xref: /openbmc/linux/kernel/events/core.c (revision eb3fcf00)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167 
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171 
172 /*
173  * perf event paranoia level:
174  *  -1 - not paranoid at all
175  *   0 - disallow raw tracepoint access for unpriv
176  *   1 - disallow cpu events for unpriv
177  *   2 - disallow kernel profiling for unpriv
178  */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180 
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 
184 /*
185  * max perf event sample rate
186  */
187 #define DEFAULT_MAX_SAMPLE_RATE		100000
188 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
190 
191 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
192 
193 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
195 
196 static int perf_sample_allowed_ns __read_mostly =
197 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 
199 void update_perf_cpu_limits(void)
200 {
201 	u64 tmp = perf_sample_period_ns;
202 
203 	tmp *= sysctl_perf_cpu_time_max_percent;
204 	do_div(tmp, 100);
205 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207 
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209 
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 		void __user *buffer, size_t *lenp,
212 		loff_t *ppos)
213 {
214 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 	update_perf_cpu_limits();
222 
223 	return 0;
224 }
225 
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227 
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 				void __user *buffer, size_t *lenp,
230 				loff_t *ppos)
231 {
232 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233 
234 	if (ret || !write)
235 		return ret;
236 
237 	update_perf_cpu_limits();
238 
239 	return 0;
240 }
241 
242 /*
243  * perf samples are done in some very critical code paths (NMIs).
244  * If they take too much CPU time, the system can lock up and not
245  * get any real work done.  This will drop the sample rate when
246  * we detect that events are taking too long.
247  */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250 
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 	u64 avg_local_sample_len;
255 	u64 local_samples_len;
256 
257 	local_samples_len = __this_cpu_read(running_sample_length);
258 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259 
260 	printk_ratelimited(KERN_WARNING
261 			"perf interrupt took too long (%lld > %lld), lowering "
262 			"kernel.perf_event_max_sample_rate to %d\n",
263 			avg_local_sample_len, allowed_ns >> 1,
264 			sysctl_perf_event_sample_rate);
265 }
266 
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268 
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 	u64 avg_local_sample_len;
273 	u64 local_samples_len;
274 
275 	if (allowed_ns == 0)
276 		return;
277 
278 	/* decay the counter by 1 average sample */
279 	local_samples_len = __this_cpu_read(running_sample_length);
280 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 	local_samples_len += sample_len_ns;
282 	__this_cpu_write(running_sample_length, local_samples_len);
283 
284 	/*
285 	 * note: this will be biased artifically low until we have
286 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
287 	 * from having to maintain a count.
288 	 */
289 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290 
291 	if (avg_local_sample_len <= allowed_ns)
292 		return;
293 
294 	if (max_samples_per_tick <= 1)
295 		return;
296 
297 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300 
301 	update_perf_cpu_limits();
302 
303 	if (!irq_work_queue(&perf_duration_work)) {
304 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 			     "kernel.perf_event_max_sample_rate to %d\n",
306 			     avg_local_sample_len, allowed_ns >> 1,
307 			     sysctl_perf_event_sample_rate);
308 	}
309 }
310 
311 static atomic64_t perf_event_id;
312 
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 			      enum event_type_t event_type);
315 
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 			     enum event_type_t event_type,
318 			     struct task_struct *task);
319 
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322 
323 void __weak perf_event_print_debug(void)	{ }
324 
325 extern __weak const char *perf_pmu_name(void)
326 {
327 	return "pmu";
328 }
329 
330 static inline u64 perf_clock(void)
331 {
332 	return local_clock();
333 }
334 
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 	return event->clock();
338 }
339 
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345 
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 			  struct perf_event_context *ctx)
348 {
349 	raw_spin_lock(&cpuctx->ctx.lock);
350 	if (ctx)
351 		raw_spin_lock(&ctx->lock);
352 }
353 
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 			    struct perf_event_context *ctx)
356 {
357 	if (ctx)
358 		raw_spin_unlock(&ctx->lock);
359 	raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361 
362 #ifdef CONFIG_CGROUP_PERF
363 
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 	struct perf_event_context *ctx = event->ctx;
368 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369 
370 	/* @event doesn't care about cgroup */
371 	if (!event->cgrp)
372 		return true;
373 
374 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
375 	if (!cpuctx->cgrp)
376 		return false;
377 
378 	/*
379 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
380 	 * also enabled for all its descendant cgroups.  If @cpuctx's
381 	 * cgroup is a descendant of @event's (the test covers identity
382 	 * case), it's a match.
