xref: /openbmc/linux/kernel/events/core.c (revision ee89bd6b)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 
43 #include "internal.h"
44 
45 #include <asm/irq_regs.h>
46 
47 struct remote_function_call {
48 	struct task_struct	*p;
49 	int			(*func)(void *info);
50 	void			*info;
51 	int			ret;
52 };
53 
54 static void remote_function(void *data)
55 {
56 	struct remote_function_call *tfc = data;
57 	struct task_struct *p = tfc->p;
58 
59 	if (p) {
60 		tfc->ret = -EAGAIN;
61 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 			return;
63 	}
64 
65 	tfc->ret = tfc->func(tfc->info);
66 }
67 
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:		the task to evaluate
71  * @func:	the function to be called
72  * @info:	the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *	    -ESRCH  - when the process isn't running
79  *	    -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 	struct remote_function_call data = {
85 		.p	= p,
86 		.func	= func,
87 		.info	= info,
88 		.ret	= -ESRCH, /* No such (running) process */
89 	};
90 
91 	if (task_curr(p))
92 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93 
94 	return data.ret;
95 }
96 
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 	struct remote_function_call data = {
109 		.p	= NULL,
110 		.func	= func,
111 		.info	= info,
112 		.ret	= -ENXIO, /* No such CPU */
113 	};
114 
115 	smp_call_function_single(cpu, remote_function, &data, 1);
116 
117 	return data.ret;
118 }
119 
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 		       PERF_FLAG_FD_OUTPUT  |\
122 		       PERF_FLAG_PID_CGROUP)
123 
124 /*
125  * branch priv levels that need permission checks
126  */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 	(PERF_SAMPLE_BRANCH_KERNEL |\
129 	 PERF_SAMPLE_BRANCH_HV)
130 
131 enum event_type_t {
132 	EVENT_FLEXIBLE = 0x1,
133 	EVENT_PINNED = 0x2,
134 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136 
137 /*
138  * perf_sched_events : >0 events exist
139  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140  */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144 
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 
149 static LIST_HEAD(pmus);
150 static DEFINE_MUTEX(pmus_lock);
151 static struct srcu_struct pmus_srcu;
152 
153 /*
154  * perf event paranoia level:
155  *  -1 - not paranoid at all
156  *   0 - disallow raw tracepoint access for unpriv
157  *   1 - disallow cpu events for unpriv
158  *   2 - disallow kernel profiling for unpriv
159  */
160 int sysctl_perf_event_paranoid __read_mostly = 1;
161 
162 /* Minimum for 512 kiB + 1 user control page */
163 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 
165 /*
166  * max perf event sample rate
167  */
168 #define DEFAULT_MAX_SAMPLE_RATE 100000
169 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
170 static int max_samples_per_tick __read_mostly =
171 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
172 
173 int perf_proc_update_handler(struct ctl_table *table, int write,
174 		void __user *buffer, size_t *lenp,
175 		loff_t *ppos)
176 {
177 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
178 
179 	if (ret || !write)
180 		return ret;
181 
182 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
183 
184 	return 0;
185 }
186 
187 static atomic64_t perf_event_id;
188 
189 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
190 			      enum event_type_t event_type);
191 
192 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
193 			     enum event_type_t event_type,
194 			     struct task_struct *task);
195 
196 static void update_context_time(struct perf_event_context *ctx);
197 static u64 perf_event_time(struct perf_event *event);
198 
199 static void ring_buffer_attach(struct perf_event *event,
200 			       struct ring_buffer *rb);
201 
202 void __weak perf_event_print_debug(void)	{ }
203 
204 extern __weak const char *perf_pmu_name(void)
205 {
206 	return "pmu";
207 }
208 
209 static inline u64 perf_clock(void)
210 {
211 	return local_clock();
212 }
213 
214 static inline struct perf_cpu_context *
215 __get_cpu_context(struct perf_event_context *ctx)
216 {
217 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
218 }
219 
220 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
221 			  struct perf_event_context *ctx)
222 {
223 	raw_spin_lock(&cpuctx->ctx.lock);
224 	if (ctx)
225 		raw_spin_lock(&ctx->lock);
226 }
227 
228 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
229 			    struct perf_event_context *ctx)
230 {
231 	if (ctx)
232 		raw_spin_unlock(&ctx->lock);
233 	raw_spin_unlock(&cpuctx->ctx.lock);
234 }
235 
236 #ifdef CONFIG_CGROUP_PERF
237 
238 /*
239  * perf_cgroup_info keeps track of time_enabled for a cgroup.
240  * This is a per-cpu dynamically allocated data structure.
241  */
242 struct perf_cgroup_info {
243 	u64				time;
244 	u64				timestamp;
245 };
246 
247 struct perf_cgroup {
248 	struct cgroup_subsys_state	css;
249 	struct perf_cgroup_info	__percpu *info;
250 };
251 
252 /*
253  * Must ensure cgroup is pinned (css_get) before calling
254  * this function. In other words, we cannot call this function
255  * if there is no cgroup event for the current CPU context.
256  */
257 static inline struct perf_cgroup *
258 perf_cgroup_from_task(struct task_struct *task)
259 {
260 	return container_of(task_subsys_state(task, perf_subsys_id),
261 			struct perf_cgroup, css);
262 }
263 
264 static inline bool
265 perf_cgroup_match(struct perf_event *event)
266 {
267 	struct perf_event_context *ctx = event->ctx;
268 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
269 
270 	/* @event doesn't care about cgroup */
271 	if (!event->cgrp)
272 		return true;
273 
274 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
275 	if (!cpuctx->cgrp)
276 		return false;
277 
278 	/*
279 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
280 	 * also enabled for all its descendant cgroups.  If @cpuctx's
281 	 * cgroup is a descendant of @event's (the test covers identity
282 	 * case), it's a match.
283 	 */
284 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
285 				    event->cgrp->css.cgroup);
286 }
287 
288 static inline bool perf_tryget_cgroup(struct perf_event *event)
289 {
290 	return css_tryget(&event->cgrp->css);
291 }
292 
293 static inline void perf_put_cgroup(struct perf_event *event)
294 {
295 	css_put(&event->cgrp->css);
296 }
297 
298 static inline void perf_detach_cgroup(struct perf_event *event)
299 {
300 	perf_put_cgroup(event);
301 	event->cgrp = NULL;
302 }
303 
304 static inline int is_cgroup_event(struct perf_event *event)
305 {
306 	return event->cgrp != NULL;
307 }
308 
309 static inline u64 perf_cgroup_event_time(struct perf_event *event)
310 {
311 	struct perf_cgroup_info *t;
312 
313 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
314 	return t->time;
315 }
316 
317 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
318 {
319 	struct perf_cgroup_info *info;
320 	u64 now;
321 
322 	now = perf_clock();
323 
324 	info = this_cpu_ptr(cgrp->info);
325 
326 	info->time += now - info->timestamp;
327 	info->timestamp = now;
328 }
329 
330 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
331 {
332 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
333 	if (cgrp_out)
334 		__update_cgrp_time(cgrp_out);
335 }
336 
337 static inline void update_cgrp_time_from_event(struct perf_event *event)
338 {
339 	struct perf_cgroup *cgrp;
340 
341 	/*
342 	 * ensure we access cgroup data only when needed and
343 	 * when we know the cgroup is pinned (css_get)
344 	 */
345 	if (!is_cgroup_event(event))
346 		return;
347 
348 	cgrp = perf_cgroup_from_task(current);
349 	/*
350 	 * Do not update time when cgroup is not active
351 	 */
352 	if (cgrp == event->cgrp)
353 		__update_cgrp_time(event->cgrp);
354 }
355 
356 static inline void
357 perf_cgroup_set_timestamp(struct task_struct *task,
358 			  struct perf_event_context *ctx)
359 {
360 	struct perf_cgroup *cgrp;
361 	struct perf_cgroup_info *info;
362 
363 	/*
364 	 * ctx->lock held by caller
365 	 * ensure we do not access cgroup data
366 	 * unless we have the cgroup pinned (css_get)
367 	 */
368 	if (!task || !ctx->nr_cgroups)
369 		return;
370 
371 	cgrp = perf_cgroup_from_task(task);
372 	info = this_cpu_ptr(cgrp->info);
373 	info->timestamp = ctx->timestamp;
374 }
375 
376 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
377 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
378 
379 /*
380  * reschedule events based on the cgroup constraint of task.
381  *
382  * mode SWOUT : schedule out everything
383  * mode SWIN : schedule in based on cgroup for next
384  */
385 void perf_cgroup_switch(struct task_struct *task, int mode)
386 {
387 	struct perf_cpu_context *cpuctx;
388 	struct pmu *pmu;
389 	unsigned long flags;
390 
391 	/*
392 	 * disable interrupts to avoid geting nr_cgroup
393 	 * changes via __perf_event_disable(). Also
394 	 * avoids preemption.
395 	 */
396 	local_irq_save(flags);
397 
398 	/*
399 	 * we reschedule only in the presence of cgroup
400 	 * constrained events.
401 	 */
402 	rcu_read_lock();
403 
404 	list_for_each_entry_rcu(pmu, &pmus, entry) {
405 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
406 		if (cpuctx->unique_pmu != pmu)
407 			continue; /* ensure we process each cpuctx once */
408 
409 		/*
410 		 * perf_cgroup_events says at least one
411 		 * context on this CPU has cgroup events.
412 		 *
413 		 * ctx->nr_cgroups reports the number of cgroup
414 		 * events for a context.
415 		 */
416 		if (cpuctx->ctx.nr_cgroups > 0) {
417 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
418 			perf_pmu_disable(cpuctx->ctx.pmu);
419 
420 			if (mode & PERF_CGROUP_SWOUT) {
421 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
422 				/*
423 				 * must not be done before ctxswout due
424 				 * to event_filter_match() in event_sched_out()
425 				 */
426 				cpuctx->cgrp = NULL;
427 			}
428 
429 			if (mode & PERF_CGROUP_SWIN) {
430 				WARN_ON_ONCE(cpuctx->cgrp);
431 				/*
432 				 * set cgrp before ctxsw in to allow
433 				 * event_filter_match() to not have to pass
434 				 * task around
435 				 */
436 				cpuctx->cgrp = perf_cgroup_from_task(task);
437 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
438 			}
439 			perf_pmu_enable(cpuctx->ctx.pmu);
440 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
441 		}
442 	}
443 
444 	rcu_read_unlock();
445 
446 	local_irq_restore(flags);
447 }
448 
449 static inline void perf_cgroup_sched_out(struct task_struct *task,
450 					 struct task_struct *next)
451 {
452 	struct perf_cgroup *cgrp1;
453 	struct perf_cgroup *cgrp2 = NULL;
454 
455 	/*
456 	 * we come here when we know perf_cgroup_events > 0
457 	 */
458 	cgrp1 = perf_cgroup_from_task(task);
459 
460 	/*
461 	 * next is NULL when called from perf_event_enable_on_exec()
462 	 * that will systematically cause a cgroup_switch()
463 	 */
464 	if (next)
465 		cgrp2 = perf_cgroup_from_task(next);
466 
467 	/*
468 	 * only schedule out current cgroup events if we know
469 	 * that we are switching to a different cgroup. Otherwise,
470 	 * do no touch the cgroup events.
471 	 */
472 	if (cgrp1 != cgrp2)
473 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
474 }
475 
476 static inline void perf_cgroup_sched_in(struct task_struct *prev,
477 					struct task_struct *task)
478 {
479 	struct perf_cgroup *cgrp1;
480 	struct perf_cgroup *cgrp2 = NULL;
481 
482 	/*
483 	 * we come here when we know perf_cgroup_events > 0
484 	 */
485 	cgrp1 = perf_cgroup_from_task(task);
486 
487 	/* prev can never be NULL */
488 	cgrp2 = perf_cgroup_from_task(prev);
489 
490 	/*
491 	 * only need to schedule in cgroup events if we are changing
492 	 * cgroup during ctxsw. Cgroup events were not scheduled
493 	 * out of ctxsw out if that was not the case.
494 	 */
495 	if (cgrp1 != cgrp2)
496 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
497 }
498 
499 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
500 				      struct perf_event_attr *attr,
501 				      struct perf_event *group_leader)
502 {
503 	struct perf_cgroup *cgrp;
504 	struct cgroup_subsys_state *css;
505 	struct fd f = fdget(fd);
506 	int ret = 0;
507 
508 	if (!f.file)
509 		return -EBADF;
510 
511 	css = cgroup_css_from_dir(f.file, perf_subsys_id);
512 	if (IS_ERR(css)) {
513 		ret = PTR_ERR(css);
514 		goto out;
515 	}
516 
517 	cgrp = container_of(css, struct perf_cgroup, css);
518 	event->cgrp = cgrp;
519 
520 	/* must be done before we fput() the file */
521 	if (!perf_tryget_cgroup(event)) {
522 		event->cgrp = NULL;
523 		ret = -ENOENT;
524 		goto out;
525 	}
526 
527 	/*
528 	 * all events in a group must monitor
529 	 * the same cgroup because a task belongs
530 	 * to only one perf cgroup at a time
531 	 */
532 	if (group_leader && group_leader->cgrp != cgrp) {
533 		perf_detach_cgroup(event);
534 		ret = -EINVAL;
535 	}
536 out:
537 	fdput(f);
538 	return ret;
539 }
540 
541 static inline void
542 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
543 {
544 	struct perf_cgroup_info *t;
545 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
546 	event->shadow_ctx_time = now - t->timestamp;
547 }
548 
549 static inline void
550 perf_cgroup_defer_enabled(struct perf_event *event)
551 {
552 	/*
553 	 * when the current task's perf cgroup does not match
554 	 * the event's, we need to remember to call the
555 	 * perf_mark_enable() function the first time a task with
556 	 * a matching perf cgroup is scheduled in.
557 	 */
558 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
559 		event->cgrp_defer_enabled = 1;
560 }
561 
562 static inline void
563 perf_cgroup_mark_enabled(struct perf_event *event,
564 			 struct perf_event_context *ctx)
565 {
566 	struct perf_event *sub;
567 	u64 tstamp = perf_event_time(event);
568 
569 	if (!event->cgrp_defer_enabled)
570 		return;
571 
572 	event->cgrp_defer_enabled = 0;
573 
574 	event->tstamp_enabled = tstamp - event->total_time_enabled;
575 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
576 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
577 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
578 			sub->cgrp_defer_enabled = 0;
579 		}
580 	}
581 }
582 #else /* !CONFIG_CGROUP_PERF */
583 
584 static inline bool
585 perf_cgroup_match(struct perf_event *event)
586 {
587 	return true;
588 }
589 
590 static inline void perf_detach_cgroup(struct perf_event *event)
591 {}
592 
593 static inline int is_cgroup_event(struct perf_event *event)
594 {
595 	return 0;
596 }
597 
598 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
599 {
600 	return 0;
601 }
602 
603 static inline void update_cgrp_time_from_event(struct perf_event *event)
604 {
605 }
606 
607 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
608 {
609 }
610 
611 static inline void perf_cgroup_sched_out(struct task_struct *task,
612 					 struct task_struct *next)
613 {
614 }
615 
616 static inline void perf_cgroup_sched_in(struct task_struct *prev,
617 					struct task_struct *task)
618 {
619 }
620 
621 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
622 				      struct perf_event_attr *attr,
623 				      struct perf_event *group_leader)
624 {
625 	return -EINVAL;
626 }
627 
628 static inline void
629 perf_cgroup_set_timestamp(struct task_struct *task,
630 			  struct perf_event_context *ctx)
631 {
632 }
633 
634 void
635 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
636 {
637 }
638 
639 static inline void
640 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
641 {
642 }
643 
644 static inline u64 perf_cgroup_event_time(struct perf_event *event)
645 {
646 	return 0;
647 }
648 
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 }
653 
654 static inline void
655 perf_cgroup_mark_enabled(struct perf_event *event,
656 			 struct perf_event_context *ctx)
657 {
658 }
659 #endif
660 
661 void perf_pmu_disable(struct pmu *pmu)
662 {
663 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
664 	if (!(*count)++)
665 		pmu->pmu_disable(pmu);
666 }
667 
668 void perf_pmu_enable(struct pmu *pmu)
669 {
670 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
671 	if (!--(*count))
672 		pmu->pmu_enable(pmu);
673 }
674 
675 static DEFINE_PER_CPU(struct list_head, rotation_list);
676 
677 /*
678  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
679  * because they're strictly cpu affine and rotate_start is called with IRQs
680  * disabled, while rotate_context is called from IRQ context.
681  */
682 static void perf_pmu_rotate_start(struct pmu *pmu)
683 {
684 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
685 	struct list_head *head = &__get_cpu_var(rotation_list);
686 
687 	WARN_ON(!irqs_disabled());
688 
689 	if (list_empty(&cpuctx->rotation_list)) {
690 		int was_empty = list_empty(head);
691 		list_add(&cpuctx->rotation_list, head);
692 		if (was_empty)
693 			tick_nohz_full_kick();
694 	}
695 }
696 
697 static void get_ctx(struct perf_event_context *ctx)
698 {
699 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
700 }
701 
702 static void put_ctx(struct perf_event_context *ctx)
703 {
704 	if (atomic_dec_and_test(&ctx->refcount)) {
705 		if (ctx->parent_ctx)
706 			put_ctx(ctx->parent_ctx);
707 		if (ctx->task)
708 			put_task_struct(ctx->task);
709 		kfree_rcu(ctx, rcu_head);
710 	}
711 }
712 
713 static void unclone_ctx(struct perf_event_context *ctx)
714 {
715 	if (ctx->parent_ctx) {
716 		put_ctx(ctx->parent_ctx);
717 		ctx->parent_ctx = NULL;
718 	}
719 }
720 
721 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
722 {
723 	/*
724 	 * only top level events have the pid namespace they were created in
725 	 */
726 	if (event->parent)
727 		event = event->parent;
728 
729 	return task_tgid_nr_ns(p, event->ns);
730 }
731 
732 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
733 {
734 	/*
735 	 * only top level events have the pid namespace they were created in
736 	 */
737 	if (event->parent)
738 		event = event->parent;
739 
740 	return task_pid_nr_ns(p, event->ns);
741 }
742 
743 /*
744  * If we inherit events we want to return the parent event id
745  * to userspace.
746  */
747 static u64 primary_event_id(struct perf_event *event)
748 {
749 	u64 id = event->id;
750 
751 	if (event->parent)
752 		id = event->parent->id;
753 
754 	return id;
755 }
756 
757 /*
758  * Get the perf_event_context for a task and lock it.
759  * This has to cope with with the fact that until it is locked,
760  * the context could get moved to another task.
761  */
762 static struct perf_event_context *
763 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
764 {
765 	struct perf_event_context *ctx;
766 
767 	rcu_read_lock();
768 retry:
769 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
770 	if (ctx) {
771 		/*
772 		 * If this context is a clone of another, it might
773 		 * get swapped for another underneath us by
774 		 * perf_event_task_sched_out, though the
775 		 * rcu_read_lock() protects us from any context
776 		 * getting freed.  Lock the context and check if it
777 		 * got swapped before we could get the lock, and retry
778 		 * if so.  If we locked the right context, then it
779 		 * can't get swapped on us any more.
780 		 */
781 		raw_spin_lock_irqsave(&ctx->lock, *flags);
782 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
783 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
784 			goto retry;
785 		}
786 
787 		if (!atomic_inc_not_zero(&ctx->refcount)) {
788 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
789 			ctx = NULL;
790 		}
791 	}
792 	rcu_read_unlock();
793 	return ctx;
794 }
795 
796 /*
797  * Get the context for a task and increment its pin_count so it
798  * can't get swapped to another task.  This also increments its
799  * reference count so that the context can't get freed.
800  */
801 static struct perf_event_context *
802 perf_pin_task_context(struct task_struct *task, int ctxn)
803 {
804 	struct perf_event_context *ctx;
805 	unsigned long flags;
806 
807 	ctx = perf_lock_task_context(task, ctxn, &flags);
808 	if (ctx) {
809 		++ctx->pin_count;
810 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
811 	}
812 	return ctx;
813 }
814 
815 static void perf_unpin_context(struct perf_event_context *ctx)
816 {
817 	unsigned long flags;
818 
819 	raw_spin_lock_irqsave(&ctx->lock, flags);
820 	--ctx->pin_count;
821 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
822 }
823 
824 /*
825  * Update the record of the current time in a context.
826  */
827 static void update_context_time(struct perf_event_context *ctx)
828 {
829 	u64 now = perf_clock();
830 
831 	ctx->time += now - ctx->timestamp;
832 	ctx->timestamp = now;
833 }
834 
835 static u64 perf_event_time(struct perf_event *event)
836 {
837 	struct perf_event_context *ctx = event->ctx;
838 
839 	if (is_cgroup_event(event))
840 		return perf_cgroup_event_time(event);
841 
842 	return ctx ? ctx->time : 0;
843 }
844 
845 /*
846  * Update the total_time_enabled and total_time_running fields for a event.
847  * The caller of this function needs to hold the ctx->lock.
848  */
849 static void update_event_times(struct perf_event *event)
850 {
851 	struct perf_event_context *ctx = event->ctx;
852 	u64 run_end;
853 
854 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
855 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
856 		return;
857 	/*
858 	 * in cgroup mode, time_enabled represents
859 	 * the time the event was enabled AND active
860 	 * tasks were in the monitored cgroup. This is
861 	 * independent of the activity of the context as
862 	 * there may be a mix of cgroup and non-cgroup events.
863 	 *
864 	 * That is why we treat cgroup events differently
865 	 * here.
866 	 */
867 	if (is_cgroup_event(event))
868 		run_end = perf_cgroup_event_time(event);
869 	else if (ctx->is_active)
870 		run_end = ctx->time;
871 	else
872 		run_end = event->tstamp_stopped;
873 
874 	event->total_time_enabled = run_end - event->tstamp_enabled;
875 
876 	if (event->state == PERF_EVENT_STATE_INACTIVE)
877 		run_end = event->tstamp_stopped;
878 	else
879 		run_end = perf_event_time(event);
880 
881 	event->total_time_running = run_end - event->tstamp_running;
882 
883 }
884 
885 /*
886  * Update total_time_enabled and total_time_running for all events in a group.
887  */
888 static void update_group_times(struct perf_event *leader)
889 {
890 	struct perf_event *event;
891 
892 	update_event_times(leader);
893 	list_for_each_entry(event, &leader->sibling_list, group_entry)
894 		update_event_times(event);
895 }
896 
897 static struct list_head *
898 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
899 {
900 	if (event->attr.pinned)
901 		return &ctx->pinned_groups;
902 	else
903 		return &ctx->flexible_groups;
904 }
905 
906 /*
907  * Add a event from the lists for its context.
908  * Must be called with ctx->mutex and ctx->lock held.
909  */
910 static void
911 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
912 {
913 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
914 	event->attach_state |= PERF_ATTACH_CONTEXT;
915 
916 	/*
917 	 * If we're a stand alone event or group leader, we go to the context
918 	 * list, group events are kept attached to the group so that
919 	 * perf_group_detach can, at all times, locate all siblings.
920 	 */
921 	if (event->group_leader == event) {
922 		struct list_head *list;
923 
924 		if (is_software_event(event))
925 			event->group_flags |= PERF_GROUP_SOFTWARE;
926 
927 		list = ctx_group_list(event, ctx);
928 		list_add_tail(&event->group_entry, list);
929 	}
930 
931 	if (is_cgroup_event(event))
932 		ctx->nr_cgroups++;
933 
934 	if (has_branch_stack(event))
935 		ctx->nr_branch_stack++;
936 
937 	list_add_rcu(&event->event_entry, &ctx->event_list);
938 	if (!ctx->nr_events)
939 		perf_pmu_rotate_start(ctx->pmu);
940 	ctx->nr_events++;
941 	if (event->attr.inherit_stat)
942 		ctx->nr_stat++;
943 }
944 
945 /*
946  * Initialize event state based on the perf_event_attr::disabled.
947  */
948 static inline void perf_event__state_init(struct perf_event *event)
949 {
950 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
951 					      PERF_EVENT_STATE_INACTIVE;
952 }
953 
954 /*
955  * Called at perf_event creation and when events are attached/detached from a
956  * group.
957  */
958 static void perf_event__read_size(struct perf_event *event)
959 {
960 	int entry = sizeof(u64); /* value */
961 	int size = 0;
962 	int nr = 1;
963 
964 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
965 		size += sizeof(u64);
966 
967 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
968 		size += sizeof(u64);
969 
970 	if (event->attr.read_format & PERF_FORMAT_ID)
971 		entry += sizeof(u64);
972 
973 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
974 		nr += event->group_leader->nr_siblings;
975 		size += sizeof(u64);
976 	}
977 
978 	size += entry * nr;
979 	event->read_size = size;
980 }
981 
982 static void perf_event__header_size(struct perf_event *event)
983 {
984 	struct perf_sample_data *data;
985 	u64 sample_type = event->attr.sample_type;
986 	u16 size = 0;
987 
988 	perf_event__read_size(event);
989 
990 	if (sample_type & PERF_SAMPLE_IP)
991 		size += sizeof(data->ip);
992 
993 	if (sample_type & PERF_SAMPLE_ADDR)
994 		size += sizeof(data->addr);
995 
996 	if (sample_type & PERF_SAMPLE_PERIOD)
997 		size += sizeof(data->period);
998 
999 	if (sample_type & PERF_SAMPLE_WEIGHT)
1000 		size += sizeof(data->weight);
1001 
1002 	if (sample_type & PERF_SAMPLE_READ)
1003 		size += event->read_size;
1004 
1005 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1006 		size += sizeof(data->data_src.val);
1007 
1008 	event->header_size = size;
1009 }
1010 
1011 static void perf_event__id_header_size(struct perf_event *event)
1012 {
1013 	struct perf_sample_data *data;
1014 	u64 sample_type = event->attr.sample_type;
1015 	u16 size = 0;
1016 
1017 	if (sample_type & PERF_SAMPLE_TID)
1018 		size += sizeof(data->tid_entry);
1019 
1020 	if (sample_type & PERF_SAMPLE_TIME)
1021 		size += sizeof(data->time);
1022 
1023 	if (sample_type & PERF_SAMPLE_ID)
1024 		size += sizeof(data->id);
1025 
1026 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1027 		size += sizeof(data->stream_id);
1028 
1029 	if (sample_type & PERF_SAMPLE_CPU)
1030 		size += sizeof(data->cpu_entry);
1031 
1032 	event->id_header_size = size;
1033 }
1034 
1035 static void perf_group_attach(struct perf_event *event)
1036 {
1037 	struct perf_event *group_leader = event->group_leader, *pos;
1038 
1039 	/*
1040 	 * We can have double attach due to group movement in perf_event_open.
1041 	 */
1042 	if (event->attach_state & PERF_ATTACH_GROUP)
1043 		return;
1044 
1045 	event->attach_state |= PERF_ATTACH_GROUP;
1046 
1047 	if (group_leader == event)
1048 		return;
1049 
1050 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1051 			!is_software_event(event))
1052 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1053 
1054 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1055 	group_leader->nr_siblings++;
1056 
1057 	perf_event__header_size(group_leader);
1058 
1059 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1060 		perf_event__header_size(pos);
1061 }
1062 
1063 /*
1064  * Remove a event from the lists for its context.
1065  * Must be called with ctx->mutex and ctx->lock held.
1066  */
1067 static void
1068 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 	struct perf_cpu_context *cpuctx;
1071 	/*
1072 	 * We can have double detach due to exit/hot-unplug + close.
