1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 WARN_ON_ONCE(!irqs_disabled()); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 WARN_ON_ONCE(!irqs_disabled()); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 #ifdef CONFIG_CGROUP_PERF 586 587 static inline bool 588 perf_cgroup_match(struct perf_event *event) 589 { 590 struct perf_event_context *ctx = event->ctx; 591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 592 593 /* @event doesn't care about cgroup */ 594 if (!event->cgrp) 595 return true; 596 597 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 598 if (!cpuctx->cgrp) 599 return false; 600 601 /* 602 * Cgroup scoping is recursive. An event enabled for a cgroup is 603 * also enabled for all its descendant cgroups. If @cpuctx's 604 * cgroup is a descendant of @event's (the test covers identity 605 * case), it's a match. 606 */ 607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 608 event->cgrp->css.cgroup); 609 } 610 611 static inline void perf_detach_cgroup(struct perf_event *event) 612 { 613 css_put(&event->cgrp->css); 614 event->cgrp = NULL; 615 } 616 617 static inline int is_cgroup_event(struct perf_event *event) 618 { 619 return event->cgrp != NULL; 620 } 621 622 static inline u64 perf_cgroup_event_time(struct perf_event *event) 623 { 624 struct perf_cgroup_info *t; 625 626 t = per_cpu_ptr(event->cgrp->info, event->cpu); 627 return t->time; 628 } 629 630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 631 { 632 struct perf_cgroup_info *info; 633 u64 now; 634 635 now = perf_clock(); 636 637 info = this_cpu_ptr(cgrp->info); 638 639 info->time += now - info->timestamp; 640 info->timestamp = now; 641 } 642 643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 644 { 645 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 646 if (cgrp_out) 647 __update_cgrp_time(cgrp_out); 648 } 649 650 static inline void update_cgrp_time_from_event(struct perf_event *event) 651 { 652 struct perf_cgroup *cgrp; 653 654 /* 655 * ensure we access cgroup data only when needed and 656 * when we know the cgroup is pinned (css_get) 657 */ 658 if (!is_cgroup_event(event)) 659 return; 660 661 cgrp = perf_cgroup_from_task(current, event->ctx); 662 /* 663 * Do not update time when cgroup is not active 664 */ 665 if (cgrp == event->cgrp) 666 __update_cgrp_time(event->cgrp); 667 } 668 669 static inline void 670 perf_cgroup_set_timestamp(struct task_struct *task, 671 struct perf_event_context *ctx) 672 { 673 struct perf_cgroup *cgrp; 674 struct perf_cgroup_info *info; 675 676 /* 677 * ctx->lock held by caller 678 * ensure we do not access cgroup data 679 * unless we have the cgroup pinned (css_get) 680 */ 681 if (!task || !ctx->nr_cgroups) 682 return; 683 684 cgrp = perf_cgroup_from_task(task, ctx); 685 info = this_cpu_ptr(cgrp->info); 686 info->timestamp = ctx->timestamp; 687 } 688 689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 690 691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 693 694 /* 695 * reschedule events based on the cgroup constraint of task. 696 * 697 * mode SWOUT : schedule out everything 698 * mode SWIN : schedule in based on cgroup for next 699 */ 700 static void perf_cgroup_switch(struct task_struct *task, int mode) 701 { 702 struct perf_cpu_context *cpuctx; 703 struct list_head *list; 704 unsigned long flags; 705 706 /* 707 * Disable interrupts and preemption to avoid this CPU's 708 * cgrp_cpuctx_entry to change under us. 709 */ 710 local_irq_save(flags); 711 712 list = this_cpu_ptr(&cgrp_cpuctx_list); 713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 715 716 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 717 perf_pmu_disable(cpuctx->ctx.pmu); 718 719 if (mode & PERF_CGROUP_SWOUT) { 720 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 721 /* 722 * must not be done before ctxswout due 723 * to event_filter_match() in event_sched_out() 724 */ 725 cpuctx->cgrp = NULL; 726 } 727 728 if (mode & PERF_CGROUP_SWIN) { 729 WARN_ON_ONCE(cpuctx->cgrp); 730 /* 731 * set cgrp before ctxsw in to allow 732 * event_filter_match() to not have to pass 733 * task around 734 * we pass the cpuctx->ctx to perf_cgroup_from_task() 735 * because cgorup events are only per-cpu 736 */ 737 cpuctx->cgrp = perf_cgroup_from_task(task, 738 &cpuctx->ctx); 739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 740 } 741 perf_pmu_enable(cpuctx->ctx.pmu); 742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 743 } 744 745 local_irq_restore(flags); 746 } 747 748 static inline void perf_cgroup_sched_out(struct task_struct *task, 749 struct task_struct *next) 750 { 751 struct perf_cgroup *cgrp1; 752 struct perf_cgroup *cgrp2 = NULL; 753 754 rcu_read_lock(); 755 /* 756 * we come here when we know perf_cgroup_events > 0 757 * we do not need to pass the ctx here because we know 758 * we are holding the rcu lock 759 */ 760 cgrp1 = perf_cgroup_from_task(task, NULL); 761 cgrp2 = perf_cgroup_from_task(next, NULL); 762 763 /* 764 * only schedule out current cgroup events if we know 765 * that we are switching to a different cgroup. Otherwise, 766 * do no touch the cgroup events. 767 */ 768 if (cgrp1 != cgrp2) 769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 770 771 rcu_read_unlock(); 772 } 773 774 static inline void perf_cgroup_sched_in(struct task_struct *prev, 775 struct task_struct *task) 776 { 777 struct perf_cgroup *cgrp1; 778 struct perf_cgroup *cgrp2 = NULL; 779 780 rcu_read_lock(); 781 /* 782 * we come here when we know perf_cgroup_events > 0 783 * we do not need to pass the ctx here because we know 784 * we are holding the rcu lock 785 */ 786 cgrp1 = perf_cgroup_from_task(task, NULL); 787 cgrp2 = perf_cgroup_from_task(prev, NULL); 788 789 /* 790 * only need to schedule in cgroup events if we are changing 791 * cgroup during ctxsw. Cgroup events were not scheduled 792 * out of ctxsw out if that was not the case. 793 */ 794 if (cgrp1 != cgrp2) 795 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 796 797 rcu_read_unlock(); 798 } 799 800 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 801 struct perf_event_attr *attr, 802 struct perf_event *group_leader) 803 { 804 struct perf_cgroup *cgrp; 805 struct cgroup_subsys_state *css; 806 struct fd f = fdget(fd); 807 int ret = 0; 808 809 if (!f.file) 810 return -EBADF; 811 812 css = css_tryget_online_from_dir(f.file->f_path.dentry, 813 &perf_event_cgrp_subsys); 814 if (IS_ERR(css)) { 815 ret = PTR_ERR(css); 816 goto out; 817 } 818 819 cgrp = container_of(css, struct perf_cgroup, css); 820 event->cgrp = cgrp; 821 822 /* 823 * all events in a group must monitor 824 * the same cgroup because a task belongs 825 * to only one perf cgroup at a time 826 */ 827 if (group_leader && group_leader->cgrp != cgrp) { 828 perf_detach_cgroup(event); 829 ret = -EINVAL; 830 } 831 out: 832 fdput(f); 833 return ret; 834 } 835 836 static inline void 837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 838 { 839 struct perf_cgroup_info *t; 840 t = per_cpu_ptr(event->cgrp->info, event->cpu); 841 event->shadow_ctx_time = now - t->timestamp; 842 } 843 844 static inline void 845 perf_cgroup_defer_enabled(struct perf_event *event) 846 { 847 /* 848 * when the current task's perf cgroup does not match 849 * the event's, we need to remember to call the 850 * perf_mark_enable() function the first time a task with 851 * a matching perf cgroup is scheduled in. 852 */ 853 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 854 event->cgrp_defer_enabled = 1; 855 } 856 857 static inline void 858 perf_cgroup_mark_enabled(struct perf_event *event, 859 struct perf_event_context *ctx) 860 { 861 struct perf_event *sub; 862 u64 tstamp = perf_event_time(event); 863 864 if (!event->cgrp_defer_enabled) 865 return; 866 867 event->cgrp_defer_enabled = 0; 868 869 event->tstamp_enabled = tstamp - event->total_time_enabled; 870 list_for_each_entry(sub, &event->sibling_list, group_entry) { 871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 872 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 873 sub->cgrp_defer_enabled = 0; 874 } 875 } 876 } 877 878 /* 879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 880 * cleared when last cgroup event is removed. 881 */ 882 static inline void 883 list_update_cgroup_event(struct perf_event *event, 884 struct perf_event_context *ctx, bool add) 885 { 886 struct perf_cpu_context *cpuctx; 887 struct list_head *cpuctx_entry; 888 889 if (!is_cgroup_event(event)) 890 return; 891 892 if (add && ctx->nr_cgroups++) 893 return; 894 else if (!add && --ctx->nr_cgroups) 895 return; 896 /* 897 * Because cgroup events are always per-cpu events, 898 * this will always be called from the right CPU. 899 */ 900 cpuctx = __get_cpu_context(ctx); 901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 903 if (add) { 904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 905 if (perf_cgroup_from_task(current, ctx) == event->cgrp) 906 cpuctx->cgrp = event->cgrp; 907 } else { 908 list_del(cpuctx_entry); 909 cpuctx->cgrp = NULL; 910 } 911 } 912 913 #else /* !CONFIG_CGROUP_PERF */ 914 915 static inline bool 916 perf_cgroup_match(struct perf_event *event) 917 { 918 return true; 919 } 920 921 static inline void perf_detach_cgroup(struct perf_event *event) 922 {} 923 924 static inline int is_cgroup_event(struct perf_event *event) 925 { 926 return 0; 927 } 928 929 static inline void update_cgrp_time_from_event(struct perf_event *event) 930 { 931 } 932 933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 934 { 935 } 936 937 static inline void perf_cgroup_sched_out(struct task_struct *task, 938 struct task_struct *next) 939 { 940 } 941 942 static inline void perf_cgroup_sched_in(struct task_struct *prev, 943 struct task_struct *task) 944 { 945 } 946 947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 948 struct perf_event_attr *attr, 949 struct perf_event *group_leader) 950 { 951 return -EINVAL; 952 } 953 954 static inline void 955 perf_cgroup_set_timestamp(struct task_struct *task, 956 struct perf_event_context *ctx) 957 { 958 } 959 960 void 961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 962 { 963 } 964 965 static inline void 966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 967 { 968 } 969 970 static inline u64 perf_cgroup_event_time(struct perf_event *event) 971 { 972 return 0; 973 } 974 975 static inline void 976 perf_cgroup_defer_enabled(struct perf_event *event) 977 { 978 } 979 980 static inline void 981 perf_cgroup_mark_enabled(struct perf_event *event, 982 struct perf_event_context *ctx) 983 { 984 } 985 986 static inline void 987 list_update_cgroup_event(struct perf_event *event, 988 struct perf_event_context *ctx, bool add) 989 { 990 } 991 992 #endif 993 994 /* 995 * set default to be dependent on timer tick just 996 * like original code 997 */ 998 #define PERF_CPU_HRTIMER (1000 / HZ) 999 /* 1000 * function must be called with interrupts disabled 1001 */ 1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1003 { 1004 struct perf_cpu_context *cpuctx; 1005 int rotations = 0; 1006 1007 WARN_ON(!irqs_disabled()); 1008 1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1010 rotations = perf_rotate_context(cpuctx); 1011 1012 raw_spin_lock(&cpuctx->hrtimer_lock); 1013 if (rotations) 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1015 else 1016 cpuctx->hrtimer_active = 0; 1017 raw_spin_unlock(&cpuctx->hrtimer_lock); 1018 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1020 } 1021 1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1023 { 1024 struct hrtimer *timer = &cpuctx->hrtimer; 1025 struct pmu *pmu = cpuctx->ctx.pmu; 1026 u64 interval; 1027 1028 /* no multiplexing needed for SW PMU */ 1029 if (pmu->task_ctx_nr == perf_sw_context) 1030 return; 1031 1032 /* 1033 * check default is sane, if not set then force to 1034 * default interval (1/tick) 1035 */ 1036 interval = pmu->hrtimer_interval_ms; 1037 if (interval < 1) 1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1039 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1041 1042 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1044 timer->function = perf_mux_hrtimer_handler; 1045 } 1046 1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1048 { 1049 struct hrtimer *timer = &cpuctx->hrtimer; 1050 struct pmu *pmu = cpuctx->ctx.pmu; 1051 unsigned long flags; 1052 1053 /* not for SW PMU */ 1054 if (pmu->task_ctx_nr == perf_sw_context) 1055 return 0; 1056 1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1058 if (!cpuctx->hrtimer_active) { 1059 cpuctx->hrtimer_active = 1; 1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1062 } 1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1064 1065 return 0; 1066 } 1067 1068 void perf_pmu_disable(struct pmu *pmu) 1069 { 1070 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1071 if (!(*count)++) 1072 pmu->pmu_disable(pmu); 1073 } 1074 1075 void perf_pmu_enable(struct pmu *pmu) 1076 { 1077 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1078 if (!--(*count)) 1079 pmu->pmu_enable(pmu); 1080 } 1081 1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1083 1084 /* 1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1086 * perf_event_task_tick() are fully serialized because they're strictly cpu 1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1088 * disabled, while perf_event_task_tick is called from IRQ context. 1089 */ 1090 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1091 { 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1093 1094 WARN_ON(!irqs_disabled()); 1095 1096 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1097 1098 list_add(&ctx->active_ctx_list, head); 1099 } 1100 1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1102 { 1103 WARN_ON(!irqs_disabled()); 1104 1105 WARN_ON(list_empty(&ctx->active_ctx_list)); 1106 1107 list_del_init(&ctx->active_ctx_list); 1108 } 1109 1110 static void get_ctx(struct perf_event_context *ctx) 1111 { 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1113 } 1114 1115 static void free_ctx(struct rcu_head *head) 1116 { 1117 struct perf_event_context *ctx; 1118 1119 ctx = container_of(head, struct perf_event_context, rcu_head); 1120 kfree(ctx->task_ctx_data); 1121 kfree(ctx); 1122 } 1123 1124 static void put_ctx(struct perf_event_context *ctx) 1125 { 1126 if (atomic_dec_and_test(&ctx->refcount)) { 1127 if (ctx->parent_ctx) 1128 put_ctx(ctx->parent_ctx); 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1130 put_task_struct(ctx->task); 1131 call_rcu(&ctx->rcu_head, free_ctx); 1132 } 1133 } 1134 1135 /* 1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1137 * perf_pmu_migrate_context() we need some magic. 1138 * 1139 * Those places that change perf_event::ctx will hold both 1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1141 * 1142 * Lock ordering is by mutex address. There are two other sites where 1143 * perf_event_context::mutex nests and those are: 1144 * 1145 * - perf_event_exit_task_context() [ child , 0 ] 1146 * perf_event_exit_event() 1147 * put_event() [ parent, 1 ] 1148 * 1149 * - perf_event_init_context() [ parent, 0 ] 1150 * inherit_task_group() 1151 * inherit_group() 1152 * inherit_event() 1153 * perf_event_alloc() 1154 * perf_init_event() 1155 * perf_try_init_event() [ child , 1 ] 1156 * 1157 * While it appears there is an obvious deadlock here -- the parent and child 1158 * nesting levels are inverted between the two. This is in fact safe because 1159 * life-time rules separate them. That is an exiting task cannot fork, and a 1160 * spawning task cannot (yet) exit. 1161 * 1162 * But remember that that these are parent<->child context relations, and 1163 * migration does not affect children, therefore these two orderings should not 1164 * interact. 1165 * 1166 * The change in perf_event::ctx does not affect children (as claimed above) 1167 * because the sys_perf_event_open() case will install a new event and break 1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1169 * concerned with cpuctx and that doesn't have children. 1170 * 1171 * The places that change perf_event::ctx will issue: 1172 * 1173 * perf_remove_from_context(); 1174 * synchronize_rcu(); 1175 * perf_install_in_context(); 1176 * 1177 * to affect the change. The remove_from_context() + synchronize_rcu() should 1178 * quiesce the event, after which we can install it in the new location. This 1179 * means that only external vectors (perf_fops, prctl) can perturb the event 1180 * while in transit. Therefore all such accessors should also acquire 1181 * perf_event_context::mutex to serialize against this. 1182 * 1183 * However; because event->ctx can change while we're waiting to acquire 1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1185 * function. 1186 * 1187 * Lock order: 1188 * cred_guard_mutex 1189 * task_struct::perf_event_mutex 1190 * perf_event_context::mutex 1191 * perf_event::child_mutex; 1192 * perf_event_context::lock 1193 * perf_event::mmap_mutex 1194 * mmap_sem 1195 */ 1196 static struct perf_event_context * 1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1198 { 1199 struct perf_event_context *ctx; 1200 1201 again: 1202 rcu_read_lock(); 1203 ctx = ACCESS_ONCE(event->ctx); 1204 if (!atomic_inc_not_zero(&ctx->refcount)) { 1205 rcu_read_unlock(); 1206 goto again; 1207 } 1208 rcu_read_unlock(); 1209 1210 mutex_lock_nested(&ctx->mutex, nesting); 1211 if (event->ctx != ctx) { 1212 mutex_unlock(&ctx->mutex); 1213 put_ctx(ctx); 1214 goto again; 1215 } 1216 1217 return ctx; 1218 } 1219 1220 static inline struct perf_event_context * 1221 perf_event_ctx_lock(struct perf_event *event) 1222 { 1223 return perf_event_ctx_lock_nested(event, 0); 1224 } 1225 1226 static void perf_event_ctx_unlock(struct perf_event *event, 1227 struct perf_event_context *ctx) 1228 { 1229 mutex_unlock(&ctx->mutex); 1230 put_ctx(ctx); 1231 } 1232 1233 /* 1234 * This must be done under the ctx->lock, such as to serialize against 1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1236 * calling scheduler related locks and ctx->lock nests inside those. 1237 */ 1238 static __must_check struct perf_event_context * 1239 unclone_ctx(struct perf_event_context *ctx) 1240 { 1241 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1242 1243 lockdep_assert_held(&ctx->lock); 1244 1245 if (parent_ctx) 1246 ctx->parent_ctx = NULL; 1247 ctx->generation++; 1248 1249 return parent_ctx; 1250 } 1251 1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1253 { 1254 /* 1255 * only top level events have the pid namespace they were created in 1256 */ 1257 if (event->parent) 1258 event = event->parent; 1259 1260 return task_tgid_nr_ns(p, event->ns); 1261 } 1262 1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1264 { 1265 /* 1266 * only top level events have the pid namespace they were created in 1267 */ 1268 if (event->parent) 1269 event = event->parent; 1270 1271 return task_pid_nr_ns(p, event->ns); 1272 } 1273 1274 /* 1275 * If we inherit events we want to return the parent event id 1276 * to userspace. 1277 */ 1278 static u64 primary_event_id(struct perf_event *event) 1279 { 1280 u64 id = event->id; 1281 1282 if (event->parent) 1283 id = event->parent->id; 1284 1285 return id; 1286 } 1287 1288 /* 1289 * Get the perf_event_context for a task and lock it. 1290 * 1291 * This has to cope with with the fact that until it is locked, 1292 * the context could get moved to another task. 1293 */ 1294 static struct perf_event_context * 1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1296 { 1297 struct perf_event_context *ctx; 1298 1299 retry: 1300 /* 1301 * One of the few rules of preemptible RCU is that one cannot do 1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1303 * part of the read side critical section was irqs-enabled -- see 1304 * rcu_read_unlock_special(). 1305 * 1306 * Since ctx->lock nests under rq->lock we must ensure the entire read 1307 * side critical section has interrupts disabled. 1308 */ 1309 local_irq_save(*flags); 1310 rcu_read_lock(); 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1312 if (ctx) { 1313 /* 1314 * If this context is a clone of another, it might 1315 * get swapped for another underneath us by 1316 * perf_event_task_sched_out, though the 1317 * rcu_read_lock() protects us from any context 1318 * getting freed. Lock the context and check if it 1319 * got swapped before we could get the lock, and retry 1320 * if so. If we locked the right context, then it 1321 * can't get swapped on us any more. 1322 */ 1323 raw_spin_lock(&ctx->lock); 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1325 raw_spin_unlock(&ctx->lock); 1326 rcu_read_unlock(); 1327 local_irq_restore(*flags); 1328 goto retry; 1329 } 1330 1331 if (ctx->task == TASK_TOMBSTONE || 1332 !atomic_inc_not_zero(&ctx->refcount)) { 1333 raw_spin_unlock(&ctx->lock); 1334 ctx = NULL; 1335 } else { 1336 WARN_ON_ONCE(ctx->task != task); 1337 } 1338 } 1339 rcu_read_unlock(); 1340 if (!ctx) 1341 local_irq_restore(*flags); 1342 return ctx; 1343 } 1344 1345 /* 1346 * Get the context for a task and increment its pin_count so it 1347 * can't get swapped to another task. This also increments its 1348 * reference count so that the context can't get freed. 1349 */ 1350 static struct perf_event_context * 1351 perf_pin_task_context(struct task_struct *task, int ctxn) 1352 { 1353 struct perf_event_context *ctx; 1354 unsigned long flags; 1355 1356 ctx = perf_lock_task_context(task, ctxn, &flags); 1357 if (ctx) { 1358 ++ctx->pin_count; 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1360 } 1361 return ctx; 1362 } 1363 1364 static void perf_unpin_context(struct perf_event_context *ctx) 1365 { 1366 unsigned long flags; 1367 1368 raw_spin_lock_irqsave(&ctx->lock, flags); 1369 --ctx->pin_count; 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1371 } 1372 1373 /* 1374 * Update the record of the current time in a context. 1375 */ 1376 static void update_context_time(struct perf_event_context *ctx) 1377 { 1378 u64 now = perf_clock(); 1379 1380 ctx->time += now - ctx->timestamp; 1381 ctx->timestamp = now; 1382 } 1383 1384 static u64 perf_event_time(struct perf_event *event) 1385 { 1386 struct perf_event_context *ctx = event->ctx; 1387 1388 if (is_cgroup_event(event)) 1389 return perf_cgroup_event_time(event); 1390 1391 return ctx ? ctx->time : 0; 1392 } 1393 1394 /* 1395 * Update the total_time_enabled and total_time_running fields for a event. 1396 */ 1397 static void update_event_times(struct perf_event *event) 1398 { 1399 struct perf_event_context *ctx = event->ctx; 1400 u64 run_end; 1401 1402 lockdep_assert_held(&ctx->lock); 1403 1404 if (event->state < PERF_EVENT_STATE_INACTIVE || 1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1406 return; 1407 1408 /* 1409 * in cgroup mode, time_enabled represents 1410 * the time the event was enabled AND active 1411 * tasks were in the monitored cgroup. This is 1412 * independent of the activity of the context as 1413 * there may be a mix of cgroup and non-cgroup events. 1414 * 1415 * That is why we treat cgroup events differently 1416 * here. 1417 */ 1418 if (is_cgroup_event(event)) 1419 run_end = perf_cgroup_event_time(event); 1420 else if (ctx->is_active) 1421 run_end = ctx->time; 1422 else 1423 run_end = event->tstamp_stopped; 1424 1425 event->total_time_enabled = run_end - event->tstamp_enabled; 1426 1427 if (event->state == PERF_EVENT_STATE_INACTIVE) 1428 run_end = event->tstamp_stopped; 1429 else 1430 run_end = perf_event_time(event); 1431 1432 event->total_time_running = run_end - event->tstamp_running; 1433 1434 } 1435 1436 /* 1437 * Update total_time_enabled and total_time_running for all events in a group. 1438 */ 1439 static void update_group_times(struct perf_event *leader) 1440 { 1441 struct perf_event *event; 1442 1443 update_event_times(leader); 1444 list_for_each_entry(event, &leader->sibling_list, group_entry) 1445 update_event_times(event); 1446 } 1447 1448 static enum event_type_t get_event_type(struct perf_event *event) 1449 { 1450 struct perf_event_context *ctx = event->ctx; 1451 enum event_type_t event_type; 1452 1453 lockdep_assert_held(&ctx->lock); 1454 1455 /* 1456 * It's 'group type', really, because if our group leader is 1457 * pinned, so are we. 1458 */ 1459 if (event->group_leader != event) 1460 event = event->group_leader; 1461 1462 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1463 if (!ctx->task) 1464 event_type |= EVENT_CPU; 1465 1466 return event_type; 1467 } 1468 1469 static struct list_head * 1470 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1471 { 1472 if (event->attr.pinned) 1473 return &ctx->pinned_groups; 1474 else 1475 return &ctx->flexible_groups; 1476 } 1477 1478 /* 1479 * Add a event from the lists for its context. 1480 * Must be called with ctx->mutex and ctx->lock held. 1481 */ 1482 static void 1483 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1484 { 1485 lockdep_assert_held(&ctx->lock); 1486 1487 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1488 event->attach_state |= PERF_ATTACH_CONTEXT; 1489 1490 /* 1491 * If we're a stand alone event or group leader, we go to the context 1492 * list, group events are kept attached to the group so that 1493 * perf_group_detach can, at all times, locate all siblings. 1494 */ 1495 if (event->group_leader == event) { 1496 struct list_head *list; 1497 1498 event->group_caps = event->event_caps; 1499 1500 list = ctx_group_list(event, ctx); 1501 list_add_tail(&event->group_entry, list); 1502 } 1503 1504 list_update_cgroup_event(event, ctx, true); 1505 1506 list_add_rcu(&event->event_entry, &ctx->event_list); 1507 ctx->nr_events++; 1508 if (event->attr.inherit_stat) 1509 ctx->nr_stat++; 1510 1511 ctx->generation++; 1512 } 1513 1514 /* 1515 * Initialize event state based on the perf_event_attr::disabled. 1516 */ 1517 static inline void perf_event__state_init(struct perf_event *event) 1518 { 1519 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1520 PERF_EVENT_STATE_INACTIVE; 1521 } 1522 1523 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1524 { 1525 int entry = sizeof(u64); /* value */ 1526 int size = 0; 1527 int nr = 1; 1528 1529 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1530 size += sizeof(u64); 1531 1532 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1533 size += sizeof(u64); 1534 1535 if (event->attr.read_format & PERF_FORMAT_ID) 1536 entry += sizeof(u64); 1537 1538 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1539 nr += nr_siblings; 1540 size += sizeof(u64); 1541 } 1542 1543 size += entry * nr; 1544 event->read_size = size; 1545 } 1546 1547 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1548 { 1549 struct perf_sample_data *data; 1550 u16 size = 0; 1551 1552 if (sample_type & PERF_SAMPLE_IP) 1553 size += sizeof(data->ip); 1554 1555 if (sample_type & PERF_SAMPLE_ADDR) 1556 size += sizeof(data->addr); 1557 1558 if (sample_type & PERF_SAMPLE_PERIOD) 1559 size += sizeof(data->period); 1560 1561 if (sample_type & PERF_SAMPLE_WEIGHT) 1562 size += sizeof(data->weight); 1563 1564 if (sample_type & PERF_SAMPLE_READ) 1565 size += event->read_size; 1566 1567 if (sample_type & PERF_SAMPLE_DATA_SRC) 1568 size += sizeof(data->data_src.val); 1569 1570 if (sample_type & PERF_SAMPLE_TRANSACTION) 1571 size += sizeof(data->txn); 1572 1573 event->header_size = size; 1574 } 1575 1576 /* 1577 * Called at perf_event creation and when events are attached/detached from a 1578 * group. 1579 */ 1580 static void perf_event__header_size(struct perf_event *event) 1581 { 1582 __perf_event_read_size(event, 1583 event->group_leader->nr_siblings); 1584 __perf_event_header_size(event, event->attr.sample_type); 1585 } 1586 1587 static void perf_event__id_header_size(struct perf_event *event) 1588 { 1589 struct perf_sample_data *data; 1590 u64 sample_type = event->attr.sample_type; 1591 u16 size = 0; 1592 1593 if (sample_type & PERF_SAMPLE_TID) 1594 size += sizeof(data->tid_entry); 1595 1596 if (sample_type & PERF_SAMPLE_TIME) 1597 size += sizeof(data->time); 1598 1599 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1600 size += sizeof(data->id); 1601 1602 if (sample_type & PERF_SAMPLE_ID) 1603 size += sizeof(data->id); 1604 1605 if (sample_type & PERF_SAMPLE_STREAM_ID) 1606 size += sizeof(data->stream_id); 1607 1608 if (sample_type & PERF_SAMPLE_CPU) 1609 size += sizeof(data->cpu_entry); 1610 1611 event->id_header_size = size; 1612 } 1613 1614 static bool perf_event_validate_size(struct perf_event *event) 1615 { 1616 /* 1617 * The values computed here will be over-written when we actually 1618 * attach the event. 1619 */ 1620 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1621 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1622 perf_event__id_header_size(event); 1623 1624 /* 1625 * Sum the lot; should not exceed the 64k limit we have on records. 1626 * Conservative limit to allow for callchains and other variable fields. 1627 */ 1628 if (event->read_size + event->header_size + 1629 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1630 return false; 1631 1632 return true; 1633 } 1634 1635 static void perf_group_attach(struct perf_event *event) 1636 { 1637 struct perf_event *group_leader = event->group_leader, *pos; 1638 1639 lockdep_assert_held(&event->ctx->lock); 1640 1641 /* 1642 * We can have double attach due to group movement in perf_event_open. 1643 */ 1644 if (event->attach_state & PERF_ATTACH_GROUP) 1645 return; 1646 1647 event->attach_state |= PERF_ATTACH_GROUP; 1648 1649 if (group_leader == event) 1650 return; 1651 1652 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1653 1654 group_leader->group_caps &= event->event_caps; 1655 1656 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1657 group_leader->nr_siblings++; 1658 1659 perf_event__header_size(group_leader); 1660 1661 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1662 perf_event__header_size(pos); 1663 } 1664 1665 /* 1666 * Remove a event from the lists for its context. 1667 * Must be called with ctx->mutex and ctx->lock held. 1668 */ 1669 static void 1670 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1671 { 1672 WARN_ON_ONCE(event->ctx != ctx); 1673 lockdep_assert_held(&ctx->lock); 1674 1675 /* 1676 * We can have double detach due to exit/hot-unplug + close. 1677 */ 1678 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1679 return; 1680 1681 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1682 1683 list_update_cgroup_event(event, ctx, false); 1684 1685 ctx->nr_events--; 1686 if (event->attr.inherit_stat) 1687 ctx->nr_stat--; 1688 1689 list_del_rcu(&event->event_entry); 1690 1691 if (event->group_leader == event) 1692 list_del_init(&event->group_entry); 1693 1694 update_group_times(event); 1695 1696 /* 1697 * If event was in error state, then keep it 1698 * that way, otherwise bogus counts will be 1699 * returned on read(). The only way to get out 1700 * of error state is by explicit re-enabling 1701 * of the event 1702 */ 1703 if (event->state > PERF_EVENT_STATE_OFF) 1704 event->state = PERF_EVENT_STATE_OFF; 1705 1706 ctx->generation++; 1707 } 1708 1709 static void perf_group_detach(struct perf_event *event) 1710 { 1711 struct perf_event *sibling, *tmp; 1712 struct list_head *list = NULL; 1713 1714 lockdep_assert_held(&event->ctx->lock); 1715 1716 /* 1717 * We can have double detach due to exit/hot-unplug + close. 1718 */ 1719 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1720 return; 1721 1722 event->attach_state &= ~PERF_ATTACH_GROUP; 1723 1724 /* 1725 * If this is a sibling, remove it from its group. 1726 */ 1727 if (event->group_leader != event) { 1728 list_del_init(&event->group_entry); 1729 event->group_leader->nr_siblings--; 1730 goto out; 1731 } 1732 1733 if (!list_empty(&event->group_entry)) 1734 list = &event->group_entry; 1735 1736 /* 1737 * If this was a group event with sibling events then 1738 * upgrade the siblings to singleton events by adding them 1739 * to whatever list we are on. 1740 */ 1741 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1742 if (list) 1743 list_move_tail(&sibling->group_entry, list); 1744 sibling->group_leader = sibling; 1745 1746 /* Inherit group flags from the previous leader */ 1747 sibling->group_caps = event->group_caps; 1748 1749 WARN_ON_ONCE(sibling->ctx != event->ctx); 1750 } 1751 1752 out: 1753 perf_event__header_size(event->group_leader); 1754 1755 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1756 perf_event__header_size(tmp); 1757 } 1758 1759 static bool is_orphaned_event(struct perf_event *event) 1760 { 1761 return event->state == PERF_EVENT_STATE_DEAD; 1762 } 1763 1764 static inline int __pmu_filter_match(struct perf_event *event) 1765 { 1766 struct pmu *pmu = event->pmu; 1767 return pmu->filter_match ? pmu->filter_match(event) : 1; 1768 } 1769 1770 /* 1771 * Check whether we should attempt to schedule an event group based on 1772 * PMU-specific filtering. An event group can consist of HW and SW events, 1773 * potentially with a SW leader, so we must check all the filters, to 1774 * determine whether a group is schedulable: 1775 */ 1776 static inline int pmu_filter_match(struct perf_event *event) 1777 { 1778 struct perf_event *child; 1779 1780 if (!__pmu_filter_match(event)) 1781 return 0; 1782 1783 list_for_each_entry(child, &event->sibling_list, group_entry) { 1784 if (!__pmu_filter_match(child)) 1785 return 0; 1786 } 1787 1788 return 1; 1789 } 1790 1791 static inline int 1792 event_filter_match(struct perf_event *event) 1793 { 1794 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1795 perf_cgroup_match(event) && pmu_filter_match(event); 1796 } 1797 1798 static void 1799 event_sched_out(struct perf_event *event, 1800 struct perf_cpu_context *cpuctx, 1801 struct perf_event_context *ctx) 1802 { 1803 u64 tstamp = perf_event_time(event); 1804 u64 delta; 1805 1806 WARN_ON_ONCE(event->ctx != ctx); 1807 lockdep_assert_held(&ctx->lock); 1808 1809 /* 1810 * An event which could not be activated because of 1811 * filter mismatch still needs to have its timings 1812 * maintained, otherwise bogus information is return 1813 * via read() for time_enabled, time_running: 1814 */ 1815 if (event->state == PERF_EVENT_STATE_INACTIVE && 1816 !event_filter_match(event)) { 1817 delta = tstamp - event->tstamp_stopped; 1818 event->tstamp_running += delta; 1819 event->tstamp_stopped = tstamp; 1820 } 1821 1822 if (event->state != PERF_EVENT_STATE_ACTIVE) 1823 return; 1824 1825 perf_pmu_disable(event->pmu); 1826 1827 event->tstamp_stopped = tstamp; 1828 event->pmu->del(event, 0); 1829 event->oncpu = -1; 1830 event->state = PERF_EVENT_STATE_INACTIVE; 1831 if (event->pending_disable) { 1832 event->pending_disable = 0; 1833 event->state = PERF_EVENT_STATE_OFF; 1834 } 1835 1836 if (!is_software_event(event)) 1837 cpuctx->active_oncpu--; 1838 if (!--ctx->nr_active) 1839 perf_event_ctx_deactivate(ctx); 1840 if (event->attr.freq && event->attr.sample_freq) 1841 ctx->nr_freq--; 1842 if (event->attr.exclusive || !cpuctx->active_oncpu) 1843 cpuctx->exclusive = 0; 1844 1845 perf_pmu_enable(event->pmu); 1846 } 1847 1848 static void 1849 group_sched_out(struct perf_event *group_event, 1850 struct perf_cpu_context *cpuctx, 1851 struct perf_event_context *ctx) 1852 { 1853 struct perf_event *event; 1854 int state = group_event->state; 1855 1856 perf_pmu_disable(ctx->pmu); 1857 1858 event_sched_out(group_event, cpuctx, ctx); 1859 1860 /* 1861 * Schedule out siblings (if any): 1862 */ 1863 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1864 event_sched_out(event, cpuctx, ctx); 1865 1866 perf_pmu_enable(ctx->pmu); 1867 1868 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1869 cpuctx->exclusive = 0; 1870 } 1871 1872 #define DETACH_GROUP 0x01UL 1873 1874 /* 1875 * Cross CPU call to remove a performance event 1876 * 1877 * We disable the event on the hardware level first. After that we 1878 * remove it from the context list. 1879 */ 1880 static void 1881 __perf_remove_from_context(struct perf_event *event, 1882 struct perf_cpu_context *cpuctx, 1883 struct perf_event_context *ctx, 1884 void *info) 1885 { 1886 unsigned long flags = (unsigned long)info; 1887 1888 event_sched_out(event, cpuctx, ctx); 1889 if (flags & DETACH_GROUP) 1890 perf_group_detach(event); 1891 list_del_event(event, ctx); 1892 1893 if (!ctx->nr_events && ctx->is_active) { 1894 ctx->is_active = 0; 1895 if (ctx->task) { 1896 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1897 cpuctx->task_ctx = NULL; 1898 } 1899 } 1900 } 1901 1902 /* 1903 * Remove the event from a task's (or a CPU's) list of events. 