383 	 */
384 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 				    event->cgrp->css.cgroup);
386 }
387 
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 	css_put(&event->cgrp->css);
391 	event->cgrp = NULL;
392 }
393 
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 	return event->cgrp != NULL;
397 }
398 
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 	struct perf_cgroup_info *t;
402 
403 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 	return t->time;
405 }
406 
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 	struct perf_cgroup_info *info;
410 	u64 now;
411 
412 	now = perf_clock();
413 
414 	info = this_cpu_ptr(cgrp->info);
415 
416 	info->time += now - info->timestamp;
417 	info->timestamp = now;
418 }
419 
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 	if (cgrp_out)
424 		__update_cgrp_time(cgrp_out);
425 }
426 
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 	struct perf_cgroup *cgrp;
430 
431 	/*
432 	 * ensure we access cgroup data only when needed and
433 	 * when we know the cgroup is pinned (css_get)
434 	 */
435 	if (!is_cgroup_event(event))
436 		return;
437 
438 	cgrp = perf_cgroup_from_task(current);
439 	/*
440 	 * Do not update time when cgroup is not active
441 	 */
442 	if (cgrp == event->cgrp)
443 		__update_cgrp_time(event->cgrp);
444 }
445 
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 			  struct perf_event_context *ctx)
449 {
450 	struct perf_cgroup *cgrp;
451 	struct perf_cgroup_info *info;
452 
453 	/*
454 	 * ctx->lock held by caller
455 	 * ensure we do not access cgroup data
456 	 * unless we have the cgroup pinned (css_get)
457 	 */
458 	if (!task || !ctx->nr_cgroups)
459 		return;
460 
461 	cgrp = perf_cgroup_from_task(task);
462 	info = this_cpu_ptr(cgrp->info);
463 	info->timestamp = ctx->timestamp;
464 }
465 
466 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
468 
469 /*
470  * reschedule events based on the cgroup constraint of task.
471  *
472  * mode SWOUT : schedule out everything
473  * mode SWIN : schedule in based on cgroup for next
474  */
475 void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 	struct perf_cpu_context *cpuctx;
478 	struct pmu *pmu;
479 	unsigned long flags;
480 
481 	/*
482 	 * disable interrupts to avoid geting nr_cgroup
483 	 * changes via __perf_event_disable(). Also
484 	 * avoids preemption.
485 	 */
486 	local_irq_save(flags);
487 
488 	/*
489 	 * we reschedule only in the presence of cgroup
490 	 * constrained events.
491 	 */
492 	rcu_read_lock();
493 
494 	list_for_each_entry_rcu(pmu, &pmus, entry) {
495 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 		if (cpuctx->unique_pmu != pmu)
497 			continue; /* ensure we process each cpuctx once */
498 
499 		/*
500 		 * perf_cgroup_events says at least one
501 		 * context on this CPU has cgroup events.
502 		 *
503 		 * ctx->nr_cgroups reports the number of cgroup
504 		 * events for a context.
505 		 */
506 		if (cpuctx->ctx.nr_cgroups > 0) {
507 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 			perf_pmu_disable(cpuctx->ctx.pmu);
509 
510 			if (mode & PERF_CGROUP_SWOUT) {
511 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 				/*
513 				 * must not be done before ctxswout due
514 				 * to event_filter_match() in event_sched_out()
515 				 */
516 				cpuctx->cgrp = NULL;
517 			}
518 
519 			if (mode & PERF_CGROUP_SWIN) {
520 				WARN_ON_ONCE(cpuctx->cgrp);
521 				/*
522 				 * set cgrp before ctxsw in to allow
523 				 * event_filter_match() to not have to pass
524 				 * task around
525 				 */
526 				cpuctx->cgrp = perf_cgroup_from_task(task);
527 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 			}
529 			perf_pmu_enable(cpuctx->ctx.pmu);
530 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 		}
532 	}
533 
534 	rcu_read_unlock();
535 
536 	local_irq_restore(flags);
537 }
538 
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 					 struct task_struct *next)
541 {
542 	struct perf_cgroup *cgrp1;
543 	struct perf_cgroup *cgrp2 = NULL;
544 
545 	/*
546 	 * we come here when we know perf_cgroup_events > 0
547 	 */
548 	cgrp1 = perf_cgroup_from_task(task);
549 
550 	/*
551 	 * next is NULL when called from perf_event_enable_on_exec()
552 	 * that will systematically cause a cgroup_switch()
553 	 */
554 	if (next)
555 		cgrp2 = perf_cgroup_from_task(next);
556 
557 	/*
558 	 * only schedule out current cgroup events if we know
559 	 * that we are switching to a different cgroup. Otherwise,
560 	 * do no touch the cgroup events.