1073 	 */
1074 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1075 		return;
1076 
1077 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1078 
1079 	if (is_cgroup_event(event)) {
1080 		ctx->nr_cgroups--;
1081 		cpuctx = __get_cpu_context(ctx);
1082 		/*
1083 		 * if there are no more cgroup events
1084 		 * then cler cgrp to avoid stale pointer
1085 		 * in update_cgrp_time_from_cpuctx()
1086 		 */
1087 		if (!ctx->nr_cgroups)
1088 			cpuctx->cgrp = NULL;
1089 	}
1090 
1091 	if (has_branch_stack(event))
1092 		ctx->nr_branch_stack--;
1093 
1094 	ctx->nr_events--;
1095 	if (event->attr.inherit_stat)
1096 		ctx->nr_stat--;
1097 
1098 	list_del_rcu(&event->event_entry);
1099 
1100 	if (event->group_leader == event)
1101 		list_del_init(&event->group_entry);
1102 
1103 	update_group_times(event);
1104 
1105 	/*
1106 	 * If event was in error state, then keep it
1107 	 * that way, otherwise bogus counts will be
1108 	 * returned on read(). The only way to get out
1109 	 * of error state is by explicit re-enabling
1110 	 * of the event
1111 	 */
1112 	if (event->state > PERF_EVENT_STATE_OFF)
1113 		event->state = PERF_EVENT_STATE_OFF;
1114 }
1115 
1116 static void perf_group_detach(struct perf_event *event)
1117 {
1118 	struct perf_event *sibling, *tmp;
1119 	struct list_head *list = NULL;
1120 
1121 	/*
1122 	 * We can have double detach due to exit/hot-unplug + close.
1123 	 */
1124 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1125 		return;
1126 
1127 	event->attach_state &= ~PERF_ATTACH_GROUP;
1128 
1129 	/*
1130 	 * If this is a sibling, remove it from its group.
1131 	 */
1132 	if (event->group_leader != event) {
1133 		list_del_init(&event->group_entry);
1134 		event->group_leader->nr_siblings--;
1135 		goto out;
1136 	}
1137 
1138 	if (!list_empty(&event->group_entry))
1139 		list = &event->group_entry;
1140 
1141 	/*
1142 	 * If this was a group event with sibling events then
1143 	 * upgrade the siblings to singleton events by adding them
1144 	 * to whatever list we are on.
1145 	 */
1146 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1147 		if (list)
1148 			list_move_tail(&sibling->group_entry, list);
1149 		sibling->group_leader = sibling;
1150 
1151 		/* Inherit group flags from the previous leader */
1152 		sibling->group_flags = event->group_flags;
1153 	}
1154 
1155 out:
1156 	perf_event__header_size(event->group_leader);
1157 
1158 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1159 		perf_event__header_size(tmp);
1160 }
1161 
1162 static inline int
1163 event_filter_match(struct perf_event *event)
1164 {
1165 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1166 	    && perf_cgroup_match(event);
1167 }
1168 
1169 static void
1170 event_sched_out(struct perf_event *event,
1171 		  struct perf_cpu_context *cpuctx,
1172 		  struct perf_event_context *ctx)
1173 {
1174 	u64 tstamp = perf_event_time(event);
1175 	u64 delta;
1176 	/*
1177 	 * An event which could not be activated because of
1178 	 * filter mismatch still needs to have its timings
1179 	 * maintained, otherwise bogus information is return
1180 	 * via read() for time_enabled, time_running:
1181 	 */
1182 	if (event->state == PERF_EVENT_STATE_INACTIVE
1183 	    && !event_filter_match(event)) {
1184 		delta = tstamp - event->tstamp_stopped;
1185 		event->tstamp_running += delta;
1186 		event->tstamp_stopped = tstamp;
1187 	}
1188 
1189 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1190 		return;
1191 
1192 	event->state = PERF_EVENT_STATE_INACTIVE;
1193 	if (event->pending_disable) {
1194 		event->pending_disable = 0;
1195 		event->state = PERF_EVENT_STATE_OFF;
1196 	}
1197 	event->tstamp_stopped = tstamp;
1198 	event->pmu->del(event, 0);
1199 	event->oncpu = -1;
1200 
1201 	if (!is_software_event(event))
1202 		cpuctx->active_oncpu--;
1203 	ctx->nr_active--;
1204 	if (event->attr.freq && event->attr.sample_freq)
1205 		ctx->nr_freq--;
1206 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1207 		cpuctx->exclusive = 0;
1208 }
1209 
1210 static void
1211 group_sched_out(struct perf_event *group_event,
1212 		struct perf_cpu_context *cpuctx,
1213 		struct perf_event_context *ctx)
1214 {
1215 	struct perf_event *event;
1216 	int state = group_event->state;
1217 
1218 	event_sched_out(group_event, cpuctx, ctx);
1219 
1220 	/*
1221 	 * Schedule out siblings (if any):
1222 	 */
1223 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1224 		event_sched_out(event, cpuctx, ctx);
1225 
1226 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1227 		cpuctx->exclusive = 0;
1228 }
1229 
1230 /*
1231  * Cross CPU call to remove a performance event
1232  *
1233  * We disable the event on the hardware level first. After that we
1234  * remove it from the context list.
1235  */
1236 static int __perf_remove_from_context(void *info)
1237 {
1238 	struct perf_event *event = info;
1239 	struct perf_event_context *ctx = event->ctx;
1240 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1241 
1242 	raw_spin_lock(&ctx->lock);
1243 	event_sched_out(event, cpuctx, ctx);
1244 	list_del_event(event, ctx);
1245 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1246 		ctx->is_active = 0;
1247 		cpuctx->task_ctx = NULL;
1248 	}
1249 	raw_spin_unlock(&ctx->lock);
1250 
1251 	return 0;
1252 }
1253 
1254 
1255 /*
1256  * Remove the event from a task's (or a CPU's) list of events.
1257  *
1258  * CPU events are removed with a smp call. For task events we only
1259  * call when the task is on a CPU.
1260  *
1261  * If event->ctx is a cloned context, callers must make sure that
1262  * every task struct that event->ctx->task could possibly point to
1263  * remains valid.  This is OK when called from perf_release since
1264  * that only calls us on the top-level context, which can't be a clone.
1265  * When called from perf_event_exit_task, it's OK because the
1266  * context has been detached from its task.
1267  */
1268 static void perf_remove_from_context(struct perf_event *event)
1269 {
1270 	struct perf_event_context *ctx = event->ctx;
1271 	struct task_struct *task = ctx->task;
1272 
1273 	lockdep_assert_held(&ctx->mutex);
1274 
1275 	if (!task) {
1276 		/*
1277 		 * Per cpu events are removed via an smp call and
1278 		 * the removal is always successful.
1279 		 */
1280 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1281 		return;
1282 	}
1283 
1284 retry:
1285 	if (!task_function_call(task, __perf_remove_from_context, event))
1286 		return;
1287 
1288 	raw_spin_lock_irq(&ctx->lock);
1289 	/*
1290 	 * If we failed to find a running task, but find the context active now
1291 	 * that we've acquired the ctx->lock, retry.
1292 	 */
1293 	if (ctx->is_active) {
1294 		raw_spin_unlock_irq(&ctx->lock);
1295 		goto retry;
1296 	}
1297 
1298 	/*
1299 	 * Since the task isn't running, its safe to remove the event, us
1300 	 * holding the ctx->lock ensures the task won't get scheduled in.
1301 	 */
1302 	list_del_event(event, ctx);
1303 	raw_spin_unlock_irq(&ctx->lock);
1304 }
1305 
1306 /*
1307  * Cross CPU call to disable a performance event
1308  */
1309 int __perf_event_disable(void *info)
1310 {
1311 	struct perf_event *event = info;
1312 	struct perf_event_context *ctx = event->ctx;
1313 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1314 
1315 	/*
1316 	 * If this is a per-task event, need to check whether this
1317 	 * event's task is the current task on this cpu.
1318 	 *
1319 	 * Can trigger due to concurrent perf_event_context_sched_out()
1320 	 * flipping contexts around.
1321 	 */
1322 	if (ctx->task && cpuctx->task_ctx != ctx)
1323 		return -EINVAL;
1324 
1325 	raw_spin_lock(&ctx->lock);
1326 
1327 	/*
1328 	 * If the event is on, turn it off.
1329 	 * If it is in error state, leave it in error state.
1330 	 */
1331 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1332 		update_context_time(ctx);
1333 		update_cgrp_time_from_event(event);
1334 		update_group_times(event);
1335 		if (event == event->group_leader)
1336 			group_sched_out(event, cpuctx, ctx);
1337 		else
1338 			event_sched_out(event, cpuctx, ctx);
1339 		event->state = PERF_EVENT_STATE_OFF;
1340 	}
1341 
1342 	raw_spin_unlock(&ctx->lock);
1343 
1344 	return 0;
1345 }
1346 
1347 /*
1348  * Disable a event.
1349  *
1350  * If event->ctx is a cloned context, callers must make sure that
1351  * every task struct that event->ctx->task could possibly point to
1352  * remains valid.  This condition is satisifed when called through
1353  * perf_event_for_each_child or perf_event_for_each because they
1354  * hold the top-level event's child_mutex, so any descendant that
1355  * goes to exit will block in sync_child_event.
1356  * When called from perf_pending_event it's OK because event->ctx
1357  * is the current context on this CPU and preemption is disabled,
1358  * hence we can't get into perf_event_task_sched_out for this context.
1359  */
1360 void perf_event_disable(struct perf_event *event)
1361 {
1362 	struct perf_event_context *ctx = event->ctx;
1363 	struct task_struct *task = ctx->task;
1364 
1365 	if (!task) {
1366 		/*
1367 		 * Disable the event on the cpu that it's on
1368 		 */
1369 		cpu_function_call(event->cpu, __perf_event_disable, event);
1370 		return;
1371 	}
1372 
1373 retry:
1374 	if (!task_function_call(task, __perf_event_disable, event))
1375 		return;
1376 
1377 	raw_spin_lock_irq(&ctx->lock);
1378 	/*
1379 	 * If the event is still active, we need to retry the cross-call.
1380 	 */
1381 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1382 		raw_spin_unlock_irq(&ctx->lock);
1383 		/*
1384 		 * Reload the task pointer, it might have been changed by
1385 		 * a concurrent perf_event_context_sched_out().
1386 		 */
1387 		task = ctx->task;
1388 		goto retry;
1389 	}
1390 
1391 	/*
1392 	 * Since we have the lock this context can't be scheduled
1393 	 * in, so we can change the state safely.
1394 	 */
1395 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1396 		update_group_times(event);
1397 		event->state = PERF_EVENT_STATE_OFF;
1398 	}
1399 	raw_spin_unlock_irq(&ctx->lock);
1400 }
1401 EXPORT_SYMBOL_GPL(perf_event_disable);
1402 
1403 static void perf_set_shadow_time(struct perf_event *event,
1404 				 struct perf_event_context *ctx,
1405 				 u64 tstamp)
1406 {
1407 	/*
1408 	 * use the correct time source for the time snapshot
1409 	 *
1410 	 * We could get by without this by leveraging the
1411 	 * fact that to get to this function, the caller
1412 	 * has most likely already called update_context_time()
1413 	 * and update_cgrp_time_xx() and thus both timestamp
1414 	 * are identical (or very close). Given that tstamp is,
1415 	 * already adjusted for cgroup, we could say that:
1416 	 *    tstamp - ctx->timestamp
1417 	 * is equivalent to
1418 	 *    tstamp - cgrp->timestamp.
1419 	 *
1420 	 * Then, in perf_output_read(), the calculation would
1421 	 * work with no changes because:
1422 	 * - event is guaranteed scheduled in
1423 	 * - no scheduled out in between
1424 	 * - thus the timestamp would be the same
1425 	 *
1426 	 * But this is a bit hairy.
1427 	 *
1428 	 * So instead, we have an explicit cgroup call to remain
1429 	 * within the time time source all along. We believe it
1430 	 * is cleaner and simpler to understand.
1431 	 */
1432 	if (is_cgroup_event(event))
1433 		perf_cgroup_set_shadow_time(event, tstamp);
1434 	else
1435 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1436 }
1437 
1438 #define MAX_INTERRUPTS (~0ULL)
1439 
1440 static void perf_log_throttle(struct perf_event *event, int enable);
1441 
1442 static int
1443 event_sched_in(struct perf_event *event,
1444 		 struct perf_cpu_context *cpuctx,
1445 		 struct perf_event_context *ctx)
1446 {
1447 	u64 tstamp = perf_event_time(event);
1448 
1449 	if (event->state <= PERF_EVENT_STATE_OFF)
1450 		return 0;
1451 
1452 	event->state = PERF_EVENT_STATE_ACTIVE;
1453 	event->oncpu = smp_processor_id();
1454 
1455 	/*
1456 	 * Unthrottle events, since we scheduled we might have missed several
1457 	 * ticks already, also for a heavily scheduling task there is little
1458 	 * guarantee it'll get a tick in a timely manner.
1459 	 */
1460 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1461 		perf_log_throttle(event, 1);
1462 		event->hw.interrupts = 0;
1463 	}
1464 
1465 	/*
1466 	 * The new state must be visible before we turn it on in the hardware:
1467 	 */
1468 	smp_wmb();
1469 
1470 	if (event->pmu->add(event, PERF_EF_START)) {
1471 		event->state = PERF_EVENT_STATE_INACTIVE;
1472 		event->oncpu = -1;
1473 		return -EAGAIN;
1474 	}
1475 
1476 	event->tstamp_running += tstamp - event->tstamp_stopped;
1477 
1478 	perf_set_shadow_time(event, ctx, tstamp);
1479 
1480 	if (!is_software_event(event))
1481 		cpuctx->active_oncpu++;
1482 	ctx->nr_active++;
1483 	if (event->attr.freq && event->attr.sample_freq)
1484 		ctx->nr_freq++;
1485 
1486 	if (event->attr.exclusive)
1487 		cpuctx->exclusive = 1;
1488 
1489 	return 0;
1490 }
1491 
1492 static int
1493 group_sched_in(struct perf_event *group_event,
1494 	       struct perf_cpu_context *cpuctx,
1495 	       struct perf_event_context *ctx)
1496 {
1497 	struct perf_event *event, *partial_group = NULL;
1498 	struct pmu *pmu = group_event->pmu;
1499 	u64 now = ctx->time;
1500 	bool simulate = false;
1501 
1502 	if (group_event->state == PERF_EVENT_STATE_OFF)
1503 		return 0;
1504 
1505 	pmu->start_txn(pmu);
1506 
1507 	if (event_sched_in(group_event, cpuctx, ctx)) {
1508 		pmu->cancel_txn(pmu);
1509 		return -EAGAIN;
1510 	}
1511 
1512 	/*
1513 	 * Schedule in siblings as one group (if any):
1514 	 */
1515 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1516 		if (event_sched_in(event, cpuctx, ctx)) {
1517 			partial_group = event;
1518 			goto group_error;
1519 		}
1520 	}
1521 
1522 	if (!pmu->commit_txn(pmu))
1523 		return 0;
1524 
1525 group_error:
1526 	/*
1527 	 * Groups can be scheduled in as one unit only, so undo any
1528 	 * partial group before returning:
1529 	 * The events up to the failed event are scheduled out normally,
1530 	 * tstamp_stopped will be updated.
1531 	 *
1532 	 * The failed events and the remaining siblings need to have
1533 	 * their timings updated as if they had gone thru event_sched_in()
1534 	 * and event_sched_out(). This is required to get consistent timings
1535 	 * across the group. This also takes care of the case where the group
1536 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1537 	 * the time the event was actually stopped, such that time delta
1538 	 * calculation in update_event_times() is correct.
1539 	 */
1540 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1541 		if (event == partial_group)
1542 			simulate = true;
1543 
1544 		if (simulate) {
1545 			event->tstamp_running += now - event->tstamp_stopped;
1546 			event->tstamp_stopped = now;
1547 		} else {
1548 			event_sched_out(event, cpuctx, ctx);
1549 		}
1550 	}
1551 	event_sched_out(group_event, cpuctx, ctx);
1552 
1553 	pmu->cancel_txn(pmu);
1554 
1555 	return -EAGAIN;
1556 }
1557 
1558 /*
1559  * Work out whether we can put this event group on the CPU now.
1560  */
1561 static int group_can_go_on(struct perf_event *event,
1562 			   struct perf_cpu_context *cpuctx,
1563 			   int can_add_hw)
1564 {
1565 	/*
1566 	 * Groups consisting entirely of software events can always go on.
1567 	 */
1568 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1569 		return 1;
1570 	/*
1571 	 * If an exclusive group is already on, no other hardware
1572 	 * events can go on.
1573 	 */
1574 	if (cpuctx->exclusive)
1575 		return 0;
1576 	/*
1577 	 * If this group is exclusive and there are already
1578 	 * events on the CPU, it can't go on.
1579 	 */
1580 	if (event->attr.exclusive && cpuctx->active_oncpu)
1581 		return 0;
1582 	/*
1583 	 * Otherwise, try to add it if all previous groups were able
1584 	 * to go on.
1585 	 */
1586 	return can_add_hw;
1587 }
1588 
1589 static void add_event_to_ctx(struct perf_event *event,
1590 			       struct perf_event_context *ctx)
1591 {
1592 	u64 tstamp = perf_event_time(event);
1593 
1594 	list_add_event(event, ctx);
1595 	perf_group_attach(event);
1596 	event->tstamp_enabled = tstamp;
1597 	event->tstamp_running = tstamp;
1598 	event->tstamp_stopped = tstamp;
1599 }
1600 
1601 static void task_ctx_sched_out(struct perf_event_context *ctx);
1602 static void
1603 ctx_sched_in(struct perf_event_context *ctx,
1604 	     struct perf_cpu_context *cpuctx,
1605 	     enum event_type_t event_type,
1606 	     struct task_struct *task);
1607 
1608 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1609 				struct perf_event_context *ctx,
1610 				struct task_struct *task)
1611 {
1612 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1613 	if (ctx)
1614 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1615 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1616 	if (ctx)
1617 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1618 }
1619 
1620 /*
1621  * Cross CPU call to install and enable a performance event
1622  *
1623  * Must be called with ctx->mutex held
1624  */
1625 static int  __perf_install_in_context(void *info)
1626 {
1627 	struct perf_event *event = info;
1628 	struct perf_event_context *ctx = event->ctx;
1629 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1630 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1631 	struct task_struct *task = current;
1632 
1633 	perf_ctx_lock(cpuctx, task_ctx);
1634 	perf_pmu_disable(cpuctx->ctx.pmu);
1635 
1636 	/*
1637 	 * If there was an active task_ctx schedule it out.
1638 	 */
1639 	if (task_ctx)
1640 		task_ctx_sched_out(task_ctx);
1641 
1642 	/*
1643 	 * If the context we're installing events in is not the
1644 	 * active task_ctx, flip them.
1645 	 */
1646 	if (ctx->task && task_ctx != ctx) {
1647 		if (task_ctx)
1648 			raw_spin_unlock(&task_ctx->lock);
1649 		raw_spin_lock(&ctx->lock);
1650 		task_ctx = ctx;
1651 	}
1652 
1653 	if (task_ctx) {
1654 		cpuctx->task_ctx = task_ctx;
1655 		task = task_ctx->task;
1656 	}
1657 
1658 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1659 
1660 	update_context_time(ctx);
1661 	/*
1662 	 * update cgrp time only if current cgrp
1663 	 * matches event->cgrp. Must be done before
1664 	 * calling add_event_to_ctx()
1665 	 */
1666 	update_cgrp_time_from_event(event);
1667 
1668 	add_event_to_ctx(event, ctx);
1669 
1670 	/*
1671 	 * Schedule everything back in
1672 	 */
1673 	perf_event_sched_in(cpuctx, task_ctx, task);
1674 
1675 	perf_pmu_enable(cpuctx->ctx.pmu);
1676 	perf_ctx_unlock(cpuctx, task_ctx);
1677 
1678 	return 0;
1679 }
1680 
1681 /*
1682  * Attach a performance event to a context
1683  *
1684  * First we add the event to the list with the hardware enable bit
1685  * in event->hw_config cleared.
1686  *
1687  * If the event is attached to a task which is on a CPU we use a smp
1688  * call to enable it in the task context. The task might have been
1689  * scheduled away, but we check this in the smp call again.
1690  */
1691 static void
1692 perf_install_in_context(struct perf_event_context *ctx,
1693 			struct perf_event *event,
1694 			int cpu)
1695 {
1696 	struct task_struct *task = ctx->task;
1697 
1698 	lockdep_assert_held(&ctx->mutex);
1699 
1700 	event->ctx = ctx;
1701 	if (event->cpu != -1)
1702 		event->cpu = cpu;
1703 
1704 	if (!task) {
1705 		/*
1706 		 * Per cpu events are installed via an smp call and
1707 		 * the install is always successful.
1708 		 */
1709 		cpu_function_call(cpu, __perf_install_in_context, event);
1710 		return;
1711 	}
1712 
1713 retry:
1714 	if (!task_function_call(task, __perf_install_in_context, event))
1715 		return;
1716 
1717 	raw_spin_lock_irq(&ctx->lock);
1718 	/*
1719 	 * If we failed to find a running task, but find the context active now
1720 	 * that we've acquired the ctx->lock, retry.
1721 	 */
1722 	if (ctx->is_active) {
1723 		raw_spin_unlock_irq(&ctx->lock);
1724 		goto retry;
1725 	}
1726 
1727 	/*
1728 	 * Since the task isn't running, its safe to add the event, us holding
1729 	 * the ctx->lock ensures the task won't get scheduled in.
1730 	 */
1731 	add_event_to_ctx(event, ctx);
1732 	raw_spin_unlock_irq(&ctx->lock);
1733 }
1734 
1735 /*
1736  * Put a event into inactive state and update time fields.
1737  * Enabling the leader of a group effectively enables all
1738  * the group members that aren't explicitly disabled, so we
1739  * have to update their ->tstamp_enabled also.
1740  * Note: this works for group members as well as group leaders
1741  * since the non-leader members' sibling_lists will be empty.
1742  */
1743 static void __perf_event_mark_enabled(struct perf_event *event)
1744 {
1745 	struct perf_event *sub;
1746 	u64 tstamp = perf_event_time(event);
1747 
1748 	event->state = PERF_EVENT_STATE_INACTIVE;
1749 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1750 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1751 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1752 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1753 	}
1754 }
1755 
1756 /*
1757  * Cross CPU call to enable a performance event
1758  */
1759 static int __perf_event_enable(void *info)
1760 {
1761 	struct perf_event *event = info;
1762 	struct perf_event_context *ctx = event->ctx;
1763 	struct perf_event *leader = event->group_leader;
1764 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1765 	int err;
1766 
1767 	if (WARN_ON_ONCE(!ctx->is_active))
1768 		return -EINVAL;
1769 
1770 	raw_spin_lock(&ctx->lock);
1771 	update_context_time(ctx);
1772 
1773 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1774 		goto unlock;
1775 
1776 	/*
1777 	 * set current task's cgroup time reference point
1778 	 */
1779 	perf_cgroup_set_timestamp(current, ctx);
1780 
1781 	__perf_event_mark_enabled(event);
1782 
1783 	if (!event_filter_match(event)) {
1784 		if (is_cgroup_event(event))
1785 			perf_cgroup_defer_enabled(event);
1786 		goto unlock;
1787 	}
1788 
1789 	/*
1790 	 * If the event is in a group and isn't the group leader,
1791 	 * then don't put it on unless the group is on.
1792 	 */
1793 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1794 		goto unlock;
1795 
1796 	if (!group_can_go_on(event, cpuctx, 1)) {
1797 		err = -EEXIST;
1798 	} else {
1799 		if (event == leader)
1800 			err = group_sched_in(event, cpuctx, ctx);
1801 		else
1802 			err = event_sched_in(event, cpuctx, ctx);
1803 	}
1804 
1805 	if (err) {
1806 		/*
1807 		 * If this event can't go on and it's part of a
1808 		 * group, then the whole group has to come off.
1809 		 */
1810 		if (leader != event)
1811 			group_sched_out(leader, cpuctx, ctx);
1812 		if (leader->attr.pinned) {
1813 			update_group_times(leader);
1814 			leader->state = PERF_EVENT_STATE_ERROR;
1815 		}
1816 	}
1817 
1818 unlock:
1819 	raw_spin_unlock(&ctx->lock);
1820 
1821 	return 0;
1822 }
1823 
1824 /*
1825  * Enable a event.
1826  *
1827  * If event->ctx is a cloned context, callers must make sure that
1828  * every task struct that event->ctx->task could possibly point to
1829  * remains valid.  This condition is satisfied when called through
1830  * perf_event_for_each_child or perf_event_for_each as described
1831  * for perf_event_disable.
1832  */
1833 void perf_event_enable(struct perf_event *event)
1834 {
1835 	struct perf_event_context *ctx = event->ctx;
1836 	struct task_struct *task = ctx->task;
1837 
1838 	if (!task) {
1839 		/*
1840 		 * Enable the event on the cpu that it's on
1841 		 */
1842 		cpu_function_call(event->cpu, __perf_event_enable, event);
1843 		return;
1844 	}
1845 
1846 	raw_spin_lock_irq(&ctx->lock);
1847 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1848 		goto out;
1849 
1850 	/*
1851 	 * If the event is in error state, clear that first.
1852 	 * That way, if we see the event in error state below, we
1853 	 * know that it has gone back into error state, as distinct
1854 	 * from the task having been scheduled away before the
1855 	 * cross-call arrived.
1856 	 */
1857 	if (event->state == PERF_EVENT_STATE_ERROR)
1858 		event->state = PERF_EVENT_STATE_OFF;
1859 
1860 retry:
1861 	if (!ctx->is_active) {
1862 		__perf_event_mark_enabled(event);
1863 		goto out;
1864 	}
1865 
1866 	raw_spin_unlock_irq(&ctx->lock);
1867 
1868 	if (!task_function_call(task, __perf_event_enable, event))
1869 		return;
1870 
1871 	raw_spin_lock_irq(&ctx->lock);
1872 
1873 	/*
1874 	 * If the context is active and the event is still off,
1875 	 * we need to retry the cross-call.
1876 	 */
1877 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1878 		/*
1879 		 * task could have been flipped by a concurrent
1880 		 * perf_event_context_sched_out()
1881 		 */
1882 		task = ctx->task;
1883 		goto retry;
1884 	}
1885 
1886 out:
1887 	raw_spin_unlock_irq(&ctx->lock);
1888 }
1889 EXPORT_SYMBOL_GPL(perf_event_enable);
1890 
1891 int perf_event_refresh(struct perf_event *event, int refresh)
1892 {
1893 	/*
1894 	 * not supported on inherited events
1895 	 */
1896 	if (event->attr.inherit || !is_sampling_event(event))
1897 		return -EINVAL;
1898 
1899 	atomic_add(refresh, &event->event_limit);
1900 	perf_event_enable(event);
1901 
1902 	return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(perf_event_refresh);
1905 
1906 static void ctx_sched_out(struct perf_event_context *ctx,
1907 			  struct perf_cpu_context *cpuctx,
1908 			  enum event_type_t event_type)
1909 {
1910 	struct perf_event *event;
1911 	int is_active = ctx->is_active;
1912 
1913 	ctx->is_active &= ~event_type;
1914 	if (likely(!ctx->nr_events))
1915 		return;
1916 
1917 	update_context_time(ctx);
1918 	update_cgrp_time_from_cpuctx(cpuctx);
1919 	if (!ctx->nr_active)
1920 		return;
1921 
1922 	perf_pmu_disable(ctx->pmu);
1923 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1924 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1925 			group_sched_out(event, cpuctx, ctx);
1926 	}
1927 
1928 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1929 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1930 			group_sched_out(event, cpuctx, ctx);
1931 	}
1932 	perf_pmu_enable(ctx->pmu);
1933 }
1934 
1935 /*
1936  * Test whether two contexts are equivalent, i.e. whether they
1937  * have both been cloned from the same version of the same context
1938  * and they both have the same number of enabled events.
1939  * If the number of enabled events is the same, then the set
1940  * of enabled events should be the same, because these are both
1941  * inherited contexts, therefore we can't access individual events
1942  * in them directly with an fd; we can only enable/disable all
1943  * events via prctl, or enable/disable all events in a family
1944  * via ioctl, which will have the same effect on both contexts.
1945  */
1946 static int context_equiv(struct perf_event_context *ctx1,
1947 			 struct perf_event_context *ctx2)
1948 {
1949 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1950 		&& ctx1->parent_gen == ctx2->parent_gen
1951 		&& !ctx1->pin_count && !ctx2->pin_count;
1952 }
1953 
1954 static void __perf_event_sync_stat(struct perf_event *event,
1955 				     struct perf_event *next_event)
1956 {
1957 	u64 value;
1958 
1959 	if (!event->attr.inherit_stat)
1960 		return;
1961 
1962 	/*
1963 	 * Update the event value, we cannot use perf_event_read()
1964 	 * because we're in the middle of a context switch and have IRQs
1965 	 * disabled, which upsets smp_call_function_single(), however
1966 	 * we know the event must be on the current CPU, therefore we
1967 	 * don't need to use it.