1904 * 1905 * If event->ctx is a cloned context, callers must make sure that 1906 * every task struct that event->ctx->task could possibly point to 1907 * remains valid. This is OK when called from perf_release since 1908 * that only calls us on the top-level context, which can't be a clone. 1909 * When called from perf_event_exit_task, it's OK because the 1910 * context has been detached from its task. 1911 */ 1912 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1913 { 1914 struct perf_event_context *ctx = event->ctx; 1915 1916 lockdep_assert_held(&ctx->mutex); 1917 1918 event_function_call(event, __perf_remove_from_context, (void *)flags); 1919 1920 /* 1921 * The above event_function_call() can NO-OP when it hits 1922 * TASK_TOMBSTONE. In that case we must already have been detached 1923 * from the context (by perf_event_exit_event()) but the grouping 1924 * might still be in-tact. 1925 */ 1926 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1927 if ((flags & DETACH_GROUP) && 1928 (event->attach_state & PERF_ATTACH_GROUP)) { 1929 /* 1930 * Since in that case we cannot possibly be scheduled, simply 1931 * detach now. 1932 */ 1933 raw_spin_lock_irq(&ctx->lock); 1934 perf_group_detach(event); 1935 raw_spin_unlock_irq(&ctx->lock); 1936 } 1937 } 1938 1939 /* 1940 * Cross CPU call to disable a performance event 1941 */ 1942 static void __perf_event_disable(struct perf_event *event, 1943 struct perf_cpu_context *cpuctx, 1944 struct perf_event_context *ctx, 1945 void *info) 1946 { 1947 if (event->state < PERF_EVENT_STATE_INACTIVE) 1948 return; 1949 1950 update_context_time(ctx); 1951 update_cgrp_time_from_event(event); 1952 update_group_times(event); 1953 if (event == event->group_leader) 1954 group_sched_out(event, cpuctx, ctx); 1955 else 1956 event_sched_out(event, cpuctx, ctx); 1957 event->state = PERF_EVENT_STATE_OFF; 1958 } 1959 1960 /* 1961 * Disable a event. 1962 * 1963 * If event->ctx is a cloned context, callers must make sure that 1964 * every task struct that event->ctx->task could possibly point to 1965 * remains valid. This condition is satisifed when called through 1966 * perf_event_for_each_child or perf_event_for_each because they 1967 * hold the top-level event's child_mutex, so any descendant that 1968 * goes to exit will block in perf_event_exit_event(). 1969 * 1970 * When called from perf_pending_event it's OK because event->ctx 1971 * is the current context on this CPU and preemption is disabled, 1972 * hence we can't get into perf_event_task_sched_out for this context. 1973 */ 1974 static void _perf_event_disable(struct perf_event *event) 1975 { 1976 struct perf_event_context *ctx = event->ctx; 1977 1978 raw_spin_lock_irq(&ctx->lock); 1979 if (event->state <= PERF_EVENT_STATE_OFF) { 1980 raw_spin_unlock_irq(&ctx->lock); 1981 return; 1982 } 1983 raw_spin_unlock_irq(&ctx->lock); 1984 1985 event_function_call(event, __perf_event_disable, NULL); 1986 } 1987 1988 void perf_event_disable_local(struct perf_event *event) 1989 { 1990 event_function_local(event, __perf_event_disable, NULL); 1991 } 1992 1993 /* 1994 * Strictly speaking kernel users cannot create groups and therefore this 1995 * interface does not need the perf_event_ctx_lock() magic. 1996 */ 1997 void perf_event_disable(struct perf_event *event) 1998 { 1999 struct perf_event_context *ctx; 2000 2001 ctx = perf_event_ctx_lock(event); 2002 _perf_event_disable(event); 2003 perf_event_ctx_unlock(event, ctx); 2004 } 2005 EXPORT_SYMBOL_GPL(perf_event_disable); 2006 2007 void perf_event_disable_inatomic(struct perf_event *event) 2008 { 2009 event->pending_disable = 1; 2010 irq_work_queue(&event->pending); 2011 } 2012 2013 static void perf_set_shadow_time(struct perf_event *event, 2014 struct perf_event_context *ctx, 2015 u64 tstamp) 2016 { 2017 /* 2018 * use the correct time source for the time snapshot 2019 * 2020 * We could get by without this by leveraging the 2021 * fact that to get to this function, the caller 2022 * has most likely already called update_context_time() 2023 * and update_cgrp_time_xx() and thus both timestamp 2024 * are identical (or very close). Given that tstamp is, 2025 * already adjusted for cgroup, we could say that: 2026 * tstamp - ctx->timestamp 2027 * is equivalent to 2028 * tstamp - cgrp->timestamp. 2029 * 2030 * Then, in perf_output_read(), the calculation would 2031 * work with no changes because: 2032 * - event is guaranteed scheduled in 2033 * - no scheduled out in between 2034 * - thus the timestamp would be the same 2035 * 2036 * But this is a bit hairy. 2037 * 2038 * So instead, we have an explicit cgroup call to remain 2039 * within the time time source all along. We believe it 2040 * is cleaner and simpler to understand. 2041 */ 2042 if (is_cgroup_event(event)) 2043 perf_cgroup_set_shadow_time(event, tstamp); 2044 else 2045 event->shadow_ctx_time = tstamp - ctx->timestamp; 2046 } 2047 2048 #define MAX_INTERRUPTS (~0ULL) 2049 2050 static void perf_log_throttle(struct perf_event *event, int enable); 2051 static void perf_log_itrace_start(struct perf_event *event); 2052 2053 static int 2054 event_sched_in(struct perf_event *event, 2055 struct perf_cpu_context *cpuctx, 2056 struct perf_event_context *ctx) 2057 { 2058 u64 tstamp = perf_event_time(event); 2059 int ret = 0; 2060 2061 lockdep_assert_held(&ctx->lock); 2062 2063 if (event->state <= PERF_EVENT_STATE_OFF) 2064 return 0; 2065 2066 WRITE_ONCE(event->oncpu, smp_processor_id()); 2067 /* 2068 * Order event::oncpu write to happen before the ACTIVE state 2069 * is visible. 2070 */ 2071 smp_wmb(); 2072 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2073 2074 /* 2075 * Unthrottle events, since we scheduled we might have missed several 2076 * ticks already, also for a heavily scheduling task there is little 2077 * guarantee it'll get a tick in a timely manner. 2078 */ 2079 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2080 perf_log_throttle(event, 1); 2081 event->hw.interrupts = 0; 2082 } 2083 2084 /* 2085 * The new state must be visible before we turn it on in the hardware: 2086 */ 2087 smp_wmb(); 2088 2089 perf_pmu_disable(event->pmu); 2090 2091 perf_set_shadow_time(event, ctx, tstamp); 2092 2093 perf_log_itrace_start(event); 2094 2095 if (event->pmu->add(event, PERF_EF_START)) { 2096 event->state = PERF_EVENT_STATE_INACTIVE; 2097 event->oncpu = -1; 2098 ret = -EAGAIN; 2099 goto out; 2100 } 2101 2102 event->tstamp_running += tstamp - event->tstamp_stopped; 2103 2104 if (!is_software_event(event)) 2105 cpuctx->active_oncpu++; 2106 if (!ctx->nr_active++) 2107 perf_event_ctx_activate(ctx); 2108 if (event->attr.freq && event->attr.sample_freq) 2109 ctx->nr_freq++; 2110 2111 if (event->attr.exclusive) 2112 cpuctx->exclusive = 1; 2113 2114 out: 2115 perf_pmu_enable(event->pmu); 2116 2117 return ret; 2118 } 2119 2120 static int 2121 group_sched_in(struct perf_event *group_event, 2122 struct perf_cpu_context *cpuctx, 2123 struct perf_event_context *ctx) 2124 { 2125 struct perf_event *event, *partial_group = NULL; 2126 struct pmu *pmu = ctx->pmu; 2127 u64 now = ctx->time; 2128 bool simulate = false; 2129 2130 if (group_event->state == PERF_EVENT_STATE_OFF) 2131 return 0; 2132 2133 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2134 2135 if (event_sched_in(group_event, cpuctx, ctx)) { 2136 pmu->cancel_txn(pmu); 2137 perf_mux_hrtimer_restart(cpuctx); 2138 return -EAGAIN; 2139 } 2140 2141 /* 2142 * Schedule in siblings as one group (if any): 2143 */ 2144 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2145 if (event_sched_in(event, cpuctx, ctx)) { 2146 partial_group = event; 2147 goto group_error; 2148 } 2149 } 2150 2151 if (!pmu->commit_txn(pmu)) 2152 return 0; 2153 2154 group_error: 2155 /* 2156 * Groups can be scheduled in as one unit only, so undo any 2157 * partial group before returning: 2158 * The events up to the failed event are scheduled out normally, 2159 * tstamp_stopped will be updated. 2160 * 2161 * The failed events and the remaining siblings need to have 2162 * their timings updated as if they had gone thru event_sched_in() 2163 * and event_sched_out(). This is required to get consistent timings 2164 * across the group. This also takes care of the case where the group 2165 * could never be scheduled by ensuring tstamp_stopped is set to mark 2166 * the time the event was actually stopped, such that time delta 2167 * calculation in update_event_times() is correct. 2168 */ 2169 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2170 if (event == partial_group) 2171 simulate = true; 2172 2173 if (simulate) { 2174 event->tstamp_running += now - event->tstamp_stopped; 2175 event->tstamp_stopped = now; 2176 } else { 2177 event_sched_out(event, cpuctx, ctx); 2178 } 2179 } 2180 event_sched_out(group_event, cpuctx, ctx); 2181 2182 pmu->cancel_txn(pmu); 2183 2184 perf_mux_hrtimer_restart(cpuctx); 2185 2186 return -EAGAIN; 2187 } 2188 2189 /* 2190 * Work out whether we can put this event group on the CPU now. 2191 */ 2192 static int group_can_go_on(struct perf_event *event, 2193 struct perf_cpu_context *cpuctx, 2194 int can_add_hw) 2195 { 2196 /* 2197 * Groups consisting entirely of software events can always go on. 2198 */ 2199 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2200 return 1; 2201 /* 2202 * If an exclusive group is already on, no other hardware 2203 * events can go on. 2204 */ 2205 if (cpuctx->exclusive) 2206 return 0; 2207 /* 2208 * If this group is exclusive and there are already 2209 * events on the CPU, it can't go on. 2210 */ 2211 if (event->attr.exclusive && cpuctx->active_oncpu) 2212 return 0; 2213 /* 2214 * Otherwise, try to add it if all previous groups were able 2215 * to go on. 2216 */ 2217 return can_add_hw; 2218 } 2219 2220 /* 2221 * Complement to update_event_times(). This computes the tstamp_* values to 2222 * continue 'enabled' state from @now, and effectively discards the time 2223 * between the prior tstamp_stopped and now (as we were in the OFF state, or 2224 * just switched (context) time base). 2225 * 2226 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and 2227 * cannot have been scheduled in yet. And going into INACTIVE state means 2228 * '@event->tstamp_stopped = @now'. 2229 * 2230 * Thus given the rules of update_event_times(): 2231 * 2232 * total_time_enabled = tstamp_stopped - tstamp_enabled 2233 * total_time_running = tstamp_stopped - tstamp_running 2234 * 2235 * We can insert 'tstamp_stopped == now' and reverse them to compute new 2236 * tstamp_* values. 2237 */ 2238 static void __perf_event_enable_time(struct perf_event *event, u64 now) 2239 { 2240 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE); 2241 2242 event->tstamp_stopped = now; 2243 event->tstamp_enabled = now - event->total_time_enabled; 2244 event->tstamp_running = now - event->total_time_running; 2245 } 2246 2247 static void add_event_to_ctx(struct perf_event *event, 2248 struct perf_event_context *ctx) 2249 { 2250 u64 tstamp = perf_event_time(event); 2251 2252 list_add_event(event, ctx); 2253 perf_group_attach(event); 2254 /* 2255 * We can be called with event->state == STATE_OFF when we create with 2256 * .disabled = 1. In that case the IOC_ENABLE will call this function. 2257 */ 2258 if (event->state == PERF_EVENT_STATE_INACTIVE) 2259 __perf_event_enable_time(event, tstamp); 2260 } 2261 2262 static void ctx_sched_out(struct perf_event_context *ctx, 2263 struct perf_cpu_context *cpuctx, 2264 enum event_type_t event_type); 2265 static void 2266 ctx_sched_in(struct perf_event_context *ctx, 2267 struct perf_cpu_context *cpuctx, 2268 enum event_type_t event_type, 2269 struct task_struct *task); 2270 2271 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2272 struct perf_event_context *ctx, 2273 enum event_type_t event_type) 2274 { 2275 if (!cpuctx->task_ctx) 2276 return; 2277 2278 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2279 return; 2280 2281 ctx_sched_out(ctx, cpuctx, event_type); 2282 } 2283 2284 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2285 struct perf_event_context *ctx, 2286 struct task_struct *task) 2287 { 2288 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2289 if (ctx) 2290 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2291 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2292 if (ctx) 2293 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2294 } 2295 2296 /* 2297 * We want to maintain the following priority of scheduling: 2298 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2299 * - task pinned (EVENT_PINNED) 2300 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2301 * - task flexible (EVENT_FLEXIBLE). 2302 * 2303 * In order to avoid unscheduling and scheduling back in everything every 2304 * time an event is added, only do it for the groups of equal priority and 2305 * below. 2306 * 2307 * This can be called after a batch operation on task events, in which case 2308 * event_type is a bit mask of the types of events involved. For CPU events, 2309 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2310 */ 2311 static void ctx_resched(struct perf_cpu_context *cpuctx, 2312 struct perf_event_context *task_ctx, 2313 enum event_type_t event_type) 2314 { 2315 enum event_type_t ctx_event_type = event_type & EVENT_ALL; 2316 bool cpu_event = !!(event_type & EVENT_CPU); 2317 2318 /* 2319 * If pinned groups are involved, flexible groups also need to be 2320 * scheduled out. 2321 */ 2322 if (event_type & EVENT_PINNED) 2323 event_type |= EVENT_FLEXIBLE; 2324 2325 perf_pmu_disable(cpuctx->ctx.pmu); 2326 if (task_ctx) 2327 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2328 2329 /* 2330 * Decide which cpu ctx groups to schedule out based on the types 2331 * of events that caused rescheduling: 2332 * - EVENT_CPU: schedule out corresponding groups; 2333 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2334 * - otherwise, do nothing more. 2335 */ 2336 if (cpu_event) 2337 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2338 else if (ctx_event_type & EVENT_PINNED) 2339 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2340 2341 perf_event_sched_in(cpuctx, task_ctx, current); 2342 perf_pmu_enable(cpuctx->ctx.pmu); 2343 } 2344 2345 /* 2346 * Cross CPU call to install and enable a performance event 2347 * 2348 * Very similar to remote_function() + event_function() but cannot assume that 2349 * things like ctx->is_active and cpuctx->task_ctx are set. 2350 */ 2351 static int __perf_install_in_context(void *info) 2352 { 2353 struct perf_event *event = info; 2354 struct perf_event_context *ctx = event->ctx; 2355 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2356 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2357 bool reprogram = true; 2358 int ret = 0; 2359 2360 raw_spin_lock(&cpuctx->ctx.lock); 2361 if (ctx->task) { 2362 raw_spin_lock(&ctx->lock); 2363 task_ctx = ctx; 2364 2365 reprogram = (ctx->task == current); 2366 2367 /* 2368 * If the task is running, it must be running on this CPU, 2369 * otherwise we cannot reprogram things. 2370 * 2371 * If its not running, we don't care, ctx->lock will 2372 * serialize against it becoming runnable. 2373 */ 2374 if (task_curr(ctx->task) && !reprogram) { 2375 ret = -ESRCH; 2376 goto unlock; 2377 } 2378 2379 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2380 } else if (task_ctx) { 2381 raw_spin_lock(&task_ctx->lock); 2382 } 2383 2384 if (reprogram) { 2385 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2386 add_event_to_ctx(event, ctx); 2387 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2388 } else { 2389 add_event_to_ctx(event, ctx); 2390 } 2391 2392 unlock: 2393 perf_ctx_unlock(cpuctx, task_ctx); 2394 2395 return ret; 2396 } 2397 2398 /* 2399 * Attach a performance event to a context. 2400 * 2401 * Very similar to event_function_call, see comment there. 2402 */ 2403 static void 2404 perf_install_in_context(struct perf_event_context *ctx, 2405 struct perf_event *event, 2406 int cpu) 2407 { 2408 struct task_struct *task = READ_ONCE(ctx->task); 2409 2410 lockdep_assert_held(&ctx->mutex); 2411 2412 if (event->cpu != -1) 2413 event->cpu = cpu; 2414 2415 /* 2416 * Ensures that if we can observe event->ctx, both the event and ctx 2417 * will be 'complete'. See perf_iterate_sb_cpu(). 2418 */ 2419 smp_store_release(&event->ctx, ctx); 2420 2421 if (!task) { 2422 cpu_function_call(cpu, __perf_install_in_context, event); 2423 return; 2424 } 2425 2426 /* 2427 * Should not happen, we validate the ctx is still alive before calling. 2428 */ 2429 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2430 return; 2431 2432 /* 2433 * Installing events is tricky because we cannot rely on ctx->is_active 2434 * to be set in case this is the nr_events 0 -> 1 transition. 2435 * 2436 * Instead we use task_curr(), which tells us if the task is running. 2437 * However, since we use task_curr() outside of rq::lock, we can race 2438 * against the actual state. This means the result can be wrong. 2439 * 2440 * If we get a false positive, we retry, this is harmless. 2441 * 2442 * If we get a false negative, things are complicated. If we are after 2443 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2444 * value must be correct. If we're before, it doesn't matter since 2445 * perf_event_context_sched_in() will program the counter. 2446 * 2447 * However, this hinges on the remote context switch having observed 2448 * our task->perf_event_ctxp[] store, such that it will in fact take 2449 * ctx::lock in perf_event_context_sched_in(). 2450 * 2451 * We do this by task_function_call(), if the IPI fails to hit the task 2452 * we know any future context switch of task must see the 2453 * perf_event_ctpx[] store. 2454 */ 2455 2456 /* 2457 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2458 * task_cpu() load, such that if the IPI then does not find the task 2459 * running, a future context switch of that task must observe the 2460 * store. 2461 */ 2462 smp_mb(); 2463 again: 2464 if (!task_function_call(task, __perf_install_in_context, event)) 2465 return; 2466 2467 raw_spin_lock_irq(&ctx->lock); 2468 task = ctx->task; 2469 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2470 /* 2471 * Cannot happen because we already checked above (which also 2472 * cannot happen), and we hold ctx->mutex, which serializes us 2473 * against perf_event_exit_task_context(). 2474 */ 2475 raw_spin_unlock_irq(&ctx->lock); 2476 return; 2477 } 2478 /* 2479 * If the task is not running, ctx->lock will avoid it becoming so, 2480 * thus we can safely install the event. 2481 */ 2482 if (task_curr(task)) { 2483 raw_spin_unlock_irq(&ctx->lock); 2484 goto again; 2485 } 2486 add_event_to_ctx(event, ctx); 2487 raw_spin_unlock_irq(&ctx->lock); 2488 } 2489 2490 /* 2491 * Put a event into inactive state and update time fields. 2492 * Enabling the leader of a group effectively enables all 2493 * the group members that aren't explicitly disabled, so we 2494 * have to update their ->tstamp_enabled also. 2495 * Note: this works for group members as well as group leaders 2496 * since the non-leader members' sibling_lists will be empty. 2497 */ 2498 static void __perf_event_mark_enabled(struct perf_event *event) 2499 { 2500 struct perf_event *sub; 2501 u64 tstamp = perf_event_time(event); 2502 2503 event->state = PERF_EVENT_STATE_INACTIVE; 2504 __perf_event_enable_time(event, tstamp); 2505 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2506 /* XXX should not be > INACTIVE if event isn't */ 2507 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2508 __perf_event_enable_time(sub, tstamp); 2509 } 2510 } 2511 2512 /* 2513 * Cross CPU call to enable a performance event 2514 */ 2515 static void __perf_event_enable(struct perf_event *event, 2516 struct perf_cpu_context *cpuctx, 2517 struct perf_event_context *ctx, 2518 void *info) 2519 { 2520 struct perf_event *leader = event->group_leader; 2521 struct perf_event_context *task_ctx; 2522 2523 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2524 event->state <= PERF_EVENT_STATE_ERROR) 2525 return; 2526 2527 if (ctx->is_active) 2528 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2529 2530 __perf_event_mark_enabled(event); 2531 2532 if (!ctx->is_active) 2533 return; 2534 2535 if (!event_filter_match(event)) { 2536 if (is_cgroup_event(event)) 2537 perf_cgroup_defer_enabled(event); 2538 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2539 return; 2540 } 2541 2542 /* 2543 * If the event is in a group and isn't the group leader, 2544 * then don't put it on unless the group is on. 2545 */ 2546 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2547 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2548 return; 2549 } 2550 2551 task_ctx = cpuctx->task_ctx; 2552 if (ctx->task) 2553 WARN_ON_ONCE(task_ctx != ctx); 2554 2555 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2556 } 2557 2558 /* 2559 * Enable a event. 2560 * 2561 * If event->ctx is a cloned context, callers must make sure that 2562 * every task struct that event->ctx->task could possibly point to 2563 * remains valid. This condition is satisfied when called through 2564 * perf_event_for_each_child or perf_event_for_each as described 2565 * for perf_event_disable. 2566 */ 2567 static void _perf_event_enable(struct perf_event *event) 2568 { 2569 struct perf_event_context *ctx = event->ctx; 2570 2571 raw_spin_lock_irq(&ctx->lock); 2572 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2573 event->state < PERF_EVENT_STATE_ERROR) { 2574 raw_spin_unlock_irq(&ctx->lock); 2575 return; 2576 } 2577 2578 /* 2579 * If the event is in error state, clear that first. 2580 * 2581 * That way, if we see the event in error state below, we know that it 2582 * has gone back into error state, as distinct from the task having 2583 * been scheduled away before the cross-call arrived. 2584 */ 2585 if (event->state == PERF_EVENT_STATE_ERROR) 2586 event->state = PERF_EVENT_STATE_OFF; 2587 raw_spin_unlock_irq(&ctx->lock); 2588 2589 event_function_call(event, __perf_event_enable, NULL); 2590 } 2591 2592 /* 2593 * See perf_event_disable(); 2594 */ 2595 void perf_event_enable(struct perf_event *event) 2596 { 2597 struct perf_event_context *ctx; 2598 2599 ctx = perf_event_ctx_lock(event); 2600 _perf_event_enable(event); 2601 perf_event_ctx_unlock(event, ctx); 2602 } 2603 EXPORT_SYMBOL_GPL(perf_event_enable); 2604 2605 struct stop_event_data { 2606 struct perf_event *event; 2607 unsigned int restart; 2608 }; 2609 2610 static int __perf_event_stop(void *info) 2611 { 2612 struct stop_event_data *sd = info; 2613 struct perf_event *event = sd->event; 2614 2615 /* if it's already INACTIVE, do nothing */ 2616 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2617 return 0; 2618 2619 /* matches smp_wmb() in event_sched_in() */ 2620 smp_rmb(); 2621 2622 /* 2623 * There is a window with interrupts enabled before we get here, 2624 * so we need to check again lest we try to stop another CPU's event. 2625 */ 2626 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2627 return -EAGAIN; 2628 2629 event->pmu->stop(event, PERF_EF_UPDATE); 2630 2631 /* 2632 * May race with the actual stop (through perf_pmu_output_stop()), 2633 * but it is only used for events with AUX ring buffer, and such 2634 * events will refuse to restart because of rb::aux_mmap_count==0, 2635 * see comments in perf_aux_output_begin(). 2636 * 2637 * Since this is happening on a event-local CPU, no trace is lost 2638 * while restarting. 2639 */ 2640 if (sd->restart) 2641 event->pmu->start(event, 0); 2642 2643 return 0; 2644 } 2645 2646 static int perf_event_stop(struct perf_event *event, int restart) 2647 { 2648 struct stop_event_data sd = { 2649 .event = event, 2650 .restart = restart, 2651 }; 2652 int ret = 0; 2653 2654 do { 2655 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2656 return 0; 2657 2658 /* matches smp_wmb() in event_sched_in() */ 2659 smp_rmb(); 2660 2661 /* 2662 * We only want to restart ACTIVE events, so if the event goes 2663 * inactive here (event->oncpu==-1), there's nothing more to do; 2664 * fall through with ret==-ENXIO. 2665 */ 2666 ret = cpu_function_call(READ_ONCE(event->oncpu), 2667 __perf_event_stop, &sd); 2668 } while (ret == -EAGAIN); 2669 2670 return ret; 2671 } 2672 2673 /* 2674 * In order to contain the amount of racy and tricky in the address filter 2675 * configuration management, it is a two part process: 2676 * 2677 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2678 * we update the addresses of corresponding vmas in 2679 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2680 * (p2) when an event is scheduled in (pmu::add), it calls 2681 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2682 * if the generation has changed since the previous call. 2683 * 2684 * If (p1) happens while the event is active, we restart it to force (p2). 2685 * 2686 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2687 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2688 * ioctl; 2689 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2690 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2691 * for reading; 2692 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2693 * of exec. 2694 */ 2695 void perf_event_addr_filters_sync(struct perf_event *event) 2696 { 2697 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2698 2699 if (!has_addr_filter(event)) 2700 return; 2701 2702 raw_spin_lock(&ifh->lock); 2703 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2704 event->pmu->addr_filters_sync(event); 2705 event->hw.addr_filters_gen = event->addr_filters_gen; 2706 } 2707 raw_spin_unlock(&ifh->lock); 2708 } 2709 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2710 2711 static int _perf_event_refresh(struct perf_event *event, int refresh) 2712 { 2713 /* 2714 * not supported on inherited events 2715 */ 2716 if (event->attr.inherit || !is_sampling_event(event)) 2717 return -EINVAL; 2718 2719 atomic_add(refresh, &event->event_limit); 2720 _perf_event_enable(event); 2721 2722 return 0; 2723 } 2724 2725 /* 2726 * See perf_event_disable() 2727 */ 2728 int perf_event_refresh(struct perf_event *event, int refresh) 2729 { 2730 struct perf_event_context *ctx; 2731 int ret; 2732 2733 ctx = perf_event_ctx_lock(event); 2734 ret = _perf_event_refresh(event, refresh); 2735 perf_event_ctx_unlock(event, ctx); 2736 2737 return ret; 2738 } 2739 EXPORT_SYMBOL_GPL(perf_event_refresh); 2740 2741 static void ctx_sched_out(struct perf_event_context *ctx, 2742 struct perf_cpu_context *cpuctx, 2743 enum event_type_t event_type) 2744 { 2745 int is_active = ctx->is_active; 2746 struct perf_event *event; 2747 2748 lockdep_assert_held(&ctx->lock); 2749 2750 if (likely(!ctx->nr_events)) { 2751 /* 2752 * See __perf_remove_from_context(). 2753 */ 2754 WARN_ON_ONCE(ctx->is_active); 2755 if (ctx->task) 2756 WARN_ON_ONCE(cpuctx->task_ctx); 2757 return; 2758 } 2759 2760 ctx->is_active &= ~event_type; 2761 if (!(ctx->is_active & EVENT_ALL)) 2762 ctx->is_active = 0; 2763 2764 if (ctx->task) { 2765 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2766 if (!ctx->is_active) 2767 cpuctx->task_ctx = NULL; 2768 } 2769 2770 /* 2771 * Always update time if it was set; not only when it changes. 2772 * Otherwise we can 'forget' to update time for any but the last 2773 * context we sched out. For example: 2774 * 2775 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2776 * ctx_sched_out(.event_type = EVENT_PINNED) 2777 * 2778 * would only update time for the pinned events. 2779 */ 2780 if (is_active & EVENT_TIME) { 2781 /* update (and stop) ctx time */ 2782 update_context_time(ctx); 2783 update_cgrp_time_from_cpuctx(cpuctx); 2784 } 2785 2786 is_active ^= ctx->is_active; /* changed bits */ 2787 2788 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2789 return; 2790 2791 perf_pmu_disable(ctx->pmu); 2792 if (is_active & EVENT_PINNED) { 2793 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2794 group_sched_out(event, cpuctx, ctx); 2795 } 2796 2797 if (is_active & EVENT_FLEXIBLE) { 2798 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2799 group_sched_out(event, cpuctx, ctx); 2800 } 2801 perf_pmu_enable(ctx->pmu); 2802 } 2803 2804 /* 2805 * Test whether two contexts are equivalent, i.e. whether they have both been 2806 * cloned from the same version of the same context. 2807 * 2808 * Equivalence is measured using a generation number in the context that is 2809 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2810 * and list_del_event(). 2811 */ 2812 static int context_equiv(struct perf_event_context *ctx1, 2813 struct perf_event_context *ctx2) 2814 { 2815 lockdep_assert_held(&ctx1->lock); 2816 lockdep_assert_held(&ctx2->lock); 2817 2818 /* Pinning disables the swap optimization */ 2819 if (ctx1->pin_count || ctx2->pin_count) 2820 return 0; 2821 2822 /* If ctx1 is the parent of ctx2 */ 2823 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2824 return 1; 2825 2826 /* If ctx2 is the parent of ctx1 */ 2827 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2828 return 1; 2829 2830 /* 2831 * If ctx1 and ctx2 have the same parent; we flatten the parent 2832 * hierarchy, see perf_event_init_context(). 2833 */ 2834 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2835 ctx1->parent_gen == ctx2->parent_gen) 2836 return 1; 2837 2838 /* Unmatched */ 2839 return 0; 2840 } 2841 2842 static void __perf_event_sync_stat(struct perf_event *event, 2843 struct perf_event *next_event) 2844 { 2845 u64 value; 2846 2847 if (!event->attr.inherit_stat) 2848 return; 2849 2850 /* 2851 * Update the event value, we cannot use perf_event_read() 2852 * because we're in the middle of a context switch and have IRQs 2853 * disabled, which upsets smp_call_function_single(), however 2854 * we know the event must be on the current CPU, therefore we 2855 * don't need to use it. 2856 */ 2857 switch (event->state) { 2858 case PERF_EVENT_STATE_ACTIVE: 2859 event->pmu->read(event); 2860 /* fall-through */ 2861 2862 case PERF_EVENT_STATE_INACTIVE: 2863 update_event_times(event); 2864 break; 2865 2866 default: 2867 break; 2868 } 2869 2870 /* 2871 * In order to keep per-task stats reliable we need to flip the event 2872 * values when we flip the contexts. 2873 */ 2874 value = local64_read(&next_event->count); 2875 value = local64_xchg(&event->count, value); 2876 local64_set(&next_event->count, value); 2877 2878 swap(event->total_time_enabled, next_event->total_time_enabled); 2879 swap(event->total_time_running, next_event->total_time_running); 2880 2881 /* 2882 * Since we swizzled the values, update the user visible data too. 2883 */ 2884 perf_event_update_userpage(event); 2885 perf_event_update_userpage(next_event); 2886 } 2887 2888 static void perf_event_sync_stat(struct perf_event_context *ctx, 2889 struct perf_event_context *next_ctx) 2890 { 2891 struct perf_event *event, *next_event; 2892 2893 if (!ctx->nr_stat) 2894 return; 2895 2896 update_context_time(ctx); 2897 2898 event = list_first_entry(&ctx->event_list, 2899 struct perf_event, event_entry); 2900 2901 next_event = list_first_entry(&next_ctx->event_list, 2902 struct perf_event, event_entry); 2903 2904 while (&event->event_entry != &ctx->event_list && 2905 &next_event->event_entry != &next_ctx->event_list) { 2906 2907 __perf_event_sync_stat(event, next_event); 2908 2909 event = list_next_entry(event, event_entry); 2910 next_event = list_next_entry(next_event, event_entry); 2911 } 2912 } 2913 2914 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2915 struct task_struct *next) 2916 { 2917 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2918 struct perf_event_context *next_ctx; 2919 struct perf_event_context *parent, *next_parent; 2920 struct perf_cpu_context *cpuctx; 2921 int do_switch = 1; 2922 2923 if (likely(!ctx)) 2924 return; 2925 2926 cpuctx = __get_cpu_context(ctx); 2927 if (!cpuctx->task_ctx) 2928 return; 2929 2930 rcu_read_lock(); 2931 next_ctx = next->perf_event_ctxp[ctxn]; 2932 if (!next_ctx) 2933 goto unlock; 2934 2935 parent = rcu_dereference(ctx->parent_ctx); 2936 next_parent = rcu_dereference(next_ctx->parent_ctx); 2937 2938 /* If neither context have a parent context; they cannot be clones. */ 2939 if (!parent && !next_parent) 2940 goto unlock; 2941 2942 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2943 /* 2944 * Looks like the two contexts are clones, so we might be 2945 * able to optimize the context switch. We lock both 2946 * contexts and check that they are clones under the 2947 * lock (including re-checking that neither has been 2948 * uncloned in the meantime). It doesn't matter which 2949 * order we take the locks because no other cpu could 2950 * be trying to lock both of these tasks. 2951 */ 2952 raw_spin_lock(&ctx->lock); 2953 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2954 if (context_equiv(ctx, next_ctx)) { 2955 WRITE_ONCE(ctx->task, next); 2956 WRITE_ONCE(next_ctx->task, task); 2957 2958 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2959 2960 /* 2961 * RCU_INIT_POINTER here is safe because we've not 2962 * modified the ctx and the above modification of 2963 * ctx->task and ctx->task_ctx_data are immaterial 2964 * since those values are always verified under 2965 * ctx->lock which we're now holding. 2966 */ 2967 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2968 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2969 2970 do_switch = 0; 2971 2972 perf_event_sync_stat(ctx, next_ctx); 2973 } 2974 raw_spin_unlock(&next_ctx->lock); 2975 raw_spin_unlock(&ctx->lock); 2976 } 2977 unlock: 2978 rcu_read_unlock(); 2979 2980 if (do_switch) { 2981 raw_spin_lock(&ctx->lock); 2982 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2983 raw_spin_unlock(&ctx->lock); 2984 } 2985 } 2986 2987 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2988 2989 void perf_sched_cb_dec(struct pmu *pmu) 2990 { 2991 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2992 2993 this_cpu_dec(perf_sched_cb_usages); 2994 2995 if (!--cpuctx->sched_cb_usage) 2996 list_del(&cpuctx->sched_cb_entry); 2997 } 2998 2999 3000 void perf_sched_cb_inc(struct pmu *pmu) 3001 { 3002 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3003 3004 if (!cpuctx->sched_cb_usage++) 3005 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3006 3007 this_cpu_inc(perf_sched_cb_usages); 3008 } 3009 3010 /* 3011 * This function provides the context switch callback to the lower code 3012 * layer. It is invoked ONLY when the context switch callback is enabled. 3013 * 3014 * This callback is relevant even to per-cpu events; for example multi event 3015 * PEBS requires this to provide PID/TID information. This requires we flush 3016 * all queued PEBS records before we context switch to a new task. 3017 */ 3018 static void perf_pmu_sched_task(struct task_struct *prev, 3019 struct task_struct *next, 3020 bool sched_in) 3021 { 3022 struct perf_cpu_context *cpuctx; 3023 struct pmu *pmu; 3024 3025 if (prev == next) 3026 return; 3027 3028 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3029 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3030 3031 if (WARN_ON_ONCE(!pmu->sched_task)) 3032 continue; 3033 3034 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3035 perf_pmu_disable(pmu); 3036 3037 pmu->sched_task(cpuctx->task_ctx, sched_in); 3038 3039 perf_pmu_enable(pmu); 3040 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3041 } 3042 } 3043 3044 static void perf_event_switch(struct task_struct *task, 3045 struct task_struct *next_prev, bool sched_in); 3046 3047 #define for_each_task_context_nr(ctxn) \ 3048 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3049 3050 /* 3051 * Called from scheduler to remove the events of the current task, 3052 * with interrupts disabled. 3053 * 3054 * We stop each event and update the event value in event->count. 3055 * 3056 * This does not protect us against NMI, but disable() 3057 * sets the disabled bit in the control field of event _before_ 3058 * accessing the event control register. If a NMI hits, then it will 3059 * not restart the event. 3060 */ 3061 void __perf_event_task_sched_out(struct task_struct *task, 3062 struct task_struct *next) 3063 { 3064 int ctxn; 3065 3066 if (__this_cpu_read(perf_sched_cb_usages)) 3067 perf_pmu_sched_task(task, next, false); 3068 3069 if (atomic_read(&nr_switch_events)) 3070 perf_event_switch(task, next, false); 3071 3072 for_each_task_context_nr(ctxn) 3073 perf_event_context_sched_out(task, ctxn, next); 3074 3075 /* 3076 * if cgroup events exist on this CPU, then we need 3077 * to check if we have to switch out PMU state. 