  */
2694 int perf_event_refresh(struct perf_event *event, int refresh)
2695 {
2696 	struct perf_event_context *ctx;
2697 	int ret;
2698 
2699 	ctx = perf_event_ctx_lock(event);
2700 	ret = _perf_event_refresh(event, refresh);
2701 	perf_event_ctx_unlock(event, ctx);
2702 
2703 	return ret;
2704 }
2705 EXPORT_SYMBOL_GPL(perf_event_refresh);
2706 
2707 static void ctx_sched_out(struct perf_event_context *ctx,
2708 			  struct perf_cpu_context *cpuctx,
2709 			  enum event_type_t event_type)
2710 {
2711 	int is_active = ctx->is_active;
2712 	struct perf_event *event;
2713 
2714 	lockdep_assert_held(&ctx->lock);
2715 
2716 	if (likely(!ctx->nr_events)) {
2717 		/*
2718 		 * See __perf_remove_from_context().
2719 		 */
2720 		WARN_ON_ONCE(ctx->is_active);
2721 		if (ctx->task)
2722 			WARN_ON_ONCE(cpuctx->task_ctx);
2723 		return;
2724 	}
2725 
2726 	ctx->is_active &= ~event_type;
2727 	if (!(ctx->is_active & EVENT_ALL))
2728 		ctx->is_active = 0;
2729 
2730 	if (ctx->task) {
2731 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2732 		if (!ctx->is_active)
2733 			cpuctx->task_ctx = NULL;
2734 	}
2735 
2736 	/*
2737 	 * Always update time if it was set; not only when it changes.
2738 	 * Otherwise we can 'forget' to update time for any but the last
2739 	 * context we sched out. For example:
2740 	 *
2741 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2742 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2743 	 *
2744 	 * would only update time for the pinned events.
2745 	 */
2746 	if (is_active & EVENT_TIME) {
2747 		/* update (and stop) ctx time */
2748 		update_context_time(ctx);
2749 		update_cgrp_time_from_cpuctx(cpuctx);
2750 	}
2751 
2752 	is_active ^= ctx->is_active; /* changed bits */
2753 
2754 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2755 		return;
2756 
2757 	perf_pmu_disable(ctx->pmu);
2758 	if (is_active & EVENT_PINNED) {
2759 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2760 			group_sched_out(event, cpuctx, ctx);
2761 	}
2762 
2763 	if (is_active & EVENT_FLEXIBLE) {
2764 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2765 			group_sched_out(event, cpuctx, ctx);
2766 	}
2767 	perf_pmu_enable(ctx->pmu);
2768 }
2769 
2770 /*
2771  * Test whether two contexts are equivalent, i.e. whether they have both been
2772  * cloned from the same version of the same context.
2773  *
2774  * Equivalence is measured using a generation number in the context that is
2775  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2776  * and list_del_event().
2777  */
2778 static int context_equiv(struct perf_event_context *ctx1,
2779 			 struct perf_event_context *ctx2)
2780 {
2781 	lockdep_assert_held(&ctx1->lock);
2782 	lockdep_assert_held(&ctx2->lock);
2783 
2784 	/* Pinning disables the swap optimization */
2785 	if (ctx1->pin_count || ctx2->pin_count)
2786 		return 0;
2787 
2788 	/* If ctx1 is the parent of ctx2 */
2789 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2790 		return 1;
2791 
2792 	/* If ctx2 is the parent of ctx1 */
2793 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2794 		return 1;
2795 
2796 	/*
2797 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2798 	 * hierarchy, see perf_event_init_context().
2799 	 */
2800 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2801 			ctx1->parent_gen == ctx2->parent_gen)
2802 		return 1;
2803 
2804 	/* Unmatched */
2805 	return 0;
2806 }
2807 
2808 static void __perf_event_sync_stat(struct perf_event *event,
2809 				     struct perf_event *next_event)
2810 {
2811 	u64 value;
2812 
2813 	if (!event->attr.inherit_stat)
2814 		return;
2815 
2816 	/*
2817 	 * Update the event value, we cannot use perf_event_read()
2818 	 * because we're in the middle of a context switch and have IRQs
2819 	 * disabled, which upsets smp_call_function_single(), however
2820 	 * we know the event must be on the current CPU, therefore we
2821 	 * don't need to use it.
2822 	 */
2823 	switch (event->state) {
2824 	case PERF_EVENT_STATE_ACTIVE:
2825 		event->pmu->read(event);
2826 		/* fall-through */
2827 
2828 	case PERF_EVENT_STATE_INACTIVE:
2829 		update_event_times(event);
2830 		break;
2831 
2832 	default:
2833 		break;
2834 	}
2835 
2836 	/*
2837 	 * In order to keep per-task stats reliable we need to flip the event
2838 	 * values when we flip the contexts.
2839 	 */
2840 	value = local64_read(&next_event->count);
2841 	value = local64_xchg(&event->count, value);
2842 	local64_set(&next_event->count, value);
2843 
2844 	swap(event->total_time_enabled, next_event->total_time_enabled);
2845 	swap(event->total_time_running, next_event->total_time_running);
2846 
2847 	/*
2848 	 * Since we swizzled the values, update the user visible data too.
2849 	 */
2850 	perf_event_update_userpage(event);
2851 	perf_event_update_userpage(next_event);
2852 }
2853 
2854 static void perf_event_sync_stat(struct perf_event_context *ctx,
2855 				   struct perf_event_context *next_ctx)
2856 {
2857 	struct perf_event *event, *next_event;
2858 
2859 	if (!ctx->nr_stat)
2860 		return;
2861 
2862 	update_context_time(ctx);
2863 
2864 	event = list_first_entry(&ctx->event_list,
2865 				   struct perf_event, event_entry);
2866 
2867 	next_event = list_first_entry(&next_ctx->event_list,
2868 					struct perf_event, event_entry);
2869 
2870 	while (&event->event_entry != &ctx->event_list &&
2871 	       &next_event->event_entry != &next_ctx->event_list) {
2872 
2873 		__perf_event_sync_stat(event, next_event);
2874 
2875 		event = list_next_entry(event, event_entry);
2876 		next_event = list_next_entry(next_event, event_entry);
2877 	}
2878 }
2879 
2880 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2881 					 struct task_struct *next)
2882 {
2883 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2884 	struct perf_event_context *next_ctx;
2885 	struct perf_event_context *parent, *next_parent;
2886 	struct perf_cpu_context *cpuctx;
2887 	int do_switch = 1;
2888 
2889 	if (likely(!ctx))
2890 		return;
2891 
2892 	cpuctx = __get_cpu_context(ctx);
2893 	if (!cpuctx->task_ctx)
2894 		return;
2895 
2896 	rcu_read_lock();
2897 	next_ctx = next->perf_event_ctxp[ctxn];
2898 	if (!next_ctx)
2899 		goto unlock;
2900 
2901 	parent = rcu_dereference(ctx->parent_ctx);
2902 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2903 
2904 	/* If neither context have a parent context; they cannot be clones. */
2905 	if (!parent && !next_parent)
2906 		goto unlock;
2907 
2908 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2909 		/*
2910 		 * Looks like the two contexts are clones, so we might be
2911 		 * able to optimize the context switch.  We lock both
2912 		 * contexts and check that they are clones under the
2913 		 * lock (including re-checking that neither has been
2914 		 * uncloned in the meantime).  It doesn't matter which
2915 		 * order we take the locks because no other cpu could
2916 		 * be trying to lock both of these tasks.
2917 		 */
2918 		raw_spin_lock(&ctx->lock);
2919 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2920 		if (context_equiv(ctx, next_ctx)) {
2921 			WRITE_ONCE(ctx->task, next);
2922 			WRITE_ONCE(next_ctx->task, task);
2923 
2924 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2925 
2926 			/*
2927 			 * RCU_INIT_POINTER here is safe because we've not
2928 			 * modified the ctx and the above modification of
2929 			 * ctx->task and ctx->task_ctx_data are immaterial
2930 			 * since those values are always verified under
2931 			 * ctx->lock which we're now holding.
2932 			 */
2933 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2934 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2935 
2936 			do_switch = 0;
2937 
2938 			perf_event_sync_stat(ctx, next_ctx);
2939 		}
2940 		raw_spin_unlock(&next_ctx->lock);
2941 		raw_spin_unlock(&ctx->lock);
2942 	}
2943 unlock:
2944 	rcu_read_unlock();
2945 
2946 	if (do_switch) {
2947 		raw_spin_lock(&ctx->lock);
2948 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2949 		raw_spin_unlock(&ctx->lock);
2950 	}
2951 }
2952 
2953 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2954 
2955 void perf_sched_cb_dec(struct pmu *pmu)
2956 {
2957 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2958 
2959 	this_cpu_dec(perf_sched_cb_usages);
2960 
2961 	if (!--cpuctx->sched_cb_usage)
2962 		list_del(&cpuctx->sched_cb_entry);
2963 }
2964 
2965 
2966 void perf_sched_cb_inc(struct pmu *pmu)
2967 {
2968 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2969 
2970 	if (!cpuctx->sched_cb_usage++)
2971 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2972 
2973 	this_cpu_inc(perf_sched_cb_usages);
2974 }
2975 
2976 /*
2977  * This function provides the context switch callback to the lower code
2978  * layer. It is invoked ONLY when the context switch callback is enabled.
2979  *
2980  * This callback is relevant even to per-cpu events; for example multi event
2981  * PEBS requires this to provide PID/TID information. This requires we flush
2982  * all queued PEBS records before we context switch to a new task.
2983  */
2984 static void perf_pmu_sched_task(struct task_struct *prev,
2985 				struct task_struct *next,
2986 				bool sched_in)
2987 {
2988 	struct perf_cpu_context *cpuctx;
2989 	struct pmu *pmu;
2990 
2991 	if (prev == next)
2992 		return;
2993 
2994 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2995 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2996 
2997 		if (WARN_ON_ONCE(!pmu->sched_task))
2998 			continue;
2999 
3000 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3001 		perf_pmu_disable(pmu);
3002 
3003 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3004 
3005 		perf_pmu_enable(pmu);
3006 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3007 	}
3008 }
3009 
3010 static void perf_event_switch(struct task_struct *task,
3011 			      struct task_struct *next_prev, bool sched_in);
3012 
3013 #define for_each_task_context_nr(ctxn)					\
3014 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3015 
3016 /*
3017  * Called from scheduler to remove the events of the current task,
3018  * with interrupts disabled.
3019  *
3020  * We stop each event and update the event value in event->count.
3021  *
3022  * This does not protect us against NMI, but disable()
3023  * sets the disabled bit in the control field of event _before_
3024  * accessing the event control register. If a NMI hits, then it will
3025  * not restart the event.
3026  */
3027 void __perf_event_task_sched_out(struct task_struct *task,
3028 				 struct task_struct *next)
3029 {
3030 	int ctxn;
3031 
3032 	if (__this_cpu_read(perf_sched_cb_usages))
3033 		perf_pmu_sched_task(task, next, false);
3034 
3035 	if (atomic_read(&nr_switch_events))
3036 		perf_event_switch(task, next, false);
3037 
3038 	for_each_task_context_nr(ctxn)
3039 		perf_event_context_sched_out(task, ctxn, next);
3040 
3041 	/*
3042 	 * if cgroup events exist on this CPU, then we need
3043 	 * to check if we have to switch out PMU state.
3044 	 * cgroup event are system-wide mode only
3045 	 */
3046 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3047 		perf_cgroup_sched_out(task, next);
3048 }
3049 
3050 /*
3051  * Called with IRQs disabled
3052  */
3053 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3054 			      enum event_type_t event_type)
3055 {
3056 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3057 }
3058 
3059 static void
3060 ctx_pinned_sched_in(struct perf_event_context *ctx,
3061 		    struct perf_cpu_context *cpuctx)
3062 {
3063 	struct perf_event *event;
3064 
3065 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3066 		if (event->state <= PERF_EVENT_STATE_OFF)
3067 			continue;
3068 		if (!event_filter_match(event))
3069 			continue;
3070 
3071 		/* may need to reset tstamp_enabled */
3072 		if (is_cgroup_event(event))
3073 			perf_cgroup_mark_enabled(event, ctx);
3074 
3075 		if (group_can_go_on(event, cpuctx, 1))
3076 			group_sched_in(event, cpuctx, ctx);
3077 
3078 		/*
3079 		 * If this pinned group hasn't been scheduled,
3080 		 * put it in error state.
3081 		 */
3082 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3083 			update_group_times(event);
3084 			event->state = PERF_EVENT_STATE_ERROR;
3085 		}
3086 	}
3087 }
3088 
3089 static void
3090 ctx_flexible_sched_in(struct perf_event_context *ctx,
3091 		      struct perf_cpu_context *cpuctx)
3092 {
3093 	struct perf_event *event;
3094 	int can_add_hw = 1;
3095 
3096 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3097 		/* Ignore events in OFF or ERROR state */
3098 		if (event->state <= PERF_EVENT_STATE_OFF)
3099 			continue;
3100 		/*
3101 		 * Listen to the 'cpu' scheduling filter constraint
3102 		 * of events:
3103 		 */
3104 		if (!event_filter_match(event))
3105 			continue;
3106 
3107 		/* may need to reset tstamp_enabled */
3108 		if (is_cgroup_event(event))
3109 			perf_cgroup_mark_enabled(event, ctx);
3110 
3111 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3112 			if (group_sched_in(event, cpuctx, ctx))
3113 				can_add_hw = 0;
3114 		}
3115 	}
3116 }
3117 
3118 static void
3119 ctx_sched_in(struct perf_event_context *ctx,
3120 	     struct perf_cpu_context *cpuctx,
3121 	     enum event_type_t event_type,
3122 	     struct task_struct *task)
3123 {
3124 	int is_active = ctx->is_active;
3125 	u64 now;
3126 
3127 	lockdep_assert_held(&ctx->lock);
3128 
3129 	if (likely(!ctx->nr_events))
3130 		return;
3131 
3132 	ctx->is_active |= (event_type | EVENT_TIME);
3133 	if (ctx->task) {
3134 		if (!is_active)
3135 			cpuctx->task_ctx = ctx;
3136 		else
3137 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3138 	}
3139 
3140 	is_active ^= ctx->is_active; /* changed bits */
3141 
3142 	if (is_active & EVENT_TIME) {
3143 		/* start ctx time */
3144 		now = perf_clock();
3145 		ctx->timestamp = now;
3146 		perf_cgroup_set_timestamp(task, ctx);
3147 	}
3148 
3149 	/*
3150 	 * First go through the list and put on any pinned groups
3151 	 * in order to give them the best chance of going on.
3152 	 */
3153 	if (is_active & EVENT_PINNED)
3154 		ctx_pinned_sched_in(ctx, cpuctx);
3155 
3156 	/* Then walk through the lower prio flexible groups */
3157 	if (is_active & EVENT_FLEXIBLE)
3158 		ctx_flexible_sched_in(ctx, cpuctx);
3159 }
3160 
3161 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3162 			     enum event_type_t event_type,
3163 			     struct task_struct *task)
3164 {
3165 	struct perf_event_context *ctx = &cpuctx->ctx;
3166 
3167 	ctx_sched_in(ctx, cpuctx, event_type, task);
3168 }
3169 
3170 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3171 					struct task_struct *task)
3172 {
3173 	struct perf_cpu_context *cpuctx;
3174 
3175 	cpuctx = __get_cpu_context(ctx);
3176 	if (cpuctx->task_ctx == ctx)
3177 		return;
3178 
3179 	perf_ctx_lock(cpuctx, ctx);
3180 	perf_pmu_disable(ctx->pmu);
3181 	/*
3182 	 * We want to keep the following priority order:
3183 	 * cpu pinned (that don't need to move), task pinned,
3184 	 * cpu flexible, task flexible.
3185 	 *
3186 	 * However, if task's ctx is not carrying any pinned
3187 	 * events, no need to flip the cpuctx's events around.
3188 	 */
3189 	if (!list_empty(&ctx->pinned_groups))
3190 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3191 	perf_event_sched_in(cpuctx, ctx, task);
3192 	perf_pmu_enable(ctx->pmu);
3193 	perf_ctx_unlock(cpuctx, ctx);
3194 }
3195 
3196 /*
3197  * Called from scheduler to add the events of the current task
3198  * with interrupts disabled.
3199  *
3200  * We restore the event value and then enable it.
3201  *
3202  * This does not protect us against NMI, but enable()
3203  * sets the enabled bit in the control field of event _before_
3204  * accessing the event control register. If a NMI hits, then it will
3205  * keep the event running.
3206  */
3207 void __perf_event_task_sched_in(struct task_struct *prev,
3208 				struct task_struct *task)
3209 {
3210 	struct perf_event_context *ctx;
3211 	int ctxn;
3212 
3213 	/*
3214 	 * If cgroup events exist on this CPU, then we need to check if we have
3215 	 * to switch in PMU state; cgroup event are system-wide mode only.
3216 	 *
3217 	 * Since cgroup events are CPU events, we must schedule these in before
3218 	 * we schedule in the task events.
3219 	 */
3220 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3221 		perf_cgroup_sched_in(prev, task);
3222 
3223 	for_each_task_context_nr(ctxn) {
3224 		ctx = task->perf_event_ctxp[ctxn];
3225 		if (likely(!ctx))
3226 			continue;
3227 
3228 		perf_event_context_sched_in(ctx, task);
3229 	}
3230 
3231 	if (atomic_read(&nr_switch_events))
3232 		perf_event_switch(task, prev, true);
3233 
3234 	if (__this_cpu_read(perf_sched_cb_usages))
3235 		perf_pmu_sched_task(prev, task, true);
3236 }
3237 
3238 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3239 {
3240 	u64 frequency = event->attr.sample_freq;
3241 	u64 sec = NSEC_PER_SEC;
3242 	u64 divisor, dividend;
3243 
3244 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3245 
3246 	count_fls = fls64(count);
3247 	nsec_fls = fls64(nsec);
3248 	frequency_fls = fls64(frequency);
3249 	sec_fls = 30;
3250 
3251 	/*
3252 	 * We got @count in @nsec, with a target of sample_freq HZ
3253 	 * the target period becomes:
3254 	 *
3255 	 *             @count * 10^9
3256 	 * period = -------------------
3257 	 *          @nsec * sample_freq
3258 	 *
3259 	 */
3260 
3261 	/*
3262 	 * Reduce accuracy by one bit such that @a and @b converge
3263 	 * to a similar magnitude.
3264 	 */
3265 #define REDUCE_FLS(a, b)		\
3266 do {					\
3267 	if (a##_fls > b##_fls) {	\
3268 		a >>= 1;		\
3269 		a##_fls--;		\
3270 	} else {			\
3271 		b >>= 1;		\
3272 		b##_fls--;		\
3273 	}				\
3274 } while (0)
3275 
3276 	/*
3277 	 * Reduce accuracy until either term fits in a u64, then proceed with
3278 	 * the other, so that finally we can do a u64/u64 division.
3279 	 */
3280 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3281 		REDUCE_FLS(nsec, frequency);
3282 		REDUCE_FLS(sec, count);
3283 	}
3284 
3285 	if (count_fls + sec_fls > 64) {
3286 		divisor = nsec * frequency;
3287 
3288 		while (count_fls + sec_fls > 64) {
3289 			REDUCE_FLS(count, sec);
3290 			divisor >>= 1;
3291 		}
3292 
3293 		dividend = count * sec;
3294 	} else {
3295 		dividend = count * sec;
3296 
3297 		while (nsec_fls + frequency_fls > 64) {
3298 			REDUCE_FLS(nsec, frequency);
3299 			dividend >>= 1;
3300 		}
3301 
3302 		divisor = nsec * frequency;
3303 	}
3304 
3305 	if (!divisor)
3306 		return dividend;
3307 
3308 	return div64_u64(dividend, divisor);
3309 }
3310 
3311 static DEFINE_PER_CPU(int, perf_throttled_count);
3312 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3313 
3314 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3315 {
3316 	struct hw_perf_event *hwc = &event->hw;
3317 	s64 period, sample_period;
3318 	s64 delta;
3319 
3320 	period = perf_calculate_period(event, nsec, count);
3321 
3322 	delta = (s64)(period - hwc->sample_period);
3323 	delta = (delta + 7) / 8; /* low pass filter */
3324 
3325 	sample_period = hwc->sample_period + delta;
3326 
3327 	if (!sample_period)
3328 		sample_period = 1;
3329 
3330 	hwc->sample_period = sample_period;
3331 
3332 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3333 		if (disable)
3334 			event->pmu->stop(event, PERF_EF_UPDATE);
3335 
3336 		local64_set(&hwc->period_left, 0);
3337 
3338 		if (disable)
3339 			event->pmu->start(event, PERF_EF_RELOAD);
3340 	}
3341 }
3342 
3343 /*
3344  * combine freq adjustment with unthrottling to avoid two passes over the
3345  * events. At the same time, make sure, having freq events does not change
3346  * the rate of unthrottling as that would introduce bias.
3347  */
3348 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3349 					   int needs_unthr)
3350 {
3351 	struct perf_event *event;
3352 	struct hw_perf_event *hwc;
3353 	u64 now, period = TICK_NSEC;
3354 	s64 delta;
3355 
3356 	/*
3357 	 * only need to iterate over all events iff:
3358 	 * - context have events in frequency mode (needs freq adjust)
3359 	 * - there are events to unthrottle on this cpu
3360 	 */
3361 	if (!(ctx->nr_freq || needs_unthr))
3362 		return;
3363 
3364 	raw_spin_lock(&ctx->lock);
3365 	perf_pmu_disable(ctx->pmu);
3366 
3367 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3368 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3369 			continue;
3370 
3371 		if (!event_filter_match(event))
3372 			continue;
3373 
3374 		perf_pmu_disable(event->pmu);
3375 
3376 		hwc = &event->hw;
3377 
3378 		if (hwc->interrupts == MAX_INTERRUPTS) {
3379 			hwc->interrupts = 0;
3380 			perf_log_throttle(event, 1);
3381 			event->pmu->start(event, 0);
3382 		}
3383 
3384 		if (!event->attr.freq || !event->attr.sample_freq)
3385 			goto next;
3386 
3387 		/*
3388 		 * stop the event and update event->count
3389 		 */
3390 		event->pmu->stop(event, PERF_EF_UPDATE);
3391 
3392 		now = local64_read(&event->count);
3393 		delta = now - hwc->freq_count_stamp;
3394 		hwc->freq_count_stamp = now;
3395 
3396 		/*
3397 		 * restart the event
3398 		 * reload only if value has changed
3399 		 * we have stopped the event so tell that
3400 		 * to perf_adjust_period() to avoid stopping it
3401 		 * twice.
3402 		 */
3403 		if (delta > 0)
3404 			perf_adjust_period(event, period, delta, false);
3405 
3406 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3407 	next:
3408 		perf_pmu_enable(event->pmu);
3409 	}
3410 
3411 	perf_pmu_enable(ctx->pmu);
3412 	raw_spin_unlock(&ctx->lock);
3413 }
3414 
3415 /*
3416  * Round-robin a context's events:
3417  */
3418 static void rotate_ctx(struct perf_event_context *ctx)
3419 {
3420 	/*
3421 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3422 	 * disabled by the inheritance code.
3423 	 */
3424 	if (!ctx->rotate_disable)
3425 		list_rotate_left(&ctx->flexible_groups);
3426 }
3427 
3428 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3429 {
3430 	struct perf_event_context *ctx = NULL;
3431 	int rotate = 0;
3432 
3433 	if (cpuctx->ctx.nr_events) {
3434 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3435 			rotate = 1;
3436 	}
3437 
3438 	ctx = cpuctx->task_ctx;
3439 	if (ctx && ctx->nr_events) {
3440 		if (ctx->nr_events != ctx->nr_active)
3441 			rotate = 1;
3442 	}
3443 
3444 	if (!rotate)
3445 		goto done;
3446 
3447 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3448 	perf_pmu_disable(cpuctx->ctx.pmu);
3449 
3450 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3451 	if (ctx)
3452 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3453 
3454 	rotate_ctx(&cpuctx->ctx);
3455 	if (ctx)
3456 		rotate_ctx(ctx);
3457 
3458 	perf_event_sched_in(cpuctx, ctx, current);
3459 
3460 	perf_pmu_enable(cpuctx->ctx.pmu);
3461 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3462 done:
3463 
3464 	return rotate;
3465 }
3466 
3467 void perf_event_task_tick(void)
3468 {
3469 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3470 	struct perf_event_context *ctx, *tmp;
3471 	int throttled;
3472 
3473 	WARN_ON(!irqs_disabled());
3474 
3475 	__this_cpu_inc(perf_throttled_seq);
3476 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3477 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3478 
3479 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3480 		perf_adjust_freq_unthr_context(ctx, throttled);
3481 }
3482 
3483 static int event_enable_on_exec(struct perf_event *event,
3484 				struct perf_event_context *ctx)
3485 {
3486 	if (!event->attr.enable_on_exec)
3487 		return 0;
3488 
3489 	event->attr.enable_on_exec = 0;
3490 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3491 		return 0;
3492 
3493 	__perf_event_mark_enabled(event);
3494 
3495 	return 1;
3496 }
3497 
3498 /*
3499  * Enable all of a task's events that have been marked enable-on-exec.
3500  * This expects task == current.
3501  */
3502 static void perf_event_enable_on_exec(int ctxn)
3503 {
3504 	struct perf_event_context *ctx, *clone_ctx = NULL;
3505 	enum event_type_t event_type = 0;
3506 	struct perf_cpu_context *cpuctx;
3507 	struct perf_event *event;
3508 	unsigned long flags;
3509 	int enabled = 0;
3510 
3511 	local_irq_save(flags);
3512 	ctx = current->perf_event_ctxp[ctxn];
3513 	if (!ctx || !ctx->nr_events)
3514 		goto out;
3515 
3516 	cpuctx = __get_cpu_context(ctx);
3517 	perf_ctx_lock(cpuctx, ctx);
3518 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3519 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3520 		enabled |= event_enable_on_exec(event, ctx);
3521 		event_type |= get_event_type(event);
3522 	}
3523 
3524 	/*
3525 	 * Unclone and reschedule this context if we enabled any event.
3526 	 */
3527 	if (enabled) {
3528 		clone_ctx = unclone_ctx(ctx);
3529 		ctx_resched(cpuctx, ctx, event_type);
3530 	} else {
3531 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3532 	}
3533 	perf_ctx_unlock(cpuctx, ctx);
3534 
3535 out:
3536 	local_irq_restore(flags);
3537 
3538 	if (clone_ctx)
3539 		put_ctx(clone_ctx);
3540 }
3541 
3542 struct perf_read_data {
3543 	struct perf_event *event;
3544 	bool group;
3545 	int ret;
3546 };
3547 
3548 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3549 {
3550 	u16 local_pkg, event_pkg;
3551 
3552 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3553 		int local_cpu = smp_processor_id();
3554 
3555 		event_pkg = topology_physical_package_id(event_cpu);
3556 		local_pkg = topology_physical_package_id(local_cpu);
3557 
3558 		if (event_pkg == local_pkg)
3559 			return local_cpu;
3560 	}
3561 
3562 	return event_cpu;
3563 }
3564 
3565 /*
3566  * Cross CPU call to read the hardware event
3567  */
3568 static void __perf_event_read(void *info)
3569 {
3570 	struct perf_read_data *data = info;
3571 	struct perf_event *sub, *event = data->event;
3572 	struct perf_event_context *ctx = event->ctx;
3573 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3574 	struct pmu *pmu = event->pmu;
3575 
3576 	/*
3577 	 * If this is a task context, we need to check whether it is
3578 	 * the current task context of this cpu.  If not it has been
3579 	 * scheduled out before the smp call arrived.  In that case
3580 	 * event->count would have been updated to a recent sample
3581 	 * when the event was scheduled out.
3582 	 */
3583 	if (ctx->task && cpuctx->task_ctx != ctx)
3584 		return;
3585 
3586 	raw_spin_lock(&ctx->lock);
3587 	if (ctx->is_active) {
3588 		update_context_time(ctx);
3589 		update_cgrp_time_from_event(event);
3590 	}
3591 
3592 	update_event_times(event);
3593 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3594 		goto unlock;
3595 
3596 	if (!data->group) {
3597 		pmu->read(event);
3598 		data->ret = 0;
3599 		goto unlock;
3600 	}
3601 
3602 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3603 
3604 	pmu->read(event);
3605 
3606 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3607 		update_event_times(sub);
3608 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3609 			/*
3610 			 * Use sibling's PMU rather than @event's since
3611 			 * sibling could be on different (eg: software) PMU.
3612 			 */
3613 			sub->pmu->read(sub);
3614 		}
3615 	}
3616 
3617 	data->ret = pmu->commit_txn(pmu);
3618 
3619 unlock:
3620 	raw_spin_unlock(&ctx->lock);
3621 }
3622 
3623 static inline u64 perf_event_count(struct perf_event *event)
3624 {
3625 	if (event->pmu->count)
3626 		return event->pmu->count(event);
3627 
3628 	return __perf_event_count(event);
3629 }
3630 
3631 /*
3632  * NMI-safe method to read a local event, that is an event that
3633  * is:
3634  *   - either for the current task, or for this CPU
3635  *   - does not have inherit set, for inherited task events
3636  *     will not be local and we cannot read them atomically
3637  *   - must not have a pmu::count method
3638  */
3639 u64 perf_event_read_local(struct perf_event *event)
3640 {
3641 	unsigned long flags;
3642 	u64 val;
3643 
3644 	/*
3645 	 * Disabling interrupts avoids all counter scheduling (context
3646 	 * switches, timer based rotation and IPIs).
3647 	 */
3648 	local_irq_save(flags);
3649 
3650 	/* If this is a per-task event, it must be for current */
3651 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3652 		     event->hw.target != current);
3653 
3654 	/* If this is a per-CPU event, it must be for this CPU */
3655 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3656 		     event->cpu != smp_processor_id());
3657 
3658 	/*
3659 	 * It must not be an event with inherit set, we cannot read
3660 	 * all child counters from atomic context.
3661 	 */
3662 	WARN_ON_ONCE(event->attr.inherit);
3663 
3664 	/*
3665 	 * It must not have a pmu::count method, those are not
3666 	 * NMI safe.
3667 	 */
3668 	WARN_ON_ONCE(event->pmu->count);
3669 
3670 	/*
3671 	 * If the event is currently on this CPU, its either a per-task event,
3672 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3673 	 * oncpu == -1).
3674 	 */
3675 	if (event->oncpu == smp_processor_id())
3676 		event->pmu->read(event);
3677 
3678 	val = local64_read(&event->count);
3679 	local_irq_restore(flags);
3680 
3681 	return val;
3682 }
3683 
3684 static int perf_event_read(struct perf_event *event, bool group)
3685 {
3686 	int event_cpu, ret = 0;
3687 
3688 	/*
3689 	 * If event is enabled and currently active on a CPU, update the
3690 	 * value in the event structure:
3691 	 */
3692 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3693 		struct perf_read_data data = {
3694 			.event = event,
3695 			.group = group,
3696 			.ret = 0,
3697 		};
3698 
3699 		event_cpu = READ_ONCE(event->oncpu);
3700 		if ((unsigned)event_cpu >= nr_cpu_ids)
3701 			return 0;
3702 
3703 		preempt_disable();
3704 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3705 
3706 		/*
3707 		 * Purposely ignore the smp_call_function_single() return
3708 		 * value.
3709 		 *
3710 		 * If event_cpu isn't a valid CPU it means the event got
3711 		 * scheduled out and that will have updated the event count.
3712 		 *
3713 		 * Therefore, either way, we'll have an up-to-date event count
3714 		 * after this.