1968 	 */
1969 	switch (event->state) {
1970 	case PERF_EVENT_STATE_ACTIVE:
1971 		event->pmu->read(event);
1972 		/* fall-through */
1973 
1974 	case PERF_EVENT_STATE_INACTIVE:
1975 		update_event_times(event);
1976 		break;
1977 
1978 	default:
1979 		break;
1980 	}
1981 
1982 	/*
1983 	 * In order to keep per-task stats reliable we need to flip the event
1984 	 * values when we flip the contexts.
1985 	 */
1986 	value = local64_read(&next_event->count);
1987 	value = local64_xchg(&event->count, value);
1988 	local64_set(&next_event->count, value);
1989 
1990 	swap(event->total_time_enabled, next_event->total_time_enabled);
1991 	swap(event->total_time_running, next_event->total_time_running);
1992 
1993 	/*
1994 	 * Since we swizzled the values, update the user visible data too.
1995 	 */
1996 	perf_event_update_userpage(event);
1997 	perf_event_update_userpage(next_event);
1998 }
1999 
2000 #define list_next_entry(pos, member) \
2001 	list_entry(pos->member.next, typeof(*pos), member)
2002 
2003 static void perf_event_sync_stat(struct perf_event_context *ctx,
2004 				   struct perf_event_context *next_ctx)
2005 {
2006 	struct perf_event *event, *next_event;
2007 
2008 	if (!ctx->nr_stat)
2009 		return;
2010 
2011 	update_context_time(ctx);
2012 
2013 	event = list_first_entry(&ctx->event_list,
2014 				   struct perf_event, event_entry);
2015 
2016 	next_event = list_first_entry(&next_ctx->event_list,
2017 					struct perf_event, event_entry);
2018 
2019 	while (&event->event_entry != &ctx->event_list &&
2020 	       &next_event->event_entry != &next_ctx->event_list) {
2021 
2022 		__perf_event_sync_stat(event, next_event);
2023 
2024 		event = list_next_entry(event, event_entry);
2025 		next_event = list_next_entry(next_event, event_entry);
2026 	}
2027 }
2028 
2029 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2030 					 struct task_struct *next)
2031 {
2032 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2033 	struct perf_event_context *next_ctx;
2034 	struct perf_event_context *parent;
2035 	struct perf_cpu_context *cpuctx;
2036 	int do_switch = 1;
2037 
2038 	if (likely(!ctx))
2039 		return;
2040 
2041 	cpuctx = __get_cpu_context(ctx);
2042 	if (!cpuctx->task_ctx)
2043 		return;
2044 
2045 	rcu_read_lock();
2046 	parent = rcu_dereference(ctx->parent_ctx);
2047 	next_ctx = next->perf_event_ctxp[ctxn];
2048 	if (parent && next_ctx &&
2049 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
2050 		/*
2051 		 * Looks like the two contexts are clones, so we might be
2052 		 * able to optimize the context switch.  We lock both
2053 		 * contexts and check that they are clones under the
2054 		 * lock (including re-checking that neither has been
2055 		 * uncloned in the meantime).  It doesn't matter which
2056 		 * order we take the locks because no other cpu could
2057 		 * be trying to lock both of these tasks.
2058 		 */
2059 		raw_spin_lock(&ctx->lock);
2060 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2061 		if (context_equiv(ctx, next_ctx)) {
2062 			/*
2063 			 * XXX do we need a memory barrier of sorts
2064 			 * wrt to rcu_dereference() of perf_event_ctxp
2065 			 */
2066 			task->perf_event_ctxp[ctxn] = next_ctx;
2067 			next->perf_event_ctxp[ctxn] = ctx;
2068 			ctx->task = next;
2069 			next_ctx->task = task;
2070 			do_switch = 0;
2071 
2072 			perf_event_sync_stat(ctx, next_ctx);
2073 		}
2074 		raw_spin_unlock(&next_ctx->lock);
2075 		raw_spin_unlock(&ctx->lock);
2076 	}
2077 	rcu_read_unlock();
2078 
2079 	if (do_switch) {
2080 		raw_spin_lock(&ctx->lock);
2081 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2082 		cpuctx->task_ctx = NULL;
2083 		raw_spin_unlock(&ctx->lock);
2084 	}
2085 }
2086 
2087 #define for_each_task_context_nr(ctxn)					\
2088 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2089 
2090 /*
2091  * Called from scheduler to remove the events of the current task,
2092  * with interrupts disabled.
2093  *
2094  * We stop each event and update the event value in event->count.
2095  *
2096  * This does not protect us against NMI, but disable()
2097  * sets the disabled bit in the control field of event _before_
2098  * accessing the event control register. If a NMI hits, then it will
2099  * not restart the event.
2100  */
2101 void __perf_event_task_sched_out(struct task_struct *task,
2102 				 struct task_struct *next)
2103 {
2104 	int ctxn;
2105 
2106 	for_each_task_context_nr(ctxn)
2107 		perf_event_context_sched_out(task, ctxn, next);
2108 
2109 	/*
2110 	 * if cgroup events exist on this CPU, then we need
2111 	 * to check if we have to switch out PMU state.
2112 	 * cgroup event are system-wide mode only
2113 	 */
2114 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2115 		perf_cgroup_sched_out(task, next);
2116 }
2117 
2118 static void task_ctx_sched_out(struct perf_event_context *ctx)
2119 {
2120 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2121 
2122 	if (!cpuctx->task_ctx)
2123 		return;
2124 
2125 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2126 		return;
2127 
2128 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2129 	cpuctx->task_ctx = NULL;
2130 }
2131 
2132 /*
2133  * Called with IRQs disabled
2134  */
2135 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2136 			      enum event_type_t event_type)
2137 {
2138 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2139 }
2140 
2141 static void
2142 ctx_pinned_sched_in(struct perf_event_context *ctx,
2143 		    struct perf_cpu_context *cpuctx)
2144 {
2145 	struct perf_event *event;
2146 
2147 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2148 		if (event->state <= PERF_EVENT_STATE_OFF)
2149 			continue;
2150 		if (!event_filter_match(event))
2151 			continue;
2152 
2153 		/* may need to reset tstamp_enabled */
2154 		if (is_cgroup_event(event))
2155 			perf_cgroup_mark_enabled(event, ctx);
2156 
2157 		if (group_can_go_on(event, cpuctx, 1))
2158 			group_sched_in(event, cpuctx, ctx);
2159 
2160 		/*
2161 		 * If this pinned group hasn't been scheduled,
2162 		 * put it in error state.
2163 		 */
2164 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2165 			update_group_times(event);
2166 			event->state = PERF_EVENT_STATE_ERROR;
2167 		}
2168 	}
2169 }
2170 
2171 static void
2172 ctx_flexible_sched_in(struct perf_event_context *ctx,
2173 		      struct perf_cpu_context *cpuctx)
2174 {
2175 	struct perf_event *event;
2176 	int can_add_hw = 1;
2177 
2178 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2179 		/* Ignore events in OFF or ERROR state */
2180 		if (event->state <= PERF_EVENT_STATE_OFF)
2181 			continue;
2182 		/*
2183 		 * Listen to the 'cpu' scheduling filter constraint
2184 		 * of events:
2185 		 */
2186 		if (!event_filter_match(event))
2187 			continue;
2188 
2189 		/* may need to reset tstamp_enabled */
2190 		if (is_cgroup_event(event))
2191 			perf_cgroup_mark_enabled(event, ctx);
2192 
2193 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2194 			if (group_sched_in(event, cpuctx, ctx))
2195 				can_add_hw = 0;
2196 		}
2197 	}
2198 }
2199 
2200 static void
2201 ctx_sched_in(struct perf_event_context *ctx,
2202 	     struct perf_cpu_context *cpuctx,
2203 	     enum event_type_t event_type,
2204 	     struct task_struct *task)
2205 {
2206 	u64 now;
2207 	int is_active = ctx->is_active;
2208 
2209 	ctx->is_active |= event_type;
2210 	if (likely(!ctx->nr_events))
2211 		return;
2212 
2213 	now = perf_clock();
2214 	ctx->timestamp = now;
2215 	perf_cgroup_set_timestamp(task, ctx);
2216 	/*
2217 	 * First go through the list and put on any pinned groups
2218 	 * in order to give them the best chance of going on.
2219 	 */
2220 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2221 		ctx_pinned_sched_in(ctx, cpuctx);
2222 
2223 	/* Then walk through the lower prio flexible groups */
2224 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2225 		ctx_flexible_sched_in(ctx, cpuctx);
2226 }
2227 
2228 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2229 			     enum event_type_t event_type,
2230 			     struct task_struct *task)
2231 {
2232 	struct perf_event_context *ctx = &cpuctx->ctx;
2233 
2234 	ctx_sched_in(ctx, cpuctx, event_type, task);
2235 }
2236 
2237 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2238 					struct task_struct *task)
2239 {
2240 	struct perf_cpu_context *cpuctx;
2241 
2242 	cpuctx = __get_cpu_context(ctx);
2243 	if (cpuctx->task_ctx == ctx)
2244 		return;
2245 
2246 	perf_ctx_lock(cpuctx, ctx);
2247 	perf_pmu_disable(ctx->pmu);
2248 	/*
2249 	 * We want to keep the following priority order:
2250 	 * cpu pinned (that don't need to move), task pinned,
2251 	 * cpu flexible, task flexible.
2252 	 */
2253 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2254 
2255 	if (ctx->nr_events)
2256 		cpuctx->task_ctx = ctx;
2257 
2258 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2259 
2260 	perf_pmu_enable(ctx->pmu);
2261 	perf_ctx_unlock(cpuctx, ctx);
2262 
2263 	/*
2264 	 * Since these rotations are per-cpu, we need to ensure the
2265 	 * cpu-context we got scheduled on is actually rotating.
2266 	 */
2267 	perf_pmu_rotate_start(ctx->pmu);
2268 }
2269 
2270 /*
2271  * When sampling the branck stack in system-wide, it may be necessary
2272  * to flush the stack on context switch. This happens when the branch
2273  * stack does not tag its entries with the pid of the current task.
2274  * Otherwise it becomes impossible to associate a branch entry with a
2275  * task. This ambiguity is more likely to appear when the branch stack
2276  * supports priv level filtering and the user sets it to monitor only
2277  * at the user level (which could be a useful measurement in system-wide
2278  * mode). In that case, the risk is high of having a branch stack with
2279  * branch from multiple tasks. Flushing may mean dropping the existing
2280  * entries or stashing them somewhere in the PMU specific code layer.
2281  *
2282  * This function provides the context switch callback to the lower code
2283  * layer. It is invoked ONLY when there is at least one system-wide context
2284  * with at least one active event using taken branch sampling.
2285  */
2286 static void perf_branch_stack_sched_in(struct task_struct *prev,
2287 				       struct task_struct *task)
2288 {
2289 	struct perf_cpu_context *cpuctx;
2290 	struct pmu *pmu;
2291 	unsigned long flags;
2292 
2293 	/* no need to flush branch stack if not changing task */
2294 	if (prev == task)
2295 		return;
2296 
2297 	local_irq_save(flags);
2298 
2299 	rcu_read_lock();
2300 
2301 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2302 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2303 
2304 		/*
2305 		 * check if the context has at least one
2306 		 * event using PERF_SAMPLE_BRANCH_STACK
2307 		 */
2308 		if (cpuctx->ctx.nr_branch_stack > 0
2309 		    && pmu->flush_branch_stack) {
2310 
2311 			pmu = cpuctx->ctx.pmu;
2312 
2313 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2314 
2315 			perf_pmu_disable(pmu);
2316 
2317 			pmu->flush_branch_stack();
2318 
2319 			perf_pmu_enable(pmu);
2320 
2321 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2322 		}
2323 	}
2324 
2325 	rcu_read_unlock();
2326 
2327 	local_irq_restore(flags);
2328 }
2329 
2330 /*
2331  * Called from scheduler to add the events of the current task
2332  * with interrupts disabled.
2333  *
2334  * We restore the event value and then enable it.
2335  *
2336  * This does not protect us against NMI, but enable()
2337  * sets the enabled bit in the control field of event _before_
2338  * accessing the event control register. If a NMI hits, then it will
2339  * keep the event running.
2340  */
2341 void __perf_event_task_sched_in(struct task_struct *prev,
2342 				struct task_struct *task)
2343 {
2344 	struct perf_event_context *ctx;
2345 	int ctxn;
2346 
2347 	for_each_task_context_nr(ctxn) {
2348 		ctx = task->perf_event_ctxp[ctxn];
2349 		if (likely(!ctx))
2350 			continue;
2351 
2352 		perf_event_context_sched_in(ctx, task);
2353 	}
2354 	/*
2355 	 * if cgroup events exist on this CPU, then we need
2356 	 * to check if we have to switch in PMU state.
2357 	 * cgroup event are system-wide mode only
2358 	 */
2359 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2360 		perf_cgroup_sched_in(prev, task);
2361 
2362 	/* check for system-wide branch_stack events */
2363 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2364 		perf_branch_stack_sched_in(prev, task);
2365 }
2366 
2367 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2368 {
2369 	u64 frequency = event->attr.sample_freq;
2370 	u64 sec = NSEC_PER_SEC;
2371 	u64 divisor, dividend;
2372 
2373 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2374 
2375 	count_fls = fls64(count);
2376 	nsec_fls = fls64(nsec);
2377 	frequency_fls = fls64(frequency);
2378 	sec_fls = 30;
2379 
2380 	/*
2381 	 * We got @count in @nsec, with a target of sample_freq HZ
2382 	 * the target period becomes:
2383 	 *
2384 	 *             @count * 10^9
2385 	 * period = -------------------
2386 	 *          @nsec * sample_freq
2387 	 *
2388 	 */
2389 
2390 	/*
2391 	 * Reduce accuracy by one bit such that @a and @b converge
2392 	 * to a similar magnitude.
2393 	 */
2394 #define REDUCE_FLS(a, b)		\
2395 do {					\
2396 	if (a##_fls > b##_fls) {	\
2397 		a >>= 1;		\
2398 		a##_fls--;		\
2399 	} else {			\
2400 		b >>= 1;		\
2401 		b##_fls--;		\
2402 	}				\
2403 } while (0)
2404 
2405 	/*
2406 	 * Reduce accuracy until either term fits in a u64, then proceed with
2407 	 * the other, so that finally we can do a u64/u64 division.
2408 	 */
2409 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2410 		REDUCE_FLS(nsec, frequency);
2411 		REDUCE_FLS(sec, count);
2412 	}
2413 
2414 	if (count_fls + sec_fls > 64) {
2415 		divisor = nsec * frequency;
2416 
2417 		while (count_fls + sec_fls > 64) {
2418 			REDUCE_FLS(count, sec);
2419 			divisor >>= 1;
2420 		}
2421 
2422 		dividend = count * sec;
2423 	} else {
2424 		dividend = count * sec;
2425 
2426 		while (nsec_fls + frequency_fls > 64) {
2427 			REDUCE_FLS(nsec, frequency);
2428 			dividend >>= 1;
2429 		}
2430 
2431 		divisor = nsec * frequency;
2432 	}
2433 
2434 	if (!divisor)
2435 		return dividend;
2436 
2437 	return div64_u64(dividend, divisor);
2438 }
2439 
2440 static DEFINE_PER_CPU(int, perf_throttled_count);
2441 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2442 
2443 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2444 {
2445 	struct hw_perf_event *hwc = &event->hw;
2446 	s64 period, sample_period;
2447 	s64 delta;
2448 
2449 	period = perf_calculate_period(event, nsec, count);
2450 
2451 	delta = (s64)(period - hwc->sample_period);
2452 	delta = (delta + 7) / 8; /* low pass filter */
2453 
2454 	sample_period = hwc->sample_period + delta;
2455 
2456 	if (!sample_period)
2457 		sample_period = 1;
2458 
2459 	hwc->sample_period = sample_period;
2460 
2461 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2462 		if (disable)
2463 			event->pmu->stop(event, PERF_EF_UPDATE);
2464 
2465 		local64_set(&hwc->period_left, 0);
2466 
2467 		if (disable)
2468 			event->pmu->start(event, PERF_EF_RELOAD);
2469 	}
2470 }
2471 
2472 /*
2473  * combine freq adjustment with unthrottling to avoid two passes over the
2474  * events. At the same time, make sure, having freq events does not change
2475  * the rate of unthrottling as that would introduce bias.
2476  */
2477 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2478 					   int needs_unthr)
2479 {
2480 	struct perf_event *event;
2481 	struct hw_perf_event *hwc;
2482 	u64 now, period = TICK_NSEC;
2483 	s64 delta;
2484 
2485 	/*
2486 	 * only need to iterate over all events iff:
2487 	 * - context have events in frequency mode (needs freq adjust)
2488 	 * - there are events to unthrottle on this cpu
2489 	 */
2490 	if (!(ctx->nr_freq || needs_unthr))
2491 		return;
2492 
2493 	raw_spin_lock(&ctx->lock);
2494 	perf_pmu_disable(ctx->pmu);
2495 
2496 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2497 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2498 			continue;
2499 
2500 		if (!event_filter_match(event))
2501 			continue;
2502 
2503 		hwc = &event->hw;
2504 
2505 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2506 			hwc->interrupts = 0;
2507 			perf_log_throttle(event, 1);
2508 			event->pmu->start(event, 0);
2509 		}
2510 
2511 		if (!event->attr.freq || !event->attr.sample_freq)
2512 			continue;
2513 
2514 		/*
2515 		 * stop the event and update event->count
2516 		 */
2517 		event->pmu->stop(event, PERF_EF_UPDATE);
2518 
2519 		now = local64_read(&event->count);
2520 		delta = now - hwc->freq_count_stamp;
2521 		hwc->freq_count_stamp = now;
2522 
2523 		/*
2524 		 * restart the event
2525 		 * reload only if value has changed
2526 		 * we have stopped the event so tell that
2527 		 * to perf_adjust_period() to avoid stopping it
2528 		 * twice.
2529 		 */
2530 		if (delta > 0)
2531 			perf_adjust_period(event, period, delta, false);
2532 
2533 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2534 	}
2535 
2536 	perf_pmu_enable(ctx->pmu);
2537 	raw_spin_unlock(&ctx->lock);
2538 }
2539 
2540 /*
2541  * Round-robin a context's events:
2542  */
2543 static void rotate_ctx(struct perf_event_context *ctx)
2544 {
2545 	/*
2546 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2547 	 * disabled by the inheritance code.
2548 	 */
2549 	if (!ctx->rotate_disable)
2550 		list_rotate_left(&ctx->flexible_groups);
2551 }
2552 
2553 /*
2554  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2555  * because they're strictly cpu affine and rotate_start is called with IRQs
2556  * disabled, while rotate_context is called from IRQ context.
2557  */
2558 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2559 {
2560 	struct perf_event_context *ctx = NULL;
2561 	int rotate = 0, remove = 1;
2562 
2563 	if (cpuctx->ctx.nr_events) {
2564 		remove = 0;
2565 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2566 			rotate = 1;
2567 	}
2568 
2569 	ctx = cpuctx->task_ctx;
2570 	if (ctx && ctx->nr_events) {
2571 		remove = 0;
2572 		if (ctx->nr_events != ctx->nr_active)
2573 			rotate = 1;
2574 	}
2575 
2576 	if (!rotate)
2577 		goto done;
2578 
2579 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2580 	perf_pmu_disable(cpuctx->ctx.pmu);
2581 
2582 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2583 	if (ctx)
2584 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2585 
2586 	rotate_ctx(&cpuctx->ctx);
2587 	if (ctx)
2588 		rotate_ctx(ctx);
2589 
2590 	perf_event_sched_in(cpuctx, ctx, current);
2591 
2592 	perf_pmu_enable(cpuctx->ctx.pmu);
2593 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2594 done:
2595 	if (remove)
2596 		list_del_init(&cpuctx->rotation_list);
2597 }
2598 
2599 #ifdef CONFIG_NO_HZ_FULL
2600 bool perf_event_can_stop_tick(void)
2601 {
2602 	if (list_empty(&__get_cpu_var(rotation_list)))
2603 		return true;
2604 	else
2605 		return false;
2606 }
2607 #endif
2608 
2609 void perf_event_task_tick(void)
2610 {
2611 	struct list_head *head = &__get_cpu_var(rotation_list);
2612 	struct perf_cpu_context *cpuctx, *tmp;
2613 	struct perf_event_context *ctx;
2614 	int throttled;
2615 
2616 	WARN_ON(!irqs_disabled());
2617 
2618 	__this_cpu_inc(perf_throttled_seq);
2619 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2620 
2621 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2622 		ctx = &cpuctx->ctx;
2623 		perf_adjust_freq_unthr_context(ctx, throttled);
2624 
2625 		ctx = cpuctx->task_ctx;
2626 		if (ctx)
2627 			perf_adjust_freq_unthr_context(ctx, throttled);
2628 
2629 		if (cpuctx->jiffies_interval == 1 ||
2630 				!(jiffies % cpuctx->jiffies_interval))
2631 			perf_rotate_context(cpuctx);
2632 	}
2633 }
2634 
2635 static int event_enable_on_exec(struct perf_event *event,
2636 				struct perf_event_context *ctx)
2637 {
2638 	if (!event->attr.enable_on_exec)
2639 		return 0;
2640 
2641 	event->attr.enable_on_exec = 0;
2642 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2643 		return 0;
2644 
2645 	__perf_event_mark_enabled(event);
2646 
2647 	return 1;
2648 }
2649 
2650 /*
2651  * Enable all of a task's events that have been marked enable-on-exec.
2652  * This expects task == current.
2653  */
2654 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2655 {
2656 	struct perf_event *event;
2657 	unsigned long flags;
2658 	int enabled = 0;
2659 	int ret;
2660 
2661 	local_irq_save(flags);
2662 	if (!ctx || !ctx->nr_events)
2663 		goto out;
2664 
2665 	/*
2666 	 * We must ctxsw out cgroup events to avoid conflict
2667 	 * when invoking perf_task_event_sched_in() later on
2668 	 * in this function. Otherwise we end up trying to
2669 	 * ctxswin cgroup events which are already scheduled
2670 	 * in.
2671 	 */
2672 	perf_cgroup_sched_out(current, NULL);
2673 
2674 	raw_spin_lock(&ctx->lock);
2675 	task_ctx_sched_out(ctx);
2676 
2677 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2678 		ret = event_enable_on_exec(event, ctx);
2679 		if (ret)
2680 			enabled = 1;
2681 	}
2682 
2683 	/*
2684 	 * Unclone this context if we enabled any event.
2685 	 */
2686 	if (enabled)
2687 		unclone_ctx(ctx);
2688 
2689 	raw_spin_unlock(&ctx->lock);
2690 
2691 	/*
2692 	 * Also calls ctxswin for cgroup events, if any:
2693 	 */
2694 	perf_event_context_sched_in(ctx, ctx->task);
2695 out:
2696 	local_irq_restore(flags);
2697 }
2698 
2699 /*
2700  * Cross CPU call to read the hardware event
2701  */
2702 static void __perf_event_read(void *info)
2703 {
2704 	struct perf_event *event = info;
2705 	struct perf_event_context *ctx = event->ctx;
2706 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2707 
2708 	/*
2709 	 * If this is a task context, we need to check whether it is
2710 	 * the current task context of this cpu.  If not it has been
2711 	 * scheduled out before the smp call arrived.  In that case
2712 	 * event->count would have been updated to a recent sample
2713 	 * when the event was scheduled out.
2714 	 */
2715 	if (ctx->task && cpuctx->task_ctx != ctx)
2716 		return;
2717 
2718 	raw_spin_lock(&ctx->lock);
2719 	if (ctx->is_active) {
2720 		update_context_time(ctx);
2721 		update_cgrp_time_from_event(event);
2722 	}
2723 	update_event_times(event);
2724 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2725 		event->pmu->read(event);
2726 	raw_spin_unlock(&ctx->lock);
2727 }
2728 
2729 static inline u64 perf_event_count(struct perf_event *event)
2730 {
2731 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2732 }
2733 
2734 static u64 perf_event_read(struct perf_event *event)
2735 {
2736 	/*
2737 	 * If event is enabled and currently active on a CPU, update the
2738 	 * value in the event structure:
2739 	 */
2740 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2741 		smp_call_function_single(event->oncpu,
2742 					 __perf_event_read, event, 1);
2743 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2744 		struct perf_event_context *ctx = event->ctx;
2745 		unsigned long flags;
2746 
2747 		raw_spin_lock_irqsave(&ctx->lock, flags);
2748 		/*
2749 		 * may read while context is not active
2750 		 * (e.g., thread is blocked), in that case
2751 		 * we cannot update context time
2752 		 */
2753 		if (ctx->is_active) {
2754 			update_context_time(ctx);
2755 			update_cgrp_time_from_event(event);
2756 		}
2757 		update_event_times(event);
2758 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2759 	}
2760 
2761 	return perf_event_count(event);
2762 }
2763 
2764 /*
2765  * Initialize the perf_event context in a task_struct:
2766  */
2767 static void __perf_event_init_context(struct perf_event_context *ctx)
2768 {
2769 	raw_spin_lock_init(&ctx->lock);
2770 	mutex_init(&ctx->mutex);
2771 	INIT_LIST_HEAD(&ctx->pinned_groups);
2772 	INIT_LIST_HEAD(&ctx->flexible_groups);
2773 	INIT_LIST_HEAD(&ctx->event_list);
2774 	atomic_set(&ctx->refcount, 1);
2775 }
2776 
2777 static struct perf_event_context *
2778 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2779 {
2780 	struct perf_event_context *ctx;
2781 
2782 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2783 	if (!ctx)
2784 		return NULL;
2785 
2786 	__perf_event_init_context(ctx);
2787 	if (task) {
2788 		ctx->task = task;
2789 		get_task_struct(task);
2790 	}
2791 	ctx->pmu = pmu;
2792 
2793 	return ctx;
2794 }
2795 
2796 static struct task_struct *
2797 find_lively_task_by_vpid(pid_t vpid)
2798 {
2799 	struct task_struct *task;
2800 	int err;
2801 
2802 	rcu_read_lock();
2803 	if (!vpid)
2804 		task = current;
2805 	else
2806 		task = find_task_by_vpid(vpid);
2807 	if (task)
2808 		get_task_struct(task);
2809 	rcu_read_unlock();
2810 
2811 	if (!task)
2812 		return ERR_PTR(-ESRCH);
2813 
2814 	/* Reuse ptrace permission checks for now. */
2815 	err = -EACCES;
2816 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2817 		goto errout;
2818 
2819 	return task;
2820 errout:
2821 	put_task_struct(task);
2822 	return ERR_PTR(err);
2823 
2824 }
2825 
2826 /*
2827  * Returns a matching context with refcount and pincount.
2828  */
2829 static struct perf_event_context *
2830 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2831 {
2832 	struct perf_event_context *ctx;
2833 	struct perf_cpu_context *cpuctx;
2834 	unsigned long flags;
2835 	int ctxn, err;
2836 
2837 	if (!task) {
2838 		/* Must be root to operate on a CPU event: */
2839 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2840 			return ERR_PTR(-EACCES);
2841 
2842 		/*
2843 		 * We could be clever and allow to attach a event to an
2844 		 * offline CPU and activate it when the CPU comes up, but
2845 		 * that's for later.
2846 		 */
2847 		if (!cpu_online(cpu))
2848 			return ERR_PTR(-ENODEV);
2849 
2850 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2851 		ctx = &cpuctx->ctx;
2852 		get_ctx(ctx);
2853 		++ctx->pin_count;
2854 
2855 		return ctx;
2856 	}
2857 
2858 	err = -EINVAL;
2859 	ctxn = pmu->task_ctx_nr;
2860 	if (ctxn < 0)
2861 		goto errout;
2862 
2863 retry:
2864 	ctx = perf_lock_task_context(task, ctxn, &flags);
2865 	if (ctx) {
2866 		unclone_ctx(ctx);
2867 		++ctx->pin_count;
2868 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2869 	} else {
2870 		ctx = alloc_perf_context(pmu, task);
2871 		err = -ENOMEM;
2872 		if (!ctx)
2873 			goto errout;
2874 
2875 		err = 0;
2876 		mutex_lock(&task->perf_event_mutex);
2877 		/*
2878 		 * If it has already passed perf_event_exit_task().