3078 * cgroup event are system-wide mode only 3079 */ 3080 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3081 perf_cgroup_sched_out(task, next); 3082 } 3083 3084 /* 3085 * Called with IRQs disabled 3086 */ 3087 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3088 enum event_type_t event_type) 3089 { 3090 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3091 } 3092 3093 static void 3094 ctx_pinned_sched_in(struct perf_event_context *ctx, 3095 struct perf_cpu_context *cpuctx) 3096 { 3097 struct perf_event *event; 3098 3099 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3100 if (event->state <= PERF_EVENT_STATE_OFF) 3101 continue; 3102 if (!event_filter_match(event)) 3103 continue; 3104 3105 /* may need to reset tstamp_enabled */ 3106 if (is_cgroup_event(event)) 3107 perf_cgroup_mark_enabled(event, ctx); 3108 3109 if (group_can_go_on(event, cpuctx, 1)) 3110 group_sched_in(event, cpuctx, ctx); 3111 3112 /* 3113 * If this pinned group hasn't been scheduled, 3114 * put it in error state. 3115 */ 3116 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3117 update_group_times(event); 3118 event->state = PERF_EVENT_STATE_ERROR; 3119 } 3120 } 3121 } 3122 3123 static void 3124 ctx_flexible_sched_in(struct perf_event_context *ctx, 3125 struct perf_cpu_context *cpuctx) 3126 { 3127 struct perf_event *event; 3128 int can_add_hw = 1; 3129 3130 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3131 /* Ignore events in OFF or ERROR state */ 3132 if (event->state <= PERF_EVENT_STATE_OFF) 3133 continue; 3134 /* 3135 * Listen to the 'cpu' scheduling filter constraint 3136 * of events: 3137 */ 3138 if (!event_filter_match(event)) 3139 continue; 3140 3141 /* may need to reset tstamp_enabled */ 3142 if (is_cgroup_event(event)) 3143 perf_cgroup_mark_enabled(event, ctx); 3144 3145 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3146 if (group_sched_in(event, cpuctx, ctx)) 3147 can_add_hw = 0; 3148 } 3149 } 3150 } 3151 3152 static void 3153 ctx_sched_in(struct perf_event_context *ctx, 3154 struct perf_cpu_context *cpuctx, 3155 enum event_type_t event_type, 3156 struct task_struct *task) 3157 { 3158 int is_active = ctx->is_active; 3159 u64 now; 3160 3161 lockdep_assert_held(&ctx->lock); 3162 3163 if (likely(!ctx->nr_events)) 3164 return; 3165 3166 ctx->is_active |= (event_type | EVENT_TIME); 3167 if (ctx->task) { 3168 if (!is_active) 3169 cpuctx->task_ctx = ctx; 3170 else 3171 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3172 } 3173 3174 is_active ^= ctx->is_active; /* changed bits */ 3175 3176 if (is_active & EVENT_TIME) { 3177 /* start ctx time */ 3178 now = perf_clock(); 3179 ctx->timestamp = now; 3180 perf_cgroup_set_timestamp(task, ctx); 3181 } 3182 3183 /* 3184 * First go through the list and put on any pinned groups 3185 * in order to give them the best chance of going on. 3186 */ 3187 if (is_active & EVENT_PINNED) 3188 ctx_pinned_sched_in(ctx, cpuctx); 3189 3190 /* Then walk through the lower prio flexible groups */ 3191 if (is_active & EVENT_FLEXIBLE) 3192 ctx_flexible_sched_in(ctx, cpuctx); 3193 } 3194 3195 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3196 enum event_type_t event_type, 3197 struct task_struct *task) 3198 { 3199 struct perf_event_context *ctx = &cpuctx->ctx; 3200 3201 ctx_sched_in(ctx, cpuctx, event_type, task); 3202 } 3203 3204 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3205 struct task_struct *task) 3206 { 3207 struct perf_cpu_context *cpuctx; 3208 3209 cpuctx = __get_cpu_context(ctx); 3210 if (cpuctx->task_ctx == ctx) 3211 return; 3212 3213 perf_ctx_lock(cpuctx, ctx); 3214 perf_pmu_disable(ctx->pmu); 3215 /* 3216 * We want to keep the following priority order: 3217 * cpu pinned (that don't need to move), task pinned, 3218 * cpu flexible, task flexible. 3219 * 3220 * However, if task's ctx is not carrying any pinned 3221 * events, no need to flip the cpuctx's events around. 3222 */ 3223 if (!list_empty(&ctx->pinned_groups)) 3224 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3225 perf_event_sched_in(cpuctx, ctx, task); 3226 perf_pmu_enable(ctx->pmu); 3227 perf_ctx_unlock(cpuctx, ctx); 3228 } 3229 3230 /* 3231 * Called from scheduler to add the events of the current task 3232 * with interrupts disabled. 3233 * 3234 * We restore the event value and then enable it. 3235 * 3236 * This does not protect us against NMI, but enable() 3237 * sets the enabled bit in the control field of event _before_ 3238 * accessing the event control register. If a NMI hits, then it will 3239 * keep the event running. 3240 */ 3241 void __perf_event_task_sched_in(struct task_struct *prev, 3242 struct task_struct *task) 3243 { 3244 struct perf_event_context *ctx; 3245 int ctxn; 3246 3247 /* 3248 * If cgroup events exist on this CPU, then we need to check if we have 3249 * to switch in PMU state; cgroup event are system-wide mode only. 3250 * 3251 * Since cgroup events are CPU events, we must schedule these in before 3252 * we schedule in the task events. 3253 */ 3254 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3255 perf_cgroup_sched_in(prev, task); 3256 3257 for_each_task_context_nr(ctxn) { 3258 ctx = task->perf_event_ctxp[ctxn]; 3259 if (likely(!ctx)) 3260 continue; 3261 3262 perf_event_context_sched_in(ctx, task); 3263 } 3264 3265 if (atomic_read(&nr_switch_events)) 3266 perf_event_switch(task, prev, true); 3267 3268 if (__this_cpu_read(perf_sched_cb_usages)) 3269 perf_pmu_sched_task(prev, task, true); 3270 } 3271 3272 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3273 { 3274 u64 frequency = event->attr.sample_freq; 3275 u64 sec = NSEC_PER_SEC; 3276 u64 divisor, dividend; 3277 3278 int count_fls, nsec_fls, frequency_fls, sec_fls; 3279 3280 count_fls = fls64(count); 3281 nsec_fls = fls64(nsec); 3282 frequency_fls = fls64(frequency); 3283 sec_fls = 30; 3284 3285 /* 3286 * We got @count in @nsec, with a target of sample_freq HZ 3287 * the target period becomes: 3288 * 3289 * @count * 10^9 3290 * period = ------------------- 3291 * @nsec * sample_freq 3292 * 3293 */ 3294 3295 /* 3296 * Reduce accuracy by one bit such that @a and @b converge 3297 * to a similar magnitude. 3298 */ 3299 #define REDUCE_FLS(a, b) \ 3300 do { \ 3301 if (a##_fls > b##_fls) { \ 3302 a >>= 1; \ 3303 a##_fls--; \ 3304 } else { \ 3305 b >>= 1; \ 3306 b##_fls--; \ 3307 } \ 3308 } while (0) 3309 3310 /* 3311 * Reduce accuracy until either term fits in a u64, then proceed with 3312 * the other, so that finally we can do a u64/u64 division. 3313 */ 3314 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3315 REDUCE_FLS(nsec, frequency); 3316 REDUCE_FLS(sec, count); 3317 } 3318 3319 if (count_fls + sec_fls > 64) { 3320 divisor = nsec * frequency; 3321 3322 while (count_fls + sec_fls > 64) { 3323 REDUCE_FLS(count, sec); 3324 divisor >>= 1; 3325 } 3326 3327 dividend = count * sec; 3328 } else { 3329 dividend = count * sec; 3330 3331 while (nsec_fls + frequency_fls > 64) { 3332 REDUCE_FLS(nsec, frequency); 3333 dividend >>= 1; 3334 } 3335 3336 divisor = nsec * frequency; 3337 } 3338 3339 if (!divisor) 3340 return dividend; 3341 3342 return div64_u64(dividend, divisor); 3343 } 3344 3345 static DEFINE_PER_CPU(int, perf_throttled_count); 3346 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3347 3348 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3349 { 3350 struct hw_perf_event *hwc = &event->hw; 3351 s64 period, sample_period; 3352 s64 delta; 3353 3354 period = perf_calculate_period(event, nsec, count); 3355 3356 delta = (s64)(period - hwc->sample_period); 3357 delta = (delta + 7) / 8; /* low pass filter */ 3358 3359 sample_period = hwc->sample_period + delta; 3360 3361 if (!sample_period) 3362 sample_period = 1; 3363 3364 hwc->sample_period = sample_period; 3365 3366 if (local64_read(&hwc->period_left) > 8*sample_period) { 3367 if (disable) 3368 event->pmu->stop(event, PERF_EF_UPDATE); 3369 3370 local64_set(&hwc->period_left, 0); 3371 3372 if (disable) 3373 event->pmu->start(event, PERF_EF_RELOAD); 3374 } 3375 } 3376 3377 /* 3378 * combine freq adjustment with unthrottling to avoid two passes over the 3379 * events. At the same time, make sure, having freq events does not change 3380 * the rate of unthrottling as that would introduce bias. 3381 */ 3382 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3383 int needs_unthr) 3384 { 3385 struct perf_event *event; 3386 struct hw_perf_event *hwc; 3387 u64 now, period = TICK_NSEC; 3388 s64 delta; 3389 3390 /* 3391 * only need to iterate over all events iff: 3392 * - context have events in frequency mode (needs freq adjust) 3393 * - there are events to unthrottle on this cpu 3394 */ 3395 if (!(ctx->nr_freq || needs_unthr)) 3396 return; 3397 3398 raw_spin_lock(&ctx->lock); 3399 perf_pmu_disable(ctx->pmu); 3400 3401 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3402 if (event->state != PERF_EVENT_STATE_ACTIVE) 3403 continue; 3404 3405 if (!event_filter_match(event)) 3406 continue; 3407 3408 perf_pmu_disable(event->pmu); 3409 3410 hwc = &event->hw; 3411 3412 if (hwc->interrupts == MAX_INTERRUPTS) { 3413 hwc->interrupts = 0; 3414 perf_log_throttle(event, 1); 3415 event->pmu->start(event, 0); 3416 } 3417 3418 if (!event->attr.freq || !event->attr.sample_freq) 3419 goto next; 3420 3421 /* 3422 * stop the event and update event->count 3423 */ 3424 event->pmu->stop(event, PERF_EF_UPDATE); 3425 3426 now = local64_read(&event->count); 3427 delta = now - hwc->freq_count_stamp; 3428 hwc->freq_count_stamp = now; 3429 3430 /* 3431 * restart the event 3432 * reload only if value has changed 3433 * we have stopped the event so tell that 3434 * to perf_adjust_period() to avoid stopping it 3435 * twice. 3436 */ 3437 if (delta > 0) 3438 perf_adjust_period(event, period, delta, false); 3439 3440 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3441 next: 3442 perf_pmu_enable(event->pmu); 3443 } 3444 3445 perf_pmu_enable(ctx->pmu); 3446 raw_spin_unlock(&ctx->lock); 3447 } 3448 3449 /* 3450 * Round-robin a context's events: 3451 */ 3452 static void rotate_ctx(struct perf_event_context *ctx) 3453 { 3454 /* 3455 * Rotate the first entry last of non-pinned groups. Rotation might be 3456 * disabled by the inheritance code. 3457 */ 3458 if (!ctx->rotate_disable) 3459 list_rotate_left(&ctx->flexible_groups); 3460 } 3461 3462 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3463 { 3464 struct perf_event_context *ctx = NULL; 3465 int rotate = 0; 3466 3467 if (cpuctx->ctx.nr_events) { 3468 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3469 rotate = 1; 3470 } 3471 3472 ctx = cpuctx->task_ctx; 3473 if (ctx && ctx->nr_events) { 3474 if (ctx->nr_events != ctx->nr_active) 3475 rotate = 1; 3476 } 3477 3478 if (!rotate) 3479 goto done; 3480 3481 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3482 perf_pmu_disable(cpuctx->ctx.pmu); 3483 3484 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3485 if (ctx) 3486 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3487 3488 rotate_ctx(&cpuctx->ctx); 3489 if (ctx) 3490 rotate_ctx(ctx); 3491 3492 perf_event_sched_in(cpuctx, ctx, current); 3493 3494 perf_pmu_enable(cpuctx->ctx.pmu); 3495 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3496 done: 3497 3498 return rotate; 3499 } 3500 3501 void perf_event_task_tick(void) 3502 { 3503 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3504 struct perf_event_context *ctx, *tmp; 3505 int throttled; 3506 3507 WARN_ON(!irqs_disabled()); 3508 3509 __this_cpu_inc(perf_throttled_seq); 3510 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3511 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3512 3513 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3514 perf_adjust_freq_unthr_context(ctx, throttled); 3515 } 3516 3517 static int event_enable_on_exec(struct perf_event *event, 3518 struct perf_event_context *ctx) 3519 { 3520 if (!event->attr.enable_on_exec) 3521 return 0; 3522 3523 event->attr.enable_on_exec = 0; 3524 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3525 return 0; 3526 3527 __perf_event_mark_enabled(event); 3528 3529 return 1; 3530 } 3531 3532 /* 3533 * Enable all of a task's events that have been marked enable-on-exec. 3534 * This expects task == current. 3535 */ 3536 static void perf_event_enable_on_exec(int ctxn) 3537 { 3538 struct perf_event_context *ctx, *clone_ctx = NULL; 3539 enum event_type_t event_type = 0; 3540 struct perf_cpu_context *cpuctx; 3541 struct perf_event *event; 3542 unsigned long flags; 3543 int enabled = 0; 3544 3545 local_irq_save(flags); 3546 ctx = current->perf_event_ctxp[ctxn]; 3547 if (!ctx || !ctx->nr_events) 3548 goto out; 3549 3550 cpuctx = __get_cpu_context(ctx); 3551 perf_ctx_lock(cpuctx, ctx); 3552 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3553 list_for_each_entry(event, &ctx->event_list, event_entry) { 3554 enabled |= event_enable_on_exec(event, ctx); 3555 event_type |= get_event_type(event); 3556 } 3557 3558 /* 3559 * Unclone and reschedule this context if we enabled any event. 3560 */ 3561 if (enabled) { 3562 clone_ctx = unclone_ctx(ctx); 3563 ctx_resched(cpuctx, ctx, event_type); 3564 } else { 3565 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3566 } 3567 perf_ctx_unlock(cpuctx, ctx); 3568 3569 out: 3570 local_irq_restore(flags); 3571 3572 if (clone_ctx) 3573 put_ctx(clone_ctx); 3574 } 3575 3576 struct perf_read_data { 3577 struct perf_event *event; 3578 bool group; 3579 int ret; 3580 }; 3581 3582 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3583 { 3584 u16 local_pkg, event_pkg; 3585 3586 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3587 int local_cpu = smp_processor_id(); 3588 3589 event_pkg = topology_physical_package_id(event_cpu); 3590 local_pkg = topology_physical_package_id(local_cpu); 3591 3592 if (event_pkg == local_pkg) 3593 return local_cpu; 3594 } 3595 3596 return event_cpu; 3597 } 3598 3599 /* 3600 * Cross CPU call to read the hardware event 3601 */ 3602 static void __perf_event_read(void *info) 3603 { 3604 struct perf_read_data *data = info; 3605 struct perf_event *sub, *event = data->event; 3606 struct perf_event_context *ctx = event->ctx; 3607 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3608 struct pmu *pmu = event->pmu; 3609 3610 /* 3611 * If this is a task context, we need to check whether it is 3612 * the current task context of this cpu. If not it has been 3613 * scheduled out before the smp call arrived. In that case 3614 * event->count would have been updated to a recent sample 3615 * when the event was scheduled out. 3616 */ 3617 if (ctx->task && cpuctx->task_ctx != ctx) 3618 return; 3619 3620 raw_spin_lock(&ctx->lock); 3621 if (ctx->is_active) { 3622 update_context_time(ctx); 3623 update_cgrp_time_from_event(event); 3624 } 3625 3626 update_event_times(event); 3627 if (event->state != PERF_EVENT_STATE_ACTIVE) 3628 goto unlock; 3629 3630 if (!data->group) { 3631 pmu->read(event); 3632 data->ret = 0; 3633 goto unlock; 3634 } 3635 3636 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3637 3638 pmu->read(event); 3639 3640 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3641 update_event_times(sub); 3642 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3643 /* 3644 * Use sibling's PMU rather than @event's since 3645 * sibling could be on different (eg: software) PMU. 3646 */ 3647 sub->pmu->read(sub); 3648 } 3649 } 3650 3651 data->ret = pmu->commit_txn(pmu); 3652 3653 unlock: 3654 raw_spin_unlock(&ctx->lock); 3655 } 3656 3657 static inline u64 perf_event_count(struct perf_event *event) 3658 { 3659 if (event->pmu->count) 3660 return event->pmu->count(event); 3661 3662 return __perf_event_count(event); 3663 } 3664 3665 /* 3666 * NMI-safe method to read a local event, that is an event that 3667 * is: 3668 * - either for the current task, or for this CPU 3669 * - does not have inherit set, for inherited task events 3670 * will not be local and we cannot read them atomically 3671 * - must not have a pmu::count method 3672 */ 3673 int perf_event_read_local(struct perf_event *event, u64 *value) 3674 { 3675 unsigned long flags; 3676 int ret = 0; 3677 3678 /* 3679 * Disabling interrupts avoids all counter scheduling (context 3680 * switches, timer based rotation and IPIs). 3681 */ 3682 local_irq_save(flags); 3683 3684 /* 3685 * It must not be an event with inherit set, we cannot read 3686 * all child counters from atomic context. 3687 */ 3688 if (event->attr.inherit) { 3689 ret = -EOPNOTSUPP; 3690 goto out; 3691 } 3692 3693 /* 3694 * It must not have a pmu::count method, those are not 3695 * NMI safe. 3696 */ 3697 if (event->pmu->count) { 3698 ret = -EOPNOTSUPP; 3699 goto out; 3700 } 3701 3702 /* If this is a per-task event, it must be for current */ 3703 if ((event->attach_state & PERF_ATTACH_TASK) && 3704 event->hw.target != current) { 3705 ret = -EINVAL; 3706 goto out; 3707 } 3708 3709 /* If this is a per-CPU event, it must be for this CPU */ 3710 if (!(event->attach_state & PERF_ATTACH_TASK) && 3711 event->cpu != smp_processor_id()) { 3712 ret = -EINVAL; 3713 goto out; 3714 } 3715 3716 /* 3717 * If the event is currently on this CPU, its either a per-task event, 3718 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3719 * oncpu == -1). 3720 */ 3721 if (event->oncpu == smp_processor_id()) 3722 event->pmu->read(event); 3723 3724 *value = local64_read(&event->count); 3725 out: 3726 local_irq_restore(flags); 3727 3728 return ret; 3729 } 3730 3731 static int perf_event_read(struct perf_event *event, bool group) 3732 { 3733 int event_cpu, ret = 0; 3734 3735 /* 3736 * If event is enabled and currently active on a CPU, update the 3737 * value in the event structure: 3738 */ 3739 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3740 struct perf_read_data data = { 3741 .event = event, 3742 .group = group, 3743 .ret = 0, 3744 }; 3745 3746 event_cpu = READ_ONCE(event->oncpu); 3747 if ((unsigned)event_cpu >= nr_cpu_ids) 3748 return 0; 3749 3750 preempt_disable(); 3751 event_cpu = __perf_event_read_cpu(event, event_cpu); 3752 3753 /* 3754 * Purposely ignore the smp_call_function_single() return 3755 * value. 3756 * 3757 * If event_cpu isn't a valid CPU it means the event got 3758 * scheduled out and that will have updated the event count. 3759 * 3760 * Therefore, either way, we'll have an up-to-date event count 3761 * after this. 3762 */ 3763 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3764 preempt_enable(); 3765 ret = data.ret; 3766 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3767 struct perf_event_context *ctx = event->ctx; 3768 unsigned long flags; 3769 3770 raw_spin_lock_irqsave(&ctx->lock, flags); 3771 /* 3772 * may read while context is not active 3773 * (e.g., thread is blocked), in that case 3774 * we cannot update context time 3775 */ 3776 if (ctx->is_active) { 3777 update_context_time(ctx); 3778 update_cgrp_time_from_event(event); 3779 } 3780 if (group) 3781 update_group_times(event); 3782 else 3783 update_event_times(event); 3784 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3785 } 3786 3787 return ret; 3788 } 3789 3790 /* 3791 * Initialize the perf_event context in a task_struct: 3792 */ 3793 static void __perf_event_init_context(struct perf_event_context *ctx) 3794 { 3795 raw_spin_lock_init(&ctx->lock); 3796 mutex_init(&ctx->mutex); 3797 INIT_LIST_HEAD(&ctx->active_ctx_list); 3798 INIT_LIST_HEAD(&ctx->pinned_groups); 3799 INIT_LIST_HEAD(&ctx->flexible_groups); 3800 INIT_LIST_HEAD(&ctx->event_list); 3801 atomic_set(&ctx->refcount, 1); 3802 } 3803 3804 static struct perf_event_context * 3805 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3806 { 3807 struct perf_event_context *ctx; 3808 3809 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3810 if (!ctx) 3811 return NULL; 3812 3813 __perf_event_init_context(ctx); 3814 if (task) { 3815 ctx->task = task; 3816 get_task_struct(task); 3817 } 3818 ctx->pmu = pmu; 3819 3820 return ctx; 3821 } 3822 3823 static struct task_struct * 3824 find_lively_task_by_vpid(pid_t vpid) 3825 { 3826 struct task_struct *task; 3827 3828 rcu_read_lock(); 3829 if (!vpid) 3830 task = current; 3831 else 3832 task = find_task_by_vpid(vpid); 3833 if (task) 3834 get_task_struct(task); 3835 rcu_read_unlock(); 3836 3837 if (!task) 3838 return ERR_PTR(-ESRCH); 3839 3840 return task; 3841 } 3842 3843 /* 3844 * Returns a matching context with refcount and pincount. 3845 */ 3846 static struct perf_event_context * 3847 find_get_context(struct pmu *pmu, struct task_struct *task, 3848 struct perf_event *event) 3849 { 3850 struct perf_event_context *ctx, *clone_ctx = NULL; 3851 struct perf_cpu_context *cpuctx; 3852 void *task_ctx_data = NULL; 3853 unsigned long flags; 3854 int ctxn, err; 3855 int cpu = event->cpu; 3856 3857 if (!task) { 3858 /* Must be root to operate on a CPU event: */ 3859 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3860 return ERR_PTR(-EACCES); 3861 3862 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3863 ctx = &cpuctx->ctx; 3864 get_ctx(ctx); 3865 ++ctx->pin_count; 3866 3867 return ctx; 3868 } 3869 3870 err = -EINVAL; 3871 ctxn = pmu->task_ctx_nr; 3872 if (ctxn < 0) 3873 goto errout; 3874 3875 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3876 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3877 if (!task_ctx_data) { 3878 err = -ENOMEM; 3879 goto errout; 3880 } 3881 } 3882 3883 retry: 3884 ctx = perf_lock_task_context(task, ctxn, &flags); 3885 if (ctx) { 3886 clone_ctx = unclone_ctx(ctx); 3887 ++ctx->pin_count; 3888 3889 if (task_ctx_data && !ctx->task_ctx_data) { 3890 ctx->task_ctx_data = task_ctx_data; 3891 task_ctx_data = NULL; 3892 } 3893 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3894 3895 if (clone_ctx) 3896 put_ctx(clone_ctx); 3897 } else { 3898 ctx = alloc_perf_context(pmu, task); 3899 err = -ENOMEM; 3900 if (!ctx) 3901 goto errout; 3902 3903 if (task_ctx_data) { 3904 ctx->task_ctx_data = task_ctx_data; 3905 task_ctx_data = NULL; 3906 } 3907 3908 err = 0; 3909 mutex_lock(&task->perf_event_mutex); 3910 /* 3911 * If it has already passed perf_event_exit_task(). 3912 * we must see PF_EXITING, it takes this mutex too. 3913 */ 3914 if (task->flags & PF_EXITING) 3915 err = -ESRCH; 3916 else if (task->perf_event_ctxp[ctxn]) 3917 err = -EAGAIN; 3918 else { 3919 get_ctx(ctx); 3920 ++ctx->pin_count; 3921 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3922 } 3923 mutex_unlock(&task->perf_event_mutex); 3924 3925 if (unlikely(err)) { 3926 put_ctx(ctx); 3927 3928 if (err == -EAGAIN) 3929 goto retry; 3930 goto errout; 3931 } 3932 } 3933 3934 kfree(task_ctx_data); 3935 return ctx; 3936 3937 errout: 3938 kfree(task_ctx_data); 3939 return ERR_PTR(err); 3940 } 3941 3942 static void perf_event_free_filter(struct perf_event *event); 3943 static void perf_event_free_bpf_prog(struct perf_event *event); 3944 3945 static void free_event_rcu(struct rcu_head *head) 3946 { 3947 struct perf_event *event; 3948 3949 event = container_of(head, struct perf_event, rcu_head); 3950 if (event->ns) 3951 put_pid_ns(event->ns); 3952 perf_event_free_filter(event); 3953 kfree(event); 3954 } 3955 3956 static void ring_buffer_attach(struct perf_event *event, 3957 struct ring_buffer *rb); 3958 3959 static void detach_sb_event(struct perf_event *event) 3960 { 3961 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3962 3963 raw_spin_lock(&pel->lock); 3964 list_del_rcu(&event->sb_list); 3965 raw_spin_unlock(&pel->lock); 3966 } 3967 3968 static bool is_sb_event(struct perf_event *event) 3969 { 3970 struct perf_event_attr *attr = &event->attr; 3971 3972 if (event->parent) 3973 return false; 3974 3975 if (event->attach_state & PERF_ATTACH_TASK) 3976 return false; 3977 3978 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3979 attr->comm || attr->comm_exec || 3980 attr->task || 3981 attr->context_switch) 3982 return true; 3983 return false; 3984 } 3985 3986 static void unaccount_pmu_sb_event(struct perf_event *event) 3987 { 3988 if (is_sb_event(event)) 3989 detach_sb_event(event); 3990 } 3991 3992 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3993 { 3994 if (event->parent) 3995 return; 3996 3997 if (is_cgroup_event(event)) 3998 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3999 } 4000 4001 #ifdef CONFIG_NO_HZ_FULL 4002 static DEFINE_SPINLOCK(nr_freq_lock); 4003 #endif 4004 4005 static void unaccount_freq_event_nohz(void) 4006 { 4007 #ifdef CONFIG_NO_HZ_FULL 4008 spin_lock(&nr_freq_lock); 4009 if (atomic_dec_and_test(&nr_freq_events)) 4010 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4011 spin_unlock(&nr_freq_lock); 4012 #endif 4013 } 4014 4015 static void unaccount_freq_event(void) 4016 { 4017 if (tick_nohz_full_enabled()) 4018 unaccount_freq_event_nohz(); 4019 else 4020 atomic_dec(&nr_freq_events); 4021 } 4022 4023 static void unaccount_event(struct perf_event *event) 4024 { 4025 bool dec = false; 4026 4027 if (event->parent) 4028 return; 4029 4030 if (event->attach_state & PERF_ATTACH_TASK) 4031 dec = true; 4032 if (event->attr.mmap || event->attr.mmap_data) 4033 atomic_dec(&nr_mmap_events); 4034 if (event->attr.comm) 4035 atomic_dec(&nr_comm_events); 4036 if (event->attr.namespaces) 4037 atomic_dec(&nr_namespaces_events); 4038 if (event->attr.task) 4039 atomic_dec(&nr_task_events); 4040 if (event->attr.freq) 4041 unaccount_freq_event(); 4042 if (event->attr.context_switch) { 4043 dec = true; 4044 atomic_dec(&nr_switch_events); 4045 } 4046 if (is_cgroup_event(event)) 4047 dec = true; 4048 if (has_branch_stack(event)) 4049 dec = true; 4050 4051 if (dec) { 4052 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4053 schedule_delayed_work(&perf_sched_work, HZ); 4054 } 4055 4056 unaccount_event_cpu(event, event->cpu); 4057 4058 unaccount_pmu_sb_event(event); 4059 } 4060 4061 static void perf_sched_delayed(struct work_struct *work) 4062 { 4063 mutex_lock(&perf_sched_mutex); 4064 if (atomic_dec_and_test(&perf_sched_count)) 4065 static_branch_disable(&perf_sched_events); 4066 mutex_unlock(&perf_sched_mutex); 4067 } 4068 4069 /* 4070 * The following implement mutual exclusion of events on "exclusive" pmus 4071 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4072 * at a time, so we disallow creating events that might conflict, namely: 4073 * 4074 * 1) cpu-wide events in the presence of per-task events, 4075 * 2) per-task events in the presence of cpu-wide events, 4076 * 3) two matching events on the same context. 4077 * 4078 * The former two cases are handled in the allocation path (perf_event_alloc(), 4079 * _free_event()), the latter -- before the first perf_install_in_context(). 4080 */ 4081 static int exclusive_event_init(struct perf_event *event) 4082 { 4083 struct pmu *pmu = event->pmu; 4084 4085 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4086 return 0; 4087 4088 /* 4089 * Prevent co-existence of per-task and cpu-wide events on the 4090 * same exclusive pmu. 4091 * 4092 * Negative pmu::exclusive_cnt means there are cpu-wide 4093 * events on this "exclusive" pmu, positive means there are 4094 * per-task events. 4095 * 4096 * Since this is called in perf_event_alloc() path, event::ctx 4097 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4098 * to mean "per-task event", because unlike other attach states it 4099 * never gets cleared. 4100 */ 4101 if (event->attach_state & PERF_ATTACH_TASK) { 4102 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4103 return -EBUSY; 4104 } else { 4105 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4106 return -EBUSY; 4107 } 4108 4109 return 0; 4110 } 4111 4112 static void exclusive_event_destroy(struct perf_event *event) 4113 { 4114 struct pmu *pmu = event->pmu; 4115 4116 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4117 return; 4118 4119 /* see comment in exclusive_event_init() */ 4120 if (event->attach_state & PERF_ATTACH_TASK) 4121 atomic_dec(&pmu->exclusive_cnt); 4122 else 4123 atomic_inc(&pmu->exclusive_cnt); 4124 } 4125 4126 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4127 { 4128 if ((e1->pmu == e2->pmu) && 4129 (e1->cpu == e2->cpu || 4130 e1->cpu == -1 || 4131 e2->cpu == -1)) 4132 return true; 4133 return false; 4134 } 4135 4136 /* Called under the same ctx::mutex as perf_install_in_context() */ 4137 static bool exclusive_event_installable(struct perf_event *event, 4138 struct perf_event_context *ctx) 4139 { 4140 struct perf_event *iter_event; 4141 struct pmu *pmu = event->pmu; 4142 4143 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4144 return true; 4145 4146 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4147 if (exclusive_event_match(iter_event, event)) 4148 return false; 4149 } 4150 4151 return true; 4152 } 4153 4154 static void perf_addr_filters_splice(struct perf_event *event, 4155 struct list_head *head); 4156 4157 static void _free_event(struct perf_event *event) 4158 { 4159 irq_work_sync(&event->pending); 4160 4161 unaccount_event(event); 4162 4163 if (event->rb) { 4164 /* 4165 * Can happen when we close an event with re-directed output. 4166 * 4167 * Since we have a 0 refcount, perf_mmap_close() will skip 4168 * over us; possibly making our ring_buffer_put() the last. 4169 */ 4170 mutex_lock(&event->mmap_mutex); 4171 ring_buffer_attach(event, NULL); 4172 mutex_unlock(&event->mmap_mutex); 4173 } 4174 4175 if (is_cgroup_event(event)) 4176 perf_detach_cgroup(event); 4177 4178 if (!event->parent) { 4179 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4180 put_callchain_buffers(); 4181 } 4182 4183 perf_event_free_bpf_prog(event); 4184 perf_addr_filters_splice(event, NULL); 4185 kfree(event->addr_filters_offs); 4186 4187 if (event->destroy) 4188 event->destroy(event); 4189 4190 if (event->ctx) 4191 put_ctx(event->ctx); 4192 4193 exclusive_event_destroy(event); 4194 module_put(event->pmu->module); 4195 4196 call_rcu(&event->rcu_head, free_event_rcu); 4197 } 4198 4199 /* 4200 * Used to free events which have a known refcount of 1, such as in error paths 4201 * where the event isn't exposed yet and inherited events. 4202 */ 4203 static void free_event(struct perf_event *event) 4204 { 4205 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4206 "unexpected event refcount: %ld; ptr=%p\n", 4207 atomic_long_read(&event->refcount), event)) { 4208 /* leak to avoid use-after-free */ 4209 return; 4210 } 4211 4212 _free_event(event); 4213 } 4214 4215 /* 4216 * Remove user event from the owner task. 4217 */ 4218 static void perf_remove_from_owner(struct perf_event *event) 4219 { 4220 struct task_struct *owner; 4221 4222 rcu_read_lock(); 4223 /* 4224 * Matches the smp_store_release() in perf_event_exit_task(). If we 4225 * observe !owner it means the list deletion is complete and we can 4226 * indeed free this event, otherwise we need to serialize on 4227 * owner->perf_event_mutex. 4228 */ 4229 owner = lockless_dereference(event->owner); 4230 if (owner) { 4231 /* 4232 * Since delayed_put_task_struct() also drops the last 4233 * task reference we can safely take a new reference 4234 * while holding the rcu_read_lock(). 4235 */ 4236 get_task_struct(owner); 4237 } 4238 rcu_read_unlock(); 4239 4240 if (owner) { 4241 /* 4242 * If we're here through perf_event_exit_task() we're already 4243 * holding ctx->mutex which would be an inversion wrt. the 4244 * normal lock order. 4245 * 4246 * However we can safely take this lock because its the child 4247 * ctx->mutex. 4248 */ 4249 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4250 4251 /* 4252 * We have to re-check the event->owner field, if it is cleared 4253 * we raced with perf_event_exit_task(), acquiring the mutex 4254 * ensured they're done, and we can proceed with freeing the 4255 * event. 4256 */ 4257 if (event->owner) { 4258 list_del_init(&event->owner_entry); 4259 smp_store_release(&event->owner, NULL); 4260 } 4261 mutex_unlock(&owner->perf_event_mutex); 4262 put_task_struct(owner); 4263 } 4264 } 4265 4266 static void put_event(struct perf_event *event) 4267 { 4268 if (!atomic_long_dec_and_test(&event->refcount)) 4269 return; 4270 4271 _free_event(event); 4272 } 4273 4274 /* 4275 * Kill an event dead; while event:refcount will preserve the event 4276 * object, it will not preserve its functionality. Once the last 'user' 4277 * gives up the object, we'll destroy the thing. 4278 */ 4279 int perf_event_release_kernel(struct perf_event *event) 4280 { 4281 struct perf_event_context *ctx = event->ctx; 4282 struct perf_event *child, *tmp; 4283 4284 /* 4285 * If we got here through err_file: fput(event_file); we will not have 4286 * attached to a context yet. 4287 */ 4288 if (!ctx) { 4289 WARN_ON_ONCE(event->attach_state & 4290 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4291 goto no_ctx; 4292 } 4293 4294 if (!is_kernel_event(event)) 4295 perf_remove_from_owner(event); 4296 4297 ctx = perf_event_ctx_lock(event); 4298 WARN_ON_ONCE(ctx->parent_ctx); 4299 perf_remove_from_context(event, DETACH_GROUP); 4300 4301 raw_spin_lock_irq(&ctx->lock); 4302 /* 4303 * Mark this event as STATE_DEAD, there is no external reference to it 4304 * anymore. 4305 * 4306 * Anybody acquiring event->child_mutex after the below loop _must_ 4307 * also see this, most importantly inherit_event() which will avoid 4308 * placing more children on the list. 4309 * 4310 * Thus this guarantees that we will in fact observe and kill _ALL_ 4311 * child events. 4312 */ 4313 event->state = PERF_EVENT_STATE_DEAD; 4314 raw_spin_unlock_irq(&ctx->lock); 4315 4316 perf_event_ctx_unlock(event, ctx); 4317 4318 again: 4319 mutex_lock(&event->child_mutex); 4320 list_for_each_entry(child, &event->child_list, child_list) { 4321 4322 /* 4323 * Cannot change, child events are not migrated, see the 4324 * comment with perf_event_ctx_lock_nested(). 4325 */ 4326 ctx = lockless_dereference(child->ctx); 4327 /* 4328 * Since child_mutex nests inside ctx::mutex, we must jump 4329 * through hoops. We start by grabbing a reference on the ctx. 4330 * 4331 * Since the event cannot get freed while we hold the 4332 * child_mutex, the context must also exist and have a !0 4333 * reference count. 4334 */ 4335 get_ctx(ctx); 4336 4337 /* 4338 * Now that we have a ctx ref, we can drop child_mutex, and 4339 * acquire ctx::mutex without fear of it going away. Then we 4340 * can re-acquire child_mutex. 4341 */ 4342 mutex_unlock(&event->child_mutex); 4343 mutex_lock(&ctx->mutex); 4344 mutex_lock(&event->child_mutex); 4345 4346 /* 4347 * Now that we hold ctx::mutex and child_mutex, revalidate our 4348 * state, if child is still the first entry, it didn't get freed 4349 * and we can continue doing so. 4350 */ 4351 tmp = list_first_entry_or_null(&event->child_list, 4352 struct perf_event, child_list); 4353 if (tmp == child) { 4354 perf_remove_from_context(child, DETACH_GROUP); 4355 list_del(&child->child_list); 4356 free_event(child); 4357 /* 4358 * This matches the refcount bump in inherit_event(); 4359 * this can't be the last reference. 4360 */ 4361 put_event(event); 4362 } 4363 4364 mutex_unlock(&event->child_mutex); 4365 mutex_unlock(&ctx->mutex); 4366 put_ctx(ctx); 4367 goto again; 4368 } 4369 mutex_unlock(&event->child_mutex); 4370 4371 no_ctx: 4372 put_event(event); /* Must be the 'last' reference */ 4373 return 0; 4374 } 4375 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4376 4377 /* 4378 * Called when the last reference to the file is gone. 4379 */ 4380 static int perf_release(struct inode *inode, struct file *file) 4381 { 4382 perf_event_release_kernel(file->private_data); 4383 return 0; 4384 } 4385 4386 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4387 { 4388 struct perf_event *child; 4389 u64 total = 0; 4390 4391 *enabled = 0; 4392 *running = 0; 4393 4394 mutex_lock(&event->child_mutex); 4395 4396 (void)perf_event_read(event, false); 4397 total += perf_event_count(event); 4398 4399 *enabled += event->total_time_enabled + 4400 atomic64_read(&event->child_total_time_enabled); 4401 *running += event->total_time_running + 4402 atomic64_read(&event->child_total_time_running); 4403 4404 list_for_each_entry(child, &event->child_list, child_list) { 4405 (void)perf_event_read(child, false); 4406 total += perf_event_count(child); 4407 *enabled += child->total_time_enabled; 4408 *running += child->total_time_running; 4409 } 4410 mutex_unlock(&event->child_mutex); 4411 4412 return total; 4413 } 4414 EXPORT_SYMBOL_GPL(perf_event_read_value); 4415 4416 static int __perf_read_group_add(struct perf_event *leader, 4417 u64 read_format, u64 *values) 4418 { 4419 struct perf_event_context *ctx = leader->ctx; 4420 struct perf_event *sub; 4421 unsigned long flags; 4422 int n = 1; /* skip @nr */ 4423 int ret; 4424 4425 ret = perf_event_read(leader, true); 4426 if (ret) 4427 return ret; 4428 4429 /* 4430 * Since we co-schedule groups, {enabled,running} times of siblings 4431 * will be identical to those of the leader, so we only publish one 4432 * set. 4433 */ 4434 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4435 values[n++] += leader->total_time_enabled + 4436 atomic64_read(&leader->child_total_time_enabled); 4437 } 4438 4439 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4440 values[n++] += leader->total_time_running + 4441 atomic64_read(&leader->child_total_time_running); 4442 } 4443 4444 /* 4445 * Write {count,id} tuples for every sibling. 