1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 43 #include "internal.h" 44 45 #include <asm/irq_regs.h> 46 47 struct remote_function_call { 48 struct task_struct *p; 49 int (*func)(void *info); 50 void *info; 51 int ret; 52 }; 53 54 static void remote_function(void *data) 55 { 56 struct remote_function_call *tfc = data; 57 struct task_struct *p = tfc->p; 58 59 if (p) { 60 tfc->ret = -EAGAIN; 61 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 62 return; 63 } 64 65 tfc->ret = tfc->func(tfc->info); 66 } 67 68 /** 69 * task_function_call - call a function on the cpu on which a task runs 70 * @p: the task to evaluate 71 * @func: the function to be called 72 * @info: the function call argument 73 * 74 * Calls the function @func when the task is currently running. This might 75 * be on the current CPU, which just calls the function directly 76 * 77 * returns: @func return value, or 78 * -ESRCH - when the process isn't running 79 * -EAGAIN - when the process moved away 80 */ 81 static int 82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 83 { 84 struct remote_function_call data = { 85 .p = p, 86 .func = func, 87 .info = info, 88 .ret = -ESRCH, /* No such (running) process */ 89 }; 90 91 if (task_curr(p)) 92 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 93 94 return data.ret; 95 } 96 97 /** 98 * cpu_function_call - call a function on the cpu 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func on the remote cpu. 103 * 104 * returns: @func return value or -ENXIO when the cpu is offline 105 */ 106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 107 { 108 struct remote_function_call data = { 109 .p = NULL, 110 .func = func, 111 .info = info, 112 .ret = -ENXIO, /* No such CPU */ 113 }; 114 115 smp_call_function_single(cpu, remote_function, &data, 1); 116 117 return data.ret; 118 } 119 120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 121 PERF_FLAG_FD_OUTPUT |\ 122 PERF_FLAG_PID_CGROUP) 123 124 /* 125 * branch priv levels that need permission checks 126 */ 127 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 128 (PERF_SAMPLE_BRANCH_KERNEL |\ 129 PERF_SAMPLE_BRANCH_HV) 130 131 enum event_type_t { 132 EVENT_FLEXIBLE = 0x1, 133 EVENT_PINNED = 0x2, 134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 135 }; 136 137 /* 138 * perf_sched_events : >0 events exist 139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 140 */ 141 struct static_key_deferred perf_sched_events __read_mostly; 142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 144 145 static atomic_t nr_mmap_events __read_mostly; 146 static atomic_t nr_comm_events __read_mostly; 147 static atomic_t nr_task_events __read_mostly; 148 149 static LIST_HEAD(pmus); 150 static DEFINE_MUTEX(pmus_lock); 151 static struct srcu_struct pmus_srcu; 152 153 /* 154 * perf event paranoia level: 155 * -1 - not paranoid at all 156 * 0 - disallow raw tracepoint access for unpriv 157 * 1 - disallow cpu events for unpriv 158 * 2 - disallow kernel profiling for unpriv 159 */ 160 int sysctl_perf_event_paranoid __read_mostly = 1; 161 162 /* Minimum for 512 kiB + 1 user control page */ 163 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 164 165 /* 166 * max perf event sample rate 167 */ 168 #define DEFAULT_MAX_SAMPLE_RATE 100000 169 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 170 static int max_samples_per_tick __read_mostly = 171 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 172 173 int perf_proc_update_handler(struct ctl_table *table, int write, 174 void __user *buffer, size_t *lenp, 175 loff_t *ppos) 176 { 177 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 178 179 if (ret || !write) 180 return ret; 181 182 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 183 184 return 0; 185 } 186 187 static atomic64_t perf_event_id; 188 189 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 190 enum event_type_t event_type); 191 192 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 193 enum event_type_t event_type, 194 struct task_struct *task); 195 196 static void update_context_time(struct perf_event_context *ctx); 197 static u64 perf_event_time(struct perf_event *event); 198 199 static void ring_buffer_attach(struct perf_event *event, 200 struct ring_buffer *rb); 201 202 void __weak perf_event_print_debug(void) { } 203 204 extern __weak const char *perf_pmu_name(void) 205 { 206 return "pmu"; 207 } 208 209 static inline u64 perf_clock(void) 210 { 211 return local_clock(); 212 } 213 214 static inline struct perf_cpu_context * 215 __get_cpu_context(struct perf_event_context *ctx) 216 { 217 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 218 } 219 220 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 221 struct perf_event_context *ctx) 222 { 223 raw_spin_lock(&cpuctx->ctx.lock); 224 if (ctx) 225 raw_spin_lock(&ctx->lock); 226 } 227 228 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 229 struct perf_event_context *ctx) 230 { 231 if (ctx) 232 raw_spin_unlock(&ctx->lock); 233 raw_spin_unlock(&cpuctx->ctx.lock); 234 } 235 236 #ifdef CONFIG_CGROUP_PERF 237 238 /* 239 * perf_cgroup_info keeps track of time_enabled for a cgroup. 240 * This is a per-cpu dynamically allocated data structure. 241 */ 242 struct perf_cgroup_info { 243 u64 time; 244 u64 timestamp; 245 }; 246 247 struct perf_cgroup { 248 struct cgroup_subsys_state css; 249 struct perf_cgroup_info __percpu *info; 250 }; 251 252 /* 253 * Must ensure cgroup is pinned (css_get) before calling 254 * this function. In other words, we cannot call this function 255 * if there is no cgroup event for the current CPU context. 256 */ 257 static inline struct perf_cgroup * 258 perf_cgroup_from_task(struct task_struct *task) 259 { 260 return container_of(task_subsys_state(task, perf_subsys_id), 261 struct perf_cgroup, css); 262 } 263 264 static inline bool 265 perf_cgroup_match(struct perf_event *event) 266 { 267 struct perf_event_context *ctx = event->ctx; 268 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 269 270 /* @event doesn't care about cgroup */ 271 if (!event->cgrp) 272 return true; 273 274 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 275 if (!cpuctx->cgrp) 276 return false; 277 278 /* 279 * Cgroup scoping is recursive. An event enabled for a cgroup is 280 * also enabled for all its descendant cgroups. If @cpuctx's 281 * cgroup is a descendant of @event's (the test covers identity 282 * case), it's a match. 283 */ 284 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 285 event->cgrp->css.cgroup); 286 } 287 288 static inline bool perf_tryget_cgroup(struct perf_event *event) 289 { 290 return css_tryget(&event->cgrp->css); 291 } 292 293 static inline void perf_put_cgroup(struct perf_event *event) 294 { 295 css_put(&event->cgrp->css); 296 } 297 298 static inline void perf_detach_cgroup(struct perf_event *event) 299 { 300 perf_put_cgroup(event); 301 event->cgrp = NULL; 302 } 303 304 static inline int is_cgroup_event(struct perf_event *event) 305 { 306 return event->cgrp != NULL; 307 } 308 309 static inline u64 perf_cgroup_event_time(struct perf_event *event) 310 { 311 struct perf_cgroup_info *t; 312 313 t = per_cpu_ptr(event->cgrp->info, event->cpu); 314 return t->time; 315 } 316 317 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 318 { 319 struct perf_cgroup_info *info; 320 u64 now; 321 322 now = perf_clock(); 323 324 info = this_cpu_ptr(cgrp->info); 325 326 info->time += now - info->timestamp; 327 info->timestamp = now; 328 } 329 330 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 331 { 332 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 333 if (cgrp_out) 334 __update_cgrp_time(cgrp_out); 335 } 336 337 static inline void update_cgrp_time_from_event(struct perf_event *event) 338 { 339 struct perf_cgroup *cgrp; 340 341 /* 342 * ensure we access cgroup data only when needed and 343 * when we know the cgroup is pinned (css_get) 344 */ 345 if (!is_cgroup_event(event)) 346 return; 347 348 cgrp = perf_cgroup_from_task(current); 349 /* 350 * Do not update time when cgroup is not active 351 */ 352 if (cgrp == event->cgrp) 353 __update_cgrp_time(event->cgrp); 354 } 355 356 static inline void 357 perf_cgroup_set_timestamp(struct task_struct *task, 358 struct perf_event_context *ctx) 359 { 360 struct perf_cgroup *cgrp; 361 struct perf_cgroup_info *info; 362 363 /* 364 * ctx->lock held by caller 365 * ensure we do not access cgroup data 366 * unless we have the cgroup pinned (css_get) 367 */ 368 if (!task || !ctx->nr_cgroups) 369 return; 370 371 cgrp = perf_cgroup_from_task(task); 372 info = this_cpu_ptr(cgrp->info); 373 info->timestamp = ctx->timestamp; 374 } 375 376 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 377 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 378 379 /* 380 * reschedule events based on the cgroup constraint of task. 381 * 382 * mode SWOUT : schedule out everything 383 * mode SWIN : schedule in based on cgroup for next 384 */ 385 void perf_cgroup_switch(struct task_struct *task, int mode) 386 { 387 struct perf_cpu_context *cpuctx; 388 struct pmu *pmu; 389 unsigned long flags; 390 391 /* 392 * disable interrupts to avoid geting nr_cgroup 393 * changes via __perf_event_disable(). Also 394 * avoids preemption. 395 */ 396 local_irq_save(flags); 397 398 /* 399 * we reschedule only in the presence of cgroup 400 * constrained events. 401 */ 402 rcu_read_lock(); 403 404 list_for_each_entry_rcu(pmu, &pmus, entry) { 405 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 406 if (cpuctx->unique_pmu != pmu) 407 continue; /* ensure we process each cpuctx once */ 408 409 /* 410 * perf_cgroup_events says at least one 411 * context on this CPU has cgroup events. 412 * 413 * ctx->nr_cgroups reports the number of cgroup 414 * events for a context. 415 */ 416 if (cpuctx->ctx.nr_cgroups > 0) { 417 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 418 perf_pmu_disable(cpuctx->ctx.pmu); 419 420 if (mode & PERF_CGROUP_SWOUT) { 421 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 422 /* 423 * must not be done before ctxswout due 424 * to event_filter_match() in event_sched_out() 425 */ 426 cpuctx->cgrp = NULL; 427 } 428 429 if (mode & PERF_CGROUP_SWIN) { 430 WARN_ON_ONCE(cpuctx->cgrp); 431 /* 432 * set cgrp before ctxsw in to allow 433 * event_filter_match() to not have to pass 434 * task around 435 */ 436 cpuctx->cgrp = perf_cgroup_from_task(task); 437 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 438 } 439 perf_pmu_enable(cpuctx->ctx.pmu); 440 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 441 } 442 } 443 444 rcu_read_unlock(); 445 446 local_irq_restore(flags); 447 } 448 449 static inline void perf_cgroup_sched_out(struct task_struct *task, 450 struct task_struct *next) 451 { 452 struct perf_cgroup *cgrp1; 453 struct perf_cgroup *cgrp2 = NULL; 454 455 /* 456 * we come here when we know perf_cgroup_events > 0 457 */ 458 cgrp1 = perf_cgroup_from_task(task); 459 460 /* 461 * next is NULL when called from perf_event_enable_on_exec() 462 * that will systematically cause a cgroup_switch() 463 */ 464 if (next) 465 cgrp2 = perf_cgroup_from_task(next); 466 467 /* 468 * only schedule out current cgroup events if we know 469 * that we are switching to a different cgroup. Otherwise, 470 * do no touch the cgroup events. 471 */ 472 if (cgrp1 != cgrp2) 473 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 474 } 475 476 static inline void perf_cgroup_sched_in(struct task_struct *prev, 477 struct task_struct *task) 478 { 479 struct perf_cgroup *cgrp1; 480 struct perf_cgroup *cgrp2 = NULL; 481 482 /* 483 * we come here when we know perf_cgroup_events > 0 484 */ 485 cgrp1 = perf_cgroup_from_task(task); 486 487 /* prev can never be NULL */ 488 cgrp2 = perf_cgroup_from_task(prev); 489 490 /* 491 * only need to schedule in cgroup events if we are changing 492 * cgroup during ctxsw. Cgroup events were not scheduled 493 * out of ctxsw out if that was not the case. 494 */ 495 if (cgrp1 != cgrp2) 496 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 497 } 498 499 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 500 struct perf_event_attr *attr, 501 struct perf_event *group_leader) 502 { 503 struct perf_cgroup *cgrp; 504 struct cgroup_subsys_state *css; 505 struct fd f = fdget(fd); 506 int ret = 0; 507 508 if (!f.file) 509 return -EBADF; 510 511 css = cgroup_css_from_dir(f.file, perf_subsys_id); 512 if (IS_ERR(css)) { 513 ret = PTR_ERR(css); 514 goto out; 515 } 516 517 cgrp = container_of(css, struct perf_cgroup, css); 518 event->cgrp = cgrp; 519 520 /* must be done before we fput() the file */ 521 if (!perf_tryget_cgroup(event)) { 522 event->cgrp = NULL; 523 ret = -ENOENT; 524 goto out; 525 } 526 527 /* 528 * all events in a group must monitor 529 * the same cgroup because a task belongs 530 * to only one perf cgroup at a time 531 */ 532 if (group_leader && group_leader->cgrp != cgrp) { 533 perf_detach_cgroup(event); 534 ret = -EINVAL; 535 } 536 out: 537 fdput(f); 538 return ret; 539 } 540 541 static inline void 542 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 543 { 544 struct perf_cgroup_info *t; 545 t = per_cpu_ptr(event->cgrp->info, event->cpu); 546 event->shadow_ctx_time = now - t->timestamp; 547 } 548 549 static inline void 550 perf_cgroup_defer_enabled(struct perf_event *event) 551 { 552 /* 553 * when the current task's perf cgroup does not match 554 * the event's, we need to remember to call the 555 * perf_mark_enable() function the first time a task with 556 * a matching perf cgroup is scheduled in. 557 */ 558 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 559 event->cgrp_defer_enabled = 1; 560 } 561 562 static inline void 563 perf_cgroup_mark_enabled(struct perf_event *event, 564 struct perf_event_context *ctx) 565 { 566 struct perf_event *sub; 567 u64 tstamp = perf_event_time(event); 568 569 if (!event->cgrp_defer_enabled) 570 return; 571 572 event->cgrp_defer_enabled = 0; 573 574 event->tstamp_enabled = tstamp - event->total_time_enabled; 575 list_for_each_entry(sub, &event->sibling_list, group_entry) { 576 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 577 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 578 sub->cgrp_defer_enabled = 0; 579 } 580 } 581 } 582 #else /* !CONFIG_CGROUP_PERF */ 583 584 static inline bool 585 perf_cgroup_match(struct perf_event *event) 586 { 587 return true; 588 } 589 590 static inline void perf_detach_cgroup(struct perf_event *event) 591 {} 592 593 static inline int is_cgroup_event(struct perf_event *event) 594 { 595 return 0; 596 } 597 598 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 599 { 600 return 0; 601 } 602 603 static inline void update_cgrp_time_from_event(struct perf_event *event) 604 { 605 } 606 607 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 608 { 609 } 610 611 static inline void perf_cgroup_sched_out(struct task_struct *task, 612 struct task_struct *next) 613 { 614 } 615 616 static inline void perf_cgroup_sched_in(struct task_struct *prev, 617 struct task_struct *task) 618 { 619 } 620 621 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 622 struct perf_event_attr *attr, 623 struct perf_event *group_leader) 624 { 625 return -EINVAL; 626 } 627 628 static inline void 629 perf_cgroup_set_timestamp(struct task_struct *task, 630 struct perf_event_context *ctx) 631 { 632 } 633 634 void 635 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 636 { 637 } 638 639 static inline void 640 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 641 { 642 } 643 644 static inline u64 perf_cgroup_event_time(struct perf_event *event) 645 { 646 return 0; 647 } 648 649 static inline void 650 perf_cgroup_defer_enabled(struct perf_event *event) 651 { 652 } 653 654 static inline void 655 perf_cgroup_mark_enabled(struct perf_event *event, 656 struct perf_event_context *ctx) 657 { 658 } 659 #endif 660 661 void perf_pmu_disable(struct pmu *pmu) 662 { 663 int *count = this_cpu_ptr(pmu->pmu_disable_count); 664 if (!(*count)++) 665 pmu->pmu_disable(pmu); 666 } 667 668 void perf_pmu_enable(struct pmu *pmu) 669 { 670 int *count = this_cpu_ptr(pmu->pmu_disable_count); 671 if (!--(*count)) 672 pmu->pmu_enable(pmu); 673 } 674 675 static DEFINE_PER_CPU(struct list_head, rotation_list); 676 677 /* 678 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 679 * because they're strictly cpu affine and rotate_start is called with IRQs 680 * disabled, while rotate_context is called from IRQ context. 681 */ 682 static void perf_pmu_rotate_start(struct pmu *pmu) 683 { 684 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 685 struct list_head *head = &__get_cpu_var(rotation_list); 686 687 WARN_ON(!irqs_disabled()); 688 689 if (list_empty(&cpuctx->rotation_list)) { 690 int was_empty = list_empty(head); 691 list_add(&cpuctx->rotation_list, head); 692 if (was_empty) 693 tick_nohz_full_kick(); 694 } 695 } 696 697 static void get_ctx(struct perf_event_context *ctx) 698 { 699 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 700 } 701 702 static void put_ctx(struct perf_event_context *ctx) 703 { 704 if (atomic_dec_and_test(&ctx->refcount)) { 705 if (ctx->parent_ctx) 706 put_ctx(ctx->parent_ctx); 707 if (ctx->task) 708 put_task_struct(ctx->task); 709 kfree_rcu(ctx, rcu_head); 710 } 711 } 712 713 static void unclone_ctx(struct perf_event_context *ctx) 714 { 715 if (ctx->parent_ctx) { 716 put_ctx(ctx->parent_ctx); 717 ctx->parent_ctx = NULL; 718 } 719 } 720 721 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 722 { 723 /* 724 * only top level events have the pid namespace they were created in 725 */ 726 if (event->parent) 727 event = event->parent; 728 729 return task_tgid_nr_ns(p, event->ns); 730 } 731 732 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 733 { 734 /* 735 * only top level events have the pid namespace they were created in 736 */ 737 if (event->parent) 738 event = event->parent; 739 740 return task_pid_nr_ns(p, event->ns); 741 } 742 743 /* 744 * If we inherit events we want to return the parent event id 745 * to userspace. 746 */ 747 static u64 primary_event_id(struct perf_event *event) 748 { 749 u64 id = event->id; 750 751 if (event->parent) 752 id = event->parent->id; 753 754 return id; 755 } 756 757 /* 758 * Get the perf_event_context for a task and lock it. 759 * This has to cope with with the fact that until it is locked, 760 * the context could get moved to another task. 761 */ 762 static struct perf_event_context * 763 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 764 { 765 struct perf_event_context *ctx; 766 767 rcu_read_lock(); 768 retry: 769 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 770 if (ctx) { 771 /* 772 * If this context is a clone of another, it might 773 * get swapped for another underneath us by 774 * perf_event_task_sched_out, though the 775 * rcu_read_lock() protects us from any context 776 * getting freed. Lock the context and check if it 777 * got swapped before we could get the lock, and retry 778 * if so. If we locked the right context, then it 779 * can't get swapped on us any more. 780 */ 781 raw_spin_lock_irqsave(&ctx->lock, *flags); 782 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 783 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 784 goto retry; 785 } 786 787 if (!atomic_inc_not_zero(&ctx->refcount)) { 788 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 789 ctx = NULL; 790 } 791 } 792 rcu_read_unlock(); 793 return ctx; 794 } 795 796 /* 797 * Get the context for a task and increment its pin_count so it 798 * can't get swapped to another task. This also increments its 799 * reference count so that the context can't get freed. 800 */ 801 static struct perf_event_context * 802 perf_pin_task_context(struct task_struct *task, int ctxn) 803 { 804 struct perf_event_context *ctx; 805 unsigned long flags; 806 807 ctx = perf_lock_task_context(task, ctxn, &flags); 808 if (ctx) { 809 ++ctx->pin_count; 810 raw_spin_unlock_irqrestore(&ctx->lock, flags); 811 } 812 return ctx; 813 } 814 815 static void perf_unpin_context(struct perf_event_context *ctx) 816 { 817 unsigned long flags; 818 819 raw_spin_lock_irqsave(&ctx->lock, flags); 820 --ctx->pin_count; 821 raw_spin_unlock_irqrestore(&ctx->lock, flags); 822 } 823 824 /* 825 * Update the record of the current time in a context. 826 */ 827 static void update_context_time(struct perf_event_context *ctx) 828 { 829 u64 now = perf_clock(); 830 831 ctx->time += now - ctx->timestamp; 832 ctx->timestamp = now; 833 } 834 835 static u64 perf_event_time(struct perf_event *event) 836 { 837 struct perf_event_context *ctx = event->ctx; 838 839 if (is_cgroup_event(event)) 840 return perf_cgroup_event_time(event); 841 842 return ctx ? ctx->time : 0; 843 } 844 845 /* 846 * Update the total_time_enabled and total_time_running fields for a event. 847 * The caller of this function needs to hold the ctx->lock. 848 */ 849 static void update_event_times(struct perf_event *event) 850 { 851 struct perf_event_context *ctx = event->ctx; 852 u64 run_end; 853 854 if (event->state < PERF_EVENT_STATE_INACTIVE || 855 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 856 return; 857 /* 858 * in cgroup mode, time_enabled represents 859 * the time the event was enabled AND active 860 * tasks were in the monitored cgroup. This is 861 * independent of the activity of the context as 862 * there may be a mix of cgroup and non-cgroup events. 863 * 864 * That is why we treat cgroup events differently 865 * here. 866 */ 867 if (is_cgroup_event(event)) 868 run_end = perf_cgroup_event_time(event); 869 else if (ctx->is_active) 870 run_end = ctx->time; 871 else 872 run_end = event->tstamp_stopped; 873 874 event->total_time_enabled = run_end - event->tstamp_enabled; 875 876 if (event->state == PERF_EVENT_STATE_INACTIVE) 877 run_end = event->tstamp_stopped; 878 else 879 run_end = perf_event_time(event); 880 881 event->total_time_running = run_end - event->tstamp_running; 882 883 } 884 885 /* 886 * Update total_time_enabled and total_time_running for all events in a group. 887 */ 888 static void update_group_times(struct perf_event *leader) 889 { 890 struct perf_event *event; 891 892 update_event_times(leader); 893 list_for_each_entry(event, &leader->sibling_list, group_entry) 894 update_event_times(event); 895 } 896 897 static struct list_head * 898 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 899 { 900 if (event->attr.pinned) 901 return &ctx->pinned_groups; 902 else 903 return &ctx->flexible_groups; 904 } 905 906 /* 907 * Add a event from the lists for its context. 908 * Must be called with ctx->mutex and ctx->lock held. 909 */ 910 static void 911 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 912 { 913 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 914 event->attach_state |= PERF_ATTACH_CONTEXT; 915 916 /* 917 * If we're a stand alone event or group leader, we go to the context 918 * list, group events are kept attached to the group so that 919 * perf_group_detach can, at all times, locate all siblings. 920 */ 921 if (event->group_leader == event) { 922 struct list_head *list; 923 924 if (is_software_event(event)) 925 event->group_flags |= PERF_GROUP_SOFTWARE; 926 927 list = ctx_group_list(event, ctx); 928 list_add_tail(&event->group_entry, list); 929 } 930 931 if (is_cgroup_event(event)) 932 ctx->nr_cgroups++; 933 934 if (has_branch_stack(event)) 935 ctx->nr_branch_stack++; 936 937 list_add_rcu(&event->event_entry, &ctx->event_list); 938 if (!ctx->nr_events) 939 perf_pmu_rotate_start(ctx->pmu); 940 ctx->nr_events++; 941 if (event->attr.inherit_stat) 942 ctx->nr_stat++; 943 } 944 945 /* 946 * Initialize event state based on the perf_event_attr::disabled. 947 */ 948 static inline void perf_event__state_init(struct perf_event *event) 949 { 950 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 951 PERF_EVENT_STATE_INACTIVE; 952 } 953 954 /* 955 * Called at perf_event creation and when events are attached/detached from a 956 * group. 