2879 		 * we must see PF_EXITING, it takes this mutex too.
2880 		 */
2881 		if (task->flags & PF_EXITING)
2882 			err = -ESRCH;
2883 		else if (task->perf_event_ctxp[ctxn])
2884 			err = -EAGAIN;
2885 		else {
2886 			get_ctx(ctx);
2887 			++ctx->pin_count;
2888 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2889 		}
2890 		mutex_unlock(&task->perf_event_mutex);
2891 
2892 		if (unlikely(err)) {
2893 			put_ctx(ctx);
2894 
2895 			if (err == -EAGAIN)
2896 				goto retry;
2897 			goto errout;
2898 		}
2899 	}
2900 
2901 	return ctx;
2902 
2903 errout:
2904 	return ERR_PTR(err);
2905 }
2906 
2907 static void perf_event_free_filter(struct perf_event *event);
2908 
2909 static void free_event_rcu(struct rcu_head *head)
2910 {
2911 	struct perf_event *event;
2912 
2913 	event = container_of(head, struct perf_event, rcu_head);
2914 	if (event->ns)
2915 		put_pid_ns(event->ns);
2916 	perf_event_free_filter(event);
2917 	kfree(event);
2918 }
2919 
2920 static void ring_buffer_put(struct ring_buffer *rb);
2921 
2922 static void free_event(struct perf_event *event)
2923 {
2924 	irq_work_sync(&event->pending);
2925 
2926 	if (!event->parent) {
2927 		if (event->attach_state & PERF_ATTACH_TASK)
2928 			static_key_slow_dec_deferred(&perf_sched_events);
2929 		if (event->attr.mmap || event->attr.mmap_data)
2930 			atomic_dec(&nr_mmap_events);
2931 		if (event->attr.comm)
2932 			atomic_dec(&nr_comm_events);
2933 		if (event->attr.task)
2934 			atomic_dec(&nr_task_events);
2935 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2936 			put_callchain_buffers();
2937 		if (is_cgroup_event(event)) {
2938 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2939 			static_key_slow_dec_deferred(&perf_sched_events);
2940 		}
2941 
2942 		if (has_branch_stack(event)) {
2943 			static_key_slow_dec_deferred(&perf_sched_events);
2944 			/* is system-wide event */
2945 			if (!(event->attach_state & PERF_ATTACH_TASK))
2946 				atomic_dec(&per_cpu(perf_branch_stack_events,
2947 						    event->cpu));
2948 		}
2949 	}
2950 
2951 	if (event->rb) {
2952 		ring_buffer_put(event->rb);
2953 		event->rb = NULL;
2954 	}
2955 
2956 	if (is_cgroup_event(event))
2957 		perf_detach_cgroup(event);
2958 
2959 	if (event->destroy)
2960 		event->destroy(event);
2961 
2962 	if (event->ctx)
2963 		put_ctx(event->ctx);
2964 
2965 	call_rcu(&event->rcu_head, free_event_rcu);
2966 }
2967 
2968 int perf_event_release_kernel(struct perf_event *event)
2969 {
2970 	struct perf_event_context *ctx = event->ctx;
2971 
2972 	WARN_ON_ONCE(ctx->parent_ctx);
2973 	/*
2974 	 * There are two ways this annotation is useful:
2975 	 *
2976 	 *  1) there is a lock recursion from perf_event_exit_task
2977 	 *     see the comment there.
2978 	 *
2979 	 *  2) there is a lock-inversion with mmap_sem through
2980 	 *     perf_event_read_group(), which takes faults while
2981 	 *     holding ctx->mutex, however this is called after
2982 	 *     the last filedesc died, so there is no possibility
2983 	 *     to trigger the AB-BA case.
2984 	 */
2985 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2986 	raw_spin_lock_irq(&ctx->lock);
2987 	perf_group_detach(event);
2988 	raw_spin_unlock_irq(&ctx->lock);
2989 	perf_remove_from_context(event);
2990 	mutex_unlock(&ctx->mutex);
2991 
2992 	free_event(event);
2993 
2994 	return 0;
2995 }
2996 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2997 
2998 /*
2999  * Called when the last reference to the file is gone.
3000  */
3001 static void put_event(struct perf_event *event)
3002 {
3003 	struct task_struct *owner;
3004 
3005 	if (!atomic_long_dec_and_test(&event->refcount))
3006 		return;
3007 
3008 	rcu_read_lock();
3009 	owner = ACCESS_ONCE(event->owner);
3010 	/*
3011 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3012 	 * !owner it means the list deletion is complete and we can indeed
3013 	 * free this event, otherwise we need to serialize on
3014 	 * owner->perf_event_mutex.
3015 	 */
3016 	smp_read_barrier_depends();
3017 	if (owner) {
3018 		/*
3019 		 * Since delayed_put_task_struct() also drops the last
3020 		 * task reference we can safely take a new reference
3021 		 * while holding the rcu_read_lock().
3022 		 */
3023 		get_task_struct(owner);
3024 	}
3025 	rcu_read_unlock();
3026 
3027 	if (owner) {
3028 		mutex_lock(&owner->perf_event_mutex);
3029 		/*
3030 		 * We have to re-check the event->owner field, if it is cleared
3031 		 * we raced with perf_event_exit_task(), acquiring the mutex
3032 		 * ensured they're done, and we can proceed with freeing the
3033 		 * event.
3034 		 */
3035 		if (event->owner)
3036 			list_del_init(&event->owner_entry);
3037 		mutex_unlock(&owner->perf_event_mutex);
3038 		put_task_struct(owner);
3039 	}
3040 
3041 	perf_event_release_kernel(event);
3042 }
3043 
3044 static int perf_release(struct inode *inode, struct file *file)
3045 {
3046 	put_event(file->private_data);
3047 	return 0;
3048 }
3049 
3050 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3051 {
3052 	struct perf_event *child;
3053 	u64 total = 0;
3054 
3055 	*enabled = 0;
3056 	*running = 0;
3057 
3058 	mutex_lock(&event->child_mutex);
3059 	total += perf_event_read(event);
3060 	*enabled += event->total_time_enabled +
3061 			atomic64_read(&event->child_total_time_enabled);
3062 	*running += event->total_time_running +
3063 			atomic64_read(&event->child_total_time_running);
3064 
3065 	list_for_each_entry(child, &event->child_list, child_list) {
3066 		total += perf_event_read(child);
3067 		*enabled += child->total_time_enabled;
3068 		*running += child->total_time_running;
3069 	}
3070 	mutex_unlock(&event->child_mutex);
3071 
3072 	return total;
3073 }
3074 EXPORT_SYMBOL_GPL(perf_event_read_value);
3075 
3076 static int perf_event_read_group(struct perf_event *event,
3077 				   u64 read_format, char __user *buf)
3078 {
3079 	struct perf_event *leader = event->group_leader, *sub;
3080 	int n = 0, size = 0, ret = -EFAULT;
3081 	struct perf_event_context *ctx = leader->ctx;
3082 	u64 values[5];
3083 	u64 count, enabled, running;
3084 
3085 	mutex_lock(&ctx->mutex);
3086 	count = perf_event_read_value(leader, &enabled, &running);
3087 
3088 	values[n++] = 1 + leader->nr_siblings;
3089 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3090 		values[n++] = enabled;
3091 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3092 		values[n++] = running;
3093 	values[n++] = count;
3094 	if (read_format & PERF_FORMAT_ID)
3095 		values[n++] = primary_event_id(leader);
3096 
3097 	size = n * sizeof(u64);
3098 
3099 	if (copy_to_user(buf, values, size))
3100 		goto unlock;
3101 
3102 	ret = size;
3103 
3104 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3105 		n = 0;
3106 
3107 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3108 		if (read_format & PERF_FORMAT_ID)
3109 			values[n++] = primary_event_id(sub);
3110 
3111 		size = n * sizeof(u64);
3112 
3113 		if (copy_to_user(buf + ret, values, size)) {
3114 			ret = -EFAULT;
3115 			goto unlock;
3116 		}
3117 
3118 		ret += size;
3119 	}
3120 unlock:
3121 	mutex_unlock(&ctx->mutex);
3122 
3123 	return ret;
3124 }
3125 
3126 static int perf_event_read_one(struct perf_event *event,
3127 				 u64 read_format, char __user *buf)
3128 {
3129 	u64 enabled, running;
3130 	u64 values[4];
3131 	int n = 0;
3132 
3133 	values[n++] = perf_event_read_value(event, &enabled, &running);
3134 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3135 		values[n++] = enabled;
3136 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3137 		values[n++] = running;
3138 	if (read_format & PERF_FORMAT_ID)
3139 		values[n++] = primary_event_id(event);
3140 
3141 	if (copy_to_user(buf, values, n * sizeof(u64)))
3142 		return -EFAULT;
3143 
3144 	return n * sizeof(u64);
3145 }
3146 
3147 /*
3148  * Read the performance event - simple non blocking version for now
3149  */
3150 static ssize_t
3151 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3152 {
3153 	u64 read_format = event->attr.read_format;
3154 	int ret;
3155 
3156 	/*
3157 	 * Return end-of-file for a read on a event that is in
3158 	 * error state (i.e. because it was pinned but it couldn't be
3159 	 * scheduled on to the CPU at some point).
3160 	 */
3161 	if (event->state == PERF_EVENT_STATE_ERROR)
3162 		return 0;
3163 
3164 	if (count < event->read_size)
3165 		return -ENOSPC;
3166 
3167 	WARN_ON_ONCE(event->ctx->parent_ctx);
3168 	if (read_format & PERF_FORMAT_GROUP)
3169 		ret = perf_event_read_group(event, read_format, buf);
3170 	else
3171 		ret = perf_event_read_one(event, read_format, buf);
3172 
3173 	return ret;
3174 }
3175 
3176 static ssize_t
3177 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3178 {
3179 	struct perf_event *event = file->private_data;
3180 
3181 	return perf_read_hw(event, buf, count);
3182 }
3183 
3184 static unsigned int perf_poll(struct file *file, poll_table *wait)
3185 {
3186 	struct perf_event *event = file->private_data;
3187 	struct ring_buffer *rb;
3188 	unsigned int events = POLL_HUP;
3189 
3190 	/*
3191 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3192 	 * grabs the rb reference but perf_event_set_output() overrides it.
3193 	 * Here is the timeline for two threads T1, T2:
3194 	 * t0: T1, rb = rcu_dereference(event->rb)
3195 	 * t1: T2, old_rb = event->rb
3196 	 * t2: T2, event->rb = new rb
3197 	 * t3: T2, ring_buffer_detach(old_rb)
3198 	 * t4: T1, ring_buffer_attach(rb1)
3199 	 * t5: T1, poll_wait(event->waitq)
3200 	 *
3201 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3202 	 * thereby ensuring that the assignment of the new ring buffer
3203 	 * and the detachment of the old buffer appear atomic to perf_poll()
3204 	 */
3205 	mutex_lock(&event->mmap_mutex);
3206 
3207 	rcu_read_lock();
3208 	rb = rcu_dereference(event->rb);
3209 	if (rb) {
3210 		ring_buffer_attach(event, rb);
3211 		events = atomic_xchg(&rb->poll, 0);
3212 	}
3213 	rcu_read_unlock();
3214 
3215 	mutex_unlock(&event->mmap_mutex);
3216 
3217 	poll_wait(file, &event->waitq, wait);
3218 
3219 	return events;
3220 }
3221 
3222 static void perf_event_reset(struct perf_event *event)
3223 {
3224 	(void)perf_event_read(event);
3225 	local64_set(&event->count, 0);
3226 	perf_event_update_userpage(event);
3227 }
3228 
3229 /*
3230  * Holding the top-level event's child_mutex means that any
3231  * descendant process that has inherited this event will block
3232  * in sync_child_event if it goes to exit, thus satisfying the
3233  * task existence requirements of perf_event_enable/disable.
3234  */
3235 static void perf_event_for_each_child(struct perf_event *event,
3236 					void (*func)(struct perf_event *))
3237 {
3238 	struct perf_event *child;
3239 
3240 	WARN_ON_ONCE(event->ctx->parent_ctx);
3241 	mutex_lock(&event->child_mutex);
3242 	func(event);
3243 	list_for_each_entry(child, &event->child_list, child_list)
3244 		func(child);
3245 	mutex_unlock(&event->child_mutex);
3246 }
3247 
3248 static void perf_event_for_each(struct perf_event *event,
3249 				  void (*func)(struct perf_event *))
3250 {
3251 	struct perf_event_context *ctx = event->ctx;
3252 	struct perf_event *sibling;
3253 
3254 	WARN_ON_ONCE(ctx->parent_ctx);
3255 	mutex_lock(&ctx->mutex);
3256 	event = event->group_leader;
3257 
3258 	perf_event_for_each_child(event, func);
3259 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3260 		perf_event_for_each_child(sibling, func);
3261 	mutex_unlock(&ctx->mutex);
3262 }
3263 
3264 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3265 {
3266 	struct perf_event_context *ctx = event->ctx;
3267 	int ret = 0;
3268 	u64 value;
3269 
3270 	if (!is_sampling_event(event))
3271 		return -EINVAL;
3272 
3273 	if (copy_from_user(&value, arg, sizeof(value)))
3274 		return -EFAULT;
3275 
3276 	if (!value)
3277 		return -EINVAL;
3278 
3279 	raw_spin_lock_irq(&ctx->lock);
3280 	if (event->attr.freq) {
3281 		if (value > sysctl_perf_event_sample_rate) {
3282 			ret = -EINVAL;
3283 			goto unlock;
3284 		}
3285 
3286 		event->attr.sample_freq = value;
3287 	} else {
3288 		event->attr.sample_period = value;
3289 		event->hw.sample_period = value;
3290 	}
3291 unlock:
3292 	raw_spin_unlock_irq(&ctx->lock);
3293 
3294 	return ret;
3295 }
3296 
3297 static const struct file_operations perf_fops;
3298 
3299 static inline int perf_fget_light(int fd, struct fd *p)
3300 {
3301 	struct fd f = fdget(fd);
3302 	if (!f.file)
3303 		return -EBADF;
3304 
3305 	if (f.file->f_op != &perf_fops) {
3306 		fdput(f);
3307 		return -EBADF;
3308 	}
3309 	*p = f;
3310 	return 0;
3311 }
3312 
3313 static int perf_event_set_output(struct perf_event *event,
3314 				 struct perf_event *output_event);
3315 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3316 
3317 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3318 {
3319 	struct perf_event *event = file->private_data;
3320 	void (*func)(struct perf_event *);
3321 	u32 flags = arg;
3322 
3323 	switch (cmd) {
3324 	case PERF_EVENT_IOC_ENABLE:
3325 		func = perf_event_enable;
3326 		break;
3327 	case PERF_EVENT_IOC_DISABLE:
3328 		func = perf_event_disable;
3329 		break;
3330 	case PERF_EVENT_IOC_RESET:
3331 		func = perf_event_reset;
3332 		break;
3333 
3334 	case PERF_EVENT_IOC_REFRESH:
3335 		return perf_event_refresh(event, arg);
3336 
3337 	case PERF_EVENT_IOC_PERIOD:
3338 		return perf_event_period(event, (u64 __user *)arg);
3339 
3340 	case PERF_EVENT_IOC_SET_OUTPUT:
3341 	{
3342 		int ret;
3343 		if (arg != -1) {
3344 			struct perf_event *output_event;
3345 			struct fd output;
3346 			ret = perf_fget_light(arg, &output);
3347 			if (ret)
3348 				return ret;
3349 			output_event = output.file->private_data;
3350 			ret = perf_event_set_output(event, output_event);
3351 			fdput(output);
3352 		} else {
3353 			ret = perf_event_set_output(event, NULL);
3354 		}
3355 		return ret;
3356 	}
3357 
3358 	case PERF_EVENT_IOC_SET_FILTER:
3359 		return perf_event_set_filter(event, (void __user *)arg);
3360 
3361 	default:
3362 		return -ENOTTY;
3363 	}
3364 
3365 	if (flags & PERF_IOC_FLAG_GROUP)
3366 		perf_event_for_each(event, func);
3367 	else
3368 		perf_event_for_each_child(event, func);
3369 
3370 	return 0;
3371 }
3372 
3373 int perf_event_task_enable(void)
3374 {
3375 	struct perf_event *event;
3376 
3377 	mutex_lock(&current->perf_event_mutex);
3378 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3379 		perf_event_for_each_child(event, perf_event_enable);
3380 	mutex_unlock(&current->perf_event_mutex);
3381 
3382 	return 0;
3383 }
3384 
3385 int perf_event_task_disable(void)
3386 {
3387 	struct perf_event *event;
3388 
3389 	mutex_lock(&current->perf_event_mutex);
3390 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3391 		perf_event_for_each_child(event, perf_event_disable);
3392 	mutex_unlock(&current->perf_event_mutex);
3393 
3394 	return 0;
3395 }
3396 
3397 static int perf_event_index(struct perf_event *event)
3398 {
3399 	if (event->hw.state & PERF_HES_STOPPED)
3400 		return 0;
3401 
3402 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3403 		return 0;
3404 
3405 	return event->pmu->event_idx(event);
3406 }
3407 
3408 static void calc_timer_values(struct perf_event *event,
3409 				u64 *now,
3410 				u64 *enabled,
3411 				u64 *running)
3412 {
3413 	u64 ctx_time;
3414 
3415 	*now = perf_clock();
3416 	ctx_time = event->shadow_ctx_time + *now;
3417 	*enabled = ctx_time - event->tstamp_enabled;
3418 	*running = ctx_time - event->tstamp_running;
3419 }
3420 
3421 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3422 {
3423 }
3424 
3425 /*
3426  * Callers need to ensure there can be no nesting of this function, otherwise
3427  * the seqlock logic goes bad. We can not serialize this because the arch
3428  * code calls this from NMI context.
3429  */
3430 void perf_event_update_userpage(struct perf_event *event)
3431 {
3432 	struct perf_event_mmap_page *userpg;
3433 	struct ring_buffer *rb;
3434 	u64 enabled, running, now;
3435 
3436 	rcu_read_lock();
3437 	/*
3438 	 * compute total_time_enabled, total_time_running
3439 	 * based on snapshot values taken when the event
3440 	 * was last scheduled in.
3441 	 *
3442 	 * we cannot simply called update_context_time()
3443 	 * because of locking issue as we can be called in
3444 	 * NMI context
3445 	 */
3446 	calc_timer_values(event, &now, &enabled, &running);
3447 	rb = rcu_dereference(event->rb);
3448 	if (!rb)
3449 		goto unlock;
3450 
3451 	userpg = rb->user_page;
3452 
3453 	/*
3454 	 * Disable preemption so as to not let the corresponding user-space
3455 	 * spin too long if we get preempted.
3456 	 */
3457 	preempt_disable();
3458 	++userpg->lock;
3459 	barrier();
3460 	userpg->index = perf_event_index(event);
3461 	userpg->offset = perf_event_count(event);
3462 	if (userpg->index)
3463 		userpg->offset -= local64_read(&event->hw.prev_count);
3464 
3465 	userpg->time_enabled = enabled +
3466 			atomic64_read(&event->child_total_time_enabled);
3467 
3468 	userpg->time_running = running +
3469 			atomic64_read(&event->child_total_time_running);
3470 
3471 	arch_perf_update_userpage(userpg, now);
3472 
3473 	barrier();
3474 	++userpg->lock;
3475 	preempt_enable();
3476 unlock:
3477 	rcu_read_unlock();
3478 }
3479 
3480 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3481 {
3482 	struct perf_event *event = vma->vm_file->private_data;
3483 	struct ring_buffer *rb;
3484 	int ret = VM_FAULT_SIGBUS;
3485 
3486 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3487 		if (vmf->pgoff == 0)
3488 			ret = 0;
3489 		return ret;
3490 	}
3491 
3492 	rcu_read_lock();
3493 	rb = rcu_dereference(event->rb);
3494 	if (!rb)
3495 		goto unlock;
3496 
3497 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3498 		goto unlock;
3499 
3500 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3501 	if (!vmf->page)
3502 		goto unlock;
3503 
3504 	get_page(vmf->page);
3505 	vmf->page->mapping = vma->vm_file->f_mapping;
3506 	vmf->page->index   = vmf->pgoff;
3507 
3508 	ret = 0;
3509 unlock:
3510 	rcu_read_unlock();
3511 
3512 	return ret;
3513 }
3514 
3515 static void ring_buffer_attach(struct perf_event *event,
3516 			       struct ring_buffer *rb)
3517 {
3518 	unsigned long flags;
3519 
3520 	if (!list_empty(&event->rb_entry))
3521 		return;
3522 
3523 	spin_lock_irqsave(&rb->event_lock, flags);
3524 	if (!list_empty(&event->rb_entry))
3525 		goto unlock;
3526 
3527 	list_add(&event->rb_entry, &rb->event_list);
3528 unlock:
3529 	spin_unlock_irqrestore(&rb->event_lock, flags);
3530 }
3531 
3532 static void ring_buffer_detach(struct perf_event *event,
3533 			       struct ring_buffer *rb)
3534 {
3535 	unsigned long flags;
3536 
3537 	if (list_empty(&event->rb_entry))
3538 		return;
3539 
3540 	spin_lock_irqsave(&rb->event_lock, flags);
3541 	list_del_init(&event->rb_entry);
3542 	wake_up_all(&event->waitq);
3543 	spin_unlock_irqrestore(&rb->event_lock, flags);
3544 }
3545 
3546 static void ring_buffer_wakeup(struct perf_event *event)
3547 {
3548 	struct ring_buffer *rb;
3549 
3550 	rcu_read_lock();
3551 	rb = rcu_dereference(event->rb);
3552 	if (!rb)
3553 		goto unlock;
3554 
3555 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3556 		wake_up_all(&event->waitq);
3557 
3558 unlock:
3559 	rcu_read_unlock();
3560 }
3561 
3562 static void rb_free_rcu(struct rcu_head *rcu_head)
3563 {
3564 	struct ring_buffer *rb;
3565 
3566 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3567 	rb_free(rb);
3568 }
3569 
3570 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3571 {
3572 	struct ring_buffer *rb;
3573 
3574 	rcu_read_lock();
3575 	rb = rcu_dereference(event->rb);
3576 	if (rb) {
3577 		if (!atomic_inc_not_zero(&rb->refcount))
3578 			rb = NULL;
3579 	}
3580 	rcu_read_unlock();
3581 
3582 	return rb;
3583 }
3584 
3585 static void ring_buffer_put(struct ring_buffer *rb)
3586 {
3587 	struct perf_event *event, *n;
3588 	unsigned long flags;
3589 
3590 	if (!atomic_dec_and_test(&rb->refcount))
3591 		return;
3592 
3593 	spin_lock_irqsave(&rb->event_lock, flags);
3594 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3595 		list_del_init(&event->rb_entry);
3596 		wake_up_all(&event->waitq);
3597 	}
3598 	spin_unlock_irqrestore(&rb->event_lock, flags);
3599 
3600 	call_rcu(&rb->rcu_head, rb_free_rcu);
3601 }
3602 
3603 static void perf_mmap_open(struct vm_area_struct *vma)
3604 {
3605 	struct perf_event *event = vma->vm_file->private_data;
3606 
3607 	atomic_inc(&event->mmap_count);
3608 }
3609 
3610 static void perf_mmap_close(struct vm_area_struct *vma)
3611 {
3612 	struct perf_event *event = vma->vm_file->private_data;
3613 
3614 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3615 		unsigned long size = perf_data_size(event->rb);
3616 		struct user_struct *user = event->mmap_user;
3617 		struct ring_buffer *rb = event->rb;
3618 
3619 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3620 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3621 		rcu_assign_pointer(event->rb, NULL);
3622 		ring_buffer_detach(event, rb);
3623 		mutex_unlock(&event->mmap_mutex);
3624 
3625 		ring_buffer_put(rb);
3626 		free_uid(user);
3627 	}
3628 }
3629 
3630 static const struct vm_operations_struct perf_mmap_vmops = {
3631 	.open		= perf_mmap_open,
3632 	.close		= perf_mmap_close,
3633 	.fault		= perf_mmap_fault,
3634 	.page_mkwrite	= perf_mmap_fault,
3635 };
3636 
3637 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3638 {
3639 	struct perf_event *event = file->private_data;
3640 	unsigned long user_locked, user_lock_limit;
3641 	struct user_struct *user = current_user();
3642 	unsigned long locked, lock_limit;
3643 	struct ring_buffer *rb;
3644 	unsigned long vma_size;
3645 	unsigned long nr_pages;
3646 	long user_extra, extra;
3647 	int ret = 0, flags = 0;
3648 
3649 	/*
3650 	 * Don't allow mmap() of inherited per-task counters. This would
3651 	 * create a performance issue due to all children writing to the
3652 	 * same rb.
3653 	 */
3654 	if (event->cpu == -1 && event->attr.inherit)
3655 		return -EINVAL;
3656 
3657 	if (!(vma->vm_flags & VM_SHARED))
3658 		return -EINVAL;
3659 
3660 	vma_size = vma->vm_end - vma->vm_start;
3661 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3662 
3663 	/*
3664 	 * If we have rb pages ensure they're a power-of-two number, so we
3665 	 * can do bitmasks instead of modulo.
3666 	 */
3667 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3668 		return -EINVAL;
3669 
3670 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3671 		return -EINVAL;
3672 
3673 	if (vma->vm_pgoff != 0)
3674 		return -EINVAL;
3675 
3676 	WARN_ON_ONCE(event->ctx->parent_ctx);
3677 	mutex_lock(&event->mmap_mutex);
3678 	if (event->rb) {
3679 		if (event->rb->nr_pages == nr_pages)
3680 			atomic_inc(&event->rb->refcount);
3681 		else
3682 			ret = -EINVAL;
3683 		goto unlock;
3684 	}
3685 
3686 	user_extra = nr_pages + 1;
3687 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3688 
3689 	/*
3690 	 * Increase the limit linearly with more CPUs:
3691 	 */
3692 	user_lock_limit *= num_online_cpus();
3693 
3694 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3695 
3696 	extra = 0;
3697 	if (user_locked > user_lock_limit)
3698 		extra = user_locked - user_lock_limit;
3699 
3700 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3701 	lock_limit >>= PAGE_SHIFT;
3702 	locked = vma->vm_mm->pinned_vm + extra;
3703 
3704 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3705 		!capable(CAP_IPC_LOCK)) {
3706 		ret = -EPERM;
3707 		goto unlock;
3708 	}
3709 
3710 	WARN_ON(event->rb);
3711 
3712 	if (vma->vm_flags & VM_WRITE)
3713 		flags |= RING_BUFFER_WRITABLE;
3714 
3715 	rb = rb_alloc(nr_pages,
3716 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3717 		event->cpu, flags);
3718 
3719 	if (!rb) {
3720 		ret = -ENOMEM;
3721 		goto unlock;
3722 	}
3723 	rcu_assign_pointer(event->rb, rb);
3724 
3725 	atomic_long_add(user_extra, &user->locked_vm);
3726 	event->mmap_locked = extra;
3727 	event->mmap_user = get_current_user();
3728 	vma->vm_mm->pinned_vm += event->mmap_locked;
3729 
3730 	perf_event_update_userpage(event);
3731 
3732 unlock:
3733 	if (!ret)
3734 		atomic_inc(&event->mmap_count);
3735 	mutex_unlock(&event->mmap_mutex);
3736 
3737 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3738 	vma->vm_ops = &perf_mmap_vmops;
3739 
3740 	return ret;
3741 }
3742 
3743 static int perf_fasync(int fd, struct file *filp, int on)
3744 {
3745 	struct inode *inode = file_inode(filp);
3746 	struct perf_event *event = filp->private_data;
3747 	int retval;
3748 
3749 	mutex_lock(&inode->i_mutex);
3750 	retval = fasync_helper(fd, filp, on, &event->fasync);
3751 	mutex_unlock(&inode->i_mutex);
3752 
3753 	if (retval < 0)
3754 		return retval;
3755 
3756 	return 0;
3757 }
3758 
3759 static const struct file_operations perf_fops = {
3760 	.llseek			= no_llseek,
3761 	.release		= perf_release,
3762 	.read			= perf_read,
3763 	.poll			= perf_poll,
3764 	.unlocked_ioctl		= perf_ioctl,
3765 	.compat_ioctl		= perf_ioctl,
3766 	.mmap			= perf_mmap,
3767 	.fasync			= perf_fasync,
3768 };
3769 
3770 /*
3771  * Perf event wakeup
3772  *
3773  * If there's data, ensure we set the poll() state and publish everything
3774  * to user-space before waking everybody up.