4446 */ 4447 values[n++] += perf_event_count(leader); 4448 if (read_format & PERF_FORMAT_ID) 4449 values[n++] = primary_event_id(leader); 4450 4451 raw_spin_lock_irqsave(&ctx->lock, flags); 4452 4453 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4454 values[n++] += perf_event_count(sub); 4455 if (read_format & PERF_FORMAT_ID) 4456 values[n++] = primary_event_id(sub); 4457 } 4458 4459 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4460 return 0; 4461 } 4462 4463 static int perf_read_group(struct perf_event *event, 4464 u64 read_format, char __user *buf) 4465 { 4466 struct perf_event *leader = event->group_leader, *child; 4467 struct perf_event_context *ctx = leader->ctx; 4468 int ret; 4469 u64 *values; 4470 4471 lockdep_assert_held(&ctx->mutex); 4472 4473 values = kzalloc(event->read_size, GFP_KERNEL); 4474 if (!values) 4475 return -ENOMEM; 4476 4477 values[0] = 1 + leader->nr_siblings; 4478 4479 /* 4480 * By locking the child_mutex of the leader we effectively 4481 * lock the child list of all siblings.. XXX explain how. 4482 */ 4483 mutex_lock(&leader->child_mutex); 4484 4485 ret = __perf_read_group_add(leader, read_format, values); 4486 if (ret) 4487 goto unlock; 4488 4489 list_for_each_entry(child, &leader->child_list, child_list) { 4490 ret = __perf_read_group_add(child, read_format, values); 4491 if (ret) 4492 goto unlock; 4493 } 4494 4495 mutex_unlock(&leader->child_mutex); 4496 4497 ret = event->read_size; 4498 if (copy_to_user(buf, values, event->read_size)) 4499 ret = -EFAULT; 4500 goto out; 4501 4502 unlock: 4503 mutex_unlock(&leader->child_mutex); 4504 out: 4505 kfree(values); 4506 return ret; 4507 } 4508 4509 static int perf_read_one(struct perf_event *event, 4510 u64 read_format, char __user *buf) 4511 { 4512 u64 enabled, running; 4513 u64 values[4]; 4514 int n = 0; 4515 4516 values[n++] = perf_event_read_value(event, &enabled, &running); 4517 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4518 values[n++] = enabled; 4519 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4520 values[n++] = running; 4521 if (read_format & PERF_FORMAT_ID) 4522 values[n++] = primary_event_id(event); 4523 4524 if (copy_to_user(buf, values, n * sizeof(u64))) 4525 return -EFAULT; 4526 4527 return n * sizeof(u64); 4528 } 4529 4530 static bool is_event_hup(struct perf_event *event) 4531 { 4532 bool no_children; 4533 4534 if (event->state > PERF_EVENT_STATE_EXIT) 4535 return false; 4536 4537 mutex_lock(&event->child_mutex); 4538 no_children = list_empty(&event->child_list); 4539 mutex_unlock(&event->child_mutex); 4540 return no_children; 4541 } 4542 4543 /* 4544 * Read the performance event - simple non blocking version for now 4545 */ 4546 static ssize_t 4547 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4548 { 4549 u64 read_format = event->attr.read_format; 4550 int ret; 4551 4552 /* 4553 * Return end-of-file for a read on a event that is in 4554 * error state (i.e. because it was pinned but it couldn't be 4555 * scheduled on to the CPU at some point). 4556 */ 4557 if (event->state == PERF_EVENT_STATE_ERROR) 4558 return 0; 4559 4560 if (count < event->read_size) 4561 return -ENOSPC; 4562 4563 WARN_ON_ONCE(event->ctx->parent_ctx); 4564 if (read_format & PERF_FORMAT_GROUP) 4565 ret = perf_read_group(event, read_format, buf); 4566 else 4567 ret = perf_read_one(event, read_format, buf); 4568 4569 return ret; 4570 } 4571 4572 static ssize_t 4573 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4574 { 4575 struct perf_event *event = file->private_data; 4576 struct perf_event_context *ctx; 4577 int ret; 4578 4579 ctx = perf_event_ctx_lock(event); 4580 ret = __perf_read(event, buf, count); 4581 perf_event_ctx_unlock(event, ctx); 4582 4583 return ret; 4584 } 4585 4586 static unsigned int perf_poll(struct file *file, poll_table *wait) 4587 { 4588 struct perf_event *event = file->private_data; 4589 struct ring_buffer *rb; 4590 unsigned int events = POLLHUP; 4591 4592 poll_wait(file, &event->waitq, wait); 4593 4594 if (is_event_hup(event)) 4595 return events; 4596 4597 /* 4598 * Pin the event->rb by taking event->mmap_mutex; otherwise 4599 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4600 */ 4601 mutex_lock(&event->mmap_mutex); 4602 rb = event->rb; 4603 if (rb) 4604 events = atomic_xchg(&rb->poll, 0); 4605 mutex_unlock(&event->mmap_mutex); 4606 return events; 4607 } 4608 4609 static void _perf_event_reset(struct perf_event *event) 4610 { 4611 (void)perf_event_read(event, false); 4612 local64_set(&event->count, 0); 4613 perf_event_update_userpage(event); 4614 } 4615 4616 /* 4617 * Holding the top-level event's child_mutex means that any 4618 * descendant process that has inherited this event will block 4619 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4620 * task existence requirements of perf_event_enable/disable. 4621 */ 4622 static void perf_event_for_each_child(struct perf_event *event, 4623 void (*func)(struct perf_event *)) 4624 { 4625 struct perf_event *child; 4626 4627 WARN_ON_ONCE(event->ctx->parent_ctx); 4628 4629 mutex_lock(&event->child_mutex); 4630 func(event); 4631 list_for_each_entry(child, &event->child_list, child_list) 4632 func(child); 4633 mutex_unlock(&event->child_mutex); 4634 } 4635 4636 static void perf_event_for_each(struct perf_event *event, 4637 void (*func)(struct perf_event *)) 4638 { 4639 struct perf_event_context *ctx = event->ctx; 4640 struct perf_event *sibling; 4641 4642 lockdep_assert_held(&ctx->mutex); 4643 4644 event = event->group_leader; 4645 4646 perf_event_for_each_child(event, func); 4647 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4648 perf_event_for_each_child(sibling, func); 4649 } 4650 4651 static void __perf_event_period(struct perf_event *event, 4652 struct perf_cpu_context *cpuctx, 4653 struct perf_event_context *ctx, 4654 void *info) 4655 { 4656 u64 value = *((u64 *)info); 4657 bool active; 4658 4659 if (event->attr.freq) { 4660 event->attr.sample_freq = value; 4661 } else { 4662 event->attr.sample_period = value; 4663 event->hw.sample_period = value; 4664 } 4665 4666 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4667 if (active) { 4668 perf_pmu_disable(ctx->pmu); 4669 /* 4670 * We could be throttled; unthrottle now to avoid the tick 4671 * trying to unthrottle while we already re-started the event. 4672 */ 4673 if (event->hw.interrupts == MAX_INTERRUPTS) { 4674 event->hw.interrupts = 0; 4675 perf_log_throttle(event, 1); 4676 } 4677 event->pmu->stop(event, PERF_EF_UPDATE); 4678 } 4679 4680 local64_set(&event->hw.period_left, 0); 4681 4682 if (active) { 4683 event->pmu->start(event, PERF_EF_RELOAD); 4684 perf_pmu_enable(ctx->pmu); 4685 } 4686 } 4687 4688 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4689 { 4690 u64 value; 4691 4692 if (!is_sampling_event(event)) 4693 return -EINVAL; 4694 4695 if (copy_from_user(&value, arg, sizeof(value))) 4696 return -EFAULT; 4697 4698 if (!value) 4699 return -EINVAL; 4700 4701 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4702 return -EINVAL; 4703 4704 event_function_call(event, __perf_event_period, &value); 4705 4706 return 0; 4707 } 4708 4709 static const struct file_operations perf_fops; 4710 4711 static inline int perf_fget_light(int fd, struct fd *p) 4712 { 4713 struct fd f = fdget(fd); 4714 if (!f.file) 4715 return -EBADF; 4716 4717 if (f.file->f_op != &perf_fops) { 4718 fdput(f); 4719 return -EBADF; 4720 } 4721 *p = f; 4722 return 0; 4723 } 4724 4725 static int perf_event_set_output(struct perf_event *event, 4726 struct perf_event *output_event); 4727 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4728 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4729 4730 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4731 { 4732 void (*func)(struct perf_event *); 4733 u32 flags = arg; 4734 4735 switch (cmd) { 4736 case PERF_EVENT_IOC_ENABLE: 4737 func = _perf_event_enable; 4738 break; 4739 case PERF_EVENT_IOC_DISABLE: 4740 func = _perf_event_disable; 4741 break; 4742 case PERF_EVENT_IOC_RESET: 4743 func = _perf_event_reset; 4744 break; 4745 4746 case PERF_EVENT_IOC_REFRESH: 4747 return _perf_event_refresh(event, arg); 4748 4749 case PERF_EVENT_IOC_PERIOD: 4750 return perf_event_period(event, (u64 __user *)arg); 4751 4752 case PERF_EVENT_IOC_ID: 4753 { 4754 u64 id = primary_event_id(event); 4755 4756 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4757 return -EFAULT; 4758 return 0; 4759 } 4760 4761 case PERF_EVENT_IOC_SET_OUTPUT: 4762 { 4763 int ret; 4764 if (arg != -1) { 4765 struct perf_event *output_event; 4766 struct fd output; 4767 ret = perf_fget_light(arg, &output); 4768 if (ret) 4769 return ret; 4770 output_event = output.file->private_data; 4771 ret = perf_event_set_output(event, output_event); 4772 fdput(output); 4773 } else { 4774 ret = perf_event_set_output(event, NULL); 4775 } 4776 return ret; 4777 } 4778 4779 case PERF_EVENT_IOC_SET_FILTER: 4780 return perf_event_set_filter(event, (void __user *)arg); 4781 4782 case PERF_EVENT_IOC_SET_BPF: 4783 return perf_event_set_bpf_prog(event, arg); 4784 4785 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4786 struct ring_buffer *rb; 4787 4788 rcu_read_lock(); 4789 rb = rcu_dereference(event->rb); 4790 if (!rb || !rb->nr_pages) { 4791 rcu_read_unlock(); 4792 return -EINVAL; 4793 } 4794 rb_toggle_paused(rb, !!arg); 4795 rcu_read_unlock(); 4796 return 0; 4797 } 4798 default: 4799 return -ENOTTY; 4800 } 4801 4802 if (flags & PERF_IOC_FLAG_GROUP) 4803 perf_event_for_each(event, func); 4804 else 4805 perf_event_for_each_child(event, func); 4806 4807 return 0; 4808 } 4809 4810 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4811 { 4812 struct perf_event *event = file->private_data; 4813 struct perf_event_context *ctx; 4814 long ret; 4815 4816 ctx = perf_event_ctx_lock(event); 4817 ret = _perf_ioctl(event, cmd, arg); 4818 perf_event_ctx_unlock(event, ctx); 4819 4820 return ret; 4821 } 4822 4823 #ifdef CONFIG_COMPAT 4824 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4825 unsigned long arg) 4826 { 4827 switch (_IOC_NR(cmd)) { 4828 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4829 case _IOC_NR(PERF_EVENT_IOC_ID): 4830 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4831 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4832 cmd &= ~IOCSIZE_MASK; 4833 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4834 } 4835 break; 4836 } 4837 return perf_ioctl(file, cmd, arg); 4838 } 4839 #else 4840 # define perf_compat_ioctl NULL 4841 #endif 4842 4843 int perf_event_task_enable(void) 4844 { 4845 struct perf_event_context *ctx; 4846 struct perf_event *event; 4847 4848 mutex_lock(¤t->perf_event_mutex); 4849 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4850 ctx = perf_event_ctx_lock(event); 4851 perf_event_for_each_child(event, _perf_event_enable); 4852 perf_event_ctx_unlock(event, ctx); 4853 } 4854 mutex_unlock(¤t->perf_event_mutex); 4855 4856 return 0; 4857 } 4858 4859 int perf_event_task_disable(void) 4860 { 4861 struct perf_event_context *ctx; 4862 struct perf_event *event; 4863 4864 mutex_lock(¤t->perf_event_mutex); 4865 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4866 ctx = perf_event_ctx_lock(event); 4867 perf_event_for_each_child(event, _perf_event_disable); 4868 perf_event_ctx_unlock(event, ctx); 4869 } 4870 mutex_unlock(¤t->perf_event_mutex); 4871 4872 return 0; 4873 } 4874 4875 static int perf_event_index(struct perf_event *event) 4876 { 4877 if (event->hw.state & PERF_HES_STOPPED) 4878 return 0; 4879 4880 if (event->state != PERF_EVENT_STATE_ACTIVE) 4881 return 0; 4882 4883 return event->pmu->event_idx(event); 4884 } 4885 4886 static void calc_timer_values(struct perf_event *event, 4887 u64 *now, 4888 u64 *enabled, 4889 u64 *running) 4890 { 4891 u64 ctx_time; 4892 4893 *now = perf_clock(); 4894 ctx_time = event->shadow_ctx_time + *now; 4895 *enabled = ctx_time - event->tstamp_enabled; 4896 *running = ctx_time - event->tstamp_running; 4897 } 4898 4899 static void perf_event_init_userpage(struct perf_event *event) 4900 { 4901 struct perf_event_mmap_page *userpg; 4902 struct ring_buffer *rb; 4903 4904 rcu_read_lock(); 4905 rb = rcu_dereference(event->rb); 4906 if (!rb) 4907 goto unlock; 4908 4909 userpg = rb->user_page; 4910 4911 /* Allow new userspace to detect that bit 0 is deprecated */ 4912 userpg->cap_bit0_is_deprecated = 1; 4913 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4914 userpg->data_offset = PAGE_SIZE; 4915 userpg->data_size = perf_data_size(rb); 4916 4917 unlock: 4918 rcu_read_unlock(); 4919 } 4920 4921 void __weak arch_perf_update_userpage( 4922 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4923 { 4924 } 4925 4926 /* 4927 * Callers need to ensure there can be no nesting of this function, otherwise 4928 * the seqlock logic goes bad. We can not serialize this because the arch 4929 * code calls this from NMI context. 4930 */ 4931 void perf_event_update_userpage(struct perf_event *event) 4932 { 4933 struct perf_event_mmap_page *userpg; 4934 struct ring_buffer *rb; 4935 u64 enabled, running, now; 4936 4937 rcu_read_lock(); 4938 rb = rcu_dereference(event->rb); 4939 if (!rb) 4940 goto unlock; 4941 4942 /* 4943 * compute total_time_enabled, total_time_running 4944 * based on snapshot values taken when the event 4945 * was last scheduled in. 4946 * 4947 * we cannot simply called update_context_time() 4948 * because of locking issue as we can be called in 4949 * NMI context 4950 */ 4951 calc_timer_values(event, &now, &enabled, &running); 4952 4953 userpg = rb->user_page; 4954 /* 4955 * Disable preemption so as to not let the corresponding user-space 4956 * spin too long if we get preempted. 4957 */ 4958 preempt_disable(); 4959 ++userpg->lock; 4960 barrier(); 4961 userpg->index = perf_event_index(event); 4962 userpg->offset = perf_event_count(event); 4963 if (userpg->index) 4964 userpg->offset -= local64_read(&event->hw.prev_count); 4965 4966 userpg->time_enabled = enabled + 4967 atomic64_read(&event->child_total_time_enabled); 4968 4969 userpg->time_running = running + 4970 atomic64_read(&event->child_total_time_running); 4971 4972 arch_perf_update_userpage(event, userpg, now); 4973 4974 barrier(); 4975 ++userpg->lock; 4976 preempt_enable(); 4977 unlock: 4978 rcu_read_unlock(); 4979 } 4980 4981 static int perf_mmap_fault(struct vm_fault *vmf) 4982 { 4983 struct perf_event *event = vmf->vma->vm_file->private_data; 4984 struct ring_buffer *rb; 4985 int ret = VM_FAULT_SIGBUS; 4986 4987 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4988 if (vmf->pgoff == 0) 4989 ret = 0; 4990 return ret; 4991 } 4992 4993 rcu_read_lock(); 4994 rb = rcu_dereference(event->rb); 4995 if (!rb) 4996 goto unlock; 4997 4998 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4999 goto unlock; 5000 5001 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5002 if (!vmf->page) 5003 goto unlock; 5004 5005 get_page(vmf->page); 5006 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5007 vmf->page->index = vmf->pgoff; 5008 5009 ret = 0; 5010 unlock: 5011 rcu_read_unlock(); 5012 5013 return ret; 5014 } 5015 5016 static void ring_buffer_attach(struct perf_event *event, 5017 struct ring_buffer *rb) 5018 { 5019 struct ring_buffer *old_rb = NULL; 5020 unsigned long flags; 5021 5022 if (event->rb) { 5023 /* 5024 * Should be impossible, we set this when removing 5025 * event->rb_entry and wait/clear when adding event->rb_entry. 5026 */ 5027 WARN_ON_ONCE(event->rcu_pending); 5028 5029 old_rb = event->rb; 5030 spin_lock_irqsave(&old_rb->event_lock, flags); 5031 list_del_rcu(&event->rb_entry); 5032 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5033 5034 event->rcu_batches = get_state_synchronize_rcu(); 5035 event->rcu_pending = 1; 5036 } 5037 5038 if (rb) { 5039 if (event->rcu_pending) { 5040 cond_synchronize_rcu(event->rcu_batches); 5041 event->rcu_pending = 0; 5042 } 5043 5044 spin_lock_irqsave(&rb->event_lock, flags); 5045 list_add_rcu(&event->rb_entry, &rb->event_list); 5046 spin_unlock_irqrestore(&rb->event_lock, flags); 5047 } 5048 5049 /* 5050 * Avoid racing with perf_mmap_close(AUX): stop the event 5051 * before swizzling the event::rb pointer; if it's getting 5052 * unmapped, its aux_mmap_count will be 0 and it won't 5053 * restart. See the comment in __perf_pmu_output_stop(). 5054 * 5055 * Data will inevitably be lost when set_output is done in 5056 * mid-air, but then again, whoever does it like this is 5057 * not in for the data anyway. 5058 */ 5059 if (has_aux(event)) 5060 perf_event_stop(event, 0); 5061 5062 rcu_assign_pointer(event->rb, rb); 5063 5064 if (old_rb) { 5065 ring_buffer_put(old_rb); 5066 /* 5067 * Since we detached before setting the new rb, so that we 5068 * could attach the new rb, we could have missed a wakeup. 5069 * Provide it now. 5070 */ 5071 wake_up_all(&event->waitq); 5072 } 5073 } 5074 5075 static void ring_buffer_wakeup(struct perf_event *event) 5076 { 5077 struct ring_buffer *rb; 5078 5079 rcu_read_lock(); 5080 rb = rcu_dereference(event->rb); 5081 if (rb) { 5082 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5083 wake_up_all(&event->waitq); 5084 } 5085 rcu_read_unlock(); 5086 } 5087 5088 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5089 { 5090 struct ring_buffer *rb; 5091 5092 rcu_read_lock(); 5093 rb = rcu_dereference(event->rb); 5094 if (rb) { 5095 if (!atomic_inc_not_zero(&rb->refcount)) 5096 rb = NULL; 5097 } 5098 rcu_read_unlock(); 5099 5100 return rb; 5101 } 5102 5103 void ring_buffer_put(struct ring_buffer *rb) 5104 { 5105 if (!atomic_dec_and_test(&rb->refcount)) 5106 return; 5107 5108 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5109 5110 call_rcu(&rb->rcu_head, rb_free_rcu); 5111 } 5112 5113 static void perf_mmap_open(struct vm_area_struct *vma) 5114 { 5115 struct perf_event *event = vma->vm_file->private_data; 5116 5117 atomic_inc(&event->mmap_count); 5118 atomic_inc(&event->rb->mmap_count); 5119 5120 if (vma->vm_pgoff) 5121 atomic_inc(&event->rb->aux_mmap_count); 5122 5123 if (event->pmu->event_mapped) 5124 event->pmu->event_mapped(event, vma->vm_mm); 5125 } 5126 5127 static void perf_pmu_output_stop(struct perf_event *event); 5128 5129 /* 5130 * A buffer can be mmap()ed multiple times; either directly through the same 5131 * event, or through other events by use of perf_event_set_output(). 5132 * 5133 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5134 * the buffer here, where we still have a VM context. This means we need 5135 * to detach all events redirecting to us. 5136 */ 5137 static void perf_mmap_close(struct vm_area_struct *vma) 5138 { 5139 struct perf_event *event = vma->vm_file->private_data; 5140 5141 struct ring_buffer *rb = ring_buffer_get(event); 5142 struct user_struct *mmap_user = rb->mmap_user; 5143 int mmap_locked = rb->mmap_locked; 5144 unsigned long size = perf_data_size(rb); 5145 5146 if (event->pmu->event_unmapped) 5147 event->pmu->event_unmapped(event, vma->vm_mm); 5148 5149 /* 5150 * rb->aux_mmap_count will always drop before rb->mmap_count and 5151 * event->mmap_count, so it is ok to use event->mmap_mutex to 5152 * serialize with perf_mmap here. 5153 */ 5154 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5155 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5156 /* 5157 * Stop all AUX events that are writing to this buffer, 5158 * so that we can free its AUX pages and corresponding PMU 5159 * data. Note that after rb::aux_mmap_count dropped to zero, 5160 * they won't start any more (see perf_aux_output_begin()). 5161 */ 5162 perf_pmu_output_stop(event); 5163 5164 /* now it's safe to free the pages */ 5165 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5166 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5167 5168 /* this has to be the last one */ 5169 rb_free_aux(rb); 5170 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5171 5172 mutex_unlock(&event->mmap_mutex); 5173 } 5174 5175 atomic_dec(&rb->mmap_count); 5176 5177 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5178 goto out_put; 5179 5180 ring_buffer_attach(event, NULL); 5181 mutex_unlock(&event->mmap_mutex); 5182 5183 /* If there's still other mmap()s of this buffer, we're done. */ 5184 if (atomic_read(&rb->mmap_count)) 5185 goto out_put; 5186 5187 /* 5188 * No other mmap()s, detach from all other events that might redirect 5189 * into the now unreachable buffer. Somewhat complicated by the 5190 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5191 */ 5192 again: 5193 rcu_read_lock(); 5194 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5195 if (!atomic_long_inc_not_zero(&event->refcount)) { 5196 /* 5197 * This event is en-route to free_event() which will 5198 * detach it and remove it from the list. 5199 */ 5200 continue; 5201 } 5202 rcu_read_unlock(); 5203 5204 mutex_lock(&event->mmap_mutex); 5205 /* 5206 * Check we didn't race with perf_event_set_output() which can 5207 * swizzle the rb from under us while we were waiting to 5208 * acquire mmap_mutex. 5209 * 5210 * If we find a different rb; ignore this event, a next 5211 * iteration will no longer find it on the list. We have to 5212 * still restart the iteration to make sure we're not now 5213 * iterating the wrong list. 5214 */ 5215 if (event->rb == rb) 5216 ring_buffer_attach(event, NULL); 5217 5218 mutex_unlock(&event->mmap_mutex); 5219 put_event(event); 5220 5221 /* 5222 * Restart the iteration; either we're on the wrong list or 5223 * destroyed its integrity by doing a deletion. 5224 */ 5225 goto again; 5226 } 5227 rcu_read_unlock(); 5228 5229 /* 5230 * It could be there's still a few 0-ref events on the list; they'll 5231 * get cleaned up by free_event() -- they'll also still have their 5232 * ref on the rb and will free it whenever they are done with it. 5233 * 5234 * Aside from that, this buffer is 'fully' detached and unmapped, 5235 * undo the VM accounting. 5236 */ 5237 5238 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5239 vma->vm_mm->pinned_vm -= mmap_locked; 5240 free_uid(mmap_user); 5241 5242 out_put: 5243 ring_buffer_put(rb); /* could be last */ 5244 } 5245 5246 static const struct vm_operations_struct perf_mmap_vmops = { 5247 .open = perf_mmap_open, 5248 .close = perf_mmap_close, /* non mergable */ 5249 .fault = perf_mmap_fault, 5250 .page_mkwrite = perf_mmap_fault, 5251 }; 5252 5253 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5254 { 5255 struct perf_event *event = file->private_data; 5256 unsigned long user_locked, user_lock_limit; 5257 struct user_struct *user = current_user(); 5258 unsigned long locked, lock_limit; 5259 struct ring_buffer *rb = NULL; 5260 unsigned long vma_size; 5261 unsigned long nr_pages; 5262 long user_extra = 0, extra = 0; 5263 int ret = 0, flags = 0; 5264 5265 /* 5266 * Don't allow mmap() of inherited per-task counters. This would 5267 * create a performance issue due to all children writing to the 5268 * same rb. 5269 */ 5270 if (event->cpu == -1 && event->attr.inherit) 5271 return -EINVAL; 5272 5273 if (!(vma->vm_flags & VM_SHARED)) 5274 return -EINVAL; 5275 5276 vma_size = vma->vm_end - vma->vm_start; 5277 5278 if (vma->vm_pgoff == 0) { 5279 nr_pages = (vma_size / PAGE_SIZE) - 1; 5280 } else { 5281 /* 5282 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5283 * mapped, all subsequent mappings should have the same size 5284 * and offset. Must be above the normal perf buffer. 5285 */ 5286 u64 aux_offset, aux_size; 5287 5288 if (!event->rb) 5289 return -EINVAL; 5290 5291 nr_pages = vma_size / PAGE_SIZE; 5292 5293 mutex_lock(&event->mmap_mutex); 5294 ret = -EINVAL; 5295 5296 rb = event->rb; 5297 if (!rb) 5298 goto aux_unlock; 5299 5300 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5301 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5302 5303 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5304 goto aux_unlock; 5305 5306 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5307 goto aux_unlock; 5308 5309 /* already mapped with a different offset */ 5310 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5311 goto aux_unlock; 5312 5313 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5314 goto aux_unlock; 5315 5316 /* already mapped with a different size */ 5317 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5318 goto aux_unlock; 5319 5320 if (!is_power_of_2(nr_pages)) 5321 goto aux_unlock; 5322 5323 if (!atomic_inc_not_zero(&rb->mmap_count)) 5324 goto aux_unlock; 5325 5326 if (rb_has_aux(rb)) { 5327 atomic_inc(&rb->aux_mmap_count); 5328 ret = 0; 5329 goto unlock; 5330 } 5331 5332 atomic_set(&rb->aux_mmap_count, 1); 5333 user_extra = nr_pages; 5334 5335 goto accounting; 5336 } 5337 5338 /* 5339 * If we have rb pages ensure they're a power-of-two number, so we 5340 * can do bitmasks instead of modulo. 5341 */ 5342 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5343 return -EINVAL; 5344 5345 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5346 return -EINVAL; 5347 5348 WARN_ON_ONCE(event->ctx->parent_ctx); 5349 again: 5350 mutex_lock(&event->mmap_mutex); 5351 if (event->rb) { 5352 if (event->rb->nr_pages != nr_pages) { 5353 ret = -EINVAL; 5354 goto unlock; 5355 } 5356 5357 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5358 /* 5359 * Raced against perf_mmap_close() through 5360 * perf_event_set_output(). Try again, hope for better 5361 * luck. 5362 */ 5363 mutex_unlock(&event->mmap_mutex); 5364 goto again; 5365 } 5366 5367 goto unlock; 5368 } 5369 5370 user_extra = nr_pages + 1; 5371 5372 accounting: 5373 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5374 5375 /* 5376 * Increase the limit linearly with more CPUs: 5377 */ 5378 user_lock_limit *= num_online_cpus(); 5379 5380 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5381 5382 if (user_locked > user_lock_limit) 5383 extra = user_locked - user_lock_limit; 5384 5385 lock_limit = rlimit(RLIMIT_MEMLOCK); 5386 lock_limit >>= PAGE_SHIFT; 5387 locked = vma->vm_mm->pinned_vm + extra; 5388 5389 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5390 !capable(CAP_IPC_LOCK)) { 5391 ret = -EPERM; 5392 goto unlock; 5393 } 5394 5395 WARN_ON(!rb && event->rb); 5396 5397 if (vma->vm_flags & VM_WRITE) 5398 flags |= RING_BUFFER_WRITABLE; 5399 5400 if (!rb) { 5401 rb = rb_alloc(nr_pages, 5402 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5403 event->cpu, flags); 5404 5405 if (!rb) { 5406 ret = -ENOMEM; 5407 goto unlock; 5408 } 5409 5410 atomic_set(&rb->mmap_count, 1); 5411 rb->mmap_user = get_current_user(); 5412 rb->mmap_locked = extra; 5413 5414 ring_buffer_attach(event, rb); 5415 5416 perf_event_init_userpage(event); 5417 perf_event_update_userpage(event); 5418 } else { 5419 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5420 event->attr.aux_watermark, flags); 5421 if (!ret) 5422 rb->aux_mmap_locked = extra; 5423 } 5424 5425 unlock: 5426 if (!ret) { 5427 atomic_long_add(user_extra, &user->locked_vm); 5428 vma->vm_mm->pinned_vm += extra; 5429 5430 atomic_inc(&event->mmap_count); 5431 } else if (rb) { 5432 atomic_dec(&rb->mmap_count); 5433 } 5434 aux_unlock: 5435 mutex_unlock(&event->mmap_mutex); 5436 5437 /* 5438 * Since pinned accounting is per vm we cannot allow fork() to copy our 5439 * vma. 5440 */ 5441 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5442 vma->vm_ops = &perf_mmap_vmops; 5443 5444 if (event->pmu->event_mapped) 5445 event->pmu->event_mapped(event, vma->vm_mm); 5446 5447 return ret; 5448 } 5449 5450 static int perf_fasync(int fd, struct file *filp, int on) 5451 { 5452 struct inode *inode = file_inode(filp); 5453 struct perf_event *event = filp->private_data; 5454 int retval; 5455 5456 inode_lock(inode); 5457 retval = fasync_helper(fd, filp, on, &event->fasync); 5458 inode_unlock(inode); 5459 5460 if (retval < 0) 5461 return retval; 5462 5463 return 0; 5464 } 5465 5466 static const struct file_operations perf_fops = { 5467 .llseek = no_llseek, 5468 .release = perf_release, 5469 .read = perf_read, 5470 .poll = perf_poll, 5471 .unlocked_ioctl = perf_ioctl, 5472 .compat_ioctl = perf_compat_ioctl, 5473 .mmap = perf_mmap, 5474 .fasync = perf_fasync, 5475 }; 5476 5477 /* 5478 * Perf event wakeup 5479 * 5480 * If there's data, ensure we set the poll() state and publish everything 5481 * to user-space before waking everybody up. 5482 */ 5483 5484 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5485 { 5486 /* only the parent has fasync state */ 5487 if (event->parent) 5488 event = event->parent; 5489 return &event->fasync; 5490 } 5491 5492 void perf_event_wakeup(struct perf_event *event) 5493 { 5494 ring_buffer_wakeup(event); 5495 5496 if (event->pending_kill) { 5497 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5498 event->pending_kill = 0; 5499 } 5500 } 5501 5502 static void perf_pending_event(struct irq_work *entry) 5503 { 5504 struct perf_event *event = container_of(entry, 5505 struct perf_event, pending); 5506 int rctx; 5507 5508 rctx = perf_swevent_get_recursion_context(); 5509 /* 5510 * If we 'fail' here, that's OK, it means recursion is already disabled 5511 * and we won't recurse 'further'. 5512 */ 5513 5514 if (event->pending_disable) { 5515 event->pending_disable = 0; 5516 perf_event_disable_local(event); 5517 } 5518 5519 if (event->pending_wakeup) { 5520 event->pending_wakeup = 0; 5521 perf_event_wakeup(event); 5522 } 5523 5524 if (rctx >= 0) 5525 perf_swevent_put_recursion_context(rctx); 5526 } 5527 5528 /* 5529 * We assume there is only KVM supporting the callbacks. 5530 * Later on, we might change it to a list if there is 5531 * another virtualization implementation supporting the callbacks. 5532 */ 5533 struct perf_guest_info_callbacks *perf_guest_cbs; 5534 5535 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5536 { 5537 perf_guest_cbs = cbs; 5538 return 0; 5539 } 5540 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5541 5542 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5543 { 5544 perf_guest_cbs = NULL; 5545 return 0; 5546 } 5547 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5548 5549 static void 5550 perf_output_sample_regs(struct perf_output_handle *handle, 5551 struct pt_regs *regs, u64 mask) 5552 { 5553 int bit; 5554 DECLARE_BITMAP(_mask, 64); 5555 5556 bitmap_from_u64(_mask, mask); 5557 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5558 u64 val; 5559 5560 val = perf_reg_value(regs, bit); 5561 perf_output_put(handle, val); 5562 } 5563 } 5564 5565 static void perf_sample_regs_user(struct perf_regs *regs_user, 5566 struct pt_regs *regs, 5567 struct pt_regs *regs_user_copy) 5568 { 5569 if (user_mode(regs)) { 5570 regs_user->abi = perf_reg_abi(current); 5571 regs_user->regs = regs; 5572 } else if (current->mm) { 5573 perf_get_regs_user(regs_user, regs, regs_user_copy); 5574 } else { 5575 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5576 regs_user->regs = NULL; 5577 } 5578 } 5579 5580 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5581 struct pt_regs *regs) 5582 { 5583 regs_intr->regs = regs; 5584 regs_intr->abi = perf_reg_abi(current); 5585 } 5586 5587 5588 /* 5589 * Get remaining task size from user stack pointer. 5590 * 5591 * It'd be better to take stack vma map and limit this more 5592 * precisly, but there's no way to get it safely under interrupt, 5593 * so using TASK_SIZE as limit. 5594 */ 5595 static u64 perf_ustack_task_size(struct pt_regs *regs) 5596 { 5597 unsigned long addr = perf_user_stack_pointer(regs); 5598 5599 if (!addr || addr >= TASK_SIZE) 5600 return 0; 5601 5602 return TASK_SIZE - addr; 5603 } 5604 5605 static u16 5606 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5607 struct pt_regs *regs) 5608 { 5609 u64 task_size; 5610 5611 /* No regs, no stack pointer, no dump. */ 5612 if (!regs) 5613 return 0; 5614 5615 /* 5616 * Check if we fit in with the requested stack size into the: 5617 * - TASK_SIZE 5618 * If we don't, we limit the size to the TASK_SIZE. 5619 * 5620 * - remaining sample size 5621 * If we don't, we customize the stack size to 5622 * fit in to the remaining sample size. 5623 */ 5624 5625 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5626 stack_size = min(stack_size, (u16) task_size); 5627 5628 /* Current header size plus static size and dynamic size. */ 5629 header_size += 2 * sizeof(u64); 5630 5631 /* Do we fit in with the current stack dump size? */ 5632 if ((u16) (header_size + stack_size) < header_size) { 5633 /* 5634 * If we overflow the maximum size for the sample, 5635 * we customize the stack dump size to fit in. 5636 */ 5637 stack_size = USHRT_MAX - header_size - sizeof(u64); 5638 stack_size = round_up(stack_size, sizeof(u64)); 5639 } 5640 5641 return stack_size; 5642 } 5643 5644 static void 5645 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5646 struct pt_regs *regs) 5647 { 5648 /* Case of a kernel thread, nothing to dump */ 5649 if (!regs) { 5650 u64 size = 0; 5651 perf_output_put(handle, size); 5652 } else { 5653 unsigned long sp; 5654 unsigned int rem; 5655 u64 dyn_size; 5656 5657 /* 5658 * We dump: 5659 * static size 5660 * - the size requested by user or the best one we can fit 5661 * in to the sample max size 5662 * data 5663 * - user stack dump data 5664 * dynamic size 5665 * - the actual dumped size 5666 */ 5667 5668 /* Static size. */ 5669 perf_output_put(handle, dump_size); 5670 5671 /* Data. */ 5672 sp = perf_user_stack_pointer(regs); 5673 rem = __output_copy_user(handle, (void *) sp, dump_size); 5674 dyn_size = dump_size - rem; 5675 5676 perf_output_skip(handle, rem); 5677 5678 /* Dynamic size. */ 5679 perf_output_put(handle, dyn_size); 5680 } 5681 } 5682 5683 static void __perf_event_header__init_id(struct perf_event_header *header, 5684 struct perf_sample_data *data, 5685 struct perf_event *event) 5686 { 5687 u64 sample_type = event->attr.sample_type; 5688 5689 data->type = sample_type; 5690 header->size += event->id_header_size; 5691 5692 if (sample_type & PERF_SAMPLE_TID) { 5693 /* namespace issues */ 5694 data->tid_entry.pid = perf_event_pid(event, current); 5695 data->tid_entry.tid = perf_event_tid(event, current); 5696 } 5697 5698 if (sample_type & PERF_SAMPLE_TIME) 5699 data->time = perf_event_clock(event); 5700 5701 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5702 data->id = primary_event_id(event); 5703 5704 if (sample_type & PERF_SAMPLE_STREAM_ID) 5705 data->stream_id = event->id; 5706 5707 if (sample_type & PERF_SAMPLE_CPU) { 5708 data->cpu_entry.cpu = raw_smp_processor_id(); 5709 data->cpu_entry.reserved = 0; 5710 } 5711 } 5712 5713 void perf_event_header__init_id(struct perf_event_header *header, 5714 struct perf_sample_data *data, 5715 struct perf_event *event) 5716 { 5717 if (event->attr.sample_id_all) 5718 __perf_event_header__init_id(header, data, event); 5719 } 5720 5721 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5722 struct perf_sample_data *data) 5723 { 5724 u64 sample_type = data->type; 5725 5726 if (sample_type & PERF_SAMPLE_TID) 5727 perf_output_put(handle, data->tid_entry); 5728 5729 if (sample_type & PERF_SAMPLE_TIME) 5730 perf_output_put(handle, data->time); 5731 5732 if (sample_type & PERF_SAMPLE_ID) 5733 perf_output_put(handle, data->id); 5734 5735 if (sample_type & PERF_SAMPLE_STREAM_ID) 5736 perf_output_put(handle, data->stream_id); 5737 5738 if (sample_type & PERF_SAMPLE_CPU) 5739 perf_output_put(handle, data->cpu_entry); 5740 5741 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5742 perf_output_put(handle, data->id); 5743 } 5744 5745 void perf_event__output_id_sample(struct perf_event *event, 5746 struct perf_output_handle *handle, 5747 struct perf_sample_data *sample) 5748 { 5749 if (event->attr.sample_id_all) 5750 __perf_event__output_id_sample(handle, sample); 5751 } 5752 5753 static void perf_output_read_one(struct perf_output_handle *handle, 5754 struct perf_event *event, 5755 u64 enabled, u64 running) 5756 { 5757 u64 read_format = event->attr.read_format; 5758 u64 values[4]; 5759 int n = 0; 5760 5761 values[n++] = perf_event_count(event); 5762 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5763 values[n++] = enabled + 5764 atomic64_read(&event->child_total_time_enabled); 5765 } 5766 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5767 values[n++] = running + 5768 atomic64_read(&event->child_total_time_running); 5769 } 5770 if (read_format & PERF_FORMAT_ID) 5771 values[n++] = primary_event_id(event); 5772 5773 __output_copy(handle, values, n * sizeof(u64)); 5774 } 5775 5776 static void perf_output_read_group(struct perf_output_handle *handle, 5777 struct perf_event *event, 5778 u64 enabled, u64 running) 5779 { 5780 struct perf_event *leader = event->group_leader, *sub; 5781 u64 read_format = event->attr.read_format; 5782 u64 values[5]; 5783 int n = 0; 5784 5785 values[n++] = 1 + leader->nr_siblings; 5786 5787 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5788 values[n++] = enabled; 5789 5790 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5791 values[n++] = running; 5792 5793 if (leader != event) 5794 leader->pmu->read(leader); 5795 5796 values[n++] = perf_event_count(leader); 5797 if (read_format & PERF_FORMAT_ID) 5798 values[n++] = primary_event_id(leader); 5799 5800 __output_copy(handle, values, n * sizeof(u64)); 5801 5802 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5803 n = 0; 5804 5805 if ((sub != event) && 5806 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5807 sub->pmu->read(sub); 5808 5809 values[n++] = perf_event_count(sub); 5810 if (read_format & PERF_FORMAT_ID) 5811 values[n++] = primary_event_id(sub); 5812 5813 __output_copy(handle, values, n * sizeof(u64)); 5814 } 5815 } 5816 5817 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5818 PERF_FORMAT_TOTAL_TIME_RUNNING) 5819 5820 /* 5821 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 5822 * 5823 * The problem is that its both hard and excessively expensive to iterate the 5824 * child list, not to mention that its impossible to IPI the children running 5825 * on another CPU, from interrupt/NMI context. 