957 */ 958 static void perf_event__read_size(struct perf_event *event) 959 { 960 int entry = sizeof(u64); /* value */ 961 int size = 0; 962 int nr = 1; 963 964 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 965 size += sizeof(u64); 966 967 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 968 size += sizeof(u64); 969 970 if (event->attr.read_format & PERF_FORMAT_ID) 971 entry += sizeof(u64); 972 973 if (event->attr.read_format & PERF_FORMAT_GROUP) { 974 nr += event->group_leader->nr_siblings; 975 size += sizeof(u64); 976 } 977 978 size += entry * nr; 979 event->read_size = size; 980 } 981 982 static void perf_event__header_size(struct perf_event *event) 983 { 984 struct perf_sample_data *data; 985 u64 sample_type = event->attr.sample_type; 986 u16 size = 0; 987 988 perf_event__read_size(event); 989 990 if (sample_type & PERF_SAMPLE_IP) 991 size += sizeof(data->ip); 992 993 if (sample_type & PERF_SAMPLE_ADDR) 994 size += sizeof(data->addr); 995 996 if (sample_type & PERF_SAMPLE_PERIOD) 997 size += sizeof(data->period); 998 999 if (sample_type & PERF_SAMPLE_WEIGHT) 1000 size += sizeof(data->weight); 1001 1002 if (sample_type & PERF_SAMPLE_READ) 1003 size += event->read_size; 1004 1005 if (sample_type & PERF_SAMPLE_DATA_SRC) 1006 size += sizeof(data->data_src.val); 1007 1008 event->header_size = size; 1009 } 1010 1011 static void perf_event__id_header_size(struct perf_event *event) 1012 { 1013 struct perf_sample_data *data; 1014 u64 sample_type = event->attr.sample_type; 1015 u16 size = 0; 1016 1017 if (sample_type & PERF_SAMPLE_TID) 1018 size += sizeof(data->tid_entry); 1019 1020 if (sample_type & PERF_SAMPLE_TIME) 1021 size += sizeof(data->time); 1022 1023 if (sample_type & PERF_SAMPLE_ID) 1024 size += sizeof(data->id); 1025 1026 if (sample_type & PERF_SAMPLE_STREAM_ID) 1027 size += sizeof(data->stream_id); 1028 1029 if (sample_type & PERF_SAMPLE_CPU) 1030 size += sizeof(data->cpu_entry); 1031 1032 event->id_header_size = size; 1033 } 1034 1035 static void perf_group_attach(struct perf_event *event) 1036 { 1037 struct perf_event *group_leader = event->group_leader, *pos; 1038 1039 /* 1040 * We can have double attach due to group movement in perf_event_open. 1041 */ 1042 if (event->attach_state & PERF_ATTACH_GROUP) 1043 return; 1044 1045 event->attach_state |= PERF_ATTACH_GROUP; 1046 1047 if (group_leader == event) 1048 return; 1049 1050 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1051 !is_software_event(event)) 1052 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1053 1054 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1055 group_leader->nr_siblings++; 1056 1057 perf_event__header_size(group_leader); 1058 1059 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1060 perf_event__header_size(pos); 1061 } 1062 1063 /* 1064 * Remove a event from the lists for its context. 1065 * Must be called with ctx->mutex and ctx->lock held. 1066 */ 1067 static void 1068 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1069 { 1070 struct perf_cpu_context *cpuctx; 1071 /* 1072 * We can have double detach due to exit/hot-unplug + close. 1073 */ 1074 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1075 return; 1076 1077 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1078 1079 if (is_cgroup_event(event)) { 1080 ctx->nr_cgroups--; 1081 cpuctx = __get_cpu_context(ctx); 1082 /* 1083 * if there are no more cgroup events 1084 * then cler cgrp to avoid stale pointer 1085 * in update_cgrp_time_from_cpuctx() 1086 */ 1087 if (!ctx->nr_cgroups) 1088 cpuctx->cgrp = NULL; 1089 } 1090 1091 if (has_branch_stack(event)) 1092 ctx->nr_branch_stack--; 1093 1094 ctx->nr_events--; 1095 if (event->attr.inherit_stat) 1096 ctx->nr_stat--; 1097 1098 list_del_rcu(&event->event_entry); 1099 1100 if (event->group_leader == event) 1101 list_del_init(&event->group_entry); 1102 1103 update_group_times(event); 1104 1105 /* 1106 * If event was in error state, then keep it 1107 * that way, otherwise bogus counts will be 1108 * returned on read(). The only way to get out 1109 * of error state is by explicit re-enabling 1110 * of the event 1111 */ 1112 if (event->state > PERF_EVENT_STATE_OFF) 1113 event->state = PERF_EVENT_STATE_OFF; 1114 } 1115 1116 static void perf_group_detach(struct perf_event *event) 1117 { 1118 struct perf_event *sibling, *tmp; 1119 struct list_head *list = NULL; 1120 1121 /* 1122 * We can have double detach due to exit/hot-unplug + close. 1123 */ 1124 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1125 return; 1126 1127 event->attach_state &= ~PERF_ATTACH_GROUP; 1128 1129 /* 1130 * If this is a sibling, remove it from its group. 1131 */ 1132 if (event->group_leader != event) { 1133 list_del_init(&event->group_entry); 1134 event->group_leader->nr_siblings--; 1135 goto out; 1136 } 1137 1138 if (!list_empty(&event->group_entry)) 1139 list = &event->group_entry; 1140 1141 /* 1142 * If this was a group event with sibling events then 1143 * upgrade the siblings to singleton events by adding them 1144 * to whatever list we are on. 1145 */ 1146 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1147 if (list) 1148 list_move_tail(&sibling->group_entry, list); 1149 sibling->group_leader = sibling; 1150 1151 /* Inherit group flags from the previous leader */ 1152 sibling->group_flags = event->group_flags; 1153 } 1154 1155 out: 1156 perf_event__header_size(event->group_leader); 1157 1158 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1159 perf_event__header_size(tmp); 1160 } 1161 1162 static inline int 1163 event_filter_match(struct perf_event *event) 1164 { 1165 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1166 && perf_cgroup_match(event); 1167 } 1168 1169 static void 1170 event_sched_out(struct perf_event *event, 1171 struct perf_cpu_context *cpuctx, 1172 struct perf_event_context *ctx) 1173 { 1174 u64 tstamp = perf_event_time(event); 1175 u64 delta; 1176 /* 1177 * An event which could not be activated because of 1178 * filter mismatch still needs to have its timings 1179 * maintained, otherwise bogus information is return 1180 * via read() for time_enabled, time_running: 1181 */ 1182 if (event->state == PERF_EVENT_STATE_INACTIVE 1183 && !event_filter_match(event)) { 1184 delta = tstamp - event->tstamp_stopped; 1185 event->tstamp_running += delta; 1186 event->tstamp_stopped = tstamp; 1187 } 1188 1189 if (event->state != PERF_EVENT_STATE_ACTIVE) 1190 return; 1191 1192 event->state = PERF_EVENT_STATE_INACTIVE; 1193 if (event->pending_disable) { 1194 event->pending_disable = 0; 1195 event->state = PERF_EVENT_STATE_OFF; 1196 } 1197 event->tstamp_stopped = tstamp; 1198 event->pmu->del(event, 0); 1199 event->oncpu = -1; 1200 1201 if (!is_software_event(event)) 1202 cpuctx->active_oncpu--; 1203 ctx->nr_active--; 1204 if (event->attr.freq && event->attr.sample_freq) 1205 ctx->nr_freq--; 1206 if (event->attr.exclusive || !cpuctx->active_oncpu) 1207 cpuctx->exclusive = 0; 1208 } 1209 1210 static void 1211 group_sched_out(struct perf_event *group_event, 1212 struct perf_cpu_context *cpuctx, 1213 struct perf_event_context *ctx) 1214 { 1215 struct perf_event *event; 1216 int state = group_event->state; 1217 1218 event_sched_out(group_event, cpuctx, ctx); 1219 1220 /* 1221 * Schedule out siblings (if any): 1222 */ 1223 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1224 event_sched_out(event, cpuctx, ctx); 1225 1226 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1227 cpuctx->exclusive = 0; 1228 } 1229 1230 /* 1231 * Cross CPU call to remove a performance event 1232 * 1233 * We disable the event on the hardware level first. After that we 1234 * remove it from the context list. 1235 */ 1236 static int __perf_remove_from_context(void *info) 1237 { 1238 struct perf_event *event = info; 1239 struct perf_event_context *ctx = event->ctx; 1240 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1241 1242 raw_spin_lock(&ctx->lock); 1243 event_sched_out(event, cpuctx, ctx); 1244 list_del_event(event, ctx); 1245 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1246 ctx->is_active = 0; 1247 cpuctx->task_ctx = NULL; 1248 } 1249 raw_spin_unlock(&ctx->lock); 1250 1251 return 0; 1252 } 1253 1254 1255 /* 1256 * Remove the event from a task's (or a CPU's) list of events. 1257 * 1258 * CPU events are removed with a smp call. For task events we only 1259 * call when the task is on a CPU. 1260 * 1261 * If event->ctx is a cloned context, callers must make sure that 1262 * every task struct that event->ctx->task could possibly point to 1263 * remains valid. This is OK when called from perf_release since 1264 * that only calls us on the top-level context, which can't be a clone. 1265 * When called from perf_event_exit_task, it's OK because the 1266 * context has been detached from its task. 1267 */ 1268 static void perf_remove_from_context(struct perf_event *event) 1269 { 1270 struct perf_event_context *ctx = event->ctx; 1271 struct task_struct *task = ctx->task; 1272 1273 lockdep_assert_held(&ctx->mutex); 1274 1275 if (!task) { 1276 /* 1277 * Per cpu events are removed via an smp call and 1278 * the removal is always successful. 1279 */ 1280 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1281 return; 1282 } 1283 1284 retry: 1285 if (!task_function_call(task, __perf_remove_from_context, event)) 1286 return; 1287 1288 raw_spin_lock_irq(&ctx->lock); 1289 /* 1290 * If we failed to find a running task, but find the context active now 1291 * that we've acquired the ctx->lock, retry. 1292 */ 1293 if (ctx->is_active) { 1294 raw_spin_unlock_irq(&ctx->lock); 1295 goto retry; 1296 } 1297 1298 /* 1299 * Since the task isn't running, its safe to remove the event, us 1300 * holding the ctx->lock ensures the task won't get scheduled in. 1301 */ 1302 list_del_event(event, ctx); 1303 raw_spin_unlock_irq(&ctx->lock); 1304 } 1305 1306 /* 1307 * Cross CPU call to disable a performance event 1308 */ 1309 int __perf_event_disable(void *info) 1310 { 1311 struct perf_event *event = info; 1312 struct perf_event_context *ctx = event->ctx; 1313 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1314 1315 /* 1316 * If this is a per-task event, need to check whether this 1317 * event's task is the current task on this cpu. 1318 * 1319 * Can trigger due to concurrent perf_event_context_sched_out() 1320 * flipping contexts around. 1321 */ 1322 if (ctx->task && cpuctx->task_ctx != ctx) 1323 return -EINVAL; 1324 1325 raw_spin_lock(&ctx->lock); 1326 1327 /* 1328 * If the event is on, turn it off. 1329 * If it is in error state, leave it in error state. 1330 */ 1331 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1332 update_context_time(ctx); 1333 update_cgrp_time_from_event(event); 1334 update_group_times(event); 1335 if (event == event->group_leader) 1336 group_sched_out(event, cpuctx, ctx); 1337 else 1338 event_sched_out(event, cpuctx, ctx); 1339 event->state = PERF_EVENT_STATE_OFF; 1340 } 1341 1342 raw_spin_unlock(&ctx->lock); 1343 1344 return 0; 1345 } 1346 1347 /* 1348 * Disable a event. 1349 * 1350 * If event->ctx is a cloned context, callers must make sure that 1351 * every task struct that event->ctx->task could possibly point to 1352 * remains valid. This condition is satisifed when called through 1353 * perf_event_for_each_child or perf_event_for_each because they 1354 * hold the top-level event's child_mutex, so any descendant that 1355 * goes to exit will block in sync_child_event. 1356 * When called from perf_pending_event it's OK because event->ctx 1357 * is the current context on this CPU and preemption is disabled, 1358 * hence we can't get into perf_event_task_sched_out for this context. 1359 */ 1360 void perf_event_disable(struct perf_event *event) 1361 { 1362 struct perf_event_context *ctx = event->ctx; 1363 struct task_struct *task = ctx->task; 1364 1365 if (!task) { 1366 /* 1367 * Disable the event on the cpu that it's on 1368 */ 1369 cpu_function_call(event->cpu, __perf_event_disable, event); 1370 return; 1371 } 1372 1373 retry: 1374 if (!task_function_call(task, __perf_event_disable, event)) 1375 return; 1376 1377 raw_spin_lock_irq(&ctx->lock); 1378 /* 1379 * If the event is still active, we need to retry the cross-call. 1380 */ 1381 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1382 raw_spin_unlock_irq(&ctx->lock); 1383 /* 1384 * Reload the task pointer, it might have been changed by 1385 * a concurrent perf_event_context_sched_out(). 1386 */ 1387 task = ctx->task; 1388 goto retry; 1389 } 1390 1391 /* 1392 * Since we have the lock this context can't be scheduled 1393 * in, so we can change the state safely. 1394 */ 1395 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1396 update_group_times(event); 1397 event->state = PERF_EVENT_STATE_OFF; 1398 } 1399 raw_spin_unlock_irq(&ctx->lock); 1400 } 1401 EXPORT_SYMBOL_GPL(perf_event_disable); 1402 1403 static void perf_set_shadow_time(struct perf_event *event, 1404 struct perf_event_context *ctx, 1405 u64 tstamp) 1406 { 1407 /* 1408 * use the correct time source for the time snapshot 1409 * 1410 * We could get by without this by leveraging the 1411 * fact that to get to this function, the caller 1412 * has most likely already called update_context_time() 1413 * and update_cgrp_time_xx() and thus both timestamp 1414 * are identical (or very close). Given that tstamp is, 1415 * already adjusted for cgroup, we could say that: 1416 * tstamp - ctx->timestamp 1417 * is equivalent to 1418 * tstamp - cgrp->timestamp. 1419 * 1420 * Then, in perf_output_read(), the calculation would 1421 * work with no changes because: 1422 * - event is guaranteed scheduled in 1423 * - no scheduled out in between 1424 * - thus the timestamp would be the same 1425 * 1426 * But this is a bit hairy. 1427 * 1428 * So instead, we have an explicit cgroup call to remain 1429 * within the time time source all along. We believe it 1430 * is cleaner and simpler to understand. 1431 */ 1432 if (is_cgroup_event(event)) 1433 perf_cgroup_set_shadow_time(event, tstamp); 1434 else 1435 event->shadow_ctx_time = tstamp - ctx->timestamp; 1436 } 1437 1438 #define MAX_INTERRUPTS (~0ULL) 1439 1440 static void perf_log_throttle(struct perf_event *event, int enable); 1441 1442 static int 1443 event_sched_in(struct perf_event *event, 1444 struct perf_cpu_context *cpuctx, 1445 struct perf_event_context *ctx) 1446 { 1447 u64 tstamp = perf_event_time(event); 1448 1449 if (event->state <= PERF_EVENT_STATE_OFF) 1450 return 0; 1451 1452 event->state = PERF_EVENT_STATE_ACTIVE; 1453 event->oncpu = smp_processor_id(); 1454 1455 /* 1456 * Unthrottle events, since we scheduled we might have missed several 1457 * ticks already, also for a heavily scheduling task there is little 1458 * guarantee it'll get a tick in a timely manner. 1459 */ 1460 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1461 perf_log_throttle(event, 1); 1462 event->hw.interrupts = 0; 1463 } 1464 1465 /* 1466 * The new state must be visible before we turn it on in the hardware: 1467 */ 1468 smp_wmb(); 1469 1470 if (event->pmu->add(event, PERF_EF_START)) { 1471 event->state = PERF_EVENT_STATE_INACTIVE; 1472 event->oncpu = -1; 1473 return -EAGAIN; 1474 } 1475 1476 event->tstamp_running += tstamp - event->tstamp_stopped; 1477 1478 perf_set_shadow_time(event, ctx, tstamp); 1479 1480 if (!is_software_event(event)) 1481 cpuctx->active_oncpu++; 1482 ctx->nr_active++; 1483 if (event->attr.freq && event->attr.sample_freq) 1484 ctx->nr_freq++; 1485 1486 if (event->attr.exclusive) 1487 cpuctx->exclusive = 1; 1488 1489 return 0; 1490 } 1491 1492 static int 1493 group_sched_in(struct perf_event *group_event, 1494 struct perf_cpu_context *cpuctx, 1495 struct perf_event_context *ctx) 1496 { 1497 struct perf_event *event, *partial_group = NULL; 1498 struct pmu *pmu = group_event->pmu; 1499 u64 now = ctx->time; 1500 bool simulate = false; 1501 1502 if (group_event->state == PERF_EVENT_STATE_OFF) 1503 return 0; 1504 1505 pmu->start_txn(pmu); 1506 1507 if (event_sched_in(group_event, cpuctx, ctx)) { 1508 pmu->cancel_txn(pmu); 1509 return -EAGAIN; 1510 } 1511 1512 /* 1513 * Schedule in siblings as one group (if any): 1514 */ 1515 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1516 if (event_sched_in(event, cpuctx, ctx)) { 1517 partial_group = event; 1518 goto group_error; 1519 } 1520 } 1521 1522 if (!pmu->commit_txn(pmu)) 1523 return 0; 1524 1525 group_error: 1526 /* 1527 * Groups can be scheduled in as one unit only, so undo any 1528 * partial group before returning: 1529 * The events up to the failed event are scheduled out normally, 1530 * tstamp_stopped will be updated. 1531 * 1532 * The failed events and the remaining siblings need to have 1533 * their timings updated as if they had gone thru event_sched_in() 1534 * and event_sched_out(). This is required to get consistent timings 1535 * across the group. This also takes care of the case where the group 1536 * could never be scheduled by ensuring tstamp_stopped is set to mark 1537 * the time the event was actually stopped, such that time delta 1538 * calculation in update_event_times() is correct. 1539 */ 1540 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1541 if (event == partial_group) 1542 simulate = true; 1543 1544 if (simulate) { 1545 event->tstamp_running += now - event->tstamp_stopped; 1546 event->tstamp_stopped = now; 1547 } else { 1548 event_sched_out(event, cpuctx, ctx); 1549 } 1550 } 1551 event_sched_out(group_event, cpuctx, ctx); 1552 1553 pmu->cancel_txn(pmu); 1554 1555 return -EAGAIN; 1556 } 1557 1558 /* 1559 * Work out whether we can put this event group on the CPU now. 1560 */ 1561 static int group_can_go_on(struct perf_event *event, 1562 struct perf_cpu_context *cpuctx, 1563 int can_add_hw) 1564 { 1565 /* 1566 * Groups consisting entirely of software events can always go on. 1567 */ 1568 if (event->group_flags & PERF_GROUP_SOFTWARE) 1569 return 1; 1570 /* 1571 * If an exclusive group is already on, no other hardware 1572 * events can go on. 1573 */ 1574 if (cpuctx->exclusive) 1575 return 0; 1576 /* 1577 * If this group is exclusive and there are already 1578 * events on the CPU, it can't go on. 1579 */ 1580 if (event->attr.exclusive && cpuctx->active_oncpu) 1581 return 0; 1582 /* 1583 * Otherwise, try to add it if all previous groups were able 1584 * to go on. 1585 */ 1586 return can_add_hw; 1587 } 1588 1589 static void add_event_to_ctx(struct perf_event *event, 1590 struct perf_event_context *ctx) 1591 { 1592 u64 tstamp = perf_event_time(event); 1593 1594 list_add_event(event, ctx); 1595 perf_group_attach(event); 1596 event->tstamp_enabled = tstamp; 1597 event->tstamp_running = tstamp; 1598 event->tstamp_stopped = tstamp; 1599 } 1600 1601 static void task_ctx_sched_out(struct perf_event_context *ctx); 1602 static void 1603 ctx_sched_in(struct perf_event_context *ctx, 1604 struct perf_cpu_context *cpuctx, 1605 enum event_type_t event_type, 1606 struct task_struct *task); 1607 1608 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1609 struct perf_event_context *ctx, 1610 struct task_struct *task) 1611 { 1612 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1613 if (ctx) 1614 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1615 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1616 if (ctx) 1617 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1618 } 1619 1620 /* 1621 * Cross CPU call to install and enable a performance event 1622 * 1623 * Must be called with ctx->mutex held 1624 */ 1625 static int __perf_install_in_context(void *info) 1626 { 1627 struct perf_event *event = info; 1628 struct perf_event_context *ctx = event->ctx; 1629 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1630 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1631 struct task_struct *task = current; 1632 1633 perf_ctx_lock(cpuctx, task_ctx); 1634 perf_pmu_disable(cpuctx->ctx.pmu); 1635 1636 /* 1637 * If there was an active task_ctx schedule it out. 1638 */ 1639 if (task_ctx) 1640 task_ctx_sched_out(task_ctx); 1641 1642 /* 1643 * If the context we're installing events in is not the 1644 * active task_ctx, flip them. 1645 */ 1646 if (ctx->task && task_ctx != ctx) { 1647 if (task_ctx) 1648 raw_spin_unlock(&task_ctx->lock); 1649 raw_spin_lock(&ctx->lock); 1650 task_ctx = ctx; 1651 } 1652 1653 if (task_ctx) { 1654 cpuctx->task_ctx = task_ctx; 1655 task = task_ctx->task; 1656 } 1657 1658 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1659 1660 update_context_time(ctx); 1661 /* 1662 * update cgrp time only if current cgrp 1663 * matches event->cgrp. Must be done before 1664 * calling add_event_to_ctx() 1665 */ 1666 update_cgrp_time_from_event(event); 1667 1668 add_event_to_ctx(event, ctx); 1669 1670 /* 1671 * Schedule everything back in 1672 */ 1673 perf_event_sched_in(cpuctx, task_ctx, task); 1674 1675 perf_pmu_enable(cpuctx->ctx.pmu); 1676 perf_ctx_unlock(cpuctx, task_ctx); 1677 1678 return 0; 1679 } 1680 1681 /* 1682 * Attach a performance event to a context 1683 * 1684 * First we add the event to the list with the hardware enable bit 1685 * in event->hw_config cleared. 1686 * 1687 * If the event is attached to a task which is on a CPU we use a smp 1688 * call to enable it in the task context. The task might have been 1689 * scheduled away, but we check this in the smp call again. 1690 */ 1691 static void 1692 perf_install_in_context(struct perf_event_context *ctx, 1693 struct perf_event *event, 1694 int cpu) 1695 { 1696 struct task_struct *task = ctx->task; 1697 1698 lockdep_assert_held(&ctx->mutex); 1699 1700 event->ctx = ctx; 1701 if (event->cpu != -1) 1702 event->cpu = cpu; 1703 1704 if (!task) { 1705 /* 1706 * Per cpu events are installed via an smp call and 1707 * the install is always successful. 1708 */ 1709 cpu_function_call(cpu, __perf_install_in_context, event); 1710 return; 1711 } 1712 1713 retry: 1714 if (!task_function_call(task, __perf_install_in_context, event)) 1715 return; 1716 1717 raw_spin_lock_irq(&ctx->lock); 1718 /* 1719 * If we failed to find a running task, but find the context active now 1720 * that we've acquired the ctx->lock, retry. 1721 */ 1722 if (ctx->is_active) { 1723 raw_spin_unlock_irq(&ctx->lock); 1724 goto retry; 1725 } 1726 1727 /* 1728 * Since the task isn't running, its safe to add the event, us holding 1729 * the ctx->lock ensures the task won't get scheduled in. 1730 */ 1731 add_event_to_ctx(event, ctx); 1732 raw_spin_unlock_irq(&ctx->lock); 1733 } 1734 1735 /* 1736 * Put a event into inactive state and update time fields. 1737 * Enabling the leader of a group effectively enables all 1738 * the group members that aren't explicitly disabled, so we 1739 * have to update their ->tstamp_enabled also. 1740 * Note: this works for group members as well as group leaders 1741 * since the non-leader members' sibling_lists will be empty. 1742 */ 1743 static void __perf_event_mark_enabled(struct perf_event *event) 1744 { 1745 struct perf_event *sub; 1746 u64 tstamp = perf_event_time(event); 1747 1748 event->state = PERF_EVENT_STATE_INACTIVE; 1749 event->tstamp_enabled = tstamp - event->total_time_enabled; 1750 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1751 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1752 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1753 } 1754 } 1755 1756 /* 1757 * Cross CPU call to enable a performance event 1758 */ 1759 static int __perf_event_enable(void *info) 1760 { 1761 struct perf_event *event = info; 1762 struct perf_event_context *ctx = event->ctx; 1763 struct perf_event *leader = event->group_leader; 1764 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1765 int err; 1766 1767 if (WARN_ON_ONCE(!ctx->is_active)) 1768 return -EINVAL; 1769 1770 raw_spin_lock(&ctx->lock); 1771 update_context_time(ctx); 1772 1773 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1774 goto unlock; 1775 1776 /* 1777 * set current task's cgroup time reference point 1778 */ 1779 perf_cgroup_set_timestamp(current, ctx); 1780 1781 __perf_event_mark_enabled(event); 1782 1783 if (!event_filter_match(event)) { 1784 if (is_cgroup_event(event)) 1785 perf_cgroup_defer_enabled(event); 1786 goto unlock; 1787 } 1788 1789 /* 1790 * If the event is in a group and isn't the group leader, 1791 * then don't put it on unless the group is on. 1792 */ 1793 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1794 goto unlock; 1795 1796 if (!group_can_go_on(event, cpuctx, 1)) { 1797 err = -EEXIST; 1798 } else { 1799 if (event == leader) 1800 err = group_sched_in(event, cpuctx, ctx); 1801 else 1802 err = event_sched_in(event, cpuctx, ctx); 1803 } 1804 1805 if (err) { 1806 /* 1807 * If this event can't go on and it's part of a 1808 * group, then the whole group has to come off. 1809 */ 1810 if (leader != event) 1811 group_sched_out(leader, cpuctx, ctx); 1812 if (leader->attr.pinned) { 1813 update_group_times(leader); 1814 leader->state = PERF_EVENT_STATE_ERROR; 1815 } 1816 } 1817 1818 unlock: 1819 raw_spin_unlock(&ctx->lock); 1820 1821 return 0; 1822 } 1823 1824 /* 1825 * Enable a event. 1826 * 1827 * If event->ctx is a cloned context, callers must make sure that 1828 * every task struct that event->ctx->task could possibly point to 1829 * remains valid. This condition is satisfied when called through 1830 * perf_event_for_each_child or perf_event_for_each as described 1831 * for perf_event_disable. 1832 */ 1833 void perf_event_enable(struct perf_event *event) 1834 { 1835 struct perf_event_context *ctx = event->ctx; 1836 struct task_struct *task = ctx->task; 1837 1838 if (!task) { 1839 /* 1840 * Enable the event on the cpu that it's on 1841 */ 1842 cpu_function_call(event->cpu, __perf_event_enable, event); 1843 return; 1844 } 1845 1846 raw_spin_lock_irq(&ctx->lock); 1847 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1848 goto out; 1849 1850 /* 1851 * If the event is in error state, clear that first. 1852 * That way, if we see the event in error state below, we 1853 * know that it has gone back into error state, as distinct 1854 * from the task having been scheduled away before the 1855 * cross-call arrived. 