3775  */
3776 
3777 void perf_event_wakeup(struct perf_event *event)
3778 {
3779 	ring_buffer_wakeup(event);
3780 
3781 	if (event->pending_kill) {
3782 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3783 		event->pending_kill = 0;
3784 	}
3785 }
3786 
3787 static void perf_pending_event(struct irq_work *entry)
3788 {
3789 	struct perf_event *event = container_of(entry,
3790 			struct perf_event, pending);
3791 
3792 	if (event->pending_disable) {
3793 		event->pending_disable = 0;
3794 		__perf_event_disable(event);
3795 	}
3796 
3797 	if (event->pending_wakeup) {
3798 		event->pending_wakeup = 0;
3799 		perf_event_wakeup(event);
3800 	}
3801 }
3802 
3803 /*
3804  * We assume there is only KVM supporting the callbacks.
3805  * Later on, we might change it to a list if there is
3806  * another virtualization implementation supporting the callbacks.
3807  */
3808 struct perf_guest_info_callbacks *perf_guest_cbs;
3809 
3810 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3811 {
3812 	perf_guest_cbs = cbs;
3813 	return 0;
3814 }
3815 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3816 
3817 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3818 {
3819 	perf_guest_cbs = NULL;
3820 	return 0;
3821 }
3822 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3823 
3824 static void
3825 perf_output_sample_regs(struct perf_output_handle *handle,
3826 			struct pt_regs *regs, u64 mask)
3827 {
3828 	int bit;
3829 
3830 	for_each_set_bit(bit, (const unsigned long *) &mask,
3831 			 sizeof(mask) * BITS_PER_BYTE) {
3832 		u64 val;
3833 
3834 		val = perf_reg_value(regs, bit);
3835 		perf_output_put(handle, val);
3836 	}
3837 }
3838 
3839 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3840 				  struct pt_regs *regs)
3841 {
3842 	if (!user_mode(regs)) {
3843 		if (current->mm)
3844 			regs = task_pt_regs(current);
3845 		else
3846 			regs = NULL;
3847 	}
3848 
3849 	if (regs) {
3850 		regs_user->regs = regs;
3851 		regs_user->abi  = perf_reg_abi(current);
3852 	}
3853 }
3854 
3855 /*
3856  * Get remaining task size from user stack pointer.
3857  *
3858  * It'd be better to take stack vma map and limit this more
3859  * precisly, but there's no way to get it safely under interrupt,
3860  * so using TASK_SIZE as limit.
3861  */
3862 static u64 perf_ustack_task_size(struct pt_regs *regs)
3863 {
3864 	unsigned long addr = perf_user_stack_pointer(regs);
3865 
3866 	if (!addr || addr >= TASK_SIZE)
3867 		return 0;
3868 
3869 	return TASK_SIZE - addr;
3870 }
3871 
3872 static u16
3873 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3874 			struct pt_regs *regs)
3875 {
3876 	u64 task_size;
3877 
3878 	/* No regs, no stack pointer, no dump. */
3879 	if (!regs)
3880 		return 0;
3881 
3882 	/*
3883 	 * Check if we fit in with the requested stack size into the:
3884 	 * - TASK_SIZE
3885 	 *   If we don't, we limit the size to the TASK_SIZE.
3886 	 *
3887 	 * - remaining sample size
3888 	 *   If we don't, we customize the stack size to
3889 	 *   fit in to the remaining sample size.
3890 	 */
3891 
3892 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3893 	stack_size = min(stack_size, (u16) task_size);
3894 
3895 	/* Current header size plus static size and dynamic size. */
3896 	header_size += 2 * sizeof(u64);
3897 
3898 	/* Do we fit in with the current stack dump size? */
3899 	if ((u16) (header_size + stack_size) < header_size) {
3900 		/*
3901 		 * If we overflow the maximum size for the sample,
3902 		 * we customize the stack dump size to fit in.
3903 		 */
3904 		stack_size = USHRT_MAX - header_size - sizeof(u64);
3905 		stack_size = round_up(stack_size, sizeof(u64));
3906 	}
3907 
3908 	return stack_size;
3909 }
3910 
3911 static void
3912 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3913 			  struct pt_regs *regs)
3914 {
3915 	/* Case of a kernel thread, nothing to dump */
3916 	if (!regs) {
3917 		u64 size = 0;
3918 		perf_output_put(handle, size);
3919 	} else {
3920 		unsigned long sp;
3921 		unsigned int rem;
3922 		u64 dyn_size;
3923 
3924 		/*
3925 		 * We dump:
3926 		 * static size
3927 		 *   - the size requested by user or the best one we can fit
3928 		 *     in to the sample max size
3929 		 * data
3930 		 *   - user stack dump data
3931 		 * dynamic size
3932 		 *   - the actual dumped size
3933 		 */
3934 
3935 		/* Static size. */
3936 		perf_output_put(handle, dump_size);
3937 
3938 		/* Data. */
3939 		sp = perf_user_stack_pointer(regs);
3940 		rem = __output_copy_user(handle, (void *) sp, dump_size);
3941 		dyn_size = dump_size - rem;
3942 
3943 		perf_output_skip(handle, rem);
3944 
3945 		/* Dynamic size. */
3946 		perf_output_put(handle, dyn_size);
3947 	}
3948 }
3949 
3950 static void __perf_event_header__init_id(struct perf_event_header *header,
3951 					 struct perf_sample_data *data,
3952 					 struct perf_event *event)
3953 {
3954 	u64 sample_type = event->attr.sample_type;
3955 
3956 	data->type = sample_type;
3957 	header->size += event->id_header_size;
3958 
3959 	if (sample_type & PERF_SAMPLE_TID) {
3960 		/* namespace issues */
3961 		data->tid_entry.pid = perf_event_pid(event, current);
3962 		data->tid_entry.tid = perf_event_tid(event, current);
3963 	}
3964 
3965 	if (sample_type & PERF_SAMPLE_TIME)
3966 		data->time = perf_clock();
3967 
3968 	if (sample_type & PERF_SAMPLE_ID)
3969 		data->id = primary_event_id(event);
3970 
3971 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3972 		data->stream_id = event->id;
3973 
3974 	if (sample_type & PERF_SAMPLE_CPU) {
3975 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3976 		data->cpu_entry.reserved = 0;
3977 	}
3978 }
3979 
3980 void perf_event_header__init_id(struct perf_event_header *header,
3981 				struct perf_sample_data *data,
3982 				struct perf_event *event)
3983 {
3984 	if (event->attr.sample_id_all)
3985 		__perf_event_header__init_id(header, data, event);
3986 }
3987 
3988 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3989 					   struct perf_sample_data *data)
3990 {
3991 	u64 sample_type = data->type;
3992 
3993 	if (sample_type & PERF_SAMPLE_TID)
3994 		perf_output_put(handle, data->tid_entry);
3995 
3996 	if (sample_type & PERF_SAMPLE_TIME)
3997 		perf_output_put(handle, data->time);
3998 
3999 	if (sample_type & PERF_SAMPLE_ID)
4000 		perf_output_put(handle, data->id);
4001 
4002 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4003 		perf_output_put(handle, data->stream_id);
4004 
4005 	if (sample_type & PERF_SAMPLE_CPU)
4006 		perf_output_put(handle, data->cpu_entry);
4007 }
4008 
4009 void perf_event__output_id_sample(struct perf_event *event,
4010 				  struct perf_output_handle *handle,
4011 				  struct perf_sample_data *sample)
4012 {
4013 	if (event->attr.sample_id_all)
4014 		__perf_event__output_id_sample(handle, sample);
4015 }
4016 
4017 static void perf_output_read_one(struct perf_output_handle *handle,
4018 				 struct perf_event *event,
4019 				 u64 enabled, u64 running)
4020 {
4021 	u64 read_format = event->attr.read_format;
4022 	u64 values[4];
4023 	int n = 0;
4024 
4025 	values[n++] = perf_event_count(event);
4026 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4027 		values[n++] = enabled +
4028 			atomic64_read(&event->child_total_time_enabled);
4029 	}
4030 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4031 		values[n++] = running +
4032 			atomic64_read(&event->child_total_time_running);
4033 	}
4034 	if (read_format & PERF_FORMAT_ID)
4035 		values[n++] = primary_event_id(event);
4036 
4037 	__output_copy(handle, values, n * sizeof(u64));
4038 }
4039 
4040 /*
4041  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4042  */
4043 static void perf_output_read_group(struct perf_output_handle *handle,
4044 			    struct perf_event *event,
4045 			    u64 enabled, u64 running)
4046 {
4047 	struct perf_event *leader = event->group_leader, *sub;
4048 	u64 read_format = event->attr.read_format;
4049 	u64 values[5];
4050 	int n = 0;
4051 
4052 	values[n++] = 1 + leader->nr_siblings;
4053 
4054 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4055 		values[n++] = enabled;
4056 
4057 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4058 		values[n++] = running;
4059 
4060 	if (leader != event)
4061 		leader->pmu->read(leader);
4062 
4063 	values[n++] = perf_event_count(leader);
4064 	if (read_format & PERF_FORMAT_ID)
4065 		values[n++] = primary_event_id(leader);
4066 
4067 	__output_copy(handle, values, n * sizeof(u64));
4068 
4069 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4070 		n = 0;
4071 
4072 		if (sub != event)
4073 			sub->pmu->read(sub);
4074 
4075 		values[n++] = perf_event_count(sub);
4076 		if (read_format & PERF_FORMAT_ID)
4077 			values[n++] = primary_event_id(sub);
4078 
4079 		__output_copy(handle, values, n * sizeof(u64));
4080 	}
4081 }
4082 
4083 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4084 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4085 
4086 static void perf_output_read(struct perf_output_handle *handle,
4087 			     struct perf_event *event)
4088 {
4089 	u64 enabled = 0, running = 0, now;
4090 	u64 read_format = event->attr.read_format;
4091 
4092 	/*
4093 	 * compute total_time_enabled, total_time_running
4094 	 * based on snapshot values taken when the event
4095 	 * was last scheduled in.
4096 	 *
4097 	 * we cannot simply called update_context_time()
4098 	 * because of locking issue as we are called in
4099 	 * NMI context
4100 	 */
4101 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4102 		calc_timer_values(event, &now, &enabled, &running);
4103 
4104 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4105 		perf_output_read_group(handle, event, enabled, running);
4106 	else
4107 		perf_output_read_one(handle, event, enabled, running);
4108 }
4109 
4110 void perf_output_sample(struct perf_output_handle *handle,
4111 			struct perf_event_header *header,
4112 			struct perf_sample_data *data,
4113 			struct perf_event *event)
4114 {
4115 	u64 sample_type = data->type;
4116 
4117 	perf_output_put(handle, *header);
4118 
4119 	if (sample_type & PERF_SAMPLE_IP)
4120 		perf_output_put(handle, data->ip);
4121 
4122 	if (sample_type & PERF_SAMPLE_TID)
4123 		perf_output_put(handle, data->tid_entry);
4124 
4125 	if (sample_type & PERF_SAMPLE_TIME)
4126 		perf_output_put(handle, data->time);
4127 
4128 	if (sample_type & PERF_SAMPLE_ADDR)
4129 		perf_output_put(handle, data->addr);
4130 
4131 	if (sample_type & PERF_SAMPLE_ID)
4132 		perf_output_put(handle, data->id);
4133 
4134 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4135 		perf_output_put(handle, data->stream_id);
4136 
4137 	if (sample_type & PERF_SAMPLE_CPU)
4138 		perf_output_put(handle, data->cpu_entry);
4139 
4140 	if (sample_type & PERF_SAMPLE_PERIOD)
4141 		perf_output_put(handle, data->period);
4142 
4143 	if (sample_type & PERF_SAMPLE_READ)
4144 		perf_output_read(handle, event);
4145 
4146 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4147 		if (data->callchain) {
4148 			int size = 1;
4149 
4150 			if (data->callchain)
4151 				size += data->callchain->nr;
4152 
4153 			size *= sizeof(u64);
4154 
4155 			__output_copy(handle, data->callchain, size);
4156 		} else {
4157 			u64 nr = 0;
4158 			perf_output_put(handle, nr);
4159 		}
4160 	}
4161 
4162 	if (sample_type & PERF_SAMPLE_RAW) {
4163 		if (data->raw) {
4164 			perf_output_put(handle, data->raw->size);
4165 			__output_copy(handle, data->raw->data,
4166 					   data->raw->size);
4167 		} else {
4168 			struct {
4169 				u32	size;
4170 				u32	data;
4171 			} raw = {
4172 				.size = sizeof(u32),
4173 				.data = 0,
4174 			};
4175 			perf_output_put(handle, raw);
4176 		}
4177 	}
4178 
4179 	if (!event->attr.watermark) {
4180 		int wakeup_events = event->attr.wakeup_events;
4181 
4182 		if (wakeup_events) {
4183 			struct ring_buffer *rb = handle->rb;
4184 			int events = local_inc_return(&rb->events);
4185 
4186 			if (events >= wakeup_events) {
4187 				local_sub(wakeup_events, &rb->events);
4188 				local_inc(&rb->wakeup);
4189 			}
4190 		}
4191 	}
4192 
4193 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4194 		if (data->br_stack) {
4195 			size_t size;
4196 
4197 			size = data->br_stack->nr
4198 			     * sizeof(struct perf_branch_entry);
4199 
4200 			perf_output_put(handle, data->br_stack->nr);
4201 			perf_output_copy(handle, data->br_stack->entries, size);
4202 		} else {
4203 			/*
4204 			 * we always store at least the value of nr
4205 			 */
4206 			u64 nr = 0;
4207 			perf_output_put(handle, nr);
4208 		}
4209 	}
4210 
4211 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4212 		u64 abi = data->regs_user.abi;
4213 
4214 		/*
4215 		 * If there are no regs to dump, notice it through
4216 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4217 		 */
4218 		perf_output_put(handle, abi);
4219 
4220 		if (abi) {
4221 			u64 mask = event->attr.sample_regs_user;
4222 			perf_output_sample_regs(handle,
4223 						data->regs_user.regs,
4224 						mask);
4225 		}
4226 	}
4227 
4228 	if (sample_type & PERF_SAMPLE_STACK_USER)
4229 		perf_output_sample_ustack(handle,
4230 					  data->stack_user_size,
4231 					  data->regs_user.regs);
4232 
4233 	if (sample_type & PERF_SAMPLE_WEIGHT)
4234 		perf_output_put(handle, data->weight);
4235 
4236 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4237 		perf_output_put(handle, data->data_src.val);
4238 }
4239 
4240 void perf_prepare_sample(struct perf_event_header *header,
4241 			 struct perf_sample_data *data,
4242 			 struct perf_event *event,
4243 			 struct pt_regs *regs)
4244 {
4245 	u64 sample_type = event->attr.sample_type;
4246 
4247 	header->type = PERF_RECORD_SAMPLE;
4248 	header->size = sizeof(*header) + event->header_size;
4249 
4250 	header->misc = 0;
4251 	header->misc |= perf_misc_flags(regs);
4252 
4253 	__perf_event_header__init_id(header, data, event);
4254 
4255 	if (sample_type & PERF_SAMPLE_IP)
4256 		data->ip = perf_instruction_pointer(regs);
4257 
4258 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4259 		int size = 1;
4260 
4261 		data->callchain = perf_callchain(event, regs);
4262 
4263 		if (data->callchain)
4264 			size += data->callchain->nr;
4265 
4266 		header->size += size * sizeof(u64);
4267 	}
4268 
4269 	if (sample_type & PERF_SAMPLE_RAW) {
4270 		int size = sizeof(u32);
4271 
4272 		if (data->raw)
4273 			size += data->raw->size;
4274 		else
4275 			size += sizeof(u32);
4276 
4277 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4278 		header->size += size;
4279 	}
4280 
4281 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4282 		int size = sizeof(u64); /* nr */
4283 		if (data->br_stack) {
4284 			size += data->br_stack->nr
4285 			      * sizeof(struct perf_branch_entry);
4286 		}
4287 		header->size += size;
4288 	}
4289 
4290 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4291 		/* regs dump ABI info */
4292 		int size = sizeof(u64);
4293 
4294 		perf_sample_regs_user(&data->regs_user, regs);
4295 
4296 		if (data->regs_user.regs) {
4297 			u64 mask = event->attr.sample_regs_user;
4298 			size += hweight64(mask) * sizeof(u64);
4299 		}
4300 
4301 		header->size += size;
4302 	}
4303 
4304 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4305 		/*
4306 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4307 		 * processed as the last one or have additional check added
4308 		 * in case new sample type is added, because we could eat
4309 		 * up the rest of the sample size.
4310 		 */
4311 		struct perf_regs_user *uregs = &data->regs_user;
4312 		u16 stack_size = event->attr.sample_stack_user;
4313 		u16 size = sizeof(u64);
4314 
4315 		if (!uregs->abi)
4316 			perf_sample_regs_user(uregs, regs);
4317 
4318 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4319 						     uregs->regs);
4320 
4321 		/*
4322 		 * If there is something to dump, add space for the dump
4323 		 * itself and for the field that tells the dynamic size,
4324 		 * which is how many have been actually dumped.
4325 		 */
4326 		if (stack_size)
4327 			size += sizeof(u64) + stack_size;
4328 
4329 		data->stack_user_size = stack_size;
4330 		header->size += size;
4331 	}
4332 }
4333 
4334 static void perf_event_output(struct perf_event *event,
4335 				struct perf_sample_data *data,
4336 				struct pt_regs *regs)
4337 {
4338 	struct perf_output_handle handle;
4339 	struct perf_event_header header;
4340 
4341 	/* protect the callchain buffers */
4342 	rcu_read_lock();
4343 
4344 	perf_prepare_sample(&header, data, event, regs);
4345 
4346 	if (perf_output_begin(&handle, event, header.size))
4347 		goto exit;
4348 
4349 	perf_output_sample(&handle, &header, data, event);
4350 
4351 	perf_output_end(&handle);
4352 
4353 exit:
4354 	rcu_read_unlock();
4355 }
4356 
4357 /*
4358  * read event_id
4359  */
4360 
4361 struct perf_read_event {
4362 	struct perf_event_header	header;
4363 
4364 	u32				pid;
4365 	u32				tid;
4366 };
4367 
4368 static void
4369 perf_event_read_event(struct perf_event *event,
4370 			struct task_struct *task)
4371 {
4372 	struct perf_output_handle handle;
4373 	struct perf_sample_data sample;
4374 	struct perf_read_event read_event = {
4375 		.header = {
4376 			.type = PERF_RECORD_READ,
4377 			.misc = 0,
4378 			.size = sizeof(read_event) + event->read_size,
4379 		},
4380 		.pid = perf_event_pid(event, task),
4381 		.tid = perf_event_tid(event, task),
4382 	};
4383 	int ret;
4384 
4385 	perf_event_header__init_id(&read_event.header, &sample, event);
4386 	ret = perf_output_begin(&handle, event, read_event.header.size);
4387 	if (ret)
4388 		return;
4389 
4390 	perf_output_put(&handle, read_event);
4391 	perf_output_read(&handle, event);
4392 	perf_event__output_id_sample(event, &handle, &sample);
4393 
4394 	perf_output_end(&handle);
4395 }
4396 
4397 typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4398 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4399 
4400 static void
4401 perf_event_aux_ctx(struct perf_event_context *ctx,
4402 		   perf_event_aux_match_cb match,
4403 		   perf_event_aux_output_cb output,
4404 		   void *data)
4405 {
4406 	struct perf_event *event;
4407 
4408 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4409 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4410 			continue;
4411 		if (!event_filter_match(event))
4412 			continue;
4413 		if (match(event, data))
4414 			output(event, data);
4415 	}
4416 }
4417 
4418 static void
4419 perf_event_aux(perf_event_aux_match_cb match,
4420 	       perf_event_aux_output_cb output,
4421 	       void *data,
4422 	       struct perf_event_context *task_ctx)
4423 {
4424 	struct perf_cpu_context *cpuctx;
4425 	struct perf_event_context *ctx;
4426 	struct pmu *pmu;
4427 	int ctxn;
4428 
4429 	rcu_read_lock();
4430 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4431 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4432 		if (cpuctx->unique_pmu != pmu)
4433 			goto next;
4434 		perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4435 		if (task_ctx)
4436 			goto next;
4437 		ctxn = pmu->task_ctx_nr;
4438 		if (ctxn < 0)
4439 			goto next;
4440 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4441 		if (ctx)
4442 			perf_event_aux_ctx(ctx, match, output, data);
4443 next:
4444 		put_cpu_ptr(pmu->pmu_cpu_context);
4445 	}
4446 
4447 	if (task_ctx) {
4448 		preempt_disable();
4449 		perf_event_aux_ctx(task_ctx, match, output, data);
4450 		preempt_enable();
4451 	}
4452 	rcu_read_unlock();
4453 }
4454 
4455 /*
4456  * task tracking -- fork/exit
4457  *
4458  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4459  */
4460 
4461 struct perf_task_event {
4462 	struct task_struct		*task;
4463 	struct perf_event_context	*task_ctx;
4464 
4465 	struct {
4466 		struct perf_event_header	header;
4467 
4468 		u32				pid;
4469 		u32				ppid;
4470 		u32				tid;
4471 		u32				ptid;
4472 		u64				time;
4473 	} event_id;
4474 };
4475 
4476 static void perf_event_task_output(struct perf_event *event,
4477 				   void *data)
4478 {
4479 	struct perf_task_event *task_event = data;
4480 	struct perf_output_handle handle;
4481 	struct perf_sample_data	sample;
4482 	struct task_struct *task = task_event->task;
4483 	int ret, size = task_event->event_id.header.size;
4484 
4485 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4486 
4487 	ret = perf_output_begin(&handle, event,
4488 				task_event->event_id.header.size);
4489 	if (ret)
4490 		goto out;
4491 
4492 	task_event->event_id.pid = perf_event_pid(event, task);
4493 	task_event->event_id.ppid = perf_event_pid(event, current);
4494 
4495 	task_event->event_id.tid = perf_event_tid(event, task);
4496 	task_event->event_id.ptid = perf_event_tid(event, current);
4497 
4498 	perf_output_put(&handle, task_event->event_id);
4499 
4500 	perf_event__output_id_sample(event, &handle, &sample);
4501 
4502 	perf_output_end(&handle);
4503 out:
4504 	task_event->event_id.header.size = size;
4505 }
4506 
4507 static int perf_event_task_match(struct perf_event *event,
4508 				 void *data __maybe_unused)
4509 {
4510 	return event->attr.comm || event->attr.mmap ||
4511 	       event->attr.mmap_data || event->attr.task;
4512 }
4513 
4514 static void perf_event_task(struct task_struct *task,
4515 			      struct perf_event_context *task_ctx,
4516 			      int new)
4517 {
4518 	struct perf_task_event task_event;
4519 
4520 	if (!atomic_read(&nr_comm_events) &&
4521 	    !atomic_read(&nr_mmap_events) &&
4522 	    !atomic_read(&nr_task_events))
4523 		return;
4524 
4525 	task_event = (struct perf_task_event){
4526 		.task	  = task,
4527 		.task_ctx = task_ctx,
4528 		.event_id    = {
4529 			.header = {
4530 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4531 				.misc = 0,
4532 				.size = sizeof(task_event.event_id),
4533 			},
4534 			/* .pid  */
4535 			/* .ppid */
4536 			/* .tid  */
4537 			/* .ptid */
4538 			.time = perf_clock(),
4539 		},
4540 	};
4541 
4542 	perf_event_aux(perf_event_task_match,
4543 		       perf_event_task_output,
4544 		       &task_event,
4545 		       task_ctx);
4546 }
4547 
4548 void perf_event_fork(struct task_struct *task)
4549 {
4550 	perf_event_task(task, NULL, 1);
4551 }
4552 
4553 /*
4554  * comm tracking
4555  */
4556 
4557 struct perf_comm_event {
4558 	struct task_struct	*task;
4559 	char			*comm;
4560 	int			comm_size;
4561 
4562 	struct {
4563 		struct perf_event_header	header;
4564 
4565 		u32				pid;
4566 		u32				tid;
4567 	} event_id;
4568 };
4569 
4570 static void perf_event_comm_output(struct perf_event *event,
4571 				   void *data)
4572 {
4573 	struct perf_comm_event *comm_event = data;
4574 	struct perf_output_handle handle;
4575 	struct perf_sample_data sample;
4576 	int size = comm_event->event_id.header.size;
4577 	int ret;
4578 
4579 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4580 	ret = perf_output_begin(&handle, event,
4581 				comm_event->event_id.header.size);
4582 
4583 	if (ret)
4584 		goto out;
4585 
4586 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4587 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4588 
4589 	perf_output_put(&handle, comm_event->event_id);
4590 	__output_copy(&handle, comm_event->comm,
4591 				   comm_event->comm_size);
4592 
4593 	perf_event__output_id_sample(event, &handle, &sample);
4594 
4595 	perf_output_end(&handle);
4596 out:
4597 	comm_event->event_id.header.size = size;
4598 }
4599 
4600 static int perf_event_comm_match(struct perf_event *event,
4601 				 void *data __maybe_unused)
4602 {
4603 	return event->attr.comm;
4604 }
4605 
4606 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4607 {
4608 	char comm[TASK_COMM_LEN];
4609 	unsigned int size;
4610 
4611 	memset(comm, 0, sizeof(comm));
4612 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4613 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4614 
4615 	comm_event->comm = comm;
4616 	comm_event->comm_size = size;
4617 
4618 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4619 
4620 	perf_event_aux(perf_event_comm_match,
4621 		       perf_event_comm_output,
4622 		       comm_event,
4623 		       NULL);
4624 }
4625 
4626 void perf_event_comm(struct task_struct *task)
4627 {
4628 	struct perf_comm_event comm_event;
4629 	struct perf_event_context *ctx;
4630 	int ctxn;
4631 
4632 	rcu_read_lock();
4633 	for_each_task_context_nr(ctxn) {
4634 		ctx = task->perf_event_ctxp[ctxn];
4635 		if (!ctx)
4636 			continue;
4637 
4638 		perf_event_enable_on_exec(ctx);
4639 	}
4640 	rcu_read_unlock();
4641 
4642 	if (!atomic_read(&nr_comm_events))
4643 		return;
4644 
4645 	comm_event = (struct perf_comm_event){
4646 		.task	= task,
4647 		/* .comm      */
4648 		/* .comm_size */
4649 		.event_id  = {
4650 			.header = {
4651 				.type = PERF_RECORD_COMM,
4652 				.misc = 0,
4653 				/* .size */
4654 			},
4655 			/* .pid */
4656 			/* .tid */
4657 		},
4658 	};
4659 
4660 	perf_event_comm_event(&comm_event);
4661 }
4662 
4663 /*
4664  * mmap tracking
4665  */
4666 
4667 struct perf_mmap_event {
4668 	struct vm_area_struct	*vma;
4669 
4670 	const char		*file_name;
4671 	int			file_size;
4672 
4673 	struct {
4674 		struct perf_event_header	header;
4675 
4676 		u32				pid;
4677 		u32				tid;
4678 		u64				start;
4679 		u64				len;
4680 		u64				pgoff;
4681 	} event_id;
4682 };
4683 
4684 static void perf_event_mmap_output(struct perf_event *event,
4685 				   void *data)
4686 {
4687 	struct perf_mmap_event *mmap_event = data;
4688 	struct perf_output_handle handle;
4689 	struct perf_sample_data sample;
4690 	int size = mmap_event->event_id.header.size;
4691 	int ret;
4692 
4693 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4694 	ret = perf_output_begin(&handle, event,
4695 				mmap_event->event_id.header.size);
4696 	if (ret)
4697 		goto out;
4698 
4699 	mmap_event->event_id.pid = perf_event_pid(event, current);
4700 	mmap_event->event_id.tid = perf_event_tid(event, current);
4701 
4702 	perf_output_put(&handle, mmap_event->event_id);
4703 	__output_copy(&handle, mmap_event->file_name,
4704 				   mmap_event->file_size);
4705 
4706 	perf_event__output_id_sample(event, &handle, &sample);
4707 
4708 	perf_output_end(&handle);
4709 out:
4710 	mmap_event->event_id.header.size = size;
4711 }
4712 
4713 static int perf_event_mmap_match(struct perf_event *event,
4714 				 void *data)
4715 {
4716 	struct perf_mmap_event *mmap_event = data;
4717 	struct vm_area_struct *vma = mmap_event->vma;
4718 	int executable = vma->vm_flags & VM_EXEC;
4719 
4720 	return (!executable && event->attr.mmap_data) ||
4721 	       (executable && event->attr.mmap);
4722 }
4723 
4724 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4725 {
4726 	struct vm_area_struct *vma = mmap_event->vma;
4727 	struct file *file = vma->vm_file;
4728 	unsigned int size;
4729 	char tmp[16];
4730 	char *buf = NULL;
4731 	const char *name;
4732 
4733 	memset(tmp, 0, sizeof(tmp));
4734 
4735 	if (file) {
4736 		/*
4737 		 * d_path works from the end of the rb backwards, so we
4738 		 * need to add enough zero bytes after the string to handle
4739 		 * the 64bit alignment we do later.