561 	 */
562 	if (cgrp1 != cgrp2)
563 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565 
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 					struct task_struct *task)
568 {
569 	struct perf_cgroup *cgrp1;
570 	struct perf_cgroup *cgrp2 = NULL;
571 
572 	/*
573 	 * we come here when we know perf_cgroup_events > 0
574 	 */
575 	cgrp1 = perf_cgroup_from_task(task);
576 
577 	/* prev can never be NULL */
578 	cgrp2 = perf_cgroup_from_task(prev);
579 
580 	/*
581 	 * only need to schedule in cgroup events if we are changing
582 	 * cgroup during ctxsw. Cgroup events were not scheduled
583 	 * out of ctxsw out if that was not the case.
584 	 */
585 	if (cgrp1 != cgrp2)
586 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588 
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 				      struct perf_event_attr *attr,
591 				      struct perf_event *group_leader)
592 {
593 	struct perf_cgroup *cgrp;
594 	struct cgroup_subsys_state *css;
595 	struct fd f = fdget(fd);
596 	int ret = 0;
597 
598 	if (!f.file)
599 		return -EBADF;
600 
601 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 					 &perf_event_cgrp_subsys);
603 	if (IS_ERR(css)) {
604 		ret = PTR_ERR(css);
605 		goto out;
606 	}
607 
608 	cgrp = container_of(css, struct perf_cgroup, css);
609 	event->cgrp = cgrp;
610 
611 	/*
612 	 * all events in a group must monitor
613 	 * the same cgroup because a task belongs
614 	 * to only one perf cgroup at a time
615 	 */
616 	if (group_leader && group_leader->cgrp != cgrp) {
617 		perf_detach_cgroup(event);
618 		ret = -EINVAL;
619 	}
620 out:
621 	fdput(f);
622 	return ret;
623 }
624 
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 	struct perf_cgroup_info *t;
629 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 	event->shadow_ctx_time = now - t->timestamp;
631 }
632 
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 	/*
637 	 * when the current task's perf cgroup does not match
638 	 * the event's, we need to remember to call the
639 	 * perf_mark_enable() function the first time a task with
640 	 * a matching perf cgroup is scheduled in.
641 	 */
642 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 		event->cgrp_defer_enabled = 1;
644 }
645 
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 			 struct perf_event_context *ctx)
649 {
650 	struct perf_event *sub;
651 	u64 tstamp = perf_event_time(event);
652 
653 	if (!event->cgrp_defer_enabled)
654 		return;
655 
656 	event->cgrp_defer_enabled = 0;
657 
658 	event->tstamp_enabled = tstamp - event->total_time_enabled;
659 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 			sub->cgrp_defer_enabled = 0;
663 		}
664 	}
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667 
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 	return true;
672 }
673 
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676 
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 	return 0;
680 }
681 
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 	return 0;
685 }
686 
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690 
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694 
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 					 struct task_struct *next)
697 {
698 }
699 
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 					struct task_struct *task)
702 {
703 }
704 
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 				      struct perf_event_attr *attr,
707 				      struct perf_event *group_leader)
708 {
709 	return -EINVAL;
710 }
711 
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 			  struct perf_event_context *ctx)
715 {
716 }
717 
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722 
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727 
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 	return 0;
731 }
732 
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737 
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 			 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744 
745 /*
746  * set default to be dependent on timer tick just
747  * like original code
748  */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751  * function must be called with interrupts disbled
752  */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 	struct perf_cpu_context *cpuctx;
756 	int rotations = 0;
757 
758 	WARN_ON(!irqs_disabled());
759 
760 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 	rotations = perf_rotate_context(cpuctx);
762 
763 	raw_spin_lock(&cpuctx->hrtimer_lock);
764 	if (rotations)
765 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 	else
767 		cpuctx->hrtimer_active = 0;
768 	raw_spin_unlock(&cpuctx->hrtimer_lock);
769 
770 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772 
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 	struct hrtimer *timer = &cpuctx->hrtimer;
776 	struct pmu *pmu = cpuctx->ctx.pmu;
777 	u64 interval;
778 