1856 */ 1857 if (event->state == PERF_EVENT_STATE_ERROR) 1858 event->state = PERF_EVENT_STATE_OFF; 1859 1860 retry: 1861 if (!ctx->is_active) { 1862 __perf_event_mark_enabled(event); 1863 goto out; 1864 } 1865 1866 raw_spin_unlock_irq(&ctx->lock); 1867 1868 if (!task_function_call(task, __perf_event_enable, event)) 1869 return; 1870 1871 raw_spin_lock_irq(&ctx->lock); 1872 1873 /* 1874 * If the context is active and the event is still off, 1875 * we need to retry the cross-call. 1876 */ 1877 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1878 /* 1879 * task could have been flipped by a concurrent 1880 * perf_event_context_sched_out() 1881 */ 1882 task = ctx->task; 1883 goto retry; 1884 } 1885 1886 out: 1887 raw_spin_unlock_irq(&ctx->lock); 1888 } 1889 EXPORT_SYMBOL_GPL(perf_event_enable); 1890 1891 int perf_event_refresh(struct perf_event *event, int refresh) 1892 { 1893 /* 1894 * not supported on inherited events 1895 */ 1896 if (event->attr.inherit || !is_sampling_event(event)) 1897 return -EINVAL; 1898 1899 atomic_add(refresh, &event->event_limit); 1900 perf_event_enable(event); 1901 1902 return 0; 1903 } 1904 EXPORT_SYMBOL_GPL(perf_event_refresh); 1905 1906 static void ctx_sched_out(struct perf_event_context *ctx, 1907 struct perf_cpu_context *cpuctx, 1908 enum event_type_t event_type) 1909 { 1910 struct perf_event *event; 1911 int is_active = ctx->is_active; 1912 1913 ctx->is_active &= ~event_type; 1914 if (likely(!ctx->nr_events)) 1915 return; 1916 1917 update_context_time(ctx); 1918 update_cgrp_time_from_cpuctx(cpuctx); 1919 if (!ctx->nr_active) 1920 return; 1921 1922 perf_pmu_disable(ctx->pmu); 1923 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1924 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1925 group_sched_out(event, cpuctx, ctx); 1926 } 1927 1928 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1929 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1930 group_sched_out(event, cpuctx, ctx); 1931 } 1932 perf_pmu_enable(ctx->pmu); 1933 } 1934 1935 /* 1936 * Test whether two contexts are equivalent, i.e. whether they 1937 * have both been cloned from the same version of the same context 1938 * and they both have the same number of enabled events. 1939 * If the number of enabled events is the same, then the set 1940 * of enabled events should be the same, because these are both 1941 * inherited contexts, therefore we can't access individual events 1942 * in them directly with an fd; we can only enable/disable all 1943 * events via prctl, or enable/disable all events in a family 1944 * via ioctl, which will have the same effect on both contexts. 1945 */ 1946 static int context_equiv(struct perf_event_context *ctx1, 1947 struct perf_event_context *ctx2) 1948 { 1949 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1950 && ctx1->parent_gen == ctx2->parent_gen 1951 && !ctx1->pin_count && !ctx2->pin_count; 1952 } 1953 1954 static void __perf_event_sync_stat(struct perf_event *event, 1955 struct perf_event *next_event) 1956 { 1957 u64 value; 1958 1959 if (!event->attr.inherit_stat) 1960 return; 1961 1962 /* 1963 * Update the event value, we cannot use perf_event_read() 1964 * because we're in the middle of a context switch and have IRQs 1965 * disabled, which upsets smp_call_function_single(), however 1966 * we know the event must be on the current CPU, therefore we 1967 * don't need to use it. 1968 */ 1969 switch (event->state) { 1970 case PERF_EVENT_STATE_ACTIVE: 1971 event->pmu->read(event); 1972 /* fall-through */ 1973 1974 case PERF_EVENT_STATE_INACTIVE: 1975 update_event_times(event); 1976 break; 1977 1978 default: 1979 break; 1980 } 1981 1982 /* 1983 * In order to keep per-task stats reliable we need to flip the event 1984 * values when we flip the contexts. 1985 */ 1986 value = local64_read(&next_event->count); 1987 value = local64_xchg(&event->count, value); 1988 local64_set(&next_event->count, value); 1989 1990 swap(event->total_time_enabled, next_event->total_time_enabled); 1991 swap(event->total_time_running, next_event->total_time_running); 1992 1993 /* 1994 * Since we swizzled the values, update the user visible data too. 1995 */ 1996 perf_event_update_userpage(event); 1997 perf_event_update_userpage(next_event); 1998 } 1999 2000 #define list_next_entry(pos, member) \ 2001 list_entry(pos->member.next, typeof(*pos), member) 2002 2003 static void perf_event_sync_stat(struct perf_event_context *ctx, 2004 struct perf_event_context *next_ctx) 2005 { 2006 struct perf_event *event, *next_event; 2007 2008 if (!ctx->nr_stat) 2009 return; 2010 2011 update_context_time(ctx); 2012 2013 event = list_first_entry(&ctx->event_list, 2014 struct perf_event, event_entry); 2015 2016 next_event = list_first_entry(&next_ctx->event_list, 2017 struct perf_event, event_entry); 2018 2019 while (&event->event_entry != &ctx->event_list && 2020 &next_event->event_entry != &next_ctx->event_list) { 2021 2022 __perf_event_sync_stat(event, next_event); 2023 2024 event = list_next_entry(event, event_entry); 2025 next_event = list_next_entry(next_event, event_entry); 2026 } 2027 } 2028 2029 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2030 struct task_struct *next) 2031 { 2032 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2033 struct perf_event_context *next_ctx; 2034 struct perf_event_context *parent; 2035 struct perf_cpu_context *cpuctx; 2036 int do_switch = 1; 2037 2038 if (likely(!ctx)) 2039 return; 2040 2041 cpuctx = __get_cpu_context(ctx); 2042 if (!cpuctx->task_ctx) 2043 return; 2044 2045 rcu_read_lock(); 2046 parent = rcu_dereference(ctx->parent_ctx); 2047 next_ctx = next->perf_event_ctxp[ctxn]; 2048 if (parent && next_ctx && 2049 rcu_dereference(next_ctx->parent_ctx) == parent) { 2050 /* 2051 * Looks like the two contexts are clones, so we might be 2052 * able to optimize the context switch. We lock both 2053 * contexts and check that they are clones under the 2054 * lock (including re-checking that neither has been 2055 * uncloned in the meantime). It doesn't matter which 2056 * order we take the locks because no other cpu could 2057 * be trying to lock both of these tasks. 2058 */ 2059 raw_spin_lock(&ctx->lock); 2060 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2061 if (context_equiv(ctx, next_ctx)) { 2062 /* 2063 * XXX do we need a memory barrier of sorts 2064 * wrt to rcu_dereference() of perf_event_ctxp 2065 */ 2066 task->perf_event_ctxp[ctxn] = next_ctx; 2067 next->perf_event_ctxp[ctxn] = ctx; 2068 ctx->task = next; 2069 next_ctx->task = task; 2070 do_switch = 0; 2071 2072 perf_event_sync_stat(ctx, next_ctx); 2073 } 2074 raw_spin_unlock(&next_ctx->lock); 2075 raw_spin_unlock(&ctx->lock); 2076 } 2077 rcu_read_unlock(); 2078 2079 if (do_switch) { 2080 raw_spin_lock(&ctx->lock); 2081 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2082 cpuctx->task_ctx = NULL; 2083 raw_spin_unlock(&ctx->lock); 2084 } 2085 } 2086 2087 #define for_each_task_context_nr(ctxn) \ 2088 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2089 2090 /* 2091 * Called from scheduler to remove the events of the current task, 2092 * with interrupts disabled. 2093 * 2094 * We stop each event and update the event value in event->count. 2095 * 2096 * This does not protect us against NMI, but disable() 2097 * sets the disabled bit in the control field of event _before_ 2098 * accessing the event control register. If a NMI hits, then it will 2099 * not restart the event. 2100 */ 2101 void __perf_event_task_sched_out(struct task_struct *task, 2102 struct task_struct *next) 2103 { 2104 int ctxn; 2105 2106 for_each_task_context_nr(ctxn) 2107 perf_event_context_sched_out(task, ctxn, next); 2108 2109 /* 2110 * if cgroup events exist on this CPU, then we need 2111 * to check if we have to switch out PMU state. 2112 * cgroup event are system-wide mode only 2113 */ 2114 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2115 perf_cgroup_sched_out(task, next); 2116 } 2117 2118 static void task_ctx_sched_out(struct perf_event_context *ctx) 2119 { 2120 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2121 2122 if (!cpuctx->task_ctx) 2123 return; 2124 2125 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2126 return; 2127 2128 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2129 cpuctx->task_ctx = NULL; 2130 } 2131 2132 /* 2133 * Called with IRQs disabled 2134 */ 2135 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2136 enum event_type_t event_type) 2137 { 2138 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2139 } 2140 2141 static void 2142 ctx_pinned_sched_in(struct perf_event_context *ctx, 2143 struct perf_cpu_context *cpuctx) 2144 { 2145 struct perf_event *event; 2146 2147 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2148 if (event->state <= PERF_EVENT_STATE_OFF) 2149 continue; 2150 if (!event_filter_match(event)) 2151 continue; 2152 2153 /* may need to reset tstamp_enabled */ 2154 if (is_cgroup_event(event)) 2155 perf_cgroup_mark_enabled(event, ctx); 2156 2157 if (group_can_go_on(event, cpuctx, 1)) 2158 group_sched_in(event, cpuctx, ctx); 2159 2160 /* 2161 * If this pinned group hasn't been scheduled, 2162 * put it in error state. 2163 */ 2164 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2165 update_group_times(event); 2166 event->state = PERF_EVENT_STATE_ERROR; 2167 } 2168 } 2169 } 2170 2171 static void 2172 ctx_flexible_sched_in(struct perf_event_context *ctx, 2173 struct perf_cpu_context *cpuctx) 2174 { 2175 struct perf_event *event; 2176 int can_add_hw = 1; 2177 2178 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2179 /* Ignore events in OFF or ERROR state */ 2180 if (event->state <= PERF_EVENT_STATE_OFF) 2181 continue; 2182 /* 2183 * Listen to the 'cpu' scheduling filter constraint 2184 * of events: 2185 */ 2186 if (!event_filter_match(event)) 2187 continue; 2188 2189 /* may need to reset tstamp_enabled */ 2190 if (is_cgroup_event(event)) 2191 perf_cgroup_mark_enabled(event, ctx); 2192 2193 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2194 if (group_sched_in(event, cpuctx, ctx)) 2195 can_add_hw = 0; 2196 } 2197 } 2198 } 2199 2200 static void 2201 ctx_sched_in(struct perf_event_context *ctx, 2202 struct perf_cpu_context *cpuctx, 2203 enum event_type_t event_type, 2204 struct task_struct *task) 2205 { 2206 u64 now; 2207 int is_active = ctx->is_active; 2208 2209 ctx->is_active |= event_type; 2210 if (likely(!ctx->nr_events)) 2211 return; 2212 2213 now = perf_clock(); 2214 ctx->timestamp = now; 2215 perf_cgroup_set_timestamp(task, ctx); 2216 /* 2217 * First go through the list and put on any pinned groups 2218 * in order to give them the best chance of going on. 2219 */ 2220 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2221 ctx_pinned_sched_in(ctx, cpuctx); 2222 2223 /* Then walk through the lower prio flexible groups */ 2224 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2225 ctx_flexible_sched_in(ctx, cpuctx); 2226 } 2227 2228 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2229 enum event_type_t event_type, 2230 struct task_struct *task) 2231 { 2232 struct perf_event_context *ctx = &cpuctx->ctx; 2233 2234 ctx_sched_in(ctx, cpuctx, event_type, task); 2235 } 2236 2237 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2238 struct task_struct *task) 2239 { 2240 struct perf_cpu_context *cpuctx; 2241 2242 cpuctx = __get_cpu_context(ctx); 2243 if (cpuctx->task_ctx == ctx) 2244 return; 2245 2246 perf_ctx_lock(cpuctx, ctx); 2247 perf_pmu_disable(ctx->pmu); 2248 /* 2249 * We want to keep the following priority order: 2250 * cpu pinned (that don't need to move), task pinned, 2251 * cpu flexible, task flexible. 2252 */ 2253 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2254 2255 if (ctx->nr_events) 2256 cpuctx->task_ctx = ctx; 2257 2258 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2259 2260 perf_pmu_enable(ctx->pmu); 2261 perf_ctx_unlock(cpuctx, ctx); 2262 2263 /* 2264 * Since these rotations are per-cpu, we need to ensure the 2265 * cpu-context we got scheduled on is actually rotating. 2266 */ 2267 perf_pmu_rotate_start(ctx->pmu); 2268 } 2269 2270 /* 2271 * When sampling the branck stack in system-wide, it may be necessary 2272 * to flush the stack on context switch. This happens when the branch 2273 * stack does not tag its entries with the pid of the current task. 2274 * Otherwise it becomes impossible to associate a branch entry with a 2275 * task. This ambiguity is more likely to appear when the branch stack 2276 * supports priv level filtering and the user sets it to monitor only 2277 * at the user level (which could be a useful measurement in system-wide 2278 * mode). In that case, the risk is high of having a branch stack with 2279 * branch from multiple tasks. Flushing may mean dropping the existing 2280 * entries or stashing them somewhere in the PMU specific code layer. 2281 * 2282 * This function provides the context switch callback to the lower code 2283 * layer. It is invoked ONLY when there is at least one system-wide context 2284 * with at least one active event using taken branch sampling. 2285 */ 2286 static void perf_branch_stack_sched_in(struct task_struct *prev, 2287 struct task_struct *task) 2288 { 2289 struct perf_cpu_context *cpuctx; 2290 struct pmu *pmu; 2291 unsigned long flags; 2292 2293 /* no need to flush branch stack if not changing task */ 2294 if (prev == task) 2295 return; 2296 2297 local_irq_save(flags); 2298 2299 rcu_read_lock(); 2300 2301 list_for_each_entry_rcu(pmu, &pmus, entry) { 2302 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2303 2304 /* 2305 * check if the context has at least one 2306 * event using PERF_SAMPLE_BRANCH_STACK 2307 */ 2308 if (cpuctx->ctx.nr_branch_stack > 0 2309 && pmu->flush_branch_stack) { 2310 2311 pmu = cpuctx->ctx.pmu; 2312 2313 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2314 2315 perf_pmu_disable(pmu); 2316 2317 pmu->flush_branch_stack(); 2318 2319 perf_pmu_enable(pmu); 2320 2321 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2322 } 2323 } 2324 2325 rcu_read_unlock(); 2326 2327 local_irq_restore(flags); 2328 } 2329 2330 /* 2331 * Called from scheduler to add the events of the current task 2332 * with interrupts disabled. 2333 * 2334 * We restore the event value and then enable it. 2335 * 2336 * This does not protect us against NMI, but enable() 2337 * sets the enabled bit in the control field of event _before_ 2338 * accessing the event control register. If a NMI hits, then it will 2339 * keep the event running. 2340 */ 2341 void __perf_event_task_sched_in(struct task_struct *prev, 2342 struct task_struct *task) 2343 { 2344 struct perf_event_context *ctx; 2345 int ctxn; 2346 2347 for_each_task_context_nr(ctxn) { 2348 ctx = task->perf_event_ctxp[ctxn]; 2349 if (likely(!ctx)) 2350 continue; 2351 2352 perf_event_context_sched_in(ctx, task); 2353 } 2354 /* 2355 * if cgroup events exist on this CPU, then we need 2356 * to check if we have to switch in PMU state. 2357 * cgroup event are system-wide mode only 2358 */ 2359 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2360 perf_cgroup_sched_in(prev, task); 2361 2362 /* check for system-wide branch_stack events */ 2363 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2364 perf_branch_stack_sched_in(prev, task); 2365 } 2366 2367 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2368 { 2369 u64 frequency = event->attr.sample_freq; 2370 u64 sec = NSEC_PER_SEC; 2371 u64 divisor, dividend; 2372 2373 int count_fls, nsec_fls, frequency_fls, sec_fls; 2374 2375 count_fls = fls64(count); 2376 nsec_fls = fls64(nsec); 2377 frequency_fls = fls64(frequency); 2378 sec_fls = 30; 2379 2380 /* 2381 * We got @count in @nsec, with a target of sample_freq HZ 2382 * the target period becomes: 2383 * 2384 * @count * 10^9 2385 * period = ------------------- 2386 * @nsec * sample_freq 2387 * 2388 */ 2389 2390 /* 2391 * Reduce accuracy by one bit such that @a and @b converge 2392 * to a similar magnitude. 2393 */ 2394 #define REDUCE_FLS(a, b) \ 2395 do { \ 2396 if (a##_fls > b##_fls) { \ 2397 a >>= 1; \ 2398 a##_fls--; \ 2399 } else { \ 2400 b >>= 1; \ 2401 b##_fls--; \ 2402 } \ 2403 } while (0) 2404 2405 /* 2406 * Reduce accuracy until either term fits in a u64, then proceed with 2407 * the other, so that finally we can do a u64/u64 division. 2408 */ 2409 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2410 REDUCE_FLS(nsec, frequency); 2411 REDUCE_FLS(sec, count); 2412 } 2413 2414 if (count_fls + sec_fls > 64) { 2415 divisor = nsec * frequency; 2416 2417 while (count_fls + sec_fls > 64) { 2418 REDUCE_FLS(count, sec); 2419 divisor >>= 1; 2420 } 2421 2422 dividend = count * sec; 2423 } else { 2424 dividend = count * sec; 2425 2426 while (nsec_fls + frequency_fls > 64) { 2427 REDUCE_FLS(nsec, frequency); 2428 dividend >>= 1; 2429 } 2430 2431 divisor = nsec * frequency; 2432 } 2433 2434 if (!divisor) 2435 return dividend; 2436 2437 return div64_u64(dividend, divisor); 2438 } 2439 2440 static DEFINE_PER_CPU(int, perf_throttled_count); 2441 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2442 2443 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2444 { 2445 struct hw_perf_event *hwc = &event->hw; 2446 s64 period, sample_period; 2447 s64 delta; 2448 2449 period = perf_calculate_period(event, nsec, count); 2450 2451 delta = (s64)(period - hwc->sample_period); 2452 delta = (delta + 7) / 8; /* low pass filter */ 2453 2454 sample_period = hwc->sample_period + delta; 2455 2456 if (!sample_period) 2457 sample_period = 1; 2458 2459 hwc->sample_period = sample_period; 2460 2461 if (local64_read(&hwc->period_left) > 8*sample_period) { 2462 if (disable) 2463 event->pmu->stop(event, PERF_EF_UPDATE); 2464 2465 local64_set(&hwc->period_left, 0); 2466 2467 if (disable) 2468 event->pmu->start(event, PERF_EF_RELOAD); 2469 } 2470 } 2471 2472 /* 2473 * combine freq adjustment with unthrottling to avoid two passes over the 2474 * events. At the same time, make sure, having freq events does not change 2475 * the rate of unthrottling as that would introduce bias. 2476 */ 2477 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2478 int needs_unthr) 2479 { 2480 struct perf_event *event; 2481 struct hw_perf_event *hwc; 2482 u64 now, period = TICK_NSEC; 2483 s64 delta; 2484 2485 /* 2486 * only need to iterate over all events iff: 2487 * - context have events in frequency mode (needs freq adjust) 2488 * - there are events to unthrottle on this cpu 2489 */ 2490 if (!(ctx->nr_freq || needs_unthr)) 2491 return; 2492 2493 raw_spin_lock(&ctx->lock); 2494 perf_pmu_disable(ctx->pmu); 2495 2496 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2497 if (event->state != PERF_EVENT_STATE_ACTIVE) 2498 continue; 2499 2500 if (!event_filter_match(event)) 2501 continue; 2502 2503 hwc = &event->hw; 2504 2505 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2506 hwc->interrupts = 0; 2507 perf_log_throttle(event, 1); 2508 event->pmu->start(event, 0); 2509 } 2510 2511 if (!event->attr.freq || !event->attr.sample_freq) 2512 continue; 2513 2514 /* 2515 * stop the event and update event->count 2516 */ 2517 event->pmu->stop(event, PERF_EF_UPDATE); 2518 2519 now = local64_read(&event->count); 2520 delta = now - hwc->freq_count_stamp; 2521 hwc->freq_count_stamp = now; 2522 2523 /* 2524 * restart the event 2525 * reload only if value has changed 2526 * we have stopped the event so tell that 2527 * to perf_adjust_period() to avoid stopping it 2528 * twice. 2529 */ 2530 if (delta > 0) 2531 perf_adjust_period(event, period, delta, false); 2532 2533 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2534 } 2535 2536 perf_pmu_enable(ctx->pmu); 2537 raw_spin_unlock(&ctx->lock); 2538 } 2539 2540 /* 2541 * Round-robin a context's events: 2542 */ 2543 static void rotate_ctx(struct perf_event_context *ctx) 2544 { 2545 /* 2546 * Rotate the first entry last of non-pinned groups. Rotation might be 2547 * disabled by the inheritance code. 2548 */ 2549 if (!ctx->rotate_disable) 2550 list_rotate_left(&ctx->flexible_groups); 2551 } 2552 2553 /* 2554 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2555 * because they're strictly cpu affine and rotate_start is called with IRQs 2556 * disabled, while rotate_context is called from IRQ context. 2557 */ 2558 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2559 { 2560 struct perf_event_context *ctx = NULL; 2561 int rotate = 0, remove = 1; 2562 2563 if (cpuctx->ctx.nr_events) { 2564 remove = 0; 2565 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2566 rotate = 1; 2567 } 2568 2569 ctx = cpuctx->task_ctx; 2570 if (ctx && ctx->nr_events) { 2571 remove = 0; 2572 if (ctx->nr_events != ctx->nr_active) 2573 rotate = 1; 2574 } 2575 2576 if (!rotate) 2577 goto done; 2578 2579 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2580 perf_pmu_disable(cpuctx->ctx.pmu); 2581 2582 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2583 if (ctx) 2584 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2585 2586 rotate_ctx(&cpuctx->ctx); 2587 if (ctx) 2588 rotate_ctx(ctx); 2589 2590 perf_event_sched_in(cpuctx, ctx, current); 2591 2592 perf_pmu_enable(cpuctx->ctx.pmu); 2593 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2594 done: 2595 if (remove) 2596 list_del_init(&cpuctx->rotation_list); 2597 } 2598 2599 #ifdef CONFIG_NO_HZ_FULL 2600 bool perf_event_can_stop_tick(void) 2601 { 2602 if (list_empty(&__get_cpu_var(rotation_list))) 2603 return true; 2604 else 2605 return false; 2606 } 2607 #endif 2608 2609 void perf_event_task_tick(void) 2610 { 2611 struct list_head *head = &__get_cpu_var(rotation_list); 2612 struct perf_cpu_context *cpuctx, *tmp; 2613 struct perf_event_context *ctx; 2614 int throttled; 2615 2616 WARN_ON(!irqs_disabled()); 2617 2618 __this_cpu_inc(perf_throttled_seq); 2619 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2620 2621 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2622 ctx = &cpuctx->ctx; 2623 perf_adjust_freq_unthr_context(ctx, throttled); 2624 2625 ctx = cpuctx->task_ctx; 2626 if (ctx) 2627 perf_adjust_freq_unthr_context(ctx, throttled); 2628 2629 if (cpuctx->jiffies_interval == 1 || 2630 !(jiffies % cpuctx->jiffies_interval)) 2631 perf_rotate_context(cpuctx); 2632 } 2633 } 2634 2635 static int event_enable_on_exec(struct perf_event *event, 2636 struct perf_event_context *ctx) 2637 { 2638 if (!event->attr.enable_on_exec) 2639 return 0; 2640 2641 event->attr.enable_on_exec = 0; 2642 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2643 return 0; 2644 2645 __perf_event_mark_enabled(event); 2646 2647 return 1; 2648 } 2649 2650 /* 2651 * Enable all of a task's events that have been marked enable-on-exec. 2652 * This expects task == current. 2653 */ 2654 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2655 { 2656 struct perf_event *event; 2657 unsigned long flags; 2658 int enabled = 0; 2659 int ret; 2660 2661 local_irq_save(flags); 2662 if (!ctx || !ctx->nr_events) 2663 goto out; 2664 2665 /* 2666 * We must ctxsw out cgroup events to avoid conflict 2667 * when invoking perf_task_event_sched_in() later on 2668 * in this function. Otherwise we end up trying to 2669 * ctxswin cgroup events which are already scheduled 2670 * in. 2671 */ 2672 perf_cgroup_sched_out(current, NULL); 2673 2674 raw_spin_lock(&ctx->lock); 2675 task_ctx_sched_out(ctx); 2676 2677 list_for_each_entry(event, &ctx->event_list, event_entry) { 2678 ret = event_enable_on_exec(event, ctx); 2679 if (ret) 2680 enabled = 1; 2681 } 2682 2683 /* 2684 * Unclone this context if we enabled any event. 