3715 		 */
3716 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3717 		preempt_enable();
3718 		ret = data.ret;
3719 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3720 		struct perf_event_context *ctx = event->ctx;
3721 		unsigned long flags;
3722 
3723 		raw_spin_lock_irqsave(&ctx->lock, flags);
3724 		/*
3725 		 * may read while context is not active
3726 		 * (e.g., thread is blocked), in that case
3727 		 * we cannot update context time
3728 		 */
3729 		if (ctx->is_active) {
3730 			update_context_time(ctx);
3731 			update_cgrp_time_from_event(event);
3732 		}
3733 		if (group)
3734 			update_group_times(event);
3735 		else
3736 			update_event_times(event);
3737 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3738 	}
3739 
3740 	return ret;
3741 }
3742 
3743 /*
3744  * Initialize the perf_event context in a task_struct:
3745  */
3746 static void __perf_event_init_context(struct perf_event_context *ctx)
3747 {
3748 	raw_spin_lock_init(&ctx->lock);
3749 	mutex_init(&ctx->mutex);
3750 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3751 	INIT_LIST_HEAD(&ctx->pinned_groups);
3752 	INIT_LIST_HEAD(&ctx->flexible_groups);
3753 	INIT_LIST_HEAD(&ctx->event_list);
3754 	atomic_set(&ctx->refcount, 1);
3755 }
3756 
3757 static struct perf_event_context *
3758 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3759 {
3760 	struct perf_event_context *ctx;
3761 
3762 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3763 	if (!ctx)
3764 		return NULL;
3765 
3766 	__perf_event_init_context(ctx);
3767 	if (task) {
3768 		ctx->task = task;
3769 		get_task_struct(task);
3770 	}
3771 	ctx->pmu = pmu;
3772 
3773 	return ctx;
3774 }
3775 
3776 static struct task_struct *
3777 find_lively_task_by_vpid(pid_t vpid)
3778 {
3779 	struct task_struct *task;
3780 
3781 	rcu_read_lock();
3782 	if (!vpid)
3783 		task = current;
3784 	else
3785 		task = find_task_by_vpid(vpid);
3786 	if (task)
3787 		get_task_struct(task);
3788 	rcu_read_unlock();
3789 
3790 	if (!task)
3791 		return ERR_PTR(-ESRCH);
3792 
3793 	return task;
3794 }
3795 
3796 /*
3797  * Returns a matching context with refcount and pincount.
3798  */
3799 static struct perf_event_context *
3800 find_get_context(struct pmu *pmu, struct task_struct *task,
3801 		struct perf_event *event)
3802 {
3803 	struct perf_event_context *ctx, *clone_ctx = NULL;
3804 	struct perf_cpu_context *cpuctx;
3805 	void *task_ctx_data = NULL;
3806 	unsigned long flags;
3807 	int ctxn, err;
3808 	int cpu = event->cpu;
3809 
3810 	if (!task) {
3811 		/* Must be root to operate on a CPU event: */
3812 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3813 			return ERR_PTR(-EACCES);
3814 
3815 		/*
3816 		 * We could be clever and allow to attach a event to an
3817 		 * offline CPU and activate it when the CPU comes up, but
3818 		 * that's for later.
3819 		 */
3820 		if (!cpu_online(cpu))
3821 			return ERR_PTR(-ENODEV);
3822 
3823 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3824 		ctx = &cpuctx->ctx;
3825 		get_ctx(ctx);
3826 		++ctx->pin_count;
3827 
3828 		return ctx;
3829 	}
3830 
3831 	err = -EINVAL;
3832 	ctxn = pmu->task_ctx_nr;
3833 	if (ctxn < 0)
3834 		goto errout;
3835 
3836 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3837 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3838 		if (!task_ctx_data) {
3839 			err = -ENOMEM;
3840 			goto errout;
3841 		}
3842 	}
3843 
3844 retry:
3845 	ctx = perf_lock_task_context(task, ctxn, &flags);
3846 	if (ctx) {
3847 		clone_ctx = unclone_ctx(ctx);
3848 		++ctx->pin_count;
3849 
3850 		if (task_ctx_data && !ctx->task_ctx_data) {
3851 			ctx->task_ctx_data = task_ctx_data;
3852 			task_ctx_data = NULL;
3853 		}
3854 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3855 
3856 		if (clone_ctx)
3857 			put_ctx(clone_ctx);
3858 	} else {
3859 		ctx = alloc_perf_context(pmu, task);
3860 		err = -ENOMEM;
3861 		if (!ctx)
3862 			goto errout;
3863 
3864 		if (task_ctx_data) {
3865 			ctx->task_ctx_data = task_ctx_data;
3866 			task_ctx_data = NULL;
3867 		}
3868 
3869 		err = 0;
3870 		mutex_lock(&task->perf_event_mutex);
3871 		/*
3872 		 * If it has already passed perf_event_exit_task().
3873 		 * we must see PF_EXITING, it takes this mutex too.
3874 		 */
3875 		if (task->flags & PF_EXITING)
3876 			err = -ESRCH;
3877 		else if (task->perf_event_ctxp[ctxn])
3878 			err = -EAGAIN;
3879 		else {
3880 			get_ctx(ctx);
3881 			++ctx->pin_count;
3882 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3883 		}
3884 		mutex_unlock(&task->perf_event_mutex);
3885 
3886 		if (unlikely(err)) {
3887 			put_ctx(ctx);
3888 
3889 			if (err == -EAGAIN)
3890 				goto retry;
3891 			goto errout;
3892 		}
3893 	}
3894 
3895 	kfree(task_ctx_data);
3896 	return ctx;
3897 
3898 errout:
3899 	kfree(task_ctx_data);
3900 	return ERR_PTR(err);
3901 }
3902 
3903 static void perf_event_free_filter(struct perf_event *event);
3904 static void perf_event_free_bpf_prog(struct perf_event *event);
3905 
3906 static void free_event_rcu(struct rcu_head *head)
3907 {
3908 	struct perf_event *event;
3909 
3910 	event = container_of(head, struct perf_event, rcu_head);
3911 	if (event->ns)
3912 		put_pid_ns(event->ns);
3913 	perf_event_free_filter(event);
3914 	kfree(event);
3915 }
3916 
3917 static void ring_buffer_attach(struct perf_event *event,
3918 			       struct ring_buffer *rb);
3919 
3920 static void detach_sb_event(struct perf_event *event)
3921 {
3922 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3923 
3924 	raw_spin_lock(&pel->lock);
3925 	list_del_rcu(&event->sb_list);
3926 	raw_spin_unlock(&pel->lock);
3927 }
3928 
3929 static bool is_sb_event(struct perf_event *event)
3930 {
3931 	struct perf_event_attr *attr = &event->attr;
3932 
3933 	if (event->parent)
3934 		return false;
3935 
3936 	if (event->attach_state & PERF_ATTACH_TASK)
3937 		return false;
3938 
3939 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3940 	    attr->comm || attr->comm_exec ||
3941 	    attr->task ||
3942 	    attr->context_switch)
3943 		return true;
3944 	return false;
3945 }
3946 
3947 static void unaccount_pmu_sb_event(struct perf_event *event)
3948 {
3949 	if (is_sb_event(event))
3950 		detach_sb_event(event);
3951 }
3952 
3953 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3954 {
3955 	if (event->parent)
3956 		return;
3957 
3958 	if (is_cgroup_event(event))
3959 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3960 }
3961 
3962 #ifdef CONFIG_NO_HZ_FULL
3963 static DEFINE_SPINLOCK(nr_freq_lock);
3964 #endif
3965 
3966 static void unaccount_freq_event_nohz(void)
3967 {
3968 #ifdef CONFIG_NO_HZ_FULL
3969 	spin_lock(&nr_freq_lock);
3970 	if (atomic_dec_and_test(&nr_freq_events))
3971 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3972 	spin_unlock(&nr_freq_lock);
3973 #endif
3974 }
3975 
3976 static void unaccount_freq_event(void)
3977 {
3978 	if (tick_nohz_full_enabled())
3979 		unaccount_freq_event_nohz();
3980 	else
3981 		atomic_dec(&nr_freq_events);
3982 }
3983 
3984 static void unaccount_event(struct perf_event *event)
3985 {
3986 	bool dec = false;
3987 
3988 	if (event->parent)
3989 		return;
3990 
3991 	if (event->attach_state & PERF_ATTACH_TASK)
3992 		dec = true;
3993 	if (event->attr.mmap || event->attr.mmap_data)
3994 		atomic_dec(&nr_mmap_events);
3995 	if (event->attr.comm)
3996 		atomic_dec(&nr_comm_events);
3997 	if (event->attr.namespaces)
3998 		atomic_dec(&nr_namespaces_events);
3999 	if (event->attr.task)
4000 		atomic_dec(&nr_task_events);
4001 	if (event->attr.freq)
4002 		unaccount_freq_event();
4003 	if (event->attr.context_switch) {
4004 		dec = true;
4005 		atomic_dec(&nr_switch_events);
4006 	}
4007 	if (is_cgroup_event(event))
4008 		dec = true;
4009 	if (has_branch_stack(event))
4010 		dec = true;
4011 
4012 	if (dec) {
4013 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4014 			schedule_delayed_work(&perf_sched_work, HZ);
4015 	}
4016 
4017 	unaccount_event_cpu(event, event->cpu);
4018 
4019 	unaccount_pmu_sb_event(event);
4020 }
4021 
4022 static void perf_sched_delayed(struct work_struct *work)
4023 {
4024 	mutex_lock(&perf_sched_mutex);
4025 	if (atomic_dec_and_test(&perf_sched_count))
4026 		static_branch_disable(&perf_sched_events);
4027 	mutex_unlock(&perf_sched_mutex);
4028 }
4029 
4030 /*
4031  * The following implement mutual exclusion of events on "exclusive" pmus
4032  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4033  * at a time, so we disallow creating events that might conflict, namely:
4034  *
4035  *  1) cpu-wide events in the presence of per-task events,
4036  *  2) per-task events in the presence of cpu-wide events,
4037  *  3) two matching events on the same context.
4038  *
4039  * The former two cases are handled in the allocation path (perf_event_alloc(),
4040  * _free_event()), the latter -- before the first perf_install_in_context().
4041  */
4042 static int exclusive_event_init(struct perf_event *event)
4043 {
4044 	struct pmu *pmu = event->pmu;
4045 
4046 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4047 		return 0;
4048 
4049 	/*
4050 	 * Prevent co-existence of per-task and cpu-wide events on the
4051 	 * same exclusive pmu.
4052 	 *
4053 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4054 	 * events on this "exclusive" pmu, positive means there are
4055 	 * per-task events.
4056 	 *
4057 	 * Since this is called in perf_event_alloc() path, event::ctx
4058 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4059 	 * to mean "per-task event", because unlike other attach states it
4060 	 * never gets cleared.
4061 	 */
4062 	if (event->attach_state & PERF_ATTACH_TASK) {
4063 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4064 			return -EBUSY;
4065 	} else {
4066 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4067 			return -EBUSY;
4068 	}
4069 
4070 	return 0;
4071 }
4072 
4073 static void exclusive_event_destroy(struct perf_event *event)
4074 {
4075 	struct pmu *pmu = event->pmu;
4076 
4077 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4078 		return;
4079 
4080 	/* see comment in exclusive_event_init() */
4081 	if (event->attach_state & PERF_ATTACH_TASK)
4082 		atomic_dec(&pmu->exclusive_cnt);
4083 	else
4084 		atomic_inc(&pmu->exclusive_cnt);
4085 }
4086 
4087 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4088 {
4089 	if ((e1->pmu == e2->pmu) &&
4090 	    (e1->cpu == e2->cpu ||
4091 	     e1->cpu == -1 ||
4092 	     e2->cpu == -1))
4093 		return true;
4094 	return false;
4095 }
4096 
4097 /* Called under the same ctx::mutex as perf_install_in_context() */
4098 static bool exclusive_event_installable(struct perf_event *event,
4099 					struct perf_event_context *ctx)
4100 {
4101 	struct perf_event *iter_event;
4102 	struct pmu *pmu = event->pmu;
4103 
4104 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4105 		return true;
4106 
4107 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4108 		if (exclusive_event_match(iter_event, event))
4109 			return false;
4110 	}
4111 
4112 	return true;
4113 }
4114 
4115 static void perf_addr_filters_splice(struct perf_event *event,
4116 				       struct list_head *head);
4117 
4118 static void _free_event(struct perf_event *event)
4119 {
4120 	irq_work_sync(&event->pending);
4121 
4122 	unaccount_event(event);
4123 
4124 	if (event->rb) {
4125 		/*
4126 		 * Can happen when we close an event with re-directed output.
4127 		 *
4128 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4129 		 * over us; possibly making our ring_buffer_put() the last.
4130 		 */
4131 		mutex_lock(&event->mmap_mutex);
4132 		ring_buffer_attach(event, NULL);
4133 		mutex_unlock(&event->mmap_mutex);
4134 	}
4135 
4136 	if (is_cgroup_event(event))
4137 		perf_detach_cgroup(event);
4138 
4139 	if (!event->parent) {
4140 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4141 			put_callchain_buffers();
4142 	}
4143 
4144 	perf_event_free_bpf_prog(event);
4145 	perf_addr_filters_splice(event, NULL);
4146 	kfree(event->addr_filters_offs);
4147 
4148 	if (event->destroy)
4149 		event->destroy(event);
4150 
4151 	if (event->ctx)
4152 		put_ctx(event->ctx);
4153 
4154 	exclusive_event_destroy(event);
4155 	module_put(event->pmu->module);
4156 
4157 	call_rcu(&event->rcu_head, free_event_rcu);
4158 }
4159 
4160 /*
4161  * Used to free events which have a known refcount of 1, such as in error paths
4162  * where the event isn't exposed yet and inherited events.
4163  */
4164 static void free_event(struct perf_event *event)
4165 {
4166 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4167 				"unexpected event refcount: %ld; ptr=%p\n",
4168 				atomic_long_read(&event->refcount), event)) {
4169 		/* leak to avoid use-after-free */
4170 		return;
4171 	}
4172 
4173 	_free_event(event);
4174 }
4175 
4176 /*
4177  * Remove user event from the owner task.
4178  */
4179 static void perf_remove_from_owner(struct perf_event *event)
4180 {
4181 	struct task_struct *owner;
4182 
4183 	rcu_read_lock();
4184 	/*
4185 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4186 	 * observe !owner it means the list deletion is complete and we can
4187 	 * indeed free this event, otherwise we need to serialize on
4188 	 * owner->perf_event_mutex.
4189 	 */
4190 	owner = lockless_dereference(event->owner);
4191 	if (owner) {
4192 		/*
4193 		 * Since delayed_put_task_struct() also drops the last
4194 		 * task reference we can safely take a new reference
4195 		 * while holding the rcu_read_lock().
4196 		 */
4197 		get_task_struct(owner);
4198 	}
4199 	rcu_read_unlock();
4200 
4201 	if (owner) {
4202 		/*
4203 		 * If we're here through perf_event_exit_task() we're already
4204 		 * holding ctx->mutex which would be an inversion wrt. the
4205 		 * normal lock order.
4206 		 *
4207 		 * However we can safely take this lock because its the child
4208 		 * ctx->mutex.
4209 		 */
4210 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4211 
4212 		/*
4213 		 * We have to re-check the event->owner field, if it is cleared
4214 		 * we raced with perf_event_exit_task(), acquiring the mutex
4215 		 * ensured they're done, and we can proceed with freeing the
4216 		 * event.
4217 		 */
4218 		if (event->owner) {
4219 			list_del_init(&event->owner_entry);
4220 			smp_store_release(&event->owner, NULL);
4221 		}
4222 		mutex_unlock(&owner->perf_event_mutex);
4223 		put_task_struct(owner);
4224 	}
4225 }
4226 
4227 static void put_event(struct perf_event *event)
4228 {
4229 	if (!atomic_long_dec_and_test(&event->refcount))
4230 		return;
4231 
4232 	_free_event(event);
4233 }
4234 
4235 /*
4236  * Kill an event dead; while event:refcount will preserve the event
4237  * object, it will not preserve its functionality. Once the last 'user'
4238  * gives up the object, we'll destroy the thing.
4239  */
4240 int perf_event_release_kernel(struct perf_event *event)
4241 {
4242 	struct perf_event_context *ctx = event->ctx;
4243 	struct perf_event *child, *tmp;
4244 
4245 	/*
4246 	 * If we got here through err_file: fput(event_file); we will not have
4247 	 * attached to a context yet.
4248 	 */
4249 	if (!ctx) {
4250 		WARN_ON_ONCE(event->attach_state &
4251 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4252 		goto no_ctx;
4253 	}
4254 
4255 	if (!is_kernel_event(event))
4256 		perf_remove_from_owner(event);
4257 
4258 	ctx = perf_event_ctx_lock(event);
4259 	WARN_ON_ONCE(ctx->parent_ctx);
4260 	perf_remove_from_context(event, DETACH_GROUP);
4261 
4262 	raw_spin_lock_irq(&ctx->lock);
4263 	/*
4264 	 * Mark this event as STATE_DEAD, there is no external reference to it
4265 	 * anymore.
4266 	 *
4267 	 * Anybody acquiring event->child_mutex after the below loop _must_
4268 	 * also see this, most importantly inherit_event() which will avoid
4269 	 * placing more children on the list.
4270 	 *
4271 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4272 	 * child events.
4273 	 */
4274 	event->state = PERF_EVENT_STATE_DEAD;
4275 	raw_spin_unlock_irq(&ctx->lock);
4276 
4277 	perf_event_ctx_unlock(event, ctx);
4278 
4279 again:
4280 	mutex_lock(&event->child_mutex);
4281 	list_for_each_entry(child, &event->child_list, child_list) {
4282 
4283 		/*
4284 		 * Cannot change, child events are not migrated, see the
4285 		 * comment with perf_event_ctx_lock_nested().
4286 		 */
4287 		ctx = lockless_dereference(child->ctx);
4288 		/*
4289 		 * Since child_mutex nests inside ctx::mutex, we must jump
4290 		 * through hoops. We start by grabbing a reference on the ctx.
4291 		 *
4292 		 * Since the event cannot get freed while we hold the
4293 		 * child_mutex, the context must also exist and have a !0
4294 		 * reference count.
4295 		 */
4296 		get_ctx(ctx);
4297 
4298 		/*
4299 		 * Now that we have a ctx ref, we can drop child_mutex, and
4300 		 * acquire ctx::mutex without fear of it going away. Then we
4301 		 * can re-acquire child_mutex.
4302 		 */
4303 		mutex_unlock(&event->child_mutex);
4304 		mutex_lock(&ctx->mutex);
4305 		mutex_lock(&event->child_mutex);
4306 
4307 		/*
4308 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4309 		 * state, if child is still the first entry, it didn't get freed
4310 		 * and we can continue doing so.
4311 		 */
4312 		tmp = list_first_entry_or_null(&event->child_list,
4313 					       struct perf_event, child_list);
4314 		if (tmp == child) {
4315 			perf_remove_from_context(child, DETACH_GROUP);
4316 			list_del(&child->child_list);
4317 			free_event(child);
4318 			/*
4319 			 * This matches the refcount bump in inherit_event();
4320 			 * this can't be the last reference.
4321 			 */
4322 			put_event(event);
4323 		}
4324 
4325 		mutex_unlock(&event->child_mutex);
4326 		mutex_unlock(&ctx->mutex);
4327 		put_ctx(ctx);
4328 		goto again;
4329 	}
4330 	mutex_unlock(&event->child_mutex);
4331 
4332 no_ctx:
4333 	put_event(event); /* Must be the 'last' reference */
4334 	return 0;
4335 }
4336 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4337 
4338 /*
4339  * Called when the last reference to the file is gone.
4340  */
4341 static int perf_release(struct inode *inode, struct file *file)
4342 {
4343 	perf_event_release_kernel(file->private_data);
4344 	return 0;
4345 }
4346 
4347 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4348 {
4349 	struct perf_event *child;
4350 	u64 total = 0;
4351 
4352 	*enabled = 0;
4353 	*running = 0;
4354 
4355 	mutex_lock(&event->child_mutex);
4356 
4357 	(void)perf_event_read(event, false);
4358 	total += perf_event_count(event);
4359 
4360 	*enabled += event->total_time_enabled +
4361 			atomic64_read(&event->child_total_time_enabled);
4362 	*running += event->total_time_running +
4363 			atomic64_read(&event->child_total_time_running);
4364 
4365 	list_for_each_entry(child, &event->child_list, child_list) {
4366 		(void)perf_event_read(child, false);
4367 		total += perf_event_count(child);
4368 		*enabled += child->total_time_enabled;
4369 		*running += child->total_time_running;
4370 	}
4371 	mutex_unlock(&event->child_mutex);
4372 
4373 	return total;
4374 }
4375 EXPORT_SYMBOL_GPL(perf_event_read_value);
4376 
4377 static int __perf_read_group_add(struct perf_event *leader,
4378 					u64 read_format, u64 *values)
4379 {
4380 	struct perf_event *sub;
4381 	int n = 1; /* skip @nr */
4382 	int ret;
4383 
4384 	ret = perf_event_read(leader, true);
4385 	if (ret)
4386 		return ret;
4387 
4388 	/*
4389 	 * Since we co-schedule groups, {enabled,running} times of siblings
4390 	 * will be identical to those of the leader, so we only publish one
4391 	 * set.
4392 	 */
4393 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4394 		values[n++] += leader->total_time_enabled +
4395 			atomic64_read(&leader->child_total_time_enabled);
4396 	}
4397 
4398 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4399 		values[n++] += leader->total_time_running +
4400 			atomic64_read(&leader->child_total_time_running);
4401 	}
4402 
4403 	/*
4404 	 * Write {count,id} tuples for every sibling.
4405 	 */
4406 	values[n++] += perf_event_count(leader);
4407 	if (read_format & PERF_FORMAT_ID)
4408 		values[n++] = primary_event_id(leader);
4409 
4410 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4411 		values[n++] += perf_event_count(sub);
4412 		if (read_format & PERF_FORMAT_ID)
4413 			values[n++] = primary_event_id(sub);
4414 	}
4415 
4416 	return 0;
4417 }
4418 
4419 static int perf_read_group(struct perf_event *event,
4420 				   u64 read_format, char __user *buf)
4421 {
4422 	struct perf_event *leader = event->group_leader, *child;
4423 	struct perf_event_context *ctx = leader->ctx;
4424 	int ret;
4425 	u64 *values;
4426 
4427 	lockdep_assert_held(&ctx->mutex);
4428 
4429 	values = kzalloc(event->read_size, GFP_KERNEL);
4430 	if (!values)
4431 		return -ENOMEM;
4432 
4433 	values[0] = 1 + leader->nr_siblings;
4434 
4435 	/*
4436 	 * By locking the child_mutex of the leader we effectively
4437 	 * lock the child list of all siblings.. XXX explain how.
4438 	 */
4439 	mutex_lock(&leader->child_mutex);
4440 
4441 	ret = __perf_read_group_add(leader, read_format, values);
4442 	if (ret)
4443 		goto unlock;
4444 
4445 	list_for_each_entry(child, &leader->child_list, child_list) {
4446 		ret = __perf_read_group_add(child, read_format, values);
4447 		if (ret)
4448 			goto unlock;
4449 	}
4450 
4451 	mutex_unlock(&leader->child_mutex);
4452 
4453 	ret = event->read_size;
4454 	if (copy_to_user(buf, values, event->read_size))
4455 		ret = -EFAULT;
4456 	goto out;
4457 
4458 unlock:
4459 	mutex_unlock(&leader->child_mutex);
4460 out:
4461 	kfree(values);
4462 	return ret;
4463 }
4464 
4465 static int perf_read_one(struct perf_event *event,
4466 				 u64 read_format, char __user *buf)
4467 {
4468 	u64 enabled, running;
4469 	u64 values[4];
4470 	int n = 0;
4471 
4472 	values[n++] = perf_event_read_value(event, &enabled, &running);
4473 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4474 		values[n++] = enabled;
4475 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4476 		values[n++] = running;
4477 	if (read_format & PERF_FORMAT_ID)
4478 		values[n++] = primary_event_id(event);
4479 
4480 	if (copy_to_user(buf, values, n * sizeof(u64)))
4481 		return -EFAULT;
4482 
4483 	return n * sizeof(u64);
4484 }
4485 
4486 static bool is_event_hup(struct perf_event *event)
4487 {
4488 	bool no_children;
4489 
4490 	if (event->state > PERF_EVENT_STATE_EXIT)
4491 		return false;
4492 
4493 	mutex_lock(&event->child_mutex);
4494 	no_children = list_empty(&event->child_list);
4495 	mutex_unlock(&event->child_mutex);
4496 	return no_children;
4497 }
4498 
4499 /*
4500  * Read the performance event - simple non blocking version for now
4501  */
4502 static ssize_t
4503 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4504 {
4505 	u64 read_format = event->attr.read_format;
4506 	int ret;
4507 
4508 	/*
4509 	 * Return end-of-file for a read on a event that is in
4510 	 * error state (i.e. because it was pinned but it couldn't be
4511 	 * scheduled on to the CPU at some point).
4512 	 */
4513 	if (event->state == PERF_EVENT_STATE_ERROR)
4514 		return 0;
4515 
4516 	if (count < event->read_size)
4517 		return -ENOSPC;
4518 
4519 	WARN_ON_ONCE(event->ctx->parent_ctx);
4520 	if (read_format & PERF_FORMAT_GROUP)
4521 		ret = perf_read_group(event, read_format, buf);
4522 	else
4523 		ret = perf_read_one(event, read_format, buf);
4524 
4525 	return ret;
4526 }
4527 
4528 static ssize_t
4529 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4530 {
4531 	struct perf_event *event = file->private_data;
4532 	struct perf_event_context *ctx;
4533 	int ret;
4534 
4535 	ctx = perf_event_ctx_lock(event);
4536 	ret = __perf_read(event, buf, count);
4537 	perf_event_ctx_unlock(event, ctx);
4538 
4539 	return ret;
4540 }
4541 
4542 static unsigned int perf_poll(struct file *file, poll_table *wait)
4543 {
4544 	struct perf_event *event = file->private_data;
4545 	struct ring_buffer *rb;
4546 	unsigned int events = POLLHUP;
4547 
4548 	poll_wait(file, &event->waitq, wait);
4549 
4550 	if (is_event_hup(event))
4551 		return events;
4552 
4553 	/*
4554 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4555 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4556 	 */
4557 	mutex_lock(&event->mmap_mutex);
4558 	rb = event->rb;
4559 	if (rb)
4560 		events = atomic_xchg(&rb->poll, 0);
4561 	mutex_unlock(&event->mmap_mutex);
4562 	return events;
4563 }
4564 
4565 static void _perf_event_reset(struct perf_event *event)
4566 {
4567 	(void)perf_event_read(event, false);
4568 	local64_set(&event->count, 0);
4569 	perf_event_update_userpage(event);
4570 }
4571 
4572 /*
4573  * Holding the top-level event's child_mutex means that any
4574  * descendant process that has inherited this event will block
4575  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4576  * task existence requirements of perf_event_enable/disable.
4577  */
4578 static void perf_event_for_each_child(struct perf_event *event,
4579 					void (*func)(struct perf_event *))
4580 {
4581 	struct perf_event *child;
4582 
4583 	WARN_ON_ONCE(event->ctx->parent_ctx);
4584 
4585 	mutex_lock(&event->child_mutex);
4586 	func(event);
4587 	list_for_each_entry(child, &event->child_list, child_list)
4588 		func(child);
4589 	mutex_unlock(&event->child_mutex);
4590 }
4591 
4592 static void perf_event_for_each(struct perf_event *event,
4593 				  void (*func)(struct perf_event *))
4594 {
4595 	struct perf_event_context *ctx = event->ctx;
4596 	struct perf_event *sibling;
4597 
4598 	lockdep_assert_held(&ctx->mutex);
4599 
4600 	event = event->group_leader;
4601 
4602 	perf_event_for_each_child(event, func);
4603 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4604 		perf_event_for_each_child(sibling, func);
4605 }
4606 
4607 static void __perf_event_period(struct perf_event *event,
4608 				struct perf_cpu_context *cpuctx,
4609 				struct perf_event_context *ctx,
4610 				void *info)
4611 {
4612 	u64 value = *((u64 *)info);
4613 	bool active;
4614 
4615 	if (event->attr.freq) {
4616 		event->attr.sample_freq = value;
4617 	} else {
4618 		event->attr.sample_period = value;
4619 		event->hw.sample_period = value;
4620 	}
4621 
4622 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4623 	if (active) {
4624 		perf_pmu_disable(ctx->pmu);
4625 		/*
4626 		 * We could be throttled; unthrottle now to avoid the tick
4627 		 * trying to unthrottle while we already re-started the event.