5826 */ 5827 static void perf_output_read(struct perf_output_handle *handle, 5828 struct perf_event *event) 5829 { 5830 u64 enabled = 0, running = 0, now; 5831 u64 read_format = event->attr.read_format; 5832 5833 /* 5834 * compute total_time_enabled, total_time_running 5835 * based on snapshot values taken when the event 5836 * was last scheduled in. 5837 * 5838 * we cannot simply called update_context_time() 5839 * because of locking issue as we are called in 5840 * NMI context 5841 */ 5842 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5843 calc_timer_values(event, &now, &enabled, &running); 5844 5845 if (event->attr.read_format & PERF_FORMAT_GROUP) 5846 perf_output_read_group(handle, event, enabled, running); 5847 else 5848 perf_output_read_one(handle, event, enabled, running); 5849 } 5850 5851 void perf_output_sample(struct perf_output_handle *handle, 5852 struct perf_event_header *header, 5853 struct perf_sample_data *data, 5854 struct perf_event *event) 5855 { 5856 u64 sample_type = data->type; 5857 5858 perf_output_put(handle, *header); 5859 5860 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5861 perf_output_put(handle, data->id); 5862 5863 if (sample_type & PERF_SAMPLE_IP) 5864 perf_output_put(handle, data->ip); 5865 5866 if (sample_type & PERF_SAMPLE_TID) 5867 perf_output_put(handle, data->tid_entry); 5868 5869 if (sample_type & PERF_SAMPLE_TIME) 5870 perf_output_put(handle, data->time); 5871 5872 if (sample_type & PERF_SAMPLE_ADDR) 5873 perf_output_put(handle, data->addr); 5874 5875 if (sample_type & PERF_SAMPLE_ID) 5876 perf_output_put(handle, data->id); 5877 5878 if (sample_type & PERF_SAMPLE_STREAM_ID) 5879 perf_output_put(handle, data->stream_id); 5880 5881 if (sample_type & PERF_SAMPLE_CPU) 5882 perf_output_put(handle, data->cpu_entry); 5883 5884 if (sample_type & PERF_SAMPLE_PERIOD) 5885 perf_output_put(handle, data->period); 5886 5887 if (sample_type & PERF_SAMPLE_READ) 5888 perf_output_read(handle, event); 5889 5890 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5891 if (data->callchain) { 5892 int size = 1; 5893 5894 if (data->callchain) 5895 size += data->callchain->nr; 5896 5897 size *= sizeof(u64); 5898 5899 __output_copy(handle, data->callchain, size); 5900 } else { 5901 u64 nr = 0; 5902 perf_output_put(handle, nr); 5903 } 5904 } 5905 5906 if (sample_type & PERF_SAMPLE_RAW) { 5907 struct perf_raw_record *raw = data->raw; 5908 5909 if (raw) { 5910 struct perf_raw_frag *frag = &raw->frag; 5911 5912 perf_output_put(handle, raw->size); 5913 do { 5914 if (frag->copy) { 5915 __output_custom(handle, frag->copy, 5916 frag->data, frag->size); 5917 } else { 5918 __output_copy(handle, frag->data, 5919 frag->size); 5920 } 5921 if (perf_raw_frag_last(frag)) 5922 break; 5923 frag = frag->next; 5924 } while (1); 5925 if (frag->pad) 5926 __output_skip(handle, NULL, frag->pad); 5927 } else { 5928 struct { 5929 u32 size; 5930 u32 data; 5931 } raw = { 5932 .size = sizeof(u32), 5933 .data = 0, 5934 }; 5935 perf_output_put(handle, raw); 5936 } 5937 } 5938 5939 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5940 if (data->br_stack) { 5941 size_t size; 5942 5943 size = data->br_stack->nr 5944 * sizeof(struct perf_branch_entry); 5945 5946 perf_output_put(handle, data->br_stack->nr); 5947 perf_output_copy(handle, data->br_stack->entries, size); 5948 } else { 5949 /* 5950 * we always store at least the value of nr 5951 */ 5952 u64 nr = 0; 5953 perf_output_put(handle, nr); 5954 } 5955 } 5956 5957 if (sample_type & PERF_SAMPLE_REGS_USER) { 5958 u64 abi = data->regs_user.abi; 5959 5960 /* 5961 * If there are no regs to dump, notice it through 5962 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5963 */ 5964 perf_output_put(handle, abi); 5965 5966 if (abi) { 5967 u64 mask = event->attr.sample_regs_user; 5968 perf_output_sample_regs(handle, 5969 data->regs_user.regs, 5970 mask); 5971 } 5972 } 5973 5974 if (sample_type & PERF_SAMPLE_STACK_USER) { 5975 perf_output_sample_ustack(handle, 5976 data->stack_user_size, 5977 data->regs_user.regs); 5978 } 5979 5980 if (sample_type & PERF_SAMPLE_WEIGHT) 5981 perf_output_put(handle, data->weight); 5982 5983 if (sample_type & PERF_SAMPLE_DATA_SRC) 5984 perf_output_put(handle, data->data_src.val); 5985 5986 if (sample_type & PERF_SAMPLE_TRANSACTION) 5987 perf_output_put(handle, data->txn); 5988 5989 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5990 u64 abi = data->regs_intr.abi; 5991 /* 5992 * If there are no regs to dump, notice it through 5993 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5994 */ 5995 perf_output_put(handle, abi); 5996 5997 if (abi) { 5998 u64 mask = event->attr.sample_regs_intr; 5999 6000 perf_output_sample_regs(handle, 6001 data->regs_intr.regs, 6002 mask); 6003 } 6004 } 6005 6006 if (!event->attr.watermark) { 6007 int wakeup_events = event->attr.wakeup_events; 6008 6009 if (wakeup_events) { 6010 struct ring_buffer *rb = handle->rb; 6011 int events = local_inc_return(&rb->events); 6012 6013 if (events >= wakeup_events) { 6014 local_sub(wakeup_events, &rb->events); 6015 local_inc(&rb->wakeup); 6016 } 6017 } 6018 } 6019 } 6020 6021 void perf_prepare_sample(struct perf_event_header *header, 6022 struct perf_sample_data *data, 6023 struct perf_event *event, 6024 struct pt_regs *regs) 6025 { 6026 u64 sample_type = event->attr.sample_type; 6027 6028 header->type = PERF_RECORD_SAMPLE; 6029 header->size = sizeof(*header) + event->header_size; 6030 6031 header->misc = 0; 6032 header->misc |= perf_misc_flags(regs); 6033 6034 __perf_event_header__init_id(header, data, event); 6035 6036 if (sample_type & PERF_SAMPLE_IP) 6037 data->ip = perf_instruction_pointer(regs); 6038 6039 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6040 int size = 1; 6041 6042 data->callchain = perf_callchain(event, regs); 6043 6044 if (data->callchain) 6045 size += data->callchain->nr; 6046 6047 header->size += size * sizeof(u64); 6048 } 6049 6050 if (sample_type & PERF_SAMPLE_RAW) { 6051 struct perf_raw_record *raw = data->raw; 6052 int size; 6053 6054 if (raw) { 6055 struct perf_raw_frag *frag = &raw->frag; 6056 u32 sum = 0; 6057 6058 do { 6059 sum += frag->size; 6060 if (perf_raw_frag_last(frag)) 6061 break; 6062 frag = frag->next; 6063 } while (1); 6064 6065 size = round_up(sum + sizeof(u32), sizeof(u64)); 6066 raw->size = size - sizeof(u32); 6067 frag->pad = raw->size - sum; 6068 } else { 6069 size = sizeof(u64); 6070 } 6071 6072 header->size += size; 6073 } 6074 6075 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6076 int size = sizeof(u64); /* nr */ 6077 if (data->br_stack) { 6078 size += data->br_stack->nr 6079 * sizeof(struct perf_branch_entry); 6080 } 6081 header->size += size; 6082 } 6083 6084 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6085 perf_sample_regs_user(&data->regs_user, regs, 6086 &data->regs_user_copy); 6087 6088 if (sample_type & PERF_SAMPLE_REGS_USER) { 6089 /* regs dump ABI info */ 6090 int size = sizeof(u64); 6091 6092 if (data->regs_user.regs) { 6093 u64 mask = event->attr.sample_regs_user; 6094 size += hweight64(mask) * sizeof(u64); 6095 } 6096 6097 header->size += size; 6098 } 6099 6100 if (sample_type & PERF_SAMPLE_STACK_USER) { 6101 /* 6102 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6103 * processed as the last one or have additional check added 6104 * in case new sample type is added, because we could eat 6105 * up the rest of the sample size. 6106 */ 6107 u16 stack_size = event->attr.sample_stack_user; 6108 u16 size = sizeof(u64); 6109 6110 stack_size = perf_sample_ustack_size(stack_size, header->size, 6111 data->regs_user.regs); 6112 6113 /* 6114 * If there is something to dump, add space for the dump 6115 * itself and for the field that tells the dynamic size, 6116 * which is how many have been actually dumped. 6117 */ 6118 if (stack_size) 6119 size += sizeof(u64) + stack_size; 6120 6121 data->stack_user_size = stack_size; 6122 header->size += size; 6123 } 6124 6125 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6126 /* regs dump ABI info */ 6127 int size = sizeof(u64); 6128 6129 perf_sample_regs_intr(&data->regs_intr, regs); 6130 6131 if (data->regs_intr.regs) { 6132 u64 mask = event->attr.sample_regs_intr; 6133 6134 size += hweight64(mask) * sizeof(u64); 6135 } 6136 6137 header->size += size; 6138 } 6139 } 6140 6141 static void __always_inline 6142 __perf_event_output(struct perf_event *event, 6143 struct perf_sample_data *data, 6144 struct pt_regs *regs, 6145 int (*output_begin)(struct perf_output_handle *, 6146 struct perf_event *, 6147 unsigned int)) 6148 { 6149 struct perf_output_handle handle; 6150 struct perf_event_header header; 6151 6152 /* protect the callchain buffers */ 6153 rcu_read_lock(); 6154 6155 perf_prepare_sample(&header, data, event, regs); 6156 6157 if (output_begin(&handle, event, header.size)) 6158 goto exit; 6159 6160 perf_output_sample(&handle, &header, data, event); 6161 6162 perf_output_end(&handle); 6163 6164 exit: 6165 rcu_read_unlock(); 6166 } 6167 6168 void 6169 perf_event_output_forward(struct perf_event *event, 6170 struct perf_sample_data *data, 6171 struct pt_regs *regs) 6172 { 6173 __perf_event_output(event, data, regs, perf_output_begin_forward); 6174 } 6175 6176 void 6177 perf_event_output_backward(struct perf_event *event, 6178 struct perf_sample_data *data, 6179 struct pt_regs *regs) 6180 { 6181 __perf_event_output(event, data, regs, perf_output_begin_backward); 6182 } 6183 6184 void 6185 perf_event_output(struct perf_event *event, 6186 struct perf_sample_data *data, 6187 struct pt_regs *regs) 6188 { 6189 __perf_event_output(event, data, regs, perf_output_begin); 6190 } 6191 6192 /* 6193 * read event_id 6194 */ 6195 6196 struct perf_read_event { 6197 struct perf_event_header header; 6198 6199 u32 pid; 6200 u32 tid; 6201 }; 6202 6203 static void 6204 perf_event_read_event(struct perf_event *event, 6205 struct task_struct *task) 6206 { 6207 struct perf_output_handle handle; 6208 struct perf_sample_data sample; 6209 struct perf_read_event read_event = { 6210 .header = { 6211 .type = PERF_RECORD_READ, 6212 .misc = 0, 6213 .size = sizeof(read_event) + event->read_size, 6214 }, 6215 .pid = perf_event_pid(event, task), 6216 .tid = perf_event_tid(event, task), 6217 }; 6218 int ret; 6219 6220 perf_event_header__init_id(&read_event.header, &sample, event); 6221 ret = perf_output_begin(&handle, event, read_event.header.size); 6222 if (ret) 6223 return; 6224 6225 perf_output_put(&handle, read_event); 6226 perf_output_read(&handle, event); 6227 perf_event__output_id_sample(event, &handle, &sample); 6228 6229 perf_output_end(&handle); 6230 } 6231 6232 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6233 6234 static void 6235 perf_iterate_ctx(struct perf_event_context *ctx, 6236 perf_iterate_f output, 6237 void *data, bool all) 6238 { 6239 struct perf_event *event; 6240 6241 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6242 if (!all) { 6243 if (event->state < PERF_EVENT_STATE_INACTIVE) 6244 continue; 6245 if (!event_filter_match(event)) 6246 continue; 6247 } 6248 6249 output(event, data); 6250 } 6251 } 6252 6253 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6254 { 6255 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6256 struct perf_event *event; 6257 6258 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6259 /* 6260 * Skip events that are not fully formed yet; ensure that 6261 * if we observe event->ctx, both event and ctx will be 6262 * complete enough. See perf_install_in_context(). 6263 */ 6264 if (!smp_load_acquire(&event->ctx)) 6265 continue; 6266 6267 if (event->state < PERF_EVENT_STATE_INACTIVE) 6268 continue; 6269 if (!event_filter_match(event)) 6270 continue; 6271 output(event, data); 6272 } 6273 } 6274 6275 /* 6276 * Iterate all events that need to receive side-band events. 6277 * 6278 * For new callers; ensure that account_pmu_sb_event() includes 6279 * your event, otherwise it might not get delivered. 6280 */ 6281 static void 6282 perf_iterate_sb(perf_iterate_f output, void *data, 6283 struct perf_event_context *task_ctx) 6284 { 6285 struct perf_event_context *ctx; 6286 int ctxn; 6287 6288 rcu_read_lock(); 6289 preempt_disable(); 6290 6291 /* 6292 * If we have task_ctx != NULL we only notify the task context itself. 6293 * The task_ctx is set only for EXIT events before releasing task 6294 * context. 6295 */ 6296 if (task_ctx) { 6297 perf_iterate_ctx(task_ctx, output, data, false); 6298 goto done; 6299 } 6300 6301 perf_iterate_sb_cpu(output, data); 6302 6303 for_each_task_context_nr(ctxn) { 6304 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6305 if (ctx) 6306 perf_iterate_ctx(ctx, output, data, false); 6307 } 6308 done: 6309 preempt_enable(); 6310 rcu_read_unlock(); 6311 } 6312 6313 /* 6314 * Clear all file-based filters at exec, they'll have to be 6315 * re-instated when/if these objects are mmapped again. 6316 */ 6317 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6318 { 6319 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6320 struct perf_addr_filter *filter; 6321 unsigned int restart = 0, count = 0; 6322 unsigned long flags; 6323 6324 if (!has_addr_filter(event)) 6325 return; 6326 6327 raw_spin_lock_irqsave(&ifh->lock, flags); 6328 list_for_each_entry(filter, &ifh->list, entry) { 6329 if (filter->inode) { 6330 event->addr_filters_offs[count] = 0; 6331 restart++; 6332 } 6333 6334 count++; 6335 } 6336 6337 if (restart) 6338 event->addr_filters_gen++; 6339 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6340 6341 if (restart) 6342 perf_event_stop(event, 1); 6343 } 6344 6345 void perf_event_exec(void) 6346 { 6347 struct perf_event_context *ctx; 6348 int ctxn; 6349 6350 rcu_read_lock(); 6351 for_each_task_context_nr(ctxn) { 6352 ctx = current->perf_event_ctxp[ctxn]; 6353 if (!ctx) 6354 continue; 6355 6356 perf_event_enable_on_exec(ctxn); 6357 6358 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6359 true); 6360 } 6361 rcu_read_unlock(); 6362 } 6363 6364 struct remote_output { 6365 struct ring_buffer *rb; 6366 int err; 6367 }; 6368 6369 static void __perf_event_output_stop(struct perf_event *event, void *data) 6370 { 6371 struct perf_event *parent = event->parent; 6372 struct remote_output *ro = data; 6373 struct ring_buffer *rb = ro->rb; 6374 struct stop_event_data sd = { 6375 .event = event, 6376 }; 6377 6378 if (!has_aux(event)) 6379 return; 6380 6381 if (!parent) 6382 parent = event; 6383 6384 /* 6385 * In case of inheritance, it will be the parent that links to the 6386 * ring-buffer, but it will be the child that's actually using it. 6387 * 6388 * We are using event::rb to determine if the event should be stopped, 6389 * however this may race with ring_buffer_attach() (through set_output), 6390 * which will make us skip the event that actually needs to be stopped. 6391 * So ring_buffer_attach() has to stop an aux event before re-assigning 6392 * its rb pointer. 6393 */ 6394 if (rcu_dereference(parent->rb) == rb) 6395 ro->err = __perf_event_stop(&sd); 6396 } 6397 6398 static int __perf_pmu_output_stop(void *info) 6399 { 6400 struct perf_event *event = info; 6401 struct pmu *pmu = event->pmu; 6402 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6403 struct remote_output ro = { 6404 .rb = event->rb, 6405 }; 6406 6407 rcu_read_lock(); 6408 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6409 if (cpuctx->task_ctx) 6410 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6411 &ro, false); 6412 rcu_read_unlock(); 6413 6414 return ro.err; 6415 } 6416 6417 static void perf_pmu_output_stop(struct perf_event *event) 6418 { 6419 struct perf_event *iter; 6420 int err, cpu; 6421 6422 restart: 6423 rcu_read_lock(); 6424 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6425 /* 6426 * For per-CPU events, we need to make sure that neither they 6427 * nor their children are running; for cpu==-1 events it's 6428 * sufficient to stop the event itself if it's active, since 6429 * it can't have children. 6430 */ 6431 cpu = iter->cpu; 6432 if (cpu == -1) 6433 cpu = READ_ONCE(iter->oncpu); 6434 6435 if (cpu == -1) 6436 continue; 6437 6438 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6439 if (err == -EAGAIN) { 6440 rcu_read_unlock(); 6441 goto restart; 6442 } 6443 } 6444 rcu_read_unlock(); 6445 } 6446 6447 /* 6448 * task tracking -- fork/exit 6449 * 6450 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6451 */ 6452 6453 struct perf_task_event { 6454 struct task_struct *task; 6455 struct perf_event_context *task_ctx; 6456 6457 struct { 6458 struct perf_event_header header; 6459 6460 u32 pid; 6461 u32 ppid; 6462 u32 tid; 6463 u32 ptid; 6464 u64 time; 6465 } event_id; 6466 }; 6467 6468 static int perf_event_task_match(struct perf_event *event) 6469 { 6470 return event->attr.comm || event->attr.mmap || 6471 event->attr.mmap2 || event->attr.mmap_data || 6472 event->attr.task; 6473 } 6474 6475 static void perf_event_task_output(struct perf_event *event, 6476 void *data) 6477 { 6478 struct perf_task_event *task_event = data; 6479 struct perf_output_handle handle; 6480 struct perf_sample_data sample; 6481 struct task_struct *task = task_event->task; 6482 int ret, size = task_event->event_id.header.size; 6483 6484 if (!perf_event_task_match(event)) 6485 return; 6486 6487 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6488 6489 ret = perf_output_begin(&handle, event, 6490 task_event->event_id.header.size); 6491 if (ret) 6492 goto out; 6493 6494 task_event->event_id.pid = perf_event_pid(event, task); 6495 task_event->event_id.ppid = perf_event_pid(event, current); 6496 6497 task_event->event_id.tid = perf_event_tid(event, task); 6498 task_event->event_id.ptid = perf_event_tid(event, current); 6499 6500 task_event->event_id.time = perf_event_clock(event); 6501 6502 perf_output_put(&handle, task_event->event_id); 6503 6504 perf_event__output_id_sample(event, &handle, &sample); 6505 6506 perf_output_end(&handle); 6507 out: 6508 task_event->event_id.header.size = size; 6509 } 6510 6511 static void perf_event_task(struct task_struct *task, 6512 struct perf_event_context *task_ctx, 6513 int new) 6514 { 6515 struct perf_task_event task_event; 6516 6517 if (!atomic_read(&nr_comm_events) && 6518 !atomic_read(&nr_mmap_events) && 6519 !atomic_read(&nr_task_events)) 6520 return; 6521 6522 task_event = (struct perf_task_event){ 6523 .task = task, 6524 .task_ctx = task_ctx, 6525 .event_id = { 6526 .header = { 6527 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6528 .misc = 0, 6529 .size = sizeof(task_event.event_id), 6530 }, 6531 /* .pid */ 6532 /* .ppid */ 6533 /* .tid */ 6534 /* .ptid */ 6535 /* .time */ 6536 }, 6537 }; 6538 6539 perf_iterate_sb(perf_event_task_output, 6540 &task_event, 6541 task_ctx); 6542 } 6543 6544 void perf_event_fork(struct task_struct *task) 6545 { 6546 perf_event_task(task, NULL, 1); 6547 perf_event_namespaces(task); 6548 } 6549 6550 /* 6551 * comm tracking 6552 */ 6553 6554 struct perf_comm_event { 6555 struct task_struct *task; 6556 char *comm; 6557 int comm_size; 6558 6559 struct { 6560 struct perf_event_header header; 6561 6562 u32 pid; 6563 u32 tid; 6564 } event_id; 6565 }; 6566 6567 static int perf_event_comm_match(struct perf_event *event) 6568 { 6569 return event->attr.comm; 6570 } 6571 6572 static void perf_event_comm_output(struct perf_event *event, 6573 void *data) 6574 { 6575 struct perf_comm_event *comm_event = data; 6576 struct perf_output_handle handle; 6577 struct perf_sample_data sample; 6578 int size = comm_event->event_id.header.size; 6579 int ret; 6580 6581 if (!perf_event_comm_match(event)) 6582 return; 6583 6584 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6585 ret = perf_output_begin(&handle, event, 6586 comm_event->event_id.header.size); 6587 6588 if (ret) 6589 goto out; 6590 6591 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6592 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6593 6594 perf_output_put(&handle, comm_event->event_id); 6595 __output_copy(&handle, comm_event->comm, 6596 comm_event->comm_size); 6597 6598 perf_event__output_id_sample(event, &handle, &sample); 6599 6600 perf_output_end(&handle); 6601 out: 6602 comm_event->event_id.header.size = size; 6603 } 6604 6605 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6606 { 6607 char comm[TASK_COMM_LEN]; 6608 unsigned int size; 6609 6610 memset(comm, 0, sizeof(comm)); 6611 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6612 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6613 6614 comm_event->comm = comm; 6615 comm_event->comm_size = size; 6616 6617 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6618 6619 perf_iterate_sb(perf_event_comm_output, 6620 comm_event, 6621 NULL); 6622 } 6623 6624 void perf_event_comm(struct task_struct *task, bool exec) 6625 { 6626 struct perf_comm_event comm_event; 6627 6628 if (!atomic_read(&nr_comm_events)) 6629 return; 6630 6631 comm_event = (struct perf_comm_event){ 6632 .task = task, 6633 /* .comm */ 6634 /* .comm_size */ 6635 .event_id = { 6636 .header = { 6637 .type = PERF_RECORD_COMM, 6638 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6639 /* .size */ 6640 }, 6641 /* .pid */ 6642 /* .tid */ 6643 }, 6644 }; 6645 6646 perf_event_comm_event(&comm_event); 6647 } 6648 6649 /* 6650 * namespaces tracking 6651 */ 6652 6653 struct perf_namespaces_event { 6654 struct task_struct *task; 6655 6656 struct { 6657 struct perf_event_header header; 6658 6659 u32 pid; 6660 u32 tid; 6661 u64 nr_namespaces; 6662 struct perf_ns_link_info link_info[NR_NAMESPACES]; 6663 } event_id; 6664 }; 6665 6666 static int perf_event_namespaces_match(struct perf_event *event) 6667 { 6668 return event->attr.namespaces; 6669 } 6670 6671 static void perf_event_namespaces_output(struct perf_event *event, 6672 void *data) 6673 { 6674 struct perf_namespaces_event *namespaces_event = data; 6675 struct perf_output_handle handle; 6676 struct perf_sample_data sample; 6677 int ret; 6678 6679 if (!perf_event_namespaces_match(event)) 6680 return; 6681 6682 perf_event_header__init_id(&namespaces_event->event_id.header, 6683 &sample, event); 6684 ret = perf_output_begin(&handle, event, 6685 namespaces_event->event_id.header.size); 6686 if (ret) 6687 return; 6688 6689 namespaces_event->event_id.pid = perf_event_pid(event, 6690 namespaces_event->task); 6691 namespaces_event->event_id.tid = perf_event_tid(event, 6692 namespaces_event->task); 6693 6694 perf_output_put(&handle, namespaces_event->event_id); 6695 6696 perf_event__output_id_sample(event, &handle, &sample); 6697 6698 perf_output_end(&handle); 6699 } 6700 6701 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 6702 struct task_struct *task, 6703 const struct proc_ns_operations *ns_ops) 6704 { 6705 struct path ns_path; 6706 struct inode *ns_inode; 6707 void *error; 6708 6709 error = ns_get_path(&ns_path, task, ns_ops); 6710 if (!error) { 6711 ns_inode = ns_path.dentry->d_inode; 6712 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 6713 ns_link_info->ino = ns_inode->i_ino; 6714 } 6715 } 6716 6717 void perf_event_namespaces(struct task_struct *task) 6718 { 6719 struct perf_namespaces_event namespaces_event; 6720 struct perf_ns_link_info *ns_link_info; 6721 6722 if (!atomic_read(&nr_namespaces_events)) 6723 return; 6724 6725 namespaces_event = (struct perf_namespaces_event){ 6726 .task = task, 6727 .event_id = { 6728 .header = { 6729 .type = PERF_RECORD_NAMESPACES, 6730 .misc = 0, 6731 .size = sizeof(namespaces_event.event_id), 6732 }, 6733 /* .pid */ 6734 /* .tid */ 6735 .nr_namespaces = NR_NAMESPACES, 6736 /* .link_info[NR_NAMESPACES] */ 6737 }, 6738 }; 6739 6740 ns_link_info = namespaces_event.event_id.link_info; 6741 6742 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 6743 task, &mntns_operations); 6744 6745 #ifdef CONFIG_USER_NS 6746 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 6747 task, &userns_operations); 6748 #endif 6749 #ifdef CONFIG_NET_NS 6750 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 6751 task, &netns_operations); 6752 #endif 6753 #ifdef CONFIG_UTS_NS 6754 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 6755 task, &utsns_operations); 6756 #endif 6757 #ifdef CONFIG_IPC_NS 6758 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 6759 task, &ipcns_operations); 6760 #endif 6761 #ifdef CONFIG_PID_NS 6762 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 6763 task, &pidns_operations); 6764 #endif 6765 #ifdef CONFIG_CGROUPS 6766 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 6767 task, &cgroupns_operations); 6768 #endif 6769 6770 perf_iterate_sb(perf_event_namespaces_output, 6771 &namespaces_event, 6772 NULL); 6773 } 6774 6775 /* 6776 * mmap tracking 6777 */ 6778 6779 struct perf_mmap_event { 6780 struct vm_area_struct *vma; 6781 6782 const char *file_name; 6783 int file_size; 6784 int maj, min; 6785 u64 ino; 6786 u64 ino_generation; 6787 u32 prot, flags; 6788 6789 struct { 6790 struct perf_event_header header; 6791 6792 u32 pid; 6793 u32 tid; 6794 u64 start; 6795 u64 len; 6796 u64 pgoff; 6797 } event_id; 6798 }; 6799 6800 static int perf_event_mmap_match(struct perf_event *event, 6801 void *data) 6802 { 6803 struct perf_mmap_event *mmap_event = data; 6804 struct vm_area_struct *vma = mmap_event->vma; 6805 int executable = vma->vm_flags & VM_EXEC; 6806 6807 return (!executable && event->attr.mmap_data) || 6808 (executable && (event->attr.mmap || event->attr.mmap2)); 6809 } 6810 6811 static void perf_event_mmap_output(struct perf_event *event, 6812 void *data) 6813 { 6814 struct perf_mmap_event *mmap_event = data; 6815 struct perf_output_handle handle; 6816 struct perf_sample_data sample; 6817 int size = mmap_event->event_id.header.size; 6818 int ret; 6819 6820 if (!perf_event_mmap_match(event, data)) 6821 return; 6822 6823 if (event->attr.mmap2) { 6824 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6825 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6826 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6827 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6828 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6829 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6830 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6831 } 6832 6833 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6834 ret = perf_output_begin(&handle, event, 6835 mmap_event->event_id.header.size); 6836 if (ret) 6837 goto out; 6838 6839 mmap_event->event_id.pid = perf_event_pid(event, current); 6840 mmap_event->event_id.tid = perf_event_tid(event, current); 6841 6842 perf_output_put(&handle, mmap_event->event_id); 6843 6844 if (event->attr.mmap2) { 6845 perf_output_put(&handle, mmap_event->maj); 6846 perf_output_put(&handle, mmap_event->min); 6847 perf_output_put(&handle, mmap_event->ino); 6848 perf_output_put(&handle, mmap_event->ino_generation); 6849 perf_output_put(&handle, mmap_event->prot); 6850 perf_output_put(&handle, mmap_event->flags); 6851 } 6852 6853 __output_copy(&handle, mmap_event->file_name, 6854 mmap_event->file_size); 6855 6856 perf_event__output_id_sample(event, &handle, &sample); 6857 6858 perf_output_end(&handle); 6859 out: 6860 mmap_event->event_id.header.size = size; 6861 } 6862 6863 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6864 { 6865 struct vm_area_struct *vma = mmap_event->vma; 6866 struct file *file = vma->vm_file; 6867 int maj = 0, min = 0; 6868 u64 ino = 0, gen = 0; 6869 u32 prot = 0, flags = 0; 6870 unsigned int size; 6871 char tmp[16]; 6872 char *buf = NULL; 6873 char *name; 6874 6875 if (vma->vm_flags & VM_READ) 6876 prot |= PROT_READ; 6877 if (vma->vm_flags & VM_WRITE) 6878 prot |= PROT_WRITE; 6879 if (vma->vm_flags & VM_EXEC) 6880 prot |= PROT_EXEC; 6881 6882 if (vma->vm_flags & VM_MAYSHARE) 6883 flags = MAP_SHARED; 6884 else 6885 flags = MAP_PRIVATE; 6886 6887 if (vma->vm_flags & VM_DENYWRITE) 6888 flags |= MAP_DENYWRITE; 6889 if (vma->vm_flags & VM_MAYEXEC) 6890 flags |= MAP_EXECUTABLE; 6891 if (vma->vm_flags & VM_LOCKED) 6892 flags |= MAP_LOCKED; 6893 if (vma->vm_flags & VM_HUGETLB) 6894 flags |= MAP_HUGETLB; 6895 6896 if (file) { 6897 struct inode *inode; 6898 dev_t dev; 6899 6900 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6901 if (!buf) { 6902 name = "//enomem"; 6903 goto cpy_name; 6904 } 6905 /* 6906 * d_path() works from the end of the rb backwards, so we 6907 * need to add enough zero bytes after the string to handle 6908 * the 64bit alignment we do later. 6909 */ 6910 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6911 if (IS_ERR(name)) { 6912 name = "//toolong"; 6913 goto cpy_name; 6914 } 6915 inode = file_inode(vma->vm_file); 6916 dev = inode->i_sb->s_dev; 6917 ino = inode->i_ino; 6918 gen = inode->i_generation; 6919 maj = MAJOR(dev); 6920 min = MINOR(dev); 6921 6922 goto got_name; 6923 } else { 6924 if (vma->vm_ops && vma->vm_ops->name) { 6925 name = (char *) vma->vm_ops->name(vma); 6926 if (name) 6927 goto cpy_name; 6928 } 6929 6930 name = (char *)arch_vma_name(vma); 6931 if (name) 6932 goto cpy_name; 6933 6934 if (vma->vm_start <= vma->vm_mm->start_brk && 6935 vma->vm_end >= vma->vm_mm->brk) { 6936 name = "[heap]"; 6937 goto cpy_name; 6938 } 6939 if (vma->vm_start <= vma->vm_mm->start_stack && 6940 vma->vm_end >= vma->vm_mm->start_stack) { 6941 name = "[stack]"; 6942 goto cpy_name; 6943 } 6944 6945 name = "//anon"; 6946 goto cpy_name; 6947 } 6948 6949 cpy_name: 6950 strlcpy(tmp, name, sizeof(tmp)); 6951 name = tmp; 6952 got_name: 6953 /* 6954 * Since our buffer works in 8 byte units we need to align our string 6955 * size to a multiple of 8. However, we must guarantee the tail end is 6956 * zero'd out to avoid leaking random bits to userspace. 6957 */ 6958 size = strlen(name)+1; 6959 while (!IS_ALIGNED(size, sizeof(u64))) 6960 name[size++] = '\0'; 6961 6962 mmap_event->file_name = name; 6963 mmap_event->file_size = size; 6964 mmap_event->maj = maj; 6965 mmap_event->min = min; 6966 mmap_event->ino = ino; 6967 mmap_event->ino_generation = gen; 6968 mmap_event->prot = prot; 6969 mmap_event->flags = flags; 6970 6971 if (!(vma->vm_flags & VM_EXEC)) 6972 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6973 6974 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6975 6976 perf_iterate_sb(perf_event_mmap_output, 6977 mmap_event, 6978 NULL); 6979 6980 kfree(buf); 6981 } 6982 6983 /* 6984 * Check whether inode and address range match filter criteria. 6985 */ 6986 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6987 struct file *file, unsigned long offset, 6988 unsigned long size) 6989 { 6990 if (filter->inode != file_inode(file)) 6991 return false; 6992 6993 if (filter->offset > offset + size) 6994 return false; 6995 6996 if (filter->offset + filter->size < offset) 6997 return false; 6998 6999 return true; 7000 } 7001 7002 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7003 { 7004 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7005 struct vm_area_struct *vma = data; 7006 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7007 struct file *file = vma->vm_file; 7008 struct perf_addr_filter *filter; 7009 unsigned int restart = 0, count = 0; 7010 7011 if (!has_addr_filter(event)) 7012 return; 7013 7014 if (!file) 7015 return; 7016 7017 raw_spin_lock_irqsave(&ifh->lock, flags); 7018 list_for_each_entry(filter, &ifh->list, entry) { 7019 if (perf_addr_filter_match(filter, file, off, 7020 vma->vm_end - vma->vm_start)) { 7021 event->addr_filters_offs[count] = vma->vm_start; 7022 restart++; 7023 } 7024 7025 count++; 7026 } 7027 7028 if (restart) 7029 event->addr_filters_gen++; 7030 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7031 7032 if (restart) 7033 perf_event_stop(event, 1); 7034 } 7035 7036 /* 7037 * Adjust all task's events' filters to the new vma 7038 */ 7039 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7040 { 7041 struct perf_event_context *ctx; 7042 int ctxn; 7043 7044 /* 7045 * Data tracing isn't supported yet and as such there is no need 7046 * to keep track of anything that isn't related to executable code: 7047 */ 7048 if (!