4740 		 */
4741 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4742 		if (!buf) {
4743 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4744 			goto got_name;
4745 		}
4746 		name = d_path(&file->f_path, buf, PATH_MAX);
4747 		if (IS_ERR(name)) {
4748 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4749 			goto got_name;
4750 		}
4751 	} else {
4752 		if (arch_vma_name(mmap_event->vma)) {
4753 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4754 				       sizeof(tmp) - 1);
4755 			tmp[sizeof(tmp) - 1] = '\0';
4756 			goto got_name;
4757 		}
4758 
4759 		if (!vma->vm_mm) {
4760 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4761 			goto got_name;
4762 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4763 				vma->vm_end >= vma->vm_mm->brk) {
4764 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4765 			goto got_name;
4766 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4767 				vma->vm_end >= vma->vm_mm->start_stack) {
4768 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4769 			goto got_name;
4770 		}
4771 
4772 		name = strncpy(tmp, "//anon", sizeof(tmp));
4773 		goto got_name;
4774 	}
4775 
4776 got_name:
4777 	size = ALIGN(strlen(name)+1, sizeof(u64));
4778 
4779 	mmap_event->file_name = name;
4780 	mmap_event->file_size = size;
4781 
4782 	if (!(vma->vm_flags & VM_EXEC))
4783 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
4784 
4785 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4786 
4787 	perf_event_aux(perf_event_mmap_match,
4788 		       perf_event_mmap_output,
4789 		       mmap_event,
4790 		       NULL);
4791 
4792 	kfree(buf);
4793 }
4794 
4795 void perf_event_mmap(struct vm_area_struct *vma)
4796 {
4797 	struct perf_mmap_event mmap_event;
4798 
4799 	if (!atomic_read(&nr_mmap_events))
4800 		return;
4801 
4802 	mmap_event = (struct perf_mmap_event){
4803 		.vma	= vma,
4804 		/* .file_name */
4805 		/* .file_size */
4806 		.event_id  = {
4807 			.header = {
4808 				.type = PERF_RECORD_MMAP,
4809 				.misc = PERF_RECORD_MISC_USER,
4810 				/* .size */
4811 			},
4812 			/* .pid */
4813 			/* .tid */
4814 			.start  = vma->vm_start,
4815 			.len    = vma->vm_end - vma->vm_start,
4816 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4817 		},
4818 	};
4819 
4820 	perf_event_mmap_event(&mmap_event);
4821 }
4822 
4823 /*
4824  * IRQ throttle logging
4825  */
4826 
4827 static void perf_log_throttle(struct perf_event *event, int enable)
4828 {
4829 	struct perf_output_handle handle;
4830 	struct perf_sample_data sample;
4831 	int ret;
4832 
4833 	struct {
4834 		struct perf_event_header	header;
4835 		u64				time;
4836 		u64				id;
4837 		u64				stream_id;
4838 	} throttle_event = {
4839 		.header = {
4840 			.type = PERF_RECORD_THROTTLE,
4841 			.misc = 0,
4842 			.size = sizeof(throttle_event),
4843 		},
4844 		.time		= perf_clock(),
4845 		.id		= primary_event_id(event),
4846 		.stream_id	= event->id,
4847 	};
4848 
4849 	if (enable)
4850 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4851 
4852 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4853 
4854 	ret = perf_output_begin(&handle, event,
4855 				throttle_event.header.size);
4856 	if (ret)
4857 		return;
4858 
4859 	perf_output_put(&handle, throttle_event);
4860 	perf_event__output_id_sample(event, &handle, &sample);
4861 	perf_output_end(&handle);
4862 }
4863 
4864 /*
4865  * Generic event overflow handling, sampling.
4866  */
4867 
4868 static int __perf_event_overflow(struct perf_event *event,
4869 				   int throttle, struct perf_sample_data *data,
4870 				   struct pt_regs *regs)
4871 {
4872 	int events = atomic_read(&event->event_limit);
4873 	struct hw_perf_event *hwc = &event->hw;
4874 	u64 seq;
4875 	int ret = 0;
4876 
4877 	/*
4878 	 * Non-sampling counters might still use the PMI to fold short
4879 	 * hardware counters, ignore those.
4880 	 */
4881 	if (unlikely(!is_sampling_event(event)))
4882 		return 0;
4883 
4884 	seq = __this_cpu_read(perf_throttled_seq);
4885 	if (seq != hwc->interrupts_seq) {
4886 		hwc->interrupts_seq = seq;
4887 		hwc->interrupts = 1;
4888 	} else {
4889 		hwc->interrupts++;
4890 		if (unlikely(throttle
4891 			     && hwc->interrupts >= max_samples_per_tick)) {
4892 			__this_cpu_inc(perf_throttled_count);
4893 			hwc->interrupts = MAX_INTERRUPTS;
4894 			perf_log_throttle(event, 0);
4895 			ret = 1;
4896 		}
4897 	}
4898 
4899 	if (event->attr.freq) {
4900 		u64 now = perf_clock();
4901 		s64 delta = now - hwc->freq_time_stamp;
4902 
4903 		hwc->freq_time_stamp = now;
4904 
4905 		if (delta > 0 && delta < 2*TICK_NSEC)
4906 			perf_adjust_period(event, delta, hwc->last_period, true);
4907 	}
4908 
4909 	/*
4910 	 * XXX event_limit might not quite work as expected on inherited
4911 	 * events
4912 	 */
4913 
4914 	event->pending_kill = POLL_IN;
4915 	if (events && atomic_dec_and_test(&event->event_limit)) {
4916 		ret = 1;
4917 		event->pending_kill = POLL_HUP;
4918 		event->pending_disable = 1;
4919 		irq_work_queue(&event->pending);
4920 	}
4921 
4922 	if (event->overflow_handler)
4923 		event->overflow_handler(event, data, regs);
4924 	else
4925 		perf_event_output(event, data, regs);
4926 
4927 	if (event->fasync && event->pending_kill) {
4928 		event->pending_wakeup = 1;
4929 		irq_work_queue(&event->pending);
4930 	}
4931 
4932 	return ret;
4933 }
4934 
4935 int perf_event_overflow(struct perf_event *event,
4936 			  struct perf_sample_data *data,
4937 			  struct pt_regs *regs)
4938 {
4939 	return __perf_event_overflow(event, 1, data, regs);
4940 }
4941 
4942 /*
4943  * Generic software event infrastructure
4944  */
4945 
4946 struct swevent_htable {
4947 	struct swevent_hlist		*swevent_hlist;
4948 	struct mutex			hlist_mutex;
4949 	int				hlist_refcount;
4950 
4951 	/* Recursion avoidance in each contexts */
4952 	int				recursion[PERF_NR_CONTEXTS];
4953 };
4954 
4955 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4956 
4957 /*
4958  * We directly increment event->count and keep a second value in
4959  * event->hw.period_left to count intervals. This period event
4960  * is kept in the range [-sample_period, 0] so that we can use the
4961  * sign as trigger.
4962  */
4963 
4964 static u64 perf_swevent_set_period(struct perf_event *event)
4965 {
4966 	struct hw_perf_event *hwc = &event->hw;
4967 	u64 period = hwc->last_period;
4968 	u64 nr, offset;
4969 	s64 old, val;
4970 
4971 	hwc->last_period = hwc->sample_period;
4972 
4973 again:
4974 	old = val = local64_read(&hwc->period_left);
4975 	if (val < 0)
4976 		return 0;
4977 
4978 	nr = div64_u64(period + val, period);
4979 	offset = nr * period;
4980 	val -= offset;
4981 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4982 		goto again;
4983 
4984 	return nr;
4985 }
4986 
4987 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4988 				    struct perf_sample_data *data,
4989 				    struct pt_regs *regs)
4990 {
4991 	struct hw_perf_event *hwc = &event->hw;
4992 	int throttle = 0;
4993 
4994 	if (!overflow)
4995 		overflow = perf_swevent_set_period(event);
4996 
4997 	if (hwc->interrupts == MAX_INTERRUPTS)
4998 		return;
4999 
5000 	for (; overflow; overflow--) {
5001 		if (__perf_event_overflow(event, throttle,
5002 					    data, regs)) {
5003 			/*
5004 			 * We inhibit the overflow from happening when
5005 			 * hwc->interrupts == MAX_INTERRUPTS.
5006 			 */
5007 			break;
5008 		}
5009 		throttle = 1;
5010 	}
5011 }
5012 
5013 static void perf_swevent_event(struct perf_event *event, u64 nr,
5014 			       struct perf_sample_data *data,
5015 			       struct pt_regs *regs)
5016 {
5017 	struct hw_perf_event *hwc = &event->hw;
5018 
5019 	local64_add(nr, &event->count);
5020 
5021 	if (!regs)
5022 		return;
5023 
5024 	if (!is_sampling_event(event))
5025 		return;
5026 
5027 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5028 		data->period = nr;
5029 		return perf_swevent_overflow(event, 1, data, regs);
5030 	} else
5031 		data->period = event->hw.last_period;
5032 
5033 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5034 		return perf_swevent_overflow(event, 1, data, regs);
5035 
5036 	if (local64_add_negative(nr, &hwc->period_left))
5037 		return;
5038 
5039 	perf_swevent_overflow(event, 0, data, regs);
5040 }
5041 
5042 static int perf_exclude_event(struct perf_event *event,
5043 			      struct pt_regs *regs)
5044 {
5045 	if (event->hw.state & PERF_HES_STOPPED)
5046 		return 1;
5047 
5048 	if (regs) {
5049 		if (event->attr.exclude_user && user_mode(regs))
5050 			return 1;
5051 
5052 		if (event->attr.exclude_kernel && !user_mode(regs))
5053 			return 1;
5054 	}
5055 
5056 	return 0;
5057 }
5058 
5059 static int perf_swevent_match(struct perf_event *event,
5060 				enum perf_type_id type,
5061 				u32 event_id,
5062 				struct perf_sample_data *data,
5063 				struct pt_regs *regs)
5064 {
5065 	if (event->attr.type != type)
5066 		return 0;
5067 
5068 	if (event->attr.config != event_id)
5069 		return 0;
5070 
5071 	if (perf_exclude_event(event, regs))
5072 		return 0;
5073 
5074 	return 1;
5075 }
5076 
5077 static inline u64 swevent_hash(u64 type, u32 event_id)
5078 {
5079 	u64 val = event_id | (type << 32);
5080 
5081 	return hash_64(val, SWEVENT_HLIST_BITS);
5082 }
5083 
5084 static inline struct hlist_head *
5085 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5086 {
5087 	u64 hash = swevent_hash(type, event_id);
5088 
5089 	return &hlist->heads[hash];
5090 }
5091 
5092 /* For the read side: events when they trigger */
5093 static inline struct hlist_head *
5094 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5095 {
5096 	struct swevent_hlist *hlist;
5097 
5098 	hlist = rcu_dereference(swhash->swevent_hlist);
5099 	if (!hlist)
5100 		return NULL;
5101 
5102 	return __find_swevent_head(hlist, type, event_id);
5103 }
5104 
5105 /* For the event head insertion and removal in the hlist */
5106 static inline struct hlist_head *
5107 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5108 {
5109 	struct swevent_hlist *hlist;
5110 	u32 event_id = event->attr.config;
5111 	u64 type = event->attr.type;
5112 
5113 	/*
5114 	 * Event scheduling is always serialized against hlist allocation
5115 	 * and release. Which makes the protected version suitable here.
5116 	 * The context lock guarantees that.
5117 	 */
5118 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5119 					  lockdep_is_held(&event->ctx->lock));
5120 	if (!hlist)
5121 		return NULL;
5122 
5123 	return __find_swevent_head(hlist, type, event_id);
5124 }
5125 
5126 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5127 				    u64 nr,
5128 				    struct perf_sample_data *data,
5129 				    struct pt_regs *regs)
5130 {
5131 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5132 	struct perf_event *event;
5133 	struct hlist_head *head;
5134 
5135 	rcu_read_lock();
5136 	head = find_swevent_head_rcu(swhash, type, event_id);
5137 	if (!head)
5138 		goto end;
5139 
5140 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5141 		if (perf_swevent_match(event, type, event_id, data, regs))
5142 			perf_swevent_event(event, nr, data, regs);
5143 	}
5144 end:
5145 	rcu_read_unlock();
5146 }
5147 
5148 int perf_swevent_get_recursion_context(void)
5149 {
5150 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5151 
5152 	return get_recursion_context(swhash->recursion);
5153 }
5154 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5155 
5156 inline void perf_swevent_put_recursion_context(int rctx)
5157 {
5158 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5159 
5160 	put_recursion_context(swhash->recursion, rctx);
5161 }
5162 
5163 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5164 {
5165 	struct perf_sample_data data;
5166 	int rctx;
5167 
5168 	preempt_disable_notrace();
5169 	rctx = perf_swevent_get_recursion_context();
5170 	if (rctx < 0)
5171 		return;
5172 
5173 	perf_sample_data_init(&data, addr, 0);
5174 
5175 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5176 
5177 	perf_swevent_put_recursion_context(rctx);
5178 	preempt_enable_notrace();
5179 }
5180 
5181 static void perf_swevent_read(struct perf_event *event)
5182 {
5183 }
5184 
5185 static int perf_swevent_add(struct perf_event *event, int flags)
5186 {
5187 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5188 	struct hw_perf_event *hwc = &event->hw;
5189 	struct hlist_head *head;
5190 
5191 	if (is_sampling_event(event)) {
5192 		hwc->last_period = hwc->sample_period;
5193 		perf_swevent_set_period(event);
5194 	}
5195 
5196 	hwc->state = !(flags & PERF_EF_START);
5197 
5198 	head = find_swevent_head(swhash, event);
5199 	if (WARN_ON_ONCE(!head))
5200 		return -EINVAL;
5201 
5202 	hlist_add_head_rcu(&event->hlist_entry, head);
5203 
5204 	return 0;
5205 }
5206 
5207 static void perf_swevent_del(struct perf_event *event, int flags)
5208 {
5209 	hlist_del_rcu(&event->hlist_entry);
5210 }
5211 
5212 static void perf_swevent_start(struct perf_event *event, int flags)
5213 {
5214 	event->hw.state = 0;
5215 }
5216 
5217 static void perf_swevent_stop(struct perf_event *event, int flags)
5218 {
5219 	event->hw.state = PERF_HES_STOPPED;
5220 }
5221 
5222 /* Deref the hlist from the update side */
5223 static inline struct swevent_hlist *
5224 swevent_hlist_deref(struct swevent_htable *swhash)
5225 {
5226 	return rcu_dereference_protected(swhash->swevent_hlist,
5227 					 lockdep_is_held(&swhash->hlist_mutex));
5228 }
5229 
5230 static void swevent_hlist_release(struct swevent_htable *swhash)
5231 {
5232 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5233 
5234 	if (!hlist)
5235 		return;
5236 
5237 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5238 	kfree_rcu(hlist, rcu_head);
5239 }
5240 
5241 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5242 {
5243 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5244 
5245 	mutex_lock(&swhash->hlist_mutex);
5246 
5247 	if (!--swhash->hlist_refcount)
5248 		swevent_hlist_release(swhash);
5249 
5250 	mutex_unlock(&swhash->hlist_mutex);
5251 }
5252 
5253 static void swevent_hlist_put(struct perf_event *event)
5254 {
5255 	int cpu;
5256 
5257 	if (event->cpu != -1) {
5258 		swevent_hlist_put_cpu(event, event->cpu);
5259 		return;
5260 	}
5261 
5262 	for_each_possible_cpu(cpu)
5263 		swevent_hlist_put_cpu(event, cpu);
5264 }
5265 
5266 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5267 {
5268 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5269 	int err = 0;
5270 
5271 	mutex_lock(&swhash->hlist_mutex);
5272 
5273 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5274 		struct swevent_hlist *hlist;
5275 
5276 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5277 		if (!hlist) {
5278 			err = -ENOMEM;
5279 			goto exit;
5280 		}
5281 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5282 	}
5283 	swhash->hlist_refcount++;
5284 exit:
5285 	mutex_unlock(&swhash->hlist_mutex);
5286 
5287 	return err;
5288 }
5289 
5290 static int swevent_hlist_get(struct perf_event *event)
5291 {
5292 	int err;
5293 	int cpu, failed_cpu;
5294 
5295 	if (event->cpu != -1)
5296 		return swevent_hlist_get_cpu(event, event->cpu);
5297 
5298 	get_online_cpus();
5299 	for_each_possible_cpu(cpu) {
5300 		err = swevent_hlist_get_cpu(event, cpu);
5301 		if (err) {
5302 			failed_cpu = cpu;
5303 			goto fail;
5304 		}
5305 	}
5306 	put_online_cpus();
5307 
5308 	return 0;
5309 fail:
5310 	for_each_possible_cpu(cpu) {
5311 		if (cpu == failed_cpu)
5312 			break;
5313 		swevent_hlist_put_cpu(event, cpu);
5314 	}
5315 
5316 	put_online_cpus();
5317 	return err;
5318 }
5319 
5320 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5321 
5322 static void sw_perf_event_destroy(struct perf_event *event)
5323 {
5324 	u64 event_id = event->attr.config;
5325 
5326 	WARN_ON(event->parent);
5327 
5328 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5329 	swevent_hlist_put(event);
5330 }
5331 
5332 static int perf_swevent_init(struct perf_event *event)
5333 {
5334 	u64 event_id = event->attr.config;
5335 
5336 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5337 		return -ENOENT;
5338 
5339 	/*
5340 	 * no branch sampling for software events
5341 	 */
5342 	if (has_branch_stack(event))
5343 		return -EOPNOTSUPP;
5344 
5345 	switch (event_id) {
5346 	case PERF_COUNT_SW_CPU_CLOCK:
5347 	case PERF_COUNT_SW_TASK_CLOCK:
5348 		return -ENOENT;
5349 
5350 	default:
5351 		break;
5352 	}
5353 
5354 	if (event_id >= PERF_COUNT_SW_MAX)
5355 		return -ENOENT;
5356 
5357 	if (!event->parent) {
5358 		int err;
5359 
5360 		err = swevent_hlist_get(event);
5361 		if (err)
5362 			return err;
5363 
5364 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5365 		event->destroy = sw_perf_event_destroy;
5366 	}
5367 
5368 	return 0;
5369 }
5370 
5371 static int perf_swevent_event_idx(struct perf_event *event)
5372 {
5373 	return 0;
5374 }
5375 
5376 static struct pmu perf_swevent = {
5377 	.task_ctx_nr	= perf_sw_context,
5378 
5379 	.event_init	= perf_swevent_init,
5380 	.add		= perf_swevent_add,
5381 	.del		= perf_swevent_del,
5382 	.start		= perf_swevent_start,
5383 	.stop		= perf_swevent_stop,
5384 	.read		= perf_swevent_read,
5385 
5386 	.event_idx	= perf_swevent_event_idx,
5387 };
5388 
5389 #ifdef CONFIG_EVENT_TRACING
5390 
5391 static int perf_tp_filter_match(struct perf_event *event,
5392 				struct perf_sample_data *data)
5393 {
5394 	void *record = data->raw->data;
5395 
5396 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5397 		return 1;
5398 	return 0;
5399 }
5400 
5401 static int perf_tp_event_match(struct perf_event *event,
5402 				struct perf_sample_data *data,
5403 				struct pt_regs *regs)
5404 {
5405 	if (event->hw.state & PERF_HES_STOPPED)
5406 		return 0;
5407 	/*
5408 	 * All tracepoints are from kernel-space.
5409 	 */
5410 	if (event->attr.exclude_kernel)
5411 		return 0;
5412 
5413 	if (!perf_tp_filter_match(event, data))
5414 		return 0;
5415 
5416 	return 1;
5417 }
5418 
5419 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5420 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5421 		   struct task_struct *task)
5422 {
5423 	struct perf_sample_data data;
5424 	struct perf_event *event;
5425 
5426 	struct perf_raw_record raw = {
5427 		.size = entry_size,
5428 		.data = record,
5429 	};
5430 
5431 	perf_sample_data_init(&data, addr, 0);
5432 	data.raw = &raw;
5433 
5434 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5435 		if (perf_tp_event_match(event, &data, regs))
5436 			perf_swevent_event(event, count, &data, regs);
5437 	}
5438 
5439 	/*
5440 	 * If we got specified a target task, also iterate its context and
5441 	 * deliver this event there too.
5442 	 */
5443 	if (task && task != current) {
5444 		struct perf_event_context *ctx;
5445 		struct trace_entry *entry = record;
5446 
5447 		rcu_read_lock();
5448 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5449 		if (!ctx)
5450 			goto unlock;
5451 
5452 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5453 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5454 				continue;
5455 			if (event->attr.config != entry->type)
5456 				continue;
5457 			if (perf_tp_event_match(event, &data, regs))
5458 				perf_swevent_event(event, count, &data, regs);
5459 		}
5460 unlock:
5461 		rcu_read_unlock();
5462 	}
5463 
5464 	perf_swevent_put_recursion_context(rctx);
5465 }
5466 EXPORT_SYMBOL_GPL(perf_tp_event);
5467 
5468 static void tp_perf_event_destroy(struct perf_event *event)
5469 {
5470 	perf_trace_destroy(event);
5471 }
5472 
5473 static int perf_tp_event_init(struct perf_event *event)
5474 {
5475 	int err;
5476 
5477 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5478 		return -ENOENT;
5479 
5480 	/*
5481 	 * no branch sampling for tracepoint events
5482 	 */
5483 	if (has_branch_stack(event))
5484 		return -EOPNOTSUPP;
5485 
5486 	err = perf_trace_init(event);
5487 	if (err)
5488 		return err;
5489 
5490 	event->destroy = tp_perf_event_destroy;
5491 
5492 	return 0;
5493 }
5494 
5495 static struct pmu perf_tracepoint = {
5496 	.task_ctx_nr	= perf_sw_context,
5497 
5498 	.event_init	= perf_tp_event_init,
5499 	.add		= perf_trace_add,
5500 	.del		= perf_trace_del,
5501 	.start		= perf_swevent_start,
5502 	.stop		= perf_swevent_stop,
5503 	.read		= perf_swevent_read,
5504 
5505 	.event_idx	= perf_swevent_event_idx,
5506 };
5507 
5508 static inline void perf_tp_register(void)
5509 {
5510 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5511 }
5512 
5513 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5514 {
5515 	char *filter_str;
5516 	int ret;
5517 
5518 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5519 		return -EINVAL;
5520 
5521 	filter_str = strndup_user(arg, PAGE_SIZE);
5522 	if (IS_ERR(filter_str))
5523 		return PTR_ERR(filter_str);
5524 
5525 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5526 
5527 	kfree(filter_str);
5528 	return ret;
5529 }
5530 
5531 static void perf_event_free_filter(struct perf_event *event)
5532 {
5533 	ftrace_profile_free_filter(event);
5534 }
5535 
5536 #else
5537 
5538 static inline void perf_tp_register(void)
5539 {
5540 }
5541 
5542 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5543 {
5544 	return -ENOENT;
5545 }
5546 
5547 static void perf_event_free_filter(struct perf_event *event)
5548 {
5549 }
5550 
5551 #endif /* CONFIG_EVENT_TRACING */
5552 
5553 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5554 void perf_bp_event(struct perf_event *bp, void *data)
5555 {
5556 	struct perf_sample_data sample;
5557 	struct pt_regs *regs = data;
5558 
5559 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5560 
5561 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5562 		perf_swevent_event(bp, 1, &sample, regs);
5563 }
5564 #endif
5565 
5566 /*
5567  * hrtimer based swevent callback
5568  */
5569 
5570 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5571 {
5572 	enum hrtimer_restart ret = HRTIMER_RESTART;
5573 	struct perf_sample_data data;
5574 	struct pt_regs *regs;
5575 	struct perf_event *event;
5576 	u64 period;
5577 
5578 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5579 
5580 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5581 		return HRTIMER_NORESTART;
5582 
5583 	event->pmu->read(event);
5584 
5585 	perf_sample_data_init(&data, 0, event->hw.last_period);
5586 	regs = get_irq_regs();
5587 
5588 	if (regs && !perf_exclude_event(event, regs)) {
5589 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5590 			if (__perf_event_overflow(event, 1, &data, regs))
5591 				ret = HRTIMER_NORESTART;
5592 	}
5593 
5594 	period = max_t(u64, 10000, event->hw.sample_period);
5595 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5596 
5597 	return ret;
5598 }
5599 
5600 static void perf_swevent_start_hrtimer(struct perf_event *event)
5601 {
5602 	struct hw_perf_event *hwc = &event->hw;
5603 	s64 period;
5604 
5605 	if (!is_sampling_event(event))
5606 		return;
5607 
5608 	period = local64_read(&hwc->period_left);
5609 	if (period) {
5610 		if (period < 0)
5611 			period = 10000;
5612 
5613 		local64_set(&hwc->period_left, 0);
5614 	} else {
5615 		period = max_t(u64, 10000, hwc->sample_period);
5616 	}
5617 	__hrtimer_start_range_ns(&hwc->hrtimer,
5618 				ns_to_ktime(period), 0,
5619 				HRTIMER_MODE_REL_PINNED, 0);
5620 }
5621 
5622 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5623 {
5624 	struct hw_perf_event *hwc = &event->hw;
5625 
5626 	if (is_sampling_event(event)) {
5627 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5628 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5629 
5630 		hrtimer_cancel(&hwc->hrtimer);
5631 	}
5632 }
5633 
5634 static void perf_swevent_init_hrtimer(struct perf_event *event)
5635 {
5636 	struct hw_perf_event *hwc = &event->hw;
5637 
5638 	if (!is_sampling_event(event))
5639 		return;
5640 
5641 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5642 	hwc->hrtimer.function = perf_swevent_hrtimer;
5643 
5644 	/*
5645 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5646 	 * mapping and avoid the whole period adjust feedback stuff.