2685 */ 2686 if (enabled) 2687 unclone_ctx(ctx); 2688 2689 raw_spin_unlock(&ctx->lock); 2690 2691 /* 2692 * Also calls ctxswin for cgroup events, if any: 2693 */ 2694 perf_event_context_sched_in(ctx, ctx->task); 2695 out: 2696 local_irq_restore(flags); 2697 } 2698 2699 /* 2700 * Cross CPU call to read the hardware event 2701 */ 2702 static void __perf_event_read(void *info) 2703 { 2704 struct perf_event *event = info; 2705 struct perf_event_context *ctx = event->ctx; 2706 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2707 2708 /* 2709 * If this is a task context, we need to check whether it is 2710 * the current task context of this cpu. If not it has been 2711 * scheduled out before the smp call arrived. In that case 2712 * event->count would have been updated to a recent sample 2713 * when the event was scheduled out. 2714 */ 2715 if (ctx->task && cpuctx->task_ctx != ctx) 2716 return; 2717 2718 raw_spin_lock(&ctx->lock); 2719 if (ctx->is_active) { 2720 update_context_time(ctx); 2721 update_cgrp_time_from_event(event); 2722 } 2723 update_event_times(event); 2724 if (event->state == PERF_EVENT_STATE_ACTIVE) 2725 event->pmu->read(event); 2726 raw_spin_unlock(&ctx->lock); 2727 } 2728 2729 static inline u64 perf_event_count(struct perf_event *event) 2730 { 2731 return local64_read(&event->count) + atomic64_read(&event->child_count); 2732 } 2733 2734 static u64 perf_event_read(struct perf_event *event) 2735 { 2736 /* 2737 * If event is enabled and currently active on a CPU, update the 2738 * value in the event structure: 2739 */ 2740 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2741 smp_call_function_single(event->oncpu, 2742 __perf_event_read, event, 1); 2743 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2744 struct perf_event_context *ctx = event->ctx; 2745 unsigned long flags; 2746 2747 raw_spin_lock_irqsave(&ctx->lock, flags); 2748 /* 2749 * may read while context is not active 2750 * (e.g., thread is blocked), in that case 2751 * we cannot update context time 2752 */ 2753 if (ctx->is_active) { 2754 update_context_time(ctx); 2755 update_cgrp_time_from_event(event); 2756 } 2757 update_event_times(event); 2758 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2759 } 2760 2761 return perf_event_count(event); 2762 } 2763 2764 /* 2765 * Initialize the perf_event context in a task_struct: 2766 */ 2767 static void __perf_event_init_context(struct perf_event_context *ctx) 2768 { 2769 raw_spin_lock_init(&ctx->lock); 2770 mutex_init(&ctx->mutex); 2771 INIT_LIST_HEAD(&ctx->pinned_groups); 2772 INIT_LIST_HEAD(&ctx->flexible_groups); 2773 INIT_LIST_HEAD(&ctx->event_list); 2774 atomic_set(&ctx->refcount, 1); 2775 } 2776 2777 static struct perf_event_context * 2778 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2779 { 2780 struct perf_event_context *ctx; 2781 2782 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2783 if (!ctx) 2784 return NULL; 2785 2786 __perf_event_init_context(ctx); 2787 if (task) { 2788 ctx->task = task; 2789 get_task_struct(task); 2790 } 2791 ctx->pmu = pmu; 2792 2793 return ctx; 2794 } 2795 2796 static struct task_struct * 2797 find_lively_task_by_vpid(pid_t vpid) 2798 { 2799 struct task_struct *task; 2800 int err; 2801 2802 rcu_read_lock(); 2803 if (!vpid) 2804 task = current; 2805 else 2806 task = find_task_by_vpid(vpid); 2807 if (task) 2808 get_task_struct(task); 2809 rcu_read_unlock(); 2810 2811 if (!task) 2812 return ERR_PTR(-ESRCH); 2813 2814 /* Reuse ptrace permission checks for now. */ 2815 err = -EACCES; 2816 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2817 goto errout; 2818 2819 return task; 2820 errout: 2821 put_task_struct(task); 2822 return ERR_PTR(err); 2823 2824 } 2825 2826 /* 2827 * Returns a matching context with refcount and pincount. 2828 */ 2829 static struct perf_event_context * 2830 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2831 { 2832 struct perf_event_context *ctx; 2833 struct perf_cpu_context *cpuctx; 2834 unsigned long flags; 2835 int ctxn, err; 2836 2837 if (!task) { 2838 /* Must be root to operate on a CPU event: */ 2839 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2840 return ERR_PTR(-EACCES); 2841 2842 /* 2843 * We could be clever and allow to attach a event to an 2844 * offline CPU and activate it when the CPU comes up, but 2845 * that's for later. 2846 */ 2847 if (!cpu_online(cpu)) 2848 return ERR_PTR(-ENODEV); 2849 2850 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2851 ctx = &cpuctx->ctx; 2852 get_ctx(ctx); 2853 ++ctx->pin_count; 2854 2855 return ctx; 2856 } 2857 2858 err = -EINVAL; 2859 ctxn = pmu->task_ctx_nr; 2860 if (ctxn < 0) 2861 goto errout; 2862 2863 retry: 2864 ctx = perf_lock_task_context(task, ctxn, &flags); 2865 if (ctx) { 2866 unclone_ctx(ctx); 2867 ++ctx->pin_count; 2868 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2869 } else { 2870 ctx = alloc_perf_context(pmu, task); 2871 err = -ENOMEM; 2872 if (!ctx) 2873 goto errout; 2874 2875 err = 0; 2876 mutex_lock(&task->perf_event_mutex); 2877 /* 2878 * If it has already passed perf_event_exit_task(). 2879 * we must see PF_EXITING, it takes this mutex too. 2880 */ 2881 if (task->flags & PF_EXITING) 2882 err = -ESRCH; 2883 else if (task->perf_event_ctxp[ctxn]) 2884 err = -EAGAIN; 2885 else { 2886 get_ctx(ctx); 2887 ++ctx->pin_count; 2888 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2889 } 2890 mutex_unlock(&task->perf_event_mutex); 2891 2892 if (unlikely(err)) { 2893 put_ctx(ctx); 2894 2895 if (err == -EAGAIN) 2896 goto retry; 2897 goto errout; 2898 } 2899 } 2900 2901 return ctx; 2902 2903 errout: 2904 return ERR_PTR(err); 2905 } 2906 2907 static void perf_event_free_filter(struct perf_event *event); 2908 2909 static void free_event_rcu(struct rcu_head *head) 2910 { 2911 struct perf_event *event; 2912 2913 event = container_of(head, struct perf_event, rcu_head); 2914 if (event->ns) 2915 put_pid_ns(event->ns); 2916 perf_event_free_filter(event); 2917 kfree(event); 2918 } 2919 2920 static void ring_buffer_put(struct ring_buffer *rb); 2921 2922 static void free_event(struct perf_event *event) 2923 { 2924 irq_work_sync(&event->pending); 2925 2926 if (!event->parent) { 2927 if (event->attach_state & PERF_ATTACH_TASK) 2928 static_key_slow_dec_deferred(&perf_sched_events); 2929 if (event->attr.mmap || event->attr.mmap_data) 2930 atomic_dec(&nr_mmap_events); 2931 if (event->attr.comm) 2932 atomic_dec(&nr_comm_events); 2933 if (event->attr.task) 2934 atomic_dec(&nr_task_events); 2935 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2936 put_callchain_buffers(); 2937 if (is_cgroup_event(event)) { 2938 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2939 static_key_slow_dec_deferred(&perf_sched_events); 2940 } 2941 2942 if (has_branch_stack(event)) { 2943 static_key_slow_dec_deferred(&perf_sched_events); 2944 /* is system-wide event */ 2945 if (!(event->attach_state & PERF_ATTACH_TASK)) 2946 atomic_dec(&per_cpu(perf_branch_stack_events, 2947 event->cpu)); 2948 } 2949 } 2950 2951 if (event->rb) { 2952 ring_buffer_put(event->rb); 2953 event->rb = NULL; 2954 } 2955 2956 if (is_cgroup_event(event)) 2957 perf_detach_cgroup(event); 2958 2959 if (event->destroy) 2960 event->destroy(event); 2961 2962 if (event->ctx) 2963 put_ctx(event->ctx); 2964 2965 call_rcu(&event->rcu_head, free_event_rcu); 2966 } 2967 2968 int perf_event_release_kernel(struct perf_event *event) 2969 { 2970 struct perf_event_context *ctx = event->ctx; 2971 2972 WARN_ON_ONCE(ctx->parent_ctx); 2973 /* 2974 * There are two ways this annotation is useful: 2975 * 2976 * 1) there is a lock recursion from perf_event_exit_task 2977 * see the comment there. 2978 * 2979 * 2) there is a lock-inversion with mmap_sem through 2980 * perf_event_read_group(), which takes faults while 2981 * holding ctx->mutex, however this is called after 2982 * the last filedesc died, so there is no possibility 2983 * to trigger the AB-BA case. 2984 */ 2985 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2986 raw_spin_lock_irq(&ctx->lock); 2987 perf_group_detach(event); 2988 raw_spin_unlock_irq(&ctx->lock); 2989 perf_remove_from_context(event); 2990 mutex_unlock(&ctx->mutex); 2991 2992 free_event(event); 2993 2994 return 0; 2995 } 2996 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2997 2998 /* 2999 * Called when the last reference to the file is gone. 3000 */ 3001 static void put_event(struct perf_event *event) 3002 { 3003 struct task_struct *owner; 3004 3005 if (!atomic_long_dec_and_test(&event->refcount)) 3006 return; 3007 3008 rcu_read_lock(); 3009 owner = ACCESS_ONCE(event->owner); 3010 /* 3011 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3012 * !owner it means the list deletion is complete and we can indeed 3013 * free this event, otherwise we need to serialize on 3014 * owner->perf_event_mutex. 3015 */ 3016 smp_read_barrier_depends(); 3017 if (owner) { 3018 /* 3019 * Since delayed_put_task_struct() also drops the last 3020 * task reference we can safely take a new reference 3021 * while holding the rcu_read_lock(). 3022 */ 3023 get_task_struct(owner); 3024 } 3025 rcu_read_unlock(); 3026 3027 if (owner) { 3028 mutex_lock(&owner->perf_event_mutex); 3029 /* 3030 * We have to re-check the event->owner field, if it is cleared 3031 * we raced with perf_event_exit_task(), acquiring the mutex 3032 * ensured they're done, and we can proceed with freeing the 3033 * event. 3034 */ 3035 if (event->owner) 3036 list_del_init(&event->owner_entry); 3037 mutex_unlock(&owner->perf_event_mutex); 3038 put_task_struct(owner); 3039 } 3040 3041 perf_event_release_kernel(event); 3042 } 3043 3044 static int perf_release(struct inode *inode, struct file *file) 3045 { 3046 put_event(file->private_data); 3047 return 0; 3048 } 3049 3050 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3051 { 3052 struct perf_event *child; 3053 u64 total = 0; 3054 3055 *enabled = 0; 3056 *running = 0; 3057 3058 mutex_lock(&event->child_mutex); 3059 total += perf_event_read(event); 3060 *enabled += event->total_time_enabled + 3061 atomic64_read(&event->child_total_time_enabled); 3062 *running += event->total_time_running + 3063 atomic64_read(&event->child_total_time_running); 3064 3065 list_for_each_entry(child, &event->child_list, child_list) { 3066 total += perf_event_read(child); 3067 *enabled += child->total_time_enabled; 3068 *running += child->total_time_running; 3069 } 3070 mutex_unlock(&event->child_mutex); 3071 3072 return total; 3073 } 3074 EXPORT_SYMBOL_GPL(perf_event_read_value); 3075 3076 static int perf_event_read_group(struct perf_event *event, 3077 u64 read_format, char __user *buf) 3078 { 3079 struct perf_event *leader = event->group_leader, *sub; 3080 int n = 0, size = 0, ret = -EFAULT; 3081 struct perf_event_context *ctx = leader->ctx; 3082 u64 values[5]; 3083 u64 count, enabled, running; 3084 3085 mutex_lock(&ctx->mutex); 3086 count = perf_event_read_value(leader, &enabled, &running); 3087 3088 values[n++] = 1 + leader->nr_siblings; 3089 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3090 values[n++] = enabled; 3091 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3092 values[n++] = running; 3093 values[n++] = count; 3094 if (read_format & PERF_FORMAT_ID) 3095 values[n++] = primary_event_id(leader); 3096 3097 size = n * sizeof(u64); 3098 3099 if (copy_to_user(buf, values, size)) 3100 goto unlock; 3101 3102 ret = size; 3103 3104 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3105 n = 0; 3106 3107 values[n++] = perf_event_read_value(sub, &enabled, &running); 3108 if (read_format & PERF_FORMAT_ID) 3109 values[n++] = primary_event_id(sub); 3110 3111 size = n * sizeof(u64); 3112 3113 if (copy_to_user(buf + ret, values, size)) { 3114 ret = -EFAULT; 3115 goto unlock; 3116 } 3117 3118 ret += size; 3119 } 3120 unlock: 3121 mutex_unlock(&ctx->mutex); 3122 3123 return ret; 3124 } 3125 3126 static int perf_event_read_one(struct perf_event *event, 3127 u64 read_format, char __user *buf) 3128 { 3129 u64 enabled, running; 3130 u64 values[4]; 3131 int n = 0; 3132 3133 values[n++] = perf_event_read_value(event, &enabled, &running); 3134 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3135 values[n++] = enabled; 3136 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3137 values[n++] = running; 3138 if (read_format & PERF_FORMAT_ID) 3139 values[n++] = primary_event_id(event); 3140 3141 if (copy_to_user(buf, values, n * sizeof(u64))) 3142 return -EFAULT; 3143 3144 return n * sizeof(u64); 3145 } 3146 3147 /* 3148 * Read the performance event - simple non blocking version for now 3149 */ 3150 static ssize_t 3151 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3152 { 3153 u64 read_format = event->attr.read_format; 3154 int ret; 3155 3156 /* 3157 * Return end-of-file for a read on a event that is in 3158 * error state (i.e. because it was pinned but it couldn't be 3159 * scheduled on to the CPU at some point). 3160 */ 3161 if (event->state == PERF_EVENT_STATE_ERROR) 3162 return 0; 3163 3164 if (count < event->read_size) 3165 return -ENOSPC; 3166 3167 WARN_ON_ONCE(event->ctx->parent_ctx); 3168 if (read_format & PERF_FORMAT_GROUP) 3169 ret = perf_event_read_group(event, read_format, buf); 3170 else 3171 ret = perf_event_read_one(event, read_format, buf); 3172 3173 return ret; 3174 } 3175 3176 static ssize_t 3177 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3178 { 3179 struct perf_event *event = file->private_data; 3180 3181 return perf_read_hw(event, buf, count); 3182 } 3183 3184 static unsigned int perf_poll(struct file *file, poll_table *wait) 3185 { 3186 struct perf_event *event = file->private_data; 3187 struct ring_buffer *rb; 3188 unsigned int events = POLL_HUP; 3189 3190 /* 3191 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3192 * grabs the rb reference but perf_event_set_output() overrides it. 3193 * Here is the timeline for two threads T1, T2: 3194 * t0: T1, rb = rcu_dereference(event->rb) 3195 * t1: T2, old_rb = event->rb 3196 * t2: T2, event->rb = new rb 3197 * t3: T2, ring_buffer_detach(old_rb) 3198 * t4: T1, ring_buffer_attach(rb1) 3199 * t5: T1, poll_wait(event->waitq) 3200 * 3201 * To avoid this problem, we grab mmap_mutex in perf_poll() 3202 * thereby ensuring that the assignment of the new ring buffer 3203 * and the detachment of the old buffer appear atomic to perf_poll() 3204 */ 3205 mutex_lock(&event->mmap_mutex); 3206 3207 rcu_read_lock(); 3208 rb = rcu_dereference(event->rb); 3209 if (rb) { 3210 ring_buffer_attach(event, rb); 3211 events = atomic_xchg(&rb->poll, 0); 3212 } 3213 rcu_read_unlock(); 3214 3215 mutex_unlock(&event->mmap_mutex); 3216 3217 poll_wait(file, &event->waitq, wait); 3218 3219 return events; 3220 } 3221 3222 static void perf_event_reset(struct perf_event *event) 3223 { 3224 (void)perf_event_read(event); 3225 local64_set(&event->count, 0); 3226 perf_event_update_userpage(event); 3227 } 3228 3229 /* 3230 * Holding the top-level event's child_mutex means that any 3231 * descendant process that has inherited this event will block 3232 * in sync_child_event if it goes to exit, thus satisfying the 3233 * task existence requirements of perf_event_enable/disable. 3234 */ 3235 static void perf_event_for_each_child(struct perf_event *event, 3236 void (*func)(struct perf_event *)) 3237 { 3238 struct perf_event *child; 3239 3240 WARN_ON_ONCE(event->ctx->parent_ctx); 3241 mutex_lock(&event->child_mutex); 3242 func(event); 3243 list_for_each_entry(child, &event->child_list, child_list) 3244 func(child); 3245 mutex_unlock(&event->child_mutex); 3246 } 3247 3248 static void perf_event_for_each(struct perf_event *event, 3249 void (*func)(struct perf_event *)) 3250 { 3251 struct perf_event_context *ctx = event->ctx; 3252 struct perf_event *sibling; 3253 3254 WARN_ON_ONCE(ctx->parent_ctx); 3255 mutex_lock(&ctx->mutex); 3256 event = event->group_leader; 3257 3258 perf_event_for_each_child(event, func); 3259 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3260 perf_event_for_each_child(sibling, func); 3261 mutex_unlock(&ctx->mutex); 3262 } 3263 3264 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3265 { 3266 struct perf_event_context *ctx = event->ctx; 3267 int ret = 0; 3268 u64 value; 3269 3270 if (!is_sampling_event(event)) 3271 return -EINVAL; 3272 3273 if (copy_from_user(&value, arg, sizeof(value))) 3274 return -EFAULT; 3275 3276 if (!value) 3277 return -EINVAL; 3278 3279 raw_spin_lock_irq(&ctx->lock); 3280 if (event->attr.freq) { 3281 if (value > sysctl_perf_event_sample_rate) { 3282 ret = -EINVAL; 3283 goto unlock; 3284 } 3285 3286 event->attr.sample_freq = value; 3287 } else { 3288 event->attr.sample_period = value; 3289 event->hw.sample_period = value; 3290 } 3291 unlock: 3292 raw_spin_unlock_irq(&ctx->lock); 3293 3294 return ret; 3295 } 3296 3297 static const struct file_operations perf_fops; 3298 3299 static inline int perf_fget_light(int fd, struct fd *p) 3300 { 3301 struct fd f = fdget(fd); 3302 if (!f.file) 3303 return -EBADF; 3304 3305 if (f.file->f_op != &perf_fops) { 3306 fdput(f); 3307 return -EBADF; 3308 } 3309 *p = f; 3310 return 0; 3311 } 3312 3313 static int perf_event_set_output(struct perf_event *event, 3314 struct perf_event *output_event); 3315 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3316 3317 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3318 { 3319 struct perf_event *event = file->private_data; 3320 void (*func)(struct perf_event *); 3321 u32 flags = arg; 3322 3323 switch (cmd) { 3324 case PERF_EVENT_IOC_ENABLE: 3325 func = perf_event_enable; 3326 break; 3327 case PERF_EVENT_IOC_DISABLE: 3328 func = perf_event_disable; 3329 break; 3330 case PERF_EVENT_IOC_RESET: 3331 func = perf_event_reset; 3332 break; 3333 3334 case PERF_EVENT_IOC_REFRESH: 3335 return perf_event_refresh(event, arg); 3336 3337 case PERF_EVENT_IOC_PERIOD: 3338 return perf_event_period(event, (u64 __user *)arg); 3339 3340 case PERF_EVENT_IOC_SET_OUTPUT: 3341 { 3342 int ret; 3343 if (arg != -1) { 3344 struct perf_event *output_event; 3345 struct fd output; 3346 ret = perf_fget_light(arg, &output); 3347 if (ret) 3348 return ret; 3349 output_event = output.file->private_data; 3350 ret = perf_event_set_output(event, output_event); 3351 fdput(output); 3352 } else { 3353 ret = perf_event_set_output(event, NULL); 3354 } 3355 return ret; 3356 } 3357 3358 case PERF_EVENT_IOC_SET_FILTER: 3359 return perf_event_set_filter(event, (void __user *)arg); 3360 3361 default: 3362 return -ENOTTY; 3363 } 3364 3365 if (flags & PERF_IOC_FLAG_GROUP) 3366 perf_event_for_each(event, func); 3367 else 3368 perf_event_for_each_child(event, func); 3369 3370 return 0; 3371 } 3372 3373 int perf_event_task_enable(void) 3374 { 3375 struct perf_event *event; 3376 3377 mutex_lock(¤t->perf_event_mutex); 3378 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3379 perf_event_for_each_child(event, perf_event_enable); 3380 mutex_unlock(¤t->perf_event_mutex); 3381 3382 return 0; 3383 } 3384 3385 int perf_event_task_disable(void) 3386 { 3387 struct perf_event *event; 3388 3389 mutex_lock(¤t->perf_event_mutex); 3390 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3391 perf_event_for_each_child(event, perf_event_disable); 3392 mutex_unlock(¤t->perf_event_mutex); 3393 3394 return 0; 3395 } 3396 3397 static int perf_event_index(struct perf_event *event) 3398 { 3399 if (event->hw.state & PERF_HES_STOPPED) 3400 return 0; 3401 3402 if (event->state != PERF_EVENT_STATE_ACTIVE) 3403 return 0; 3404 3405 return event->pmu->event_idx(event); 3406 } 3407 3408 static void calc_timer_values(struct perf_event *event, 3409 u64 *now, 3410 u64 *enabled, 3411 u64 *running) 3412 { 3413 u64 ctx_time; 3414 3415 *now = perf_clock(); 3416 ctx_time = event->shadow_ctx_time + *now; 3417 *enabled = ctx_time - event->tstamp_enabled; 3418 *running = ctx_time - event->tstamp_running; 3419 } 3420 3421 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3422 { 3423 } 3424 3425 /* 3426 * Callers need to ensure there can be no nesting of this function, otherwise 3427 * the seqlock logic goes bad. We can not serialize this because the arch 3428 * code calls this from NMI context. 3429 */ 3430 void perf_event_update_userpage(struct perf_event *event) 3431 { 3432 struct perf_event_mmap_page *userpg; 3433 struct ring_buffer *rb; 3434 u64 enabled, running, now; 3435 3436 rcu_read_lock(); 3437 /* 3438 * compute total_time_enabled, total_time_running 3439 * based on snapshot values taken when the event 3440 * was last scheduled in. 3441 * 3442 * we cannot simply called update_context_time() 3443 * because of locking issue as we can be called in 3444 * NMI context 3445 */ 3446 calc_timer_values(event, &now, &enabled, &running); 3447 rb = rcu_dereference(event->rb); 3448 if (!rb) 3449 goto unlock; 3450 3451 userpg = rb->user_page; 3452 3453 /* 3454 * Disable preemption so as to not let the corresponding user-space 3455 * spin too long if we get preempted. 3456 */ 3457 preempt_disable(); 3458 ++userpg->lock; 3459 barrier(); 3460 userpg->index = perf_event_index(event); 3461 userpg->offset = perf_event_count(event); 3462 if (userpg->index) 3463 userpg->offset -= local64_read(&event->hw.prev_count); 3464 3465 userpg->time_enabled = enabled + 3466 atomic64_read(&event->child_total_time_enabled); 3467 3468 userpg->time_running = running + 3469 atomic64_read(&event->child_total_time_running); 3470 3471 arch_perf_update_userpage(userpg, now); 3472 3473 barrier(); 3474 ++userpg->lock; 3475 preempt_enable(); 3476 unlock: 3477 rcu_read_unlock(); 3478 } 3479 3480 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3481 { 3482 struct perf_event *event = vma->vm_file->private_data; 3483 struct ring_buffer *rb; 3484 int ret = VM_FAULT_SIGBUS; 3485 3486 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3487 if (vmf->pgoff == 0) 3488 ret = 0; 3489 return ret; 3490 } 3491 3492 rcu_read_lock(); 3493 rb = rcu_dereference(event->rb); 3494 if (!rb) 3495 goto unlock; 3496 3497 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3498 goto unlock; 3499 3500 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3501 if (!vmf->page) 3502 goto unlock; 3503 3504 get_page(vmf->page); 3505 vmf->page->mapping = vma->vm_file->f_mapping; 3506 vmf->page->index = vmf->pgoff; 3507 3508 ret = 0; 3509 unlock: 3510 rcu_read_unlock(); 3511 3512 return ret; 3513 } 3514 3515 static void ring_buffer_attach(struct perf_event *event, 3516 struct ring_buffer *rb) 3517 { 3518 unsigned long flags; 3519 3520 if (!list_empty(&event->rb_entry)) 3521 return; 3522 3523 spin_lock_irqsave(&rb->event_lock, flags); 3524 if (!list_empty(&event->rb_entry)) 3525 goto unlock; 3526 3527 list_add(&event->rb_entry, &rb->event_list); 3528 unlock: 3529 spin_unlock_irqrestore(&rb->event_lock, flags); 3530 } 3531 3532 static void ring_buffer_detach(struct perf_event *event, 3533 struct ring_buffer *rb) 3534 { 3535 unsigned long flags; 3536 3537 if (list_empty(&event->rb_entry)) 3538 return; 3539 3540 spin_lock_irqsave(&rb->event_lock, flags); 3541 list_del_init(&event->rb_entry); 3542 wake_up_all(&event->waitq); 3543 spin_unlock_irqrestore(&rb->event_lock, flags); 3544 } 3545 3546 static void ring_buffer_wakeup(struct perf_event *event) 3547 { 3548 struct ring_buffer *rb; 3549 3550 rcu_read_lock(); 3551 rb = rcu_dereference(event->rb); 3552 if (!rb) 3553 goto unlock; 3554 3555 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3556 wake_up_all(&event->waitq); 3557 3558 unlock: 3559 rcu_read_unlock(); 3560 } 3561 3562 static void rb_free_rcu(struct rcu_head *rcu_head) 3563 { 3564 struct ring_buffer *rb; 3565 3566 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3567 rb_free(rb); 3568 } 3569 3570 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3571 { 3572 struct ring_buffer *rb; 3573 3574 rcu_read_lock(); 3575 rb = rcu_dereference(event->rb); 3576 if (rb) { 3577 if (!atomic_inc_not_zero(&rb->refcount)) 3578 rb = NULL; 3579 } 3580 rcu_read_unlock(); 3581 3582 return rb; 3583 } 3584 3585 static void ring_buffer_put(struct ring_buffer *rb) 3586 { 3587 struct perf_event *event, *n; 3588 unsigned long flags; 3589 3590 if (!atomic_dec_and_test(&rb->refcount)) 3591 return; 3592 3593 spin_lock_irqsave(&rb->event_lock, flags); 3594 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3595 list_del_init(&event->rb_entry); 3596 wake_up_all(&event->waitq); 3597 } 3598 spin_unlock_irqrestore(&rb->event_lock, flags); 3599 3600 call_rcu(&rb->rcu_head, rb_free_rcu); 3601 } 3602 3603 static void perf_mmap_open(struct vm_area_struct *vma) 3604 { 3605 struct perf_event *event = vma->vm_file->private_data; 3606 3607 atomic_inc(&event->mmap_count); 3608 } 3609 3610 static void perf_mmap_close(struct vm_area_struct *vma) 3611 { 3612 struct perf_event *event = vma->vm_file->private_data; 3613 3614 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3615 unsigned long size = perf_data_size(event->rb); 3616 struct user_struct *user = event->mmap_user; 3617 struct ring_buffer *rb = event->rb; 3618 3619 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3620 vma->vm_mm->pinned_vm -= event->mmap_locked; 3621 rcu_assign_pointer(event->rb, NULL); 3622 ring_buffer_detach(event, rb); 3623 mutex_unlock(&event->mmap_mutex); 3624 3625 ring_buffer_put(rb); 3626 free_uid(user); 3627 } 3628 } 3629 3630 static const struct vm_operations_struct perf_mmap_vmops = { 3631 .open = perf_mmap_open, 3632 .close = perf_mmap_close, 3633 .fault = perf_mmap_fault, 3634 .page_mkwrite = perf_mmap_fault, 3635 }; 3636 3637 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3638 { 3639 struct perf_event *event = file->private_data; 3640 unsigned long user_locked, user_lock_limit; 3641 struct user_struct *user = current_user(); 3642 unsigned long locked, lock_limit; 3643 struct ring_buffer *rb; 3644 unsigned long vma_size; 3645 unsigned long nr_pages; 3646 long user_extra, extra; 3647 int ret = 0, flags = 0; 3648 3649 /* 3650 * Don't allow mmap() of inherited per-task counters. This would 3651 * create a performance issue due to all children writing to the 3652 * same rb. 3653 */ 3654 if (event->cpu == -1 && event->attr.inherit) 3655 return -EINVAL; 3656 3657 if (!(vma->vm_flags & VM_SHARED)) 3658 return -EINVAL; 3659 3660 vma_size = vma->vm_end - vma->vm_start; 3661 nr_pages = (vma_size / PAGE_SIZE) - 1; 3662 3663 /* 3664 * If we have rb pages ensure they're a power-of-two number, so we 3665 * can do bitmasks instead of modulo. 