4628 		 */
4629 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4630 			event->hw.interrupts = 0;
4631 			perf_log_throttle(event, 1);
4632 		}
4633 		event->pmu->stop(event, PERF_EF_UPDATE);
4634 	}
4635 
4636 	local64_set(&event->hw.period_left, 0);
4637 
4638 	if (active) {
4639 		event->pmu->start(event, PERF_EF_RELOAD);
4640 		perf_pmu_enable(ctx->pmu);
4641 	}
4642 }
4643 
4644 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4645 {
4646 	u64 value;
4647 
4648 	if (!is_sampling_event(event))
4649 		return -EINVAL;
4650 
4651 	if (copy_from_user(&value, arg, sizeof(value)))
4652 		return -EFAULT;
4653 
4654 	if (!value)
4655 		return -EINVAL;
4656 
4657 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4658 		return -EINVAL;
4659 
4660 	event_function_call(event, __perf_event_period, &value);
4661 
4662 	return 0;
4663 }
4664 
4665 static const struct file_operations perf_fops;
4666 
4667 static inline int perf_fget_light(int fd, struct fd *p)
4668 {
4669 	struct fd f = fdget(fd);
4670 	if (!f.file)
4671 		return -EBADF;
4672 
4673 	if (f.file->f_op != &perf_fops) {
4674 		fdput(f);
4675 		return -EBADF;
4676 	}
4677 	*p = f;
4678 	return 0;
4679 }
4680 
4681 static int perf_event_set_output(struct perf_event *event,
4682 				 struct perf_event *output_event);
4683 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4684 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4685 
4686 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4687 {
4688 	void (*func)(struct perf_event *);
4689 	u32 flags = arg;
4690 
4691 	switch (cmd) {
4692 	case PERF_EVENT_IOC_ENABLE:
4693 		func = _perf_event_enable;
4694 		break;
4695 	case PERF_EVENT_IOC_DISABLE:
4696 		func = _perf_event_disable;
4697 		break;
4698 	case PERF_EVENT_IOC_RESET:
4699 		func = _perf_event_reset;
4700 		break;
4701 
4702 	case PERF_EVENT_IOC_REFRESH:
4703 		return _perf_event_refresh(event, arg);
4704 
4705 	case PERF_EVENT_IOC_PERIOD:
4706 		return perf_event_period(event, (u64 __user *)arg);
4707 
4708 	case PERF_EVENT_IOC_ID:
4709 	{
4710 		u64 id = primary_event_id(event);
4711 
4712 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4713 			return -EFAULT;
4714 		return 0;
4715 	}
4716 
4717 	case PERF_EVENT_IOC_SET_OUTPUT:
4718 	{
4719 		int ret;
4720 		if (arg != -1) {
4721 			struct perf_event *output_event;
4722 			struct fd output;
4723 			ret = perf_fget_light(arg, &output);
4724 			if (ret)
4725 				return ret;
4726 			output_event = output.file->private_data;
4727 			ret = perf_event_set_output(event, output_event);
4728 			fdput(output);
4729 		} else {
4730 			ret = perf_event_set_output(event, NULL);
4731 		}
4732 		return ret;
4733 	}
4734 
4735 	case PERF_EVENT_IOC_SET_FILTER:
4736 		return perf_event_set_filter(event, (void __user *)arg);
4737 
4738 	case PERF_EVENT_IOC_SET_BPF:
4739 		return perf_event_set_bpf_prog(event, arg);
4740 
4741 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4742 		struct ring_buffer *rb;
4743 
4744 		rcu_read_lock();
4745 		rb = rcu_dereference(event->rb);
4746 		if (!rb || !rb->nr_pages) {
4747 			rcu_read_unlock();
4748 			return -EINVAL;
4749 		}
4750 		rb_toggle_paused(rb, !!arg);
4751 		rcu_read_unlock();
4752 		return 0;
4753 	}
4754 	default:
4755 		return -ENOTTY;
4756 	}
4757 
4758 	if (flags & PERF_IOC_FLAG_GROUP)
4759 		perf_event_for_each(event, func);
4760 	else
4761 		perf_event_for_each_child(event, func);
4762 
4763 	return 0;
4764 }
4765 
4766 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4767 {
4768 	struct perf_event *event = file->private_data;
4769 	struct perf_event_context *ctx;
4770 	long ret;
4771 
4772 	ctx = perf_event_ctx_lock(event);
4773 	ret = _perf_ioctl(event, cmd, arg);
4774 	perf_event_ctx_unlock(event, ctx);
4775 
4776 	return ret;
4777 }
4778 
4779 #ifdef CONFIG_COMPAT
4780 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4781 				unsigned long arg)
4782 {
4783 	switch (_IOC_NR(cmd)) {
4784 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4785 	case _IOC_NR(PERF_EVENT_IOC_ID):
4786 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4787 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4788 			cmd &= ~IOCSIZE_MASK;
4789 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4790 		}
4791 		break;
4792 	}
4793 	return perf_ioctl(file, cmd, arg);
4794 }
4795 #else
4796 # define perf_compat_ioctl NULL
4797 #endif
4798 
4799 int perf_event_task_enable(void)
4800 {
4801 	struct perf_event_context *ctx;
4802 	struct perf_event *event;
4803 
4804 	mutex_lock(&current->perf_event_mutex);
4805 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4806 		ctx = perf_event_ctx_lock(event);
4807 		perf_event_for_each_child(event, _perf_event_enable);
4808 		perf_event_ctx_unlock(event, ctx);
4809 	}
4810 	mutex_unlock(&current->perf_event_mutex);
4811 
4812 	return 0;
4813 }
4814 
4815 int perf_event_task_disable(void)
4816 {
4817 	struct perf_event_context *ctx;
4818 	struct perf_event *event;
4819 
4820 	mutex_lock(&current->perf_event_mutex);
4821 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4822 		ctx = perf_event_ctx_lock(event);
4823 		perf_event_for_each_child(event, _perf_event_disable);
4824 		perf_event_ctx_unlock(event, ctx);
4825 	}
4826 	mutex_unlock(&current->perf_event_mutex);
4827 
4828 	return 0;
4829 }
4830 
4831 static int perf_event_index(struct perf_event *event)
4832 {
4833 	if (event->hw.state & PERF_HES_STOPPED)
4834 		return 0;
4835 
4836 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4837 		return 0;
4838 
4839 	return event->pmu->event_idx(event);
4840 }
4841 
4842 static void calc_timer_values(struct perf_event *event,
4843 				u64 *now,
4844 				u64 *enabled,
4845 				u64 *running)
4846 {
4847 	u64 ctx_time;
4848 
4849 	*now = perf_clock();
4850 	ctx_time = event->shadow_ctx_time + *now;
4851 	*enabled = ctx_time - event->tstamp_enabled;
4852 	*running = ctx_time - event->tstamp_running;
4853 }
4854 
4855 static void perf_event_init_userpage(struct perf_event *event)
4856 {
4857 	struct perf_event_mmap_page *userpg;
4858 	struct ring_buffer *rb;
4859 
4860 	rcu_read_lock();
4861 	rb = rcu_dereference(event->rb);
4862 	if (!rb)
4863 		goto unlock;
4864 
4865 	userpg = rb->user_page;
4866 
4867 	/* Allow new userspace to detect that bit 0 is deprecated */
4868 	userpg->cap_bit0_is_deprecated = 1;
4869 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4870 	userpg->data_offset = PAGE_SIZE;
4871 	userpg->data_size = perf_data_size(rb);
4872 
4873 unlock:
4874 	rcu_read_unlock();
4875 }
4876 
4877 void __weak arch_perf_update_userpage(
4878 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4879 {
4880 }
4881 
4882 /*
4883  * Callers need to ensure there can be no nesting of this function, otherwise
4884  * the seqlock logic goes bad. We can not serialize this because the arch
4885  * code calls this from NMI context.
4886  */
4887 void perf_event_update_userpage(struct perf_event *event)
4888 {
4889 	struct perf_event_mmap_page *userpg;
4890 	struct ring_buffer *rb;
4891 	u64 enabled, running, now;
4892 
4893 	rcu_read_lock();
4894 	rb = rcu_dereference(event->rb);
4895 	if (!rb)
4896 		goto unlock;
4897 
4898 	/*
4899 	 * compute total_time_enabled, total_time_running
4900 	 * based on snapshot values taken when the event
4901 	 * was last scheduled in.
4902 	 *
4903 	 * we cannot simply called update_context_time()
4904 	 * because of locking issue as we can be called in
4905 	 * NMI context
4906 	 */
4907 	calc_timer_values(event, &now, &enabled, &running);
4908 
4909 	userpg = rb->user_page;
4910 	/*
4911 	 * Disable preemption so as to not let the corresponding user-space
4912 	 * spin too long if we get preempted.
4913 	 */
4914 	preempt_disable();
4915 	++userpg->lock;
4916 	barrier();
4917 	userpg->index = perf_event_index(event);
4918 	userpg->offset = perf_event_count(event);
4919 	if (userpg->index)
4920 		userpg->offset -= local64_read(&event->hw.prev_count);
4921 
4922 	userpg->time_enabled = enabled +
4923 			atomic64_read(&event->child_total_time_enabled);
4924 
4925 	userpg->time_running = running +
4926 			atomic64_read(&event->child_total_time_running);
4927 
4928 	arch_perf_update_userpage(event, userpg, now);
4929 
4930 	barrier();
4931 	++userpg->lock;
4932 	preempt_enable();
4933 unlock:
4934 	rcu_read_unlock();
4935 }
4936 
4937 static int perf_mmap_fault(struct vm_fault *vmf)
4938 {
4939 	struct perf_event *event = vmf->vma->vm_file->private_data;
4940 	struct ring_buffer *rb;
4941 	int ret = VM_FAULT_SIGBUS;
4942 
4943 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4944 		if (vmf->pgoff == 0)
4945 			ret = 0;
4946 		return ret;
4947 	}
4948 
4949 	rcu_read_lock();
4950 	rb = rcu_dereference(event->rb);
4951 	if (!rb)
4952 		goto unlock;
4953 
4954 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4955 		goto unlock;
4956 
4957 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4958 	if (!vmf->page)
4959 		goto unlock;
4960 
4961 	get_page(vmf->page);
4962 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4963 	vmf->page->index   = vmf->pgoff;
4964 
4965 	ret = 0;
4966 unlock:
4967 	rcu_read_unlock();
4968 
4969 	return ret;
4970 }
4971 
4972 static void ring_buffer_attach(struct perf_event *event,
4973 			       struct ring_buffer *rb)
4974 {
4975 	struct ring_buffer *old_rb = NULL;
4976 	unsigned long flags;
4977 
4978 	if (event->rb) {
4979 		/*
4980 		 * Should be impossible, we set this when removing
4981 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4982 		 */
4983 		WARN_ON_ONCE(event->rcu_pending);
4984 
4985 		old_rb = event->rb;
4986 		spin_lock_irqsave(&old_rb->event_lock, flags);
4987 		list_del_rcu(&event->rb_entry);
4988 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4989 
4990 		event->rcu_batches = get_state_synchronize_rcu();
4991 		event->rcu_pending = 1;
4992 	}
4993 
4994 	if (rb) {
4995 		if (event->rcu_pending) {
4996 			cond_synchronize_rcu(event->rcu_batches);
4997 			event->rcu_pending = 0;
4998 		}
4999 
5000 		spin_lock_irqsave(&rb->event_lock, flags);
5001 		list_add_rcu(&event->rb_entry, &rb->event_list);
5002 		spin_unlock_irqrestore(&rb->event_lock, flags);
5003 	}
5004 
5005 	/*
5006 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5007 	 * before swizzling the event::rb pointer; if it's getting
5008 	 * unmapped, its aux_mmap_count will be 0 and it won't
5009 	 * restart. See the comment in __perf_pmu_output_stop().
5010 	 *
5011 	 * Data will inevitably be lost when set_output is done in
5012 	 * mid-air, but then again, whoever does it like this is
5013 	 * not in for the data anyway.
5014 	 */
5015 	if (has_aux(event))
5016 		perf_event_stop(event, 0);
5017 
5018 	rcu_assign_pointer(event->rb, rb);
5019 
5020 	if (old_rb) {
5021 		ring_buffer_put(old_rb);
5022 		/*
5023 		 * Since we detached before setting the new rb, so that we
5024 		 * could attach the new rb, we could have missed a wakeup.
5025 		 * Provide it now.
5026 		 */
5027 		wake_up_all(&event->waitq);
5028 	}
5029 }
5030 
5031 static void ring_buffer_wakeup(struct perf_event *event)
5032 {
5033 	struct ring_buffer *rb;
5034 
5035 	rcu_read_lock();
5036 	rb = rcu_dereference(event->rb);
5037 	if (rb) {
5038 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5039 			wake_up_all(&event->waitq);
5040 	}
5041 	rcu_read_unlock();
5042 }
5043 
5044 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5045 {
5046 	struct ring_buffer *rb;
5047 
5048 	rcu_read_lock();
5049 	rb = rcu_dereference(event->rb);
5050 	if (rb) {
5051 		if (!atomic_inc_not_zero(&rb->refcount))
5052 			rb = NULL;
5053 	}
5054 	rcu_read_unlock();
5055 
5056 	return rb;
5057 }
5058 
5059 void ring_buffer_put(struct ring_buffer *rb)
5060 {
5061 	if (!atomic_dec_and_test(&rb->refcount))
5062 		return;
5063 
5064 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5065 
5066 	call_rcu(&rb->rcu_head, rb_free_rcu);
5067 }
5068 
5069 static void perf_mmap_open(struct vm_area_struct *vma)
5070 {
5071 	struct perf_event *event = vma->vm_file->private_data;
5072 
5073 	atomic_inc(&event->mmap_count);
5074 	atomic_inc(&event->rb->mmap_count);
5075 
5076 	if (vma->vm_pgoff)
5077 		atomic_inc(&event->rb->aux_mmap_count);
5078 
5079 	if (event->pmu->event_mapped)
5080 		event->pmu->event_mapped(event);
5081 }
5082 
5083 static void perf_pmu_output_stop(struct perf_event *event);
5084 
5085 /*
5086  * A buffer can be mmap()ed multiple times; either directly through the same
5087  * event, or through other events by use of perf_event_set_output().
5088  *
5089  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5090  * the buffer here, where we still have a VM context. This means we need
5091  * to detach all events redirecting to us.
5092  */
5093 static void perf_mmap_close(struct vm_area_struct *vma)
5094 {
5095 	struct perf_event *event = vma->vm_file->private_data;
5096 
5097 	struct ring_buffer *rb = ring_buffer_get(event);
5098 	struct user_struct *mmap_user = rb->mmap_user;
5099 	int mmap_locked = rb->mmap_locked;
5100 	unsigned long size = perf_data_size(rb);
5101 
5102 	if (event->pmu->event_unmapped)
5103 		event->pmu->event_unmapped(event);
5104 
5105 	/*
5106 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5107 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5108 	 * serialize with perf_mmap here.
5109 	 */
5110 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5111 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5112 		/*
5113 		 * Stop all AUX events that are writing to this buffer,
5114 		 * so that we can free its AUX pages and corresponding PMU
5115 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5116 		 * they won't start any more (see perf_aux_output_begin()).
5117 		 */
5118 		perf_pmu_output_stop(event);
5119 
5120 		/* now it's safe to free the pages */
5121 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5122 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5123 
5124 		/* this has to be the last one */
5125 		rb_free_aux(rb);
5126 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5127 
5128 		mutex_unlock(&event->mmap_mutex);
5129 	}
5130 
5131 	atomic_dec(&rb->mmap_count);
5132 
5133 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5134 		goto out_put;
5135 
5136 	ring_buffer_attach(event, NULL);
5137 	mutex_unlock(&event->mmap_mutex);
5138 
5139 	/* If there's still other mmap()s of this buffer, we're done. */
5140 	if (atomic_read(&rb->mmap_count))
5141 		goto out_put;
5142 
5143 	/*
5144 	 * No other mmap()s, detach from all other events that might redirect
5145 	 * into the now unreachable buffer. Somewhat complicated by the
5146 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5147 	 */
5148 again:
5149 	rcu_read_lock();
5150 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5151 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5152 			/*
5153 			 * This event is en-route to free_event() which will
5154 			 * detach it and remove it from the list.
5155 			 */
5156 			continue;
5157 		}
5158 		rcu_read_unlock();
5159 
5160 		mutex_lock(&event->mmap_mutex);
5161 		/*
5162 		 * Check we didn't race with perf_event_set_output() which can
5163 		 * swizzle the rb from under us while we were waiting to
5164 		 * acquire mmap_mutex.
5165 		 *
5166 		 * If we find a different rb; ignore this event, a next
5167 		 * iteration will no longer find it on the list. We have to
5168 		 * still restart the iteration to make sure we're not now
5169 		 * iterating the wrong list.
5170 		 */
5171 		if (event->rb == rb)
5172 			ring_buffer_attach(event, NULL);
5173 
5174 		mutex_unlock(&event->mmap_mutex);
5175 		put_event(event);
5176 
5177 		/*
5178 		 * Restart the iteration; either we're on the wrong list or
5179 		 * destroyed its integrity by doing a deletion.
5180 		 */
5181 		goto again;
5182 	}
5183 	rcu_read_unlock();
5184 
5185 	/*
5186 	 * It could be there's still a few 0-ref events on the list; they'll
5187 	 * get cleaned up by free_event() -- they'll also still have their
5188 	 * ref on the rb and will free it whenever they are done with it.
5189 	 *
5190 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5191 	 * undo the VM accounting.
5192 	 */
5193 
5194 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5195 	vma->vm_mm->pinned_vm -= mmap_locked;
5196 	free_uid(mmap_user);
5197 
5198 out_put:
5199 	ring_buffer_put(rb); /* could be last */
5200 }
5201 
5202 static const struct vm_operations_struct perf_mmap_vmops = {
5203 	.open		= perf_mmap_open,
5204 	.close		= perf_mmap_close, /* non mergable */
5205 	.fault		= perf_mmap_fault,
5206 	.page_mkwrite	= perf_mmap_fault,
5207 };
5208 
5209 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5210 {
5211 	struct perf_event *event = file->private_data;
5212 	unsigned long user_locked, user_lock_limit;
5213 	struct user_struct *user = current_user();
5214 	unsigned long locked, lock_limit;
5215 	struct ring_buffer *rb = NULL;
5216 	unsigned long vma_size;
5217 	unsigned long nr_pages;
5218 	long user_extra = 0, extra = 0;
5219 	int ret = 0, flags = 0;
5220 
5221 	/*
5222 	 * Don't allow mmap() of inherited per-task counters. This would
5223 	 * create a performance issue due to all children writing to the
5224 	 * same rb.
5225 	 */
5226 	if (event->cpu == -1 && event->attr.inherit)
5227 		return -EINVAL;
5228 
5229 	if (!(vma->vm_flags & VM_SHARED))
5230 		return -EINVAL;
5231 
5232 	vma_size = vma->vm_end - vma->vm_start;
5233 
5234 	if (vma->vm_pgoff == 0) {
5235 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5236 	} else {
5237 		/*
5238 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5239 		 * mapped, all subsequent mappings should have the same size
5240 		 * and offset. Must be above the normal perf buffer.
5241 		 */
5242 		u64 aux_offset, aux_size;
5243 
5244 		if (!event->rb)
5245 			return -EINVAL;
5246 
5247 		nr_pages = vma_size / PAGE_SIZE;
5248 
5249 		mutex_lock(&event->mmap_mutex);
5250 		ret = -EINVAL;
5251 
5252 		rb = event->rb;
5253 		if (!rb)
5254 			goto aux_unlock;
5255 
5256 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5257 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5258 
5259 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5260 			goto aux_unlock;
5261 
5262 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5263 			goto aux_unlock;
5264 
5265 		/* already mapped with a different offset */
5266 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5267 			goto aux_unlock;
5268 
5269 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5270 			goto aux_unlock;
5271 
5272 		/* already mapped with a different size */
5273 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5274 			goto aux_unlock;
5275 
5276 		if (!is_power_of_2(nr_pages))
5277 			goto aux_unlock;
5278 
5279 		if (!atomic_inc_not_zero(&rb->mmap_count))
5280 			goto aux_unlock;
5281 
5282 		if (rb_has_aux(rb)) {
5283 			atomic_inc(&rb->aux_mmap_count);
5284 			ret = 0;
5285 			goto unlock;
5286 		}
5287 
5288 		atomic_set(&rb->aux_mmap_count, 1);
5289 		user_extra = nr_pages;
5290 
5291 		goto accounting;
5292 	}
5293 
5294 	/*
5295 	 * If we have rb pages ensure they're a power-of-two number, so we
5296 	 * can do bitmasks instead of modulo.
5297 	 */
5298 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5299 		return -EINVAL;
5300 
5301 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5302 		return -EINVAL;
5303 
5304 	WARN_ON_ONCE(event->ctx->parent_ctx);
5305 again:
5306 	mutex_lock(&event->mmap_mutex);
5307 	if (event->rb) {
5308 		if (event->rb->nr_pages != nr_pages) {
5309 			ret = -EINVAL;
5310 			goto unlock;
5311 		}
5312 
5313 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5314 			/*
5315 			 * Raced against perf_mmap_close() through
5316 			 * perf_event_set_output(). Try again, hope for better
5317 			 * luck.
5318 			 */
5319 			mutex_unlock(&event->mmap_mutex);
5320 			goto again;
5321 		}
5322 
5323 		goto unlock;
5324 	}
5325 
5326 	user_extra = nr_pages + 1;
5327 
5328 accounting:
5329 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5330 
5331 	/*
5332 	 * Increase the limit linearly with more CPUs:
5333 	 */
5334 	user_lock_limit *= num_online_cpus();
5335 
5336 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5337 
5338 	if (user_locked > user_lock_limit)
5339 		extra = user_locked - user_lock_limit;
5340 
5341 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5342 	lock_limit >>= PAGE_SHIFT;
5343 	locked = vma->vm_mm->pinned_vm + extra;
5344 
5345 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5346 		!capable(CAP_IPC_LOCK)) {
5347 		ret = -EPERM;
5348 		goto unlock;
5349 	}
5350 
5351 	WARN_ON(!rb && event->rb);
5352 
5353 	if (vma->vm_flags & VM_WRITE)
5354 		flags |= RING_BUFFER_WRITABLE;
5355 
5356 	if (!rb) {
5357 		rb = rb_alloc(nr_pages,
5358 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5359 			      event->cpu, flags);
5360 
5361 		if (!rb) {
5362 			ret = -ENOMEM;
5363 			goto unlock;
5364 		}
5365 
5366 		atomic_set(&rb->mmap_count, 1);
5367 		rb->mmap_user = get_current_user();
5368 		rb->mmap_locked = extra;
5369 
5370 		ring_buffer_attach(event, rb);
5371 
5372 		perf_event_init_userpage(event);
5373 		perf_event_update_userpage(event);
5374 	} else {
5375 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5376 				   event->attr.aux_watermark, flags);
5377 		if (!ret)
5378 			rb->aux_mmap_locked = extra;
5379 	}
5380 
5381 unlock:
5382 	if (!ret) {
5383 		atomic_long_add(user_extra, &user->locked_vm);
5384 		vma->vm_mm->pinned_vm += extra;
5385 
5386 		atomic_inc(&event->mmap_count);
5387 	} else if (rb) {
5388 		atomic_dec(&rb->mmap_count);
5389 	}
5390 aux_unlock:
5391 	mutex_unlock(&event->mmap_mutex);
5392 
5393 	/*
5394 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5395 	 * vma.
5396 	 */
5397 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5398 	vma->vm_ops = &perf_mmap_vmops;
5399 
5400 	if (event->pmu->event_mapped)
5401 		event->pmu->event_mapped(event);
5402 
5403 	return ret;
5404 }
5405 
5406 static int perf_fasync(int fd, struct file *filp, int on)
5407 {
5408 	struct inode *inode = file_inode(filp);
5409 	struct perf_event *event = filp->private_data;
5410 	int retval;
5411 
5412 	inode_lock(inode);
5413 	retval = fasync_helper(fd, filp, on, &event->fasync);
5414 	inode_unlock(inode);
5415 
5416 	if (retval < 0)
5417 		return retval;
5418 
5419 	return 0;
5420 }
5421 
5422 static const struct file_operations perf_fops = {
5423 	.llseek			= no_llseek,
5424 	.release		= perf_release,
5425 	.read			= perf_read,
5426 	.poll			= perf_poll,
5427 	.unlocked_ioctl		= perf_ioctl,
5428 	.compat_ioctl		= perf_compat_ioctl,
5429 	.mmap			= perf_mmap,
5430 	.fasync			= perf_fasync,
5431 };
5432 
5433 /*
5434  * Perf event wakeup
5435  *
5436  * If there's data, ensure we set the poll() state and publish everything
5437  * to user-space before waking everybody up.
5438  */
5439 
5440 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5441 {
5442 	/* only the parent has fasync state */
5443 	if (event->parent)
5444 		event = event->parent;
5445 	return &event->fasync;
5446 }
5447 
5448 void perf_event_wakeup(struct perf_event *event)
5449 {
5450 	ring_buffer_wakeup(event);
5451 
5452 	if (event->pending_kill) {
5453 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5454 		event->pending_kill = 0;
5455 	}
5456 }
5457 
5458 static void perf_pending_event(struct irq_work *entry)
5459 {
5460 	struct perf_event *event = container_of(entry,
5461 			struct perf_event, pending);
5462 	int rctx;
5463 
5464 	rctx = perf_swevent_get_recursion_context();
5465 	/*
5466 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5467 	 * and we won't recurse 'further'.
5468 	 */
5469 
5470 	if (event->pending_disable) {
5471 		event->pending_disable = 0;
5472 		perf_event_disable_local(event);
5473 	}
5474 
5475 	if (event->pending_wakeup) {
5476 		event->pending_wakeup = 0;
5477 		perf_event_wakeup(event);
5478 	}
5479 
5480 	if (rctx >= 0)
5481 		perf_swevent_put_recursion_context(rctx);
5482 }
5483 
5484 /*
5485  * We assume there is only KVM supporting the callbacks.
5486  * Later on, we might change it to a list if there is
5487  * another virtualization implementation supporting the callbacks.
5488  */
5489 struct perf_guest_info_callbacks *perf_guest_cbs;
5490 
5491 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5492 {
5493 	perf_guest_cbs = cbs;
5494 	return 0;
5495 }
5496 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5497 
5498 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5499 {
5500 	perf_guest_cbs = NULL;
5501 	return 0;
5502 }
5503 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5504 
5505 static void
5506 perf_output_sample_regs(struct perf_output_handle *handle,
5507 			struct pt_regs *regs, u64 mask)
5508 {
5509 	int bit;
5510 	DECLARE_BITMAP(_mask, 64);
5511 
5512 	bitmap_from_u64(_mask, mask);
5513 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5514 		u64 val;
5515 
5516 		val = perf_reg_value(regs, bit);
5517 		perf_output_put(handle, val);
5518 	}
5519 }
5520 
5521 static void perf_sample_regs_user(struct perf_regs *regs_user,
5522 				  struct pt_regs *regs,
5523 				  struct pt_regs *regs_user_copy)
5524 {
5525 	if (user_mode(regs)) {
5526 		regs_user->abi = perf_reg_abi(current);
5527 		regs_user->regs = regs;
5528 	} else if (current->mm) {
5529 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5530 	} else {
5531 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5532 		regs_user->regs = NULL;
5533 	}
5534 }
5535 
5536 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5537 				  struct pt_regs *regs)
5538 {
5539 	regs_intr->regs = regs;
5540 	regs_intr->abi  = perf_reg_abi(current);
5541 }
5542 
5543 
5544 /*
5545  * Get remaining task size from user stack pointer.
5546  *
5547  * It'd be better to take stack vma map and limit this more
5548  * precisly, but there's no way to get it safely under interrupt,
5549  * so using TASK_SIZE as limit.
5550  */
5551 static u64 perf_ustack_task_size(struct pt_regs *regs)
5552 {
5553 	unsigned long addr = perf_user_stack_pointer(regs);
5554 
5555 	if (!addr || addr >= TASK_SIZE)
5556 		return 0;
5557 
5558 	return TASK_SIZE - addr;
5559 }
5560 
5561 static u16
5562 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5563 			struct pt_regs *regs)
5564 {
5565 	u64 task_size;
5566 
5567 	/* No regs, no stack pointer, no dump. */
5568 	if (!regs)
5569 		return 0;
5570 
5571 	/*
5572 	 * Check if we fit in with the requested stack size into the:
5573 	 * - TASK_SIZE
5574 	 *   If we don't, we limit the size to the TASK_SIZE.
5575 	 *
5576 	 * - remaining sample size
5577 	 *   If we don't, we customize the stack size to
5578 	 *   fit in to the remaining sample size.
5579 	 */
5580 
5581 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5582 	stack_size = min(stack_size, (u16) task_size);
5583 
5584 	/* Current header size plus static size and dynamic size. */
5585 	header_size += 2 * sizeof(u64);
5586 
5587 	/* Do we fit in with the current stack dump size? */
5588 	if ((u16) (header_size + stack_size) < header_size) {
5589 		/*
5590 		 * If we overflow the maximum size for the sample,
5591 		 * we customize the stack dump size to fit in.
5592 		 */
5593 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5594 		stack_size = round_up(stack_size, sizeof(u64));
5595 	}
5596 
5597 	return stack_size;
5598 }
5599 
5600 static void
5601 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5602 			  struct pt_regs *regs)
5603 {
5604 	/* Case of a kernel thread, nothing to dump */
5605 	if (!regs) {
5606 		u64 size = 0;
5607 		perf_output_put(handle, size);
5608 	} else {
5609 		unsigned long sp;
5610 		unsigned int rem;
5611 		u64 dyn_size;
5612 
5613 		/*
5614 		 * We dump:
5615 		 * static size
5616 		 *   - the size requested by user or the best one we can fit
5617 		 *     in to the sample max size
5618 		 * data
5619 		 *   - user stack dump data
5620 		 * dynamic size
5621 		 *   - the actual dumped size
5622 		 */
5623 
5624 		/* Static size. */
5625 		perf_output_put(handle, dump_size);
5626 
5627 		/* Data. */
5628 		sp = perf_user_stack_pointer(regs);
5629 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5630 		dyn_size = dump_size - rem;
5631 
5632 		perf_output_skip(handle, rem);
5633 
5634 		/* Dynamic size. */
5635 		perf_output_put(handle, dyn_size);
5636 	}
5637 }
5638 
5639 static void __perf_event_header__init_id(struct perf_event_header *header,
5640 					 struct perf_sample_data *data,
5641 					 struct perf_event *event)
5642 {
5643 	u64 sample_type = event->attr.sample_type;
5644 
5645 	data->type = sample_type;
5646 	header->size += event->id_header_size;
5647 
5648 	if (sample_type & PERF_SAMPLE_TID) {
5649 		/* namespace issues */
5650 		data->tid_entry.pid = perf_event_pid(event, current);
5651 		data->tid_entry.tid = perf_event_tid(event, current);
5652 	}
5653 
5654 	if (sample_type & PERF_SAMPLE_TIME)
5655 		data->time = perf_event_clock(event);
5656 
5657 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5658 		data->id = primary_event_id(event);
5659 
5660 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5661 		data->stream_id = event->id;
5662 
5663 	if (sample_type & PERF_SAMPLE_CPU) {
5664 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5665 		data->cpu_entry.reserved = 0;
5666 	}
5667 }
5668 
5669 void perf_event_header__init_id(struct perf_event_header *header,
5670 				struct perf_sample_data *data,
5671 				struct perf_event *event)
5672 {
5673 	if (event->attr.sample_id_all)
5674 		__perf_event_header__init_id(header, data, event);
5675 }
5676 
5677 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5678 					   struct perf_sample_data *data)
5679 {
5680 	u64 sample_type = data->type;
5681 
5682 	if (sample_type & PERF_SAMPLE_TID)
5683 		perf_output_put(handle, data->tid_entry);
5684 
5685 	if (sample_type & PERF_SAMPLE_TIME)
5686 		perf_output_put(handle, data->time);
5687 
5688 	if (sample_type & PERF_SAMPLE_ID)
5689 		perf_output_put(handle, data->id);
5690 
5691 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5692 		perf_output_put(handle, data->stream_id);
5693 
5694 	if (sample_type & PERF_SAMPLE_CPU)
5695 		perf_output_put(handle, data->cpu_entry);
5696 
5697 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5698 		perf_output_put(handle, data->id);
5699 }
5700 
5701 void perf_event__output_id_sample(struct perf_event *event,
5702 				  struct perf_output_handle *handle,
5703 				  struct perf_sample_data *sample)
5704 {
5705 	if (event->attr.sample_id_all)
5706 		__perf_event__output_id_sample(handle, sample);
5707 }
5708 
5709 static void perf_output_read_one(struct perf_output_handle *handle,
5710 				 struct perf_event *event,
5711 				 u64 enabled, u64 running)
5712 {
5713 	u64 read_format = event->attr.read_format;
5714 	u64 values[4];
5715 	int n = 0;
5716 
5717 	values[n++] = perf_event_count(event);
5718 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5719 		values[n++] = enabled +
5720 			atomic64_read(&event->child_total_time_enabled);
5721 	}
5722 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5723 		values[n++] = running +
5724 			atomic64_read(&event->child_total_time_running);
5725 	}
5726 	if (read_format & PERF_FORMAT_ID)
5727 		values[n++] = primary_event_id(event);
5728 
5729 	__output_copy(handle, values, n * sizeof(u64));
5730 }
5731 
5732 /*
5733  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5734  */
5735 static void perf_output_read_group(struct perf_output_handle *handle,
5736 			    struct perf_event *event,
5737 			    u64 enabled, u64 running)
5738 {
5739 	struct perf_event *leader = event->group_leader, *sub;
5740 	u64 read_format = event->attr.read_format;
5741 	u64 values[5];
5742 	int n = 0;
5743 
5744 	values[n++] = 1 + leader->nr_siblings;
5745 
5746 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5747 		values[n++] = enabled;
5748 
5749 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5750 		values[n++] = running;
5751 
5752 	if (leader != event)
5753 		leader->pmu->read(leader);
5754 
5755 	values[n++] = perf_event_count(leader);
5756 	if (read_format & PERF_FORMAT_ID)
5757 		values[n++] = primary_event_id(leader);
5758 
5759 	__output_copy(handle, values, n * sizeof(u64));
5760 
5761 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5762 		n = 0;
5763 
5764 		if ((sub != event) &&
5765 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5766 			sub->pmu->read(sub);
5767 
5768 		values[n++] = perf_event_count(sub);
5769 		if (read_format & PERF_FORMAT_ID)
5770 			values[n++] = primary_event_id(sub);
5771 
5772 		__output_copy(handle, values, n * sizeof(u64));
5773 	}
5774 }
5775 
5776 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5777 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5778 
5779 static void perf_output_read(struct perf_output_handle *handle,
5780 			     struct perf_event *event)
5781 {
5782 	u64 enabled = 0, running = 0, now;
5783 	u64 read_format = event->attr.read_format;
5784 
5785 	/*
5786 	 * compute total_time_enabled, total_time_running
5787 	 * based on snapshot values taken when the event
5788 	 * was last scheduled in.