779 	/* no multiplexing needed for SW PMU */
780 	if (pmu->task_ctx_nr == perf_sw_context)
781 		return;
782 
783 	/*
784 	 * check default is sane, if not set then force to
785 	 * default interval (1/tick)
786 	 */
787 	interval = pmu->hrtimer_interval_ms;
788 	if (interval < 1)
789 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790 
791 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792 
793 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 	timer->function = perf_mux_hrtimer_handler;
796 }
797 
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 	struct hrtimer *timer = &cpuctx->hrtimer;
801 	struct pmu *pmu = cpuctx->ctx.pmu;
802 	unsigned long flags;
803 
804 	/* not for SW PMU */
805 	if (pmu->task_ctx_nr == perf_sw_context)
806 		return 0;
807 
808 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 	if (!cpuctx->hrtimer_active) {
810 		cpuctx->hrtimer_active = 1;
811 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 	}
814 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815 
816 	return 0;
817 }
818 
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 	if (!(*count)++)
823 		pmu->pmu_disable(pmu);
824 }
825 
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 	if (!--(*count))
830 		pmu->pmu_enable(pmu);
831 }
832 
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 
835 /*
836  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837  * perf_event_task_tick() are fully serialized because they're strictly cpu
838  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839  * disabled, while perf_event_task_tick is called from IRQ context.
840  */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844 
845 	WARN_ON(!irqs_disabled());
846 
847 	WARN_ON(!list_empty(&ctx->active_ctx_list));
848 
849 	list_add(&ctx->active_ctx_list, head);
850 }
851 
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 	WARN_ON(!irqs_disabled());
855 
856 	WARN_ON(list_empty(&ctx->active_ctx_list));
857 
858 	list_del_init(&ctx->active_ctx_list);
859 }
860 
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865 
866 static void free_ctx(struct rcu_head *head)
867 {
868 	struct perf_event_context *ctx;
869 
870 	ctx = container_of(head, struct perf_event_context, rcu_head);
871 	kfree(ctx->task_ctx_data);
872 	kfree(ctx);
873 }
874 
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 	if (atomic_dec_and_test(&ctx->refcount)) {
878 		if (ctx->parent_ctx)
879 			put_ctx(ctx->parent_ctx);
880 		if (ctx->task)
881 			put_task_struct(ctx->task);
882 		call_rcu(&ctx->rcu_head, free_ctx);
883 	}
884 }
885 
886 /*
887  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888  * perf_pmu_migrate_context() we need some magic.
889  *
890  * Those places that change perf_event::ctx will hold both
891  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892  *
893  * Lock ordering is by mutex address. There are two other sites where
894  * perf_event_context::mutex nests and those are:
895  *
896  *  - perf_event_exit_task_context()	[ child , 0 ]
897  *      __perf_event_exit_task()
898  *        sync_child_event()
899  *          put_event()			[ parent, 1 ]
900  *
901  *  - perf_event_init_context()		[ parent, 0 ]
902  *      inherit_task_group()
903  *        inherit_group()
904  *          inherit_event()
905  *            perf_event_alloc()
906  *              perf_init_event()
907  *                perf_try_init_event()	[ child , 1 ]
908  *
909  * While it appears there is an obvious deadlock here -- the parent and child
910  * nesting levels are inverted between the two. This is in fact safe because
911  * life-time rules separate them. That is an exiting task cannot fork, and a
912  * spawning task cannot (yet) exit.
913  *
914  * But remember that that these are parent<->child context relations, and
915  * migration does not affect children, therefore these two orderings should not
916  * interact.
917  *
918  * The change in perf_event::ctx does not affect children (as claimed above)
919  * because the sys_perf_event_open() case will install a new event and break
920  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921  * concerned with cpuctx and that doesn't have children.
922  *
923  * The places that change perf_event::ctx will issue:
924  *
925  *   perf_remove_from_context();
926  *   synchronize_rcu();
927  *   perf_install_in_context();
928  *
929  * to affect the change. The remove_from_context() + synchronize_rcu() should
930  * quiesce the event, after which we can install it in the new location. This
931  * means that only external vectors (perf_fops, prctl) can perturb the event
932  * while in transit. Therefore all such accessors should also acquire
933  * perf_event_context::mutex to serialize against this.
934  *
935  * However; because event->ctx can change while we're waiting to acquire
936  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937  * function.