3666 */ 3667 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3668 return -EINVAL; 3669 3670 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3671 return -EINVAL; 3672 3673 if (vma->vm_pgoff != 0) 3674 return -EINVAL; 3675 3676 WARN_ON_ONCE(event->ctx->parent_ctx); 3677 mutex_lock(&event->mmap_mutex); 3678 if (event->rb) { 3679 if (event->rb->nr_pages == nr_pages) 3680 atomic_inc(&event->rb->refcount); 3681 else 3682 ret = -EINVAL; 3683 goto unlock; 3684 } 3685 3686 user_extra = nr_pages + 1; 3687 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3688 3689 /* 3690 * Increase the limit linearly with more CPUs: 3691 */ 3692 user_lock_limit *= num_online_cpus(); 3693 3694 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3695 3696 extra = 0; 3697 if (user_locked > user_lock_limit) 3698 extra = user_locked - user_lock_limit; 3699 3700 lock_limit = rlimit(RLIMIT_MEMLOCK); 3701 lock_limit >>= PAGE_SHIFT; 3702 locked = vma->vm_mm->pinned_vm + extra; 3703 3704 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3705 !capable(CAP_IPC_LOCK)) { 3706 ret = -EPERM; 3707 goto unlock; 3708 } 3709 3710 WARN_ON(event->rb); 3711 3712 if (vma->vm_flags & VM_WRITE) 3713 flags |= RING_BUFFER_WRITABLE; 3714 3715 rb = rb_alloc(nr_pages, 3716 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3717 event->cpu, flags); 3718 3719 if (!rb) { 3720 ret = -ENOMEM; 3721 goto unlock; 3722 } 3723 rcu_assign_pointer(event->rb, rb); 3724 3725 atomic_long_add(user_extra, &user->locked_vm); 3726 event->mmap_locked = extra; 3727 event->mmap_user = get_current_user(); 3728 vma->vm_mm->pinned_vm += event->mmap_locked; 3729 3730 perf_event_update_userpage(event); 3731 3732 unlock: 3733 if (!ret) 3734 atomic_inc(&event->mmap_count); 3735 mutex_unlock(&event->mmap_mutex); 3736 3737 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3738 vma->vm_ops = &perf_mmap_vmops; 3739 3740 return ret; 3741 } 3742 3743 static int perf_fasync(int fd, struct file *filp, int on) 3744 { 3745 struct inode *inode = file_inode(filp); 3746 struct perf_event *event = filp->private_data; 3747 int retval; 3748 3749 mutex_lock(&inode->i_mutex); 3750 retval = fasync_helper(fd, filp, on, &event->fasync); 3751 mutex_unlock(&inode->i_mutex); 3752 3753 if (retval < 0) 3754 return retval; 3755 3756 return 0; 3757 } 3758 3759 static const struct file_operations perf_fops = { 3760 .llseek = no_llseek, 3761 .release = perf_release, 3762 .read = perf_read, 3763 .poll = perf_poll, 3764 .unlocked_ioctl = perf_ioctl, 3765 .compat_ioctl = perf_ioctl, 3766 .mmap = perf_mmap, 3767 .fasync = perf_fasync, 3768 }; 3769 3770 /* 3771 * Perf event wakeup 3772 * 3773 * If there's data, ensure we set the poll() state and publish everything 3774 * to user-space before waking everybody up. 3775 */ 3776 3777 void perf_event_wakeup(struct perf_event *event) 3778 { 3779 ring_buffer_wakeup(event); 3780 3781 if (event->pending_kill) { 3782 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3783 event->pending_kill = 0; 3784 } 3785 } 3786 3787 static void perf_pending_event(struct irq_work *entry) 3788 { 3789 struct perf_event *event = container_of(entry, 3790 struct perf_event, pending); 3791 3792 if (event->pending_disable) { 3793 event->pending_disable = 0; 3794 __perf_event_disable(event); 3795 } 3796 3797 if (event->pending_wakeup) { 3798 event->pending_wakeup = 0; 3799 perf_event_wakeup(event); 3800 } 3801 } 3802 3803 /* 3804 * We assume there is only KVM supporting the callbacks. 3805 * Later on, we might change it to a list if there is 3806 * another virtualization implementation supporting the callbacks. 3807 */ 3808 struct perf_guest_info_callbacks *perf_guest_cbs; 3809 3810 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3811 { 3812 perf_guest_cbs = cbs; 3813 return 0; 3814 } 3815 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3816 3817 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3818 { 3819 perf_guest_cbs = NULL; 3820 return 0; 3821 } 3822 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3823 3824 static void 3825 perf_output_sample_regs(struct perf_output_handle *handle, 3826 struct pt_regs *regs, u64 mask) 3827 { 3828 int bit; 3829 3830 for_each_set_bit(bit, (const unsigned long *) &mask, 3831 sizeof(mask) * BITS_PER_BYTE) { 3832 u64 val; 3833 3834 val = perf_reg_value(regs, bit); 3835 perf_output_put(handle, val); 3836 } 3837 } 3838 3839 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 3840 struct pt_regs *regs) 3841 { 3842 if (!user_mode(regs)) { 3843 if (current->mm) 3844 regs = task_pt_regs(current); 3845 else 3846 regs = NULL; 3847 } 3848 3849 if (regs) { 3850 regs_user->regs = regs; 3851 regs_user->abi = perf_reg_abi(current); 3852 } 3853 } 3854 3855 /* 3856 * Get remaining task size from user stack pointer. 3857 * 3858 * It'd be better to take stack vma map and limit this more 3859 * precisly, but there's no way to get it safely under interrupt, 3860 * so using TASK_SIZE as limit. 3861 */ 3862 static u64 perf_ustack_task_size(struct pt_regs *regs) 3863 { 3864 unsigned long addr = perf_user_stack_pointer(regs); 3865 3866 if (!addr || addr >= TASK_SIZE) 3867 return 0; 3868 3869 return TASK_SIZE - addr; 3870 } 3871 3872 static u16 3873 perf_sample_ustack_size(u16 stack_size, u16 header_size, 3874 struct pt_regs *regs) 3875 { 3876 u64 task_size; 3877 3878 /* No regs, no stack pointer, no dump. */ 3879 if (!regs) 3880 return 0; 3881 3882 /* 3883 * Check if we fit in with the requested stack size into the: 3884 * - TASK_SIZE 3885 * If we don't, we limit the size to the TASK_SIZE. 3886 * 3887 * - remaining sample size 3888 * If we don't, we customize the stack size to 3889 * fit in to the remaining sample size. 3890 */ 3891 3892 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 3893 stack_size = min(stack_size, (u16) task_size); 3894 3895 /* Current header size plus static size and dynamic size. */ 3896 header_size += 2 * sizeof(u64); 3897 3898 /* Do we fit in with the current stack dump size? */ 3899 if ((u16) (header_size + stack_size) < header_size) { 3900 /* 3901 * If we overflow the maximum size for the sample, 3902 * we customize the stack dump size to fit in. 3903 */ 3904 stack_size = USHRT_MAX - header_size - sizeof(u64); 3905 stack_size = round_up(stack_size, sizeof(u64)); 3906 } 3907 3908 return stack_size; 3909 } 3910 3911 static void 3912 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 3913 struct pt_regs *regs) 3914 { 3915 /* Case of a kernel thread, nothing to dump */ 3916 if (!regs) { 3917 u64 size = 0; 3918 perf_output_put(handle, size); 3919 } else { 3920 unsigned long sp; 3921 unsigned int rem; 3922 u64 dyn_size; 3923 3924 /* 3925 * We dump: 3926 * static size 3927 * - the size requested by user or the best one we can fit 3928 * in to the sample max size 3929 * data 3930 * - user stack dump data 3931 * dynamic size 3932 * - the actual dumped size 3933 */ 3934 3935 /* Static size. */ 3936 perf_output_put(handle, dump_size); 3937 3938 /* Data. */ 3939 sp = perf_user_stack_pointer(regs); 3940 rem = __output_copy_user(handle, (void *) sp, dump_size); 3941 dyn_size = dump_size - rem; 3942 3943 perf_output_skip(handle, rem); 3944 3945 /* Dynamic size. */ 3946 perf_output_put(handle, dyn_size); 3947 } 3948 } 3949 3950 static void __perf_event_header__init_id(struct perf_event_header *header, 3951 struct perf_sample_data *data, 3952 struct perf_event *event) 3953 { 3954 u64 sample_type = event->attr.sample_type; 3955 3956 data->type = sample_type; 3957 header->size += event->id_header_size; 3958 3959 if (sample_type & PERF_SAMPLE_TID) { 3960 /* namespace issues */ 3961 data->tid_entry.pid = perf_event_pid(event, current); 3962 data->tid_entry.tid = perf_event_tid(event, current); 3963 } 3964 3965 if (sample_type & PERF_SAMPLE_TIME) 3966 data->time = perf_clock(); 3967 3968 if (sample_type & PERF_SAMPLE_ID) 3969 data->id = primary_event_id(event); 3970 3971 if (sample_type & PERF_SAMPLE_STREAM_ID) 3972 data->stream_id = event->id; 3973 3974 if (sample_type & PERF_SAMPLE_CPU) { 3975 data->cpu_entry.cpu = raw_smp_processor_id(); 3976 data->cpu_entry.reserved = 0; 3977 } 3978 } 3979 3980 void perf_event_header__init_id(struct perf_event_header *header, 3981 struct perf_sample_data *data, 3982 struct perf_event *event) 3983 { 3984 if (event->attr.sample_id_all) 3985 __perf_event_header__init_id(header, data, event); 3986 } 3987 3988 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3989 struct perf_sample_data *data) 3990 { 3991 u64 sample_type = data->type; 3992 3993 if (sample_type & PERF_SAMPLE_TID) 3994 perf_output_put(handle, data->tid_entry); 3995 3996 if (sample_type & PERF_SAMPLE_TIME) 3997 perf_output_put(handle, data->time); 3998 3999 if (sample_type & PERF_SAMPLE_ID) 4000 perf_output_put(handle, data->id); 4001 4002 if (sample_type & PERF_SAMPLE_STREAM_ID) 4003 perf_output_put(handle, data->stream_id); 4004 4005 if (sample_type & PERF_SAMPLE_CPU) 4006 perf_output_put(handle, data->cpu_entry); 4007 } 4008 4009 void perf_event__output_id_sample(struct perf_event *event, 4010 struct perf_output_handle *handle, 4011 struct perf_sample_data *sample) 4012 { 4013 if (event->attr.sample_id_all) 4014 __perf_event__output_id_sample(handle, sample); 4015 } 4016 4017 static void perf_output_read_one(struct perf_output_handle *handle, 4018 struct perf_event *event, 4019 u64 enabled, u64 running) 4020 { 4021 u64 read_format = event->attr.read_format; 4022 u64 values[4]; 4023 int n = 0; 4024 4025 values[n++] = perf_event_count(event); 4026 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4027 values[n++] = enabled + 4028 atomic64_read(&event->child_total_time_enabled); 4029 } 4030 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4031 values[n++] = running + 4032 atomic64_read(&event->child_total_time_running); 4033 } 4034 if (read_format & PERF_FORMAT_ID) 4035 values[n++] = primary_event_id(event); 4036 4037 __output_copy(handle, values, n * sizeof(u64)); 4038 } 4039 4040 /* 4041 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4042 */ 4043 static void perf_output_read_group(struct perf_output_handle *handle, 4044 struct perf_event *event, 4045 u64 enabled, u64 running) 4046 { 4047 struct perf_event *leader = event->group_leader, *sub; 4048 u64 read_format = event->attr.read_format; 4049 u64 values[5]; 4050 int n = 0; 4051 4052 values[n++] = 1 + leader->nr_siblings; 4053 4054 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4055 values[n++] = enabled; 4056 4057 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4058 values[n++] = running; 4059 4060 if (leader != event) 4061 leader->pmu->read(leader); 4062 4063 values[n++] = perf_event_count(leader); 4064 if (read_format & PERF_FORMAT_ID) 4065 values[n++] = primary_event_id(leader); 4066 4067 __output_copy(handle, values, n * sizeof(u64)); 4068 4069 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4070 n = 0; 4071 4072 if (sub != event) 4073 sub->pmu->read(sub); 4074 4075 values[n++] = perf_event_count(sub); 4076 if (read_format & PERF_FORMAT_ID) 4077 values[n++] = primary_event_id(sub); 4078 4079 __output_copy(handle, values, n * sizeof(u64)); 4080 } 4081 } 4082 4083 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4084 PERF_FORMAT_TOTAL_TIME_RUNNING) 4085 4086 static void perf_output_read(struct perf_output_handle *handle, 4087 struct perf_event *event) 4088 { 4089 u64 enabled = 0, running = 0, now; 4090 u64 read_format = event->attr.read_format; 4091 4092 /* 4093 * compute total_time_enabled, total_time_running 4094 * based on snapshot values taken when the event 4095 * was last scheduled in. 4096 * 4097 * we cannot simply called update_context_time() 4098 * because of locking issue as we are called in 4099 * NMI context 4100 */ 4101 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4102 calc_timer_values(event, &now, &enabled, &running); 4103 4104 if (event->attr.read_format & PERF_FORMAT_GROUP) 4105 perf_output_read_group(handle, event, enabled, running); 4106 else 4107 perf_output_read_one(handle, event, enabled, running); 4108 } 4109 4110 void perf_output_sample(struct perf_output_handle *handle, 4111 struct perf_event_header *header, 4112 struct perf_sample_data *data, 4113 struct perf_event *event) 4114 { 4115 u64 sample_type = data->type; 4116 4117 perf_output_put(handle, *header); 4118 4119 if (sample_type & PERF_SAMPLE_IP) 4120 perf_output_put(handle, data->ip); 4121 4122 if (sample_type & PERF_SAMPLE_TID) 4123 perf_output_put(handle, data->tid_entry); 4124 4125 if (sample_type & PERF_SAMPLE_TIME) 4126 perf_output_put(handle, data->time); 4127 4128 if (sample_type & PERF_SAMPLE_ADDR) 4129 perf_output_put(handle, data->addr); 4130 4131 if (sample_type & PERF_SAMPLE_ID) 4132 perf_output_put(handle, data->id); 4133 4134 if (sample_type & PERF_SAMPLE_STREAM_ID) 4135 perf_output_put(handle, data->stream_id); 4136 4137 if (sample_type & PERF_SAMPLE_CPU) 4138 perf_output_put(handle, data->cpu_entry); 4139 4140 if (sample_type & PERF_SAMPLE_PERIOD) 4141 perf_output_put(handle, data->period); 4142 4143 if (sample_type & PERF_SAMPLE_READ) 4144 perf_output_read(handle, event); 4145 4146 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4147 if (data->callchain) { 4148 int size = 1; 4149 4150 if (data->callchain) 4151 size += data->callchain->nr; 4152 4153 size *= sizeof(u64); 4154 4155 __output_copy(handle, data->callchain, size); 4156 } else { 4157 u64 nr = 0; 4158 perf_output_put(handle, nr); 4159 } 4160 } 4161 4162 if (sample_type & PERF_SAMPLE_RAW) { 4163 if (data->raw) { 4164 perf_output_put(handle, data->raw->size); 4165 __output_copy(handle, data->raw->data, 4166 data->raw->size); 4167 } else { 4168 struct { 4169 u32 size; 4170 u32 data; 4171 } raw = { 4172 .size = sizeof(u32), 4173 .data = 0, 4174 }; 4175 perf_output_put(handle, raw); 4176 } 4177 } 4178 4179 if (!event->attr.watermark) { 4180 int wakeup_events = event->attr.wakeup_events; 4181 4182 if (wakeup_events) { 4183 struct ring_buffer *rb = handle->rb; 4184 int events = local_inc_return(&rb->events); 4185 4186 if (events >= wakeup_events) { 4187 local_sub(wakeup_events, &rb->events); 4188 local_inc(&rb->wakeup); 4189 } 4190 } 4191 } 4192 4193 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4194 if (data->br_stack) { 4195 size_t size; 4196 4197 size = data->br_stack->nr 4198 * sizeof(struct perf_branch_entry); 4199 4200 perf_output_put(handle, data->br_stack->nr); 4201 perf_output_copy(handle, data->br_stack->entries, size); 4202 } else { 4203 /* 4204 * we always store at least the value of nr 4205 */ 4206 u64 nr = 0; 4207 perf_output_put(handle, nr); 4208 } 4209 } 4210 4211 if (sample_type & PERF_SAMPLE_REGS_USER) { 4212 u64 abi = data->regs_user.abi; 4213 4214 /* 4215 * If there are no regs to dump, notice it through 4216 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4217 */ 4218 perf_output_put(handle, abi); 4219 4220 if (abi) { 4221 u64 mask = event->attr.sample_regs_user; 4222 perf_output_sample_regs(handle, 4223 data->regs_user.regs, 4224 mask); 4225 } 4226 } 4227 4228 if (sample_type & PERF_SAMPLE_STACK_USER) 4229 perf_output_sample_ustack(handle, 4230 data->stack_user_size, 4231 data->regs_user.regs); 4232 4233 if (sample_type & PERF_SAMPLE_WEIGHT) 4234 perf_output_put(handle, data->weight); 4235 4236 if (sample_type & PERF_SAMPLE_DATA_SRC) 4237 perf_output_put(handle, data->data_src.val); 4238 } 4239 4240 void perf_prepare_sample(struct perf_event_header *header, 4241 struct perf_sample_data *data, 4242 struct perf_event *event, 4243 struct pt_regs *regs) 4244 { 4245 u64 sample_type = event->attr.sample_type; 4246 4247 header->type = PERF_RECORD_SAMPLE; 4248 header->size = sizeof(*header) + event->header_size; 4249 4250 header->misc = 0; 4251 header->misc |= perf_misc_flags(regs); 4252 4253 __perf_event_header__init_id(header, data, event); 4254 4255 if (sample_type & PERF_SAMPLE_IP) 4256 data->ip = perf_instruction_pointer(regs); 4257 4258 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4259 int size = 1; 4260 4261 data->callchain = perf_callchain(event, regs); 4262 4263 if (data->callchain) 4264 size += data->callchain->nr; 4265 4266 header->size += size * sizeof(u64); 4267 } 4268 4269 if (sample_type & PERF_SAMPLE_RAW) { 4270 int size = sizeof(u32); 4271 4272 if (data->raw) 4273 size += data->raw->size; 4274 else 4275 size += sizeof(u32); 4276 4277 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4278 header->size += size; 4279 } 4280 4281 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4282 int size = sizeof(u64); /* nr */ 4283 if (data->br_stack) { 4284 size += data->br_stack->nr 4285 * sizeof(struct perf_branch_entry); 4286 } 4287 header->size += size; 4288 } 4289 4290 if (sample_type & PERF_SAMPLE_REGS_USER) { 4291 /* regs dump ABI info */ 4292 int size = sizeof(u64); 4293 4294 perf_sample_regs_user(&data->regs_user, regs); 4295 4296 if (data->regs_user.regs) { 4297 u64 mask = event->attr.sample_regs_user; 4298 size += hweight64(mask) * sizeof(u64); 4299 } 4300 4301 header->size += size; 4302 } 4303 4304 if (sample_type & PERF_SAMPLE_STACK_USER) { 4305 /* 4306 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4307 * processed as the last one or have additional check added 4308 * in case new sample type is added, because we could eat 4309 * up the rest of the sample size. 4310 */ 4311 struct perf_regs_user *uregs = &data->regs_user; 4312 u16 stack_size = event->attr.sample_stack_user; 4313 u16 size = sizeof(u64); 4314 4315 if (!uregs->abi) 4316 perf_sample_regs_user(uregs, regs); 4317 4318 stack_size = perf_sample_ustack_size(stack_size, header->size, 4319 uregs->regs); 4320 4321 /* 4322 * If there is something to dump, add space for the dump 4323 * itself and for the field that tells the dynamic size, 4324 * which is how many have been actually dumped. 4325 */ 4326 if (stack_size) 4327 size += sizeof(u64) + stack_size; 4328 4329 data->stack_user_size = stack_size; 4330 header->size += size; 4331 } 4332 } 4333 4334 static void perf_event_output(struct perf_event *event, 4335 struct perf_sample_data *data, 4336 struct pt_regs *regs) 4337 { 4338 struct perf_output_handle handle; 4339 struct perf_event_header header; 4340 4341 /* protect the callchain buffers */ 4342 rcu_read_lock(); 4343 4344 perf_prepare_sample(&header, data, event, regs); 4345 4346 if (perf_output_begin(&handle, event, header.size)) 4347 goto exit; 4348 4349 perf_output_sample(&handle, &header, data, event); 4350 4351 perf_output_end(&handle); 4352 4353 exit: 4354 rcu_read_unlock(); 4355 } 4356 4357 /* 4358 * read event_id 4359 */ 4360 4361 struct perf_read_event { 4362 struct perf_event_header header; 4363 4364 u32 pid; 4365 u32 tid; 4366 }; 4367 4368 static void 4369 perf_event_read_event(struct perf_event *event, 4370 struct task_struct *task) 4371 { 4372 struct perf_output_handle handle; 4373 struct perf_sample_data sample; 4374 struct perf_read_event read_event = { 4375 .header = { 4376 .type = PERF_RECORD_READ, 4377 .misc = 0, 4378 .size = sizeof(read_event) + event->read_size, 4379 }, 4380 .pid = perf_event_pid(event, task), 4381 .tid = perf_event_tid(event, task), 4382 }; 4383 int ret; 4384 4385 perf_event_header__init_id(&read_event.header, &sample, event); 4386 ret = perf_output_begin(&handle, event, read_event.header.size); 4387 if (ret) 4388 return; 4389 4390 perf_output_put(&handle, read_event); 4391 perf_output_read(&handle, event); 4392 perf_event__output_id_sample(event, &handle, &sample); 4393 4394 perf_output_end(&handle); 4395 } 4396 4397 typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data); 4398 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 4399 4400 static void 4401 perf_event_aux_ctx(struct perf_event_context *ctx, 4402 perf_event_aux_match_cb match, 4403 perf_event_aux_output_cb output, 4404 void *data) 4405 { 4406 struct perf_event *event; 4407 4408 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4409 if (event->state < PERF_EVENT_STATE_INACTIVE) 4410 continue; 4411 if (!event_filter_match(event)) 4412 continue; 4413 if (match(event, data)) 4414 output(event, data); 4415 } 4416 } 4417 4418 static void 4419 perf_event_aux(perf_event_aux_match_cb match, 4420 perf_event_aux_output_cb output, 4421 void *data, 4422 struct perf_event_context *task_ctx) 4423 { 4424 struct perf_cpu_context *cpuctx; 4425 struct perf_event_context *ctx; 4426 struct pmu *pmu; 4427 int ctxn; 4428 4429 rcu_read_lock(); 4430 list_for_each_entry_rcu(pmu, &pmus, entry) { 4431 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4432 if (cpuctx->unique_pmu != pmu) 4433 goto next; 4434 perf_event_aux_ctx(&cpuctx->ctx, match, output, data); 4435 if (task_ctx) 4436 goto next; 4437 ctxn = pmu->task_ctx_nr; 4438 if (ctxn < 0) 4439 goto next; 4440 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4441 if (ctx) 4442 perf_event_aux_ctx(ctx, match, output, data); 4443 next: 4444 put_cpu_ptr(pmu->pmu_cpu_context); 4445 } 4446 4447 if (task_ctx) { 4448 preempt_disable(); 4449 perf_event_aux_ctx(task_ctx, match, output, data); 4450 preempt_enable(); 4451 } 4452 rcu_read_unlock(); 4453 } 4454 4455 /* 4456 * task tracking -- fork/exit 4457 * 4458 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4459 */ 4460 4461 struct perf_task_event { 4462 struct task_struct *task; 4463 struct perf_event_context *task_ctx; 4464 4465 struct { 4466 struct perf_event_header header; 4467 4468 u32 pid; 4469 u32 ppid; 4470 u32 tid; 4471 u32 ptid; 4472 u64 time; 4473 } event_id; 4474 }; 4475 4476 static void perf_event_task_output(struct perf_event *event, 4477 void *data) 4478 { 4479 struct perf_task_event *task_event = data; 4480 struct perf_output_handle handle; 4481 struct perf_sample_data sample; 4482 struct task_struct *task = task_event->task; 4483 int ret, size = task_event->event_id.header.size; 4484 4485 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4486 4487 ret = perf_output_begin(&handle, event, 4488 task_event->event_id.header.size); 4489 if (ret) 4490 goto out; 4491 4492 task_event->event_id.pid = perf_event_pid(event, task); 4493 task_event->event_id.ppid = perf_event_pid(event, current); 4494 4495 task_event->event_id.tid = perf_event_tid(event, task); 4496 task_event->event_id.ptid = perf_event_tid(event, current); 4497 4498 perf_output_put(&handle, task_event->event_id); 4499 4500 perf_event__output_id_sample(event, &handle, &sample); 4501 4502 perf_output_end(&handle); 4503 out: 4504 task_event->event_id.header.size = size; 4505 } 4506 4507 static int perf_event_task_match(struct perf_event *event, 4508 void *data __maybe_unused) 4509 { 4510 return event->attr.comm || event->attr.mmap || 4511 event->attr.mmap_data || event->attr.task; 4512 } 4513 4514 static void perf_event_task(struct task_struct *task, 4515 struct perf_event_context *task_ctx, 4516 int new) 4517 { 4518 struct perf_task_event task_event; 4519 4520 if (!atomic_read(&nr_comm_events) && 4521 !atomic_read(&nr_mmap_events) && 4522 !atomic_read(&nr_task_events)) 4523 return; 4524 4525 task_event = (struct perf_task_event){ 4526 .task = task, 4527 .task_ctx = task_ctx, 4528 .event_id = { 4529 .header = { 4530 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4531 .misc = 0, 4532 .size = sizeof(task_event.event_id), 4533 }, 4534 /* .pid */ 4535 /* .ppid */ 4536 /* .tid */ 4537 /* .ptid */ 4538 .time = perf_clock(), 4539 }, 4540 }; 4541 4542 perf_event_aux(perf_event_task_match, 4543 perf_event_task_output, 4544 &task_event, 4545 task_ctx); 4546 } 4547 4548 void perf_event_fork(struct task_struct *task) 4549 { 4550 perf_event_task(task, NULL, 1); 4551 } 4552 4553 /* 4554 * comm tracking 4555 */ 4556 4557 struct perf_comm_event { 4558 struct task_struct *task; 4559 char *comm; 4560 int comm_size; 4561 4562 struct { 4563 struct perf_event_header header; 4564 4565 u32 pid; 4566 u32 tid; 4567 } event_id; 4568 }; 4569 4570 static void perf_event_comm_output(struct perf_event *event, 4571 void *data) 4572 { 4573 struct perf_comm_event *comm_event = data; 4574 struct perf_output_handle handle; 4575 struct perf_sample_data sample; 4576 int size = comm_event->event_id.header.size; 4577 int ret; 4578 4579 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4580 ret = perf_output_begin(&handle, event, 4581 comm_event->event_id.header.size); 4582 4583 if (ret) 4584 goto out; 4585 4586 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4587 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4588 4589 perf_output_put(&handle, comm_event->event_id); 4590 __output_copy(&handle, comm_event->comm, 4591 comm_event->comm_size); 4592 4593 perf_event__output_id_sample(event, &handle, &sample); 4594 4595 perf_output_end(&handle); 4596 out: 4597 comm_event->event_id.header.size = size; 4598 } 4599 4600 static int perf_event_comm_match(struct perf_event *event, 4601 void *data __maybe_unused) 4602 { 4603 return event->attr.comm; 4604 } 4605 4606 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4607 { 4608 char comm[TASK_COMM_LEN]; 4609 unsigned int size; 4610 4611 memset(comm, 0, sizeof(comm)); 4612 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4613 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4614 4615 comm_event->comm = comm; 4616 comm_event->comm_size = size; 4617 4618 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4619 4620 perf_event_aux(perf_event_comm_match, 4621 perf_event_comm_output, 4622 comm_event, 4623 NULL); 4624 } 4625 4626 void perf_event_comm(struct task_struct *task) 4627 { 4628 struct perf_comm_event comm_event; 4629 struct perf_event_context *ctx; 4630 int ctxn; 4631 4632 rcu_read_lock(); 4633 for_each_task_context_nr(ctxn) { 4634 ctx = task->perf_event_ctxp[ctxn]; 4635 if (!ctx) 4636 continue; 4637 4638 perf_event_enable_on_exec(ctx); 4639 } 4640 rcu_read_unlock(); 4641 4642 if (!atomic_read(&nr_comm_events)) 4643 return; 4644 4645 comm_event = (struct perf_comm_event){ 4646 .task = task, 4647 /* .comm */ 4648 /* .comm_size */ 4649 .event_id = { 4650 .header = { 4651 .type = PERF_RECORD_COMM, 4652 .misc = 0, 4653 /* .size */ 4654 }, 4655 /* .pid */ 4656 /* .tid */ 4657 }, 4658 }; 4659 4660 perf_event_comm_event(&comm_event); 4661 } 4662 4663 /* 4664 * mmap tracking 4665 */ 4666 4667 struct perf_mmap_event { 4668 struct vm_area_struct *vma; 4669 4670 const char *file_name; 4671 int file_size; 4672 4673 struct { 4674 struct perf_event_header header; 4675 4676 u32 pid; 4677 u32 tid; 4678 u64 start; 4679 u64 len; 4680 u64 pgoff; 4681 } event_id; 4682 }; 4683 4684 static void perf_event_mmap_output(struct perf_event *event, 4685 void *data) 4686 { 4687 struct perf_mmap_event *mmap_event = data; 4688 struct perf_output_handle handle; 4689 struct perf_sample_data sample; 4690 int size = mmap_event->event_id.header.size; 4691 int ret; 4692 4693 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4694 ret = perf_output_begin(&handle, event, 4695 mmap_event->event_id.header.size); 4696 if (ret) 4697 goto out; 4698 4699 mmap_event->event_id.pid = perf_event_pid(event, current); 4700 mmap_event->event_id.tid = perf_event_tid(event, current); 4701 4702 perf_output_put(&handle, mmap_event->event_id); 4703 __output_copy(&handle, mmap_event->file_name, 4704 mmap_event->file_size); 4705 4706 perf_event__output_id_sample(event, &handle, &sample); 4707 4708 perf_output_end(&handle); 4709 out: 4710 mmap_event->event_id.header.size = size; 4711 } 4712 4713 static int perf_event_mmap_match(struct perf_event *event, 4714 void *data) 4715 { 4716 struct perf_mmap_event *mmap_event = data; 4717 struct vm_area_struct *vma = mmap_event->vma; 4718 int executable = vma->vm_flags & VM_EXEC; 4719 4720 return (!executable && event->attr.mmap_data) || 4721 (executable && event->attr.mmap); 4722 } 4723 4724 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4725 { 4726 struct vm_area_struct *vma = mmap_event->vma; 4727 struct file *file = vma->vm_file; 4728 unsigned int size; 4729 char tmp[16]; 4730 char *buf = NULL; 4731 const char *name; 4732 4733 memset(tmp, 0, sizeof(tmp)); 4734 4735 if (file) { 4736 /* 4737 * d_path works from the end of the rb backwards, so we 4738 * need to add enough zero bytes after the string to handle 4739 * the 64bit alignment we do later. 