5789 	 *
5790 	 * we cannot simply called update_context_time()
5791 	 * because of locking issue as we are called in
5792 	 * NMI context
5793 	 */
5794 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5795 		calc_timer_values(event, &now, &enabled, &running);
5796 
5797 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5798 		perf_output_read_group(handle, event, enabled, running);
5799 	else
5800 		perf_output_read_one(handle, event, enabled, running);
5801 }
5802 
5803 void perf_output_sample(struct perf_output_handle *handle,
5804 			struct perf_event_header *header,
5805 			struct perf_sample_data *data,
5806 			struct perf_event *event)
5807 {
5808 	u64 sample_type = data->type;
5809 
5810 	perf_output_put(handle, *header);
5811 
5812 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5813 		perf_output_put(handle, data->id);
5814 
5815 	if (sample_type & PERF_SAMPLE_IP)
5816 		perf_output_put(handle, data->ip);
5817 
5818 	if (sample_type & PERF_SAMPLE_TID)
5819 		perf_output_put(handle, data->tid_entry);
5820 
5821 	if (sample_type & PERF_SAMPLE_TIME)
5822 		perf_output_put(handle, data->time);
5823 
5824 	if (sample_type & PERF_SAMPLE_ADDR)
5825 		perf_output_put(handle, data->addr);
5826 
5827 	if (sample_type & PERF_SAMPLE_ID)
5828 		perf_output_put(handle, data->id);
5829 
5830 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5831 		perf_output_put(handle, data->stream_id);
5832 
5833 	if (sample_type & PERF_SAMPLE_CPU)
5834 		perf_output_put(handle, data->cpu_entry);
5835 
5836 	if (sample_type & PERF_SAMPLE_PERIOD)
5837 		perf_output_put(handle, data->period);
5838 
5839 	if (sample_type & PERF_SAMPLE_READ)
5840 		perf_output_read(handle, event);
5841 
5842 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5843 		if (data->callchain) {
5844 			int size = 1;
5845 
5846 			if (data->callchain)
5847 				size += data->callchain->nr;
5848 
5849 			size *= sizeof(u64);
5850 
5851 			__output_copy(handle, data->callchain, size);
5852 		} else {
5853 			u64 nr = 0;
5854 			perf_output_put(handle, nr);
5855 		}
5856 	}
5857 
5858 	if (sample_type & PERF_SAMPLE_RAW) {
5859 		struct perf_raw_record *raw = data->raw;
5860 
5861 		if (raw) {
5862 			struct perf_raw_frag *frag = &raw->frag;
5863 
5864 			perf_output_put(handle, raw->size);
5865 			do {
5866 				if (frag->copy) {
5867 					__output_custom(handle, frag->copy,
5868 							frag->data, frag->size);
5869 				} else {
5870 					__output_copy(handle, frag->data,
5871 						      frag->size);
5872 				}
5873 				if (perf_raw_frag_last(frag))
5874 					break;
5875 				frag = frag->next;
5876 			} while (1);
5877 			if (frag->pad)
5878 				__output_skip(handle, NULL, frag->pad);
5879 		} else {
5880 			struct {
5881 				u32	size;
5882 				u32	data;
5883 			} raw = {
5884 				.size = sizeof(u32),
5885 				.data = 0,
5886 			};
5887 			perf_output_put(handle, raw);
5888 		}
5889 	}
5890 
5891 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5892 		if (data->br_stack) {
5893 			size_t size;
5894 
5895 			size = data->br_stack->nr
5896 			     * sizeof(struct perf_branch_entry);
5897 
5898 			perf_output_put(handle, data->br_stack->nr);
5899 			perf_output_copy(handle, data->br_stack->entries, size);
5900 		} else {
5901 			/*
5902 			 * we always store at least the value of nr
5903 			 */
5904 			u64 nr = 0;
5905 			perf_output_put(handle, nr);
5906 		}
5907 	}
5908 
5909 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5910 		u64 abi = data->regs_user.abi;
5911 
5912 		/*
5913 		 * If there are no regs to dump, notice it through
5914 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5915 		 */
5916 		perf_output_put(handle, abi);
5917 
5918 		if (abi) {
5919 			u64 mask = event->attr.sample_regs_user;
5920 			perf_output_sample_regs(handle,
5921 						data->regs_user.regs,
5922 						mask);
5923 		}
5924 	}
5925 
5926 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5927 		perf_output_sample_ustack(handle,
5928 					  data->stack_user_size,
5929 					  data->regs_user.regs);
5930 	}
5931 
5932 	if (sample_type & PERF_SAMPLE_WEIGHT)
5933 		perf_output_put(handle, data->weight);
5934 
5935 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5936 		perf_output_put(handle, data->data_src.val);
5937 
5938 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5939 		perf_output_put(handle, data->txn);
5940 
5941 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5942 		u64 abi = data->regs_intr.abi;
5943 		/*
5944 		 * If there are no regs to dump, notice it through
5945 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5946 		 */
5947 		perf_output_put(handle, abi);
5948 
5949 		if (abi) {
5950 			u64 mask = event->attr.sample_regs_intr;
5951 
5952 			perf_output_sample_regs(handle,
5953 						data->regs_intr.regs,
5954 						mask);
5955 		}
5956 	}
5957 
5958 	if (!event->attr.watermark) {
5959 		int wakeup_events = event->attr.wakeup_events;
5960 
5961 		if (wakeup_events) {
5962 			struct ring_buffer *rb = handle->rb;
5963 			int events = local_inc_return(&rb->events);
5964 
5965 			if (events >= wakeup_events) {
5966 				local_sub(wakeup_events, &rb->events);
5967 				local_inc(&rb->wakeup);
5968 			}
5969 		}
5970 	}
5971 }
5972 
5973 void perf_prepare_sample(struct perf_event_header *header,
5974 			 struct perf_sample_data *data,
5975 			 struct perf_event *event,
5976 			 struct pt_regs *regs)
5977 {
5978 	u64 sample_type = event->attr.sample_type;
5979 
5980 	header->type = PERF_RECORD_SAMPLE;
5981 	header->size = sizeof(*header) + event->header_size;
5982 
5983 	header->misc = 0;
5984 	header->misc |= perf_misc_flags(regs);
5985 
5986 	__perf_event_header__init_id(header, data, event);
5987 
5988 	if (sample_type & PERF_SAMPLE_IP)
5989 		data->ip = perf_instruction_pointer(regs);
5990 
5991 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5992 		int size = 1;
5993 
5994 		data->callchain = perf_callchain(event, regs);
5995 
5996 		if (data->callchain)
5997 			size += data->callchain->nr;
5998 
5999 		header->size += size * sizeof(u64);
6000 	}
6001 
6002 	if (sample_type & PERF_SAMPLE_RAW) {
6003 		struct perf_raw_record *raw = data->raw;
6004 		int size;
6005 
6006 		if (raw) {
6007 			struct perf_raw_frag *frag = &raw->frag;
6008 			u32 sum = 0;
6009 
6010 			do {
6011 				sum += frag->size;
6012 				if (perf_raw_frag_last(frag))
6013 					break;
6014 				frag = frag->next;
6015 			} while (1);
6016 
6017 			size = round_up(sum + sizeof(u32), sizeof(u64));
6018 			raw->size = size - sizeof(u32);
6019 			frag->pad = raw->size - sum;
6020 		} else {
6021 			size = sizeof(u64);
6022 		}
6023 
6024 		header->size += size;
6025 	}
6026 
6027 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6028 		int size = sizeof(u64); /* nr */
6029 		if (data->br_stack) {
6030 			size += data->br_stack->nr
6031 			      * sizeof(struct perf_branch_entry);
6032 		}
6033 		header->size += size;
6034 	}
6035 
6036 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6037 		perf_sample_regs_user(&data->regs_user, regs,
6038 				      &data->regs_user_copy);
6039 
6040 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6041 		/* regs dump ABI info */
6042 		int size = sizeof(u64);
6043 
6044 		if (data->regs_user.regs) {
6045 			u64 mask = event->attr.sample_regs_user;
6046 			size += hweight64(mask) * sizeof(u64);
6047 		}
6048 
6049 		header->size += size;
6050 	}
6051 
6052 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6053 		/*
6054 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6055 		 * processed as the last one or have additional check added
6056 		 * in case new sample type is added, because we could eat
6057 		 * up the rest of the sample size.
6058 		 */
6059 		u16 stack_size = event->attr.sample_stack_user;
6060 		u16 size = sizeof(u64);
6061 
6062 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6063 						     data->regs_user.regs);
6064 
6065 		/*
6066 		 * If there is something to dump, add space for the dump
6067 		 * itself and for the field that tells the dynamic size,
6068 		 * which is how many have been actually dumped.
6069 		 */
6070 		if (stack_size)
6071 			size += sizeof(u64) + stack_size;
6072 
6073 		data->stack_user_size = stack_size;
6074 		header->size += size;
6075 	}
6076 
6077 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6078 		/* regs dump ABI info */
6079 		int size = sizeof(u64);
6080 
6081 		perf_sample_regs_intr(&data->regs_intr, regs);
6082 
6083 		if (data->regs_intr.regs) {
6084 			u64 mask = event->attr.sample_regs_intr;
6085 
6086 			size += hweight64(mask) * sizeof(u64);
6087 		}
6088 
6089 		header->size += size;
6090 	}
6091 }
6092 
6093 static void __always_inline
6094 __perf_event_output(struct perf_event *event,
6095 		    struct perf_sample_data *data,
6096 		    struct pt_regs *regs,
6097 		    int (*output_begin)(struct perf_output_handle *,
6098 					struct perf_event *,
6099 					unsigned int))
6100 {
6101 	struct perf_output_handle handle;
6102 	struct perf_event_header header;
6103 
6104 	/* protect the callchain buffers */
6105 	rcu_read_lock();
6106 
6107 	perf_prepare_sample(&header, data, event, regs);
6108 
6109 	if (output_begin(&handle, event, header.size))
6110 		goto exit;
6111 
6112 	perf_output_sample(&handle, &header, data, event);
6113 
6114 	perf_output_end(&handle);
6115 
6116 exit:
6117 	rcu_read_unlock();
6118 }
6119 
6120 void
6121 perf_event_output_forward(struct perf_event *event,
6122 			 struct perf_sample_data *data,
6123 			 struct pt_regs *regs)
6124 {
6125 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6126 }
6127 
6128 void
6129 perf_event_output_backward(struct perf_event *event,
6130 			   struct perf_sample_data *data,
6131 			   struct pt_regs *regs)
6132 {
6133 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6134 }
6135 
6136 void
6137 perf_event_output(struct perf_event *event,
6138 		  struct perf_sample_data *data,
6139 		  struct pt_regs *regs)
6140 {
6141 	__perf_event_output(event, data, regs, perf_output_begin);
6142 }
6143 
6144 /*
6145  * read event_id
6146  */
6147 
6148 struct perf_read_event {
6149 	struct perf_event_header	header;
6150 
6151 	u32				pid;
6152 	u32				tid;
6153 };
6154 
6155 static void
6156 perf_event_read_event(struct perf_event *event,
6157 			struct task_struct *task)
6158 {
6159 	struct perf_output_handle handle;
6160 	struct perf_sample_data sample;
6161 	struct perf_read_event read_event = {
6162 		.header = {
6163 			.type = PERF_RECORD_READ,
6164 			.misc = 0,
6165 			.size = sizeof(read_event) + event->read_size,
6166 		},
6167 		.pid = perf_event_pid(event, task),
6168 		.tid = perf_event_tid(event, task),
6169 	};
6170 	int ret;
6171 
6172 	perf_event_header__init_id(&read_event.header, &sample, event);
6173 	ret = perf_output_begin(&handle, event, read_event.header.size);
6174 	if (ret)
6175 		return;
6176 
6177 	perf_output_put(&handle, read_event);
6178 	perf_output_read(&handle, event);
6179 	perf_event__output_id_sample(event, &handle, &sample);
6180 
6181 	perf_output_end(&handle);
6182 }
6183 
6184 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6185 
6186 static void
6187 perf_iterate_ctx(struct perf_event_context *ctx,
6188 		   perf_iterate_f output,
6189 		   void *data, bool all)
6190 {
6191 	struct perf_event *event;
6192 
6193 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6194 		if (!all) {
6195 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6196 				continue;
6197 			if (!event_filter_match(event))
6198 				continue;
6199 		}
6200 
6201 		output(event, data);
6202 	}
6203 }
6204 
6205 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6206 {
6207 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6208 	struct perf_event *event;
6209 
6210 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6211 		/*
6212 		 * Skip events that are not fully formed yet; ensure that
6213 		 * if we observe event->ctx, both event and ctx will be
6214 		 * complete enough. See perf_install_in_context().
6215 		 */
6216 		if (!smp_load_acquire(&event->ctx))
6217 			continue;
6218 
6219 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6220 			continue;
6221 		if (!event_filter_match(event))
6222 			continue;
6223 		output(event, data);
6224 	}
6225 }
6226 
6227 /*
6228  * Iterate all events that need to receive side-band events.
6229  *
6230  * For new callers; ensure that account_pmu_sb_event() includes
6231  * your event, otherwise it might not get delivered.
6232  */
6233 static void
6234 perf_iterate_sb(perf_iterate_f output, void *data,
6235 	       struct perf_event_context *task_ctx)
6236 {
6237 	struct perf_event_context *ctx;
6238 	int ctxn;
6239 
6240 	rcu_read_lock();
6241 	preempt_disable();
6242 
6243 	/*
6244 	 * If we have task_ctx != NULL we only notify the task context itself.
6245 	 * The task_ctx is set only for EXIT events before releasing task
6246 	 * context.
6247 	 */
6248 	if (task_ctx) {
6249 		perf_iterate_ctx(task_ctx, output, data, false);
6250 		goto done;
6251 	}
6252 
6253 	perf_iterate_sb_cpu(output, data);
6254 
6255 	for_each_task_context_nr(ctxn) {
6256 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6257 		if (ctx)
6258 			perf_iterate_ctx(ctx, output, data, false);
6259 	}
6260 done:
6261 	preempt_enable();
6262 	rcu_read_unlock();
6263 }
6264 
6265 /*
6266  * Clear all file-based filters at exec, they'll have to be
6267  * re-instated when/if these objects are mmapped again.
6268  */
6269 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6270 {
6271 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6272 	struct perf_addr_filter *filter;
6273 	unsigned int restart = 0, count = 0;
6274 	unsigned long flags;
6275 
6276 	if (!has_addr_filter(event))
6277 		return;
6278 
6279 	raw_spin_lock_irqsave(&ifh->lock, flags);
6280 	list_for_each_entry(filter, &ifh->list, entry) {
6281 		if (filter->inode) {
6282 			event->addr_filters_offs[count] = 0;
6283 			restart++;
6284 		}
6285 
6286 		count++;
6287 	}
6288 
6289 	if (restart)
6290 		event->addr_filters_gen++;
6291 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6292 
6293 	if (restart)
6294 		perf_event_stop(event, 1);
6295 }
6296 
6297 void perf_event_exec(void)
6298 {
6299 	struct perf_event_context *ctx;
6300 	int ctxn;
6301 
6302 	rcu_read_lock();
6303 	for_each_task_context_nr(ctxn) {
6304 		ctx = current->perf_event_ctxp[ctxn];
6305 		if (!ctx)
6306 			continue;
6307 
6308 		perf_event_enable_on_exec(ctxn);
6309 
6310 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6311 				   true);
6312 	}
6313 	rcu_read_unlock();
6314 }
6315 
6316 struct remote_output {
6317 	struct ring_buffer	*rb;
6318 	int			err;
6319 };
6320 
6321 static void __perf_event_output_stop(struct perf_event *event, void *data)
6322 {
6323 	struct perf_event *parent = event->parent;
6324 	struct remote_output *ro = data;
6325 	struct ring_buffer *rb = ro->rb;
6326 	struct stop_event_data sd = {
6327 		.event	= event,
6328 	};
6329 
6330 	if (!has_aux(event))
6331 		return;
6332 
6333 	if (!parent)
6334 		parent = event;
6335 
6336 	/*
6337 	 * In case of inheritance, it will be the parent that links to the
6338 	 * ring-buffer, but it will be the child that's actually using it.
6339 	 *
6340 	 * We are using event::rb to determine if the event should be stopped,
6341 	 * however this may race with ring_buffer_attach() (through set_output),
6342 	 * which will make us skip the event that actually needs to be stopped.
6343 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6344 	 * its rb pointer.
6345 	 */
6346 	if (rcu_dereference(parent->rb) == rb)
6347 		ro->err = __perf_event_stop(&sd);
6348 }
6349 
6350 static int __perf_pmu_output_stop(void *info)
6351 {
6352 	struct perf_event *event = info;
6353 	struct pmu *pmu = event->pmu;
6354 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6355 	struct remote_output ro = {
6356 		.rb	= event->rb,
6357 	};
6358 
6359 	rcu_read_lock();
6360 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6361 	if (cpuctx->task_ctx)
6362 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6363 				   &ro, false);
6364 	rcu_read_unlock();
6365 
6366 	return ro.err;
6367 }
6368 
6369 static void perf_pmu_output_stop(struct perf_event *event)
6370 {
6371 	struct perf_event *iter;
6372 	int err, cpu;
6373 
6374 restart:
6375 	rcu_read_lock();
6376 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6377 		/*
6378 		 * For per-CPU events, we need to make sure that neither they
6379 		 * nor their children are running; for cpu==-1 events it's
6380 		 * sufficient to stop the event itself if it's active, since
6381 		 * it can't have children.
6382 		 */
6383 		cpu = iter->cpu;
6384 		if (cpu == -1)
6385 			cpu = READ_ONCE(iter->oncpu);
6386 
6387 		if (cpu == -1)
6388 			continue;
6389 
6390 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6391 		if (err == -EAGAIN) {
6392 			rcu_read_unlock();
6393 			goto restart;
6394 		}
6395 	}
6396 	rcu_read_unlock();
6397 }
6398 
6399 /*
6400  * task tracking -- fork/exit
6401  *
6402  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6403  */
6404 
6405 struct perf_task_event {
6406 	struct task_struct		*task;
6407 	struct perf_event_context	*task_ctx;
6408 
6409 	struct {
6410 		struct perf_event_header	header;
6411 
6412 		u32				pid;
6413 		u32				ppid;
6414 		u32				tid;
6415 		u32				ptid;
6416 		u64				time;
6417 	} event_id;
6418 };
6419 
6420 static int perf_event_task_match(struct perf_event *event)
6421 {
6422 	return event->attr.comm  || event->attr.mmap ||
6423 	       event->attr.mmap2 || event->attr.mmap_data ||
6424 	       event->attr.task;
6425 }
6426 
6427 static void perf_event_task_output(struct perf_event *event,
6428 				   void *data)
6429 {
6430 	struct perf_task_event *task_event = data;
6431 	struct perf_output_handle handle;
6432 	struct perf_sample_data	sample;
6433 	struct task_struct *task = task_event->task;
6434 	int ret, size = task_event->event_id.header.size;
6435 
6436 	if (!perf_event_task_match(event))
6437 		return;
6438 
6439 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6440 
6441 	ret = perf_output_begin(&handle, event,
6442 				task_event->event_id.header.size);
6443 	if (ret)
6444 		goto out;
6445 
6446 	task_event->event_id.pid = perf_event_pid(event, task);
6447 	task_event->event_id.ppid = perf_event_pid(event, current);
6448 
6449 	task_event->event_id.tid = perf_event_tid(event, task);
6450 	task_event->event_id.ptid = perf_event_tid(event, current);
6451 
6452 	task_event->event_id.time = perf_event_clock(event);
6453 
6454 	perf_output_put(&handle, task_event->event_id);
6455 
6456 	perf_event__output_id_sample(event, &handle, &sample);
6457 
6458 	perf_output_end(&handle);
6459 out:
6460 	task_event->event_id.header.size = size;
6461 }
6462 
6463 static void perf_event_task(struct task_struct *task,
6464 			      struct perf_event_context *task_ctx,
6465 			      int new)
6466 {
6467 	struct perf_task_event task_event;
6468 
6469 	if (!atomic_read(&nr_comm_events) &&
6470 	    !atomic_read(&nr_mmap_events) &&
6471 	    !atomic_read(&nr_task_events))
6472 		return;
6473 
6474 	task_event = (struct perf_task_event){
6475 		.task	  = task,
6476 		.task_ctx = task_ctx,
6477 		.event_id    = {
6478 			.header = {
6479 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6480 				.misc = 0,
6481 				.size = sizeof(task_event.event_id),
6482 			},
6483 			/* .pid  */
6484 			/* .ppid */
6485 			/* .tid  */
6486 			/* .ptid */
6487 			/* .time */
6488 		},
6489 	};
6490 
6491 	perf_iterate_sb(perf_event_task_output,
6492 		       &task_event,
6493 		       task_ctx);
6494 }
6495 
6496 void perf_event_fork(struct task_struct *task)
6497 {
6498 	perf_event_task(task, NULL, 1);
6499 	perf_event_namespaces(task);
6500 }
6501 
6502 /*
6503  * comm tracking
6504  */
6505 
6506 struct perf_comm_event {
6507 	struct task_struct	*task;
6508 	char			*comm;
6509 	int			comm_size;
6510 
6511 	struct {
6512 		struct perf_event_header	header;
6513 
6514 		u32				pid;
6515 		u32				tid;
6516 	} event_id;
6517 };
6518 
6519 static int perf_event_comm_match(struct perf_event *event)
6520 {
6521 	return event->attr.comm;
6522 }
6523 
6524 static void perf_event_comm_output(struct perf_event *event,
6525 				   void *data)
6526 {
6527 	struct perf_comm_event *comm_event = data;
6528 	struct perf_output_handle handle;
6529 	struct perf_sample_data sample;
6530 	int size = comm_event->event_id.header.size;
6531 	int ret;
6532 
6533 	if (!perf_event_comm_match(event))
6534 		return;
6535 
6536 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6537 	ret = perf_output_begin(&handle, event,
6538 				comm_event->event_id.header.size);
6539 
6540 	if (ret)
6541 		goto out;
6542 
6543 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6544 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6545 
6546 	perf_output_put(&handle, comm_event->event_id);
6547 	__output_copy(&handle, comm_event->comm,
6548 				   comm_event->comm_size);
6549 
6550 	perf_event__output_id_sample(event, &handle, &sample);
6551 
6552 	perf_output_end(&handle);
6553 out:
6554 	comm_event->event_id.header.size = size;
6555 }
6556 
6557 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6558 {
6559 	char comm[TASK_COMM_LEN];
6560 	unsigned int size;
6561 
6562 	memset(comm, 0, sizeof(comm));
6563 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6564 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6565 
6566 	comm_event->comm = comm;
6567 	comm_event->comm_size = size;
6568 
6569 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6570 
6571 	perf_iterate_sb(perf_event_comm_output,
6572 		       comm_event,
6573 		       NULL);
6574 }
6575 
6576 void perf_event_comm(struct task_struct *task, bool exec)
6577 {
6578 	struct perf_comm_event comm_event;
6579 
6580 	if (!atomic_read(&nr_comm_events))
6581 		return;
6582 
6583 	comm_event = (struct perf_comm_event){
6584 		.task	= task,
6585 		/* .comm      */
6586 		/* .comm_size */
6587 		.event_id  = {
6588 			.header = {
6589 				.type = PERF_RECORD_COMM,
6590 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6591 				/* .size */
6592 			},
6593 			/* .pid */
6594 			/* .tid */
6595 		},
6596 	};
6597 
6598 	perf_event_comm_event(&comm_event);
6599 }
6600 
6601 /*
6602  * namespaces tracking
6603  */
6604 
6605 struct perf_namespaces_event {
6606 	struct task_struct		*task;
6607 
6608 	struct {
6609 		struct perf_event_header	header;
6610 
6611 		u32				pid;
6612 		u32				tid;
6613 		u64				nr_namespaces;
6614 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6615 	} event_id;
6616 };
6617 
6618 static int perf_event_namespaces_match(struct perf_event *event)
6619 {
6620 	return event->attr.namespaces;
6621 }
6622 
6623 static void perf_event_namespaces_output(struct perf_event *event,
6624 					 void *data)
6625 {
6626 	struct perf_namespaces_event *namespaces_event = data;
6627 	struct perf_output_handle handle;
6628 	struct perf_sample_data sample;
6629 	int ret;
6630 
6631 	if (!perf_event_namespaces_match(event))
6632 		return;
6633 
6634 	perf_event_header__init_id(&namespaces_event->event_id.header,
6635 				   &sample, event);
6636 	ret = perf_output_begin(&handle, event,
6637 				namespaces_event->event_id.header.size);
6638 	if (ret)
6639 		return;
6640 
6641 	namespaces_event->event_id.pid = perf_event_pid(event,
6642 							namespaces_event->task);
6643 	namespaces_event->event_id.tid = perf_event_tid(event,
6644 							namespaces_event->task);
6645 
6646 	perf_output_put(&handle, namespaces_event->event_id);
6647 
6648 	perf_event__output_id_sample(event, &handle, &sample);
6649 
6650 	perf_output_end(&handle);
6651 }
6652 
6653 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6654 				   struct task_struct *task,
6655 				   const struct proc_ns_operations *ns_ops)
6656 {
6657 	struct path ns_path;
6658 	struct inode *ns_inode;
6659 	void *error;
6660 
6661 	error = ns_get_path(&ns_path, task, ns_ops);
6662 	if (!error) {
6663 		ns_inode = ns_path.dentry->d_inode;
6664 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6665 		ns_link_info->ino = ns_inode->i_ino;
6666 	}
6667 }
6668 
6669 void perf_event_namespaces(struct task_struct *task)
6670 {
6671 	struct perf_namespaces_event namespaces_event;
6672 	struct perf_ns_link_info *ns_link_info;
6673 
6674 	if (!atomic_read(&nr_namespaces_events))
6675 		return;
6676 
6677 	namespaces_event = (struct perf_namespaces_event){
6678 		.task	= task,
6679 		.event_id  = {
6680 			.header = {
6681 				.type = PERF_RECORD_NAMESPACES,
6682 				.misc = 0,
6683 				.size = sizeof(namespaces_event.event_id),
6684 			},
6685 			/* .pid */
6686 			/* .tid */
6687 			.nr_namespaces = NR_NAMESPACES,
6688 			/* .link_info[NR_NAMESPACES] */
6689 		},
6690 	};
6691 
6692 	ns_link_info = namespaces_event.event_id.link_info;
6693 
6694 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6695 			       task, &mntns_operations);
6696 
6697 #ifdef CONFIG_USER_NS
6698 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6699 			       task, &userns_operations);
6700 #endif
6701 #ifdef CONFIG_NET_NS
6702 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6703 			       task, &netns_operations);
6704 #endif
6705 #ifdef CONFIG_UTS_NS
6706 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6707 			       task, &utsns_operations);
6708 #endif
6709 #ifdef CONFIG_IPC_NS
6710 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6711 			       task, &ipcns_operations);
6712 #endif
6713 #ifdef CONFIG_PID_NS
6714 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6715 			       task, &pidns_operations);
6716 #endif
6717 #ifdef CONFIG_CGROUPS
6718 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6719 			       task, &cgroupns_operations);
6720 #endif
6721 
6722 	perf_iterate_sb(perf_event_namespaces_output,
6723 			&namespaces_event,
6724 			NULL);
6725 }
6726 
6727 /*
6728  * mmap tracking
6729  */
6730 
6731 struct perf_mmap_event {
6732 	struct vm_area_struct	*vma;
6733 
6734 	const char		*file_name;
6735 	int			file_size;
6736 	int			maj, min;
6737 	u64			ino;
6738 	u64			ino_generation;
6739 	u32			prot, flags;
6740 
6741 	struct {
6742 		struct perf_event_header	header;
6743 
6744 		u32				pid;
6745 		u32				tid;
6746 		u64				start;
6747 		u64				len;
6748 		u64				pgoff;
6749 	} event_id;
6750 };
6751 
6752 static int perf_event_mmap_match(struct perf_event *event,
6753 				 void *data)
6754 {
6755 	struct perf_mmap_event *mmap_event = data;
6756 	struct vm_area_struct *vma = mmap_event->vma;
6757 	int executable = vma->vm_flags & VM_EXEC;
6758 
6759 	return (!executable && event->attr.mmap_data) ||
6760 	       (executable && (event->attr.mmap || event->attr.mmap2));
6761 }
6762 
6763 static void perf_event_mmap_output(struct perf_event *event,
6764 				   void *data)
6765 {
6766 	struct perf_mmap_event *mmap_event = data;
6767 	struct perf_output_handle handle;
6768 	struct perf_sample_data sample;
6769 	int size = mmap_event->event_id.header.size;
6770 	int ret;
6771 
6772 	if (!perf_event_mmap_match(event, data))
6773 		return;
6774 
6775 	if (event->attr.mmap2) {
6776 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6777 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6778 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6779 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6780 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6781 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6782 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6783 	}
6784 
6785 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6786 	ret = perf_output_begin(&handle, event,
6787 				mmap_event->event_id.header.size);
6788 	if (ret)
6789 		goto out;
6790 
6791 	mmap_event->event_id.pid = perf_event_pid(event, current);
6792 	mmap_event->event_id.tid = perf_event_tid(event, current);
6793 
6794 	perf_output_put(&handle, mmap_event->event_id);
6795 
6796 	if (event->attr.mmap2) {
6797 		perf_output_put(&handle, mmap_event->maj);
6798 		perf_output_put(&handle, mmap_event->min);
6799 		perf_output_put(&handle, mmap_event->ino);
6800 		perf_output_put(&handle, mmap_event->ino_generation);
6801 		perf_output_put(&handle, mmap_event->prot);
6802 		perf_output_put(&handle, mmap_event->flags);
6803 	}
6804 
6805 	__output_copy(&handle, mmap_event->file_name,
6806 				   mmap_event->file_size);
6807 
6808 	perf_event__output_id_sample(event, &handle, &sample);
6809 
6810 	perf_output_end(&handle);
6811 out:
6812 	mmap_event->event_id.header.size = size;
6813 }
6814 
6815 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6816 {
6817 	struct vm_area_struct *vma = mmap_event->vma;
6818 	struct file *file = vma->vm_file;
6819 	int maj = 0, min = 0;
6820 	u64 ino = 0, gen = 0;
6821 	u32 prot = 0, flags = 0;
6822 	unsigned int size;
6823 	char tmp[16];
6824 	char *buf = NULL;
6825 	char *name;
6826 
6827 	if (vma->vm_flags & VM_READ)
6828 		prot |= PROT_READ;
6829 	if (vma->vm_flags & VM_WRITE)
6830 		prot |= PROT_WRITE;
6831 	if (vma->vm_flags & VM_EXEC)
6832 		prot |= PROT_EXEC;
6833 
6834 	if (vma->vm_flags & VM_MAYSHARE)
6835 		flags = MAP_SHARED;
6836 	else
6837 		flags = MAP_PRIVATE;
6838 
6839 	if (vma->vm_flags & VM_DENYWRITE)
6840 		flags |= MAP_DENYWRITE;
6841 	if (vma->vm_flags & VM_MAYEXEC)
6842 		flags |= MAP_EXECUTABLE;
6843 	if (vma->vm_flags & VM_LOCKED)
6844 		flags |= MAP_LOCKED;
6845 	if (vma->vm_flags & VM_HUGETLB)
6846 		flags |= MAP_HUGETLB;
6847 
6848 	if (file) {
6849 		struct inode *inode;
6850 		dev_t dev;
6851 
6852 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6853 		if (!buf) {
6854 			name = "//enomem";
6855 			goto cpy_name;
6856 		}
6857 		/*
6858 		 * d_path() works from the end of the rb backwards, so we
6859 		 * need to add enough zero bytes after the string to handle
6860 		 * the 64bit alignment we do later.