938  *
939  * Lock order:
940  *	task_struct::perf_event_mutex
941  *	  perf_event_context::mutex
942  *	    perf_event_context::lock
943  *	    perf_event::child_mutex;
944  *	    perf_event::mmap_mutex
945  *	    mmap_sem
946  */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 	struct perf_event_context *ctx;
951 
952 again:
953 	rcu_read_lock();
954 	ctx = ACCESS_ONCE(event->ctx);
955 	if (!atomic_inc_not_zero(&ctx->refcount)) {
956 		rcu_read_unlock();
957 		goto again;
958 	}
959 	rcu_read_unlock();
960 
961 	mutex_lock_nested(&ctx->mutex, nesting);
962 	if (event->ctx != ctx) {
963 		mutex_unlock(&ctx->mutex);
964 		put_ctx(ctx);
965 		goto again;
966 	}
967 
968 	return ctx;
969 }
970 
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 	return perf_event_ctx_lock_nested(event, 0);
975 }
976 
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 				  struct perf_event_context *ctx)
979 {
980 	mutex_unlock(&ctx->mutex);
981 	put_ctx(ctx);
982 }
983 
984 /*
985  * This must be done under the ctx->lock, such as to serialize against
986  * context_equiv(), therefore we cannot call put_ctx() since that might end up
987  * calling scheduler related locks and ctx->lock nests inside those.
988  */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
993 
994 	lockdep_assert_held(&ctx->lock);
995 
996 	if (parent_ctx)
997 		ctx->parent_ctx = NULL;
998 	ctx->generation++;
999 
1000 	return parent_ctx;
1001 }
1002 
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 	/*
1006 	 * only top level events have the pid namespace they were created in
1007 	 */
1008 	if (event->parent)
1009 		event = event->parent;
1010 
1011 	return task_tgid_nr_ns(p, event->ns);
1012 }
1013 
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 	/*
1017 	 * only top level events have the pid namespace they were created in
1018 	 */
1019 	if (event->parent)
1020 		event = event->parent;
1021 
1022 	return task_pid_nr_ns(p, event->ns);
1023 }
1024 
1025 /*
1026  * If we inherit events we want to return the parent event id
1027  * to userspace.
1028  */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 	u64 id = event->id;
1032 
1033 	if (event->parent)
1034 		id = event->parent->id;
1035 
1036 	return id;
1037 }
1038 
1039 /*
1040  * Get the perf_event_context for a task and lock it.
1041  * This has to cope with with the fact that until it is locked,
1042  * the context could get moved to another task.
1043  */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 	struct perf_event_context *ctx;
1048 
1049 retry:
1050 	/*
1051 	 * One of the few rules of preemptible RCU is that one cannot do
1052 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 	 * part of the read side critical section was preemptible -- see
1054 	 * rcu_read_unlock_special().
1055 	 *
1056 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 	 * side critical section is non-preemptible.
1058 	 */
1059 	preempt_disable();
1060 	rcu_read_lock();
1061 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 	if (ctx) {
1063 		/*
1064 		 * If this context is a clone of another, it might
1065 		 * get swapped for another underneath us by
1066 		 * perf_event_task_sched_out, though the
1067 		 * rcu_read_lock() protects us from any context
1068 		 * getting freed.  Lock the context and check if it
1069 		 * got swapped before we could get the lock, and retry
1070 		 * if so.  If we locked the right context, then it
1071 		 * can't get swapped on us any more.
1072 		 */
1073 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1074 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 			rcu_read_unlock();
1077 			preempt_enable();
1078 			goto retry;
1079 		}
1080 
1081 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 			ctx = NULL;
1084 		}
1085 	}
1086 	rcu_read_unlock();
1087 	preempt_enable();
1088 	return ctx;
1089 }
1090 
1091 /*
1092  * Get the context for a task and increment its pin_count so it
1093  * can't get swapped to another task.  This also increments its
1094  * reference count so that the context can't get freed.
1095  */
1096 static struct perf_event_context *
1097 perf_pin_task_context(struct task_struct *task, int ctxn)
1098 {
1099 	struct perf_event_context *ctx;
1100 	unsigned long flags;
1101 
1102 	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 	if (ctx) {
1104 		++ctx->pin_count;
1105 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 	}
1107 	return ctx;
1108 }
1109 
1110 static void perf_unpin_context(struct perf_event_context *ctx)
1111 {
1112 	unsigned long flags;
1113 
1114 	raw_spin_lock_irqsave(&ctx->lock, flags);
1115 	--ctx->pin_count;
1116 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 }
1118 
1119 /*
1120  * Update the record of the current time in a context.