4740 */ 4741 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4742 if (!buf) { 4743 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4744 goto got_name; 4745 } 4746 name = d_path(&file->f_path, buf, PATH_MAX); 4747 if (IS_ERR(name)) { 4748 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4749 goto got_name; 4750 } 4751 } else { 4752 if (arch_vma_name(mmap_event->vma)) { 4753 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4754 sizeof(tmp) - 1); 4755 tmp[sizeof(tmp) - 1] = '\0'; 4756 goto got_name; 4757 } 4758 4759 if (!vma->vm_mm) { 4760 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4761 goto got_name; 4762 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4763 vma->vm_end >= vma->vm_mm->brk) { 4764 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4765 goto got_name; 4766 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4767 vma->vm_end >= vma->vm_mm->start_stack) { 4768 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4769 goto got_name; 4770 } 4771 4772 name = strncpy(tmp, "//anon", sizeof(tmp)); 4773 goto got_name; 4774 } 4775 4776 got_name: 4777 size = ALIGN(strlen(name)+1, sizeof(u64)); 4778 4779 mmap_event->file_name = name; 4780 mmap_event->file_size = size; 4781 4782 if (!(vma->vm_flags & VM_EXEC)) 4783 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 4784 4785 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4786 4787 perf_event_aux(perf_event_mmap_match, 4788 perf_event_mmap_output, 4789 mmap_event, 4790 NULL); 4791 4792 kfree(buf); 4793 } 4794 4795 void perf_event_mmap(struct vm_area_struct *vma) 4796 { 4797 struct perf_mmap_event mmap_event; 4798 4799 if (!atomic_read(&nr_mmap_events)) 4800 return; 4801 4802 mmap_event = (struct perf_mmap_event){ 4803 .vma = vma, 4804 /* .file_name */ 4805 /* .file_size */ 4806 .event_id = { 4807 .header = { 4808 .type = PERF_RECORD_MMAP, 4809 .misc = PERF_RECORD_MISC_USER, 4810 /* .size */ 4811 }, 4812 /* .pid */ 4813 /* .tid */ 4814 .start = vma->vm_start, 4815 .len = vma->vm_end - vma->vm_start, 4816 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4817 }, 4818 }; 4819 4820 perf_event_mmap_event(&mmap_event); 4821 } 4822 4823 /* 4824 * IRQ throttle logging 4825 */ 4826 4827 static void perf_log_throttle(struct perf_event *event, int enable) 4828 { 4829 struct perf_output_handle handle; 4830 struct perf_sample_data sample; 4831 int ret; 4832 4833 struct { 4834 struct perf_event_header header; 4835 u64 time; 4836 u64 id; 4837 u64 stream_id; 4838 } throttle_event = { 4839 .header = { 4840 .type = PERF_RECORD_THROTTLE, 4841 .misc = 0, 4842 .size = sizeof(throttle_event), 4843 }, 4844 .time = perf_clock(), 4845 .id = primary_event_id(event), 4846 .stream_id = event->id, 4847 }; 4848 4849 if (enable) 4850 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4851 4852 perf_event_header__init_id(&throttle_event.header, &sample, event); 4853 4854 ret = perf_output_begin(&handle, event, 4855 throttle_event.header.size); 4856 if (ret) 4857 return; 4858 4859 perf_output_put(&handle, throttle_event); 4860 perf_event__output_id_sample(event, &handle, &sample); 4861 perf_output_end(&handle); 4862 } 4863 4864 /* 4865 * Generic event overflow handling, sampling. 4866 */ 4867 4868 static int __perf_event_overflow(struct perf_event *event, 4869 int throttle, struct perf_sample_data *data, 4870 struct pt_regs *regs) 4871 { 4872 int events = atomic_read(&event->event_limit); 4873 struct hw_perf_event *hwc = &event->hw; 4874 u64 seq; 4875 int ret = 0; 4876 4877 /* 4878 * Non-sampling counters might still use the PMI to fold short 4879 * hardware counters, ignore those. 4880 */ 4881 if (unlikely(!is_sampling_event(event))) 4882 return 0; 4883 4884 seq = __this_cpu_read(perf_throttled_seq); 4885 if (seq != hwc->interrupts_seq) { 4886 hwc->interrupts_seq = seq; 4887 hwc->interrupts = 1; 4888 } else { 4889 hwc->interrupts++; 4890 if (unlikely(throttle 4891 && hwc->interrupts >= max_samples_per_tick)) { 4892 __this_cpu_inc(perf_throttled_count); 4893 hwc->interrupts = MAX_INTERRUPTS; 4894 perf_log_throttle(event, 0); 4895 ret = 1; 4896 } 4897 } 4898 4899 if (event->attr.freq) { 4900 u64 now = perf_clock(); 4901 s64 delta = now - hwc->freq_time_stamp; 4902 4903 hwc->freq_time_stamp = now; 4904 4905 if (delta > 0 && delta < 2*TICK_NSEC) 4906 perf_adjust_period(event, delta, hwc->last_period, true); 4907 } 4908 4909 /* 4910 * XXX event_limit might not quite work as expected on inherited 4911 * events 4912 */ 4913 4914 event->pending_kill = POLL_IN; 4915 if (events && atomic_dec_and_test(&event->event_limit)) { 4916 ret = 1; 4917 event->pending_kill = POLL_HUP; 4918 event->pending_disable = 1; 4919 irq_work_queue(&event->pending); 4920 } 4921 4922 if (event->overflow_handler) 4923 event->overflow_handler(event, data, regs); 4924 else 4925 perf_event_output(event, data, regs); 4926 4927 if (event->fasync && event->pending_kill) { 4928 event->pending_wakeup = 1; 4929 irq_work_queue(&event->pending); 4930 } 4931 4932 return ret; 4933 } 4934 4935 int perf_event_overflow(struct perf_event *event, 4936 struct perf_sample_data *data, 4937 struct pt_regs *regs) 4938 { 4939 return __perf_event_overflow(event, 1, data, regs); 4940 } 4941 4942 /* 4943 * Generic software event infrastructure 4944 */ 4945 4946 struct swevent_htable { 4947 struct swevent_hlist *swevent_hlist; 4948 struct mutex hlist_mutex; 4949 int hlist_refcount; 4950 4951 /* Recursion avoidance in each contexts */ 4952 int recursion[PERF_NR_CONTEXTS]; 4953 }; 4954 4955 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4956 4957 /* 4958 * We directly increment event->count and keep a second value in 4959 * event->hw.period_left to count intervals. This period event 4960 * is kept in the range [-sample_period, 0] so that we can use the 4961 * sign as trigger. 4962 */ 4963 4964 static u64 perf_swevent_set_period(struct perf_event *event) 4965 { 4966 struct hw_perf_event *hwc = &event->hw; 4967 u64 period = hwc->last_period; 4968 u64 nr, offset; 4969 s64 old, val; 4970 4971 hwc->last_period = hwc->sample_period; 4972 4973 again: 4974 old = val = local64_read(&hwc->period_left); 4975 if (val < 0) 4976 return 0; 4977 4978 nr = div64_u64(period + val, period); 4979 offset = nr * period; 4980 val -= offset; 4981 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4982 goto again; 4983 4984 return nr; 4985 } 4986 4987 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4988 struct perf_sample_data *data, 4989 struct pt_regs *regs) 4990 { 4991 struct hw_perf_event *hwc = &event->hw; 4992 int throttle = 0; 4993 4994 if (!overflow) 4995 overflow = perf_swevent_set_period(event); 4996 4997 if (hwc->interrupts == MAX_INTERRUPTS) 4998 return; 4999 5000 for (; overflow; overflow--) { 5001 if (__perf_event_overflow(event, throttle, 5002 data, regs)) { 5003 /* 5004 * We inhibit the overflow from happening when 5005 * hwc->interrupts == MAX_INTERRUPTS. 5006 */ 5007 break; 5008 } 5009 throttle = 1; 5010 } 5011 } 5012 5013 static void perf_swevent_event(struct perf_event *event, u64 nr, 5014 struct perf_sample_data *data, 5015 struct pt_regs *regs) 5016 { 5017 struct hw_perf_event *hwc = &event->hw; 5018 5019 local64_add(nr, &event->count); 5020 5021 if (!regs) 5022 return; 5023 5024 if (!is_sampling_event(event)) 5025 return; 5026 5027 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5028 data->period = nr; 5029 return perf_swevent_overflow(event, 1, data, regs); 5030 } else 5031 data->period = event->hw.last_period; 5032 5033 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5034 return perf_swevent_overflow(event, 1, data, regs); 5035 5036 if (local64_add_negative(nr, &hwc->period_left)) 5037 return; 5038 5039 perf_swevent_overflow(event, 0, data, regs); 5040 } 5041 5042 static int perf_exclude_event(struct perf_event *event, 5043 struct pt_regs *regs) 5044 { 5045 if (event->hw.state & PERF_HES_STOPPED) 5046 return 1; 5047 5048 if (regs) { 5049 if (event->attr.exclude_user && user_mode(regs)) 5050 return 1; 5051 5052 if (event->attr.exclude_kernel && !user_mode(regs)) 5053 return 1; 5054 } 5055 5056 return 0; 5057 } 5058 5059 static int perf_swevent_match(struct perf_event *event, 5060 enum perf_type_id type, 5061 u32 event_id, 5062 struct perf_sample_data *data, 5063 struct pt_regs *regs) 5064 { 5065 if (event->attr.type != type) 5066 return 0; 5067 5068 if (event->attr.config != event_id) 5069 return 0; 5070 5071 if (perf_exclude_event(event, regs)) 5072 return 0; 5073 5074 return 1; 5075 } 5076 5077 static inline u64 swevent_hash(u64 type, u32 event_id) 5078 { 5079 u64 val = event_id | (type << 32); 5080 5081 return hash_64(val, SWEVENT_HLIST_BITS); 5082 } 5083 5084 static inline struct hlist_head * 5085 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5086 { 5087 u64 hash = swevent_hash(type, event_id); 5088 5089 return &hlist->heads[hash]; 5090 } 5091 5092 /* For the read side: events when they trigger */ 5093 static inline struct hlist_head * 5094 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5095 { 5096 struct swevent_hlist *hlist; 5097 5098 hlist = rcu_dereference(swhash->swevent_hlist); 5099 if (!hlist) 5100 return NULL; 5101 5102 return __find_swevent_head(hlist, type, event_id); 5103 } 5104 5105 /* For the event head insertion and removal in the hlist */ 5106 static inline struct hlist_head * 5107 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5108 { 5109 struct swevent_hlist *hlist; 5110 u32 event_id = event->attr.config; 5111 u64 type = event->attr.type; 5112 5113 /* 5114 * Event scheduling is always serialized against hlist allocation 5115 * and release. Which makes the protected version suitable here. 5116 * The context lock guarantees that. 5117 */ 5118 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5119 lockdep_is_held(&event->ctx->lock)); 5120 if (!hlist) 5121 return NULL; 5122 5123 return __find_swevent_head(hlist, type, event_id); 5124 } 5125 5126 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5127 u64 nr, 5128 struct perf_sample_data *data, 5129 struct pt_regs *regs) 5130 { 5131 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5132 struct perf_event *event; 5133 struct hlist_head *head; 5134 5135 rcu_read_lock(); 5136 head = find_swevent_head_rcu(swhash, type, event_id); 5137 if (!head) 5138 goto end; 5139 5140 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5141 if (perf_swevent_match(event, type, event_id, data, regs)) 5142 perf_swevent_event(event, nr, data, regs); 5143 } 5144 end: 5145 rcu_read_unlock(); 5146 } 5147 5148 int perf_swevent_get_recursion_context(void) 5149 { 5150 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5151 5152 return get_recursion_context(swhash->recursion); 5153 } 5154 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5155 5156 inline void perf_swevent_put_recursion_context(int rctx) 5157 { 5158 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5159 5160 put_recursion_context(swhash->recursion, rctx); 5161 } 5162 5163 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5164 { 5165 struct perf_sample_data data; 5166 int rctx; 5167 5168 preempt_disable_notrace(); 5169 rctx = perf_swevent_get_recursion_context(); 5170 if (rctx < 0) 5171 return; 5172 5173 perf_sample_data_init(&data, addr, 0); 5174 5175 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5176 5177 perf_swevent_put_recursion_context(rctx); 5178 preempt_enable_notrace(); 5179 } 5180 5181 static void perf_swevent_read(struct perf_event *event) 5182 { 5183 } 5184 5185 static int perf_swevent_add(struct perf_event *event, int flags) 5186 { 5187 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5188 struct hw_perf_event *hwc = &event->hw; 5189 struct hlist_head *head; 5190 5191 if (is_sampling_event(event)) { 5192 hwc->last_period = hwc->sample_period; 5193 perf_swevent_set_period(event); 5194 } 5195 5196 hwc->state = !(flags & PERF_EF_START); 5197 5198 head = find_swevent_head(swhash, event); 5199 if (WARN_ON_ONCE(!head)) 5200 return -EINVAL; 5201 5202 hlist_add_head_rcu(&event->hlist_entry, head); 5203 5204 return 0; 5205 } 5206 5207 static void perf_swevent_del(struct perf_event *event, int flags) 5208 { 5209 hlist_del_rcu(&event->hlist_entry); 5210 } 5211 5212 static void perf_swevent_start(struct perf_event *event, int flags) 5213 { 5214 event->hw.state = 0; 5215 } 5216 5217 static void perf_swevent_stop(struct perf_event *event, int flags) 5218 { 5219 event->hw.state = PERF_HES_STOPPED; 5220 } 5221 5222 /* Deref the hlist from the update side */ 5223 static inline struct swevent_hlist * 5224 swevent_hlist_deref(struct swevent_htable *swhash) 5225 { 5226 return rcu_dereference_protected(swhash->swevent_hlist, 5227 lockdep_is_held(&swhash->hlist_mutex)); 5228 } 5229 5230 static void swevent_hlist_release(struct swevent_htable *swhash) 5231 { 5232 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5233 5234 if (!hlist) 5235 return; 5236 5237 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5238 kfree_rcu(hlist, rcu_head); 5239 } 5240 5241 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5242 { 5243 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5244 5245 mutex_lock(&swhash->hlist_mutex); 5246 5247 if (!--swhash->hlist_refcount) 5248 swevent_hlist_release(swhash); 5249 5250 mutex_unlock(&swhash->hlist_mutex); 5251 } 5252 5253 static void swevent_hlist_put(struct perf_event *event) 5254 { 5255 int cpu; 5256 5257 if (event->cpu != -1) { 5258 swevent_hlist_put_cpu(event, event->cpu); 5259 return; 5260 } 5261 5262 for_each_possible_cpu(cpu) 5263 swevent_hlist_put_cpu(event, cpu); 5264 } 5265 5266 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5267 { 5268 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5269 int err = 0; 5270 5271 mutex_lock(&swhash->hlist_mutex); 5272 5273 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5274 struct swevent_hlist *hlist; 5275 5276 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5277 if (!hlist) { 5278 err = -ENOMEM; 5279 goto exit; 5280 } 5281 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5282 } 5283 swhash->hlist_refcount++; 5284 exit: 5285 mutex_unlock(&swhash->hlist_mutex); 5286 5287 return err; 5288 } 5289 5290 static int swevent_hlist_get(struct perf_event *event) 5291 { 5292 int err; 5293 int cpu, failed_cpu; 5294 5295 if (event->cpu != -1) 5296 return swevent_hlist_get_cpu(event, event->cpu); 5297 5298 get_online_cpus(); 5299 for_each_possible_cpu(cpu) { 5300 err = swevent_hlist_get_cpu(event, cpu); 5301 if (err) { 5302 failed_cpu = cpu; 5303 goto fail; 5304 } 5305 } 5306 put_online_cpus(); 5307 5308 return 0; 5309 fail: 5310 for_each_possible_cpu(cpu) { 5311 if (cpu == failed_cpu) 5312 break; 5313 swevent_hlist_put_cpu(event, cpu); 5314 } 5315 5316 put_online_cpus(); 5317 return err; 5318 } 5319 5320 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5321 5322 static void sw_perf_event_destroy(struct perf_event *event) 5323 { 5324 u64 event_id = event->attr.config; 5325 5326 WARN_ON(event->parent); 5327 5328 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5329 swevent_hlist_put(event); 5330 } 5331 5332 static int perf_swevent_init(struct perf_event *event) 5333 { 5334 u64 event_id = event->attr.config; 5335 5336 if (event->attr.type != PERF_TYPE_SOFTWARE) 5337 return -ENOENT; 5338 5339 /* 5340 * no branch sampling for software events 5341 */ 5342 if (has_branch_stack(event)) 5343 return -EOPNOTSUPP; 5344 5345 switch (event_id) { 5346 case PERF_COUNT_SW_CPU_CLOCK: 5347 case PERF_COUNT_SW_TASK_CLOCK: 5348 return -ENOENT; 5349 5350 default: 5351 break; 5352 } 5353 5354 if (event_id >= PERF_COUNT_SW_MAX) 5355 return -ENOENT; 5356 5357 if (!event->parent) { 5358 int err; 5359 5360 err = swevent_hlist_get(event); 5361 if (err) 5362 return err; 5363 5364 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5365 event->destroy = sw_perf_event_destroy; 5366 } 5367 5368 return 0; 5369 } 5370 5371 static int perf_swevent_event_idx(struct perf_event *event) 5372 { 5373 return 0; 5374 } 5375 5376 static struct pmu perf_swevent = { 5377 .task_ctx_nr = perf_sw_context, 5378 5379 .event_init = perf_swevent_init, 5380 .add = perf_swevent_add, 5381 .del = perf_swevent_del, 5382 .start = perf_swevent_start, 5383 .stop = perf_swevent_stop, 5384 .read = perf_swevent_read, 5385 5386 .event_idx = perf_swevent_event_idx, 5387 }; 5388 5389 #ifdef CONFIG_EVENT_TRACING 5390 5391 static int perf_tp_filter_match(struct perf_event *event, 5392 struct perf_sample_data *data) 5393 { 5394 void *record = data->raw->data; 5395 5396 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5397 return 1; 5398 return 0; 5399 } 5400 5401 static int perf_tp_event_match(struct perf_event *event, 5402 struct perf_sample_data *data, 5403 struct pt_regs *regs) 5404 { 5405 if (event->hw.state & PERF_HES_STOPPED) 5406 return 0; 5407 /* 5408 * All tracepoints are from kernel-space. 5409 */ 5410 if (event->attr.exclude_kernel) 5411 return 0; 5412 5413 if (!perf_tp_filter_match(event, data)) 5414 return 0; 5415 5416 return 1; 5417 } 5418 5419 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5420 struct pt_regs *regs, struct hlist_head *head, int rctx, 5421 struct task_struct *task) 5422 { 5423 struct perf_sample_data data; 5424 struct perf_event *event; 5425 5426 struct perf_raw_record raw = { 5427 .size = entry_size, 5428 .data = record, 5429 }; 5430 5431 perf_sample_data_init(&data, addr, 0); 5432 data.raw = &raw; 5433 5434 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5435 if (perf_tp_event_match(event, &data, regs)) 5436 perf_swevent_event(event, count, &data, regs); 5437 } 5438 5439 /* 5440 * If we got specified a target task, also iterate its context and 5441 * deliver this event there too. 5442 */ 5443 if (task && task != current) { 5444 struct perf_event_context *ctx; 5445 struct trace_entry *entry = record; 5446 5447 rcu_read_lock(); 5448 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5449 if (!ctx) 5450 goto unlock; 5451 5452 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5453 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5454 continue; 5455 if (event->attr.config != entry->type) 5456 continue; 5457 if (perf_tp_event_match(event, &data, regs)) 5458 perf_swevent_event(event, count, &data, regs); 5459 } 5460 unlock: 5461 rcu_read_unlock(); 5462 } 5463 5464 perf_swevent_put_recursion_context(rctx); 5465 } 5466 EXPORT_SYMBOL_GPL(perf_tp_event); 5467 5468 static void tp_perf_event_destroy(struct perf_event *event) 5469 { 5470 perf_trace_destroy(event); 5471 } 5472 5473 static int perf_tp_event_init(struct perf_event *event) 5474 { 5475 int err; 5476 5477 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5478 return -ENOENT; 5479 5480 /* 5481 * no branch sampling for tracepoint events 5482 */ 5483 if (has_branch_stack(event)) 5484 return -EOPNOTSUPP; 5485 5486 err = perf_trace_init(event); 5487 if (err) 5488 return err; 5489 5490 event->destroy = tp_perf_event_destroy; 5491 5492 return 0; 5493 } 5494 5495 static struct pmu perf_tracepoint = { 5496 .task_ctx_nr = perf_sw_context, 5497 5498 .event_init = perf_tp_event_init, 5499 .add = perf_trace_add, 5500 .del = perf_trace_del, 5501 .start = perf_swevent_start, 5502 .stop = perf_swevent_stop, 5503 .read = perf_swevent_read, 5504 5505 .event_idx = perf_swevent_event_idx, 5506 }; 5507 5508 static inline void perf_tp_register(void) 5509 { 5510 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5511 } 5512 5513 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5514 { 5515 char *filter_str; 5516 int ret; 5517 5518 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5519 return -EINVAL; 5520 5521 filter_str = strndup_user(arg, PAGE_SIZE); 5522 if (IS_ERR(filter_str)) 5523 return PTR_ERR(filter_str); 5524 5525 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5526 5527 kfree(filter_str); 5528 return ret; 5529 } 5530 5531 static void perf_event_free_filter(struct perf_event *event) 5532 { 5533 ftrace_profile_free_filter(event); 5534 } 5535 5536 #else 5537 5538 static inline void perf_tp_register(void) 5539 { 5540 } 5541 5542 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5543 { 5544 return -ENOENT; 5545 } 5546 5547 static void perf_event_free_filter(struct perf_event *event) 5548 { 5549 } 5550 5551 #endif /* CONFIG_EVENT_TRACING */ 5552 5553 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5554 void perf_bp_event(struct perf_event *bp, void *data) 5555 { 5556 struct perf_sample_data sample; 5557 struct pt_regs *regs = data; 5558 5559 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5560 5561 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5562 perf_swevent_event(bp, 1, &sample, regs); 5563 } 5564 #endif 5565 5566 /* 5567 * hrtimer based swevent callback 5568 */ 5569 5570 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5571 { 5572 enum hrtimer_restart ret = HRTIMER_RESTART; 5573 struct perf_sample_data data; 5574 struct pt_regs *regs; 5575 struct perf_event *event; 5576 u64 period; 5577 5578 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5579 5580 if (event->state != PERF_EVENT_STATE_ACTIVE) 5581 return HRTIMER_NORESTART; 5582 5583 event->pmu->read(event); 5584 5585 perf_sample_data_init(&data, 0, event->hw.last_period); 5586 regs = get_irq_regs(); 5587 5588 if (regs && !perf_exclude_event(event, regs)) { 5589 if (!(event->attr.exclude_idle && is_idle_task(current))) 5590 if (__perf_event_overflow(event, 1, &data, regs)) 5591 ret = HRTIMER_NORESTART; 5592 } 5593 5594 period = max_t(u64, 10000, event->hw.sample_period); 5595 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5596 5597 return ret; 5598 } 5599 5600 static void perf_swevent_start_hrtimer(struct perf_event *event) 5601 { 5602 struct hw_perf_event *hwc = &event->hw; 5603 s64 period; 5604 5605 if (!is_sampling_event(event)) 5606 return; 5607 5608 period = local64_read(&hwc->period_left); 5609 if (period) { 5610 if (period < 0) 5611 period = 10000; 5612 5613 local64_set(&hwc->period_left, 0); 5614 } else { 5615 period = max_t(u64, 10000, hwc->sample_period); 5616 } 5617 __hrtimer_start_range_ns(&hwc->hrtimer, 5618 ns_to_ktime(period), 0, 5619 HRTIMER_MODE_REL_PINNED, 0); 5620 } 5621 5622 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5623 { 5624 struct hw_perf_event *hwc = &event->hw; 5625 5626 if (is_sampling_event(event)) { 5627 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5628 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5629 5630 hrtimer_cancel(&hwc->hrtimer); 5631 } 5632 } 5633 5634 static void perf_swevent_init_hrtimer(struct perf_event *event) 5635 { 5636 struct hw_perf_event *hwc = &event->hw; 5637 5638 if (!is_sampling_event(event)) 5639 return; 5640 5641 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5642 hwc->hrtimer.function = perf_swevent_hrtimer; 5643 5644 /* 5645 * Since hrtimers have a fixed rate, we can do a static freq->period 5646 * mapping and avoid the whole period adjust feedback stuff. 