6861 		 */
6862 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6863 		if (IS_ERR(name)) {
6864 			name = "//toolong";
6865 			goto cpy_name;
6866 		}
6867 		inode = file_inode(vma->vm_file);
6868 		dev = inode->i_sb->s_dev;
6869 		ino = inode->i_ino;
6870 		gen = inode->i_generation;
6871 		maj = MAJOR(dev);
6872 		min = MINOR(dev);
6873 
6874 		goto got_name;
6875 	} else {
6876 		if (vma->vm_ops && vma->vm_ops->name) {
6877 			name = (char *) vma->vm_ops->name(vma);
6878 			if (name)
6879 				goto cpy_name;
6880 		}
6881 
6882 		name = (char *)arch_vma_name(vma);
6883 		if (name)
6884 			goto cpy_name;
6885 
6886 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6887 				vma->vm_end >= vma->vm_mm->brk) {
6888 			name = "[heap]";
6889 			goto cpy_name;
6890 		}
6891 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6892 				vma->vm_end >= vma->vm_mm->start_stack) {
6893 			name = "[stack]";
6894 			goto cpy_name;
6895 		}
6896 
6897 		name = "//anon";
6898 		goto cpy_name;
6899 	}
6900 
6901 cpy_name:
6902 	strlcpy(tmp, name, sizeof(tmp));
6903 	name = tmp;
6904 got_name:
6905 	/*
6906 	 * Since our buffer works in 8 byte units we need to align our string
6907 	 * size to a multiple of 8. However, we must guarantee the tail end is
6908 	 * zero'd out to avoid leaking random bits to userspace.
6909 	 */
6910 	size = strlen(name)+1;
6911 	while (!IS_ALIGNED(size, sizeof(u64)))
6912 		name[size++] = '\0';
6913 
6914 	mmap_event->file_name = name;
6915 	mmap_event->file_size = size;
6916 	mmap_event->maj = maj;
6917 	mmap_event->min = min;
6918 	mmap_event->ino = ino;
6919 	mmap_event->ino_generation = gen;
6920 	mmap_event->prot = prot;
6921 	mmap_event->flags = flags;
6922 
6923 	if (!(vma->vm_flags & VM_EXEC))
6924 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6925 
6926 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6927 
6928 	perf_iterate_sb(perf_event_mmap_output,
6929 		       mmap_event,
6930 		       NULL);
6931 
6932 	kfree(buf);
6933 }
6934 
6935 /*
6936  * Check whether inode and address range match filter criteria.
6937  */
6938 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6939 				     struct file *file, unsigned long offset,
6940 				     unsigned long size)
6941 {
6942 	if (filter->inode != file_inode(file))
6943 		return false;
6944 
6945 	if (filter->offset > offset + size)
6946 		return false;
6947 
6948 	if (filter->offset + filter->size < offset)
6949 		return false;
6950 
6951 	return true;
6952 }
6953 
6954 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6955 {
6956 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6957 	struct vm_area_struct *vma = data;
6958 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6959 	struct file *file = vma->vm_file;
6960 	struct perf_addr_filter *filter;
6961 	unsigned int restart = 0, count = 0;
6962 
6963 	if (!has_addr_filter(event))
6964 		return;
6965 
6966 	if (!file)
6967 		return;
6968 
6969 	raw_spin_lock_irqsave(&ifh->lock, flags);
6970 	list_for_each_entry(filter, &ifh->list, entry) {
6971 		if (perf_addr_filter_match(filter, file, off,
6972 					     vma->vm_end - vma->vm_start)) {
6973 			event->addr_filters_offs[count] = vma->vm_start;
6974 			restart++;
6975 		}
6976 
6977 		count++;
6978 	}
6979 
6980 	if (restart)
6981 		event->addr_filters_gen++;
6982 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6983 
6984 	if (restart)
6985 		perf_event_stop(event, 1);
6986 }
6987 
6988 /*
6989  * Adjust all task's events' filters to the new vma
6990  */
6991 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6992 {
6993 	struct perf_event_context *ctx;
6994 	int ctxn;
6995 
6996 	/*
6997 	 * Data tracing isn't supported yet and as such there is no need
6998 	 * to keep track of anything that isn't related to executable code:
6999 	 */
7000 	if (!(vma->vm_flags & VM_EXEC))
7001 		return;
7002 
7003 	rcu_read_lock();
7004 	for_each_task_context_nr(ctxn) {
7005 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7006 		if (!ctx)
7007 			continue;
7008 
7009 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7010 	}
7011 	rcu_read_unlock();
7012 }
7013 
7014 void perf_event_mmap(struct vm_area_struct *vma)
7015 {
7016 	struct perf_mmap_event mmap_event;
7017 
7018 	if (!atomic_read(&nr_mmap_events))
7019 		return;
7020 
7021 	mmap_event = (struct perf_mmap_event){
7022 		.vma	= vma,
7023 		/* .file_name */
7024 		/* .file_size */
7025 		.event_id  = {
7026 			.header = {
7027 				.type = PERF_RECORD_MMAP,
7028 				.misc = PERF_RECORD_MISC_USER,
7029 				/* .size */
7030 			},
7031 			/* .pid */
7032 			/* .tid */
7033 			.start  = vma->vm_start,
7034 			.len    = vma->vm_end - vma->vm_start,
7035 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7036 		},
7037 		/* .maj (attr_mmap2 only) */
7038 		/* .min (attr_mmap2 only) */
7039 		/* .ino (attr_mmap2 only) */
7040 		/* .ino_generation (attr_mmap2 only) */
7041 		/* .prot (attr_mmap2 only) */
7042 		/* .flags (attr_mmap2 only) */
7043 	};
7044 
7045 	perf_addr_filters_adjust(vma);
7046 	perf_event_mmap_event(&mmap_event);
7047 }
7048 
7049 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7050 			  unsigned long size, u64 flags)
7051 {
7052 	struct perf_output_handle handle;
7053 	struct perf_sample_data sample;
7054 	struct perf_aux_event {
7055 		struct perf_event_header	header;
7056 		u64				offset;
7057 		u64				size;
7058 		u64				flags;
7059 	} rec = {
7060 		.header = {
7061 			.type = PERF_RECORD_AUX,
7062 			.misc = 0,
7063 			.size = sizeof(rec),
7064 		},
7065 		.offset		= head,
7066 		.size		= size,
7067 		.flags		= flags,
7068 	};
7069 	int ret;
7070 
7071 	perf_event_header__init_id(&rec.header, &sample, event);
7072 	ret = perf_output_begin(&handle, event, rec.header.size);
7073 
7074 	if (ret)
7075 		return;
7076 
7077 	perf_output_put(&handle, rec);
7078 	perf_event__output_id_sample(event, &handle, &sample);
7079 
7080 	perf_output_end(&handle);
7081 }
7082 
7083 /*
7084  * Lost/dropped samples logging
7085  */
7086 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7087 {
7088 	struct perf_output_handle handle;
7089 	struct perf_sample_data sample;
7090 	int ret;
7091 
7092 	struct {
7093 		struct perf_event_header	header;
7094 		u64				lost;
7095 	} lost_samples_event = {
7096 		.header = {
7097 			.type = PERF_RECORD_LOST_SAMPLES,
7098 			.misc = 0,
7099 			.size = sizeof(lost_samples_event),
7100 		},
7101 		.lost		= lost,
7102 	};
7103 
7104 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7105 
7106 	ret = perf_output_begin(&handle, event,
7107 				lost_samples_event.header.size);
7108 	if (ret)
7109 		return;
7110 
7111 	perf_output_put(&handle, lost_samples_event);
7112 	perf_event__output_id_sample(event, &handle, &sample);
7113 	perf_output_end(&handle);
7114 }
7115 
7116 /*
7117  * context_switch tracking
7118  */
7119 
7120 struct perf_switch_event {
7121 	struct task_struct	*task;
7122 	struct task_struct	*next_prev;
7123 
7124 	struct {
7125 		struct perf_event_header	header;
7126 		u32				next_prev_pid;
7127 		u32				next_prev_tid;
7128 	} event_id;
7129 };
7130 
7131 static int perf_event_switch_match(struct perf_event *event)
7132 {
7133 	return event->attr.context_switch;
7134 }
7135 
7136 static void perf_event_switch_output(struct perf_event *event, void *data)
7137 {
7138 	struct perf_switch_event *se = data;
7139 	struct perf_output_handle handle;
7140 	struct perf_sample_data sample;
7141 	int ret;
7142 
7143 	if (!perf_event_switch_match(event))
7144 		return;
7145 
7146 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7147 	if (event->ctx->task) {
7148 		se->event_id.header.type = PERF_RECORD_SWITCH;
7149 		se->event_id.header.size = sizeof(se->event_id.header);
7150 	} else {
7151 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7152 		se->event_id.header.size = sizeof(se->event_id);
7153 		se->event_id.next_prev_pid =
7154 					perf_event_pid(event, se->next_prev);
7155 		se->event_id.next_prev_tid =
7156 					perf_event_tid(event, se->next_prev);
7157 	}
7158 
7159 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7160 
7161 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7162 	if (ret)
7163 		return;
7164 
7165 	if (event->ctx->task)
7166 		perf_output_put(&handle, se->event_id.header);
7167 	else
7168 		perf_output_put(&handle, se->event_id);
7169 
7170 	perf_event__output_id_sample(event, &handle, &sample);
7171 
7172 	perf_output_end(&handle);
7173 }
7174 
7175 static void perf_event_switch(struct task_struct *task,
7176 			      struct task_struct *next_prev, bool sched_in)
7177 {
7178 	struct perf_switch_event switch_event;
7179 
7180 	/* N.B. caller checks nr_switch_events != 0 */
7181 
7182 	switch_event = (struct perf_switch_event){
7183 		.task		= task,
7184 		.next_prev	= next_prev,
7185 		.event_id	= {
7186 			.header = {
7187 				/* .type */
7188 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7189 				/* .size */
7190 			},
7191 			/* .next_prev_pid */
7192 			/* .next_prev_tid */
7193 		},
7194 	};
7195 
7196 	perf_iterate_sb(perf_event_switch_output,
7197 		       &switch_event,
7198 		       NULL);
7199 }
7200 
7201 /*
7202  * IRQ throttle logging
7203  */
7204 
7205 static void perf_log_throttle(struct perf_event *event, int enable)
7206 {
7207 	struct perf_output_handle handle;
7208 	struct perf_sample_data sample;
7209 	int ret;
7210 
7211 	struct {
7212 		struct perf_event_header	header;
7213 		u64				time;
7214 		u64				id;
7215 		u64				stream_id;
7216 	} throttle_event = {
7217 		.header = {
7218 			.type = PERF_RECORD_THROTTLE,
7219 			.misc = 0,
7220 			.size = sizeof(throttle_event),
7221 		},
7222 		.time		= perf_event_clock(event),
7223 		.id		= primary_event_id(event),
7224 		.stream_id	= event->id,
7225 	};
7226 
7227 	if (enable)
7228 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7229 
7230 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7231 
7232 	ret = perf_output_begin(&handle, event,
7233 				throttle_event.header.size);
7234 	if (ret)
7235 		return;
7236 
7237 	perf_output_put(&handle, throttle_event);
7238 	perf_event__output_id_sample(event, &handle, &sample);
7239 	perf_output_end(&handle);
7240 }
7241 
7242 static void perf_log_itrace_start(struct perf_event *event)
7243 {
7244 	struct perf_output_handle handle;
7245 	struct perf_sample_data sample;
7246 	struct perf_aux_event {
7247 		struct perf_event_header        header;
7248 		u32				pid;
7249 		u32				tid;
7250 	} rec;
7251 	int ret;
7252 
7253 	if (event->parent)
7254 		event = event->parent;
7255 
7256 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7257 	    event->hw.itrace_started)
7258 		return;
7259 
7260 	rec.header.type	= PERF_RECORD_ITRACE_START;
7261 	rec.header.misc	= 0;
7262 	rec.header.size	= sizeof(rec);
7263 	rec.pid	= perf_event_pid(event, current);
7264 	rec.tid	= perf_event_tid(event, current);
7265 
7266 	perf_event_header__init_id(&rec.header, &sample, event);
7267 	ret = perf_output_begin(&handle, event, rec.header.size);
7268 
7269 	if (ret)
7270 		return;
7271 
7272 	perf_output_put(&handle, rec);
7273 	perf_event__output_id_sample(event, &handle, &sample);
7274 
7275 	perf_output_end(&handle);
7276 }
7277 
7278 static int
7279 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7280 {
7281 	struct hw_perf_event *hwc = &event->hw;
7282 	int ret = 0;
7283 	u64 seq;
7284 
7285 	seq = __this_cpu_read(perf_throttled_seq);
7286 	if (seq != hwc->interrupts_seq) {
7287 		hwc->interrupts_seq = seq;
7288 		hwc->interrupts = 1;
7289 	} else {
7290 		hwc->interrupts++;
7291 		if (unlikely(throttle
7292 			     && hwc->interrupts >= max_samples_per_tick)) {
7293 			__this_cpu_inc(perf_throttled_count);
7294 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7295 			hwc->interrupts = MAX_INTERRUPTS;
7296 			perf_log_throttle(event, 0);
7297 			ret = 1;
7298 		}
7299 	}
7300 
7301 	if (event->attr.freq) {
7302 		u64 now = perf_clock();
7303 		s64 delta = now - hwc->freq_time_stamp;
7304 
7305 		hwc->freq_time_stamp = now;
7306 
7307 		if (delta > 0 && delta < 2*TICK_NSEC)
7308 			perf_adjust_period(event, delta, hwc->last_period, true);
7309 	}
7310 
7311 	return ret;
7312 }
7313 
7314 int perf_event_account_interrupt(struct perf_event *event)
7315 {
7316 	return __perf_event_account_interrupt(event, 1);
7317 }
7318 
7319 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
7320 {
7321 	/*
7322 	 * Due to interrupt latency (AKA "skid"), we may enter the
7323 	 * kernel before taking an overflow, even if the PMU is only
7324 	 * counting user events.
7325 	 * To avoid leaking information to userspace, we must always
7326 	 * reject kernel samples when exclude_kernel is set.
7327 	 */
7328 	if (event->attr.exclude_kernel && !user_mode(regs))
7329 		return false;
7330 
7331 	return true;
7332 }
7333 
7334 /*
7335  * Generic event overflow handling, sampling.
7336  */
7337 
7338 static int __perf_event_overflow(struct perf_event *event,
7339 				   int throttle, struct perf_sample_data *data,
7340 				   struct pt_regs *regs)
7341 {
7342 	int events = atomic_read(&event->event_limit);
7343 	int ret = 0;
7344 
7345 	/*
7346 	 * Non-sampling counters might still use the PMI to fold short
7347 	 * hardware counters, ignore those.
7348 	 */
7349 	if (unlikely(!is_sampling_event(event)))
7350 		return 0;
7351 
7352 	ret = __perf_event_account_interrupt(event, throttle);
7353 
7354 	/*
7355 	 * For security, drop the skid kernel samples if necessary.
7356 	 */
7357 	if (!sample_is_allowed(event, regs))
7358 		return ret;
7359 
7360 	/*
7361 	 * XXX event_limit might not quite work as expected on inherited
7362 	 * events
7363 	 */
7364 
7365 	event->pending_kill = POLL_IN;
7366 	if (events && atomic_dec_and_test(&event->event_limit)) {
7367 		ret = 1;
7368 		event->pending_kill = POLL_HUP;
7369 
7370 		perf_event_disable_inatomic(event);
7371 	}
7372 
7373 	READ_ONCE(event->overflow_handler)(event, data, regs);
7374 
7375 	if (*perf_event_fasync(event) && event->pending_kill) {
7376 		event->pending_wakeup = 1;
7377 		irq_work_queue(&event->pending);
7378 	}
7379 
7380 	return ret;
7381 }
7382 
7383 int perf_event_overflow(struct perf_event *event,
7384 			  struct perf_sample_data *data,
7385 			  struct pt_regs *regs)
7386 {
7387 	return __perf_event_overflow(event, 1, data, regs);
7388 }
7389 
7390 /*
7391  * Generic software event infrastructure
7392  */
7393 
7394 struct swevent_htable {
7395 	struct swevent_hlist		*swevent_hlist;
7396 	struct mutex			hlist_mutex;
7397 	int				hlist_refcount;
7398 
7399 	/* Recursion avoidance in each contexts */
7400 	int				recursion[PERF_NR_CONTEXTS];
7401 };
7402 
7403 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7404 
7405 /*
7406  * We directly increment event->count and keep a second value in
7407  * event->hw.period_left to count intervals. This period event
7408  * is kept in the range [-sample_period, 0] so that we can use the
7409  * sign as trigger.
7410  */
7411 
7412 u64 perf_swevent_set_period(struct perf_event *event)
7413 {
7414 	struct hw_perf_event *hwc = &event->hw;
7415 	u64 period = hwc->last_period;
7416 	u64 nr, offset;
7417 	s64 old, val;
7418 
7419 	hwc->last_period = hwc->sample_period;
7420 
7421 again:
7422 	old = val = local64_read(&hwc->period_left);
7423 	if (val < 0)
7424 		return 0;
7425 
7426 	nr = div64_u64(period + val, period);
7427 	offset = nr * period;
7428 	val -= offset;
7429 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7430 		goto again;
7431 
7432 	return nr;
7433 }
7434 
7435 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7436 				    struct perf_sample_data *data,
7437 				    struct pt_regs *regs)
7438 {
7439 	struct hw_perf_event *hwc = &event->hw;
7440 	int throttle = 0;
7441 
7442 	if (!overflow)
7443 		overflow = perf_swevent_set_period(event);
7444 
7445 	if (hwc->interrupts == MAX_INTERRUPTS)
7446 		return;
7447 
7448 	for (; overflow; overflow--) {
7449 		if (__perf_event_overflow(event, throttle,
7450 					    data, regs)) {
7451 			/*
7452 			 * We inhibit the overflow from happening when
7453 			 * hwc->interrupts == MAX_INTERRUPTS.
7454 			 */
7455 			break;
7456 		}
7457 		throttle = 1;
7458 	}
7459 }
7460 
7461 static void perf_swevent_event(struct perf_event *event, u64 nr,
7462 			       struct perf_sample_data *data,
7463 			       struct pt_regs *regs)
7464 {
7465 	struct hw_perf_event *hwc = &event->hw;
7466 
7467 	local64_add(nr, &event->count);
7468 
7469 	if (!regs)
7470 		return;
7471 
7472 	if (!is_sampling_event(event))
7473 		return;
7474 
7475 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7476 		data->period = nr;
7477 		return perf_swevent_overflow(event, 1, data, regs);
7478 	} else
7479 		data->period = event->hw.last_period;
7480 
7481 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7482 		return perf_swevent_overflow(event, 1, data, regs);
7483 
7484 	if (local64_add_negative(nr, &hwc->period_left))
7485 		return;
7486 
7487 	perf_swevent_overflow(event, 0, data, regs);
7488 }
7489 
7490 static int perf_exclude_event(struct perf_event *event,
7491 			      struct pt_regs *regs)
7492 {
7493 	if (event->hw.state & PERF_HES_STOPPED)
7494 		return 1;
7495 
7496 	if (regs) {
7497 		if (event->attr.exclude_user && user_mode(regs))
7498 			return 1;
7499 
7500 		if (event->attr.exclude_kernel && !user_mode(regs))
7501 			return 1;
7502 	}
7503 
7504 	return 0;
7505 }
7506 
7507 static int perf_swevent_match(struct perf_event *event,
7508 				enum perf_type_id type,
7509 				u32 event_id,
7510 				struct perf_sample_data *data,
7511 				struct pt_regs *regs)
7512 {
7513 	if (event->attr.type != type)
7514 		return 0;
7515 
7516 	if (event->attr.config != event_id)
7517 		return 0;
7518 
7519 	if (perf_exclude_event(event, regs))
7520 		return 0;
7521 
7522 	return 1;
7523 }
7524 
7525 static inline u64 swevent_hash(u64 type, u32 event_id)
7526 {
7527 	u64 val = event_id | (type << 32);
7528 
7529 	return hash_64(val, SWEVENT_HLIST_BITS);
7530 }
7531 
7532 static inline struct hlist_head *
7533 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7534 {
7535 	u64 hash = swevent_hash(type, event_id);
7536 
7537 	return &hlist->heads[hash];
7538 }
7539 
7540 /* For the read side: events when they trigger */
7541 static inline struct hlist_head *
7542 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7543 {
7544 	struct swevent_hlist *hlist;
7545 
7546 	hlist = rcu_dereference(swhash->swevent_hlist);
7547 	if (!hlist)
7548 		return NULL;
7549 
7550 	return __find_swevent_head(hlist, type, event_id);
7551 }
7552 
7553 /* For the event head insertion and removal in the hlist */
7554 static inline struct hlist_head *
7555 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7556 {
7557 	struct swevent_hlist *hlist;
7558 	u32 event_id = event->attr.config;
7559 	u64 type = event->attr.type;
7560 
7561 	/*
7562 	 * Event scheduling is always serialized against hlist allocation
7563 	 * and release. Which makes the protected version suitable here.
7564 	 * The context lock guarantees that.
7565 	 */
7566 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7567 					  lockdep_is_held(&event->ctx->lock));
7568 	if (!hlist)
7569 		return NULL;
7570 
7571 	return __find_swevent_head(hlist, type, event_id);
7572 }
7573 
7574 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7575 				    u64 nr,
7576 				    struct perf_sample_data *data,
7577 				    struct pt_regs *regs)
7578 {
7579 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7580 	struct perf_event *event;
7581 	struct hlist_head *head;
7582 
7583 	rcu_read_lock();
7584 	head = find_swevent_head_rcu(swhash, type, event_id);
7585 	if (!head)
7586 		goto end;
7587 
7588 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7589 		if (perf_swevent_match(event, type, event_id, data, regs))
7590 			perf_swevent_event(event, nr, data, regs);
7591 	}
7592 end:
7593 	rcu_read_unlock();
7594 }
7595 
7596 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7597 
7598 int perf_swevent_get_recursion_context(void)
7599 {
7600 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7601 
7602 	return get_recursion_context(swhash->recursion);
7603 }
7604 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7605 
7606 void perf_swevent_put_recursion_context(int rctx)
7607 {
7608 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7609 
7610 	put_recursion_context(swhash->recursion, rctx);
7611 }
7612 
7613 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7614 {
7615 	struct perf_sample_data data;
7616 
7617 	if (WARN_ON_ONCE(!regs))
7618 		return;
7619 
7620 	perf_sample_data_init(&data, addr, 0);
7621 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7622 }
7623 
7624 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7625 {
7626 	int rctx;
7627 
7628 	preempt_disable_notrace();
7629 	rctx = perf_swevent_get_recursion_context();
7630 	if (unlikely(rctx < 0))
7631 		goto fail;
7632 
7633 	___perf_sw_event(event_id, nr, regs, addr);
7634 
7635 	perf_swevent_put_recursion_context(rctx);
7636 fail:
7637 	preempt_enable_notrace();
7638 }
7639 
7640 static void perf_swevent_read(struct perf_event *event)
7641 {
7642 }
7643 
7644 static int perf_swevent_add(struct perf_event *event, int flags)
7645 {
7646 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7647 	struct hw_perf_event *hwc = &event->hw;
7648 	struct hlist_head *head;
7649 
7650 	if (is_sampling_event(event)) {
7651 		hwc->last_period = hwc->sample_period;
7652 		perf_swevent_set_period(event);
7653 	}
7654 
7655 	hwc->state = !(flags & PERF_EF_START);
7656 
7657 	head = find_swevent_head(swhash, event);
7658 	if (WARN_ON_ONCE(!head))
7659 		return -EINVAL;
7660 
7661 	hlist_add_head_rcu(&event->hlist_entry, head);
7662 	perf_event_update_userpage(event);
7663 
7664 	return 0;
7665 }
7666 
7667 static void perf_swevent_del(struct perf_event *event, int flags)
7668 {
7669 	hlist_del_rcu(&event->hlist_entry);
7670 }
7671 
7672 static void perf_swevent_start(struct perf_event *event, int flags)
7673 {
7674 	event->hw.state = 0;
7675 }
7676 
7677 static void perf_swevent_stop(struct perf_event *event, int flags)
7678 {
7679 	event->hw.state = PERF_HES_STOPPED;
7680 }
7681 
7682 /* Deref the hlist from the update side */
7683 static inline struct swevent_hlist *
7684 swevent_hlist_deref(struct swevent_htable *swhash)
7685 {
7686 	return rcu_dereference_protected(swhash->swevent_hlist,
7687 					 lockdep_is_held(&swhash->hlist_mutex));
7688 }
7689 
7690 static void swevent_hlist_release(struct swevent_htable *swhash)
7691 {
7692 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7693 
7694 	if (!hlist)
7695 		return;
7696 
7697 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7698 	kfree_rcu(hlist, rcu_head);
7699 }
7700 
7701 static void swevent_hlist_put_cpu(int cpu)
7702 {
7703 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7704 
7705 	mutex_lock(&swhash->hlist_mutex);
7706 
7707 	if (!--swhash->hlist_refcount)
7708 		swevent_hlist_release(swhash);
7709 
7710 	mutex_unlock(&swhash->hlist_mutex);
7711 }
7712 
7713 static void swevent_hlist_put(void)
7714 {
7715 	int cpu;
7716 
7717 	for_each_possible_cpu(cpu)
7718 		swevent_hlist_put_cpu(cpu);
7719 }
7720 
7721 static int swevent_hlist_get_cpu(int cpu)
7722 {
7723 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7724 	int err = 0;
7725 
7726 	mutex_lock(&swhash->hlist_mutex);
7727 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7728 		struct swevent_hlist *hlist;
7729 
7730 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7731 		if (!hlist) {
7732 			err = -ENOMEM;
7733 			goto exit;
7734 		}
7735 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7736 	}
7737 	swhash->hlist_refcount++;
7738 exit:
7739 	mutex_unlock(&swhash->hlist_mutex);
7740 
7741 	return err;
7742 }
7743 
7744 static int swevent_hlist_get(void)
7745 {
7746 	int err, cpu, failed_cpu;
7747 
7748 	get_online_cpus();
7749 	for_each_possible_cpu(cpu) {
7750 		err = swevent_hlist_get_cpu(cpu);
7751 		if (err) {
7752 			failed_cpu = cpu;
7753 			goto fail;
7754 		}
7755 	}
7756 	put_online_cpus();
7757 
7758 	return 0;
7759 fail:
7760 	for_each_possible_cpu(cpu) {
7761 		if (cpu == failed_cpu)
7762 			break;
7763 		swevent_hlist_put_cpu(cpu);
7764 	}
7765 
7766 	put_online_cpus();
7767 	return err;
7768 }
7769 
7770 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7771 
7772 static void sw_perf_event_destroy(struct perf_event *event)
7773 {
7774 	u64 event_id = event->attr.config;
7775 
7776 	WARN_ON(event->parent);
7777 
7778 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7779 	swevent_hlist_put();
7780 }
7781 
7782 static int perf_swevent_init(struct perf_event *event)
7783 {
7784 	u64 event_id = event->attr.config;
7785 
7786 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7787 		return -ENOENT;
7788 
7789 	/*
7790 	 * no branch sampling for software events
7791 	 */
7792 	if (has_branch_stack(event))
7793 		return -EOPNOTSUPP;
7794 
7795 	switch (event_id) {
7796 	case PERF_COUNT_SW_CPU_CLOCK:
7797 	case PERF_COUNT_SW_TASK_CLOCK:
7798 		return -ENOENT;
7799 
7800 	default:
7801 		break;
7802 	}
7803 
7804 	if (event_id >= PERF_COUNT_SW_MAX)
7805 		return -ENOENT;
7806 
7807 	if (!event->parent) {
7808 		int err;
7809 
7810 		err = swevent_hlist_get();
7811 		if (err)
7812 			return err;
7813 
7814 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7815 		event->destroy = sw_perf_event_destroy;
7816 	}
7817 
7818 	return 0;
7819 }
7820 
7821 static struct pmu perf_swevent = {
7822 	.task_ctx_nr	= perf_sw_context,
7823 
7824 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7825 
7826 	.event_init	= perf_swevent_init,
7827 	.add		= perf_swevent_add,
7828 	.del		= perf_swevent_del,
7829 	.start		= perf_swevent_start,
7830 	.stop		= perf_swevent_stop,
7831 	.read		= perf_swevent_read,
7832 };
7833 
7834 #ifdef CONFIG_EVENT_TRACING
7835 
7836 static int perf_tp_filter_match(struct perf_event *event,
7837 				struct perf_sample_data *data)
7838 {
7839 	void *record = data->raw->frag.data;
7840 
7841 	/* only top level events have filters set */
7842 	if (event->parent)
7843 		event = event->parent;
7844 
7845 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7846 		return 1;
7847 	return 0;
7848 }
7849 
7850 static int perf_tp_event_match(struct perf_event *event,
7851 				struct perf_sample_data *data,
7852 				struct pt_regs *regs)
7853 {
7854 	if (event->hw.state & PERF_HES_STOPPED)
7855 		return 0;
7856 	/*
7857 	 * All tracepoints are from kernel-space.
7858 	 */
7859 	if (event->attr.exclude_kernel)
7860 		return 0;
7861 
7862 	if (!perf_tp_filter_match(event, data))
7863 		return 0;
7864 
7865 	return 1;
7866 }
7867 
7868 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7869 			       struct trace_event_call *call, u64 count,
7870 			       struct pt_regs *regs, struct hlist_head *head,
7871 			       struct task_struct *task)
7872 {
7873 	struct bpf_prog *prog = call->prog;
7874 
7875 	if (prog) {
7876 		*(struct pt_regs **)raw_data = regs;
7877 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7878 			perf_swevent_put_recursion_context(rctx);
7879 			return;
7880 		}
7881 	}
7882 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7883 		      rctx, task);
7884 }
7885 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7886 
7887 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7888 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7889 		   struct task_struct *task)
7890 {
7891 	struct perf_sample_data data;
7892 	struct perf_event *event;
7893 
7894 	struct perf_raw_record raw = {
7895 		.frag = {
7896 			.size = entry_size,
7897 			.data = record,
7898 		},
7899 	};
7900 
7901 	perf_sample_data_init(&data, 0, 0);
7902 	data.raw = &raw;
7903 
7904 	perf_trace_buf_update(record, event_type);
7905 
7906 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7907 		if (perf_tp_event_match(event, &data, regs))
7908 			perf_swevent_event(event, count, &data, regs);
7909 	}
7910 
7911 	/*
7912 	 * If we got specified a target task, also iterate its context and
7913 	 * deliver this event there too.