(vma->vm_flags & VM_EXEC)) 7049 return; 7050 7051 rcu_read_lock(); 7052 for_each_task_context_nr(ctxn) { 7053 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7054 if (!ctx) 7055 continue; 7056 7057 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7058 } 7059 rcu_read_unlock(); 7060 } 7061 7062 void perf_event_mmap(struct vm_area_struct *vma) 7063 { 7064 struct perf_mmap_event mmap_event; 7065 7066 if (!atomic_read(&nr_mmap_events)) 7067 return; 7068 7069 mmap_event = (struct perf_mmap_event){ 7070 .vma = vma, 7071 /* .file_name */ 7072 /* .file_size */ 7073 .event_id = { 7074 .header = { 7075 .type = PERF_RECORD_MMAP, 7076 .misc = PERF_RECORD_MISC_USER, 7077 /* .size */ 7078 }, 7079 /* .pid */ 7080 /* .tid */ 7081 .start = vma->vm_start, 7082 .len = vma->vm_end - vma->vm_start, 7083 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7084 }, 7085 /* .maj (attr_mmap2 only) */ 7086 /* .min (attr_mmap2 only) */ 7087 /* .ino (attr_mmap2 only) */ 7088 /* .ino_generation (attr_mmap2 only) */ 7089 /* .prot (attr_mmap2 only) */ 7090 /* .flags (attr_mmap2 only) */ 7091 }; 7092 7093 perf_addr_filters_adjust(vma); 7094 perf_event_mmap_event(&mmap_event); 7095 } 7096 7097 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7098 unsigned long size, u64 flags) 7099 { 7100 struct perf_output_handle handle; 7101 struct perf_sample_data sample; 7102 struct perf_aux_event { 7103 struct perf_event_header header; 7104 u64 offset; 7105 u64 size; 7106 u64 flags; 7107 } rec = { 7108 .header = { 7109 .type = PERF_RECORD_AUX, 7110 .misc = 0, 7111 .size = sizeof(rec), 7112 }, 7113 .offset = head, 7114 .size = size, 7115 .flags = flags, 7116 }; 7117 int ret; 7118 7119 perf_event_header__init_id(&rec.header, &sample, event); 7120 ret = perf_output_begin(&handle, event, rec.header.size); 7121 7122 if (ret) 7123 return; 7124 7125 perf_output_put(&handle, rec); 7126 perf_event__output_id_sample(event, &handle, &sample); 7127 7128 perf_output_end(&handle); 7129 } 7130 7131 /* 7132 * Lost/dropped samples logging 7133 */ 7134 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7135 { 7136 struct perf_output_handle handle; 7137 struct perf_sample_data sample; 7138 int ret; 7139 7140 struct { 7141 struct perf_event_header header; 7142 u64 lost; 7143 } lost_samples_event = { 7144 .header = { 7145 .type = PERF_RECORD_LOST_SAMPLES, 7146 .misc = 0, 7147 .size = sizeof(lost_samples_event), 7148 }, 7149 .lost = lost, 7150 }; 7151 7152 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7153 7154 ret = perf_output_begin(&handle, event, 7155 lost_samples_event.header.size); 7156 if (ret) 7157 return; 7158 7159 perf_output_put(&handle, lost_samples_event); 7160 perf_event__output_id_sample(event, &handle, &sample); 7161 perf_output_end(&handle); 7162 } 7163 7164 /* 7165 * context_switch tracking 7166 */ 7167 7168 struct perf_switch_event { 7169 struct task_struct *task; 7170 struct task_struct *next_prev; 7171 7172 struct { 7173 struct perf_event_header header; 7174 u32 next_prev_pid; 7175 u32 next_prev_tid; 7176 } event_id; 7177 }; 7178 7179 static int perf_event_switch_match(struct perf_event *event) 7180 { 7181 return event->attr.context_switch; 7182 } 7183 7184 static void perf_event_switch_output(struct perf_event *event, void *data) 7185 { 7186 struct perf_switch_event *se = data; 7187 struct perf_output_handle handle; 7188 struct perf_sample_data sample; 7189 int ret; 7190 7191 if (!perf_event_switch_match(event)) 7192 return; 7193 7194 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7195 if (event->ctx->task) { 7196 se->event_id.header.type = PERF_RECORD_SWITCH; 7197 se->event_id.header.size = sizeof(se->event_id.header); 7198 } else { 7199 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7200 se->event_id.header.size = sizeof(se->event_id); 7201 se->event_id.next_prev_pid = 7202 perf_event_pid(event, se->next_prev); 7203 se->event_id.next_prev_tid = 7204 perf_event_tid(event, se->next_prev); 7205 } 7206 7207 perf_event_header__init_id(&se->event_id.header, &sample, event); 7208 7209 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7210 if (ret) 7211 return; 7212 7213 if (event->ctx->task) 7214 perf_output_put(&handle, se->event_id.header); 7215 else 7216 perf_output_put(&handle, se->event_id); 7217 7218 perf_event__output_id_sample(event, &handle, &sample); 7219 7220 perf_output_end(&handle); 7221 } 7222 7223 static void perf_event_switch(struct task_struct *task, 7224 struct task_struct *next_prev, bool sched_in) 7225 { 7226 struct perf_switch_event switch_event; 7227 7228 /* N.B. caller checks nr_switch_events != 0 */ 7229 7230 switch_event = (struct perf_switch_event){ 7231 .task = task, 7232 .next_prev = next_prev, 7233 .event_id = { 7234 .header = { 7235 /* .type */ 7236 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7237 /* .size */ 7238 }, 7239 /* .next_prev_pid */ 7240 /* .next_prev_tid */ 7241 }, 7242 }; 7243 7244 perf_iterate_sb(perf_event_switch_output, 7245 &switch_event, 7246 NULL); 7247 } 7248 7249 /* 7250 * IRQ throttle logging 7251 */ 7252 7253 static void perf_log_throttle(struct perf_event *event, int enable) 7254 { 7255 struct perf_output_handle handle; 7256 struct perf_sample_data sample; 7257 int ret; 7258 7259 struct { 7260 struct perf_event_header header; 7261 u64 time; 7262 u64 id; 7263 u64 stream_id; 7264 } throttle_event = { 7265 .header = { 7266 .type = PERF_RECORD_THROTTLE, 7267 .misc = 0, 7268 .size = sizeof(throttle_event), 7269 }, 7270 .time = perf_event_clock(event), 7271 .id = primary_event_id(event), 7272 .stream_id = event->id, 7273 }; 7274 7275 if (enable) 7276 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7277 7278 perf_event_header__init_id(&throttle_event.header, &sample, event); 7279 7280 ret = perf_output_begin(&handle, event, 7281 throttle_event.header.size); 7282 if (ret) 7283 return; 7284 7285 perf_output_put(&handle, throttle_event); 7286 perf_event__output_id_sample(event, &handle, &sample); 7287 perf_output_end(&handle); 7288 } 7289 7290 static void perf_log_itrace_start(struct perf_event *event) 7291 { 7292 struct perf_output_handle handle; 7293 struct perf_sample_data sample; 7294 struct perf_aux_event { 7295 struct perf_event_header header; 7296 u32 pid; 7297 u32 tid; 7298 } rec; 7299 int ret; 7300 7301 if (event->parent) 7302 event = event->parent; 7303 7304 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7305 event->hw.itrace_started) 7306 return; 7307 7308 rec.header.type = PERF_RECORD_ITRACE_START; 7309 rec.header.misc = 0; 7310 rec.header.size = sizeof(rec); 7311 rec.pid = perf_event_pid(event, current); 7312 rec.tid = perf_event_tid(event, current); 7313 7314 perf_event_header__init_id(&rec.header, &sample, event); 7315 ret = perf_output_begin(&handle, event, rec.header.size); 7316 7317 if (ret) 7318 return; 7319 7320 perf_output_put(&handle, rec); 7321 perf_event__output_id_sample(event, &handle, &sample); 7322 7323 perf_output_end(&handle); 7324 } 7325 7326 static int 7327 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7328 { 7329 struct hw_perf_event *hwc = &event->hw; 7330 int ret = 0; 7331 u64 seq; 7332 7333 seq = __this_cpu_read(perf_throttled_seq); 7334 if (seq != hwc->interrupts_seq) { 7335 hwc->interrupts_seq = seq; 7336 hwc->interrupts = 1; 7337 } else { 7338 hwc->interrupts++; 7339 if (unlikely(throttle 7340 && hwc->interrupts >= max_samples_per_tick)) { 7341 __this_cpu_inc(perf_throttled_count); 7342 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7343 hwc->interrupts = MAX_INTERRUPTS; 7344 perf_log_throttle(event, 0); 7345 ret = 1; 7346 } 7347 } 7348 7349 if (event->attr.freq) { 7350 u64 now = perf_clock(); 7351 s64 delta = now - hwc->freq_time_stamp; 7352 7353 hwc->freq_time_stamp = now; 7354 7355 if (delta > 0 && delta < 2*TICK_NSEC) 7356 perf_adjust_period(event, delta, hwc->last_period, true); 7357 } 7358 7359 return ret; 7360 } 7361 7362 int perf_event_account_interrupt(struct perf_event *event) 7363 { 7364 return __perf_event_account_interrupt(event, 1); 7365 } 7366 7367 /* 7368 * Generic event overflow handling, sampling. 7369 */ 7370 7371 static int __perf_event_overflow(struct perf_event *event, 7372 int throttle, struct perf_sample_data *data, 7373 struct pt_regs *regs) 7374 { 7375 int events = atomic_read(&event->event_limit); 7376 int ret = 0; 7377 7378 /* 7379 * Non-sampling counters might still use the PMI to fold short 7380 * hardware counters, ignore those. 7381 */ 7382 if (unlikely(!is_sampling_event(event))) 7383 return 0; 7384 7385 ret = __perf_event_account_interrupt(event, throttle); 7386 7387 /* 7388 * XXX event_limit might not quite work as expected on inherited 7389 * events 7390 */ 7391 7392 event->pending_kill = POLL_IN; 7393 if (events && atomic_dec_and_test(&event->event_limit)) { 7394 ret = 1; 7395 event->pending_kill = POLL_HUP; 7396 7397 perf_event_disable_inatomic(event); 7398 } 7399 7400 READ_ONCE(event->overflow_handler)(event, data, regs); 7401 7402 if (*perf_event_fasync(event) && event->pending_kill) { 7403 event->pending_wakeup = 1; 7404 irq_work_queue(&event->pending); 7405 } 7406 7407 return ret; 7408 } 7409 7410 int perf_event_overflow(struct perf_event *event, 7411 struct perf_sample_data *data, 7412 struct pt_regs *regs) 7413 { 7414 return __perf_event_overflow(event, 1, data, regs); 7415 } 7416 7417 /* 7418 * Generic software event infrastructure 7419 */ 7420 7421 struct swevent_htable { 7422 struct swevent_hlist *swevent_hlist; 7423 struct mutex hlist_mutex; 7424 int hlist_refcount; 7425 7426 /* Recursion avoidance in each contexts */ 7427 int recursion[PERF_NR_CONTEXTS]; 7428 }; 7429 7430 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7431 7432 /* 7433 * We directly increment event->count and keep a second value in 7434 * event->hw.period_left to count intervals. This period event 7435 * is kept in the range [-sample_period, 0] so that we can use the 7436 * sign as trigger. 7437 */ 7438 7439 u64 perf_swevent_set_period(struct perf_event *event) 7440 { 7441 struct hw_perf_event *hwc = &event->hw; 7442 u64 period = hwc->last_period; 7443 u64 nr, offset; 7444 s64 old, val; 7445 7446 hwc->last_period = hwc->sample_period; 7447 7448 again: 7449 old = val = local64_read(&hwc->period_left); 7450 if (val < 0) 7451 return 0; 7452 7453 nr = div64_u64(period + val, period); 7454 offset = nr * period; 7455 val -= offset; 7456 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7457 goto again; 7458 7459 return nr; 7460 } 7461 7462 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7463 struct perf_sample_data *data, 7464 struct pt_regs *regs) 7465 { 7466 struct hw_perf_event *hwc = &event->hw; 7467 int throttle = 0; 7468 7469 if (!overflow) 7470 overflow = perf_swevent_set_period(event); 7471 7472 if (hwc->interrupts == MAX_INTERRUPTS) 7473 return; 7474 7475 for (; overflow; overflow--) { 7476 if (__perf_event_overflow(event, throttle, 7477 data, regs)) { 7478 /* 7479 * We inhibit the overflow from happening when 7480 * hwc->interrupts == MAX_INTERRUPTS. 7481 */ 7482 break; 7483 } 7484 throttle = 1; 7485 } 7486 } 7487 7488 static void perf_swevent_event(struct perf_event *event, u64 nr, 7489 struct perf_sample_data *data, 7490 struct pt_regs *regs) 7491 { 7492 struct hw_perf_event *hwc = &event->hw; 7493 7494 local64_add(nr, &event->count); 7495 7496 if (!regs) 7497 return; 7498 7499 if (!is_sampling_event(event)) 7500 return; 7501 7502 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7503 data->period = nr; 7504 return perf_swevent_overflow(event, 1, data, regs); 7505 } else 7506 data->period = event->hw.last_period; 7507 7508 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7509 return perf_swevent_overflow(event, 1, data, regs); 7510 7511 if (local64_add_negative(nr, &hwc->period_left)) 7512 return; 7513 7514 perf_swevent_overflow(event, 0, data, regs); 7515 } 7516 7517 static int perf_exclude_event(struct perf_event *event, 7518 struct pt_regs *regs) 7519 { 7520 if (event->hw.state & PERF_HES_STOPPED) 7521 return 1; 7522 7523 if (regs) { 7524 if (event->attr.exclude_user && user_mode(regs)) 7525 return 1; 7526 7527 if (event->attr.exclude_kernel && !user_mode(regs)) 7528 return 1; 7529 } 7530 7531 return 0; 7532 } 7533 7534 static int perf_swevent_match(struct perf_event *event, 7535 enum perf_type_id type, 7536 u32 event_id, 7537 struct perf_sample_data *data, 7538 struct pt_regs *regs) 7539 { 7540 if (event->attr.type != type) 7541 return 0; 7542 7543 if (event->attr.config != event_id) 7544 return 0; 7545 7546 if (perf_exclude_event(event, regs)) 7547 return 0; 7548 7549 return 1; 7550 } 7551 7552 static inline u64 swevent_hash(u64 type, u32 event_id) 7553 { 7554 u64 val = event_id | (type << 32); 7555 7556 return hash_64(val, SWEVENT_HLIST_BITS); 7557 } 7558 7559 static inline struct hlist_head * 7560 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7561 { 7562 u64 hash = swevent_hash(type, event_id); 7563 7564 return &hlist->heads[hash]; 7565 } 7566 7567 /* For the read side: events when they trigger */ 7568 static inline struct hlist_head * 7569 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7570 { 7571 struct swevent_hlist *hlist; 7572 7573 hlist = rcu_dereference(swhash->swevent_hlist); 7574 if (!hlist) 7575 return NULL; 7576 7577 return __find_swevent_head(hlist, type, event_id); 7578 } 7579 7580 /* For the event head insertion and removal in the hlist */ 7581 static inline struct hlist_head * 7582 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7583 { 7584 struct swevent_hlist *hlist; 7585 u32 event_id = event->attr.config; 7586 u64 type = event->attr.type; 7587 7588 /* 7589 * Event scheduling is always serialized against hlist allocation 7590 * and release. Which makes the protected version suitable here. 7591 * The context lock guarantees that. 7592 */ 7593 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7594 lockdep_is_held(&event->ctx->lock)); 7595 if (!hlist) 7596 return NULL; 7597 7598 return __find_swevent_head(hlist, type, event_id); 7599 } 7600 7601 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7602 u64 nr, 7603 struct perf_sample_data *data, 7604 struct pt_regs *regs) 7605 { 7606 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7607 struct perf_event *event; 7608 struct hlist_head *head; 7609 7610 rcu_read_lock(); 7611 head = find_swevent_head_rcu(swhash, type, event_id); 7612 if (!head) 7613 goto end; 7614 7615 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7616 if (perf_swevent_match(event, type, event_id, data, regs)) 7617 perf_swevent_event(event, nr, data, regs); 7618 } 7619 end: 7620 rcu_read_unlock(); 7621 } 7622 7623 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7624 7625 int perf_swevent_get_recursion_context(void) 7626 { 7627 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7628 7629 return get_recursion_context(swhash->recursion); 7630 } 7631 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7632 7633 void perf_swevent_put_recursion_context(int rctx) 7634 { 7635 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7636 7637 put_recursion_context(swhash->recursion, rctx); 7638 } 7639 7640 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7641 { 7642 struct perf_sample_data data; 7643 7644 if (WARN_ON_ONCE(!regs)) 7645 return; 7646 7647 perf_sample_data_init(&data, addr, 0); 7648 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7649 } 7650 7651 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7652 { 7653 int rctx; 7654 7655 preempt_disable_notrace(); 7656 rctx = perf_swevent_get_recursion_context(); 7657 if (unlikely(rctx < 0)) 7658 goto fail; 7659 7660 ___perf_sw_event(event_id, nr, regs, addr); 7661 7662 perf_swevent_put_recursion_context(rctx); 7663 fail: 7664 preempt_enable_notrace(); 7665 } 7666 7667 static void perf_swevent_read(struct perf_event *event) 7668 { 7669 } 7670 7671 static int perf_swevent_add(struct perf_event *event, int flags) 7672 { 7673 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7674 struct hw_perf_event *hwc = &event->hw; 7675 struct hlist_head *head; 7676 7677 if (is_sampling_event(event)) { 7678 hwc->last_period = hwc->sample_period; 7679 perf_swevent_set_period(event); 7680 } 7681 7682 hwc->state = !(flags & PERF_EF_START); 7683 7684 head = find_swevent_head(swhash, event); 7685 if (WARN_ON_ONCE(!head)) 7686 return -EINVAL; 7687 7688 hlist_add_head_rcu(&event->hlist_entry, head); 7689 perf_event_update_userpage(event); 7690 7691 return 0; 7692 } 7693 7694 static void perf_swevent_del(struct perf_event *event, int flags) 7695 { 7696 hlist_del_rcu(&event->hlist_entry); 7697 } 7698 7699 static void perf_swevent_start(struct perf_event *event, int flags) 7700 { 7701 event->hw.state = 0; 7702 } 7703 7704 static void perf_swevent_stop(struct perf_event *event, int flags) 7705 { 7706 event->hw.state = PERF_HES_STOPPED; 7707 } 7708 7709 /* Deref the hlist from the update side */ 7710 static inline struct swevent_hlist * 7711 swevent_hlist_deref(struct swevent_htable *swhash) 7712 { 7713 return rcu_dereference_protected(swhash->swevent_hlist, 7714 lockdep_is_held(&swhash->hlist_mutex)); 7715 } 7716 7717 static void swevent_hlist_release(struct swevent_htable *swhash) 7718 { 7719 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7720 7721 if (!hlist) 7722 return; 7723 7724 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7725 kfree_rcu(hlist, rcu_head); 7726 } 7727 7728 static void swevent_hlist_put_cpu(int cpu) 7729 { 7730 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7731 7732 mutex_lock(&swhash->hlist_mutex); 7733 7734 if (!--swhash->hlist_refcount) 7735 swevent_hlist_release(swhash); 7736 7737 mutex_unlock(&swhash->hlist_mutex); 7738 } 7739 7740 static void swevent_hlist_put(void) 7741 { 7742 int cpu; 7743 7744 for_each_possible_cpu(cpu) 7745 swevent_hlist_put_cpu(cpu); 7746 } 7747 7748 static int swevent_hlist_get_cpu(int cpu) 7749 { 7750 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7751 int err = 0; 7752 7753 mutex_lock(&swhash->hlist_mutex); 7754 if (!swevent_hlist_deref(swhash) && 7755 cpumask_test_cpu(cpu, perf_online_mask)) { 7756 struct swevent_hlist *hlist; 7757 7758 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7759 if (!hlist) { 7760 err = -ENOMEM; 7761 goto exit; 7762 } 7763 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7764 } 7765 swhash->hlist_refcount++; 7766 exit: 7767 mutex_unlock(&swhash->hlist_mutex); 7768 7769 return err; 7770 } 7771 7772 static int swevent_hlist_get(void) 7773 { 7774 int err, cpu, failed_cpu; 7775 7776 mutex_lock(&pmus_lock); 7777 for_each_possible_cpu(cpu) { 7778 err = swevent_hlist_get_cpu(cpu); 7779 if (err) { 7780 failed_cpu = cpu; 7781 goto fail; 7782 } 7783 } 7784 mutex_unlock(&pmus_lock); 7785 return 0; 7786 fail: 7787 for_each_possible_cpu(cpu) { 7788 if (cpu == failed_cpu) 7789 break; 7790 swevent_hlist_put_cpu(cpu); 7791 } 7792 mutex_unlock(&pmus_lock); 7793 return err; 7794 } 7795 7796 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7797 7798 static void sw_perf_event_destroy(struct perf_event *event) 7799 { 7800 u64 event_id = event->attr.config; 7801 7802 WARN_ON(event->parent); 7803 7804 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7805 swevent_hlist_put(); 7806 } 7807 7808 static int perf_swevent_init(struct perf_event *event) 7809 { 7810 u64 event_id = event->attr.config; 7811 7812 if (event->attr.type != PERF_TYPE_SOFTWARE) 7813 return -ENOENT; 7814 7815 /* 7816 * no branch sampling for software events 7817 */ 7818 if (has_branch_stack(event)) 7819 return -EOPNOTSUPP; 7820 7821 switch (event_id) { 7822 case PERF_COUNT_SW_CPU_CLOCK: 7823 case PERF_COUNT_SW_TASK_CLOCK: 7824 return -ENOENT; 7825 7826 default: 7827 break; 7828 } 7829 7830 if (event_id >= PERF_COUNT_SW_MAX) 7831 return -ENOENT; 7832 7833 if (!event->parent) { 7834 int err; 7835 7836 err = swevent_hlist_get(); 7837 if (err) 7838 return err; 7839 7840 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7841 event->destroy = sw_perf_event_destroy; 7842 } 7843 7844 return 0; 7845 } 7846 7847 static struct pmu perf_swevent = { 7848 .task_ctx_nr = perf_sw_context, 7849 7850 .capabilities = PERF_PMU_CAP_NO_NMI, 7851 7852 .event_init = perf_swevent_init, 7853 .add = perf_swevent_add, 7854 .del = perf_swevent_del, 7855 .start = perf_swevent_start, 7856 .stop = perf_swevent_stop, 7857 .read = perf_swevent_read, 7858 }; 7859 7860 #ifdef CONFIG_EVENT_TRACING 7861 7862 static int perf_tp_filter_match(struct perf_event *event, 7863 struct perf_sample_data *data) 7864 { 7865 void *record = data->raw->frag.data; 7866 7867 /* only top level events have filters set */ 7868 if (event->parent) 7869 event = event->parent; 7870 7871 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7872 return 1; 7873 return 0; 7874 } 7875 7876 static int perf_tp_event_match(struct perf_event *event, 7877 struct perf_sample_data *data, 7878 struct pt_regs *regs) 7879 { 7880 if (event->hw.state & PERF_HES_STOPPED) 7881 return 0; 7882 /* 7883 * All tracepoints are from kernel-space. 7884 */ 7885 if (event->attr.exclude_kernel) 7886 return 0; 7887 7888 if (!perf_tp_filter_match(event, data)) 7889 return 0; 7890 7891 return 1; 7892 } 7893 7894 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7895 struct trace_event_call *call, u64 count, 7896 struct pt_regs *regs, struct hlist_head *head, 7897 struct task_struct *task) 7898 { 7899 struct bpf_prog *prog = call->prog; 7900 7901 if (prog) { 7902 *(struct pt_regs **)raw_data = regs; 7903 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7904 perf_swevent_put_recursion_context(rctx); 7905 return; 7906 } 7907 } 7908 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7909 rctx, task); 7910 } 7911 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7912 7913 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7914 struct pt_regs *regs, struct hlist_head *head, int rctx, 7915 struct task_struct *task) 7916 { 7917 struct perf_sample_data data; 7918 struct perf_event *event; 7919 7920 struct perf_raw_record raw = { 7921 .frag = { 7922 .size = entry_size, 7923 .data = record, 7924 }, 7925 }; 7926 7927 perf_sample_data_init(&data, 0, 0); 7928 data.raw = &raw; 7929 7930 perf_trace_buf_update(record, event_type); 7931 7932 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7933 if (perf_tp_event_match(event, &data, regs)) 7934 perf_swevent_event(event, count, &data, regs); 7935 } 7936 7937 /* 7938 * If we got specified a target task, also iterate its context and 7939 * deliver this event there too. 7940 */ 7941 if (task && task != current) { 7942 struct perf_event_context *ctx; 7943 struct trace_entry *entry = record; 7944 7945 rcu_read_lock(); 7946 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7947 if (!ctx) 7948 goto unlock; 7949 7950 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7951 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7952 continue; 7953 if (event->attr.config != entry->type) 7954 continue; 7955 if (perf_tp_event_match(event, &data, regs)) 7956 perf_swevent_event(event, count, &data, regs); 7957 } 7958 unlock: 7959 rcu_read_unlock(); 7960 } 7961 7962 perf_swevent_put_recursion_context(rctx); 7963 } 7964 EXPORT_SYMBOL_GPL(perf_tp_event); 7965 7966 static void tp_perf_event_destroy(struct perf_event *event) 7967 { 7968 perf_trace_destroy(event); 7969 } 7970 7971 static int perf_tp_event_init(struct perf_event *event) 7972 { 7973 int err; 7974 7975 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7976 return -ENOENT; 7977 7978 /* 7979 * no branch sampling for tracepoint events 7980 */ 7981 if (has_branch_stack(event)) 7982 return -EOPNOTSUPP; 7983 7984 err = perf_trace_init(event); 7985 if (err) 7986 return err; 7987 7988 event->destroy = tp_perf_event_destroy; 7989 7990 return 0; 7991 } 7992 7993 static struct pmu perf_tracepoint = { 7994 .task_ctx_nr = perf_sw_context, 7995 7996 .event_init = perf_tp_event_init, 7997 .add = perf_trace_add, 7998 .del = perf_trace_del, 7999 .start = perf_swevent_start, 8000 .stop = perf_swevent_stop, 8001 .read = perf_swevent_read, 8002 }; 8003 8004 static inline void perf_tp_register(void) 8005 { 8006 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8007 } 8008 8009 static void perf_event_free_filter(struct perf_event *event) 8010 { 8011 ftrace_profile_free_filter(event); 8012 } 8013 8014 #ifdef CONFIG_BPF_SYSCALL 8015 static void bpf_overflow_handler(struct perf_event *event, 8016 struct perf_sample_data *data, 8017 struct pt_regs *regs) 8018 { 8019 struct bpf_perf_event_data_kern ctx = { 8020 .data = data, 8021 .regs = regs, 8022 }; 8023 int ret = 0; 8024 8025 preempt_disable(); 8026 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8027 goto out; 8028 rcu_read_lock(); 8029 ret = BPF_PROG_RUN(event->prog, &ctx); 8030 rcu_read_unlock(); 8031 out: 8032 __this_cpu_dec(bpf_prog_active); 8033 preempt_enable(); 8034 if (!ret) 8035 return; 8036 8037 event->orig_overflow_handler(event, data, regs); 8038 } 8039 8040 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8041 { 8042 struct bpf_prog *prog; 8043 8044 if (event->overflow_handler_context) 8045 /* hw breakpoint or kernel counter */ 8046 return -EINVAL; 8047 8048 if (event->prog) 8049 return -EEXIST; 8050 8051 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8052 if (IS_ERR(prog)) 8053 return PTR_ERR(prog); 8054 8055 event->prog = prog; 8056 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8057 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8058 return 0; 8059 } 8060 8061 static void perf_event_free_bpf_handler(struct perf_event *event) 8062 { 8063 struct bpf_prog *prog = event->prog; 8064 8065 if (!prog) 8066 return; 8067 8068 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8069 event->prog = NULL; 8070 bpf_prog_put(prog); 8071 } 8072 #else 8073 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8074 { 8075 return -EOPNOTSUPP; 8076 } 8077 static void perf_event_free_bpf_handler(struct perf_event *event) 8078 { 8079 } 8080 #endif 8081 8082 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8083 { 8084 bool is_kprobe, is_tracepoint; 8085 struct bpf_prog *prog; 8086 8087 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8088 return perf_event_set_bpf_handler(event, prog_fd); 8089 8090 if (event->tp_event->prog) 8091 return -EEXIST; 8092 8093 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8094 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8095 if (!is_kprobe && !is_tracepoint) 8096 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8097 return -EINVAL; 8098 8099 prog = bpf_prog_get(prog_fd); 8100 if (IS_ERR(prog)) 8101 return PTR_ERR(prog); 8102 8103 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8104 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8105 /* valid fd, but invalid bpf program type */ 8106 bpf_prog_put(prog); 8107 return -EINVAL; 8108 } 8109 8110 if (is_tracepoint) { 8111 int off = trace_event_get_offsets(event->tp_event); 8112 8113 if (prog->aux->max_ctx_offset > off) { 8114 bpf_prog_put(prog); 8115 return -EACCES; 8116 } 8117 } 8118 event->tp_event->prog = prog; 8119 8120 return 0; 8121 } 8122 8123 static void perf_event_free_bpf_prog(struct perf_event *event) 8124 { 8125 struct bpf_prog *prog; 8126 8127 perf_event_free_bpf_handler(event); 8128 8129 if (!event->tp_event) 8130 return; 8131 8132 prog = event->tp_event->prog; 8133 if (prog) { 8134 event->tp_event->prog = NULL; 8135 bpf_prog_put(prog); 8136 } 8137 } 8138 8139 #else 8140 8141 static inline void perf_tp_register(void) 8142 { 8143 } 8144 8145 static void perf_event_free_filter(struct perf_event *event) 8146 { 8147 } 8148 8149 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8150 { 8151 return -ENOENT; 8152 } 8153 8154 static void perf_event_free_bpf_prog(struct perf_event *event) 8155 { 8156 } 8157 #endif /* CONFIG_EVENT_TRACING */ 8158 8159 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8160 void perf_bp_event(struct perf_event *bp, void *data) 8161 { 8162 struct perf_sample_data sample; 8163 struct pt_regs *regs = data; 8164 8165 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8166 8167 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8168 perf_swevent_event(bp, 1, &sample, regs); 8169 } 8170 #endif 8171 8172 /* 8173 * Allocate a new address filter 8174 */ 8175 static struct perf_addr_filter * 8176 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8177 { 8178 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8179 struct perf_addr_filter *filter; 8180 8181 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8182 if (!filter) 8183 return NULL; 8184 8185 INIT_LIST_HEAD(&filter->entry); 8186 list_add_tail(&filter->entry, filters); 8187 8188 return filter; 8189 } 8190 8191 static void free_filters_list(struct list_head *filters) 8192 { 8193 struct perf_addr_filter *filter, *iter; 8194 8195 list_for_each_entry_safe(filter, iter, filters, entry) { 8196 if (filter->inode) 8197 iput(filter->inode); 8198 list_del(&filter->entry); 8199 kfree(filter); 8200 } 8201 } 8202 8203 /* 8204 * Free existing address filters and optionally install new ones 8205 */ 8206 static void perf_addr_filters_splice(struct perf_event *event, 8207 struct list_head *head) 8208 { 8209 unsigned long flags; 8210 LIST_HEAD(list); 8211 8212 if (!has_addr_filter(event)) 8213 return; 8214 8215 /* don't bother with children, they don't have their own filters */ 8216 if (event->parent) 8217 return; 8218 8219 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8220 8221 list_splice_init(&event->addr_filters.list, &list); 8222 if (head) 8223 list_splice(head, &event->addr_filters.list); 8224 8225 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8226 8227 free_filters_list(&list); 8228 } 8229 8230 /* 8231 * Scan through mm's vmas and see if one of them matches the 8232 * @filter; if so, adjust filter's address range. 8233 * Called with mm::mmap_sem down for reading. 8234 */ 8235 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8236 struct mm_struct *mm) 8237 { 8238 struct vm_area_struct *vma; 8239 8240 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8241 struct file *file = vma->vm_file; 8242 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8243 unsigned long vma_size = vma->vm_end - vma->vm_start; 8244 8245 if (!file) 8246 continue; 8247 8248 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8249 continue; 8250 8251 return vma->vm_start; 8252 } 8253 8254 return 0; 8255 } 8256 8257 /* 8258 * Update event's address range filters based on the 8259 * task's existing mappings, if any. 8260 */ 8261 static void perf_event_addr_filters_apply(struct perf_event *event) 8262 { 8263 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8264 struct task_struct *task = READ_ONCE(event->ctx->task); 8265 struct perf_addr_filter *filter; 8266 struct mm_struct *mm = NULL; 8267 unsigned int count = 0; 8268 unsigned long flags; 8269 8270 /* 8271 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8272 * will stop on the parent's child_mutex that our caller is also holding 8273 */ 8274 if (task == TASK_TOMBSTONE) 8275 return; 8276 8277 if (!ifh->nr_file_filters) 8278 return; 8279 8280 mm = get_task_mm(event->ctx->task); 8281 if (!mm) 8282 goto restart; 8283 8284 down_read(&mm->mmap_sem); 8285 8286 raw_spin_lock_irqsave(&ifh->lock, flags); 8287 list_for_each_entry(filter, &ifh->list, entry) { 8288 event->addr_filters_offs[count] = 0; 8289 8290 /* 8291 * Adjust base offset if the filter is associated to a binary 8292 * that needs to be mapped: 8293 */ 8294 if (filter->inode) 8295 event->addr_filters_offs[count] = 8296 perf_addr_filter_apply(filter, mm); 8297 8298 count++; 8299 } 8300 8301 event->addr_filters_gen++; 8302 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8303 8304 up_read(&mm->mmap_sem); 8305 8306 mmput(mm); 8307 8308 restart: 8309 perf_event_stop(event, 1); 8310 } 8311 8312 /* 8313 * Address range filtering: limiting the data to certain 8314 * instruction address ranges. Filters are ioctl()ed to us from 8315 * userspace as ascii strings. 8316 * 8317 * Filter string format: 8318 * 8319 * ACTION RANGE_SPEC 8320 * where ACTION is one of the 8321 * * "filter": limit the trace to this region 8322 * * "start": start tracing from this address 8323 * * "stop": stop tracing at this address/region; 8324 * RANGE_SPEC is 8325 * * for kernel addresses: <start address>[/<size>] 8326 * * for object files: <start address>[/<size>]@</path/to/object/file> 8327 * 8328 * if <size> is not specified, the range is treated as a single address. 8329 */ 8330 enum { 8331 IF_ACT_NONE = -1, 8332 IF_ACT_FILTER, 8333 IF_ACT_START, 8334 IF_ACT_STOP, 8335 IF_SRC_FILE, 8336 IF_SRC_KERNEL, 8337 IF_SRC_FILEADDR, 8338 IF_SRC_KERNELADDR, 8339 }; 8340 8341 enum { 8342 IF_STATE_ACTION = 0, 8343 IF_STATE_SOURCE, 8344 IF_STATE_END, 8345 }; 8346 8347 static const match_table_t if_tokens = { 8348 { IF_ACT_FILTER, "filter" }, 8349 { IF_ACT_START, "start" }, 8350 { IF_ACT_STOP, "stop" }, 8351 { IF_SRC_FILE, "%u/%u@%s" }, 8352 { IF_SRC_KERNEL, "%u/%u" }, 8353 { IF_SRC_FILEADDR, "%u@%s" }, 8354 { IF_SRC_KERNELADDR, "%u" }, 8355 { IF_ACT_NONE, NULL }, 8356 }; 8357 8358 /* 8359 * Address filter string parser 8360 */ 8361 static int 8362 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8363 struct list_head *filters) 8364 { 8365 struct perf_addr_filter *filter = NULL; 8366 char *start, *orig, *filename = NULL; 8367 struct path path; 8368 substring_t args[MAX_OPT_ARGS]; 8369 int state = IF_STATE_ACTION, token; 8370 unsigned int kernel = 0; 8371 int ret = -EINVAL; 8372 8373 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8374 if (!fstr) 8375 return -ENOMEM; 8376 8377 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8378 ret = -EINVAL; 8379 8380 if (!*start) 8381 continue; 8382 8383 /* filter definition begins */ 8384 if (state == IF_STATE_ACTION) { 8385 filter = perf_addr_filter_new(event, filters); 8386 if (!filter) 8387 goto fail; 8388 } 8389 8390 token = match_token(start, if_tokens, args); 8391 switch (token) { 8392 case IF_ACT_FILTER: 8393 case IF_ACT_START: 8394 filter->filter = 1; 8395 8396 case IF_ACT_STOP: 8397 if (state != IF_STATE_ACTION) 8398 goto fail; 8399 8400 state = IF_STATE_SOURCE; 8401 break; 8402 8403 case IF_SRC_KERNELADDR: 8404 case IF_SRC_KERNEL: 8405 kernel = 1; 8406 8407 case IF_SRC_FILEADDR: 8408 case IF_SRC_FILE: 8409 if (state != IF_STATE_SOURCE) 8410 goto fail; 8411 8412 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8413 filter->range = 1; 8414 8415 *args[0].to = 0; 8416 ret = kstrtoul(args[0].from, 0, &filter->offset); 8417 if (ret) 8418 goto fail; 8419 8420 if (filter->range) { 8421 *args[1].to = 0; 8422 ret = kstrtoul(args[1].from, 0, &filter->size); 8423 if (ret) 8424 goto fail; 8425 } 8426 8427 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8428 int fpos = filter->range ? 2 : 1; 8429 8430 filename = match_strdup(&args[fpos]); 8431 if (!filename) { 8432 ret = -ENOMEM; 8433 goto fail; 8434 } 8435 } 8436 8437 state = IF_STATE_END; 8438 break; 8439 8440 default: 8441 goto fail; 8442 } 8443 8444 /* 8445 * Filter definition is fully parsed, validate and install it. 8446 * Make sure that it doesn't contradict itself or the event's 8447 * attribute. 8448 */ 8449 if (state == IF_STATE_END) { 8450 ret = -EINVAL; 8451 if (kernel && event->attr.exclude_kernel) 8452 goto fail; 8453 8454 if (!kernel) { 8455 if (!filename) 8456 goto fail; 8457 8458 /* 8459 * For now, we only support file-based filters 8460 * in per-task events; doing so for CPU-wide 8461 * events requires additional context switching 8462 * trickery, since same object code will be 8463 * mapped at different virtual addresses in 8464 * different processes. 8465 */ 8466 ret = -EOPNOTSUPP; 8467 if (!event->ctx->task) 8468 goto fail_free_name; 8469 8470 /* look up the path and grab its inode */ 8471 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8472 if (ret) 8473 goto fail_free_name; 8474 8475 filter->inode = igrab(d_inode(path.dentry)); 8476 path_put(&path); 8477 kfree(filename); 8478 filename = NULL; 8479 8480 ret = -EINVAL; 8481 if (!filter->inode || 8482 !S_ISREG(filter->inode->i_mode)) 8483 /* free_filters_list() will iput() */ 8484 goto fail; 8485 8486 event->addr_filters.nr_file_filters++; 8487 } 8488 8489 /* ready to consume more filters */ 8490 state = IF_STATE_ACTION; 8491 filter = NULL; 8492 } 8493 } 8494 8495 if (state != IF_STATE_ACTION) 8496 goto fail; 8497 8498 kfree(orig); 8499 8500 return 0; 8501 8502 fail_free_name: 8503 kfree(filename); 8504 fail: 8505 free_filters_list(filters); 8506 kfree(orig); 8507 8508 return ret; 8509 } 8510 8511 static int 8512 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8513 { 8514 LIST_HEAD(filters); 8515 int ret; 8516 8517 /* 8518 * Since this is called in perf_ioctl() path, we're already holding 8519 * ctx::mutex. 8520 */ 8521 lockdep_assert_held(&event->ctx->mutex); 8522 8523 if (WARN_ON_ONCE(event->parent)) 8524 return -EINVAL; 8525 8526 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8527 if (ret) 8528 goto fail_clear_files; 8529 8530 ret = event->pmu->addr_filters_validate(&filters); 8531 if (ret) 8532 goto fail_free_filters; 8533 8534 /* remove existing filters, if any */ 8535 perf_addr_filters_splice(event, &filters); 8536 8537 /* install new filters */ 8538 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8539 8540 return ret; 8541 8542 fail_free_filters: 8543 free_filters_list(&filters); 8544 8545 fail_clear_files: 8546 event->addr_filters.nr_file_filters = 0; 8547 8548 return ret; 8549 } 8550 8551 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8552 { 8553 char *filter_str; 8554 int ret = -EINVAL; 8555 8556 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8557 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8558 !has_addr_filter(event)) 8559 return -EINVAL; 8560 8561 filter_str = strndup_user(arg, PAGE_SIZE); 8562 if (IS_ERR(filter_str)) 8563 return PTR_ERR(filter_str); 8564 8565 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8566 event->attr.type == PERF_TYPE_TRACEPOINT) 8567 ret = ftrace_profile_set_filter(event, event->attr.config, 8568 filter_str); 8569 else if (has_addr_filter(event)) 8570 ret = perf_event_set_addr_filter(event, filter_str); 8571 8572 kfree(filter_str); 8573 return ret; 8574 } 8575 8576 /* 8577 * hrtimer based swevent callback 8578 */ 8579 8580 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8581 { 8582 enum hrtimer_restart ret = HRTIMER_RESTART; 8583 struct perf_sample_data data; 8584 struct pt_regs *regs; 8585 struct perf_event *event; 8586 u64 period; 8587 8588 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8589 8590 if (event->state != PERF_EVENT_STATE_ACTIVE) 8591 return HRTIMER_NORESTART; 8592 8593 event->pmu->read(event); 8594 8595 perf_sample_data_init(&data, 0, event->hw.last_period); 8596 regs = get_irq_regs(); 8597 8598 if (regs && !perf_exclude_event(event, regs)) { 8599 if (!