5647 */ 5648 if (event->attr.freq) { 5649 long freq = event->attr.sample_freq; 5650 5651 event->attr.sample_period = NSEC_PER_SEC / freq; 5652 hwc->sample_period = event->attr.sample_period; 5653 local64_set(&hwc->period_left, hwc->sample_period); 5654 hwc->last_period = hwc->sample_period; 5655 event->attr.freq = 0; 5656 } 5657 } 5658 5659 /* 5660 * Software event: cpu wall time clock 5661 */ 5662 5663 static void cpu_clock_event_update(struct perf_event *event) 5664 { 5665 s64 prev; 5666 u64 now; 5667 5668 now = local_clock(); 5669 prev = local64_xchg(&event->hw.prev_count, now); 5670 local64_add(now - prev, &event->count); 5671 } 5672 5673 static void cpu_clock_event_start(struct perf_event *event, int flags) 5674 { 5675 local64_set(&event->hw.prev_count, local_clock()); 5676 perf_swevent_start_hrtimer(event); 5677 } 5678 5679 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5680 { 5681 perf_swevent_cancel_hrtimer(event); 5682 cpu_clock_event_update(event); 5683 } 5684 5685 static int cpu_clock_event_add(struct perf_event *event, int flags) 5686 { 5687 if (flags & PERF_EF_START) 5688 cpu_clock_event_start(event, flags); 5689 5690 return 0; 5691 } 5692 5693 static void cpu_clock_event_del(struct perf_event *event, int flags) 5694 { 5695 cpu_clock_event_stop(event, flags); 5696 } 5697 5698 static void cpu_clock_event_read(struct perf_event *event) 5699 { 5700 cpu_clock_event_update(event); 5701 } 5702 5703 static int cpu_clock_event_init(struct perf_event *event) 5704 { 5705 if (event->attr.type != PERF_TYPE_SOFTWARE) 5706 return -ENOENT; 5707 5708 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5709 return -ENOENT; 5710 5711 /* 5712 * no branch sampling for software events 5713 */ 5714 if (has_branch_stack(event)) 5715 return -EOPNOTSUPP; 5716 5717 perf_swevent_init_hrtimer(event); 5718 5719 return 0; 5720 } 5721 5722 static struct pmu perf_cpu_clock = { 5723 .task_ctx_nr = perf_sw_context, 5724 5725 .event_init = cpu_clock_event_init, 5726 .add = cpu_clock_event_add, 5727 .del = cpu_clock_event_del, 5728 .start = cpu_clock_event_start, 5729 .stop = cpu_clock_event_stop, 5730 .read = cpu_clock_event_read, 5731 5732 .event_idx = perf_swevent_event_idx, 5733 }; 5734 5735 /* 5736 * Software event: task time clock 5737 */ 5738 5739 static void task_clock_event_update(struct perf_event *event, u64 now) 5740 { 5741 u64 prev; 5742 s64 delta; 5743 5744 prev = local64_xchg(&event->hw.prev_count, now); 5745 delta = now - prev; 5746 local64_add(delta, &event->count); 5747 } 5748 5749 static void task_clock_event_start(struct perf_event *event, int flags) 5750 { 5751 local64_set(&event->hw.prev_count, event->ctx->time); 5752 perf_swevent_start_hrtimer(event); 5753 } 5754 5755 static void task_clock_event_stop(struct perf_event *event, int flags) 5756 { 5757 perf_swevent_cancel_hrtimer(event); 5758 task_clock_event_update(event, event->ctx->time); 5759 } 5760 5761 static int task_clock_event_add(struct perf_event *event, int flags) 5762 { 5763 if (flags & PERF_EF_START) 5764 task_clock_event_start(event, flags); 5765 5766 return 0; 5767 } 5768 5769 static void task_clock_event_del(struct perf_event *event, int flags) 5770 { 5771 task_clock_event_stop(event, PERF_EF_UPDATE); 5772 } 5773 5774 static void task_clock_event_read(struct perf_event *event) 5775 { 5776 u64 now = perf_clock(); 5777 u64 delta = now - event->ctx->timestamp; 5778 u64 time = event->ctx->time + delta; 5779 5780 task_clock_event_update(event, time); 5781 } 5782 5783 static int task_clock_event_init(struct perf_event *event) 5784 { 5785 if (event->attr.type != PERF_TYPE_SOFTWARE) 5786 return -ENOENT; 5787 5788 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5789 return -ENOENT; 5790 5791 /* 5792 * no branch sampling for software events 5793 */ 5794 if (has_branch_stack(event)) 5795 return -EOPNOTSUPP; 5796 5797 perf_swevent_init_hrtimer(event); 5798 5799 return 0; 5800 } 5801 5802 static struct pmu perf_task_clock = { 5803 .task_ctx_nr = perf_sw_context, 5804 5805 .event_init = task_clock_event_init, 5806 .add = task_clock_event_add, 5807 .del = task_clock_event_del, 5808 .start = task_clock_event_start, 5809 .stop = task_clock_event_stop, 5810 .read = task_clock_event_read, 5811 5812 .event_idx = perf_swevent_event_idx, 5813 }; 5814 5815 static void perf_pmu_nop_void(struct pmu *pmu) 5816 { 5817 } 5818 5819 static int perf_pmu_nop_int(struct pmu *pmu) 5820 { 5821 return 0; 5822 } 5823 5824 static void perf_pmu_start_txn(struct pmu *pmu) 5825 { 5826 perf_pmu_disable(pmu); 5827 } 5828 5829 static int perf_pmu_commit_txn(struct pmu *pmu) 5830 { 5831 perf_pmu_enable(pmu); 5832 return 0; 5833 } 5834 5835 static void perf_pmu_cancel_txn(struct pmu *pmu) 5836 { 5837 perf_pmu_enable(pmu); 5838 } 5839 5840 static int perf_event_idx_default(struct perf_event *event) 5841 { 5842 return event->hw.idx + 1; 5843 } 5844 5845 /* 5846 * Ensures all contexts with the same task_ctx_nr have the same 5847 * pmu_cpu_context too. 5848 */ 5849 static void *find_pmu_context(int ctxn) 5850 { 5851 struct pmu *pmu; 5852 5853 if (ctxn < 0) 5854 return NULL; 5855 5856 list_for_each_entry(pmu, &pmus, entry) { 5857 if (pmu->task_ctx_nr == ctxn) 5858 return pmu->pmu_cpu_context; 5859 } 5860 5861 return NULL; 5862 } 5863 5864 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5865 { 5866 int cpu; 5867 5868 for_each_possible_cpu(cpu) { 5869 struct perf_cpu_context *cpuctx; 5870 5871 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5872 5873 if (cpuctx->unique_pmu == old_pmu) 5874 cpuctx->unique_pmu = pmu; 5875 } 5876 } 5877 5878 static void free_pmu_context(struct pmu *pmu) 5879 { 5880 struct pmu *i; 5881 5882 mutex_lock(&pmus_lock); 5883 /* 5884 * Like a real lame refcount. 5885 */ 5886 list_for_each_entry(i, &pmus, entry) { 5887 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5888 update_pmu_context(i, pmu); 5889 goto out; 5890 } 5891 } 5892 5893 free_percpu(pmu->pmu_cpu_context); 5894 out: 5895 mutex_unlock(&pmus_lock); 5896 } 5897 static struct idr pmu_idr; 5898 5899 static ssize_t 5900 type_show(struct device *dev, struct device_attribute *attr, char *page) 5901 { 5902 struct pmu *pmu = dev_get_drvdata(dev); 5903 5904 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5905 } 5906 5907 static struct device_attribute pmu_dev_attrs[] = { 5908 __ATTR_RO(type), 5909 __ATTR_NULL, 5910 }; 5911 5912 static int pmu_bus_running; 5913 static struct bus_type pmu_bus = { 5914 .name = "event_source", 5915 .dev_attrs = pmu_dev_attrs, 5916 }; 5917 5918 static void pmu_dev_release(struct device *dev) 5919 { 5920 kfree(dev); 5921 } 5922 5923 static int pmu_dev_alloc(struct pmu *pmu) 5924 { 5925 int ret = -ENOMEM; 5926 5927 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5928 if (!pmu->dev) 5929 goto out; 5930 5931 pmu->dev->groups = pmu->attr_groups; 5932 device_initialize(pmu->dev); 5933 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5934 if (ret) 5935 goto free_dev; 5936 5937 dev_set_drvdata(pmu->dev, pmu); 5938 pmu->dev->bus = &pmu_bus; 5939 pmu->dev->release = pmu_dev_release; 5940 ret = device_add(pmu->dev); 5941 if (ret) 5942 goto free_dev; 5943 5944 out: 5945 return ret; 5946 5947 free_dev: 5948 put_device(pmu->dev); 5949 goto out; 5950 } 5951 5952 static struct lock_class_key cpuctx_mutex; 5953 static struct lock_class_key cpuctx_lock; 5954 5955 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5956 { 5957 int cpu, ret; 5958 5959 mutex_lock(&pmus_lock); 5960 ret = -ENOMEM; 5961 pmu->pmu_disable_count = alloc_percpu(int); 5962 if (!pmu->pmu_disable_count) 5963 goto unlock; 5964 5965 pmu->type = -1; 5966 if (!name) 5967 goto skip_type; 5968 pmu->name = name; 5969 5970 if (type < 0) { 5971 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 5972 if (type < 0) { 5973 ret = type; 5974 goto free_pdc; 5975 } 5976 } 5977 pmu->type = type; 5978 5979 if (pmu_bus_running) { 5980 ret = pmu_dev_alloc(pmu); 5981 if (ret) 5982 goto free_idr; 5983 } 5984 5985 skip_type: 5986 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5987 if (pmu->pmu_cpu_context) 5988 goto got_cpu_context; 5989 5990 ret = -ENOMEM; 5991 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5992 if (!pmu->pmu_cpu_context) 5993 goto free_dev; 5994 5995 for_each_possible_cpu(cpu) { 5996 struct perf_cpu_context *cpuctx; 5997 5998 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5999 __perf_event_init_context(&cpuctx->ctx); 6000 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6001 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6002 cpuctx->ctx.type = cpu_context; 6003 cpuctx->ctx.pmu = pmu; 6004 cpuctx->jiffies_interval = 1; 6005 INIT_LIST_HEAD(&cpuctx->rotation_list); 6006 cpuctx->unique_pmu = pmu; 6007 } 6008 6009 got_cpu_context: 6010 if (!pmu->start_txn) { 6011 if (pmu->pmu_enable) { 6012 /* 6013 * If we have pmu_enable/pmu_disable calls, install 6014 * transaction stubs that use that to try and batch 6015 * hardware accesses. 6016 */ 6017 pmu->start_txn = perf_pmu_start_txn; 6018 pmu->commit_txn = perf_pmu_commit_txn; 6019 pmu->cancel_txn = perf_pmu_cancel_txn; 6020 } else { 6021 pmu->start_txn = perf_pmu_nop_void; 6022 pmu->commit_txn = perf_pmu_nop_int; 6023 pmu->cancel_txn = perf_pmu_nop_void; 6024 } 6025 } 6026 6027 if (!pmu->pmu_enable) { 6028 pmu->pmu_enable = perf_pmu_nop_void; 6029 pmu->pmu_disable = perf_pmu_nop_void; 6030 } 6031 6032 if (!pmu->event_idx) 6033 pmu->event_idx = perf_event_idx_default; 6034 6035 list_add_rcu(&pmu->entry, &pmus); 6036 ret = 0; 6037 unlock: 6038 mutex_unlock(&pmus_lock); 6039 6040 return ret; 6041 6042 free_dev: 6043 device_del(pmu->dev); 6044 put_device(pmu->dev); 6045 6046 free_idr: 6047 if (pmu->type >= PERF_TYPE_MAX) 6048 idr_remove(&pmu_idr, pmu->type); 6049 6050 free_pdc: 6051 free_percpu(pmu->pmu_disable_count); 6052 goto unlock; 6053 } 6054 6055 void perf_pmu_unregister(struct pmu *pmu) 6056 { 6057 mutex_lock(&pmus_lock); 6058 list_del_rcu(&pmu->entry); 6059 mutex_unlock(&pmus_lock); 6060 6061 /* 6062 * We dereference the pmu list under both SRCU and regular RCU, so 6063 * synchronize against both of those. 6064 */ 6065 synchronize_srcu(&pmus_srcu); 6066 synchronize_rcu(); 6067 6068 free_percpu(pmu->pmu_disable_count); 6069 if (pmu->type >= PERF_TYPE_MAX) 6070 idr_remove(&pmu_idr, pmu->type); 6071 device_del(pmu->dev); 6072 put_device(pmu->dev); 6073 free_pmu_context(pmu); 6074 } 6075 6076 struct pmu *perf_init_event(struct perf_event *event) 6077 { 6078 struct pmu *pmu = NULL; 6079 int idx; 6080 int ret; 6081 6082 idx = srcu_read_lock(&pmus_srcu); 6083 6084 rcu_read_lock(); 6085 pmu = idr_find(&pmu_idr, event->attr.type); 6086 rcu_read_unlock(); 6087 if (pmu) { 6088 event->pmu = pmu; 6089 ret = pmu->event_init(event); 6090 if (ret) 6091 pmu = ERR_PTR(ret); 6092 goto unlock; 6093 } 6094 6095 list_for_each_entry_rcu(pmu, &pmus, entry) { 6096 event->pmu = pmu; 6097 ret = pmu->event_init(event); 6098 if (!ret) 6099 goto unlock; 6100 6101 if (ret != -ENOENT) { 6102 pmu = ERR_PTR(ret); 6103 goto unlock; 6104 } 6105 } 6106 pmu = ERR_PTR(-ENOENT); 6107 unlock: 6108 srcu_read_unlock(&pmus_srcu, idx); 6109 6110 return pmu; 6111 } 6112 6113 /* 6114 * Allocate and initialize a event structure 6115 */ 6116 static struct perf_event * 6117 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6118 struct task_struct *task, 6119 struct perf_event *group_leader, 6120 struct perf_event *parent_event, 6121 perf_overflow_handler_t overflow_handler, 6122 void *context) 6123 { 6124 struct pmu *pmu; 6125 struct perf_event *event; 6126 struct hw_perf_event *hwc; 6127 long err; 6128 6129 if ((unsigned)cpu >= nr_cpu_ids) { 6130 if (!task || cpu != -1) 6131 return ERR_PTR(-EINVAL); 6132 } 6133 6134 event = kzalloc(sizeof(*event), GFP_KERNEL); 6135 if (!event) 6136 return ERR_PTR(-ENOMEM); 6137 6138 /* 6139 * Single events are their own group leaders, with an 6140 * empty sibling list: 6141 */ 6142 if (!group_leader) 6143 group_leader = event; 6144 6145 mutex_init(&event->child_mutex); 6146 INIT_LIST_HEAD(&event->child_list); 6147 6148 INIT_LIST_HEAD(&event->group_entry); 6149 INIT_LIST_HEAD(&event->event_entry); 6150 INIT_LIST_HEAD(&event->sibling_list); 6151 INIT_LIST_HEAD(&event->rb_entry); 6152 6153 init_waitqueue_head(&event->waitq); 6154 init_irq_work(&event->pending, perf_pending_event); 6155 6156 mutex_init(&event->mmap_mutex); 6157 6158 atomic_long_set(&event->refcount, 1); 6159 event->cpu = cpu; 6160 event->attr = *attr; 6161 event->group_leader = group_leader; 6162 event->pmu = NULL; 6163 event->oncpu = -1; 6164 6165 event->parent = parent_event; 6166 6167 event->ns = get_pid_ns(task_active_pid_ns(current)); 6168 event->id = atomic64_inc_return(&perf_event_id); 6169 6170 event->state = PERF_EVENT_STATE_INACTIVE; 6171 6172 if (task) { 6173 event->attach_state = PERF_ATTACH_TASK; 6174 6175 if (attr->type == PERF_TYPE_TRACEPOINT) 6176 event->hw.tp_target = task; 6177 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6178 /* 6179 * hw_breakpoint is a bit difficult here.. 6180 */ 6181 else if (attr->type == PERF_TYPE_BREAKPOINT) 6182 event->hw.bp_target = task; 6183 #endif 6184 } 6185 6186 if (!overflow_handler && parent_event) { 6187 overflow_handler = parent_event->overflow_handler; 6188 context = parent_event->overflow_handler_context; 6189 } 6190 6191 event->overflow_handler = overflow_handler; 6192 event->overflow_handler_context = context; 6193 6194 perf_event__state_init(event); 6195 6196 pmu = NULL; 6197 6198 hwc = &event->hw; 6199 hwc->sample_period = attr->sample_period; 6200 if (attr->freq && attr->sample_freq) 6201 hwc->sample_period = 1; 6202 hwc->last_period = hwc->sample_period; 6203 6204 local64_set(&hwc->period_left, hwc->sample_period); 6205 6206 /* 6207 * we currently do not support PERF_FORMAT_GROUP on inherited events 6208 */ 6209 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6210 goto done; 6211 6212 pmu = perf_init_event(event); 6213 6214 done: 6215 err = 0; 6216 if (!pmu) 6217 err = -EINVAL; 6218 else if (IS_ERR(pmu)) 6219 err = PTR_ERR(pmu); 6220 6221 if (err) { 6222 if (event->ns) 6223 put_pid_ns(event->ns); 6224 kfree(event); 6225 return ERR_PTR(err); 6226 } 6227 6228 if (!event->parent) { 6229 if (event->attach_state & PERF_ATTACH_TASK) 6230 static_key_slow_inc(&perf_sched_events.key); 6231 if (event->attr.mmap || event->attr.mmap_data) 6232 atomic_inc(&nr_mmap_events); 6233 if (event->attr.comm) 6234 atomic_inc(&nr_comm_events); 6235 if (event->attr.task) 6236 atomic_inc(&nr_task_events); 6237 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6238 err = get_callchain_buffers(); 6239 if (err) { 6240 free_event(event); 6241 return ERR_PTR(err); 6242 } 6243 } 6244 if (has_branch_stack(event)) { 6245 static_key_slow_inc(&perf_sched_events.key); 6246 if (!(event->attach_state & PERF_ATTACH_TASK)) 6247 atomic_inc(&per_cpu(perf_branch_stack_events, 6248 event->cpu)); 6249 } 6250 } 6251 6252 return event; 6253 } 6254 6255 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6256 struct perf_event_attr *attr) 6257 { 6258 u32 size; 6259 int ret; 6260 6261 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6262 return -EFAULT; 6263 6264 /* 6265 * zero the full structure, so that a short copy will be nice. 6266 */ 6267 memset(attr, 0, sizeof(*attr)); 6268 6269 ret = get_user(size, &uattr->size); 6270 if (ret) 6271 return ret; 6272 6273 if (size > PAGE_SIZE) /* silly large */ 6274 goto err_size; 6275 6276 if (!size) /* abi compat */ 6277 size = PERF_ATTR_SIZE_VER0; 6278 6279 if (size < PERF_ATTR_SIZE_VER0) 6280 goto err_size; 6281 6282 /* 6283 * If we're handed a bigger struct than we know of, 6284 * ensure all the unknown bits are 0 - i.e. new 6285 * user-space does not rely on any kernel feature 6286 * extensions we dont know about yet. 6287 */ 6288 if (size > sizeof(*attr)) { 6289 unsigned char __user *addr; 6290 unsigned char __user *end; 6291 unsigned char val; 6292 6293 addr = (void __user *)uattr + sizeof(*attr); 6294 end = (void __user *)uattr + size; 6295 6296 for (; addr < end; addr++) { 6297 ret = get_user(val, addr); 6298 if (ret) 6299 return ret; 6300 if (val) 6301 goto err_size; 6302 } 6303 size = sizeof(*attr); 6304 } 6305 6306 ret = copy_from_user(attr, uattr, size); 6307 if (ret) 6308 return -EFAULT; 6309 6310 if (attr->__reserved_1) 6311 return -EINVAL; 6312 6313 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6314 return -EINVAL; 6315 6316 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6317 return -EINVAL; 6318 6319 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6320 u64 mask = attr->branch_sample_type; 6321 6322 /* only using defined bits */ 6323 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6324 return -EINVAL; 6325 6326 /* at least one branch bit must be set */ 6327 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6328 return -EINVAL; 6329 6330 /* kernel level capture: check permissions */ 6331 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6332 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6333 return -EACCES; 6334 6335 /* propagate priv level, when not set for branch */ 6336 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6337 6338 /* exclude_kernel checked on syscall entry */ 6339 if (!attr->exclude_kernel) 6340 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6341 6342 if (!attr->exclude_user) 6343 mask |= PERF_SAMPLE_BRANCH_USER; 6344 6345 if (!attr->exclude_hv) 6346 mask |= PERF_SAMPLE_BRANCH_HV; 6347 /* 6348 * adjust user setting (for HW filter setup) 6349 */ 6350 attr->branch_sample_type = mask; 6351 } 6352 } 6353 6354 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6355 ret = perf_reg_validate(attr->sample_regs_user); 6356 if (ret) 6357 return ret; 6358 } 6359 6360 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6361 if (!arch_perf_have_user_stack_dump()) 6362 return -ENOSYS; 6363 6364 /* 6365 * We have __u32 type for the size, but so far 6366 * we can only use __u16 as maximum due to the 6367 * __u16 sample size limit. 6368 */ 6369 if (attr->sample_stack_user >= USHRT_MAX) 6370 ret = -EINVAL; 6371 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6372 ret = -EINVAL; 6373 } 6374 6375 out: 6376 return ret; 6377 6378 err_size: 6379 put_user(sizeof(*attr), &uattr->size); 6380 ret = -E2BIG; 6381 goto out; 6382 } 6383 6384 static int 6385 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6386 { 6387 struct ring_buffer *rb = NULL, *old_rb = NULL; 6388 int ret = -EINVAL; 6389 6390 if (!output_event) 6391 goto set; 6392 6393 /* don't allow circular references */ 6394 if (event == output_event) 6395 goto out; 6396 6397 /* 6398 * Don't allow cross-cpu buffers 6399 */ 6400 if (output_event->cpu != event->cpu) 6401 goto out; 6402 6403 /* 6404 * If its not a per-cpu rb, it must be the same task. 6405 */ 6406 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6407 goto out; 6408 6409 set: 6410 mutex_lock(&event->mmap_mutex); 6411 /* Can't redirect output if we've got an active mmap() */ 6412 if (atomic_read(&event->mmap_count)) 6413 goto unlock; 6414 6415 if (output_event) { 6416 /* get the rb we want to redirect to */ 6417 rb = ring_buffer_get(output_event); 6418 if (!rb) 6419 goto unlock; 6420 } 6421 6422 old_rb = event->rb; 6423 rcu_assign_pointer(event->rb, rb); 6424 if (old_rb) 6425 ring_buffer_detach(event, old_rb); 6426 ret = 0; 6427 unlock: 6428 mutex_unlock(&event->mmap_mutex); 6429 6430 if (old_rb) 6431 ring_buffer_put(old_rb); 6432 out: 6433 return ret; 6434 } 6435 6436 /** 6437 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6438 * 6439 * @attr_uptr: event_id type attributes for monitoring/sampling 6440 * @pid: target pid 6441 * @cpu: target cpu 6442 * @group_fd: group leader event fd 6443 */ 6444 SYSCALL_DEFINE5(perf_event_open, 6445 struct perf_event_attr __user *, attr_uptr, 6446 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6447 { 6448 struct perf_event *group_leader = NULL, *output_event = NULL; 6449 struct perf_event *event, *sibling; 6450 struct perf_event_attr attr; 6451 struct perf_event_context *ctx; 6452 struct file *event_file = NULL; 6453 struct fd group = {NULL, 0}; 6454 struct task_struct *task = NULL; 6455 struct pmu *pmu; 6456 int event_fd; 6457 int move_group = 0; 6458 int err; 6459 6460 /* for future expandability... */ 6461 if (flags & ~PERF_FLAG_ALL) 6462 return -EINVAL; 6463 6464 err = perf_copy_attr(attr_uptr, &attr); 6465 if (err) 6466 return err; 6467 6468 if (!attr.exclude_kernel) { 6469 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6470 return -EACCES; 6471 } 6472 6473 if (attr.freq) { 6474 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6475 return -EINVAL; 6476 } 6477 6478 /* 6479 * In cgroup mode, the pid argument is used to pass the fd 6480 * opened to the cgroup directory in cgroupfs. The cpu argument 6481 * designates the cpu on which to monitor threads from that 6482 * cgroup. 6483 */ 6484 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6485 return -EINVAL; 6486 6487 event_fd = get_unused_fd(); 6488 if (event_fd < 0) 6489 return event_fd; 6490 6491 if (group_fd != -1) { 6492 err = perf_fget_light(group_fd, &group); 6493 if (err) 6494 goto err_fd; 6495 group_leader = group.file->private_data; 6496 if (flags & PERF_FLAG_FD_OUTPUT) 6497 output_event = group_leader; 6498 if (flags & PERF_FLAG_FD_NO_GROUP) 6499 group_leader = NULL; 6500 } 6501 6502 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6503 task = find_lively_task_by_vpid(pid); 6504 if (IS_ERR(task)) { 6505 err = PTR_ERR(task); 6506 goto err_group_fd; 6507 } 6508 } 6509 6510 get_online_cpus(); 6511 6512 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6513 NULL, NULL); 6514 if (IS_ERR(event)) { 6515 err = PTR_ERR(event); 6516 goto err_task; 6517 } 6518 6519 if (flags & PERF_FLAG_PID_CGROUP) { 6520 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6521 if (err) 6522 goto err_alloc; 6523 /* 6524 * one more event: 6525 * - that has cgroup constraint on event->cpu 6526 * - that may need work on context switch 6527 */ 6528 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6529 static_key_slow_inc(&perf_sched_events.key); 6530 } 6531 6532 /* 6533 * Special case software events and allow them to be part of 6534 * any hardware group. 6535 */ 6536 pmu = event->pmu; 6537 6538 if (group_leader && 6539 (is_software_event(event) != is_software_event(group_leader))) { 6540 if (is_software_event(event)) { 6541 /* 6542 * If event and group_leader are not both a software 6543 * event, and event is, then group leader is not. 6544 * 6545 * Allow the addition of software events to !software 6546 * groups, this is safe because software events never 6547 * fail to schedule. 6548 */ 6549 pmu = group_leader->pmu; 6550 } else if (is_software_event(group_leader) && 6551 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6552 /* 6553 * In case the group is a pure software group, and we 6554 * try to add a hardware event, move the whole group to 6555 * the hardware context. 6556 */ 6557 move_group = 1; 6558 } 6559 } 6560 6561 /* 6562 * Get the target context (task or percpu): 6563 */ 6564 ctx = find_get_context(pmu, task, event->cpu); 6565 if (IS_ERR(ctx)) { 6566 err = PTR_ERR(ctx); 6567 goto err_alloc; 6568 } 6569 6570 if (task) { 6571 put_task_struct(task); 6572 task = NULL; 6573 } 6574 6575 /* 6576 * Look up the group leader (we will attach this event to it): 6577 */ 6578 if (group_leader) { 6579 err = -EINVAL; 6580 6581 /* 6582 * Do not allow a recursive hierarchy (this new sibling 6583 * becoming part of another group-sibling): 6584 */ 6585 if (group_leader->group_leader != group_leader) 6586 goto err_context; 6587 /* 6588 * Do not allow to attach to a group in a different 6589 * task or CPU context: 6590 */ 6591 if (move_group) { 6592 if (group_leader->ctx->type != ctx->type) 6593 goto err_context; 6594 } else { 6595 if (group_leader->ctx != ctx) 6596 goto err_context; 6597 } 6598 6599 /* 6600 * Only a group leader can be exclusive or pinned 6601 */ 6602 if (attr.exclusive || attr.pinned) 6603 goto err_context; 6604 } 6605 6606 if (output_event) { 6607 err = perf_event_set_output(event, output_event); 6608 if (err) 6609 goto err_context; 6610 } 6611 6612 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6613 if (IS_ERR(event_file)) { 6614 err = PTR_ERR(event_file); 6615 goto err_context; 6616 } 6617 6618 if (move_group) { 6619 struct perf_event_context *gctx = group_leader->ctx; 6620 6621 mutex_lock(&gctx->mutex); 6622 perf_remove_from_context(group_leader); 6623 6624 /* 6625 * Removing from the context ends up with disabled 6626 * event. What we want here is event in the initial 6627 * startup state, ready to be add into new context. 