7914 	 */
7915 	if (task && task != current) {
7916 		struct perf_event_context *ctx;
7917 		struct trace_entry *entry = record;
7918 
7919 		rcu_read_lock();
7920 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7921 		if (!ctx)
7922 			goto unlock;
7923 
7924 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7925 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7926 				continue;
7927 			if (event->attr.config != entry->type)
7928 				continue;
7929 			if (perf_tp_event_match(event, &data, regs))
7930 				perf_swevent_event(event, count, &data, regs);
7931 		}
7932 unlock:
7933 		rcu_read_unlock();
7934 	}
7935 
7936 	perf_swevent_put_recursion_context(rctx);
7937 }
7938 EXPORT_SYMBOL_GPL(perf_tp_event);
7939 
7940 static void tp_perf_event_destroy(struct perf_event *event)
7941 {
7942 	perf_trace_destroy(event);
7943 }
7944 
7945 static int perf_tp_event_init(struct perf_event *event)
7946 {
7947 	int err;
7948 
7949 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7950 		return -ENOENT;
7951 
7952 	/*
7953 	 * no branch sampling for tracepoint events
7954 	 */
7955 	if (has_branch_stack(event))
7956 		return -EOPNOTSUPP;
7957 
7958 	err = perf_trace_init(event);
7959 	if (err)
7960 		return err;
7961 
7962 	event->destroy = tp_perf_event_destroy;
7963 
7964 	return 0;
7965 }
7966 
7967 static struct pmu perf_tracepoint = {
7968 	.task_ctx_nr	= perf_sw_context,
7969 
7970 	.event_init	= perf_tp_event_init,
7971 	.add		= perf_trace_add,
7972 	.del		= perf_trace_del,
7973 	.start		= perf_swevent_start,
7974 	.stop		= perf_swevent_stop,
7975 	.read		= perf_swevent_read,
7976 };
7977 
7978 static inline void perf_tp_register(void)
7979 {
7980 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7981 }
7982 
7983 static void perf_event_free_filter(struct perf_event *event)
7984 {
7985 	ftrace_profile_free_filter(event);
7986 }
7987 
7988 #ifdef CONFIG_BPF_SYSCALL
7989 static void bpf_overflow_handler(struct perf_event *event,
7990 				 struct perf_sample_data *data,
7991 				 struct pt_regs *regs)
7992 {
7993 	struct bpf_perf_event_data_kern ctx = {
7994 		.data = data,
7995 		.regs = regs,
7996 	};
7997 	int ret = 0;
7998 
7999 	preempt_disable();
8000 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8001 		goto out;
8002 	rcu_read_lock();
8003 	ret = BPF_PROG_RUN(event->prog, &ctx);
8004 	rcu_read_unlock();
8005 out:
8006 	__this_cpu_dec(bpf_prog_active);
8007 	preempt_enable();
8008 	if (!ret)
8009 		return;
8010 
8011 	event->orig_overflow_handler(event, data, regs);
8012 }
8013 
8014 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8015 {
8016 	struct bpf_prog *prog;
8017 
8018 	if (event->overflow_handler_context)
8019 		/* hw breakpoint or kernel counter */
8020 		return -EINVAL;
8021 
8022 	if (event->prog)
8023 		return -EEXIST;
8024 
8025 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8026 	if (IS_ERR(prog))
8027 		return PTR_ERR(prog);
8028 
8029 	event->prog = prog;
8030 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8031 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8032 	return 0;
8033 }
8034 
8035 static void perf_event_free_bpf_handler(struct perf_event *event)
8036 {
8037 	struct bpf_prog *prog = event->prog;
8038 
8039 	if (!prog)
8040 		return;
8041 
8042 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8043 	event->prog = NULL;
8044 	bpf_prog_put(prog);
8045 }
8046 #else
8047 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8048 {
8049 	return -EOPNOTSUPP;
8050 }
8051 static void perf_event_free_bpf_handler(struct perf_event *event)
8052 {
8053 }
8054 #endif
8055 
8056 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8057 {
8058 	bool is_kprobe, is_tracepoint;
8059 	struct bpf_prog *prog;
8060 
8061 	if (event->attr.type == PERF_TYPE_HARDWARE ||
8062 	    event->attr.type == PERF_TYPE_SOFTWARE)
8063 		return perf_event_set_bpf_handler(event, prog_fd);
8064 
8065 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8066 		return -EINVAL;
8067 
8068 	if (event->tp_event->prog)
8069 		return -EEXIST;
8070 
8071 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8072 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8073 	if (!is_kprobe && !is_tracepoint)
8074 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8075 		return -EINVAL;
8076 
8077 	prog = bpf_prog_get(prog_fd);
8078 	if (IS_ERR(prog))
8079 		return PTR_ERR(prog);
8080 
8081 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8082 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8083 		/* valid fd, but invalid bpf program type */
8084 		bpf_prog_put(prog);
8085 		return -EINVAL;
8086 	}
8087 
8088 	if (is_tracepoint) {
8089 		int off = trace_event_get_offsets(event->tp_event);
8090 
8091 		if (prog->aux->max_ctx_offset > off) {
8092 			bpf_prog_put(prog);
8093 			return -EACCES;
8094 		}
8095 	}
8096 	event->tp_event->prog = prog;
8097 
8098 	return 0;
8099 }
8100 
8101 static void perf_event_free_bpf_prog(struct perf_event *event)
8102 {
8103 	struct bpf_prog *prog;
8104 
8105 	perf_event_free_bpf_handler(event);
8106 
8107 	if (!event->tp_event)
8108 		return;
8109 
8110 	prog = event->tp_event->prog;
8111 	if (prog) {
8112 		event->tp_event->prog = NULL;
8113 		bpf_prog_put(prog);
8114 	}
8115 }
8116 
8117 #else
8118 
8119 static inline void perf_tp_register(void)
8120 {
8121 }
8122 
8123 static void perf_event_free_filter(struct perf_event *event)
8124 {
8125 }
8126 
8127 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8128 {
8129 	return -ENOENT;
8130 }
8131 
8132 static void perf_event_free_bpf_prog(struct perf_event *event)
8133 {
8134 }
8135 #endif /* CONFIG_EVENT_TRACING */
8136 
8137 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8138 void perf_bp_event(struct perf_event *bp, void *data)
8139 {
8140 	struct perf_sample_data sample;
8141 	struct pt_regs *regs = data;
8142 
8143 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8144 
8145 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8146 		perf_swevent_event(bp, 1, &sample, regs);
8147 }
8148 #endif
8149 
8150 /*
8151  * Allocate a new address filter
8152  */
8153 static struct perf_addr_filter *
8154 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8155 {
8156 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8157 	struct perf_addr_filter *filter;
8158 
8159 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8160 	if (!filter)
8161 		return NULL;
8162 
8163 	INIT_LIST_HEAD(&filter->entry);
8164 	list_add_tail(&filter->entry, filters);
8165 
8166 	return filter;
8167 }
8168 
8169 static void free_filters_list(struct list_head *filters)
8170 {
8171 	struct perf_addr_filter *filter, *iter;
8172 
8173 	list_for_each_entry_safe(filter, iter, filters, entry) {
8174 		if (filter->inode)
8175 			iput(filter->inode);
8176 		list_del(&filter->entry);
8177 		kfree(filter);
8178 	}
8179 }
8180 
8181 /*
8182  * Free existing address filters and optionally install new ones
8183  */
8184 static void perf_addr_filters_splice(struct perf_event *event,
8185 				     struct list_head *head)
8186 {
8187 	unsigned long flags;
8188 	LIST_HEAD(list);
8189 
8190 	if (!has_addr_filter(event))
8191 		return;
8192 
8193 	/* don't bother with children, they don't have their own filters */
8194 	if (event->parent)
8195 		return;
8196 
8197 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8198 
8199 	list_splice_init(&event->addr_filters.list, &list);
8200 	if (head)
8201 		list_splice(head, &event->addr_filters.list);
8202 
8203 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8204 
8205 	free_filters_list(&list);
8206 }
8207 
8208 /*
8209  * Scan through mm's vmas and see if one of them matches the
8210  * @filter; if so, adjust filter's address range.
8211  * Called with mm::mmap_sem down for reading.
8212  */
8213 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8214 					    struct mm_struct *mm)
8215 {
8216 	struct vm_area_struct *vma;
8217 
8218 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8219 		struct file *file = vma->vm_file;
8220 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8221 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8222 
8223 		if (!file)
8224 			continue;
8225 
8226 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8227 			continue;
8228 
8229 		return vma->vm_start;
8230 	}
8231 
8232 	return 0;
8233 }
8234 
8235 /*
8236  * Update event's address range filters based on the
8237  * task's existing mappings, if any.
8238  */
8239 static void perf_event_addr_filters_apply(struct perf_event *event)
8240 {
8241 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8242 	struct task_struct *task = READ_ONCE(event->ctx->task);
8243 	struct perf_addr_filter *filter;
8244 	struct mm_struct *mm = NULL;
8245 	unsigned int count = 0;
8246 	unsigned long flags;
8247 
8248 	/*
8249 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8250 	 * will stop on the parent's child_mutex that our caller is also holding
8251 	 */
8252 	if (task == TASK_TOMBSTONE)
8253 		return;
8254 
8255 	if (!ifh->nr_file_filters)
8256 		return;
8257 
8258 	mm = get_task_mm(event->ctx->task);
8259 	if (!mm)
8260 		goto restart;
8261 
8262 	down_read(&mm->mmap_sem);
8263 
8264 	raw_spin_lock_irqsave(&ifh->lock, flags);
8265 	list_for_each_entry(filter, &ifh->list, entry) {
8266 		event->addr_filters_offs[count] = 0;
8267 
8268 		/*
8269 		 * Adjust base offset if the filter is associated to a binary
8270 		 * that needs to be mapped:
8271 		 */
8272 		if (filter->inode)
8273 			event->addr_filters_offs[count] =
8274 				perf_addr_filter_apply(filter, mm);
8275 
8276 		count++;
8277 	}
8278 
8279 	event->addr_filters_gen++;
8280 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8281 
8282 	up_read(&mm->mmap_sem);
8283 
8284 	mmput(mm);
8285 
8286 restart:
8287 	perf_event_stop(event, 1);
8288 }
8289 
8290 /*
8291  * Address range filtering: limiting the data to certain
8292  * instruction address ranges. Filters are ioctl()ed to us from
8293  * userspace as ascii strings.
8294  *
8295  * Filter string format:
8296  *
8297  * ACTION RANGE_SPEC
8298  * where ACTION is one of the
8299  *  * "filter": limit the trace to this region
8300  *  * "start": start tracing from this address
8301  *  * "stop": stop tracing at this address/region;
8302  * RANGE_SPEC is
8303  *  * for kernel addresses: <start address>[/<size>]
8304  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8305  *
8306  * if <size> is not specified, the range is treated as a single address.
8307  */
8308 enum {
8309 	IF_ACT_NONE = -1,
8310 	IF_ACT_FILTER,
8311 	IF_ACT_START,
8312 	IF_ACT_STOP,
8313 	IF_SRC_FILE,
8314 	IF_SRC_KERNEL,
8315 	IF_SRC_FILEADDR,
8316 	IF_SRC_KERNELADDR,
8317 };
8318 
8319 enum {
8320 	IF_STATE_ACTION = 0,
8321 	IF_STATE_SOURCE,
8322 	IF_STATE_END,
8323 };
8324 
8325 static const match_table_t if_tokens = {
8326 	{ IF_ACT_FILTER,	"filter" },
8327 	{ IF_ACT_START,		"start" },
8328 	{ IF_ACT_STOP,		"stop" },
8329 	{ IF_SRC_FILE,		"%u/%u@%s" },
8330 	{ IF_SRC_KERNEL,	"%u/%u" },
8331 	{ IF_SRC_FILEADDR,	"%u@%s" },
8332 	{ IF_SRC_KERNELADDR,	"%u" },
8333 	{ IF_ACT_NONE,		NULL },
8334 };
8335 
8336 /*
8337  * Address filter string parser
8338  */
8339 static int
8340 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8341 			     struct list_head *filters)
8342 {
8343 	struct perf_addr_filter *filter = NULL;
8344 	char *start, *orig, *filename = NULL;
8345 	struct path path;
8346 	substring_t args[MAX_OPT_ARGS];
8347 	int state = IF_STATE_ACTION, token;
8348 	unsigned int kernel = 0;
8349 	int ret = -EINVAL;
8350 
8351 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8352 	if (!fstr)
8353 		return -ENOMEM;
8354 
8355 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8356 		ret = -EINVAL;
8357 
8358 		if (!*start)
8359 			continue;
8360 
8361 		/* filter definition begins */
8362 		if (state == IF_STATE_ACTION) {
8363 			filter = perf_addr_filter_new(event, filters);
8364 			if (!filter)
8365 				goto fail;
8366 		}
8367 
8368 		token = match_token(start, if_tokens, args);
8369 		switch (token) {
8370 		case IF_ACT_FILTER:
8371 		case IF_ACT_START:
8372 			filter->filter = 1;
8373 
8374 		case IF_ACT_STOP:
8375 			if (state != IF_STATE_ACTION)
8376 				goto fail;
8377 
8378 			state = IF_STATE_SOURCE;
8379 			break;
8380 
8381 		case IF_SRC_KERNELADDR:
8382 		case IF_SRC_KERNEL:
8383 			kernel = 1;
8384 
8385 		case IF_SRC_FILEADDR:
8386 		case IF_SRC_FILE:
8387 			if (state != IF_STATE_SOURCE)
8388 				goto fail;
8389 
8390 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8391 				filter->range = 1;
8392 
8393 			*args[0].to = 0;
8394 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8395 			if (ret)
8396 				goto fail;
8397 
8398 			if (filter->range) {
8399 				*args[1].to = 0;
8400 				ret = kstrtoul(args[1].from, 0, &filter->size);
8401 				if (ret)
8402 					goto fail;
8403 			}
8404 
8405 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8406 				int fpos = filter->range ? 2 : 1;
8407 
8408 				filename = match_strdup(&args[fpos]);
8409 				if (!filename) {
8410 					ret = -ENOMEM;
8411 					goto fail;
8412 				}
8413 			}
8414 
8415 			state = IF_STATE_END;
8416 			break;
8417 
8418 		default:
8419 			goto fail;
8420 		}
8421 
8422 		/*
8423 		 * Filter definition is fully parsed, validate and install it.
8424 		 * Make sure that it doesn't contradict itself or the event's
8425 		 * attribute.
8426 		 */
8427 		if (state == IF_STATE_END) {
8428 			ret = -EINVAL;
8429 			if (kernel && event->attr.exclude_kernel)
8430 				goto fail;
8431 
8432 			if (!kernel) {
8433 				if (!filename)
8434 					goto fail;
8435 
8436 				/*
8437 				 * For now, we only support file-based filters
8438 				 * in per-task events; doing so for CPU-wide
8439 				 * events requires additional context switching
8440 				 * trickery, since same object code will be
8441 				 * mapped at different virtual addresses in
8442 				 * different processes.
8443 				 */
8444 				ret = -EOPNOTSUPP;
8445 				if (!event->ctx->task)
8446 					goto fail_free_name;
8447 
8448 				/* look up the path and grab its inode */
8449 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8450 				if (ret)
8451 					goto fail_free_name;
8452 
8453 				filter->inode = igrab(d_inode(path.dentry));
8454 				path_put(&path);
8455 				kfree(filename);
8456 				filename = NULL;
8457 
8458 				ret = -EINVAL;
8459 				if (!filter->inode ||
8460 				    !S_ISREG(filter->inode->i_mode))
8461 					/* free_filters_list() will iput() */
8462 					goto fail;
8463 
8464 				event->addr_filters.nr_file_filters++;
8465 			}
8466 
8467 			/* ready to consume more filters */
8468 			state = IF_STATE_ACTION;
8469 			filter = NULL;
8470 		}
8471 	}
8472 
8473 	if (state != IF_STATE_ACTION)
8474 		goto fail;
8475 
8476 	kfree(orig);
8477 
8478 	return 0;
8479 
8480 fail_free_name:
8481 	kfree(filename);
8482 fail:
8483 	free_filters_list(filters);
8484 	kfree(orig);
8485 
8486 	return ret;
8487 }
8488 
8489 static int
8490 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8491 {
8492 	LIST_HEAD(filters);
8493 	int ret;
8494 
8495 	/*
8496 	 * Since this is called in perf_ioctl() path, we're already holding
8497 	 * ctx::mutex.
8498 	 */
8499 	lockdep_assert_held(&event->ctx->mutex);
8500 
8501 	if (WARN_ON_ONCE(event->parent))
8502 		return -EINVAL;
8503 
8504 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8505 	if (ret)
8506 		goto fail_clear_files;
8507 
8508 	ret = event->pmu->addr_filters_validate(&filters);
8509 	if (ret)
8510 		goto fail_free_filters;
8511 
8512 	/* remove existing filters, if any */
8513 	perf_addr_filters_splice(event, &filters);
8514 
8515 	/* install new filters */
8516 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8517 
8518 	return ret;
8519 
8520 fail_free_filters:
8521 	free_filters_list(&filters);
8522 
8523 fail_clear_files:
8524 	event->addr_filters.nr_file_filters = 0;
8525 
8526 	return ret;
8527 }
8528 
8529 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8530 {
8531 	char *filter_str;
8532 	int ret = -EINVAL;
8533 
8534 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8535 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8536 	    !has_addr_filter(event))
8537 		return -EINVAL;
8538 
8539 	filter_str = strndup_user(arg, PAGE_SIZE);
8540 	if (IS_ERR(filter_str))
8541 		return PTR_ERR(filter_str);
8542 
8543 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8544 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8545 		ret = ftrace_profile_set_filter(event, event->attr.config,
8546 						filter_str);
8547 	else if (has_addr_filter(event))
8548 		ret = perf_event_set_addr_filter(event, filter_str);
8549 
8550 	kfree(filter_str);
8551 	return ret;
8552 }
8553 
8554 /*
8555  * hrtimer based swevent callback
8556  */
8557 
8558 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8559 {
8560 	enum hrtimer_restart ret = HRTIMER_RESTART;
8561 	struct perf_sample_data data;
8562 	struct pt_regs *regs;
8563 	struct perf_event *event;
8564 	u64 period;
8565 
8566 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8567 
8568 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8569 		return HRTIMER_NORESTART;
8570 
8571 	event->pmu->read(event);
8572 
8573 	perf_sample_data_init(&data, 0, event->hw.last_period);
8574 	regs = get_irq_regs();
8575 
8576 	if (regs && !perf_exclude_event(event, regs)) {
8577 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8578 			if (__perf_event_overflow(event, 1, &data, regs))
8579 				ret = HRTIMER_NORESTART;
8580 	}
8581 
8582 	period = max_t(u64, 10000, event->hw.sample_period);
8583 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8584 
8585 	return ret;
8586 }
8587 
8588 static void perf_swevent_start_hrtimer(struct perf_event *event)
8589 {
8590 	struct hw_perf_event *hwc = &event->hw;
8591 	s64 period;
8592 
8593 	if (!is_sampling_event(event))
8594 		return;
8595 
8596 	period = local64_read(&hwc->period_left);
8597 	if (period) {
8598 		if (period < 0)
8599 			period = 10000;
8600 
8601 		local64_set(&hwc->period_left, 0);
8602 	} else {
8603 		period = max_t(u64, 10000, hwc->sample_period);
8604 	}
8605 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8606 		      HRTIMER_MODE_REL_PINNED);
8607 }
8608 
8609 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8610 {
8611 	struct hw_perf_event *hwc = &event->hw;
8612 
8613 	if (is_sampling_event(event)) {
8614 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8615 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8616 
8617 		hrtimer_cancel(&hwc->hrtimer);
8618 	}
8619 }
8620 
8621 static void perf_swevent_init_hrtimer(struct perf_event *event)
8622 {
8623 	struct hw_perf_event *hwc = &event->hw;
8624 
8625 	if (!is_sampling_event(event))
8626 		return;
8627 
8628 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8629 	hwc->hrtimer.function = perf_swevent_hrtimer;
8630 
8631 	/*
8632 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8633 	 * mapping and avoid the whole period adjust feedback stuff.
8634 	 */
8635 	if (event->attr.freq) {
8636 		long freq = event->attr.sample_freq;
8637 
8638 		event->attr.sample_period = NSEC_PER_SEC / freq;
8639 		hwc->sample_period = event->attr.sample_period;
8640 		local64_set(&hwc->period_left, hwc->sample_period);
8641 		hwc->last_period = hwc->sample_period;
8642 		event->attr.freq = 0;
8643 	}
8644 }
8645 
8646 /*
8647  * Software event: cpu wall time clock
8648  */
8649 
8650 static void cpu_clock_event_update(struct perf_event *event)
8651 {
8652 	s64 prev;
8653 	u64 now;
8654 
8655 	now = local_clock();
8656 	prev = local64_xchg(&event->hw.prev_count, now);
8657 	local64_add(now - prev, &event->count);
8658 }
8659 
8660 static void cpu_clock_event_start(struct perf_event *event, int flags)
8661 {
8662 	local64_set(&event->hw.prev_count, local_clock());
8663 	perf_swevent_start_hrtimer(event);
8664 }
8665 
8666 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8667 {
8668 	perf_swevent_cancel_hrtimer(event);
8669 	cpu_clock_event_update(event);
8670 }
8671 
8672 static int cpu_clock_event_add(struct perf_event *event, int flags)
8673 {
8674 	if (flags & PERF_EF_START)
8675 		cpu_clock_event_start(event, flags);
8676 	perf_event_update_userpage(event);
8677 
8678 	return 0;
8679 }
8680 
8681 static void cpu_clock_event_del(struct perf_event *event, int flags)
8682 {
8683 	cpu_clock_event_stop(event, flags);
8684 }
8685 
8686 static void cpu_clock_event_read(struct perf_event *event)
8687 {
8688 	cpu_clock_event_update(event);
8689 }
8690 
8691 static int cpu_clock_event_init(struct perf_event *event)
8692 {
8693 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8694 		return -ENOENT;
8695 
8696 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8697 		return -ENOENT;
8698 
8699 	/*
8700 	 * no branch sampling for software events
8701 	 */
8702 	if (has_branch_stack(event))
8703 		return -EOPNOTSUPP;
8704 
8705 	perf_swevent_init_hrtimer(event);
8706 
8707 	return 0;
8708 }
8709 
8710 static struct pmu perf_cpu_clock = {
8711 	.task_ctx_nr	= perf_sw_context,
8712 
8713 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8714 
8715 	.event_init	= cpu_clock_event_init,
8716 	.add		= cpu_clock_event_add,
8717 	.del		= cpu_clock_event_del,
8718 	.start		= cpu_clock_event_start,
8719 	.stop		= cpu_clock_event_stop,
8720 	.read		= cpu_clock_event_read,
8721 };
8722 
8723 /*
8724  * Software event: task time clock
8725  */
8726 
8727 static void task_clock_event_update(struct perf_event *event, u64 now)
8728 {
8729 	u64 prev;
8730 	s64 delta;
8731 
8732 	prev = local64_xchg(&event->hw.prev_count, now);
8733 	delta = now - prev;
8734 	local64_add(delta, &event->count);
8735 }
8736 
8737 static void task_clock_event_start(struct perf_event *event, int flags)
8738 {
8739 	local64_set(&event->hw.prev_count, event->ctx->time);
8740 	perf_swevent_start_hrtimer(event);
8741 }
8742 
8743 static void task_clock_event_stop(struct perf_event *event, int flags)
8744 {
8745 	perf_swevent_cancel_hrtimer(event);
8746 	task_clock_event_update(event, event->ctx->time);
8747 }
8748 
8749 static int task_clock_event_add(struct perf_event *event, int flags)
8750 {
8751 	if (flags & PERF_EF_START)
8752 		task_clock_event_start(event, flags);
8753 	perf_event_update_userpage(event);
8754 
8755 	return 0;
8756 }
8757 
8758 static void task_clock_event_del(struct perf_event *event, int flags)
8759 {
8760 	task_clock_event_stop(event, PERF_EF_UPDATE);
8761 }
8762 
8763 static void task_clock_event_read(struct perf_event *event)
8764 {
8765 	u64 now = perf_clock();
8766 	u64 delta = now - event->ctx->timestamp;
8767 	u64 time = event->ctx->time + delta;
8768 
8769 	task_clock_event_update(event, time);
8770 }
8771 
8772 static int task_clock_event_init(struct perf_event *event)
8773 {
8774 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8775 		return -ENOENT;
8776 
8777 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8778 		return -ENOENT;
8779 
8780 	/*
8781 	 * no branch sampling for software events
8782 	 */
8783 	if (has_branch_stack(event))
8784 		return -EOPNOTSUPP;
8785 
8786 	perf_swevent_init_hrtimer(event);
8787 
8788 	return 0;
8789 }
8790 
8791 static struct pmu perf_task_clock = {
8792 	.task_ctx_nr	= perf_sw_context,
8793 
8794 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8795 
8796 	.event_init	= task_clock_event_init,
8797 	.add		= task_clock_event_add,
8798 	.del		= task_clock_event_del,
8799 	.start		= task_clock_event_start,
8800 	.stop		= task_clock_event_stop,
8801 	.read		= task_clock_event_read,
8802 };
8803 
8804 static void perf_pmu_nop_void(struct pmu *pmu)
8805 {
8806 }
8807 
8808 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8809 {
8810 }
8811 
8812 static int perf_pmu_nop_int(struct pmu *pmu)
8813 {
8814 	return 0;
8815 }
8816 
8817 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8818 
8819 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8820 {
8821 	__this_cpu_write(nop_txn_flags, flags);
8822 
8823 	if (flags & ~PERF_PMU_TXN_ADD)
8824 		return;
8825 
8826 	perf_pmu_disable(pmu);
8827 }
8828 
8829 static int perf_pmu_commit_txn(struct pmu *pmu)
8830 {
8831 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8832 
8833 	__this_cpu_write(nop_txn_flags, 0);
8834 
8835 	if (flags & ~PERF_PMU_TXN_ADD)
8836 		return 0;
8837 
8838 	perf_pmu_enable(pmu);
8839 	return 0;
8840 }
8841 
8842 static void perf_pmu_cancel_txn(struct pmu *pmu)
8843 {
8844 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8845 
8846 	__this_cpu_write(nop_txn_flags, 0);
8847 
8848 	if (flags & ~PERF_PMU_TXN_ADD)
8849 		return;
8850 
8851 	perf_pmu_enable(pmu);
8852 }
8853 
8854 static int perf_event_idx_default(struct perf_event *event)
8855 {
8856 	return 0;
8857 }
8858 
8859 /*
8860  * Ensures all contexts with the same task_ctx_nr have the same
8861  * pmu_cpu_context too.
8862  */
8863 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8864 {
8865 	struct pmu *pmu;
8866 
8867 	if (ctxn < 0)
8868 		return NULL;
8869 
8870 	list_for_each_entry(pmu, &pmus, entry) {
8871 		if (pmu->task_ctx_nr == ctxn)
8872 			return pmu->pmu_cpu_context;
8873 	}
8874 
8875 	return NULL;
8876 }
8877 
8878 static void free_pmu_context(struct pmu *pmu)
8879 {
8880 	mutex_lock(&pmus_lock);
8881 	free_percpu(pmu->pmu_cpu_context);
8882 	mutex_unlock(&pmus_lock);
8883 }
8884 
8885 /*
8886  * Let userspace know that this PMU supports address range filtering:
8887  */
8888 static ssize_t nr_addr_filters_show(struct device *dev,
8889 				    struct device_attribute *attr,
8890 				    char *page)
8891 {
8892 	struct pmu *pmu = dev_get_drvdata(dev);
8893 
8894 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8895 }
8896 DEVICE_ATTR_RO(nr_addr_filters);
8897 
8898 static struct idr pmu_idr;
8899 
8900 static ssize_t
8901 type_show(struct device *dev, struct device_attribute *attr, char *page)
8902 {
8903 	struct pmu *pmu = dev_get_drvdata(dev);
8904 
8905 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8906 }
8907 static DEVICE_ATTR_RO(type);
8908 
8909 static ssize_t
8910 perf_event_mux_interval_ms_show(struct device *dev,
8911 				struct device_attribute *attr,
8912 				char *page)
8913 {
8914 	struct pmu *pmu = dev_get_drvdata(dev);
8915 
8916 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8917 }
8918 
8919 static DEFINE_MUTEX(mux_interval_mutex);
8920 
8921 static ssize_t
8922 perf_event_mux_interval_ms_store(struct device *dev,
8923 				 struct device_attribute *attr,
8924 				 const char *buf, size_t count)
8925 {
8926 	struct pmu *pmu = dev_get_drvdata(dev);
8927 	int timer, cpu, ret;
8928 
8929 	ret = kstrtoint(buf, 0, &timer);
8930 	if (ret)
8931 		return ret;
8932 
8933 	if (timer < 1)
8934 		return -EINVAL;
8935 
8936 	/* same value, noting to do */
8937 	if (timer == pmu->hrtimer_interval_ms)
8938 		return count;
8939 
8940 	mutex_lock(&mux_interval_mutex);
8941 	pmu->hrtimer_interval_ms = timer;
8942 
8943 	/* update all cpuctx for this PMU */
8944 	get_online_cpus();
8945 	for_each_online_cpu(cpu) {
8946 		struct perf_cpu_context *cpuctx;
8947 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8948 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8949 
8950 		cpu_function_call(cpu,
8951 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8952 	}
8953 	put_online_cpus();
8954 	mutex_unlock(&mux_interval_mutex);
8955 
8956 	return count;
8957 }
8958 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8959 
8960 static struct attribute *pmu_dev_attrs[] = {
8961 	&dev_attr_type.attr,
8962 	&dev_attr_perf_event_mux_interval_ms.attr,
8963 	NULL,
8964 };
8965 ATTRIBUTE_GROUPS(pmu_dev);
8966 
8967 static int pmu_bus_running;
8968 static struct bus_type pmu_bus = {
8969 	.name		= "event_source",
8970 	.dev_groups	= pmu_dev_groups,
8971 };
8972 
8973 static void pmu_dev_release(struct device *dev)
8974 {
8975 	kfree(dev);
8976 }
8977 
8978 static int pmu_dev_alloc(struct pmu *pmu)
8979 {
8980 	int ret = -ENOMEM;
8981 
8982 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8983 	if (!pmu->dev)
8984 		goto out;
8985 
8986 	pmu->dev->groups = pmu->attr_groups;
8987 	device_initialize(pmu->dev);
8988 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8989 	if (ret)
8990 		goto free_dev;
8991 
8992 	dev_set_drvdata(pmu->dev, pmu);
8993 	pmu->dev->bus = &pmu_bus;
8994 	pmu->dev->release = pmu_dev_release;
8995 	ret = device_add(pmu->dev);
8996 	if (ret)
8997 		goto free_dev;
8998 
8999 	/* For PMUs with address filters, throw in an extra attribute: */
9000 	if (pmu->nr_addr_filters)
9001 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9002 
9003 	if (ret)
9004 		goto del_dev;
9005 
9006 out:
9007 	return ret;
9008 
9009 del_dev:
9010 	device_del(pmu->dev);
9011 
9012 free_dev:
9013 	put_device(pmu->dev);
9014 	goto out;
9015 }
9016 
9017 static struct lock_class_key cpuctx_mutex;
9018 static struct lock_class_key cpuctx_lock;
9019 
9020 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9021 {
9022 	int cpu, ret;
9023 
9024 	mutex_lock(&pmus_lock);
9025 	ret = -ENOMEM;
9026 	pmu->pmu_disable_count = alloc_percpu(int);
9027 	if (!pmu->pmu_disable_count)
9028 		goto unlock;
9029 
9030 	pmu->type = -1;
9031 	if (!name)
9032 		goto skip_type;
9033 	pmu->name = name;
9034 
9035 	if (type < 0) {
9036 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9037 		if (type < 0) {
9038 			ret = type;
9039 			goto free_pdc;
9040 		}
9041 	}
9042 	pmu->type = type;
9043 
9044 	if (pmu_bus_running) {
9045 		ret = pmu_dev_alloc(pmu);
9046 		if (ret)
9047 			goto free_idr;
9048 	}
9049 
9050 skip_type:
9051 	if (pmu->task_ctx_nr == perf_hw_context) {
9052 		static int hw_context_taken = 0;
9053 
9054 		/*
9055 		 * Other than systems with heterogeneous CPUs, it never makes
9056 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9057 		 * uncore must use perf_invalid_context.
9058 		 */
9059 		if (WARN_ON_ONCE(hw_context_taken &&
9060 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9061 			pmu->task_ctx_nr = perf_invalid_context;
9062 
9063 		hw_context_taken = 1;
9064 	}
9065 
9066 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9067 	if (pmu->pmu_cpu_context)
9068 		goto got_cpu_context;
9069 
9070 	ret = -ENOMEM;
9071 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9072 	if (!pmu->pmu_cpu_context)
9073 		goto free_dev;
9074 
9075 	for_each_possible_cpu(cpu) {
9076 		struct perf_cpu_context *cpuctx;
9077 
9078 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9079 		__perf_event_init_context(&cpuctx->ctx);
9080 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9081 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9082 		cpuctx->ctx.pmu = pmu;
9083 
9084 		__perf_mux_hrtimer_init(cpuctx, cpu);
9085 	}
9086 
9087 got_cpu_context:
9088 	if (!pmu->start_txn) {
9089 		if (pmu->pmu_enable) {
9090 			/*
9091 			 * If we have pmu_enable/pmu_disable calls, install
9092 			 * transaction stubs that use that to try and batch
9093 			 * hardware accesses.