(event->attr.exclude_idle && is_idle_task(current))) 8600 if (__perf_event_overflow(event, 1, &data, regs)) 8601 ret = HRTIMER_NORESTART; 8602 } 8603 8604 period = max_t(u64, 10000, event->hw.sample_period); 8605 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8606 8607 return ret; 8608 } 8609 8610 static void perf_swevent_start_hrtimer(struct perf_event *event) 8611 { 8612 struct hw_perf_event *hwc = &event->hw; 8613 s64 period; 8614 8615 if (!is_sampling_event(event)) 8616 return; 8617 8618 period = local64_read(&hwc->period_left); 8619 if (period) { 8620 if (period < 0) 8621 period = 10000; 8622 8623 local64_set(&hwc->period_left, 0); 8624 } else { 8625 period = max_t(u64, 10000, hwc->sample_period); 8626 } 8627 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8628 HRTIMER_MODE_REL_PINNED); 8629 } 8630 8631 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8632 { 8633 struct hw_perf_event *hwc = &event->hw; 8634 8635 if (is_sampling_event(event)) { 8636 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8637 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8638 8639 hrtimer_cancel(&hwc->hrtimer); 8640 } 8641 } 8642 8643 static void perf_swevent_init_hrtimer(struct perf_event *event) 8644 { 8645 struct hw_perf_event *hwc = &event->hw; 8646 8647 if (!is_sampling_event(event)) 8648 return; 8649 8650 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8651 hwc->hrtimer.function = perf_swevent_hrtimer; 8652 8653 /* 8654 * Since hrtimers have a fixed rate, we can do a static freq->period 8655 * mapping and avoid the whole period adjust feedback stuff. 8656 */ 8657 if (event->attr.freq) { 8658 long freq = event->attr.sample_freq; 8659 8660 event->attr.sample_period = NSEC_PER_SEC / freq; 8661 hwc->sample_period = event->attr.sample_period; 8662 local64_set(&hwc->period_left, hwc->sample_period); 8663 hwc->last_period = hwc->sample_period; 8664 event->attr.freq = 0; 8665 } 8666 } 8667 8668 /* 8669 * Software event: cpu wall time clock 8670 */ 8671 8672 static void cpu_clock_event_update(struct perf_event *event) 8673 { 8674 s64 prev; 8675 u64 now; 8676 8677 now = local_clock(); 8678 prev = local64_xchg(&event->hw.prev_count, now); 8679 local64_add(now - prev, &event->count); 8680 } 8681 8682 static void cpu_clock_event_start(struct perf_event *event, int flags) 8683 { 8684 local64_set(&event->hw.prev_count, local_clock()); 8685 perf_swevent_start_hrtimer(event); 8686 } 8687 8688 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8689 { 8690 perf_swevent_cancel_hrtimer(event); 8691 cpu_clock_event_update(event); 8692 } 8693 8694 static int cpu_clock_event_add(struct perf_event *event, int flags) 8695 { 8696 if (flags & PERF_EF_START) 8697 cpu_clock_event_start(event, flags); 8698 perf_event_update_userpage(event); 8699 8700 return 0; 8701 } 8702 8703 static void cpu_clock_event_del(struct perf_event *event, int flags) 8704 { 8705 cpu_clock_event_stop(event, flags); 8706 } 8707 8708 static void cpu_clock_event_read(struct perf_event *event) 8709 { 8710 cpu_clock_event_update(event); 8711 } 8712 8713 static int cpu_clock_event_init(struct perf_event *event) 8714 { 8715 if (event->attr.type != PERF_TYPE_SOFTWARE) 8716 return -ENOENT; 8717 8718 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8719 return -ENOENT; 8720 8721 /* 8722 * no branch sampling for software events 8723 */ 8724 if (has_branch_stack(event)) 8725 return -EOPNOTSUPP; 8726 8727 perf_swevent_init_hrtimer(event); 8728 8729 return 0; 8730 } 8731 8732 static struct pmu perf_cpu_clock = { 8733 .task_ctx_nr = perf_sw_context, 8734 8735 .capabilities = PERF_PMU_CAP_NO_NMI, 8736 8737 .event_init = cpu_clock_event_init, 8738 .add = cpu_clock_event_add, 8739 .del = cpu_clock_event_del, 8740 .start = cpu_clock_event_start, 8741 .stop = cpu_clock_event_stop, 8742 .read = cpu_clock_event_read, 8743 }; 8744 8745 /* 8746 * Software event: task time clock 8747 */ 8748 8749 static void task_clock_event_update(struct perf_event *event, u64 now) 8750 { 8751 u64 prev; 8752 s64 delta; 8753 8754 prev = local64_xchg(&event->hw.prev_count, now); 8755 delta = now - prev; 8756 local64_add(delta, &event->count); 8757 } 8758 8759 static void task_clock_event_start(struct perf_event *event, int flags) 8760 { 8761 local64_set(&event->hw.prev_count, event->ctx->time); 8762 perf_swevent_start_hrtimer(event); 8763 } 8764 8765 static void task_clock_event_stop(struct perf_event *event, int flags) 8766 { 8767 perf_swevent_cancel_hrtimer(event); 8768 task_clock_event_update(event, event->ctx->time); 8769 } 8770 8771 static int task_clock_event_add(struct perf_event *event, int flags) 8772 { 8773 if (flags & PERF_EF_START) 8774 task_clock_event_start(event, flags); 8775 perf_event_update_userpage(event); 8776 8777 return 0; 8778 } 8779 8780 static void task_clock_event_del(struct perf_event *event, int flags) 8781 { 8782 task_clock_event_stop(event, PERF_EF_UPDATE); 8783 } 8784 8785 static void task_clock_event_read(struct perf_event *event) 8786 { 8787 u64 now = perf_clock(); 8788 u64 delta = now - event->ctx->timestamp; 8789 u64 time = event->ctx->time + delta; 8790 8791 task_clock_event_update(event, time); 8792 } 8793 8794 static int task_clock_event_init(struct perf_event *event) 8795 { 8796 if (event->attr.type != PERF_TYPE_SOFTWARE) 8797 return -ENOENT; 8798 8799 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8800 return -ENOENT; 8801 8802 /* 8803 * no branch sampling for software events 8804 */ 8805 if (has_branch_stack(event)) 8806 return -EOPNOTSUPP; 8807 8808 perf_swevent_init_hrtimer(event); 8809 8810 return 0; 8811 } 8812 8813 static struct pmu perf_task_clock = { 8814 .task_ctx_nr = perf_sw_context, 8815 8816 .capabilities = PERF_PMU_CAP_NO_NMI, 8817 8818 .event_init = task_clock_event_init, 8819 .add = task_clock_event_add, 8820 .del = task_clock_event_del, 8821 .start = task_clock_event_start, 8822 .stop = task_clock_event_stop, 8823 .read = task_clock_event_read, 8824 }; 8825 8826 static void perf_pmu_nop_void(struct pmu *pmu) 8827 { 8828 } 8829 8830 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8831 { 8832 } 8833 8834 static int perf_pmu_nop_int(struct pmu *pmu) 8835 { 8836 return 0; 8837 } 8838 8839 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8840 8841 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8842 { 8843 __this_cpu_write(nop_txn_flags, flags); 8844 8845 if (flags & ~PERF_PMU_TXN_ADD) 8846 return; 8847 8848 perf_pmu_disable(pmu); 8849 } 8850 8851 static int perf_pmu_commit_txn(struct pmu *pmu) 8852 { 8853 unsigned int flags = __this_cpu_read(nop_txn_flags); 8854 8855 __this_cpu_write(nop_txn_flags, 0); 8856 8857 if (flags & ~PERF_PMU_TXN_ADD) 8858 return 0; 8859 8860 perf_pmu_enable(pmu); 8861 return 0; 8862 } 8863 8864 static void perf_pmu_cancel_txn(struct pmu *pmu) 8865 { 8866 unsigned int flags = __this_cpu_read(nop_txn_flags); 8867 8868 __this_cpu_write(nop_txn_flags, 0); 8869 8870 if (flags & ~PERF_PMU_TXN_ADD) 8871 return; 8872 8873 perf_pmu_enable(pmu); 8874 } 8875 8876 static int perf_event_idx_default(struct perf_event *event) 8877 { 8878 return 0; 8879 } 8880 8881 /* 8882 * Ensures all contexts with the same task_ctx_nr have the same 8883 * pmu_cpu_context too. 8884 */ 8885 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8886 { 8887 struct pmu *pmu; 8888 8889 if (ctxn < 0) 8890 return NULL; 8891 8892 list_for_each_entry(pmu, &pmus, entry) { 8893 if (pmu->task_ctx_nr == ctxn) 8894 return pmu->pmu_cpu_context; 8895 } 8896 8897 return NULL; 8898 } 8899 8900 static void free_pmu_context(struct pmu *pmu) 8901 { 8902 mutex_lock(&pmus_lock); 8903 free_percpu(pmu->pmu_cpu_context); 8904 mutex_unlock(&pmus_lock); 8905 } 8906 8907 /* 8908 * Let userspace know that this PMU supports address range filtering: 8909 */ 8910 static ssize_t nr_addr_filters_show(struct device *dev, 8911 struct device_attribute *attr, 8912 char *page) 8913 { 8914 struct pmu *pmu = dev_get_drvdata(dev); 8915 8916 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8917 } 8918 DEVICE_ATTR_RO(nr_addr_filters); 8919 8920 static struct idr pmu_idr; 8921 8922 static ssize_t 8923 type_show(struct device *dev, struct device_attribute *attr, char *page) 8924 { 8925 struct pmu *pmu = dev_get_drvdata(dev); 8926 8927 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8928 } 8929 static DEVICE_ATTR_RO(type); 8930 8931 static ssize_t 8932 perf_event_mux_interval_ms_show(struct device *dev, 8933 struct device_attribute *attr, 8934 char *page) 8935 { 8936 struct pmu *pmu = dev_get_drvdata(dev); 8937 8938 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8939 } 8940 8941 static DEFINE_MUTEX(mux_interval_mutex); 8942 8943 static ssize_t 8944 perf_event_mux_interval_ms_store(struct device *dev, 8945 struct device_attribute *attr, 8946 const char *buf, size_t count) 8947 { 8948 struct pmu *pmu = dev_get_drvdata(dev); 8949 int timer, cpu, ret; 8950 8951 ret = kstrtoint(buf, 0, &timer); 8952 if (ret) 8953 return ret; 8954 8955 if (timer < 1) 8956 return -EINVAL; 8957 8958 /* same value, noting to do */ 8959 if (timer == pmu->hrtimer_interval_ms) 8960 return count; 8961 8962 mutex_lock(&mux_interval_mutex); 8963 pmu->hrtimer_interval_ms = timer; 8964 8965 /* update all cpuctx for this PMU */ 8966 cpus_read_lock(); 8967 for_each_online_cpu(cpu) { 8968 struct perf_cpu_context *cpuctx; 8969 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8970 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8971 8972 cpu_function_call(cpu, 8973 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8974 } 8975 cpus_read_unlock(); 8976 mutex_unlock(&mux_interval_mutex); 8977 8978 return count; 8979 } 8980 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8981 8982 static struct attribute *pmu_dev_attrs[] = { 8983 &dev_attr_type.attr, 8984 &dev_attr_perf_event_mux_interval_ms.attr, 8985 NULL, 8986 }; 8987 ATTRIBUTE_GROUPS(pmu_dev); 8988 8989 static int pmu_bus_running; 8990 static struct bus_type pmu_bus = { 8991 .name = "event_source", 8992 .dev_groups = pmu_dev_groups, 8993 }; 8994 8995 static void pmu_dev_release(struct device *dev) 8996 { 8997 kfree(dev); 8998 } 8999 9000 static int pmu_dev_alloc(struct pmu *pmu) 9001 { 9002 int ret = -ENOMEM; 9003 9004 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9005 if (!pmu->dev) 9006 goto out; 9007 9008 pmu->dev->groups = pmu->attr_groups; 9009 device_initialize(pmu->dev); 9010 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9011 if (ret) 9012 goto free_dev; 9013 9014 dev_set_drvdata(pmu->dev, pmu); 9015 pmu->dev->bus = &pmu_bus; 9016 pmu->dev->release = pmu_dev_release; 9017 ret = device_add(pmu->dev); 9018 if (ret) 9019 goto free_dev; 9020 9021 /* For PMUs with address filters, throw in an extra attribute: */ 9022 if (pmu->nr_addr_filters) 9023 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9024 9025 if (ret) 9026 goto del_dev; 9027 9028 out: 9029 return ret; 9030 9031 del_dev: 9032 device_del(pmu->dev); 9033 9034 free_dev: 9035 put_device(pmu->dev); 9036 goto out; 9037 } 9038 9039 static struct lock_class_key cpuctx_mutex; 9040 static struct lock_class_key cpuctx_lock; 9041 9042 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9043 { 9044 int cpu, ret; 9045 9046 mutex_lock(&pmus_lock); 9047 ret = -ENOMEM; 9048 pmu->pmu_disable_count = alloc_percpu(int); 9049 if (!pmu->pmu_disable_count) 9050 goto unlock; 9051 9052 pmu->type = -1; 9053 if (!name) 9054 goto skip_type; 9055 pmu->name = name; 9056 9057 if (type < 0) { 9058 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9059 if (type < 0) { 9060 ret = type; 9061 goto free_pdc; 9062 } 9063 } 9064 pmu->type = type; 9065 9066 if (pmu_bus_running) { 9067 ret = pmu_dev_alloc(pmu); 9068 if (ret) 9069 goto free_idr; 9070 } 9071 9072 skip_type: 9073 if (pmu->task_ctx_nr == perf_hw_context) { 9074 static int hw_context_taken = 0; 9075 9076 /* 9077 * Other than systems with heterogeneous CPUs, it never makes 9078 * sense for two PMUs to share perf_hw_context. PMUs which are 9079 * uncore must use perf_invalid_context. 9080 */ 9081 if (WARN_ON_ONCE(hw_context_taken && 9082 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9083 pmu->task_ctx_nr = perf_invalid_context; 9084 9085 hw_context_taken = 1; 9086 } 9087 9088 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9089 if (pmu->pmu_cpu_context) 9090 goto got_cpu_context; 9091 9092 ret = -ENOMEM; 9093 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9094 if (!pmu->pmu_cpu_context) 9095 goto free_dev; 9096 9097 for_each_possible_cpu(cpu) { 9098 struct perf_cpu_context *cpuctx; 9099 9100 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9101 __perf_event_init_context(&cpuctx->ctx); 9102 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9103 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9104 cpuctx->ctx.pmu = pmu; 9105 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9106 9107 __perf_mux_hrtimer_init(cpuctx, cpu); 9108 } 9109 9110 got_cpu_context: 9111 if (!pmu->start_txn) { 9112 if (pmu->pmu_enable) { 9113 /* 9114 * If we have pmu_enable/pmu_disable calls, install 9115 * transaction stubs that use that to try and batch 9116 * hardware accesses. 9117 */ 9118 pmu->start_txn = perf_pmu_start_txn; 9119 pmu->commit_txn = perf_pmu_commit_txn; 9120 pmu->cancel_txn = perf_pmu_cancel_txn; 9121 } else { 9122 pmu->start_txn = perf_pmu_nop_txn; 9123 pmu->commit_txn = perf_pmu_nop_int; 9124 pmu->cancel_txn = perf_pmu_nop_void; 9125 } 9126 } 9127 9128 if (!pmu->pmu_enable) { 9129 pmu->pmu_enable = perf_pmu_nop_void; 9130 pmu->pmu_disable = perf_pmu_nop_void; 9131 } 9132 9133 if (!pmu->event_idx) 9134 pmu->event_idx = perf_event_idx_default; 9135 9136 list_add_rcu(&pmu->entry, &pmus); 9137 atomic_set(&pmu->exclusive_cnt, 0); 9138 ret = 0; 9139 unlock: 9140 mutex_unlock(&pmus_lock); 9141 9142 return ret; 9143 9144 free_dev: 9145 device_del(pmu->dev); 9146 put_device(pmu->dev); 9147 9148 free_idr: 9149 if (pmu->type >= PERF_TYPE_MAX) 9150 idr_remove(&pmu_idr, pmu->type); 9151 9152 free_pdc: 9153 free_percpu(pmu->pmu_disable_count); 9154 goto unlock; 9155 } 9156 EXPORT_SYMBOL_GPL(perf_pmu_register); 9157 9158 void perf_pmu_unregister(struct pmu *pmu) 9159 { 9160 int remove_device; 9161 9162 mutex_lock(&pmus_lock); 9163 remove_device = pmu_bus_running; 9164 list_del_rcu(&pmu->entry); 9165 mutex_unlock(&pmus_lock); 9166 9167 /* 9168 * We dereference the pmu list under both SRCU and regular RCU, so 9169 * synchronize against both of those. 9170 */ 9171 synchronize_srcu(&pmus_srcu); 9172 synchronize_rcu(); 9173 9174 free_percpu(pmu->pmu_disable_count); 9175 if (pmu->type >= PERF_TYPE_MAX) 9176 idr_remove(&pmu_idr, pmu->type); 9177 if (remove_device) { 9178 if (pmu->nr_addr_filters) 9179 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9180 device_del(pmu->dev); 9181 put_device(pmu->dev); 9182 } 9183 free_pmu_context(pmu); 9184 } 9185 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9186 9187 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9188 { 9189 struct perf_event_context *ctx = NULL; 9190 int ret; 9191 9192 if (!try_module_get(pmu->module)) 9193 return -ENODEV; 9194 9195 if (event->group_leader != event) { 9196 /* 9197 * This ctx->mutex can nest when we're called through 9198 * inheritance. See the perf_event_ctx_lock_nested() comment. 9199 */ 9200 ctx = perf_event_ctx_lock_nested(event->group_leader, 9201 SINGLE_DEPTH_NESTING); 9202 BUG_ON(!ctx); 9203 } 9204 9205 event->pmu = pmu; 9206 ret = pmu->event_init(event); 9207 9208 if (ctx) 9209 perf_event_ctx_unlock(event->group_leader, ctx); 9210 9211 if (ret) 9212 module_put(pmu->module); 9213 9214 return ret; 9215 } 9216 9217 static struct pmu *perf_init_event(struct perf_event *event) 9218 { 9219 struct pmu *pmu; 9220 int idx; 9221 int ret; 9222 9223 idx = srcu_read_lock(&pmus_srcu); 9224 9225 /* Try parent's PMU first: */ 9226 if (event->parent && event->parent->pmu) { 9227 pmu = event->parent->pmu; 9228 ret = perf_try_init_event(pmu, event); 9229 if (!ret) 9230 goto unlock; 9231 } 9232 9233 rcu_read_lock(); 9234 pmu = idr_find(&pmu_idr, event->attr.type); 9235 rcu_read_unlock(); 9236 if (pmu) { 9237 ret = perf_try_init_event(pmu, event); 9238 if (ret) 9239 pmu = ERR_PTR(ret); 9240 goto unlock; 9241 } 9242 9243 list_for_each_entry_rcu(pmu, &pmus, entry) { 9244 ret = perf_try_init_event(pmu, event); 9245 if (!ret) 9246 goto unlock; 9247 9248 if (ret != -ENOENT) { 9249 pmu = ERR_PTR(ret); 9250 goto unlock; 9251 } 9252 } 9253 pmu = ERR_PTR(-ENOENT); 9254 unlock: 9255 srcu_read_unlock(&pmus_srcu, idx); 9256 9257 return pmu; 9258 } 9259 9260 static void attach_sb_event(struct perf_event *event) 9261 { 9262 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9263 9264 raw_spin_lock(&pel->lock); 9265 list_add_rcu(&event->sb_list, &pel->list); 9266 raw_spin_unlock(&pel->lock); 9267 } 9268 9269 /* 9270 * We keep a list of all !task (and therefore per-cpu) events 9271 * that need to receive side-band records. 9272 * 9273 * This avoids having to scan all the various PMU per-cpu contexts 9274 * looking for them. 9275 */ 9276 static void account_pmu_sb_event(struct perf_event *event) 9277 { 9278 if (is_sb_event(event)) 9279 attach_sb_event(event); 9280 } 9281 9282 static void account_event_cpu(struct perf_event *event, int cpu) 9283 { 9284 if (event->parent) 9285 return; 9286 9287 if (is_cgroup_event(event)) 9288 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9289 } 9290 9291 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9292 static void account_freq_event_nohz(void) 9293 { 9294 #ifdef CONFIG_NO_HZ_FULL 9295 /* Lock so we don't race with concurrent unaccount */ 9296 spin_lock(&nr_freq_lock); 9297 if (atomic_inc_return(&nr_freq_events) == 1) 9298 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9299 spin_unlock(&nr_freq_lock); 9300 #endif 9301 } 9302 9303 static void account_freq_event(void) 9304 { 9305 if (tick_nohz_full_enabled()) 9306 account_freq_event_nohz(); 9307 else 9308 atomic_inc(&nr_freq_events); 9309 } 9310 9311 9312 static void account_event(struct perf_event *event) 9313 { 9314 bool inc = false; 9315 9316 if (event->parent) 9317 return; 9318 9319 if (event->attach_state & PERF_ATTACH_TASK) 9320 inc = true; 9321 if (event->attr.mmap || event->attr.mmap_data) 9322 atomic_inc(&nr_mmap_events); 9323 if (event->attr.comm) 9324 atomic_inc(&nr_comm_events); 9325 if (event->attr.namespaces) 9326 atomic_inc(&nr_namespaces_events); 9327 if (event->attr.task) 9328 atomic_inc(&nr_task_events); 9329 if (event->attr.freq) 9330 account_freq_event(); 9331 if (event->attr.context_switch) { 9332 atomic_inc(&nr_switch_events); 9333 inc = true; 9334 } 9335 if (has_branch_stack(event)) 9336 inc = true; 9337 if (is_cgroup_event(event)) 9338 inc = true; 9339 9340 if (inc) { 9341 if (atomic_inc_not_zero(&perf_sched_count)) 9342 goto enabled; 9343 9344 mutex_lock(&perf_sched_mutex); 9345 if (!atomic_read(&perf_sched_count)) { 9346 static_branch_enable(&perf_sched_events); 9347 /* 9348 * Guarantee that all CPUs observe they key change and 9349 * call the perf scheduling hooks before proceeding to 9350 * install events that need them. 9351 */ 9352 synchronize_sched(); 9353 } 9354 /* 9355 * Now that we have waited for the sync_sched(), allow further 9356 * increments to by-pass the mutex. 9357 */ 9358 atomic_inc(&perf_sched_count); 9359 mutex_unlock(&perf_sched_mutex); 9360 } 9361 enabled: 9362 9363 account_event_cpu(event, event->cpu); 9364 9365 account_pmu_sb_event(event); 9366 } 9367 9368 /* 9369 * Allocate and initialize a event structure 9370 */ 9371 static struct perf_event * 9372 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9373 struct task_struct *task, 9374 struct perf_event *group_leader, 9375 struct perf_event *parent_event, 9376 perf_overflow_handler_t overflow_handler, 9377 void *context, int cgroup_fd) 9378 { 9379 struct pmu *pmu; 9380 struct perf_event *event; 9381 struct hw_perf_event *hwc; 9382 long err = -EINVAL; 9383 9384 if ((unsigned)cpu >= nr_cpu_ids) { 9385 if (!task || cpu != -1) 9386 return ERR_PTR(-EINVAL); 9387 } 9388 9389 event = kzalloc(sizeof(*event), GFP_KERNEL); 9390 if (!event) 9391 return ERR_PTR(-ENOMEM); 9392 9393 /* 9394 * Single events are their own group leaders, with an 9395 * empty sibling list: 9396 */ 9397 if (!group_leader) 9398 group_leader = event; 9399 9400 mutex_init(&event->child_mutex); 9401 INIT_LIST_HEAD(&event->child_list); 9402 9403 INIT_LIST_HEAD(&event->group_entry); 9404 INIT_LIST_HEAD(&event->event_entry); 9405 INIT_LIST_HEAD(&event->sibling_list); 9406 INIT_LIST_HEAD(&event->rb_entry); 9407 INIT_LIST_HEAD(&event->active_entry); 9408 INIT_LIST_HEAD(&event->addr_filters.list); 9409 INIT_HLIST_NODE(&event->hlist_entry); 9410 9411 9412 init_waitqueue_head(&event->waitq); 9413 init_irq_work(&event->pending, perf_pending_event); 9414 9415 mutex_init(&event->mmap_mutex); 9416 raw_spin_lock_init(&event->addr_filters.lock); 9417 9418 atomic_long_set(&event->refcount, 1); 9419 event->cpu = cpu; 9420 event->attr = *attr; 9421 event->group_leader = group_leader; 9422 event->pmu = NULL; 9423 event->oncpu = -1; 9424 9425 event->parent = parent_event; 9426 9427 event->ns = get_pid_ns(task_active_pid_ns(current)); 9428 event->id = atomic64_inc_return(&perf_event_id); 9429 9430 event->state = PERF_EVENT_STATE_INACTIVE; 9431 9432 if (task) { 9433 event->attach_state = PERF_ATTACH_TASK; 9434 /* 9435 * XXX pmu::event_init needs to know what task to account to 9436 * and we cannot use the ctx information because we need the 9437 * pmu before we get a ctx. 9438 */ 9439 event->hw.target = task; 9440 } 9441 9442 event->clock = &local_clock; 9443 if (parent_event) 9444 event->clock = parent_event->clock; 9445 9446 if (!overflow_handler && parent_event) { 9447 overflow_handler = parent_event->overflow_handler; 9448 context = parent_event->overflow_handler_context; 9449 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9450 if (overflow_handler == bpf_overflow_handler) { 9451 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9452 9453 if (IS_ERR(prog)) { 9454 err = PTR_ERR(prog); 9455 goto err_ns; 9456 } 9457 event->prog = prog; 9458 event->orig_overflow_handler = 9459 parent_event->orig_overflow_handler; 9460 } 9461 #endif 9462 } 9463 9464 if (overflow_handler) { 9465 event->overflow_handler = overflow_handler; 9466 event->overflow_handler_context = context; 9467 } else if (is_write_backward(event)){ 9468 event->overflow_handler = perf_event_output_backward; 9469 event->overflow_handler_context = NULL; 9470 } else { 9471 event->overflow_handler = perf_event_output_forward; 9472 event->overflow_handler_context = NULL; 9473 } 9474 9475 perf_event__state_init(event); 9476 9477 pmu = NULL; 9478 9479 hwc = &event->hw; 9480 hwc->sample_period = attr->sample_period; 9481 if (attr->freq && attr->sample_freq) 9482 hwc->sample_period = 1; 9483 hwc->last_period = hwc->sample_period; 9484 9485 local64_set(&hwc->period_left, hwc->sample_period); 9486 9487 /* 9488 * We currently do not support PERF_SAMPLE_READ on inherited events. 9489 * See perf_output_read(). 9490 */ 9491 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 9492 goto err_ns; 9493 9494 if (!has_branch_stack(event)) 9495 event->attr.branch_sample_type = 0; 9496 9497 if (cgroup_fd != -1) { 9498 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9499 if (err) 9500 goto err_ns; 9501 } 9502 9503 pmu = perf_init_event(event); 9504 if (IS_ERR(pmu)) { 9505 err = PTR_ERR(pmu); 9506 goto err_ns; 9507 } 9508 9509 err = exclusive_event_init(event); 9510 if (err) 9511 goto err_pmu; 9512 9513 if (has_addr_filter(event)) { 9514 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9515 sizeof(unsigned long), 9516 GFP_KERNEL); 9517 if (!event->addr_filters_offs) { 9518 err = -ENOMEM; 9519 goto err_per_task; 9520 } 9521 9522 /* force hw sync on the address filters */ 9523 event->addr_filters_gen = 1; 9524 } 9525 9526 if (!event->parent) { 9527 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9528 err = get_callchain_buffers(attr->sample_max_stack); 9529 if (err) 9530 goto err_addr_filters; 9531 } 9532 } 9533 9534 /* symmetric to unaccount_event() in _free_event() */ 9535 account_event(event); 9536 9537 return event; 9538 9539 err_addr_filters: 9540 kfree(event->addr_filters_offs); 9541 9542 err_per_task: 9543 exclusive_event_destroy(event); 9544 9545 err_pmu: 9546 if (event->destroy) 9547 event->destroy(event); 9548 module_put(pmu->module); 9549 err_ns: 9550 if (is_cgroup_event(event)) 9551 perf_detach_cgroup(event); 9552 if (event->ns) 9553 put_pid_ns(event->ns); 9554 kfree(event); 9555 9556 return ERR_PTR(err); 9557 } 9558 9559 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9560 struct perf_event_attr *attr) 9561 { 9562 u32 size; 9563 int ret; 9564 9565 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9566 return -EFAULT; 9567 9568 /* 9569 * zero the full structure, so that a short copy will be nice. 9570 */ 9571 memset(attr, 0, sizeof(*attr)); 9572 9573 ret = get_user(size, &uattr->size); 9574 if (ret) 9575 return ret; 9576 9577 if (size > PAGE_SIZE) /* silly large */ 9578 goto err_size; 9579 9580 if (!size) /* abi compat */ 9581 size = PERF_ATTR_SIZE_VER0; 9582 9583 if (size < PERF_ATTR_SIZE_VER0) 9584 goto err_size; 9585 9586 /* 9587 * If we're handed a bigger struct than we know of, 9588 * ensure all the unknown bits are 0 - i.e. new 9589 * user-space does not rely on any kernel feature 9590 * extensions we dont know about yet. 9591 */ 9592 if (size > sizeof(*attr)) { 9593 unsigned char __user *addr; 9594 unsigned char __user *end; 9595 unsigned char val; 9596 9597 addr = (void __user *)uattr + sizeof(*attr); 9598 end = (void __user *)uattr + size; 9599 9600 for (; addr < end; addr++) { 9601 ret = get_user(val, addr); 9602 if (ret) 9603 return ret; 9604 if (val) 9605 goto err_size; 9606 } 9607 size = sizeof(*attr); 9608 } 9609 9610 ret = copy_from_user(attr, uattr, size); 9611 if (ret) 9612 return -EFAULT; 9613 9614 if (attr->__reserved_1) 9615 return -EINVAL; 9616 9617 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9618 return -EINVAL; 9619 9620 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9621 return -EINVAL; 9622 9623 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9624 u64 mask = attr->branch_sample_type; 9625 9626 /* only using defined bits */ 9627 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9628 return -EINVAL; 9629 9630 /* at least one branch bit must be set */ 9631 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9632 return -EINVAL; 9633 9634 /* propagate priv level, when not set for branch */ 9635 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9636 9637 /* exclude_kernel checked on syscall entry */ 9638 if (!attr->exclude_kernel) 9639 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9640 9641 if (!attr->exclude_user) 9642 mask |= PERF_SAMPLE_BRANCH_USER; 9643 9644 if (!attr->exclude_hv) 9645 mask |= PERF_SAMPLE_BRANCH_HV; 9646 /* 9647 * adjust user setting (for HW filter setup) 9648 */ 9649 attr->branch_sample_type = mask; 9650 } 9651 /* privileged levels capture (kernel, hv): check permissions */ 9652 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9653 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9654 return -EACCES; 9655 } 9656 9657 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9658 ret = perf_reg_validate(attr->sample_regs_user); 9659 if (ret) 9660 return ret; 9661 } 9662 9663 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9664 if (!arch_perf_have_user_stack_dump()) 9665 return -ENOSYS; 9666 9667 /* 9668 * We have __u32 type for the size, but so far 9669 * we can only use __u16 as maximum due to the 9670 * __u16 sample size limit. 9671 */ 9672 if (attr->sample_stack_user >= USHRT_MAX) 9673 ret = -EINVAL; 9674 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9675 ret = -EINVAL; 9676 } 9677 9678 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9679 ret = perf_reg_validate(attr->sample_regs_intr); 9680 out: 9681 return ret; 9682 9683 err_size: 9684 put_user(sizeof(*attr), &uattr->size); 9685 ret = -E2BIG; 9686 goto out; 9687 } 9688 9689 static int 9690 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9691 { 9692 struct ring_buffer *rb = NULL; 9693 int ret = -EINVAL; 9694 9695 if (!output_event) 9696 goto set; 9697 9698 /* don't allow circular references */ 9699 if (event == output_event) 9700 goto out; 9701 9702 /* 9703 * Don't allow cross-cpu buffers 9704 */ 9705 if (output_event->cpu != event->cpu) 9706 goto out; 9707 9708 /* 9709 * If its not a per-cpu rb, it must be the same task. 9710 */ 9711 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9712 goto out; 9713 9714 /* 9715 * Mixing clocks in the same buffer is trouble you don't need. 9716 */ 9717 if (output_event->clock != event->clock) 9718 goto out; 9719 9720 /* 9721 * Either writing ring buffer from beginning or from end. 9722 * Mixing is not allowed. 9723 */ 9724 if (is_write_backward(output_event) != is_write_backward(event)) 9725 goto out; 9726 9727 /* 9728 * If both events generate aux data, they must be on the same PMU 9729 */ 9730 if (has_aux(event) && has_aux(output_event) && 9731 event->pmu != output_event->pmu) 9732 goto out; 9733 9734 set: 9735 mutex_lock(&event->mmap_mutex); 9736 /* Can't redirect output if we've got an active mmap() */ 9737 if (atomic_read(&event->mmap_count)) 9738 goto unlock; 9739 9740 if (output_event) { 9741 /* get the rb we want to redirect to */ 9742 rb = ring_buffer_get(output_event); 9743 if (!rb) 9744 goto unlock; 9745 } 9746 9747 ring_buffer_attach(event, rb); 9748 9749 ret = 0; 9750 unlock: 9751 mutex_unlock(&event->mmap_mutex); 9752 9753 out: 9754 return ret; 9755 } 9756 9757 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9758 { 9759 if (b < a) 9760 swap(a, b); 9761 9762 mutex_lock(a); 9763 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9764 } 9765 9766 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9767 { 9768 bool nmi_safe = false; 9769 9770 switch (clk_id) { 9771 case CLOCK_MONOTONIC: 9772 event->clock = &ktime_get_mono_fast_ns; 9773 nmi_safe = true; 9774 break; 9775 9776 case CLOCK_MONOTONIC_RAW: 9777 event->clock = &ktime_get_raw_fast_ns; 9778 nmi_safe = true; 9779 break; 9780 9781 case CLOCK_REALTIME: 9782 event->clock = &ktime_get_real_ns; 9783 break; 9784 9785 case CLOCK_BOOTTIME: 9786 event->clock = &ktime_get_boot_ns; 9787 break; 9788 9789 case CLOCK_TAI: 9790 event->clock = &ktime_get_tai_ns; 9791 break; 9792 9793 default: 9794 return -EINVAL; 9795 } 9796 9797 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9798 return -EINVAL; 9799 9800 return 0; 9801 } 9802 9803 /* 9804 * Variation on perf_event_ctx_lock_nested(), except we take two context 9805 * mutexes. 9806 */ 9807 static struct perf_event_context * 9808 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9809 struct perf_event_context *ctx) 9810 { 9811 struct perf_event_context *gctx; 9812 9813 again: 9814 rcu_read_lock(); 9815 gctx = READ_ONCE(group_leader->ctx); 9816 if (!atomic_inc_not_zero(&gctx->refcount)) { 9817 rcu_read_unlock(); 9818 goto again; 9819 } 9820 rcu_read_unlock(); 9821 9822 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9823 9824 if (group_leader->ctx != gctx) { 9825 mutex_unlock(&ctx->mutex); 9826 mutex_unlock(&gctx->mutex); 9827 put_ctx(gctx); 9828 goto again; 9829 } 9830 9831 return gctx; 9832 } 9833 9834 /** 9835 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9836 * 9837 * @attr_uptr: event_id type attributes for monitoring/sampling 9838 * @pid: target pid 9839 * @cpu: target cpu 9840 * @group_fd: group leader event fd 9841 */ 9842 SYSCALL_DEFINE5(perf_event_open, 9843 struct perf_event_attr __user *, attr_uptr, 9844 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9845 { 9846 struct perf_event *group_leader = NULL, *output_event = NULL; 9847 struct perf_event *event, *sibling; 9848 struct perf_event_attr attr; 9849 struct perf_event_context *ctx, *uninitialized_var(gctx); 9850 struct file *event_file = NULL; 9851 struct fd group = {NULL, 0}; 9852 struct task_struct *task = NULL; 9853 struct pmu *pmu; 9854 int event_fd; 9855 int move_group = 0; 9856 int err; 9857 int f_flags = O_RDWR; 9858 int cgroup_fd = -1; 9859 9860 /* for future expandability... */ 9861 if (flags & ~PERF_FLAG_ALL) 9862 return -EINVAL; 9863 9864 err = perf_copy_attr(attr_uptr, &attr); 9865 if (err) 9866 return err; 9867 9868 if (!attr.exclude_kernel) { 9869 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9870 return -EACCES; 9871 } 9872 9873 if (attr.namespaces) { 9874 if (!capable(CAP_SYS_ADMIN)) 9875 return -EACCES; 9876 } 9877 9878 if (attr.freq) { 9879 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9880 return -EINVAL; 9881 } else { 9882 if (attr.sample_period & (1ULL << 63)) 9883 return -EINVAL; 9884 } 9885 9886 if (!attr.sample_max_stack) 9887 attr.sample_max_stack = sysctl_perf_event_max_stack; 9888 9889 /* 9890 * In cgroup mode, the pid argument is used to pass the fd 9891 * opened to the cgroup directory in cgroupfs. The cpu argument 9892 * designates the cpu on which to monitor threads from that 9893 * cgroup. 9894 */ 9895 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9896 return -EINVAL; 9897 9898 if (flags & PERF_FLAG_FD_CLOEXEC) 9899 f_flags |= O_CLOEXEC; 9900 9901 event_fd = get_unused_fd_flags(f_flags); 9902 if (event_fd < 0) 9903 return event_fd; 9904 9905 if (group_fd != -1) { 9906 err = perf_fget_light(group_fd, &group); 9907 if (err) 9908 goto err_fd; 9909 group_leader = group.file->private_data; 9910 if (flags & PERF_FLAG_FD_OUTPUT) 9911 output_event = group_leader; 9912 if (flags & PERF_FLAG_FD_NO_GROUP) 9913 group_leader = NULL; 9914 } 9915 9916 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9917 task = find_lively_task_by_vpid(pid); 9918 if (IS_ERR(task)) { 9919 err = PTR_ERR(task); 9920 goto err_group_fd; 9921 } 9922 } 9923 9924 if (task && group_leader && 9925 group_leader->attr.inherit != attr.inherit) { 9926 err = -EINVAL; 9927 goto err_task; 9928 } 9929 9930 if (task) { 9931 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9932 if (err) 9933 goto err_task; 9934 9935 /* 9936 * Reuse ptrace permission checks for now. 9937 * 9938 * We must hold cred_guard_mutex across this and any potential 9939 * perf_install_in_context() call for this new event to 9940 * serialize against exec() altering our credentials (and the 9941 * perf_event_exit_task() that could imply). 9942 */ 9943 err = -EACCES; 9944 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9945 goto err_cred; 9946 } 9947 9948 if (flags & PERF_FLAG_PID_CGROUP) 9949 cgroup_fd = pid; 9950 9951 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9952 NULL, NULL, cgroup_fd); 9953 if (IS_ERR(event)) { 9954 err = PTR_ERR(event); 9955 goto err_cred; 9956 } 9957 9958 if (is_sampling_event(event)) { 9959 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9960 err = -EOPNOTSUPP; 9961 goto err_alloc; 9962 } 9963 } 9964 9965 /* 9966 * Special case software events and allow them to be part of 9967 * any hardware group. 9968 */ 9969 pmu = event->pmu; 9970 9971 if (attr.use_clockid) { 9972 err = perf_event_set_clock(event, attr.clockid); 9973 if (err) 9974 goto err_alloc; 9975 } 9976 9977 if (pmu->task_ctx_nr == perf_sw_context) 9978 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9979 9980 if (group_leader && 9981 (is_software_event(event) != is_software_event(group_leader))) { 9982 if (is_software_event(event)) { 9983 /* 9984 * If event and group_leader are not both a software 9985 * event, and event is, then group leader is not. 9986 * 9987 * Allow the addition of software events to !software 9988 * groups, this is safe because software events never 9989 * fail to schedule. 9990 */ 9991 pmu = group_leader->pmu; 9992 } else if (is_software_event(group_leader) && 9993 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9994 /* 9995 * In case the group is a pure software group, and we 9996 * try to add a hardware event, move the whole group to 9997 * the hardware context. 