6628 */ 6629 perf_event__state_init(group_leader); 6630 list_for_each_entry(sibling, &group_leader->sibling_list, 6631 group_entry) { 6632 perf_remove_from_context(sibling); 6633 perf_event__state_init(sibling); 6634 put_ctx(gctx); 6635 } 6636 mutex_unlock(&gctx->mutex); 6637 put_ctx(gctx); 6638 } 6639 6640 WARN_ON_ONCE(ctx->parent_ctx); 6641 mutex_lock(&ctx->mutex); 6642 6643 if (move_group) { 6644 synchronize_rcu(); 6645 perf_install_in_context(ctx, group_leader, event->cpu); 6646 get_ctx(ctx); 6647 list_for_each_entry(sibling, &group_leader->sibling_list, 6648 group_entry) { 6649 perf_install_in_context(ctx, sibling, event->cpu); 6650 get_ctx(ctx); 6651 } 6652 } 6653 6654 perf_install_in_context(ctx, event, event->cpu); 6655 ++ctx->generation; 6656 perf_unpin_context(ctx); 6657 mutex_unlock(&ctx->mutex); 6658 6659 put_online_cpus(); 6660 6661 event->owner = current; 6662 6663 mutex_lock(¤t->perf_event_mutex); 6664 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6665 mutex_unlock(¤t->perf_event_mutex); 6666 6667 /* 6668 * Precalculate sample_data sizes 6669 */ 6670 perf_event__header_size(event); 6671 perf_event__id_header_size(event); 6672 6673 /* 6674 * Drop the reference on the group_event after placing the 6675 * new event on the sibling_list. This ensures destruction 6676 * of the group leader will find the pointer to itself in 6677 * perf_group_detach(). 6678 */ 6679 fdput(group); 6680 fd_install(event_fd, event_file); 6681 return event_fd; 6682 6683 err_context: 6684 perf_unpin_context(ctx); 6685 put_ctx(ctx); 6686 err_alloc: 6687 free_event(event); 6688 err_task: 6689 put_online_cpus(); 6690 if (task) 6691 put_task_struct(task); 6692 err_group_fd: 6693 fdput(group); 6694 err_fd: 6695 put_unused_fd(event_fd); 6696 return err; 6697 } 6698 6699 /** 6700 * perf_event_create_kernel_counter 6701 * 6702 * @attr: attributes of the counter to create 6703 * @cpu: cpu in which the counter is bound 6704 * @task: task to profile (NULL for percpu) 6705 */ 6706 struct perf_event * 6707 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6708 struct task_struct *task, 6709 perf_overflow_handler_t overflow_handler, 6710 void *context) 6711 { 6712 struct perf_event_context *ctx; 6713 struct perf_event *event; 6714 int err; 6715 6716 /* 6717 * Get the target context (task or percpu): 6718 */ 6719 6720 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6721 overflow_handler, context); 6722 if (IS_ERR(event)) { 6723 err = PTR_ERR(event); 6724 goto err; 6725 } 6726 6727 ctx = find_get_context(event->pmu, task, cpu); 6728 if (IS_ERR(ctx)) { 6729 err = PTR_ERR(ctx); 6730 goto err_free; 6731 } 6732 6733 WARN_ON_ONCE(ctx->parent_ctx); 6734 mutex_lock(&ctx->mutex); 6735 perf_install_in_context(ctx, event, cpu); 6736 ++ctx->generation; 6737 perf_unpin_context(ctx); 6738 mutex_unlock(&ctx->mutex); 6739 6740 return event; 6741 6742 err_free: 6743 free_event(event); 6744 err: 6745 return ERR_PTR(err); 6746 } 6747 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6748 6749 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 6750 { 6751 struct perf_event_context *src_ctx; 6752 struct perf_event_context *dst_ctx; 6753 struct perf_event *event, *tmp; 6754 LIST_HEAD(events); 6755 6756 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 6757 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 6758 6759 mutex_lock(&src_ctx->mutex); 6760 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 6761 event_entry) { 6762 perf_remove_from_context(event); 6763 put_ctx(src_ctx); 6764 list_add(&event->event_entry, &events); 6765 } 6766 mutex_unlock(&src_ctx->mutex); 6767 6768 synchronize_rcu(); 6769 6770 mutex_lock(&dst_ctx->mutex); 6771 list_for_each_entry_safe(event, tmp, &events, event_entry) { 6772 list_del(&event->event_entry); 6773 if (event->state >= PERF_EVENT_STATE_OFF) 6774 event->state = PERF_EVENT_STATE_INACTIVE; 6775 perf_install_in_context(dst_ctx, event, dst_cpu); 6776 get_ctx(dst_ctx); 6777 } 6778 mutex_unlock(&dst_ctx->mutex); 6779 } 6780 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 6781 6782 static void sync_child_event(struct perf_event *child_event, 6783 struct task_struct *child) 6784 { 6785 struct perf_event *parent_event = child_event->parent; 6786 u64 child_val; 6787 6788 if (child_event->attr.inherit_stat) 6789 perf_event_read_event(child_event, child); 6790 6791 child_val = perf_event_count(child_event); 6792 6793 /* 6794 * Add back the child's count to the parent's count: 6795 */ 6796 atomic64_add(child_val, &parent_event->child_count); 6797 atomic64_add(child_event->total_time_enabled, 6798 &parent_event->child_total_time_enabled); 6799 atomic64_add(child_event->total_time_running, 6800 &parent_event->child_total_time_running); 6801 6802 /* 6803 * Remove this event from the parent's list 6804 */ 6805 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6806 mutex_lock(&parent_event->child_mutex); 6807 list_del_init(&child_event->child_list); 6808 mutex_unlock(&parent_event->child_mutex); 6809 6810 /* 6811 * Release the parent event, if this was the last 6812 * reference to it. 6813 */ 6814 put_event(parent_event); 6815 } 6816 6817 static void 6818 __perf_event_exit_task(struct perf_event *child_event, 6819 struct perf_event_context *child_ctx, 6820 struct task_struct *child) 6821 { 6822 if (child_event->parent) { 6823 raw_spin_lock_irq(&child_ctx->lock); 6824 perf_group_detach(child_event); 6825 raw_spin_unlock_irq(&child_ctx->lock); 6826 } 6827 6828 perf_remove_from_context(child_event); 6829 6830 /* 6831 * It can happen that the parent exits first, and has events 6832 * that are still around due to the child reference. These 6833 * events need to be zapped. 6834 */ 6835 if (child_event->parent) { 6836 sync_child_event(child_event, child); 6837 free_event(child_event); 6838 } 6839 } 6840 6841 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6842 { 6843 struct perf_event *child_event, *tmp; 6844 struct perf_event_context *child_ctx; 6845 unsigned long flags; 6846 6847 if (likely(!child->perf_event_ctxp[ctxn])) { 6848 perf_event_task(child, NULL, 0); 6849 return; 6850 } 6851 6852 local_irq_save(flags); 6853 /* 6854 * We can't reschedule here because interrupts are disabled, 6855 * and either child is current or it is a task that can't be 6856 * scheduled, so we are now safe from rescheduling changing 6857 * our context. 6858 */ 6859 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6860 6861 /* 6862 * Take the context lock here so that if find_get_context is 6863 * reading child->perf_event_ctxp, we wait until it has 6864 * incremented the context's refcount before we do put_ctx below. 6865 */ 6866 raw_spin_lock(&child_ctx->lock); 6867 task_ctx_sched_out(child_ctx); 6868 child->perf_event_ctxp[ctxn] = NULL; 6869 /* 6870 * If this context is a clone; unclone it so it can't get 6871 * swapped to another process while we're removing all 6872 * the events from it. 6873 */ 6874 unclone_ctx(child_ctx); 6875 update_context_time(child_ctx); 6876 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6877 6878 /* 6879 * Report the task dead after unscheduling the events so that we 6880 * won't get any samples after PERF_RECORD_EXIT. We can however still 6881 * get a few PERF_RECORD_READ events. 6882 */ 6883 perf_event_task(child, child_ctx, 0); 6884 6885 /* 6886 * We can recurse on the same lock type through: 6887 * 6888 * __perf_event_exit_task() 6889 * sync_child_event() 6890 * put_event() 6891 * mutex_lock(&ctx->mutex) 6892 * 6893 * But since its the parent context it won't be the same instance. 6894 */ 6895 mutex_lock(&child_ctx->mutex); 6896 6897 again: 6898 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6899 group_entry) 6900 __perf_event_exit_task(child_event, child_ctx, child); 6901 6902 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6903 group_entry) 6904 __perf_event_exit_task(child_event, child_ctx, child); 6905 6906 /* 6907 * If the last event was a group event, it will have appended all 6908 * its siblings to the list, but we obtained 'tmp' before that which 6909 * will still point to the list head terminating the iteration. 6910 */ 6911 if (!list_empty(&child_ctx->pinned_groups) || 6912 !list_empty(&child_ctx->flexible_groups)) 6913 goto again; 6914 6915 mutex_unlock(&child_ctx->mutex); 6916 6917 put_ctx(child_ctx); 6918 } 6919 6920 /* 6921 * When a child task exits, feed back event values to parent events. 6922 */ 6923 void perf_event_exit_task(struct task_struct *child) 6924 { 6925 struct perf_event *event, *tmp; 6926 int ctxn; 6927 6928 mutex_lock(&child->perf_event_mutex); 6929 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6930 owner_entry) { 6931 list_del_init(&event->owner_entry); 6932 6933 /* 6934 * Ensure the list deletion is visible before we clear 6935 * the owner, closes a race against perf_release() where 6936 * we need to serialize on the owner->perf_event_mutex. 6937 */ 6938 smp_wmb(); 6939 event->owner = NULL; 6940 } 6941 mutex_unlock(&child->perf_event_mutex); 6942 6943 for_each_task_context_nr(ctxn) 6944 perf_event_exit_task_context(child, ctxn); 6945 } 6946 6947 static void perf_free_event(struct perf_event *event, 6948 struct perf_event_context *ctx) 6949 { 6950 struct perf_event *parent = event->parent; 6951 6952 if (WARN_ON_ONCE(!parent)) 6953 return; 6954 6955 mutex_lock(&parent->child_mutex); 6956 list_del_init(&event->child_list); 6957 mutex_unlock(&parent->child_mutex); 6958 6959 put_event(parent); 6960 6961 perf_group_detach(event); 6962 list_del_event(event, ctx); 6963 free_event(event); 6964 } 6965 6966 /* 6967 * free an unexposed, unused context as created by inheritance by 6968 * perf_event_init_task below, used by fork() in case of fail. 6969 */ 6970 void perf_event_free_task(struct task_struct *task) 6971 { 6972 struct perf_event_context *ctx; 6973 struct perf_event *event, *tmp; 6974 int ctxn; 6975 6976 for_each_task_context_nr(ctxn) { 6977 ctx = task->perf_event_ctxp[ctxn]; 6978 if (!ctx) 6979 continue; 6980 6981 mutex_lock(&ctx->mutex); 6982 again: 6983 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6984 group_entry) 6985 perf_free_event(event, ctx); 6986 6987 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6988 group_entry) 6989 perf_free_event(event, ctx); 6990 6991 if (!list_empty(&ctx->pinned_groups) || 6992 !list_empty(&ctx->flexible_groups)) 6993 goto again; 6994 6995 mutex_unlock(&ctx->mutex); 6996 6997 put_ctx(ctx); 6998 } 6999 } 7000 7001 void perf_event_delayed_put(struct task_struct *task) 7002 { 7003 int ctxn; 7004 7005 for_each_task_context_nr(ctxn) 7006 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7007 } 7008 7009 /* 7010 * inherit a event from parent task to child task: 7011 */ 7012 static struct perf_event * 7013 inherit_event(struct perf_event *parent_event, 7014 struct task_struct *parent, 7015 struct perf_event_context *parent_ctx, 7016 struct task_struct *child, 7017 struct perf_event *group_leader, 7018 struct perf_event_context *child_ctx) 7019 { 7020 struct perf_event *child_event; 7021 unsigned long flags; 7022 7023 /* 7024 * Instead of creating recursive hierarchies of events, 7025 * we link inherited events back to the original parent, 7026 * which has a filp for sure, which we use as the reference 7027 * count: 7028 */ 7029 if (parent_event->parent) 7030 parent_event = parent_event->parent; 7031 7032 child_event = perf_event_alloc(&parent_event->attr, 7033 parent_event->cpu, 7034 child, 7035 group_leader, parent_event, 7036 NULL, NULL); 7037 if (IS_ERR(child_event)) 7038 return child_event; 7039 7040 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7041 free_event(child_event); 7042 return NULL; 7043 } 7044 7045 get_ctx(child_ctx); 7046 7047 /* 7048 * Make the child state follow the state of the parent event, 7049 * not its attr.disabled bit. We hold the parent's mutex, 7050 * so we won't race with perf_event_{en, dis}able_family. 7051 */ 7052 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7053 child_event->state = PERF_EVENT_STATE_INACTIVE; 7054 else 7055 child_event->state = PERF_EVENT_STATE_OFF; 7056 7057 if (parent_event->attr.freq) { 7058 u64 sample_period = parent_event->hw.sample_period; 7059 struct hw_perf_event *hwc = &child_event->hw; 7060 7061 hwc->sample_period = sample_period; 7062 hwc->last_period = sample_period; 7063 7064 local64_set(&hwc->period_left, sample_period); 7065 } 7066 7067 child_event->ctx = child_ctx; 7068 child_event->overflow_handler = parent_event->overflow_handler; 7069 child_event->overflow_handler_context 7070 = parent_event->overflow_handler_context; 7071 7072 /* 7073 * Precalculate sample_data sizes 7074 */ 7075 perf_event__header_size(child_event); 7076 perf_event__id_header_size(child_event); 7077 7078 /* 7079 * Link it up in the child's context: 7080 */ 7081 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7082 add_event_to_ctx(child_event, child_ctx); 7083 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7084 7085 /* 7086 * Link this into the parent event's child list 7087 */ 7088 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7089 mutex_lock(&parent_event->child_mutex); 7090 list_add_tail(&child_event->child_list, &parent_event->child_list); 7091 mutex_unlock(&parent_event->child_mutex); 7092 7093 return child_event; 7094 } 7095 7096 static int inherit_group(struct perf_event *parent_event, 7097 struct task_struct *parent, 7098 struct perf_event_context *parent_ctx, 7099 struct task_struct *child, 7100 struct perf_event_context *child_ctx) 7101 { 7102 struct perf_event *leader; 7103 struct perf_event *sub; 7104 struct perf_event *child_ctr; 7105 7106 leader = inherit_event(parent_event, parent, parent_ctx, 7107 child, NULL, child_ctx); 7108 if (IS_ERR(leader)) 7109 return PTR_ERR(leader); 7110 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7111 child_ctr = inherit_event(sub, parent, parent_ctx, 7112 child, leader, child_ctx); 7113 if (IS_ERR(child_ctr)) 7114 return PTR_ERR(child_ctr); 7115 } 7116 return 0; 7117 } 7118 7119 static int 7120 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7121 struct perf_event_context *parent_ctx, 7122 struct task_struct *child, int ctxn, 7123 int *inherited_all) 7124 { 7125 int ret; 7126 struct perf_event_context *child_ctx; 7127 7128 if (!event->attr.inherit) { 7129 *inherited_all = 0; 7130 return 0; 7131 } 7132 7133 child_ctx = child->perf_event_ctxp[ctxn]; 7134 if (!child_ctx) { 7135 /* 7136 * This is executed from the parent task context, so 7137 * inherit events that have been marked for cloning. 7138 * First allocate and initialize a context for the 7139 * child. 7140 */ 7141 7142 child_ctx = alloc_perf_context(event->pmu, child); 7143 if (!child_ctx) 7144 return -ENOMEM; 7145 7146 child->perf_event_ctxp[ctxn] = child_ctx; 7147 } 7148 7149 ret = inherit_group(event, parent, parent_ctx, 7150 child, child_ctx); 7151 7152 if (ret) 7153 *inherited_all = 0; 7154 7155 return ret; 7156 } 7157 7158 /* 7159 * Initialize the perf_event context in task_struct 7160 */ 7161 int perf_event_init_context(struct task_struct *child, int ctxn) 7162 { 7163 struct perf_event_context *child_ctx, *parent_ctx; 7164 struct perf_event_context *cloned_ctx; 7165 struct perf_event *event; 7166 struct task_struct *parent = current; 7167 int inherited_all = 1; 7168 unsigned long flags; 7169 int ret = 0; 7170 7171 if (likely(!parent->perf_event_ctxp[ctxn])) 7172 return 0; 7173 7174 /* 7175 * If the parent's context is a clone, pin it so it won't get 7176 * swapped under us. 7177 */ 7178 parent_ctx = perf_pin_task_context(parent, ctxn); 7179 7180 /* 7181 * No need to check if parent_ctx != NULL here; since we saw 7182 * it non-NULL earlier, the only reason for it to become NULL 7183 * is if we exit, and since we're currently in the middle of 7184 * a fork we can't be exiting at the same time. 7185 */ 7186 7187 /* 7188 * Lock the parent list. No need to lock the child - not PID 7189 * hashed yet and not running, so nobody can access it. 7190 */ 7191 mutex_lock(&parent_ctx->mutex); 7192 7193 /* 7194 * We dont have to disable NMIs - we are only looking at 7195 * the list, not manipulating it: 7196 */ 7197 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7198 ret = inherit_task_group(event, parent, parent_ctx, 7199 child, ctxn, &inherited_all); 7200 if (ret) 7201 break; 7202 } 7203 7204 /* 7205 * We can't hold ctx->lock when iterating the ->flexible_group list due 7206 * to allocations, but we need to prevent rotation because 7207 * rotate_ctx() will change the list from interrupt context. 7208 */ 7209 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7210 parent_ctx->rotate_disable = 1; 7211 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7212 7213 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7214 ret = inherit_task_group(event, parent, parent_ctx, 7215 child, ctxn, &inherited_all); 7216 if (ret) 7217 break; 7218 } 7219 7220 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7221 parent_ctx->rotate_disable = 0; 7222 7223 child_ctx = child->perf_event_ctxp[ctxn]; 7224 7225 if (child_ctx && inherited_all) { 7226 /* 7227 * Mark the child context as a clone of the parent 7228 * context, or of whatever the parent is a clone of. 7229 * 7230 * Note that if the parent is a clone, the holding of 7231 * parent_ctx->lock avoids it from being uncloned. 7232 */ 7233 cloned_ctx = parent_ctx->parent_ctx; 7234 if (cloned_ctx) { 7235 child_ctx->parent_ctx = cloned_ctx; 7236 child_ctx->parent_gen = parent_ctx->parent_gen; 7237 } else { 7238 child_ctx->parent_ctx = parent_ctx; 7239 child_ctx->parent_gen = parent_ctx->generation; 7240 } 7241 get_ctx(child_ctx->parent_ctx); 7242 } 7243 7244 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7245 mutex_unlock(&parent_ctx->mutex); 7246 7247 perf_unpin_context(parent_ctx); 7248 put_ctx(parent_ctx); 7249 7250 return ret; 7251 } 7252 7253 /* 7254 * Initialize the perf_event context in task_struct 7255 */ 7256 int perf_event_init_task(struct task_struct *child) 7257 { 7258 int ctxn, ret; 7259 7260 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7261 mutex_init(&child->perf_event_mutex); 7262 INIT_LIST_HEAD(&child->perf_event_list); 7263 7264 for_each_task_context_nr(ctxn) { 7265 ret = perf_event_init_context(child, ctxn); 7266 if (ret) 7267 return ret; 7268 } 7269 7270 return 0; 7271 } 7272 7273 static void __init perf_event_init_all_cpus(void) 7274 { 7275 struct swevent_htable *swhash; 7276 int cpu; 7277 7278 for_each_possible_cpu(cpu) { 7279 swhash = &per_cpu(swevent_htable, cpu); 7280 mutex_init(&swhash->hlist_mutex); 7281 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7282 } 7283 } 7284 7285 static void __cpuinit perf_event_init_cpu(int cpu) 7286 { 7287 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7288 7289 mutex_lock(&swhash->hlist_mutex); 7290 if (swhash->hlist_refcount > 0) { 7291 struct swevent_hlist *hlist; 7292 7293 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7294 WARN_ON(!hlist); 7295 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7296 } 7297 mutex_unlock(&swhash->hlist_mutex); 7298 } 7299 7300 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7301 static void perf_pmu_rotate_stop(struct pmu *pmu) 7302 { 7303 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7304 7305 WARN_ON(!irqs_disabled()); 7306 7307 list_del_init(&cpuctx->rotation_list); 7308 } 7309 7310 static void __perf_event_exit_context(void *__info) 7311 { 7312 struct perf_event_context *ctx = __info; 7313 struct perf_event *event, *tmp; 7314 7315 perf_pmu_rotate_stop(ctx->pmu); 7316 7317 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7318 __perf_remove_from_context(event); 7319 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7320 __perf_remove_from_context(event); 7321 } 7322 7323 static void perf_event_exit_cpu_context(int cpu) 7324 { 7325 struct perf_event_context *ctx; 7326 struct pmu *pmu; 7327 int idx; 7328 7329 idx = srcu_read_lock(&pmus_srcu); 7330 list_for_each_entry_rcu(pmu, &pmus, entry) { 7331 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7332 7333 mutex_lock(&ctx->mutex); 7334 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7335 mutex_unlock(&ctx->mutex); 7336 } 7337 srcu_read_unlock(&pmus_srcu, idx); 7338 } 7339 7340 static void perf_event_exit_cpu(int cpu) 7341 { 7342 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7343 7344 mutex_lock(&swhash->hlist_mutex); 7345 swevent_hlist_release(swhash); 7346 mutex_unlock(&swhash->hlist_mutex); 7347 7348 perf_event_exit_cpu_context(cpu); 7349 } 7350 #else 7351 static inline void perf_event_exit_cpu(int cpu) { } 7352 #endif 7353 7354 static int 7355 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7356 { 7357 int cpu; 7358 7359 for_each_online_cpu(cpu) 7360 perf_event_exit_cpu(cpu); 7361 7362 return NOTIFY_OK; 7363 } 7364 7365 /* 7366 * Run the perf reboot notifier at the very last possible moment so that 7367 * the generic watchdog code runs as long as possible. 7368 */ 7369 static struct notifier_block perf_reboot_notifier = { 7370 .notifier_call = perf_reboot, 7371 .priority = INT_MIN, 7372 }; 7373 7374 static int __cpuinit 7375 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7376 { 7377 unsigned int cpu = (long)hcpu; 7378 7379 switch (action & ~CPU_TASKS_FROZEN) { 7380 7381 case CPU_UP_PREPARE: 7382 case CPU_DOWN_FAILED: 7383 perf_event_init_cpu(cpu); 7384 break; 7385 7386 case CPU_UP_CANCELED: 7387 case CPU_DOWN_PREPARE: 7388 perf_event_exit_cpu(cpu); 7389 break; 7390 7391 default: 7392 break; 7393 } 7394 7395 return NOTIFY_OK; 7396 } 7397 7398 void __init perf_event_init(void) 7399 { 7400 int ret; 7401 7402 idr_init(&pmu_idr); 7403 7404 perf_event_init_all_cpus(); 7405 init_srcu_struct(&pmus_srcu); 7406 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7407 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7408 perf_pmu_register(&perf_task_clock, NULL, -1); 7409 perf_tp_register(); 7410 perf_cpu_notifier(perf_cpu_notify); 7411 register_reboot_notifier(&perf_reboot_notifier); 7412 7413 ret = init_hw_breakpoint(); 7414 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7415 7416 /* do not patch jump label more than once per second */ 7417 jump_label_rate_limit(&perf_sched_events, HZ); 7418 7419 /* 7420 * Build time assertion that we keep the data_head at the intended 7421 * location. IOW, validation we got the __reserved[] size right. 7422 */ 7423 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7424 != 1024); 7425 } 7426 7427 static int __init perf_event_sysfs_init(void) 7428 { 7429 struct pmu *pmu; 7430 int ret; 7431 7432 mutex_lock(&pmus_lock); 7433 7434 ret = bus_register(&pmu_bus); 7435 if (ret) 7436 goto unlock; 7437 7438 list_for_each_entry(pmu, &pmus, entry) { 7439 if (!pmu->name || pmu->type < 0) 7440 continue; 7441 7442 ret = pmu_dev_alloc(pmu); 7443 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7444 } 7445 pmu_bus_running = 1; 7446 ret = 0; 7447 7448 unlock: 7449 mutex_unlock(&pmus_lock); 7450 7451 return ret; 7452 } 7453 device_initcall(perf_event_sysfs_init); 7454 7455 #ifdef CONFIG_CGROUP_PERF 7456 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont) 7457 { 7458 struct perf_cgroup *jc; 7459 7460 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7461 if (!jc) 7462 return ERR_PTR(-ENOMEM); 7463 7464 jc->info = alloc_percpu(struct perf_cgroup_info); 7465 if (!jc->info) { 7466 kfree(jc); 7467 return ERR_PTR(-ENOMEM); 7468 } 7469 7470 return &jc->css; 7471 } 7472 7473 static void perf_cgroup_css_free(struct cgroup *cont) 7474 { 7475 struct perf_cgroup *jc; 7476 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7477 struct perf_cgroup, css); 7478 free_percpu(jc->info); 7479 kfree(jc); 7480 } 7481 7482 static int __perf_cgroup_move(void *info) 7483 { 7484 struct task_struct *task = info; 7485 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7486 return 0; 7487 } 7488 7489 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7490 { 7491 struct task_struct *task; 7492 7493 cgroup_taskset_for_each(task, cgrp, tset) 7494 task_function_call(task, __perf_cgroup_move, task); 7495 } 7496 7497 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7498 struct task_struct *task) 7499 { 7500 /* 7501 * cgroup_exit() is called in the copy_process() failure path. 7502 * Ignore this case since the task hasn't ran yet, this avoids 7503 * trying to poke a half freed task state from generic code. 7504 */ 7505 if (!(task->flags & PF_EXITING)) 7506 return; 7507 7508 task_function_call(task, __perf_cgroup_move, task); 7509 } 7510 7511 struct cgroup_subsys perf_subsys = { 7512 .name = "perf_event", 7513 .subsys_id = perf_subsys_id, 7514 .css_alloc = perf_cgroup_css_alloc, 7515 .css_free = perf_cgroup_css_free, 7516 .exit = perf_cgroup_exit, 7517 .attach = perf_cgroup_attach, 7518 }; 7519 #endif /* CONFIG_CGROUP_PERF */ 7520