9094 			 */
9095 			pmu->start_txn  = perf_pmu_start_txn;
9096 			pmu->commit_txn = perf_pmu_commit_txn;
9097 			pmu->cancel_txn = perf_pmu_cancel_txn;
9098 		} else {
9099 			pmu->start_txn  = perf_pmu_nop_txn;
9100 			pmu->commit_txn = perf_pmu_nop_int;
9101 			pmu->cancel_txn = perf_pmu_nop_void;
9102 		}
9103 	}
9104 
9105 	if (!pmu->pmu_enable) {
9106 		pmu->pmu_enable  = perf_pmu_nop_void;
9107 		pmu->pmu_disable = perf_pmu_nop_void;
9108 	}
9109 
9110 	if (!pmu->event_idx)
9111 		pmu->event_idx = perf_event_idx_default;
9112 
9113 	list_add_rcu(&pmu->entry, &pmus);
9114 	atomic_set(&pmu->exclusive_cnt, 0);
9115 	ret = 0;
9116 unlock:
9117 	mutex_unlock(&pmus_lock);
9118 
9119 	return ret;
9120 
9121 free_dev:
9122 	device_del(pmu->dev);
9123 	put_device(pmu->dev);
9124 
9125 free_idr:
9126 	if (pmu->type >= PERF_TYPE_MAX)
9127 		idr_remove(&pmu_idr, pmu->type);
9128 
9129 free_pdc:
9130 	free_percpu(pmu->pmu_disable_count);
9131 	goto unlock;
9132 }
9133 EXPORT_SYMBOL_GPL(perf_pmu_register);
9134 
9135 void perf_pmu_unregister(struct pmu *pmu)
9136 {
9137 	int remove_device;
9138 
9139 	mutex_lock(&pmus_lock);
9140 	remove_device = pmu_bus_running;
9141 	list_del_rcu(&pmu->entry);
9142 	mutex_unlock(&pmus_lock);
9143 
9144 	/*
9145 	 * We dereference the pmu list under both SRCU and regular RCU, so
9146 	 * synchronize against both of those.
9147 	 */
9148 	synchronize_srcu(&pmus_srcu);
9149 	synchronize_rcu();
9150 
9151 	free_percpu(pmu->pmu_disable_count);
9152 	if (pmu->type >= PERF_TYPE_MAX)
9153 		idr_remove(&pmu_idr, pmu->type);
9154 	if (remove_device) {
9155 		if (pmu->nr_addr_filters)
9156 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9157 		device_del(pmu->dev);
9158 		put_device(pmu->dev);
9159 	}
9160 	free_pmu_context(pmu);
9161 }
9162 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9163 
9164 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9165 {
9166 	struct perf_event_context *ctx = NULL;
9167 	int ret;
9168 
9169 	if (!try_module_get(pmu->module))
9170 		return -ENODEV;
9171 
9172 	if (event->group_leader != event) {
9173 		/*
9174 		 * This ctx->mutex can nest when we're called through
9175 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9176 		 */
9177 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9178 						 SINGLE_DEPTH_NESTING);
9179 		BUG_ON(!ctx);
9180 	}
9181 
9182 	event->pmu = pmu;
9183 	ret = pmu->event_init(event);
9184 
9185 	if (ctx)
9186 		perf_event_ctx_unlock(event->group_leader, ctx);
9187 
9188 	if (ret)
9189 		module_put(pmu->module);
9190 
9191 	return ret;
9192 }
9193 
9194 static struct pmu *perf_init_event(struct perf_event *event)
9195 {
9196 	struct pmu *pmu = NULL;
9197 	int idx;
9198 	int ret;
9199 
9200 	idx = srcu_read_lock(&pmus_srcu);
9201 
9202 	/* Try parent's PMU first: */
9203 	if (event->parent && event->parent->pmu) {
9204 		pmu = event->parent->pmu;
9205 		ret = perf_try_init_event(pmu, event);
9206 		if (!ret)
9207 			goto unlock;
9208 	}
9209 
9210 	rcu_read_lock();
9211 	pmu = idr_find(&pmu_idr, event->attr.type);
9212 	rcu_read_unlock();
9213 	if (pmu) {
9214 		ret = perf_try_init_event(pmu, event);
9215 		if (ret)
9216 			pmu = ERR_PTR(ret);
9217 		goto unlock;
9218 	}
9219 
9220 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9221 		ret = perf_try_init_event(pmu, event);
9222 		if (!ret)
9223 			goto unlock;
9224 
9225 		if (ret != -ENOENT) {
9226 			pmu = ERR_PTR(ret);
9227 			goto unlock;
9228 		}
9229 	}
9230 	pmu = ERR_PTR(-ENOENT);
9231 unlock:
9232 	srcu_read_unlock(&pmus_srcu, idx);
9233 
9234 	return pmu;
9235 }
9236 
9237 static void attach_sb_event(struct perf_event *event)
9238 {
9239 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9240 
9241 	raw_spin_lock(&pel->lock);
9242 	list_add_rcu(&event->sb_list, &pel->list);
9243 	raw_spin_unlock(&pel->lock);
9244 }
9245 
9246 /*
9247  * We keep a list of all !task (and therefore per-cpu) events
9248  * that need to receive side-band records.
9249  *
9250  * This avoids having to scan all the various PMU per-cpu contexts
9251  * looking for them.
9252  */
9253 static void account_pmu_sb_event(struct perf_event *event)
9254 {
9255 	if (is_sb_event(event))
9256 		attach_sb_event(event);
9257 }
9258 
9259 static void account_event_cpu(struct perf_event *event, int cpu)
9260 {
9261 	if (event->parent)
9262 		return;
9263 
9264 	if (is_cgroup_event(event))
9265 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9266 }
9267 
9268 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9269 static void account_freq_event_nohz(void)
9270 {
9271 #ifdef CONFIG_NO_HZ_FULL
9272 	/* Lock so we don't race with concurrent unaccount */
9273 	spin_lock(&nr_freq_lock);
9274 	if (atomic_inc_return(&nr_freq_events) == 1)
9275 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9276 	spin_unlock(&nr_freq_lock);
9277 #endif
9278 }
9279 
9280 static void account_freq_event(void)
9281 {
9282 	if (tick_nohz_full_enabled())
9283 		account_freq_event_nohz();
9284 	else
9285 		atomic_inc(&nr_freq_events);
9286 }
9287 
9288 
9289 static void account_event(struct perf_event *event)
9290 {
9291 	bool inc = false;
9292 
9293 	if (event->parent)
9294 		return;
9295 
9296 	if (event->attach_state & PERF_ATTACH_TASK)
9297 		inc = true;
9298 	if (event->attr.mmap || event->attr.mmap_data)
9299 		atomic_inc(&nr_mmap_events);
9300 	if (event->attr.comm)
9301 		atomic_inc(&nr_comm_events);
9302 	if (event->attr.namespaces)
9303 		atomic_inc(&nr_namespaces_events);
9304 	if (event->attr.task)
9305 		atomic_inc(&nr_task_events);
9306 	if (event->attr.freq)
9307 		account_freq_event();
9308 	if (event->attr.context_switch) {
9309 		atomic_inc(&nr_switch_events);
9310 		inc = true;
9311 	}
9312 	if (has_branch_stack(event))
9313 		inc = true;
9314 	if (is_cgroup_event(event))
9315 		inc = true;
9316 
9317 	if (inc) {
9318 		if (atomic_inc_not_zero(&perf_sched_count))
9319 			goto enabled;
9320 
9321 		mutex_lock(&perf_sched_mutex);
9322 		if (!atomic_read(&perf_sched_count)) {
9323 			static_branch_enable(&perf_sched_events);
9324 			/*
9325 			 * Guarantee that all CPUs observe they key change and
9326 			 * call the perf scheduling hooks before proceeding to
9327 			 * install events that need them.
9328 			 */
9329 			synchronize_sched();
9330 		}
9331 		/*
9332 		 * Now that we have waited for the sync_sched(), allow further
9333 		 * increments to by-pass the mutex.
9334 		 */
9335 		atomic_inc(&perf_sched_count);
9336 		mutex_unlock(&perf_sched_mutex);
9337 	}
9338 enabled:
9339 
9340 	account_event_cpu(event, event->cpu);
9341 
9342 	account_pmu_sb_event(event);
9343 }
9344 
9345 /*
9346  * Allocate and initialize a event structure
9347  */
9348 static struct perf_event *
9349 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9350 		 struct task_struct *task,
9351 		 struct perf_event *group_leader,
9352 		 struct perf_event *parent_event,
9353 		 perf_overflow_handler_t overflow_handler,
9354 		 void *context, int cgroup_fd)
9355 {
9356 	struct pmu *pmu;
9357 	struct perf_event *event;
9358 	struct hw_perf_event *hwc;
9359 	long err = -EINVAL;
9360 
9361 	if ((unsigned)cpu >= nr_cpu_ids) {
9362 		if (!task || cpu != -1)
9363 			return ERR_PTR(-EINVAL);
9364 	}
9365 
9366 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9367 	if (!event)
9368 		return ERR_PTR(-ENOMEM);
9369 
9370 	/*
9371 	 * Single events are their own group leaders, with an
9372 	 * empty sibling list:
9373 	 */
9374 	if (!group_leader)
9375 		group_leader = event;
9376 
9377 	mutex_init(&event->child_mutex);
9378 	INIT_LIST_HEAD(&event->child_list);
9379 
9380 	INIT_LIST_HEAD(&event->group_entry);
9381 	INIT_LIST_HEAD(&event->event_entry);
9382 	INIT_LIST_HEAD(&event->sibling_list);
9383 	INIT_LIST_HEAD(&event->rb_entry);
9384 	INIT_LIST_HEAD(&event->active_entry);
9385 	INIT_LIST_HEAD(&event->addr_filters.list);
9386 	INIT_HLIST_NODE(&event->hlist_entry);
9387 
9388 
9389 	init_waitqueue_head(&event->waitq);
9390 	init_irq_work(&event->pending, perf_pending_event);
9391 
9392 	mutex_init(&event->mmap_mutex);
9393 	raw_spin_lock_init(&event->addr_filters.lock);
9394 
9395 	atomic_long_set(&event->refcount, 1);
9396 	event->cpu		= cpu;
9397 	event->attr		= *attr;
9398 	event->group_leader	= group_leader;
9399 	event->pmu		= NULL;
9400 	event->oncpu		= -1;
9401 
9402 	event->parent		= parent_event;
9403 
9404 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9405 	event->id		= atomic64_inc_return(&perf_event_id);
9406 
9407 	event->state		= PERF_EVENT_STATE_INACTIVE;
9408 
9409 	if (task) {
9410 		event->attach_state = PERF_ATTACH_TASK;
9411 		/*
9412 		 * XXX pmu::event_init needs to know what task to account to
9413 		 * and we cannot use the ctx information because we need the
9414 		 * pmu before we get a ctx.
9415 		 */
9416 		event->hw.target = task;
9417 	}
9418 
9419 	event->clock = &local_clock;
9420 	if (parent_event)
9421 		event->clock = parent_event->clock;
9422 
9423 	if (!overflow_handler && parent_event) {
9424 		overflow_handler = parent_event->overflow_handler;
9425 		context = parent_event->overflow_handler_context;
9426 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9427 		if (overflow_handler == bpf_overflow_handler) {
9428 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9429 
9430 			if (IS_ERR(prog)) {
9431 				err = PTR_ERR(prog);
9432 				goto err_ns;
9433 			}
9434 			event->prog = prog;
9435 			event->orig_overflow_handler =
9436 				parent_event->orig_overflow_handler;
9437 		}
9438 #endif
9439 	}
9440 
9441 	if (overflow_handler) {
9442 		event->overflow_handler	= overflow_handler;
9443 		event->overflow_handler_context = context;
9444 	} else if (is_write_backward(event)){
9445 		event->overflow_handler = perf_event_output_backward;
9446 		event->overflow_handler_context = NULL;
9447 	} else {
9448 		event->overflow_handler = perf_event_output_forward;
9449 		event->overflow_handler_context = NULL;
9450 	}
9451 
9452 	perf_event__state_init(event);
9453 
9454 	pmu = NULL;
9455 
9456 	hwc = &event->hw;
9457 	hwc->sample_period = attr->sample_period;
9458 	if (attr->freq && attr->sample_freq)
9459 		hwc->sample_period = 1;
9460 	hwc->last_period = hwc->sample_period;
9461 
9462 	local64_set(&hwc->period_left, hwc->sample_period);
9463 
9464 	/*
9465 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9466 	 */
9467 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9468 		goto err_ns;
9469 
9470 	if (!has_branch_stack(event))
9471 		event->attr.branch_sample_type = 0;
9472 
9473 	if (cgroup_fd != -1) {
9474 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9475 		if (err)
9476 			goto err_ns;
9477 	}
9478 
9479 	pmu = perf_init_event(event);
9480 	if (!pmu)
9481 		goto err_ns;
9482 	else if (IS_ERR(pmu)) {
9483 		err = PTR_ERR(pmu);
9484 		goto err_ns;
9485 	}
9486 
9487 	err = exclusive_event_init(event);
9488 	if (err)
9489 		goto err_pmu;
9490 
9491 	if (has_addr_filter(event)) {
9492 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9493 						   sizeof(unsigned long),
9494 						   GFP_KERNEL);
9495 		if (!event->addr_filters_offs)
9496 			goto err_per_task;
9497 
9498 		/* force hw sync on the address filters */
9499 		event->addr_filters_gen = 1;
9500 	}
9501 
9502 	if (!event->parent) {
9503 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9504 			err = get_callchain_buffers(attr->sample_max_stack);
9505 			if (err)
9506 				goto err_addr_filters;
9507 		}
9508 	}
9509 
9510 	/* symmetric to unaccount_event() in _free_event() */
9511 	account_event(event);
9512 
9513 	return event;
9514 
9515 err_addr_filters:
9516 	kfree(event->addr_filters_offs);
9517 
9518 err_per_task:
9519 	exclusive_event_destroy(event);
9520 
9521 err_pmu:
9522 	if (event->destroy)
9523 		event->destroy(event);
9524 	module_put(pmu->module);
9525 err_ns:
9526 	if (is_cgroup_event(event))
9527 		perf_detach_cgroup(event);
9528 	if (event->ns)
9529 		put_pid_ns(event->ns);
9530 	kfree(event);
9531 
9532 	return ERR_PTR(err);
9533 }
9534 
9535 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9536 			  struct perf_event_attr *attr)
9537 {
9538 	u32 size;
9539 	int ret;
9540 
9541 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9542 		return -EFAULT;
9543 
9544 	/*
9545 	 * zero the full structure, so that a short copy will be nice.
9546 	 */
9547 	memset(attr, 0, sizeof(*attr));
9548 
9549 	ret = get_user(size, &uattr->size);
9550 	if (ret)
9551 		return ret;
9552 
9553 	if (size > PAGE_SIZE)	/* silly large */
9554 		goto err_size;
9555 
9556 	if (!size)		/* abi compat */
9557 		size = PERF_ATTR_SIZE_VER0;
9558 
9559 	if (size < PERF_ATTR_SIZE_VER0)
9560 		goto err_size;
9561 
9562 	/*
9563 	 * If we're handed a bigger struct than we know of,
9564 	 * ensure all the unknown bits are 0 - i.e. new
9565 	 * user-space does not rely on any kernel feature
9566 	 * extensions we dont know about yet.
9567 	 */
9568 	if (size > sizeof(*attr)) {
9569 		unsigned char __user *addr;
9570 		unsigned char __user *end;
9571 		unsigned char val;
9572 
9573 		addr = (void __user *)uattr + sizeof(*attr);
9574 		end  = (void __user *)uattr + size;
9575 
9576 		for (; addr < end; addr++) {
9577 			ret = get_user(val, addr);
9578 			if (ret)
9579 				return ret;
9580 			if (val)
9581 				goto err_size;
9582 		}
9583 		size = sizeof(*attr);
9584 	}
9585 
9586 	ret = copy_from_user(attr, uattr, size);
9587 	if (ret)
9588 		return -EFAULT;
9589 
9590 	if (attr->__reserved_1)
9591 		return -EINVAL;
9592 
9593 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9594 		return -EINVAL;
9595 
9596 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9597 		return -EINVAL;
9598 
9599 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9600 		u64 mask = attr->branch_sample_type;
9601 
9602 		/* only using defined bits */
9603 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9604 			return -EINVAL;
9605 
9606 		/* at least one branch bit must be set */
9607 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9608 			return -EINVAL;
9609 
9610 		/* propagate priv level, when not set for branch */
9611 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9612 
9613 			/* exclude_kernel checked on syscall entry */
9614 			if (!attr->exclude_kernel)
9615 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9616 
9617 			if (!attr->exclude_user)
9618 				mask |= PERF_SAMPLE_BRANCH_USER;
9619 
9620 			if (!attr->exclude_hv)
9621 				mask |= PERF_SAMPLE_BRANCH_HV;
9622 			/*
9623 			 * adjust user setting (for HW filter setup)
9624 			 */
9625 			attr->branch_sample_type = mask;
9626 		}
9627 		/* privileged levels capture (kernel, hv): check permissions */
9628 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9629 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9630 			return -EACCES;
9631 	}
9632 
9633 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9634 		ret = perf_reg_validate(attr->sample_regs_user);
9635 		if (ret)
9636 			return ret;
9637 	}
9638 
9639 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9640 		if (!arch_perf_have_user_stack_dump())
9641 			return -ENOSYS;
9642 
9643 		/*
9644 		 * We have __u32 type for the size, but so far
9645 		 * we can only use __u16 as maximum due to the
9646 		 * __u16 sample size limit.
9647 		 */
9648 		if (attr->sample_stack_user >= USHRT_MAX)
9649 			ret = -EINVAL;
9650 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9651 			ret = -EINVAL;
9652 	}
9653 
9654 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9655 		ret = perf_reg_validate(attr->sample_regs_intr);
9656 out:
9657 	return ret;
9658 
9659 err_size:
9660 	put_user(sizeof(*attr), &uattr->size);
9661 	ret = -E2BIG;
9662 	goto out;
9663 }
9664 
9665 static int
9666 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9667 {
9668 	struct ring_buffer *rb = NULL;
9669 	int ret = -EINVAL;
9670 
9671 	if (!output_event)
9672 		goto set;
9673 
9674 	/* don't allow circular references */
9675 	if (event == output_event)
9676 		goto out;
9677 
9678 	/*
9679 	 * Don't allow cross-cpu buffers
9680 	 */
9681 	if (output_event->cpu != event->cpu)
9682 		goto out;
9683 
9684 	/*
9685 	 * If its not a per-cpu rb, it must be the same task.
9686 	 */
9687 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9688 		goto out;
9689 
9690 	/*
9691 	 * Mixing clocks in the same buffer is trouble you don't need.
9692 	 */
9693 	if (output_event->clock != event->clock)
9694 		goto out;
9695 
9696 	/*
9697 	 * Either writing ring buffer from beginning or from end.
9698 	 * Mixing is not allowed.
9699 	 */
9700 	if (is_write_backward(output_event) != is_write_backward(event))
9701 		goto out;
9702 
9703 	/*
9704 	 * If both events generate aux data, they must be on the same PMU
9705 	 */
9706 	if (has_aux(event) && has_aux(output_event) &&
9707 	    event->pmu != output_event->pmu)
9708 		goto out;
9709 
9710 set:
9711 	mutex_lock(&event->mmap_mutex);
9712 	/* Can't redirect output if we've got an active mmap() */
9713 	if (atomic_read(&event->mmap_count))
9714 		goto unlock;
9715 
9716 	if (output_event) {
9717 		/* get the rb we want to redirect to */
9718 		rb = ring_buffer_get(output_event);
9719 		if (!rb)
9720 			goto unlock;
9721 	}
9722 
9723 	ring_buffer_attach(event, rb);
9724 
9725 	ret = 0;
9726 unlock:
9727 	mutex_unlock(&event->mmap_mutex);
9728 
9729 out:
9730 	return ret;
9731 }
9732 
9733 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9734 {
9735 	if (b < a)
9736 		swap(a, b);
9737 
9738 	mutex_lock(a);
9739 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9740 }
9741 
9742 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9743 {
9744 	bool nmi_safe = false;
9745 
9746 	switch (clk_id) {
9747 	case CLOCK_MONOTONIC:
9748 		event->clock = &ktime_get_mono_fast_ns;
9749 		nmi_safe = true;
9750 		break;
9751 
9752 	case CLOCK_MONOTONIC_RAW:
9753 		event->clock = &ktime_get_raw_fast_ns;
9754 		nmi_safe = true;
9755 		break;
9756 
9757 	case CLOCK_REALTIME:
9758 		event->clock = &ktime_get_real_ns;
9759 		break;
9760 
9761 	case CLOCK_BOOTTIME:
9762 		event->clock = &ktime_get_boot_ns;
9763 		break;
9764 
9765 	case CLOCK_TAI:
9766 		event->clock = &ktime_get_tai_ns;
9767 		break;
9768 
9769 	default:
9770 		return -EINVAL;
9771 	}
9772 
9773 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9774 		return -EINVAL;
9775 
9776 	return 0;
9777 }
9778 
9779 /*
9780  * Variation on perf_event_ctx_lock_nested(), except we take two context
9781  * mutexes.
9782  */
9783 static struct perf_event_context *
9784 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9785 			     struct perf_event_context *ctx)
9786 {
9787 	struct perf_event_context *gctx;
9788 
9789 again:
9790 	rcu_read_lock();
9791 	gctx = READ_ONCE(group_leader->ctx);
9792 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9793 		rcu_read_unlock();
9794 		goto again;
9795 	}
9796 	rcu_read_unlock();
9797 
9798 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9799 
9800 	if (group_leader->ctx != gctx) {
9801 		mutex_unlock(&ctx->mutex);
9802 		mutex_unlock(&gctx->mutex);
9803 		put_ctx(gctx);
9804 		goto again;
9805 	}
9806 
9807 	return gctx;
9808 }
9809 
9810 /**
9811  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9812  *
9813  * @attr_uptr:	event_id type attributes for monitoring/sampling
9814  * @pid:		target pid
9815  * @cpu:		target cpu
9816  * @group_fd:		group leader event fd
9817  */
9818 SYSCALL_DEFINE5(perf_event_open,
9819 		struct perf_event_attr __user *, attr_uptr,
9820 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9821 {
9822 	struct perf_event *group_leader = NULL, *output_event = NULL;
9823 	struct perf_event *event, *sibling;
9824 	struct perf_event_attr attr;
9825 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9826 	struct file *event_file = NULL;
9827 	struct fd group = {NULL, 0};
9828 	struct task_struct *task = NULL;
9829 	struct pmu *pmu;
9830 	int event_fd;
9831 	int move_group = 0;
9832 	int err;
9833 	int f_flags = O_RDWR;
9834 	int cgroup_fd = -1;
9835 
9836 	/* for future expandability... */
9837 	if (flags & ~PERF_FLAG_ALL)
9838 		return -EINVAL;
9839 
9840 	err = perf_copy_attr(attr_uptr, &attr);
9841 	if (err)
9842 		return err;
9843 
9844 	if (!attr.exclude_kernel) {
9845 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9846 			return -EACCES;
9847 	}
9848 
9849 	if (attr.namespaces) {
9850 		if (!capable(CAP_SYS_ADMIN))
9851 			return -EACCES;
9852 	}
9853 
9854 	if (attr.freq) {
9855 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9856 			return -EINVAL;
9857 	} else {
9858 		if (attr.sample_period & (1ULL << 63))
9859 			return -EINVAL;
9860 	}
9861 
9862 	if (!attr.sample_max_stack)
9863 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9864 
9865 	/*
9866 	 * In cgroup mode, the pid argument is used to pass the fd
9867 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9868 	 * designates the cpu on which to monitor threads from that
9869 	 * cgroup.
9870 	 */
9871 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9872 		return -EINVAL;
9873 
9874 	if (flags & PERF_FLAG_FD_CLOEXEC)
9875 		f_flags |= O_CLOEXEC;
9876 
9877 	event_fd = get_unused_fd_flags(f_flags);
9878 	if (event_fd < 0)
9879 		return event_fd;
9880 
9881 	if (group_fd != -1) {
9882 		err = perf_fget_light(group_fd, &group);
9883 		if (err)
9884 			goto err_fd;
9885 		group_leader = group.file->private_data;
9886 		if (flags & PERF_FLAG_FD_OUTPUT)
9887 			output_event = group_leader;
9888 		if (flags & PERF_FLAG_FD_NO_GROUP)
9889 			group_leader = NULL;
9890 	}
9891 
9892 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9893 		task = find_lively_task_by_vpid(pid);
9894 		if (IS_ERR(task)) {
9895 			err = PTR_ERR(task);
9896 			goto err_group_fd;
9897 		}
9898 	}
9899 
9900 	if (task && group_leader &&
9901 	    group_leader->attr.inherit != attr.inherit) {
9902 		err = -EINVAL;
9903 		goto err_task;
9904 	}
9905 
9906 	get_online_cpus();
9907 
9908 	if (task) {
9909 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9910 		if (err)
9911 			goto err_cpus;
9912 
9913 		/*
9914 		 * Reuse ptrace permission checks for now.
9915 		 *
9916 		 * We must hold cred_guard_mutex across this and any potential
9917 		 * perf_install_in_context() call for this new event to
9918 		 * serialize against exec() altering our credentials (and the
9919 		 * perf_event_exit_task() that could imply).
9920 		 */
9921 		err = -EACCES;
9922 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9923 			goto err_cred;
9924 	}
9925 
9926 	if (flags & PERF_FLAG_PID_CGROUP)
9927 		cgroup_fd = pid;
9928 
9929 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9930 				 NULL, NULL, cgroup_fd);
9931 	if (IS_ERR(event)) {
9932 		err = PTR_ERR(event);
9933 		goto err_cred;
9934 	}
9935 
9936 	if (is_sampling_event(event)) {
9937 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9938 			err = -EOPNOTSUPP;
9939 			goto err_alloc;
9940 		}
9941 	}
9942 
9943 	/*
9944 	 * Special case software events and allow them to be part of
9945 	 * any hardware group.
9946 	 */
9947 	pmu = event->pmu;
9948 
9949 	if (attr.use_clockid) {
9950 		err = perf_event_set_clock(event, attr.clockid);
9951 		if (err)
9952 			goto err_alloc;
9953 	}
9954 
9955 	if (pmu->task_ctx_nr == perf_sw_context)
9956 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9957 
9958 	if (group_leader &&
9959 	    (is_software_event(event) != is_software_event(group_leader))) {
9960 		if (is_software_event(event)) {
9961 			/*
9962 			 * If event and group_leader are not both a software
9963 			 * event, and event is, then group leader is not.
9964 			 *
9965 			 * Allow the addition of software events to !software
9966 			 * groups, this is safe because software events never
9967 			 * fail to schedule.
9968 			 */
9969 			pmu = group_leader->pmu;
9970 		} else if (is_software_event(group_leader) &&
9971 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9972 			/*
9973 			 * In case the group is a pure software group, and we
9974 			 * try to add a hardware event, move the whole group to
9975 			 * the hardware context.
9976 			 */
9977 			move_group = 1;
9978 		}
9979 	}
9980 
9981 	/*
9982 	 * Get the target context (task or percpu):
9983 	 */
9984 	ctx = find_get_context(pmu, task, event);
9985 	if (IS_ERR(ctx)) {
9986 		err = PTR_ERR(ctx);
9987 		goto err_alloc;
9988 	}
9989 
9990 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9991 		err = -EBUSY;
9992 		goto err_context;
9993 	}
9994 
9995 	/*
9996 	 * Look up the group leader (we will attach this event to it):
9997 	 */
9998 	if (group_leader) {
9999 		err = -EINVAL;
10000 
10001 		/*
10002 		 * Do not allow a recursive hierarchy (this new sibling
10003 		 * becoming part of another group-sibling):
10004 		 */
10005 		if (group_leader->group_leader != group_leader)
10006 			goto err_context;
10007 
10008 		/* All events in a group should have the same clock */
10009 		if (group_leader->clock != event->clock)
10010 			goto err_context;
10011 
10012 		/*
10013 		 * Do not allow to attach to a group in a different
10014 		 * task or CPU context:
10015 		 */
10016 		if (move_group) {
10017 			/*
10018 			 * Make sure we're both on the same task, or both
10019 			 * per-cpu events.
10020 			 */
10021 			if (group_leader->ctx->task != ctx->task)
10022 				goto err_context;
10023 
10024 			/*
10025 			 * Make sure we're both events for the same CPU;
10026 			 * grouping events for different CPUs is broken; since
10027 			 * you can never concurrently schedule them anyhow.
10028 			 */
10029 			if (group_leader->cpu != event->cpu)
10030 				goto err_context;
10031 		} else {
10032 			if (group_leader->ctx != ctx)
10033 				goto err_context;
10034 		}
10035 
10036 		/*
10037 		 * Only a group leader can be exclusive or pinned
10038 		 */
10039 		if (attr.exclusive || attr.pinned)
10040 			goto err_context;
10041 	}
10042 
10043 	if (output_event) {
10044 		err = perf_event_set_output(event, output_event);
10045 		if (err)
10046 			goto err_context;
10047 	}
10048 
10049 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10050 					f_flags);
10051 	if (IS_ERR(event_file)) {
10052 		err = PTR_ERR(event_file);
10053 		event_file = NULL;
10054 		goto err_context;
10055 	}
10056 
10057 	if (move_group) {
10058 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10059 
10060 		if (gctx->task == TASK_TOMBSTONE) {
10061 			err = -ESRCH;
10062 			goto err_locked;
10063 		}
10064 
10065 		/*
10066 		 * Check if we raced against another sys_perf_event_open() call
10067 		 * moving the software group underneath us.
10068 		 */
10069 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10070 			/*
10071 			 * If someone moved the group out from under us, check
10072 			 * if this new event wound up on the same ctx, if so
10073 			 * its the regular !move_group case, otherwise fail.
10074 			 */
10075 			if (gctx != ctx) {
10076 				err = -EINVAL;
10077 				goto err_locked;
10078 			} else {
10079 				perf_event_ctx_unlock(group_leader, gctx);
10080 				move_group = 0;
10081 			}
10082 		}
10083 	} else {
10084 		mutex_lock(&ctx->mutex);
10085 	}
10086 
10087 	if (ctx->task == TASK_TOMBSTONE) {
10088 		err = -ESRCH;
10089 		goto err_locked;
10090 	}
10091 
10092 	if (!perf_event_validate_size(event)) {
10093 		err = -E2BIG;
10094 		goto err_locked;
10095 	}
10096 
10097 	/*
10098 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10099 	 * because we need to serialize with concurrent event creation.
10100 	 */
10101 	if (!exclusive_event_installable(event, ctx)) {
10102 		/* exclusive and group stuff are assumed mutually exclusive */
10103 		WARN_ON_ONCE(move_group);
10104 
10105 		err = -EBUSY;
10106 		goto err_locked;
10107 	}
10108 
10109 	WARN_ON_ONCE(ctx->parent_ctx);
10110 
10111 	/*
10112 	 * This is the point on no return; we cannot fail hereafter. This is
10113 	 * where we start modifying current state.
10114 	 */
10115 
10116 	if (move_group) {
10117 		/*
10118 		 * See perf_event_ctx_lock() for comments on the details
10119 		 * of swizzling perf_event::ctx.
10120 		 */
10121 		perf_remove_from_context(group_leader, 0);
10122 		put_ctx(gctx);
10123 
10124 		list_for_each_entry(sibling, &group_leader->sibling_list,
10125 				    group_entry) {
10126 			perf_remove_from_context(sibling, 0);
10127 			put_ctx(gctx);
10128 		}
10129 
10130 		/*
10131 		 * Wait for everybody to stop referencing the events through
10132 		 * the old lists, before installing it on new lists.
10133 		 */
10134 		synchronize_rcu();
10135 
10136 		/*
10137 		 * Install the group siblings before the group leader.
10138 		 *
10139 		 * Because a group leader will try and install the entire group
10140 		 * (through the sibling list, which is still in-tact), we can
10141 		 * end up with siblings installed in the wrong context.
10142 		 *
10143 		 * By installing siblings first we NO-OP because they're not
10144 		 * reachable through the group lists.