5647 	 */
5648 	if (event->attr.freq) {
5649 		long freq = event->attr.sample_freq;
5650 
5651 		event->attr.sample_period = NSEC_PER_SEC / freq;
5652 		hwc->sample_period = event->attr.sample_period;
5653 		local64_set(&hwc->period_left, hwc->sample_period);
5654 		hwc->last_period = hwc->sample_period;
5655 		event->attr.freq = 0;
5656 	}
5657 }
5658 
5659 /*
5660  * Software event: cpu wall time clock
5661  */
5662 
5663 static void cpu_clock_event_update(struct perf_event *event)
5664 {
5665 	s64 prev;
5666 	u64 now;
5667 
5668 	now = local_clock();
5669 	prev = local64_xchg(&event->hw.prev_count, now);
5670 	local64_add(now - prev, &event->count);
5671 }
5672 
5673 static void cpu_clock_event_start(struct perf_event *event, int flags)
5674 {
5675 	local64_set(&event->hw.prev_count, local_clock());
5676 	perf_swevent_start_hrtimer(event);
5677 }
5678 
5679 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5680 {
5681 	perf_swevent_cancel_hrtimer(event);
5682 	cpu_clock_event_update(event);
5683 }
5684 
5685 static int cpu_clock_event_add(struct perf_event *event, int flags)
5686 {
5687 	if (flags & PERF_EF_START)
5688 		cpu_clock_event_start(event, flags);
5689 
5690 	return 0;
5691 }
5692 
5693 static void cpu_clock_event_del(struct perf_event *event, int flags)
5694 {
5695 	cpu_clock_event_stop(event, flags);
5696 }
5697 
5698 static void cpu_clock_event_read(struct perf_event *event)
5699 {
5700 	cpu_clock_event_update(event);
5701 }
5702 
5703 static int cpu_clock_event_init(struct perf_event *event)
5704 {
5705 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5706 		return -ENOENT;
5707 
5708 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5709 		return -ENOENT;
5710 
5711 	/*
5712 	 * no branch sampling for software events
5713 	 */
5714 	if (has_branch_stack(event))
5715 		return -EOPNOTSUPP;
5716 
5717 	perf_swevent_init_hrtimer(event);
5718 
5719 	return 0;
5720 }
5721 
5722 static struct pmu perf_cpu_clock = {
5723 	.task_ctx_nr	= perf_sw_context,
5724 
5725 	.event_init	= cpu_clock_event_init,
5726 	.add		= cpu_clock_event_add,
5727 	.del		= cpu_clock_event_del,
5728 	.start		= cpu_clock_event_start,
5729 	.stop		= cpu_clock_event_stop,
5730 	.read		= cpu_clock_event_read,
5731 
5732 	.event_idx	= perf_swevent_event_idx,
5733 };
5734 
5735 /*
5736  * Software event: task time clock
5737  */
5738 
5739 static void task_clock_event_update(struct perf_event *event, u64 now)
5740 {
5741 	u64 prev;
5742 	s64 delta;
5743 
5744 	prev = local64_xchg(&event->hw.prev_count, now);
5745 	delta = now - prev;
5746 	local64_add(delta, &event->count);
5747 }
5748 
5749 static void task_clock_event_start(struct perf_event *event, int flags)
5750 {
5751 	local64_set(&event->hw.prev_count, event->ctx->time);
5752 	perf_swevent_start_hrtimer(event);
5753 }
5754 
5755 static void task_clock_event_stop(struct perf_event *event, int flags)
5756 {
5757 	perf_swevent_cancel_hrtimer(event);
5758 	task_clock_event_update(event, event->ctx->time);
5759 }
5760 
5761 static int task_clock_event_add(struct perf_event *event, int flags)
5762 {
5763 	if (flags & PERF_EF_START)
5764 		task_clock_event_start(event, flags);
5765 
5766 	return 0;
5767 }
5768 
5769 static void task_clock_event_del(struct perf_event *event, int flags)
5770 {
5771 	task_clock_event_stop(event, PERF_EF_UPDATE);
5772 }
5773 
5774 static void task_clock_event_read(struct perf_event *event)
5775 {
5776 	u64 now = perf_clock();
5777 	u64 delta = now - event->ctx->timestamp;
5778 	u64 time = event->ctx->time + delta;
5779 
5780 	task_clock_event_update(event, time);
5781 }
5782 
5783 static int task_clock_event_init(struct perf_event *event)
5784 {
5785 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5786 		return -ENOENT;
5787 
5788 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5789 		return -ENOENT;
5790 
5791 	/*
5792 	 * no branch sampling for software events
5793 	 */
5794 	if (has_branch_stack(event))
5795 		return -EOPNOTSUPP;
5796 
5797 	perf_swevent_init_hrtimer(event);
5798 
5799 	return 0;
5800 }
5801 
5802 static struct pmu perf_task_clock = {
5803 	.task_ctx_nr	= perf_sw_context,
5804 
5805 	.event_init	= task_clock_event_init,
5806 	.add		= task_clock_event_add,
5807 	.del		= task_clock_event_del,
5808 	.start		= task_clock_event_start,
5809 	.stop		= task_clock_event_stop,
5810 	.read		= task_clock_event_read,
5811 
5812 	.event_idx	= perf_swevent_event_idx,
5813 };
5814 
5815 static void perf_pmu_nop_void(struct pmu *pmu)
5816 {
5817 }
5818 
5819 static int perf_pmu_nop_int(struct pmu *pmu)
5820 {
5821 	return 0;
5822 }
5823 
5824 static void perf_pmu_start_txn(struct pmu *pmu)
5825 {
5826 	perf_pmu_disable(pmu);
5827 }
5828 
5829 static int perf_pmu_commit_txn(struct pmu *pmu)
5830 {
5831 	perf_pmu_enable(pmu);
5832 	return 0;
5833 }
5834 
5835 static void perf_pmu_cancel_txn(struct pmu *pmu)
5836 {
5837 	perf_pmu_enable(pmu);
5838 }
5839 
5840 static int perf_event_idx_default(struct perf_event *event)
5841 {
5842 	return event->hw.idx + 1;
5843 }
5844 
5845 /*
5846  * Ensures all contexts with the same task_ctx_nr have the same
5847  * pmu_cpu_context too.
5848  */
5849 static void *find_pmu_context(int ctxn)
5850 {
5851 	struct pmu *pmu;
5852 
5853 	if (ctxn < 0)
5854 		return NULL;
5855 
5856 	list_for_each_entry(pmu, &pmus, entry) {
5857 		if (pmu->task_ctx_nr == ctxn)
5858 			return pmu->pmu_cpu_context;
5859 	}
5860 
5861 	return NULL;
5862 }
5863 
5864 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5865 {
5866 	int cpu;
5867 
5868 	for_each_possible_cpu(cpu) {
5869 		struct perf_cpu_context *cpuctx;
5870 
5871 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5872 
5873 		if (cpuctx->unique_pmu == old_pmu)
5874 			cpuctx->unique_pmu = pmu;
5875 	}
5876 }
5877 
5878 static void free_pmu_context(struct pmu *pmu)
5879 {
5880 	struct pmu *i;
5881 
5882 	mutex_lock(&pmus_lock);
5883 	/*
5884 	 * Like a real lame refcount.
5885 	 */
5886 	list_for_each_entry(i, &pmus, entry) {
5887 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5888 			update_pmu_context(i, pmu);
5889 			goto out;
5890 		}
5891 	}
5892 
5893 	free_percpu(pmu->pmu_cpu_context);
5894 out:
5895 	mutex_unlock(&pmus_lock);
5896 }
5897 static struct idr pmu_idr;
5898 
5899 static ssize_t
5900 type_show(struct device *dev, struct device_attribute *attr, char *page)
5901 {
5902 	struct pmu *pmu = dev_get_drvdata(dev);
5903 
5904 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5905 }
5906 
5907 static struct device_attribute pmu_dev_attrs[] = {
5908        __ATTR_RO(type),
5909        __ATTR_NULL,
5910 };
5911 
5912 static int pmu_bus_running;
5913 static struct bus_type pmu_bus = {
5914 	.name		= "event_source",
5915 	.dev_attrs	= pmu_dev_attrs,
5916 };
5917 
5918 static void pmu_dev_release(struct device *dev)
5919 {
5920 	kfree(dev);
5921 }
5922 
5923 static int pmu_dev_alloc(struct pmu *pmu)
5924 {
5925 	int ret = -ENOMEM;
5926 
5927 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5928 	if (!pmu->dev)
5929 		goto out;
5930 
5931 	pmu->dev->groups = pmu->attr_groups;
5932 	device_initialize(pmu->dev);
5933 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5934 	if (ret)
5935 		goto free_dev;
5936 
5937 	dev_set_drvdata(pmu->dev, pmu);
5938 	pmu->dev->bus = &pmu_bus;
5939 	pmu->dev->release = pmu_dev_release;
5940 	ret = device_add(pmu->dev);
5941 	if (ret)
5942 		goto free_dev;
5943 
5944 out:
5945 	return ret;
5946 
5947 free_dev:
5948 	put_device(pmu->dev);
5949 	goto out;
5950 }
5951 
5952 static struct lock_class_key cpuctx_mutex;
5953 static struct lock_class_key cpuctx_lock;
5954 
5955 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5956 {
5957 	int cpu, ret;
5958 
5959 	mutex_lock(&pmus_lock);
5960 	ret = -ENOMEM;
5961 	pmu->pmu_disable_count = alloc_percpu(int);
5962 	if (!pmu->pmu_disable_count)
5963 		goto unlock;
5964 
5965 	pmu->type = -1;
5966 	if (!name)
5967 		goto skip_type;
5968 	pmu->name = name;
5969 
5970 	if (type < 0) {
5971 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
5972 		if (type < 0) {
5973 			ret = type;
5974 			goto free_pdc;
5975 		}
5976 	}
5977 	pmu->type = type;
5978 
5979 	if (pmu_bus_running) {
5980 		ret = pmu_dev_alloc(pmu);
5981 		if (ret)
5982 			goto free_idr;
5983 	}
5984 
5985 skip_type:
5986 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5987 	if (pmu->pmu_cpu_context)
5988 		goto got_cpu_context;
5989 
5990 	ret = -ENOMEM;
5991 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5992 	if (!pmu->pmu_cpu_context)
5993 		goto free_dev;
5994 
5995 	for_each_possible_cpu(cpu) {
5996 		struct perf_cpu_context *cpuctx;
5997 
5998 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5999 		__perf_event_init_context(&cpuctx->ctx);
6000 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6001 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6002 		cpuctx->ctx.type = cpu_context;
6003 		cpuctx->ctx.pmu = pmu;
6004 		cpuctx->jiffies_interval = 1;
6005 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6006 		cpuctx->unique_pmu = pmu;
6007 	}
6008 
6009 got_cpu_context:
6010 	if (!pmu->start_txn) {
6011 		if (pmu->pmu_enable) {
6012 			/*
6013 			 * If we have pmu_enable/pmu_disable calls, install
6014 			 * transaction stubs that use that to try and batch
6015 			 * hardware accesses.
6016 			 */
6017 			pmu->start_txn  = perf_pmu_start_txn;
6018 			pmu->commit_txn = perf_pmu_commit_txn;
6019 			pmu->cancel_txn = perf_pmu_cancel_txn;
6020 		} else {
6021 			pmu->start_txn  = perf_pmu_nop_void;
6022 			pmu->commit_txn = perf_pmu_nop_int;
6023 			pmu->cancel_txn = perf_pmu_nop_void;
6024 		}
6025 	}
6026 
6027 	if (!pmu->pmu_enable) {
6028 		pmu->pmu_enable  = perf_pmu_nop_void;
6029 		pmu->pmu_disable = perf_pmu_nop_void;
6030 	}
6031 
6032 	if (!pmu->event_idx)
6033 		pmu->event_idx = perf_event_idx_default;
6034 
6035 	list_add_rcu(&pmu->entry, &pmus);
6036 	ret = 0;
6037 unlock:
6038 	mutex_unlock(&pmus_lock);
6039 
6040 	return ret;
6041 
6042 free_dev:
6043 	device_del(pmu->dev);
6044 	put_device(pmu->dev);
6045 
6046 free_idr:
6047 	if (pmu->type >= PERF_TYPE_MAX)
6048 		idr_remove(&pmu_idr, pmu->type);
6049 
6050 free_pdc:
6051 	free_percpu(pmu->pmu_disable_count);
6052 	goto unlock;
6053 }
6054 
6055 void perf_pmu_unregister(struct pmu *pmu)
6056 {
6057 	mutex_lock(&pmus_lock);
6058 	list_del_rcu(&pmu->entry);
6059 	mutex_unlock(&pmus_lock);
6060 
6061 	/*
6062 	 * We dereference the pmu list under both SRCU and regular RCU, so
6063 	 * synchronize against both of those.
6064 	 */
6065 	synchronize_srcu(&pmus_srcu);
6066 	synchronize_rcu();
6067 
6068 	free_percpu(pmu->pmu_disable_count);
6069 	if (pmu->type >= PERF_TYPE_MAX)
6070 		idr_remove(&pmu_idr, pmu->type);
6071 	device_del(pmu->dev);
6072 	put_device(pmu->dev);
6073 	free_pmu_context(pmu);
6074 }
6075 
6076 struct pmu *perf_init_event(struct perf_event *event)
6077 {
6078 	struct pmu *pmu = NULL;
6079 	int idx;
6080 	int ret;
6081 
6082 	idx = srcu_read_lock(&pmus_srcu);
6083 
6084 	rcu_read_lock();
6085 	pmu = idr_find(&pmu_idr, event->attr.type);
6086 	rcu_read_unlock();
6087 	if (pmu) {
6088 		event->pmu = pmu;
6089 		ret = pmu->event_init(event);
6090 		if (ret)
6091 			pmu = ERR_PTR(ret);
6092 		goto unlock;
6093 	}
6094 
6095 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6096 		event->pmu = pmu;
6097 		ret = pmu->event_init(event);
6098 		if (!ret)
6099 			goto unlock;
6100 
6101 		if (ret != -ENOENT) {
6102 			pmu = ERR_PTR(ret);
6103 			goto unlock;
6104 		}
6105 	}
6106 	pmu = ERR_PTR(-ENOENT);
6107 unlock:
6108 	srcu_read_unlock(&pmus_srcu, idx);
6109 
6110 	return pmu;
6111 }
6112 
6113 /*
6114  * Allocate and initialize a event structure
6115  */
6116 static struct perf_event *
6117 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6118 		 struct task_struct *task,
6119 		 struct perf_event *group_leader,
6120 		 struct perf_event *parent_event,
6121 		 perf_overflow_handler_t overflow_handler,
6122 		 void *context)
6123 {
6124 	struct pmu *pmu;
6125 	struct perf_event *event;
6126 	struct hw_perf_event *hwc;
6127 	long err;
6128 
6129 	if ((unsigned)cpu >= nr_cpu_ids) {
6130 		if (!task || cpu != -1)
6131 			return ERR_PTR(-EINVAL);
6132 	}
6133 
6134 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6135 	if (!event)
6136 		return ERR_PTR(-ENOMEM);
6137 
6138 	/*
6139 	 * Single events are their own group leaders, with an
6140 	 * empty sibling list:
6141 	 */
6142 	if (!group_leader)
6143 		group_leader = event;
6144 
6145 	mutex_init(&event->child_mutex);
6146 	INIT_LIST_HEAD(&event->child_list);
6147 
6148 	INIT_LIST_HEAD(&event->group_entry);
6149 	INIT_LIST_HEAD(&event->event_entry);
6150 	INIT_LIST_HEAD(&event->sibling_list);
6151 	INIT_LIST_HEAD(&event->rb_entry);
6152 
6153 	init_waitqueue_head(&event->waitq);
6154 	init_irq_work(&event->pending, perf_pending_event);
6155 
6156 	mutex_init(&event->mmap_mutex);
6157 
6158 	atomic_long_set(&event->refcount, 1);
6159 	event->cpu		= cpu;
6160 	event->attr		= *attr;
6161 	event->group_leader	= group_leader;
6162 	event->pmu		= NULL;
6163 	event->oncpu		= -1;
6164 
6165 	event->parent		= parent_event;
6166 
6167 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6168 	event->id		= atomic64_inc_return(&perf_event_id);
6169 
6170 	event->state		= PERF_EVENT_STATE_INACTIVE;
6171 
6172 	if (task) {
6173 		event->attach_state = PERF_ATTACH_TASK;
6174 
6175 		if (attr->type == PERF_TYPE_TRACEPOINT)
6176 			event->hw.tp_target = task;
6177 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6178 		/*
6179 		 * hw_breakpoint is a bit difficult here..
6180 		 */
6181 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6182 			event->hw.bp_target = task;
6183 #endif
6184 	}
6185 
6186 	if (!overflow_handler && parent_event) {
6187 		overflow_handler = parent_event->overflow_handler;
6188 		context = parent_event->overflow_handler_context;
6189 	}
6190 
6191 	event->overflow_handler	= overflow_handler;
6192 	event->overflow_handler_context = context;
6193 
6194 	perf_event__state_init(event);
6195 
6196 	pmu = NULL;
6197 
6198 	hwc = &event->hw;
6199 	hwc->sample_period = attr->sample_period;
6200 	if (attr->freq && attr->sample_freq)
6201 		hwc->sample_period = 1;
6202 	hwc->last_period = hwc->sample_period;
6203 
6204 	local64_set(&hwc->period_left, hwc->sample_period);
6205 
6206 	/*
6207 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6208 	 */
6209 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6210 		goto done;
6211 
6212 	pmu = perf_init_event(event);
6213 
6214 done:
6215 	err = 0;
6216 	if (!pmu)
6217 		err = -EINVAL;
6218 	else if (IS_ERR(pmu))
6219 		err = PTR_ERR(pmu);
6220 
6221 	if (err) {
6222 		if (event->ns)
6223 			put_pid_ns(event->ns);
6224 		kfree(event);
6225 		return ERR_PTR(err);
6226 	}
6227 
6228 	if (!event->parent) {
6229 		if (event->attach_state & PERF_ATTACH_TASK)
6230 			static_key_slow_inc(&perf_sched_events.key);
6231 		if (event->attr.mmap || event->attr.mmap_data)
6232 			atomic_inc(&nr_mmap_events);
6233 		if (event->attr.comm)
6234 			atomic_inc(&nr_comm_events);
6235 		if (event->attr.task)
6236 			atomic_inc(&nr_task_events);
6237 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6238 			err = get_callchain_buffers();
6239 			if (err) {
6240 				free_event(event);
6241 				return ERR_PTR(err);
6242 			}
6243 		}
6244 		if (has_branch_stack(event)) {
6245 			static_key_slow_inc(&perf_sched_events.key);
6246 			if (!(event->attach_state & PERF_ATTACH_TASK))
6247 				atomic_inc(&per_cpu(perf_branch_stack_events,
6248 						    event->cpu));
6249 		}
6250 	}
6251 
6252 	return event;
6253 }
6254 
6255 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6256 			  struct perf_event_attr *attr)
6257 {
6258 	u32 size;
6259 	int ret;
6260 
6261 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6262 		return -EFAULT;
6263 
6264 	/*
6265 	 * zero the full structure, so that a short copy will be nice.
6266 	 */
6267 	memset(attr, 0, sizeof(*attr));
6268 
6269 	ret = get_user(size, &uattr->size);
6270 	if (ret)
6271 		return ret;
6272 
6273 	if (size > PAGE_SIZE)	/* silly large */
6274 		goto err_size;
6275 
6276 	if (!size)		/* abi compat */
6277 		size = PERF_ATTR_SIZE_VER0;
6278 
6279 	if (size < PERF_ATTR_SIZE_VER0)
6280 		goto err_size;
6281 
6282 	/*
6283 	 * If we're handed a bigger struct than we know of,
6284 	 * ensure all the unknown bits are 0 - i.e. new
6285 	 * user-space does not rely on any kernel feature
6286 	 * extensions we dont know about yet.
6287 	 */
6288 	if (size > sizeof(*attr)) {
6289 		unsigned char __user *addr;
6290 		unsigned char __user *end;
6291 		unsigned char val;
6292 
6293 		addr = (void __user *)uattr + sizeof(*attr);
6294 		end  = (void __user *)uattr + size;
6295 
6296 		for (; addr < end; addr++) {
6297 			ret = get_user(val, addr);
6298 			if (ret)
6299 				return ret;
6300 			if (val)
6301 				goto err_size;
6302 		}
6303 		size = sizeof(*attr);
6304 	}
6305 
6306 	ret = copy_from_user(attr, uattr, size);
6307 	if (ret)
6308 		return -EFAULT;
6309 
6310 	if (attr->__reserved_1)
6311 		return -EINVAL;
6312 
6313 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6314 		return -EINVAL;
6315 
6316 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6317 		return -EINVAL;
6318 
6319 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6320 		u64 mask = attr->branch_sample_type;
6321 
6322 		/* only using defined bits */
6323 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6324 			return -EINVAL;
6325 
6326 		/* at least one branch bit must be set */
6327 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6328 			return -EINVAL;
6329 
6330 		/* kernel level capture: check permissions */
6331 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6332 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6333 			return -EACCES;
6334 
6335 		/* propagate priv level, when not set for branch */
6336 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6337 
6338 			/* exclude_kernel checked on syscall entry */
6339 			if (!attr->exclude_kernel)
6340 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6341 
6342 			if (!attr->exclude_user)
6343 				mask |= PERF_SAMPLE_BRANCH_USER;
6344 
6345 			if (!attr->exclude_hv)
6346 				mask |= PERF_SAMPLE_BRANCH_HV;
6347 			/*
6348 			 * adjust user setting (for HW filter setup)
6349 			 */
6350 			attr->branch_sample_type = mask;
6351 		}
6352 	}
6353 
6354 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6355 		ret = perf_reg_validate(attr->sample_regs_user);
6356 		if (ret)
6357 			return ret;
6358 	}
6359 
6360 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6361 		if (!arch_perf_have_user_stack_dump())
6362 			return -ENOSYS;
6363 
6364 		/*
6365 		 * We have __u32 type for the size, but so far
6366 		 * we can only use __u16 as maximum due to the
6367 		 * __u16 sample size limit.
6368 		 */
6369 		if (attr->sample_stack_user >= USHRT_MAX)
6370 			ret = -EINVAL;
6371 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6372 			ret = -EINVAL;
6373 	}
6374 
6375 out:
6376 	return ret;
6377 
6378 err_size:
6379 	put_user(sizeof(*attr), &uattr->size);
6380 	ret = -E2BIG;
6381 	goto out;
6382 }
6383 
6384 static int
6385 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6386 {
6387 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6388 	int ret = -EINVAL;
6389 
6390 	if (!output_event)
6391 		goto set;
6392 
6393 	/* don't allow circular references */
6394 	if (event == output_event)
6395 		goto out;
6396 
6397 	/*
6398 	 * Don't allow cross-cpu buffers
6399 	 */
6400 	if (output_event->cpu != event->cpu)
6401 		goto out;
6402 
6403 	/*
6404 	 * If its not a per-cpu rb, it must be the same task.
6405 	 */
6406 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6407 		goto out;
6408 
6409 set:
6410 	mutex_lock(&event->mmap_mutex);
6411 	/* Can't redirect output if we've got an active mmap() */
6412 	if (atomic_read(&event->mmap_count))
6413 		goto unlock;
6414 
6415 	if (output_event) {
6416 		/* get the rb we want to redirect to */
6417 		rb = ring_buffer_get(output_event);
6418 		if (!rb)
6419 			goto unlock;
6420 	}
6421 
6422 	old_rb = event->rb;
6423 	rcu_assign_pointer(event->rb, rb);
6424 	if (old_rb)
6425 		ring_buffer_detach(event, old_rb);
6426 	ret = 0;
6427 unlock:
6428 	mutex_unlock(&event->mmap_mutex);
6429 
6430 	if (old_rb)
6431 		ring_buffer_put(old_rb);
6432 out:
6433 	return ret;
6434 }
6435 
6436 /**
6437  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6438  *
6439  * @attr_uptr:	event_id type attributes for monitoring/sampling
6440  * @pid:		target pid
6441  * @cpu:		target cpu
6442  * @group_fd:		group leader event fd
6443  */
6444 SYSCALL_DEFINE5(perf_event_open,
6445 		struct perf_event_attr __user *, attr_uptr,
6446 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6447 {
6448 	struct perf_event *group_leader = NULL, *output_event = NULL;
6449 	struct perf_event *event, *sibling;
6450 	struct perf_event_attr attr;
6451 	struct perf_event_context *ctx;
6452 	struct file *event_file = NULL;
6453 	struct fd group = {NULL, 0};
6454 	struct task_struct *task = NULL;
6455 	struct pmu *pmu;
6456 	int event_fd;
6457 	int move_group = 0;
6458 	int err;
6459 
6460 	/* for future expandability... */
6461 	if (flags & ~PERF_FLAG_ALL)
6462 		return -EINVAL;
6463 
6464 	err = perf_copy_attr(attr_uptr, &attr);
6465 	if (err)
6466 		return err;
6467 
6468 	if (!attr.exclude_kernel) {
6469 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6470 			return -EACCES;
6471 	}
6472 
6473 	if (attr.freq) {
6474 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6475 			return -EINVAL;
6476 	}
6477 
6478 	/*
6479 	 * In cgroup mode, the pid argument is used to pass the fd
6480 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6481 	 * designates the cpu on which to monitor threads from that
6482 	 * cgroup.
6483 	 */
6484 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6485 		return -EINVAL;
6486 
6487 	event_fd = get_unused_fd();
6488 	if (event_fd < 0)
6489 		return event_fd;
6490 
6491 	if (group_fd != -1) {
6492 		err = perf_fget_light(group_fd, &group);
6493 		if (err)
6494 			goto err_fd;
6495 		group_leader = group.file->private_data;
6496 		if (flags & PERF_FLAG_FD_OUTPUT)
6497 			output_event = group_leader;
6498 		if (flags & PERF_FLAG_FD_NO_GROUP)
6499 			group_leader = NULL;
6500 	}
6501 
6502 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6503 		task = find_lively_task_by_vpid(pid);
6504 		if (IS_ERR(task)) {
6505 			err = PTR_ERR(task);
6506 			goto err_group_fd;
6507 		}
6508 	}
6509 
6510 	get_online_cpus();
6511 
6512 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6513 				 NULL, NULL);
6514 	if (IS_ERR(event)) {
6515 		err = PTR_ERR(event);
6516 		goto err_task;
6517 	}
6518 
6519 	if (flags & PERF_FLAG_PID_CGROUP) {
6520 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6521 		if (err)
6522 			goto err_alloc;
6523 		/*
6524 		 * one more event:
6525 		 * - that has cgroup constraint on event->cpu
6526 		 * - that may need work on context switch
6527 		 */
6528 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6529 		static_key_slow_inc(&perf_sched_events.key);
6530 	}
6531 
6532 	/*
6533 	 * Special case software events and allow them to be part of
6534 	 * any hardware group.
6535 	 */
6536 	pmu = event->pmu;
6537 
6538 	if (group_leader &&
6539 	    (is_software_event(event) != is_software_event(group_leader))) {
6540 		if (is_software_event(event)) {
6541 			/*
6542 			 * If event and group_leader are not both a software
6543 			 * event, and event is, then group leader is not.
6544 			 *
6545 			 * Allow the addition of software events to !software
6546 			 * groups, this is safe because software events never
6547 			 * fail to schedule.
6548 			 */
6549 			pmu = group_leader->pmu;
6550 		} else if (is_software_event(group_leader) &&
6551 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6552 			/*
6553 			 * In case the group is a pure software group, and we
6554 			 * try to add a hardware event, move the whole group to
6555 			 * the hardware context.
6556 			 */
6557 			move_group = 1;
6558 		}
6559 	}
6560 
6561 	/*
6562 	 * Get the target context (task or percpu):
6563 	 */
6564 	ctx = find_get_context(pmu, task, event->cpu);
6565 	if (IS_ERR(ctx)) {
6566 		err = PTR_ERR(ctx);
6567 		goto err_alloc;
6568 	}
6569 
6570 	if (task) {
6571 		put_task_struct(task);
6572 		task = NULL;
6573 	}
6574 
6575 	/*
6576 	 * Look up the group leader (we will attach this event to it):
6577 	 */
6578 	if (group_leader) {
6579 		err = -EINVAL;
6580 
6581 		/*
6582 		 * Do not allow a recursive hierarchy (this new sibling
6583 		 * becoming part of another group-sibling):
6584 		 */
6585 		if (group_leader->group_leader != group_leader)
6586 			goto err_context;
6587 		/*
6588 		 * Do not allow to attach to a group in a different
6589 		 * task or CPU context:
6590 		 */
6591 		if (move_group) {
6592 			if (group_leader->ctx->type != ctx->type)
6593 				goto err_context;
6594 		} else {
6595 			if (group_leader->ctx != ctx)
6596 				goto err_context;
6597 		}
6598 
6599 		/*
6600 		 * Only a group leader can be exclusive or pinned
6601 		 */
6602 		if (attr.exclusive || attr.pinned)
6603 			goto err_context;
6604 	}
6605 
6606 	if (output_event) {
6607 		err = perf_event_set_output(event, output_event);
6608 		if (err)
6609 			goto err_context;
6610 	}
6611 
6612 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6613 	if (IS_ERR(event_file)) {
6614 		err = PTR_ERR(event_file);
6615 		goto err_context;
6616 	}
6617 
6618 	if (move_group) {
6619 		struct perf_event_context *gctx = group_leader->ctx;
6620 
6621 		mutex_lock(&gctx->mutex);
6622 		perf_remove_from_context(group_leader);
6623 
6624 		/*
6625 		 * Removing from the context ends up with disabled
6626 		 * event. What we want here is event in the initial
6627 		 * startup state, ready to be add into new context.