9998 */ 9999 move_group = 1; 10000 } 10001 } 10002 10003 /* 10004 * Get the target context (task or percpu): 10005 */ 10006 ctx = find_get_context(pmu, task, event); 10007 if (IS_ERR(ctx)) { 10008 err = PTR_ERR(ctx); 10009 goto err_alloc; 10010 } 10011 10012 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10013 err = -EBUSY; 10014 goto err_context; 10015 } 10016 10017 /* 10018 * Look up the group leader (we will attach this event to it): 10019 */ 10020 if (group_leader) { 10021 err = -EINVAL; 10022 10023 /* 10024 * Do not allow a recursive hierarchy (this new sibling 10025 * becoming part of another group-sibling): 10026 */ 10027 if (group_leader->group_leader != group_leader) 10028 goto err_context; 10029 10030 /* All events in a group should have the same clock */ 10031 if (group_leader->clock != event->clock) 10032 goto err_context; 10033 10034 /* 10035 * Make sure we're both events for the same CPU; 10036 * grouping events for different CPUs is broken; since 10037 * you can never concurrently schedule them anyhow. 10038 */ 10039 if (group_leader->cpu != event->cpu) 10040 goto err_context; 10041 10042 /* 10043 * Make sure we're both on the same task, or both 10044 * per-CPU events. 10045 */ 10046 if (group_leader->ctx->task != ctx->task) 10047 goto err_context; 10048 10049 /* 10050 * Do not allow to attach to a group in a different task 10051 * or CPU context. If we're moving SW events, we'll fix 10052 * this up later, so allow that. 10053 */ 10054 if (!move_group && group_leader->ctx != ctx) 10055 goto err_context; 10056 10057 /* 10058 * Only a group leader can be exclusive or pinned 10059 */ 10060 if (attr.exclusive || attr.pinned) 10061 goto err_context; 10062 } 10063 10064 if (output_event) { 10065 err = perf_event_set_output(event, output_event); 10066 if (err) 10067 goto err_context; 10068 } 10069 10070 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10071 f_flags); 10072 if (IS_ERR(event_file)) { 10073 err = PTR_ERR(event_file); 10074 event_file = NULL; 10075 goto err_context; 10076 } 10077 10078 if (move_group) { 10079 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10080 10081 if (gctx->task == TASK_TOMBSTONE) { 10082 err = -ESRCH; 10083 goto err_locked; 10084 } 10085 10086 /* 10087 * Check if we raced against another sys_perf_event_open() call 10088 * moving the software group underneath us. 10089 */ 10090 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10091 /* 10092 * If someone moved the group out from under us, check 10093 * if this new event wound up on the same ctx, if so 10094 * its the regular !move_group case, otherwise fail. 10095 */ 10096 if (gctx != ctx) { 10097 err = -EINVAL; 10098 goto err_locked; 10099 } else { 10100 perf_event_ctx_unlock(group_leader, gctx); 10101 move_group = 0; 10102 } 10103 } 10104 } else { 10105 mutex_lock(&ctx->mutex); 10106 } 10107 10108 if (ctx->task == TASK_TOMBSTONE) { 10109 err = -ESRCH; 10110 goto err_locked; 10111 } 10112 10113 if (!perf_event_validate_size(event)) { 10114 err = -E2BIG; 10115 goto err_locked; 10116 } 10117 10118 if (!task) { 10119 /* 10120 * Check if the @cpu we're creating an event for is online. 10121 * 10122 * We use the perf_cpu_context::ctx::mutex to serialize against 10123 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10124 */ 10125 struct perf_cpu_context *cpuctx = 10126 container_of(ctx, struct perf_cpu_context, ctx); 10127 10128 if (!cpuctx->online) { 10129 err = -ENODEV; 10130 goto err_locked; 10131 } 10132 } 10133 10134 10135 /* 10136 * Must be under the same ctx::mutex as perf_install_in_context(), 10137 * because we need to serialize with concurrent event creation. 10138 */ 10139 if (!exclusive_event_installable(event, ctx)) { 10140 /* exclusive and group stuff are assumed mutually exclusive */ 10141 WARN_ON_ONCE(move_group); 10142 10143 err = -EBUSY; 10144 goto err_locked; 10145 } 10146 10147 WARN_ON_ONCE(ctx->parent_ctx); 10148 10149 /* 10150 * This is the point on no return; we cannot fail hereafter. This is 10151 * where we start modifying current state. 10152 */ 10153 10154 if (move_group) { 10155 /* 10156 * See perf_event_ctx_lock() for comments on the details 10157 * of swizzling perf_event::ctx. 10158 */ 10159 perf_remove_from_context(group_leader, 0); 10160 put_ctx(gctx); 10161 10162 list_for_each_entry(sibling, &group_leader->sibling_list, 10163 group_entry) { 10164 perf_remove_from_context(sibling, 0); 10165 put_ctx(gctx); 10166 } 10167 10168 /* 10169 * Wait for everybody to stop referencing the events through 10170 * the old lists, before installing it on new lists. 10171 */ 10172 synchronize_rcu(); 10173 10174 /* 10175 * Install the group siblings before the group leader. 10176 * 10177 * Because a group leader will try and install the entire group 10178 * (through the sibling list, which is still in-tact), we can 10179 * end up with siblings installed in the wrong context. 10180 * 10181 * By installing siblings first we NO-OP because they're not 10182 * reachable through the group lists. 10183 */ 10184 list_for_each_entry(sibling, &group_leader->sibling_list, 10185 group_entry) { 10186 perf_event__state_init(sibling); 10187 perf_install_in_context(ctx, sibling, sibling->cpu); 10188 get_ctx(ctx); 10189 } 10190 10191 /* 10192 * Removing from the context ends up with disabled 10193 * event. What we want here is event in the initial 10194 * startup state, ready to be add into new context. 10195 */ 10196 perf_event__state_init(group_leader); 10197 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10198 get_ctx(ctx); 10199 } 10200 10201 /* 10202 * Precalculate sample_data sizes; do while holding ctx::mutex such 10203 * that we're serialized against further additions and before 10204 * perf_install_in_context() which is the point the event is active and 10205 * can use these values. 10206 */ 10207 perf_event__header_size(event); 10208 perf_event__id_header_size(event); 10209 10210 event->owner = current; 10211 10212 perf_install_in_context(ctx, event, event->cpu); 10213 perf_unpin_context(ctx); 10214 10215 if (move_group) 10216 perf_event_ctx_unlock(group_leader, gctx); 10217 mutex_unlock(&ctx->mutex); 10218 10219 if (task) { 10220 mutex_unlock(&task->signal->cred_guard_mutex); 10221 put_task_struct(task); 10222 } 10223 10224 mutex_lock(¤t->perf_event_mutex); 10225 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10226 mutex_unlock(¤t->perf_event_mutex); 10227 10228 /* 10229 * Drop the reference on the group_event after placing the 10230 * new event on the sibling_list. This ensures destruction 10231 * of the group leader will find the pointer to itself in 10232 * perf_group_detach(). 10233 */ 10234 fdput(group); 10235 fd_install(event_fd, event_file); 10236 return event_fd; 10237 10238 err_locked: 10239 if (move_group) 10240 perf_event_ctx_unlock(group_leader, gctx); 10241 mutex_unlock(&ctx->mutex); 10242 /* err_file: */ 10243 fput(event_file); 10244 err_context: 10245 perf_unpin_context(ctx); 10246 put_ctx(ctx); 10247 err_alloc: 10248 /* 10249 * If event_file is set, the fput() above will have called ->release() 10250 * and that will take care of freeing the event. 10251 */ 10252 if (!event_file) 10253 free_event(event); 10254 err_cred: 10255 if (task) 10256 mutex_unlock(&task->signal->cred_guard_mutex); 10257 err_task: 10258 if (task) 10259 put_task_struct(task); 10260 err_group_fd: 10261 fdput(group); 10262 err_fd: 10263 put_unused_fd(event_fd); 10264 return err; 10265 } 10266 10267 /** 10268 * perf_event_create_kernel_counter 10269 * 10270 * @attr: attributes of the counter to create 10271 * @cpu: cpu in which the counter is bound 10272 * @task: task to profile (NULL for percpu) 10273 */ 10274 struct perf_event * 10275 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10276 struct task_struct *task, 10277 perf_overflow_handler_t overflow_handler, 10278 void *context) 10279 { 10280 struct perf_event_context *ctx; 10281 struct perf_event *event; 10282 int err; 10283 10284 /* 10285 * Get the target context (task or percpu): 10286 */ 10287 10288 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10289 overflow_handler, context, -1); 10290 if (IS_ERR(event)) { 10291 err = PTR_ERR(event); 10292 goto err; 10293 } 10294 10295 /* Mark owner so we could distinguish it from user events. */ 10296 event->owner = TASK_TOMBSTONE; 10297 10298 ctx = find_get_context(event->pmu, task, event); 10299 if (IS_ERR(ctx)) { 10300 err = PTR_ERR(ctx); 10301 goto err_free; 10302 } 10303 10304 WARN_ON_ONCE(ctx->parent_ctx); 10305 mutex_lock(&ctx->mutex); 10306 if (ctx->task == TASK_TOMBSTONE) { 10307 err = -ESRCH; 10308 goto err_unlock; 10309 } 10310 10311 if (!task) { 10312 /* 10313 * Check if the @cpu we're creating an event for is online. 10314 * 10315 * We use the perf_cpu_context::ctx::mutex to serialize against 10316 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10317 */ 10318 struct perf_cpu_context *cpuctx = 10319 container_of(ctx, struct perf_cpu_context, ctx); 10320 if (!cpuctx->online) { 10321 err = -ENODEV; 10322 goto err_unlock; 10323 } 10324 } 10325 10326 if (!exclusive_event_installable(event, ctx)) { 10327 err = -EBUSY; 10328 goto err_unlock; 10329 } 10330 10331 perf_install_in_context(ctx, event, cpu); 10332 perf_unpin_context(ctx); 10333 mutex_unlock(&ctx->mutex); 10334 10335 return event; 10336 10337 err_unlock: 10338 mutex_unlock(&ctx->mutex); 10339 perf_unpin_context(ctx); 10340 put_ctx(ctx); 10341 err_free: 10342 free_event(event); 10343 err: 10344 return ERR_PTR(err); 10345 } 10346 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10347 10348 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10349 { 10350 struct perf_event_context *src_ctx; 10351 struct perf_event_context *dst_ctx; 10352 struct perf_event *event, *tmp; 10353 LIST_HEAD(events); 10354 10355 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10356 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10357 10358 /* 10359 * See perf_event_ctx_lock() for comments on the details 10360 * of swizzling perf_event::ctx. 10361 */ 10362 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10363 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10364 event_entry) { 10365 perf_remove_from_context(event, 0); 10366 unaccount_event_cpu(event, src_cpu); 10367 put_ctx(src_ctx); 10368 list_add(&event->migrate_entry, &events); 10369 } 10370 10371 /* 10372 * Wait for the events to quiesce before re-instating them. 10373 */ 10374 synchronize_rcu(); 10375 10376 /* 10377 * Re-instate events in 2 passes. 10378 * 10379 * Skip over group leaders and only install siblings on this first 10380 * pass, siblings will not get enabled without a leader, however a 10381 * leader will enable its siblings, even if those are still on the old 10382 * context. 10383 */ 10384 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10385 if (event->group_leader == event) 10386 continue; 10387 10388 list_del(&event->migrate_entry); 10389 if (event->state >= PERF_EVENT_STATE_OFF) 10390 event->state = PERF_EVENT_STATE_INACTIVE; 10391 account_event_cpu(event, dst_cpu); 10392 perf_install_in_context(dst_ctx, event, dst_cpu); 10393 get_ctx(dst_ctx); 10394 } 10395 10396 /* 10397 * Once all the siblings are setup properly, install the group leaders 10398 * to make it go. 10399 */ 10400 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10401 list_del(&event->migrate_entry); 10402 if (event->state >= PERF_EVENT_STATE_OFF) 10403 event->state = PERF_EVENT_STATE_INACTIVE; 10404 account_event_cpu(event, dst_cpu); 10405 perf_install_in_context(dst_ctx, event, dst_cpu); 10406 get_ctx(dst_ctx); 10407 } 10408 mutex_unlock(&dst_ctx->mutex); 10409 mutex_unlock(&src_ctx->mutex); 10410 } 10411 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10412 10413 static void sync_child_event(struct perf_event *child_event, 10414 struct task_struct *child) 10415 { 10416 struct perf_event *parent_event = child_event->parent; 10417 u64 child_val; 10418 10419 if (child_event->attr.inherit_stat) 10420 perf_event_read_event(child_event, child); 10421 10422 child_val = perf_event_count(child_event); 10423 10424 /* 10425 * Add back the child's count to the parent's count: 10426 */ 10427 atomic64_add(child_val, &parent_event->child_count); 10428 atomic64_add(child_event->total_time_enabled, 10429 &parent_event->child_total_time_enabled); 10430 atomic64_add(child_event->total_time_running, 10431 &parent_event->child_total_time_running); 10432 } 10433 10434 static void 10435 perf_event_exit_event(struct perf_event *child_event, 10436 struct perf_event_context *child_ctx, 10437 struct task_struct *child) 10438 { 10439 struct perf_event *parent_event = child_event->parent; 10440 10441 /* 10442 * Do not destroy the 'original' grouping; because of the context 10443 * switch optimization the original events could've ended up in a 10444 * random child task. 10445 * 10446 * If we were to destroy the original group, all group related 10447 * operations would cease to function properly after this random 10448 * child dies. 10449 * 10450 * Do destroy all inherited groups, we don't care about those 10451 * and being thorough is better. 10452 */ 10453 raw_spin_lock_irq(&child_ctx->lock); 10454 WARN_ON_ONCE(child_ctx->is_active); 10455 10456 if (parent_event) 10457 perf_group_detach(child_event); 10458 list_del_event(child_event, child_ctx); 10459 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10460 raw_spin_unlock_irq(&child_ctx->lock); 10461 10462 /* 10463 * Parent events are governed by their filedesc, retain them. 10464 */ 10465 if (!parent_event) { 10466 perf_event_wakeup(child_event); 10467 return; 10468 } 10469 /* 10470 * Child events can be cleaned up. 10471 */ 10472 10473 sync_child_event(child_event, child); 10474 10475 /* 10476 * Remove this event from the parent's list 10477 */ 10478 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10479 mutex_lock(&parent_event->child_mutex); 10480 list_del_init(&child_event->child_list); 10481 mutex_unlock(&parent_event->child_mutex); 10482 10483 /* 10484 * Kick perf_poll() for is_event_hup(). 10485 */ 10486 perf_event_wakeup(parent_event); 10487 free_event(child_event); 10488 put_event(parent_event); 10489 } 10490 10491 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10492 { 10493 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10494 struct perf_event *child_event, *next; 10495 10496 WARN_ON_ONCE(child != current); 10497 10498 child_ctx = perf_pin_task_context(child, ctxn); 10499 if (!child_ctx) 10500 return; 10501 10502 /* 10503 * In order to reduce the amount of tricky in ctx tear-down, we hold 10504 * ctx::mutex over the entire thing. This serializes against almost 10505 * everything that wants to access the ctx. 10506 * 10507 * The exception is sys_perf_event_open() / 10508 * perf_event_create_kernel_count() which does find_get_context() 10509 * without ctx::mutex (it cannot because of the move_group double mutex 10510 * lock thing). See the comments in perf_install_in_context(). 10511 */ 10512 mutex_lock(&child_ctx->mutex); 10513 10514 /* 10515 * In a single ctx::lock section, de-schedule the events and detach the 10516 * context from the task such that we cannot ever get it scheduled back 10517 * in. 10518 */ 10519 raw_spin_lock_irq(&child_ctx->lock); 10520 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10521 10522 /* 10523 * Now that the context is inactive, destroy the task <-> ctx relation 10524 * and mark the context dead. 10525 */ 10526 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10527 put_ctx(child_ctx); /* cannot be last */ 10528 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10529 put_task_struct(current); /* cannot be last */ 10530 10531 clone_ctx = unclone_ctx(child_ctx); 10532 raw_spin_unlock_irq(&child_ctx->lock); 10533 10534 if (clone_ctx) 10535 put_ctx(clone_ctx); 10536 10537 /* 10538 * Report the task dead after unscheduling the events so that we 10539 * won't get any samples after PERF_RECORD_EXIT. We can however still 10540 * get a few PERF_RECORD_READ events. 10541 */ 10542 perf_event_task(child, child_ctx, 0); 10543 10544 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10545 perf_event_exit_event(child_event, child_ctx, child); 10546 10547 mutex_unlock(&child_ctx->mutex); 10548 10549 put_ctx(child_ctx); 10550 } 10551 10552 /* 10553 * When a child task exits, feed back event values to parent events. 10554 * 10555 * Can be called with cred_guard_mutex held when called from 10556 * install_exec_creds(). 10557 */ 10558 void perf_event_exit_task(struct task_struct *child) 10559 { 10560 struct perf_event *event, *tmp; 10561 int ctxn; 10562 10563 mutex_lock(&child->perf_event_mutex); 10564 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10565 owner_entry) { 10566 list_del_init(&event->owner_entry); 10567 10568 /* 10569 * Ensure the list deletion is visible before we clear 10570 * the owner, closes a race against perf_release() where 10571 * we need to serialize on the owner->perf_event_mutex. 10572 */ 10573 smp_store_release(&event->owner, NULL); 10574 } 10575 mutex_unlock(&child->perf_event_mutex); 10576 10577 for_each_task_context_nr(ctxn) 10578 perf_event_exit_task_context(child, ctxn); 10579 10580 /* 10581 * The perf_event_exit_task_context calls perf_event_task 10582 * with child's task_ctx, which generates EXIT events for 10583 * child contexts and sets child->perf_event_ctxp[] to NULL. 10584 * At this point we need to send EXIT events to cpu contexts. 10585 */ 10586 perf_event_task(child, NULL, 0); 10587 } 10588 10589 static void perf_free_event(struct perf_event *event, 10590 struct perf_event_context *ctx) 10591 { 10592 struct perf_event *parent = event->parent; 10593 10594 if (WARN_ON_ONCE(!parent)) 10595 return; 10596 10597 mutex_lock(&parent->child_mutex); 10598 list_del_init(&event->child_list); 10599 mutex_unlock(&parent->child_mutex); 10600 10601 put_event(parent); 10602 10603 raw_spin_lock_irq(&ctx->lock); 10604 perf_group_detach(event); 10605 list_del_event(event, ctx); 10606 raw_spin_unlock_irq(&ctx->lock); 10607 free_event(event); 10608 } 10609 10610 /* 10611 * Free an unexposed, unused context as created by inheritance by 10612 * perf_event_init_task below, used by fork() in case of fail. 10613 * 10614 * Not all locks are strictly required, but take them anyway to be nice and 10615 * help out with the lockdep assertions. 10616 */ 10617 void perf_event_free_task(struct task_struct *task) 10618 { 10619 struct perf_event_context *ctx; 10620 struct perf_event *event, *tmp; 10621 int ctxn; 10622 10623 for_each_task_context_nr(ctxn) { 10624 ctx = task->perf_event_ctxp[ctxn]; 10625 if (!ctx) 10626 continue; 10627 10628 mutex_lock(&ctx->mutex); 10629 raw_spin_lock_irq(&ctx->lock); 10630 /* 10631 * Destroy the task <-> ctx relation and mark the context dead. 10632 * 10633 * This is important because even though the task hasn't been 10634 * exposed yet the context has been (through child_list). 10635 */ 10636 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10637 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10638 put_task_struct(task); /* cannot be last */ 10639 raw_spin_unlock_irq(&ctx->lock); 10640 10641 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10642 perf_free_event(event, ctx); 10643 10644 mutex_unlock(&ctx->mutex); 10645 put_ctx(ctx); 10646 } 10647 } 10648 10649 void perf_event_delayed_put(struct task_struct *task) 10650 { 10651 int ctxn; 10652 10653 for_each_task_context_nr(ctxn) 10654 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10655 } 10656 10657 struct file *perf_event_get(unsigned int fd) 10658 { 10659 struct file *file; 10660 10661 file = fget_raw(fd); 10662 if (!file) 10663 return ERR_PTR(-EBADF); 10664 10665 if (file->f_op != &perf_fops) { 10666 fput(file); 10667 return ERR_PTR(-EBADF); 10668 } 10669 10670 return file; 10671 } 10672 10673 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10674 { 10675 if (!event) 10676 return ERR_PTR(-EINVAL); 10677 10678 return &event->attr; 10679 } 10680 10681 /* 10682 * Inherit a event from parent task to child task. 10683 * 10684 * Returns: 10685 * - valid pointer on success 10686 * - NULL for orphaned events 10687 * - IS_ERR() on error 10688 */ 10689 static struct perf_event * 10690 inherit_event(struct perf_event *parent_event, 10691 struct task_struct *parent, 10692 struct perf_event_context *parent_ctx, 10693 struct task_struct *child, 10694 struct perf_event *group_leader, 10695 struct perf_event_context *child_ctx) 10696 { 10697 enum perf_event_active_state parent_state = parent_event->state; 10698 struct perf_event *child_event; 10699 unsigned long flags; 10700 10701 /* 10702 * Instead of creating recursive hierarchies of events, 10703 * we link inherited events back to the original parent, 10704 * which has a filp for sure, which we use as the reference 10705 * count: 10706 */ 10707 if (parent_event->parent) 10708 parent_event = parent_event->parent; 10709 10710 child_event = perf_event_alloc(&parent_event->attr, 10711 parent_event->cpu, 10712 child, 10713 group_leader, parent_event, 10714 NULL, NULL, -1); 10715 if (IS_ERR(child_event)) 10716 return child_event; 10717 10718 /* 10719 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10720 * must be under the same lock in order to serialize against 10721 * perf_event_release_kernel(), such that either we must observe 10722 * is_orphaned_event() or they will observe us on the child_list. 10723 */ 10724 mutex_lock(&parent_event->child_mutex); 10725 if (is_orphaned_event(parent_event) || 10726 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10727 mutex_unlock(&parent_event->child_mutex); 10728 free_event(child_event); 10729 return NULL; 10730 } 10731 10732 get_ctx(child_ctx); 10733 10734 /* 10735 * Make the child state follow the state of the parent event, 10736 * not its attr.disabled bit. We hold the parent's mutex, 10737 * so we won't race with perf_event_{en, dis}able_family. 10738 */ 10739 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10740 child_event->state = PERF_EVENT_STATE_INACTIVE; 10741 else 10742 child_event->state = PERF_EVENT_STATE_OFF; 10743 10744 if (parent_event->attr.freq) { 10745 u64 sample_period = parent_event->hw.sample_period; 10746 struct hw_perf_event *hwc = &child_event->hw; 10747 10748 hwc->sample_period = sample_period; 10749 hwc->last_period = sample_period; 10750 10751 local64_set(&hwc->period_left, sample_period); 10752 } 10753 10754 child_event->ctx = child_ctx; 10755 child_event->overflow_handler = parent_event->overflow_handler; 10756 child_event->overflow_handler_context 10757 = parent_event->overflow_handler_context; 10758 10759 /* 10760 * Precalculate sample_data sizes 10761 */ 10762 perf_event__header_size(child_event); 10763 perf_event__id_header_size(child_event); 10764 10765 /* 10766 * Link it up in the child's context: 10767 */ 10768 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10769 add_event_to_ctx(child_event, child_ctx); 10770 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10771 10772 /* 10773 * Link this into the parent event's child list 10774 */ 10775 list_add_tail(&child_event->child_list, &parent_event->child_list); 10776 mutex_unlock(&parent_event->child_mutex); 10777 10778 return child_event; 10779 } 10780 10781 /* 10782 * Inherits an event group. 10783 * 10784 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10785 * This matches with perf_event_release_kernel() removing all child events. 10786 * 10787 * Returns: 10788 * - 0 on success 10789 * - <0 on error 10790 */ 10791 static int inherit_group(struct perf_event *parent_event, 10792 struct task_struct *parent, 10793 struct perf_event_context *parent_ctx, 10794 struct task_struct *child, 10795 struct perf_event_context *child_ctx) 10796 { 10797 struct perf_event *leader; 10798 struct perf_event *sub; 10799 struct perf_event *child_ctr; 10800 10801 leader = inherit_event(parent_event, parent, parent_ctx, 10802 child, NULL, child_ctx); 10803 if (IS_ERR(leader)) 10804 return PTR_ERR(leader); 10805 /* 10806 * @leader can be NULL here because of is_orphaned_event(). In this 10807 * case inherit_event() will create individual events, similar to what 10808 * perf_group_detach() would do anyway. 10809 */ 10810 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10811 child_ctr = inherit_event(sub, parent, parent_ctx, 10812 child, leader, child_ctx); 10813 if (IS_ERR(child_ctr)) 10814 return PTR_ERR(child_ctr); 10815 } 10816 return 0; 10817 } 10818 10819 /* 10820 * Creates the child task context and tries to inherit the event-group. 10821 * 10822 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10823 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10824 * consistent with perf_event_release_kernel() removing all child events. 10825 * 10826 * Returns: 10827 * - 0 on success 10828 * - <0 on error 10829 */ 10830 static int 10831 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10832 struct perf_event_context *parent_ctx, 10833 struct task_struct *child, int ctxn, 10834 int *inherited_all) 10835 { 10836 int ret; 10837 struct perf_event_context *child_ctx; 10838 10839 if (!event->attr.inherit) { 10840 *inherited_all = 0; 10841 return 0; 10842 } 10843 10844 child_ctx = child->perf_event_ctxp[ctxn]; 10845 if (!child_ctx) { 10846 /* 10847 * This is executed from the parent task context, so 10848 * inherit events that have been marked for cloning. 10849 * First allocate and initialize a context for the 10850 * child. 10851 */ 10852 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10853 if (!child_ctx) 10854 return -ENOMEM; 10855 10856 child->perf_event_ctxp[ctxn] = child_ctx; 10857 } 10858 10859 ret = inherit_group(event, parent, parent_ctx, 10860 child, child_ctx); 10861 10862 if (ret) 10863 *inherited_all = 0; 10864 10865 return ret; 10866 } 10867 10868 /* 10869 * Initialize the perf_event context in task_struct 10870 */ 10871 static int perf_event_init_context(struct task_struct *child, int ctxn) 10872 { 10873 struct perf_event_context *child_ctx, *parent_ctx; 10874 struct perf_event_context *cloned_ctx; 10875 struct perf_event *event; 10876 struct task_struct *parent = current; 10877 int inherited_all = 1; 10878 unsigned long flags; 10879 int ret = 0; 10880 10881 if (likely(!parent->perf_event_ctxp[ctxn])) 10882 return 0; 10883 10884 /* 10885 * If the parent's context is a clone, pin it so it won't get 10886 * swapped under us. 10887 */ 10888 parent_ctx = perf_pin_task_context(parent, ctxn); 10889 if (!parent_ctx) 10890 return 0; 10891 10892 /* 10893 * No need to check if parent_ctx != NULL here; since we saw 10894 * it non-NULL earlier, the only reason for it to become NULL 10895 * is if we exit, and since we're currently in the middle of 10896 * a fork we can't be exiting at the same time. 10897 */ 10898 10899 /* 10900 * Lock the parent list. No need to lock the child - not PID 10901 * hashed yet and not running, so nobody can access it. 10902 */ 10903 mutex_lock(&parent_ctx->mutex); 10904 10905 /* 10906 * We dont have to disable NMIs - we are only looking at 10907 * the list, not manipulating it: 10908 */ 10909 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10910 ret = inherit_task_group(event, parent, parent_ctx, 10911 child, ctxn, &inherited_all); 10912 if (ret) 10913 goto out_unlock; 10914 } 10915 10916 /* 10917 * We can't hold ctx->lock when iterating the ->flexible_group list due 10918 * to allocations, but we need to prevent rotation because 10919 * rotate_ctx() will change the list from interrupt context. 10920 */ 10921 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10922 parent_ctx->rotate_disable = 1; 10923 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10924 10925 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10926 ret = inherit_task_group(event, parent, parent_ctx, 10927 child, ctxn, &inherited_all); 10928 if (ret) 10929 goto out_unlock; 10930 } 10931 10932 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10933 parent_ctx->rotate_disable = 0; 10934 10935 child_ctx = child->perf_event_ctxp[ctxn]; 10936 10937 if (child_ctx && inherited_all) { 10938 /* 10939 * Mark the child context as a clone of the parent 10940 * context, or of whatever the parent is a clone of. 10941 * 10942 * Note that if the parent is a clone, the holding of 10943 * parent_ctx->lock avoids it from being uncloned. 10944 */ 10945 cloned_ctx = parent_ctx->parent_ctx; 10946 if (cloned_ctx) { 10947 child_ctx->parent_ctx = cloned_ctx; 10948 child_ctx->parent_gen = parent_ctx->parent_gen; 10949 } else { 10950 child_ctx->parent_ctx = parent_ctx; 10951 child_ctx->parent_gen = parent_ctx->generation; 10952 } 10953 get_ctx(child_ctx->parent_ctx); 10954 } 10955 10956 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10957 out_unlock: 10958 mutex_unlock(&parent_ctx->mutex); 10959 10960 perf_unpin_context(parent_ctx); 10961 put_ctx(parent_ctx); 10962 10963 return ret; 10964 } 10965 10966 /* 10967 * Initialize the perf_event context in task_struct 10968 */ 10969 int perf_event_init_task(struct task_struct *child) 10970 { 10971 int ctxn, ret; 10972 10973 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10974 mutex_init(&child->perf_event_mutex); 10975 INIT_LIST_HEAD(&child->perf_event_list); 10976 10977 for_each_task_context_nr(ctxn) { 10978 ret = perf_event_init_context(child, ctxn); 10979 if (ret) { 10980 perf_event_free_task(child); 10981 return ret; 10982 } 10983 } 10984 10985 return 0; 10986 } 10987 10988 static void __init perf_event_init_all_cpus(void) 10989 { 10990 struct swevent_htable *swhash; 10991 int cpu; 10992 10993 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 10994 10995 for_each_possible_cpu(cpu) { 10996 swhash = &per_cpu(swevent_htable, cpu); 10997 mutex_init(&swhash->hlist_mutex); 10998 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10999 11000 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11001 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11002 11003 #ifdef CONFIG_CGROUP_PERF 11004 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11005 #endif 11006 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11007 } 11008 } 11009 11010 void perf_swevent_init_cpu(unsigned int cpu) 11011 { 11012 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11013 11014 mutex_lock(&swhash->hlist_mutex); 11015 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11016 struct swevent_hlist *hlist; 11017 11018 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11019 WARN_ON(!hlist); 11020 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11021 } 11022 mutex_unlock(&swhash->hlist_mutex); 11023 } 11024 11025 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11026 static void __perf_event_exit_context(void *__info) 11027 { 11028 struct perf_event_context *ctx = __info; 11029 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11030 struct perf_event *event; 11031 11032 raw_spin_lock(&ctx->lock); 11033 list_for_each_entry(event, &ctx->event_list, event_entry) 11034 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11035 raw_spin_unlock(&ctx->lock); 11036 } 11037 11038 static void perf_event_exit_cpu_context(int cpu) 11039 { 11040 struct perf_cpu_context *cpuctx; 11041 struct perf_event_context *ctx; 11042 struct pmu *pmu; 11043 11044 mutex_lock(&pmus_lock); 11045 list_for_each_entry(pmu, &pmus, entry) { 11046 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11047 ctx = &cpuctx->ctx; 11048 11049 mutex_lock(&ctx->mutex); 11050 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11051 cpuctx->online = 0; 11052 mutex_unlock(&ctx->mutex); 11053 } 11054 cpumask_clear_cpu(cpu, perf_online_mask); 11055 mutex_unlock(&pmus_lock); 11056 } 11057 #else 11058 11059 static void perf_event_exit_cpu_context(int cpu) { } 11060 11061 #endif 11062 11063 int perf_event_init_cpu(unsigned int cpu) 11064 { 11065 struct perf_cpu_context *cpuctx; 11066 struct perf_event_context *ctx; 11067 struct pmu *pmu; 11068 11069 perf_swevent_init_cpu(cpu); 11070 11071 mutex_lock(&pmus_lock); 11072 cpumask_set_cpu(cpu, perf_online_mask); 11073 list_for_each_entry(pmu, &pmus, entry) { 11074 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11075 ctx = &cpuctx->ctx; 11076 11077 mutex_lock(&ctx->mutex); 11078 cpuctx->online = 1; 11079 mutex_unlock(&ctx->mutex); 11080 } 11081 mutex_unlock(&pmus_lock); 11082 11083 return 0; 11084 } 11085 11086 int perf_event_exit_cpu(unsigned int cpu) 11087 { 11088 perf_event_exit_cpu_context(cpu); 11089 return 0; 11090 } 11091 11092 static int 11093 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11094 { 11095 int cpu; 11096 11097 for_each_online_cpu(cpu) 11098 perf_event_exit_cpu(cpu); 11099 11100 return NOTIFY_OK; 11101 } 11102 11103 /* 11104 * Run the perf reboot notifier at the very last possible moment so that 11105 * the generic watchdog code runs as long as possible. 11106 */ 11107 static struct notifier_block perf_reboot_notifier = { 11108 .notifier_call = perf_reboot, 11109 .priority = INT_MIN, 11110 }; 11111 11112 void __init perf_event_init(void) 11113 { 11114 int ret; 11115 11116 idr_init(&pmu_idr); 11117 11118 perf_event_init_all_cpus(); 11119 init_srcu_struct(&pmus_srcu); 11120 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11121 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11122 perf_pmu_register(&perf_task_clock, NULL, -1); 11123 perf_tp_register(); 11124 perf_event_init_cpu(smp_processor_id()); 11125 register_reboot_notifier(&perf_reboot_notifier); 11126 11127 ret = init_hw_breakpoint(); 11128 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11129 11130 /* 11131 * Build time assertion that we keep the data_head at the intended 11132 * location. IOW, validation we got the __reserved[] size right. 11133 */ 11134 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11135 != 1024); 11136 } 11137 11138 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11139 char *page) 11140 { 11141 struct perf_pmu_events_attr *pmu_attr = 11142 container_of(attr, struct perf_pmu_events_attr, attr); 11143 11144 if (pmu_attr->event_str) 11145 return sprintf(page, "%s\n", pmu_attr->event_str); 11146 11147 return 0; 11148 } 11149 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11150 11151 static int __init perf_event_sysfs_init(void) 11152 { 11153 struct pmu *pmu; 11154 int ret; 11155 11156 mutex_lock(&pmus_lock); 11157 11158 ret = bus_register(&pmu_bus); 11159 if (ret) 11160 goto unlock; 11161 11162 list_for_each_entry(pmu, &pmus, entry) { 11163 if (!pmu->name || pmu->type < 0) 11164 continue; 11165 11166 ret = pmu_dev_alloc(pmu); 11167 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11168 } 11169 pmu_bus_running = 1; 11170 ret = 0; 11171 11172 unlock: 11173 mutex_unlock(&pmus_lock); 11174 11175 return ret; 11176 } 11177 device_initcall(perf_event_sysfs_init); 11178 11179 #ifdef CONFIG_CGROUP_PERF 11180 static struct cgroup_subsys_state * 11181 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11182 { 11183 struct perf_cgroup *jc; 11184 11185 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11186 if (!jc) 11187 return ERR_PTR(-ENOMEM); 11188 11189 jc->info = alloc_percpu(struct perf_cgroup_info); 11190 if (!jc->info) { 11191 kfree(jc); 11192 return ERR_PTR(-ENOMEM); 11193 } 11194 11195 return &jc->css; 11196 } 11197 11198 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11199 { 11200 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11201 11202 free_percpu(jc->info); 11203 kfree(jc); 11204 } 11205 11206 static int __perf_cgroup_move(void *info) 11207 { 11208 struct task_struct *task = info; 11209 rcu_read_lock(); 11210 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11211 rcu_read_unlock(); 11212 return 0; 11213 } 11214 11215 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11216 { 11217 struct task_struct *task; 11218 struct cgroup_subsys_state *css; 11219 11220 cgroup_taskset_for_each(task, css, tset) 11221 task_function_call(task, __perf_cgroup_move, task); 11222 } 11223 11224 struct cgroup_subsys perf_event_cgrp_subsys = { 11225 .css_alloc = perf_cgroup_css_alloc, 11226 .css_free = perf_cgroup_css_free, 11227 .attach = perf_cgroup_attach, 11228 /* 11229 * Implicitly enable on dfl hierarchy so that perf events can 11230 * always be filtered by cgroup2 path as long as perf_event 11231 * controller is not mounted on a legacy hierarchy. 11232 */ 11233 .implicit_on_dfl = true, 11234 }; 11235 #endif /* CONFIG_CGROUP_PERF */ 11236