10145 		 */
10146 		list_for_each_entry(sibling, &group_leader->sibling_list,
10147 				    group_entry) {
10148 			perf_event__state_init(sibling);
10149 			perf_install_in_context(ctx, sibling, sibling->cpu);
10150 			get_ctx(ctx);
10151 		}
10152 
10153 		/*
10154 		 * Removing from the context ends up with disabled
10155 		 * event. What we want here is event in the initial
10156 		 * startup state, ready to be add into new context.
10157 		 */
10158 		perf_event__state_init(group_leader);
10159 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10160 		get_ctx(ctx);
10161 	}
10162 
10163 	/*
10164 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10165 	 * that we're serialized against further additions and before
10166 	 * perf_install_in_context() which is the point the event is active and
10167 	 * can use these values.
10168 	 */
10169 	perf_event__header_size(event);
10170 	perf_event__id_header_size(event);
10171 
10172 	event->owner = current;
10173 
10174 	perf_install_in_context(ctx, event, event->cpu);
10175 	perf_unpin_context(ctx);
10176 
10177 	if (move_group)
10178 		perf_event_ctx_unlock(group_leader, gctx);
10179 	mutex_unlock(&ctx->mutex);
10180 
10181 	if (task) {
10182 		mutex_unlock(&task->signal->cred_guard_mutex);
10183 		put_task_struct(task);
10184 	}
10185 
10186 	put_online_cpus();
10187 
10188 	mutex_lock(&current->perf_event_mutex);
10189 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10190 	mutex_unlock(&current->perf_event_mutex);
10191 
10192 	/*
10193 	 * Drop the reference on the group_event after placing the
10194 	 * new event on the sibling_list. This ensures destruction
10195 	 * of the group leader will find the pointer to itself in
10196 	 * perf_group_detach().
10197 	 */
10198 	fdput(group);
10199 	fd_install(event_fd, event_file);
10200 	return event_fd;
10201 
10202 err_locked:
10203 	if (move_group)
10204 		perf_event_ctx_unlock(group_leader, gctx);
10205 	mutex_unlock(&ctx->mutex);
10206 /* err_file: */
10207 	fput(event_file);
10208 err_context:
10209 	perf_unpin_context(ctx);
10210 	put_ctx(ctx);
10211 err_alloc:
10212 	/*
10213 	 * If event_file is set, the fput() above will have called ->release()
10214 	 * and that will take care of freeing the event.
10215 	 */
10216 	if (!event_file)
10217 		free_event(event);
10218 err_cred:
10219 	if (task)
10220 		mutex_unlock(&task->signal->cred_guard_mutex);
10221 err_cpus:
10222 	put_online_cpus();
10223 err_task:
10224 	if (task)
10225 		put_task_struct(task);
10226 err_group_fd:
10227 	fdput(group);
10228 err_fd:
10229 	put_unused_fd(event_fd);
10230 	return err;
10231 }
10232 
10233 /**
10234  * perf_event_create_kernel_counter
10235  *
10236  * @attr: attributes of the counter to create
10237  * @cpu: cpu in which the counter is bound
10238  * @task: task to profile (NULL for percpu)
10239  */
10240 struct perf_event *
10241 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10242 				 struct task_struct *task,
10243 				 perf_overflow_handler_t overflow_handler,
10244 				 void *context)
10245 {
10246 	struct perf_event_context *ctx;
10247 	struct perf_event *event;
10248 	int err;
10249 
10250 	/*
10251 	 * Get the target context (task or percpu):
10252 	 */
10253 
10254 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10255 				 overflow_handler, context, -1);
10256 	if (IS_ERR(event)) {
10257 		err = PTR_ERR(event);
10258 		goto err;
10259 	}
10260 
10261 	/* Mark owner so we could distinguish it from user events. */
10262 	event->owner = TASK_TOMBSTONE;
10263 
10264 	ctx = find_get_context(event->pmu, task, event);
10265 	if (IS_ERR(ctx)) {
10266 		err = PTR_ERR(ctx);
10267 		goto err_free;
10268 	}
10269 
10270 	WARN_ON_ONCE(ctx->parent_ctx);
10271 	mutex_lock(&ctx->mutex);
10272 	if (ctx->task == TASK_TOMBSTONE) {
10273 		err = -ESRCH;
10274 		goto err_unlock;
10275 	}
10276 
10277 	if (!exclusive_event_installable(event, ctx)) {
10278 		err = -EBUSY;
10279 		goto err_unlock;
10280 	}
10281 
10282 	perf_install_in_context(ctx, event, cpu);
10283 	perf_unpin_context(ctx);
10284 	mutex_unlock(&ctx->mutex);
10285 
10286 	return event;
10287 
10288 err_unlock:
10289 	mutex_unlock(&ctx->mutex);
10290 	perf_unpin_context(ctx);
10291 	put_ctx(ctx);
10292 err_free:
10293 	free_event(event);
10294 err:
10295 	return ERR_PTR(err);
10296 }
10297 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10298 
10299 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10300 {
10301 	struct perf_event_context *src_ctx;
10302 	struct perf_event_context *dst_ctx;
10303 	struct perf_event *event, *tmp;
10304 	LIST_HEAD(events);
10305 
10306 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10307 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10308 
10309 	/*
10310 	 * See perf_event_ctx_lock() for comments on the details
10311 	 * of swizzling perf_event::ctx.
10312 	 */
10313 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10314 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10315 				 event_entry) {
10316 		perf_remove_from_context(event, 0);
10317 		unaccount_event_cpu(event, src_cpu);
10318 		put_ctx(src_ctx);
10319 		list_add(&event->migrate_entry, &events);
10320 	}
10321 
10322 	/*
10323 	 * Wait for the events to quiesce before re-instating them.
10324 	 */
10325 	synchronize_rcu();
10326 
10327 	/*
10328 	 * Re-instate events in 2 passes.
10329 	 *
10330 	 * Skip over group leaders and only install siblings on this first
10331 	 * pass, siblings will not get enabled without a leader, however a
10332 	 * leader will enable its siblings, even if those are still on the old
10333 	 * context.
10334 	 */
10335 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10336 		if (event->group_leader == event)
10337 			continue;
10338 
10339 		list_del(&event->migrate_entry);
10340 		if (event->state >= PERF_EVENT_STATE_OFF)
10341 			event->state = PERF_EVENT_STATE_INACTIVE;
10342 		account_event_cpu(event, dst_cpu);
10343 		perf_install_in_context(dst_ctx, event, dst_cpu);
10344 		get_ctx(dst_ctx);
10345 	}
10346 
10347 	/*
10348 	 * Once all the siblings are setup properly, install the group leaders
10349 	 * to make it go.
10350 	 */
10351 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10352 		list_del(&event->migrate_entry);
10353 		if (event->state >= PERF_EVENT_STATE_OFF)
10354 			event->state = PERF_EVENT_STATE_INACTIVE;
10355 		account_event_cpu(event, dst_cpu);
10356 		perf_install_in_context(dst_ctx, event, dst_cpu);
10357 		get_ctx(dst_ctx);
10358 	}
10359 	mutex_unlock(&dst_ctx->mutex);
10360 	mutex_unlock(&src_ctx->mutex);
10361 }
10362 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10363 
10364 static void sync_child_event(struct perf_event *child_event,
10365 			       struct task_struct *child)
10366 {
10367 	struct perf_event *parent_event = child_event->parent;
10368 	u64 child_val;
10369 
10370 	if (child_event->attr.inherit_stat)
10371 		perf_event_read_event(child_event, child);
10372 
10373 	child_val = perf_event_count(child_event);
10374 
10375 	/*
10376 	 * Add back the child's count to the parent's count:
10377 	 */
10378 	atomic64_add(child_val, &parent_event->child_count);
10379 	atomic64_add(child_event->total_time_enabled,
10380 		     &parent_event->child_total_time_enabled);
10381 	atomic64_add(child_event->total_time_running,
10382 		     &parent_event->child_total_time_running);
10383 }
10384 
10385 static void
10386 perf_event_exit_event(struct perf_event *child_event,
10387 		      struct perf_event_context *child_ctx,
10388 		      struct task_struct *child)
10389 {
10390 	struct perf_event *parent_event = child_event->parent;
10391 
10392 	/*
10393 	 * Do not destroy the 'original' grouping; because of the context
10394 	 * switch optimization the original events could've ended up in a
10395 	 * random child task.
10396 	 *
10397 	 * If we were to destroy the original group, all group related
10398 	 * operations would cease to function properly after this random
10399 	 * child dies.
10400 	 *
10401 	 * Do destroy all inherited groups, we don't care about those
10402 	 * and being thorough is better.
10403 	 */
10404 	raw_spin_lock_irq(&child_ctx->lock);
10405 	WARN_ON_ONCE(child_ctx->is_active);
10406 
10407 	if (parent_event)
10408 		perf_group_detach(child_event);
10409 	list_del_event(child_event, child_ctx);
10410 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10411 	raw_spin_unlock_irq(&child_ctx->lock);
10412 
10413 	/*
10414 	 * Parent events are governed by their filedesc, retain them.
10415 	 */
10416 	if (!parent_event) {
10417 		perf_event_wakeup(child_event);
10418 		return;
10419 	}
10420 	/*
10421 	 * Child events can be cleaned up.
10422 	 */
10423 
10424 	sync_child_event(child_event, child);
10425 
10426 	/*
10427 	 * Remove this event from the parent's list
10428 	 */
10429 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10430 	mutex_lock(&parent_event->child_mutex);
10431 	list_del_init(&child_event->child_list);
10432 	mutex_unlock(&parent_event->child_mutex);
10433 
10434 	/*
10435 	 * Kick perf_poll() for is_event_hup().
10436 	 */
10437 	perf_event_wakeup(parent_event);
10438 	free_event(child_event);
10439 	put_event(parent_event);
10440 }
10441 
10442 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10443 {
10444 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10445 	struct perf_event *child_event, *next;
10446 
10447 	WARN_ON_ONCE(child != current);
10448 
10449 	child_ctx = perf_pin_task_context(child, ctxn);
10450 	if (!child_ctx)
10451 		return;
10452 
10453 	/*
10454 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10455 	 * ctx::mutex over the entire thing. This serializes against almost
10456 	 * everything that wants to access the ctx.
10457 	 *
10458 	 * The exception is sys_perf_event_open() /
10459 	 * perf_event_create_kernel_count() which does find_get_context()
10460 	 * without ctx::mutex (it cannot because of the move_group double mutex
10461 	 * lock thing). See the comments in perf_install_in_context().
10462 	 */
10463 	mutex_lock(&child_ctx->mutex);
10464 
10465 	/*
10466 	 * In a single ctx::lock section, de-schedule the events and detach the
10467 	 * context from the task such that we cannot ever get it scheduled back
10468 	 * in.
10469 	 */
10470 	raw_spin_lock_irq(&child_ctx->lock);
10471 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10472 
10473 	/*
10474 	 * Now that the context is inactive, destroy the task <-> ctx relation
10475 	 * and mark the context dead.
10476 	 */
10477 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10478 	put_ctx(child_ctx); /* cannot be last */
10479 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10480 	put_task_struct(current); /* cannot be last */
10481 
10482 	clone_ctx = unclone_ctx(child_ctx);
10483 	raw_spin_unlock_irq(&child_ctx->lock);
10484 
10485 	if (clone_ctx)
10486 		put_ctx(clone_ctx);
10487 
10488 	/*
10489 	 * Report the task dead after unscheduling the events so that we
10490 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10491 	 * get a few PERF_RECORD_READ events.
10492 	 */
10493 	perf_event_task(child, child_ctx, 0);
10494 
10495 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10496 		perf_event_exit_event(child_event, child_ctx, child);
10497 
10498 	mutex_unlock(&child_ctx->mutex);
10499 
10500 	put_ctx(child_ctx);
10501 }
10502 
10503 /*
10504  * When a child task exits, feed back event values to parent events.
10505  *
10506  * Can be called with cred_guard_mutex held when called from
10507  * install_exec_creds().
10508  */
10509 void perf_event_exit_task(struct task_struct *child)
10510 {
10511 	struct perf_event *event, *tmp;
10512 	int ctxn;
10513 
10514 	mutex_lock(&child->perf_event_mutex);
10515 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10516 				 owner_entry) {
10517 		list_del_init(&event->owner_entry);
10518 
10519 		/*
10520 		 * Ensure the list deletion is visible before we clear
10521 		 * the owner, closes a race against perf_release() where
10522 		 * we need to serialize on the owner->perf_event_mutex.
10523 		 */
10524 		smp_store_release(&event->owner, NULL);
10525 	}
10526 	mutex_unlock(&child->perf_event_mutex);
10527 
10528 	for_each_task_context_nr(ctxn)
10529 		perf_event_exit_task_context(child, ctxn);
10530 
10531 	/*
10532 	 * The perf_event_exit_task_context calls perf_event_task
10533 	 * with child's task_ctx, which generates EXIT events for
10534 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10535 	 * At this point we need to send EXIT events to cpu contexts.
10536 	 */
10537 	perf_event_task(child, NULL, 0);
10538 }
10539 
10540 static void perf_free_event(struct perf_event *event,
10541 			    struct perf_event_context *ctx)
10542 {
10543 	struct perf_event *parent = event->parent;
10544 
10545 	if (WARN_ON_ONCE(!parent))
10546 		return;
10547 
10548 	mutex_lock(&parent->child_mutex);
10549 	list_del_init(&event->child_list);
10550 	mutex_unlock(&parent->child_mutex);
10551 
10552 	put_event(parent);
10553 
10554 	raw_spin_lock_irq(&ctx->lock);
10555 	perf_group_detach(event);
10556 	list_del_event(event, ctx);
10557 	raw_spin_unlock_irq(&ctx->lock);
10558 	free_event(event);
10559 }
10560 
10561 /*
10562  * Free an unexposed, unused context as created by inheritance by
10563  * perf_event_init_task below, used by fork() in case of fail.
10564  *
10565  * Not all locks are strictly required, but take them anyway to be nice and
10566  * help out with the lockdep assertions.
10567  */
10568 void perf_event_free_task(struct task_struct *task)
10569 {
10570 	struct perf_event_context *ctx;
10571 	struct perf_event *event, *tmp;
10572 	int ctxn;
10573 
10574 	for_each_task_context_nr(ctxn) {
10575 		ctx = task->perf_event_ctxp[ctxn];
10576 		if (!ctx)
10577 			continue;
10578 
10579 		mutex_lock(&ctx->mutex);
10580 		raw_spin_lock_irq(&ctx->lock);
10581 		/*
10582 		 * Destroy the task <-> ctx relation and mark the context dead.
10583 		 *
10584 		 * This is important because even though the task hasn't been
10585 		 * exposed yet the context has been (through child_list).
10586 		 */
10587 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10588 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10589 		put_task_struct(task); /* cannot be last */
10590 		raw_spin_unlock_irq(&ctx->lock);
10591 
10592 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10593 			perf_free_event(event, ctx);
10594 
10595 		mutex_unlock(&ctx->mutex);
10596 		put_ctx(ctx);
10597 	}
10598 }
10599 
10600 void perf_event_delayed_put(struct task_struct *task)
10601 {
10602 	int ctxn;
10603 
10604 	for_each_task_context_nr(ctxn)
10605 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10606 }
10607 
10608 struct file *perf_event_get(unsigned int fd)
10609 {
10610 	struct file *file;
10611 
10612 	file = fget_raw(fd);
10613 	if (!file)
10614 		return ERR_PTR(-EBADF);
10615 
10616 	if (file->f_op != &perf_fops) {
10617 		fput(file);
10618 		return ERR_PTR(-EBADF);
10619 	}
10620 
10621 	return file;
10622 }
10623 
10624 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10625 {
10626 	if (!event)
10627 		return ERR_PTR(-EINVAL);
10628 
10629 	return &event->attr;
10630 }
10631 
10632 /*
10633  * Inherit a event from parent task to child task.
10634  *
10635  * Returns:
10636  *  - valid pointer on success
10637  *  - NULL for orphaned events
10638  *  - IS_ERR() on error
10639  */
10640 static struct perf_event *
10641 inherit_event(struct perf_event *parent_event,
10642 	      struct task_struct *parent,
10643 	      struct perf_event_context *parent_ctx,
10644 	      struct task_struct *child,
10645 	      struct perf_event *group_leader,
10646 	      struct perf_event_context *child_ctx)
10647 {
10648 	enum perf_event_active_state parent_state = parent_event->state;
10649 	struct perf_event *child_event;
10650 	unsigned long flags;
10651 
10652 	/*
10653 	 * Instead of creating recursive hierarchies of events,
10654 	 * we link inherited events back to the original parent,
10655 	 * which has a filp for sure, which we use as the reference
10656 	 * count:
10657 	 */
10658 	if (parent_event->parent)
10659 		parent_event = parent_event->parent;
10660 
10661 	child_event = perf_event_alloc(&parent_event->attr,
10662 					   parent_event->cpu,
10663 					   child,
10664 					   group_leader, parent_event,
10665 					   NULL, NULL, -1);
10666 	if (IS_ERR(child_event))
10667 		return child_event;
10668 
10669 	/*
10670 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10671 	 * must be under the same lock in order to serialize against
10672 	 * perf_event_release_kernel(), such that either we must observe
10673 	 * is_orphaned_event() or they will observe us on the child_list.
10674 	 */
10675 	mutex_lock(&parent_event->child_mutex);
10676 	if (is_orphaned_event(parent_event) ||
10677 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10678 		mutex_unlock(&parent_event->child_mutex);
10679 		free_event(child_event);
10680 		return NULL;
10681 	}
10682 
10683 	get_ctx(child_ctx);
10684 
10685 	/*
10686 	 * Make the child state follow the state of the parent event,
10687 	 * not its attr.disabled bit.  We hold the parent's mutex,
10688 	 * so we won't race with perf_event_{en, dis}able_family.
10689 	 */
10690 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10691 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10692 	else
10693 		child_event->state = PERF_EVENT_STATE_OFF;
10694 
10695 	if (parent_event->attr.freq) {
10696 		u64 sample_period = parent_event->hw.sample_period;
10697 		struct hw_perf_event *hwc = &child_event->hw;
10698 
10699 		hwc->sample_period = sample_period;
10700 		hwc->last_period   = sample_period;
10701 
10702 		local64_set(&hwc->period_left, sample_period);
10703 	}
10704 
10705 	child_event->ctx = child_ctx;
10706 	child_event->overflow_handler = parent_event->overflow_handler;
10707 	child_event->overflow_handler_context
10708 		= parent_event->overflow_handler_context;
10709 
10710 	/*
10711 	 * Precalculate sample_data sizes
10712 	 */
10713 	perf_event__header_size(child_event);
10714 	perf_event__id_header_size(child_event);
10715 
10716 	/*
10717 	 * Link it up in the child's context:
10718 	 */
10719 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10720 	add_event_to_ctx(child_event, child_ctx);
10721 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10722 
10723 	/*
10724 	 * Link this into the parent event's child list
10725 	 */
10726 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10727 	mutex_unlock(&parent_event->child_mutex);
10728 
10729 	return child_event;
10730 }
10731 
10732 /*
10733  * Inherits an event group.
10734  *
10735  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10736  * This matches with perf_event_release_kernel() removing all child events.
10737  *
10738  * Returns:
10739  *  - 0 on success
10740  *  - <0 on error
10741  */
10742 static int inherit_group(struct perf_event *parent_event,
10743 	      struct task_struct *parent,
10744 	      struct perf_event_context *parent_ctx,
10745 	      struct task_struct *child,
10746 	      struct perf_event_context *child_ctx)
10747 {
10748 	struct perf_event *leader;
10749 	struct perf_event *sub;
10750 	struct perf_event *child_ctr;
10751 
10752 	leader = inherit_event(parent_event, parent, parent_ctx,
10753 				 child, NULL, child_ctx);
10754 	if (IS_ERR(leader))
10755 		return PTR_ERR(leader);
10756 	/*
10757 	 * @leader can be NULL here because of is_orphaned_event(). In this
10758 	 * case inherit_event() will create individual events, similar to what
10759 	 * perf_group_detach() would do anyway.
10760 	 */
10761 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10762 		child_ctr = inherit_event(sub, parent, parent_ctx,
10763 					    child, leader, child_ctx);
10764 		if (IS_ERR(child_ctr))
10765 			return PTR_ERR(child_ctr);
10766 	}
10767 	return 0;
10768 }
10769 
10770 /*
10771  * Creates the child task context and tries to inherit the event-group.
10772  *
10773  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10774  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10775  * consistent with perf_event_release_kernel() removing all child events.
10776  *
10777  * Returns:
10778  *  - 0 on success
10779  *  - <0 on error
10780  */
10781 static int
10782 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10783 		   struct perf_event_context *parent_ctx,
10784 		   struct task_struct *child, int ctxn,
10785 		   int *inherited_all)
10786 {
10787 	int ret;
10788 	struct perf_event_context *child_ctx;
10789 
10790 	if (!event->attr.inherit) {
10791 		*inherited_all = 0;
10792 		return 0;
10793 	}
10794 
10795 	child_ctx = child->perf_event_ctxp[ctxn];
10796 	if (!child_ctx) {
10797 		/*
10798 		 * This is executed from the parent task context, so
10799 		 * inherit events that have been marked for cloning.
10800 		 * First allocate and initialize a context for the
10801 		 * child.
10802 		 */
10803 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10804 		if (!child_ctx)
10805 			return -ENOMEM;
10806 
10807 		child->perf_event_ctxp[ctxn] = child_ctx;
10808 	}
10809 
10810 	ret = inherit_group(event, parent, parent_ctx,
10811 			    child, child_ctx);
10812 
10813 	if (ret)
10814 		*inherited_all = 0;
10815 
10816 	return ret;
10817 }
10818 
10819 /*
10820  * Initialize the perf_event context in task_struct
10821  */
10822 static int perf_event_init_context(struct task_struct *child, int ctxn)
10823 {
10824 	struct perf_event_context *child_ctx, *parent_ctx;
10825 	struct perf_event_context *cloned_ctx;
10826 	struct perf_event *event;
10827 	struct task_struct *parent = current;
10828 	int inherited_all = 1;
10829 	unsigned long flags;
10830 	int ret = 0;
10831 
10832 	if (likely(!parent->perf_event_ctxp[ctxn]))
10833 		return 0;
10834 
10835 	/*
10836 	 * If the parent's context is a clone, pin it so it won't get
10837 	 * swapped under us.
10838 	 */
10839 	parent_ctx = perf_pin_task_context(parent, ctxn);
10840 	if (!parent_ctx)
10841 		return 0;
10842 
10843 	/*
10844 	 * No need to check if parent_ctx != NULL here; since we saw
10845 	 * it non-NULL earlier, the only reason for it to become NULL
10846 	 * is if we exit, and since we're currently in the middle of
10847 	 * a fork we can't be exiting at the same time.
10848 	 */
10849 
10850 	/*
10851 	 * Lock the parent list. No need to lock the child - not PID
10852 	 * hashed yet and not running, so nobody can access it.
10853 	 */
10854 	mutex_lock(&parent_ctx->mutex);
10855 
10856 	/*
10857 	 * We dont have to disable NMIs - we are only looking at
10858 	 * the list, not manipulating it:
10859 	 */
10860 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10861 		ret = inherit_task_group(event, parent, parent_ctx,
10862 					 child, ctxn, &inherited_all);
10863 		if (ret)
10864 			goto out_unlock;
10865 	}
10866 
10867 	/*
10868 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10869 	 * to allocations, but we need to prevent rotation because
10870 	 * rotate_ctx() will change the list from interrupt context.
10871 	 */
10872 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10873 	parent_ctx->rotate_disable = 1;
10874 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10875 
10876 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10877 		ret = inherit_task_group(event, parent, parent_ctx,
10878 					 child, ctxn, &inherited_all);
10879 		if (ret)
10880 			goto out_unlock;
10881 	}
10882 
10883 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10884 	parent_ctx->rotate_disable = 0;
10885 
10886 	child_ctx = child->perf_event_ctxp[ctxn];
10887 
10888 	if (child_ctx && inherited_all) {
10889 		/*
10890 		 * Mark the child context as a clone of the parent
10891 		 * context, or of whatever the parent is a clone of.
10892 		 *
10893 		 * Note that if the parent is a clone, the holding of
10894 		 * parent_ctx->lock avoids it from being uncloned.
10895 		 */
10896 		cloned_ctx = parent_ctx->parent_ctx;
10897 		if (cloned_ctx) {
10898 			child_ctx->parent_ctx = cloned_ctx;
10899 			child_ctx->parent_gen = parent_ctx->parent_gen;
10900 		} else {
10901 			child_ctx->parent_ctx = parent_ctx;
10902 			child_ctx->parent_gen = parent_ctx->generation;
10903 		}
10904 		get_ctx(child_ctx->parent_ctx);
10905 	}
10906 
10907 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10908 out_unlock:
10909 	mutex_unlock(&parent_ctx->mutex);
10910 
10911 	perf_unpin_context(parent_ctx);
10912 	put_ctx(parent_ctx);
10913 
10914 	return ret;
10915 }
10916 
10917 /*
10918  * Initialize the perf_event context in task_struct
10919  */
10920 int perf_event_init_task(struct task_struct *child)
10921 {
10922 	int ctxn, ret;
10923 
10924 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10925 	mutex_init(&child->perf_event_mutex);
10926 	INIT_LIST_HEAD(&child->perf_event_list);
10927 
10928 	for_each_task_context_nr(ctxn) {
10929 		ret = perf_event_init_context(child, ctxn);
10930 		if (ret) {
10931 			perf_event_free_task(child);
10932 			return ret;
10933 		}
10934 	}
10935 
10936 	return 0;
10937 }
10938 
10939 static void __init perf_event_init_all_cpus(void)
10940 {
10941 	struct swevent_htable *swhash;
10942 	int cpu;
10943 
10944 	for_each_possible_cpu(cpu) {
10945 		swhash = &per_cpu(swevent_htable, cpu);
10946 		mutex_init(&swhash->hlist_mutex);
10947 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10948 
10949 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10950 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10951 
10952 #ifdef CONFIG_CGROUP_PERF
10953 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10954 #endif
10955 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10956 	}
10957 }
10958 
10959 int perf_event_init_cpu(unsigned int cpu)
10960 {
10961 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10962 
10963 	mutex_lock(&swhash->hlist_mutex);
10964 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10965 		struct swevent_hlist *hlist;
10966 
10967 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10968 		WARN_ON(!hlist);
10969 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10970 	}
10971 	mutex_unlock(&swhash->hlist_mutex);
10972 	return 0;
10973 }
10974 
10975 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10976 static void __perf_event_exit_context(void *__info)
10977 {
10978 	struct perf_event_context *ctx = __info;
10979 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10980 	struct perf_event *event;
10981 
10982 	raw_spin_lock(&ctx->lock);
10983 	list_for_each_entry(event, &ctx->event_list, event_entry)
10984 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10985 	raw_spin_unlock(&ctx->lock);
10986 }
10987 
10988 static void perf_event_exit_cpu_context(int cpu)
10989 {
10990 	struct perf_event_context *ctx;
10991 	struct pmu *pmu;
10992 	int idx;
10993 
10994 	idx = srcu_read_lock(&pmus_srcu);
10995 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10996 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10997 
10998 		mutex_lock(&ctx->mutex);
10999 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11000 		mutex_unlock(&ctx->mutex);
11001 	}
11002 	srcu_read_unlock(&pmus_srcu, idx);
11003 }
11004 #else
11005 
11006 static void perf_event_exit_cpu_context(int cpu) { }
11007 
11008 #endif
11009 
11010 int perf_event_exit_cpu(unsigned int cpu)
11011 {
11012 	perf_event_exit_cpu_context(cpu);
11013 	return 0;
11014 }
11015 
11016 static int
11017 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11018 {
11019 	int cpu;
11020 
11021 	for_each_online_cpu(cpu)
11022 		perf_event_exit_cpu(cpu);
11023 
11024 	return NOTIFY_OK;
11025 }
11026 
11027 /*
11028  * Run the perf reboot notifier at the very last possible moment so that
11029  * the generic watchdog code runs as long as possible.
11030  */
11031 static struct notifier_block perf_reboot_notifier = {
11032 	.notifier_call = perf_reboot,
11033 	.priority = INT_MIN,
11034 };
11035 
11036 void __init perf_event_init(void)
11037 {
11038 	int ret;
11039 
11040 	idr_init(&pmu_idr);
11041 
11042 	perf_event_init_all_cpus();
11043 	init_srcu_struct(&pmus_srcu);
11044 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11045 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11046 	perf_pmu_register(&perf_task_clock, NULL, -1);
11047 	perf_tp_register();
11048 	perf_event_init_cpu(smp_processor_id());
11049 	register_reboot_notifier(&perf_reboot_notifier);
11050 
11051 	ret = init_hw_breakpoint();
11052 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11053 
11054 	/*
11055 	 * Build time assertion that we keep the data_head at the intended
11056 	 * location.  IOW, validation we got the __reserved[] size right.
11057 	 */
11058 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11059 		     != 1024);
11060 }
11061 
11062 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11063 			      char *page)
11064 {
11065 	struct perf_pmu_events_attr *pmu_attr =
11066 		container_of(attr, struct perf_pmu_events_attr, attr);
11067 
11068 	if (pmu_attr->event_str)
11069 		return sprintf(page, "%s\n", pmu_attr->event_str);
11070 
11071 	return 0;
11072 }
11073 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11074 
11075 static int __init perf_event_sysfs_init(void)
11076 {
11077 	struct pmu *pmu;
11078 	int ret;
11079 
11080 	mutex_lock(&pmus_lock);
11081 
11082 	ret = bus_register(&pmu_bus);
11083 	if (ret)
11084 		goto unlock;
11085 
11086 	list_for_each_entry(pmu, &pmus, entry) {
11087 		if (!pmu->name || pmu->type < 0)
11088 			continue;
11089 
11090 		ret = pmu_dev_alloc(pmu);
11091 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11092 	}
11093 	pmu_bus_running = 1;
11094 	ret = 0;
11095 
11096 unlock:
11097 	mutex_unlock(&pmus_lock);
11098 
11099 	return ret;
11100 }
11101 device_initcall(perf_event_sysfs_init);
11102 
11103 #ifdef CONFIG_CGROUP_PERF
11104 static struct cgroup_subsys_state *
11105 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11106 {
11107 	struct perf_cgroup *jc;
11108 
11109 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11110 	if (!jc)
11111 		return ERR_PTR(-ENOMEM);
11112 
11113 	jc->info = alloc_percpu(struct perf_cgroup_info);
11114 	if (!jc->info) {
11115 		kfree(jc);
11116 		return ERR_PTR(-ENOMEM);
11117 	}
11118 
11119 	return &jc->css;
11120 }
11121 
11122 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11123 {
11124 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11125 
11126 	free_percpu(jc->info);
11127 	kfree(jc);
11128 }
11129 
11130 static int __perf_cgroup_move(void *info)
11131 {
11132 	struct task_struct *task = info;
11133 	rcu_read_lock();
11134 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11135 	rcu_read_unlock();
11136 	return 0;
11137 }
11138 
11139 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11140 {
11141 	struct task_struct *task;
11142 	struct cgroup_subsys_state *css;
11143 
11144 	cgroup_taskset_for_each(task, css, tset)
11145 		task_function_call(task, __perf_cgroup_move, task);
11146 }
11147 
11148 struct cgroup_subsys perf_event_cgrp_subsys = {
11149 	.css_alloc	= perf_cgroup_css_alloc,
11150 	.css_free	= perf_cgroup_css_free,
11151 	.attach		= perf_cgroup_attach,
11152 	/*
11153 	 * Implicitly enable on dfl hierarchy so that perf events can
11154 	 * always be filtered by cgroup2 path as long as perf_event
11155 	 * controller is not mounted on a legacy hierarchy.
11156 	 */
11157 	.implicit_on_dfl = true,
11158 };
11159 #endif /* CONFIG_CGROUP_PERF */
11160