6628 		 */
6629 		perf_event__state_init(group_leader);
6630 		list_for_each_entry(sibling, &group_leader->sibling_list,
6631 				    group_entry) {
6632 			perf_remove_from_context(sibling);
6633 			perf_event__state_init(sibling);
6634 			put_ctx(gctx);
6635 		}
6636 		mutex_unlock(&gctx->mutex);
6637 		put_ctx(gctx);
6638 	}
6639 
6640 	WARN_ON_ONCE(ctx->parent_ctx);
6641 	mutex_lock(&ctx->mutex);
6642 
6643 	if (move_group) {
6644 		synchronize_rcu();
6645 		perf_install_in_context(ctx, group_leader, event->cpu);
6646 		get_ctx(ctx);
6647 		list_for_each_entry(sibling, &group_leader->sibling_list,
6648 				    group_entry) {
6649 			perf_install_in_context(ctx, sibling, event->cpu);
6650 			get_ctx(ctx);
6651 		}
6652 	}
6653 
6654 	perf_install_in_context(ctx, event, event->cpu);
6655 	++ctx->generation;
6656 	perf_unpin_context(ctx);
6657 	mutex_unlock(&ctx->mutex);
6658 
6659 	put_online_cpus();
6660 
6661 	event->owner = current;
6662 
6663 	mutex_lock(&current->perf_event_mutex);
6664 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6665 	mutex_unlock(&current->perf_event_mutex);
6666 
6667 	/*
6668 	 * Precalculate sample_data sizes
6669 	 */
6670 	perf_event__header_size(event);
6671 	perf_event__id_header_size(event);
6672 
6673 	/*
6674 	 * Drop the reference on the group_event after placing the
6675 	 * new event on the sibling_list. This ensures destruction
6676 	 * of the group leader will find the pointer to itself in
6677 	 * perf_group_detach().
6678 	 */
6679 	fdput(group);
6680 	fd_install(event_fd, event_file);
6681 	return event_fd;
6682 
6683 err_context:
6684 	perf_unpin_context(ctx);
6685 	put_ctx(ctx);
6686 err_alloc:
6687 	free_event(event);
6688 err_task:
6689 	put_online_cpus();
6690 	if (task)
6691 		put_task_struct(task);
6692 err_group_fd:
6693 	fdput(group);
6694 err_fd:
6695 	put_unused_fd(event_fd);
6696 	return err;
6697 }
6698 
6699 /**
6700  * perf_event_create_kernel_counter
6701  *
6702  * @attr: attributes of the counter to create
6703  * @cpu: cpu in which the counter is bound
6704  * @task: task to profile (NULL for percpu)
6705  */
6706 struct perf_event *
6707 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6708 				 struct task_struct *task,
6709 				 perf_overflow_handler_t overflow_handler,
6710 				 void *context)
6711 {
6712 	struct perf_event_context *ctx;
6713 	struct perf_event *event;
6714 	int err;
6715 
6716 	/*
6717 	 * Get the target context (task or percpu):
6718 	 */
6719 
6720 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6721 				 overflow_handler, context);
6722 	if (IS_ERR(event)) {
6723 		err = PTR_ERR(event);
6724 		goto err;
6725 	}
6726 
6727 	ctx = find_get_context(event->pmu, task, cpu);
6728 	if (IS_ERR(ctx)) {
6729 		err = PTR_ERR(ctx);
6730 		goto err_free;
6731 	}
6732 
6733 	WARN_ON_ONCE(ctx->parent_ctx);
6734 	mutex_lock(&ctx->mutex);
6735 	perf_install_in_context(ctx, event, cpu);
6736 	++ctx->generation;
6737 	perf_unpin_context(ctx);
6738 	mutex_unlock(&ctx->mutex);
6739 
6740 	return event;
6741 
6742 err_free:
6743 	free_event(event);
6744 err:
6745 	return ERR_PTR(err);
6746 }
6747 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6748 
6749 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6750 {
6751 	struct perf_event_context *src_ctx;
6752 	struct perf_event_context *dst_ctx;
6753 	struct perf_event *event, *tmp;
6754 	LIST_HEAD(events);
6755 
6756 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6757 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6758 
6759 	mutex_lock(&src_ctx->mutex);
6760 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6761 				 event_entry) {
6762 		perf_remove_from_context(event);
6763 		put_ctx(src_ctx);
6764 		list_add(&event->event_entry, &events);
6765 	}
6766 	mutex_unlock(&src_ctx->mutex);
6767 
6768 	synchronize_rcu();
6769 
6770 	mutex_lock(&dst_ctx->mutex);
6771 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
6772 		list_del(&event->event_entry);
6773 		if (event->state >= PERF_EVENT_STATE_OFF)
6774 			event->state = PERF_EVENT_STATE_INACTIVE;
6775 		perf_install_in_context(dst_ctx, event, dst_cpu);
6776 		get_ctx(dst_ctx);
6777 	}
6778 	mutex_unlock(&dst_ctx->mutex);
6779 }
6780 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6781 
6782 static void sync_child_event(struct perf_event *child_event,
6783 			       struct task_struct *child)
6784 {
6785 	struct perf_event *parent_event = child_event->parent;
6786 	u64 child_val;
6787 
6788 	if (child_event->attr.inherit_stat)
6789 		perf_event_read_event(child_event, child);
6790 
6791 	child_val = perf_event_count(child_event);
6792 
6793 	/*
6794 	 * Add back the child's count to the parent's count:
6795 	 */
6796 	atomic64_add(child_val, &parent_event->child_count);
6797 	atomic64_add(child_event->total_time_enabled,
6798 		     &parent_event->child_total_time_enabled);
6799 	atomic64_add(child_event->total_time_running,
6800 		     &parent_event->child_total_time_running);
6801 
6802 	/*
6803 	 * Remove this event from the parent's list
6804 	 */
6805 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6806 	mutex_lock(&parent_event->child_mutex);
6807 	list_del_init(&child_event->child_list);
6808 	mutex_unlock(&parent_event->child_mutex);
6809 
6810 	/*
6811 	 * Release the parent event, if this was the last
6812 	 * reference to it.
6813 	 */
6814 	put_event(parent_event);
6815 }
6816 
6817 static void
6818 __perf_event_exit_task(struct perf_event *child_event,
6819 			 struct perf_event_context *child_ctx,
6820 			 struct task_struct *child)
6821 {
6822 	if (child_event->parent) {
6823 		raw_spin_lock_irq(&child_ctx->lock);
6824 		perf_group_detach(child_event);
6825 		raw_spin_unlock_irq(&child_ctx->lock);
6826 	}
6827 
6828 	perf_remove_from_context(child_event);
6829 
6830 	/*
6831 	 * It can happen that the parent exits first, and has events
6832 	 * that are still around due to the child reference. These
6833 	 * events need to be zapped.
6834 	 */
6835 	if (child_event->parent) {
6836 		sync_child_event(child_event, child);
6837 		free_event(child_event);
6838 	}
6839 }
6840 
6841 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6842 {
6843 	struct perf_event *child_event, *tmp;
6844 	struct perf_event_context *child_ctx;
6845 	unsigned long flags;
6846 
6847 	if (likely(!child->perf_event_ctxp[ctxn])) {
6848 		perf_event_task(child, NULL, 0);
6849 		return;
6850 	}
6851 
6852 	local_irq_save(flags);
6853 	/*
6854 	 * We can't reschedule here because interrupts are disabled,
6855 	 * and either child is current or it is a task that can't be
6856 	 * scheduled, so we are now safe from rescheduling changing
6857 	 * our context.
6858 	 */
6859 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6860 
6861 	/*
6862 	 * Take the context lock here so that if find_get_context is
6863 	 * reading child->perf_event_ctxp, we wait until it has
6864 	 * incremented the context's refcount before we do put_ctx below.
6865 	 */
6866 	raw_spin_lock(&child_ctx->lock);
6867 	task_ctx_sched_out(child_ctx);
6868 	child->perf_event_ctxp[ctxn] = NULL;
6869 	/*
6870 	 * If this context is a clone; unclone it so it can't get
6871 	 * swapped to another process while we're removing all
6872 	 * the events from it.
6873 	 */
6874 	unclone_ctx(child_ctx);
6875 	update_context_time(child_ctx);
6876 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6877 
6878 	/*
6879 	 * Report the task dead after unscheduling the events so that we
6880 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6881 	 * get a few PERF_RECORD_READ events.
6882 	 */
6883 	perf_event_task(child, child_ctx, 0);
6884 
6885 	/*
6886 	 * We can recurse on the same lock type through:
6887 	 *
6888 	 *   __perf_event_exit_task()
6889 	 *     sync_child_event()
6890 	 *       put_event()
6891 	 *         mutex_lock(&ctx->mutex)
6892 	 *
6893 	 * But since its the parent context it won't be the same instance.
6894 	 */
6895 	mutex_lock(&child_ctx->mutex);
6896 
6897 again:
6898 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6899 				 group_entry)
6900 		__perf_event_exit_task(child_event, child_ctx, child);
6901 
6902 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6903 				 group_entry)
6904 		__perf_event_exit_task(child_event, child_ctx, child);
6905 
6906 	/*
6907 	 * If the last event was a group event, it will have appended all
6908 	 * its siblings to the list, but we obtained 'tmp' before that which
6909 	 * will still point to the list head terminating the iteration.
6910 	 */
6911 	if (!list_empty(&child_ctx->pinned_groups) ||
6912 	    !list_empty(&child_ctx->flexible_groups))
6913 		goto again;
6914 
6915 	mutex_unlock(&child_ctx->mutex);
6916 
6917 	put_ctx(child_ctx);
6918 }
6919 
6920 /*
6921  * When a child task exits, feed back event values to parent events.
6922  */
6923 void perf_event_exit_task(struct task_struct *child)
6924 {
6925 	struct perf_event *event, *tmp;
6926 	int ctxn;
6927 
6928 	mutex_lock(&child->perf_event_mutex);
6929 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6930 				 owner_entry) {
6931 		list_del_init(&event->owner_entry);
6932 
6933 		/*
6934 		 * Ensure the list deletion is visible before we clear
6935 		 * the owner, closes a race against perf_release() where
6936 		 * we need to serialize on the owner->perf_event_mutex.
6937 		 */
6938 		smp_wmb();
6939 		event->owner = NULL;
6940 	}
6941 	mutex_unlock(&child->perf_event_mutex);
6942 
6943 	for_each_task_context_nr(ctxn)
6944 		perf_event_exit_task_context(child, ctxn);
6945 }
6946 
6947 static void perf_free_event(struct perf_event *event,
6948 			    struct perf_event_context *ctx)
6949 {
6950 	struct perf_event *parent = event->parent;
6951 
6952 	if (WARN_ON_ONCE(!parent))
6953 		return;
6954 
6955 	mutex_lock(&parent->child_mutex);
6956 	list_del_init(&event->child_list);
6957 	mutex_unlock(&parent->child_mutex);
6958 
6959 	put_event(parent);
6960 
6961 	perf_group_detach(event);
6962 	list_del_event(event, ctx);
6963 	free_event(event);
6964 }
6965 
6966 /*
6967  * free an unexposed, unused context as created by inheritance by
6968  * perf_event_init_task below, used by fork() in case of fail.
6969  */
6970 void perf_event_free_task(struct task_struct *task)
6971 {
6972 	struct perf_event_context *ctx;
6973 	struct perf_event *event, *tmp;
6974 	int ctxn;
6975 
6976 	for_each_task_context_nr(ctxn) {
6977 		ctx = task->perf_event_ctxp[ctxn];
6978 		if (!ctx)
6979 			continue;
6980 
6981 		mutex_lock(&ctx->mutex);
6982 again:
6983 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6984 				group_entry)
6985 			perf_free_event(event, ctx);
6986 
6987 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6988 				group_entry)
6989 			perf_free_event(event, ctx);
6990 
6991 		if (!list_empty(&ctx->pinned_groups) ||
6992 				!list_empty(&ctx->flexible_groups))
6993 			goto again;
6994 
6995 		mutex_unlock(&ctx->mutex);
6996 
6997 		put_ctx(ctx);
6998 	}
6999 }
7000 
7001 void perf_event_delayed_put(struct task_struct *task)
7002 {
7003 	int ctxn;
7004 
7005 	for_each_task_context_nr(ctxn)
7006 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7007 }
7008 
7009 /*
7010  * inherit a event from parent task to child task:
7011  */
7012 static struct perf_event *
7013 inherit_event(struct perf_event *parent_event,
7014 	      struct task_struct *parent,
7015 	      struct perf_event_context *parent_ctx,
7016 	      struct task_struct *child,
7017 	      struct perf_event *group_leader,
7018 	      struct perf_event_context *child_ctx)
7019 {
7020 	struct perf_event *child_event;
7021 	unsigned long flags;
7022 
7023 	/*
7024 	 * Instead of creating recursive hierarchies of events,
7025 	 * we link inherited events back to the original parent,
7026 	 * which has a filp for sure, which we use as the reference
7027 	 * count:
7028 	 */
7029 	if (parent_event->parent)
7030 		parent_event = parent_event->parent;
7031 
7032 	child_event = perf_event_alloc(&parent_event->attr,
7033 					   parent_event->cpu,
7034 					   child,
7035 					   group_leader, parent_event,
7036 				           NULL, NULL);
7037 	if (IS_ERR(child_event))
7038 		return child_event;
7039 
7040 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7041 		free_event(child_event);
7042 		return NULL;
7043 	}
7044 
7045 	get_ctx(child_ctx);
7046 
7047 	/*
7048 	 * Make the child state follow the state of the parent event,
7049 	 * not its attr.disabled bit.  We hold the parent's mutex,
7050 	 * so we won't race with perf_event_{en, dis}able_family.
7051 	 */
7052 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7053 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7054 	else
7055 		child_event->state = PERF_EVENT_STATE_OFF;
7056 
7057 	if (parent_event->attr.freq) {
7058 		u64 sample_period = parent_event->hw.sample_period;
7059 		struct hw_perf_event *hwc = &child_event->hw;
7060 
7061 		hwc->sample_period = sample_period;
7062 		hwc->last_period   = sample_period;
7063 
7064 		local64_set(&hwc->period_left, sample_period);
7065 	}
7066 
7067 	child_event->ctx = child_ctx;
7068 	child_event->overflow_handler = parent_event->overflow_handler;
7069 	child_event->overflow_handler_context
7070 		= parent_event->overflow_handler_context;
7071 
7072 	/*
7073 	 * Precalculate sample_data sizes
7074 	 */
7075 	perf_event__header_size(child_event);
7076 	perf_event__id_header_size(child_event);
7077 
7078 	/*
7079 	 * Link it up in the child's context:
7080 	 */
7081 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7082 	add_event_to_ctx(child_event, child_ctx);
7083 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7084 
7085 	/*
7086 	 * Link this into the parent event's child list
7087 	 */
7088 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7089 	mutex_lock(&parent_event->child_mutex);
7090 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7091 	mutex_unlock(&parent_event->child_mutex);
7092 
7093 	return child_event;
7094 }
7095 
7096 static int inherit_group(struct perf_event *parent_event,
7097 	      struct task_struct *parent,
7098 	      struct perf_event_context *parent_ctx,
7099 	      struct task_struct *child,
7100 	      struct perf_event_context *child_ctx)
7101 {
7102 	struct perf_event *leader;
7103 	struct perf_event *sub;
7104 	struct perf_event *child_ctr;
7105 
7106 	leader = inherit_event(parent_event, parent, parent_ctx,
7107 				 child, NULL, child_ctx);
7108 	if (IS_ERR(leader))
7109 		return PTR_ERR(leader);
7110 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7111 		child_ctr = inherit_event(sub, parent, parent_ctx,
7112 					    child, leader, child_ctx);
7113 		if (IS_ERR(child_ctr))
7114 			return PTR_ERR(child_ctr);
7115 	}
7116 	return 0;
7117 }
7118 
7119 static int
7120 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7121 		   struct perf_event_context *parent_ctx,
7122 		   struct task_struct *child, int ctxn,
7123 		   int *inherited_all)
7124 {
7125 	int ret;
7126 	struct perf_event_context *child_ctx;
7127 
7128 	if (!event->attr.inherit) {
7129 		*inherited_all = 0;
7130 		return 0;
7131 	}
7132 
7133 	child_ctx = child->perf_event_ctxp[ctxn];
7134 	if (!child_ctx) {
7135 		/*
7136 		 * This is executed from the parent task context, so
7137 		 * inherit events that have been marked for cloning.
7138 		 * First allocate and initialize a context for the
7139 		 * child.
7140 		 */
7141 
7142 		child_ctx = alloc_perf_context(event->pmu, child);
7143 		if (!child_ctx)
7144 			return -ENOMEM;
7145 
7146 		child->perf_event_ctxp[ctxn] = child_ctx;
7147 	}
7148 
7149 	ret = inherit_group(event, parent, parent_ctx,
7150 			    child, child_ctx);
7151 
7152 	if (ret)
7153 		*inherited_all = 0;
7154 
7155 	return ret;
7156 }
7157 
7158 /*
7159  * Initialize the perf_event context in task_struct
7160  */
7161 int perf_event_init_context(struct task_struct *child, int ctxn)
7162 {
7163 	struct perf_event_context *child_ctx, *parent_ctx;
7164 	struct perf_event_context *cloned_ctx;
7165 	struct perf_event *event;
7166 	struct task_struct *parent = current;
7167 	int inherited_all = 1;
7168 	unsigned long flags;
7169 	int ret = 0;
7170 
7171 	if (likely(!parent->perf_event_ctxp[ctxn]))
7172 		return 0;
7173 
7174 	/*
7175 	 * If the parent's context is a clone, pin it so it won't get
7176 	 * swapped under us.
7177 	 */
7178 	parent_ctx = perf_pin_task_context(parent, ctxn);
7179 
7180 	/*
7181 	 * No need to check if parent_ctx != NULL here; since we saw
7182 	 * it non-NULL earlier, the only reason for it to become NULL
7183 	 * is if we exit, and since we're currently in the middle of
7184 	 * a fork we can't be exiting at the same time.
7185 	 */
7186 
7187 	/*
7188 	 * Lock the parent list. No need to lock the child - not PID
7189 	 * hashed yet and not running, so nobody can access it.
7190 	 */
7191 	mutex_lock(&parent_ctx->mutex);
7192 
7193 	/*
7194 	 * We dont have to disable NMIs - we are only looking at
7195 	 * the list, not manipulating it:
7196 	 */
7197 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7198 		ret = inherit_task_group(event, parent, parent_ctx,
7199 					 child, ctxn, &inherited_all);
7200 		if (ret)
7201 			break;
7202 	}
7203 
7204 	/*
7205 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7206 	 * to allocations, but we need to prevent rotation because
7207 	 * rotate_ctx() will change the list from interrupt context.
7208 	 */
7209 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7210 	parent_ctx->rotate_disable = 1;
7211 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7212 
7213 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7214 		ret = inherit_task_group(event, parent, parent_ctx,
7215 					 child, ctxn, &inherited_all);
7216 		if (ret)
7217 			break;
7218 	}
7219 
7220 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7221 	parent_ctx->rotate_disable = 0;
7222 
7223 	child_ctx = child->perf_event_ctxp[ctxn];
7224 
7225 	if (child_ctx && inherited_all) {
7226 		/*
7227 		 * Mark the child context as a clone of the parent
7228 		 * context, or of whatever the parent is a clone of.
7229 		 *
7230 		 * Note that if the parent is a clone, the holding of
7231 		 * parent_ctx->lock avoids it from being uncloned.
7232 		 */
7233 		cloned_ctx = parent_ctx->parent_ctx;
7234 		if (cloned_ctx) {
7235 			child_ctx->parent_ctx = cloned_ctx;
7236 			child_ctx->parent_gen = parent_ctx->parent_gen;
7237 		} else {
7238 			child_ctx->parent_ctx = parent_ctx;
7239 			child_ctx->parent_gen = parent_ctx->generation;
7240 		}
7241 		get_ctx(child_ctx->parent_ctx);
7242 	}
7243 
7244 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7245 	mutex_unlock(&parent_ctx->mutex);
7246 
7247 	perf_unpin_context(parent_ctx);
7248 	put_ctx(parent_ctx);
7249 
7250 	return ret;
7251 }
7252 
7253 /*
7254  * Initialize the perf_event context in task_struct
7255  */
7256 int perf_event_init_task(struct task_struct *child)
7257 {
7258 	int ctxn, ret;
7259 
7260 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7261 	mutex_init(&child->perf_event_mutex);
7262 	INIT_LIST_HEAD(&child->perf_event_list);
7263 
7264 	for_each_task_context_nr(ctxn) {
7265 		ret = perf_event_init_context(child, ctxn);
7266 		if (ret)
7267 			return ret;
7268 	}
7269 
7270 	return 0;
7271 }
7272 
7273 static void __init perf_event_init_all_cpus(void)
7274 {
7275 	struct swevent_htable *swhash;
7276 	int cpu;
7277 
7278 	for_each_possible_cpu(cpu) {
7279 		swhash = &per_cpu(swevent_htable, cpu);
7280 		mutex_init(&swhash->hlist_mutex);
7281 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7282 	}
7283 }
7284 
7285 static void __cpuinit perf_event_init_cpu(int cpu)
7286 {
7287 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7288 
7289 	mutex_lock(&swhash->hlist_mutex);
7290 	if (swhash->hlist_refcount > 0) {
7291 		struct swevent_hlist *hlist;
7292 
7293 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7294 		WARN_ON(!hlist);
7295 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7296 	}
7297 	mutex_unlock(&swhash->hlist_mutex);
7298 }
7299 
7300 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7301 static void perf_pmu_rotate_stop(struct pmu *pmu)
7302 {
7303 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7304 
7305 	WARN_ON(!irqs_disabled());
7306 
7307 	list_del_init(&cpuctx->rotation_list);
7308 }
7309 
7310 static void __perf_event_exit_context(void *__info)
7311 {
7312 	struct perf_event_context *ctx = __info;
7313 	struct perf_event *event, *tmp;
7314 
7315 	perf_pmu_rotate_stop(ctx->pmu);
7316 
7317 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7318 		__perf_remove_from_context(event);
7319 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7320 		__perf_remove_from_context(event);
7321 }
7322 
7323 static void perf_event_exit_cpu_context(int cpu)
7324 {
7325 	struct perf_event_context *ctx;
7326 	struct pmu *pmu;
7327 	int idx;
7328 
7329 	idx = srcu_read_lock(&pmus_srcu);
7330 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7331 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7332 
7333 		mutex_lock(&ctx->mutex);
7334 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7335 		mutex_unlock(&ctx->mutex);
7336 	}
7337 	srcu_read_unlock(&pmus_srcu, idx);
7338 }
7339 
7340 static void perf_event_exit_cpu(int cpu)
7341 {
7342 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7343 
7344 	mutex_lock(&swhash->hlist_mutex);
7345 	swevent_hlist_release(swhash);
7346 	mutex_unlock(&swhash->hlist_mutex);
7347 
7348 	perf_event_exit_cpu_context(cpu);
7349 }
7350 #else
7351 static inline void perf_event_exit_cpu(int cpu) { }
7352 #endif
7353 
7354 static int
7355 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7356 {
7357 	int cpu;
7358 
7359 	for_each_online_cpu(cpu)
7360 		perf_event_exit_cpu(cpu);
7361 
7362 	return NOTIFY_OK;
7363 }
7364 
7365 /*
7366  * Run the perf reboot notifier at the very last possible moment so that
7367  * the generic watchdog code runs as long as possible.
7368  */
7369 static struct notifier_block perf_reboot_notifier = {
7370 	.notifier_call = perf_reboot,
7371 	.priority = INT_MIN,
7372 };
7373 
7374 static int __cpuinit
7375 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7376 {
7377 	unsigned int cpu = (long)hcpu;
7378 
7379 	switch (action & ~CPU_TASKS_FROZEN) {
7380 
7381 	case CPU_UP_PREPARE:
7382 	case CPU_DOWN_FAILED:
7383 		perf_event_init_cpu(cpu);
7384 		break;
7385 
7386 	case CPU_UP_CANCELED:
7387 	case CPU_DOWN_PREPARE:
7388 		perf_event_exit_cpu(cpu);
7389 		break;
7390 
7391 	default:
7392 		break;
7393 	}
7394 
7395 	return NOTIFY_OK;
7396 }
7397 
7398 void __init perf_event_init(void)
7399 {
7400 	int ret;
7401 
7402 	idr_init(&pmu_idr);
7403 
7404 	perf_event_init_all_cpus();
7405 	init_srcu_struct(&pmus_srcu);
7406 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7407 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7408 	perf_pmu_register(&perf_task_clock, NULL, -1);
7409 	perf_tp_register();
7410 	perf_cpu_notifier(perf_cpu_notify);
7411 	register_reboot_notifier(&perf_reboot_notifier);
7412 
7413 	ret = init_hw_breakpoint();
7414 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7415 
7416 	/* do not patch jump label more than once per second */
7417 	jump_label_rate_limit(&perf_sched_events, HZ);
7418 
7419 	/*
7420 	 * Build time assertion that we keep the data_head at the intended
7421 	 * location.  IOW, validation we got the __reserved[] size right.
7422 	 */
7423 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7424 		     != 1024);
7425 }
7426 
7427 static int __init perf_event_sysfs_init(void)
7428 {
7429 	struct pmu *pmu;
7430 	int ret;
7431 
7432 	mutex_lock(&pmus_lock);
7433 
7434 	ret = bus_register(&pmu_bus);
7435 	if (ret)
7436 		goto unlock;
7437 
7438 	list_for_each_entry(pmu, &pmus, entry) {
7439 		if (!pmu->name || pmu->type < 0)
7440 			continue;
7441 
7442 		ret = pmu_dev_alloc(pmu);
7443 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7444 	}
7445 	pmu_bus_running = 1;
7446 	ret = 0;
7447 
7448 unlock:
7449 	mutex_unlock(&pmus_lock);
7450 
7451 	return ret;
7452 }
7453 device_initcall(perf_event_sysfs_init);
7454 
7455 #ifdef CONFIG_CGROUP_PERF
7456 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7457 {
7458 	struct perf_cgroup *jc;
7459 
7460 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7461 	if (!jc)
7462 		return ERR_PTR(-ENOMEM);
7463 
7464 	jc->info = alloc_percpu(struct perf_cgroup_info);
7465 	if (!jc->info) {
7466 		kfree(jc);
7467 		return ERR_PTR(-ENOMEM);
7468 	}
7469 
7470 	return &jc->css;
7471 }
7472 
7473 static void perf_cgroup_css_free(struct cgroup *cont)
7474 {
7475 	struct perf_cgroup *jc;
7476 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7477 			  struct perf_cgroup, css);
7478 	free_percpu(jc->info);
7479 	kfree(jc);
7480 }
7481 
7482 static int __perf_cgroup_move(void *info)
7483 {
7484 	struct task_struct *task = info;
7485 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7486 	return 0;
7487 }
7488 
7489 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7490 {
7491 	struct task_struct *task;
7492 
7493 	cgroup_taskset_for_each(task, cgrp, tset)
7494 		task_function_call(task, __perf_cgroup_move, task);
7495 }
7496 
7497 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7498 			     struct task_struct *task)
7499 {
7500 	/*
7501 	 * cgroup_exit() is called in the copy_process() failure path.
7502 	 * Ignore this case since the task hasn't ran yet, this avoids
7503 	 * trying to poke a half freed task state from generic code.
7504 	 */
7505 	if (!(task->flags & PF_EXITING))
7506 		return;
7507 
7508 	task_function_call(task, __perf_cgroup_move, task);
7509 }
7510 
7511 struct cgroup_subsys perf_subsys = {
7512 	.name		= "perf_event",
7513 	.subsys_id	= perf_subsys_id,
7514 	.css_alloc	= perf_cgroup_css_alloc,
7515 	.css_free	= perf_cgroup_css_free,
7516 	.exit		= perf_cgroup_exit,
7517 	.attach		= perf_cgroup_attach,
7518 };
7519 #endif /* CONFIG_CGROUP_PERF */
7520