1121  */
1122 static void update_context_time(struct perf_event_context *ctx)
1123 {
1124 	u64 now = perf_clock();
1125 
1126 	ctx->time += now - ctx->timestamp;
1127 	ctx->timestamp = now;
1128 }
1129 
1130 static u64 perf_event_time(struct perf_event *event)
1131 {
1132 	struct perf_event_context *ctx = event->ctx;
1133 
1134 	if (is_cgroup_event(event))
1135 		return perf_cgroup_event_time(event);
1136 
1137 	return ctx ? ctx->time : 0;
1138 }
1139 
1140 /*
1141  * Update the total_time_enabled and total_time_running fields for a event.
1142  * The caller of this function needs to hold the ctx->lock.
1143  */
1144 static void update_event_times(struct perf_event *event)
1145 {
1146 	struct perf_event_context *ctx = event->ctx;
1147 	u64 run_end;
1148 
1149 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 		return;
1152 	/*
1153 	 * in cgroup mode, time_enabled represents
1154 	 * the time the event was enabled AND active
1155 	 * tasks were in the monitored cgroup. This is
1156 	 * independent of the activity of the context as
1157 	 * there may be a mix of cgroup and non-cgroup events.
1158 	 *
1159 	 * That is why we treat cgroup events differently
1160 	 * here.
1161 	 */
1162 	if (is_cgroup_event(event))
1163 		run_end = perf_cgroup_event_time(event);
1164 	else if (ctx->is_active)
1165 		run_end = ctx->time;
1166 	else
1167 		run_end = event->tstamp_stopped;
1168 
1169 	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 
1171 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 		run_end = event->tstamp_stopped;
1173 	else
1174 		run_end = perf_event_time(event);
1175 
1176 	event->total_time_running = run_end - event->tstamp_running;
1177 
1178 }
1179 
1180 /*
1181  * Update total_time_enabled and total_time_running for all events in a group.
1182  */
1183 static void update_group_times(struct perf_event *leader)
1184 {
1185 	struct perf_event *event;
1186 
1187 	update_event_times(leader);
1188 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 		update_event_times(event);
1190 }
1191 
1192 static struct list_head *
1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194 {
1195 	if (event->attr.pinned)
1196 		return &ctx->pinned_groups;
1197 	else
1198 		return &ctx->flexible_groups;
1199 }
1200 
1201 /*
1202  * Add a event from the lists for its context.
1203  * Must be called with ctx->mutex and ctx->lock held.
1204  */
1205 static void
1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 
1211 	/*
1212 	 * If we're a stand alone event or group leader, we go to the context
1213 	 * list, group events are kept attached to the group so that
1214 	 * perf_group_detach can, at all times, locate all siblings.
1215 	 */
1216 	if (event->group_leader == event) {
1217 		struct list_head *list;
1218 
1219 		if (is_software_event(event))
1220 			event->group_flags |= PERF_GROUP_SOFTWARE;
1221 
1222 		list = ctx_group_list(event, ctx);
1223 		list_add_tail(&event->group_entry, list);
1224 	}
1225 
1226 	if (is_cgroup_event(event))
1227 		ctx->nr_cgroups++;
1228 
1229 	list_add_rcu(&event->event_entry, &ctx->event_list);
1230 	ctx->nr_events++;
1231 	if (event->attr.inherit_stat)
1232 		ctx->nr_stat++;
1233 
1234 	ctx->generation++;
1235 }
1236 
1237 /*
1238  * Initialize event state based on the perf_event_attr::disabled.
1239  */
1240 static inline void perf_event__state_init(struct perf_event *event)
1241 {
1242 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 					      PERF_EVENT_STATE_INACTIVE;
1244 }
1245 
1246 /*
1247  * Called at perf_event creation and when events are attached/detached from a
1248  * group.
1249  */
1250 static void perf_event__read_size(struct perf_event *event)
1251 {
1252 	int entry = sizeof(u64); /* value */
1253 	int size = 0;
1254 	int nr = 1;
1255 
1256 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 		size += sizeof(u64);
1258 
1259 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 		size += sizeof(u64);
1261 
1262 	if (event->attr.read_format & PERF_FORMAT_ID)
1263 		entry += sizeof(u64);
1264 
1265 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 		nr += event->group_leader->nr_siblings;
1267 		size += sizeof(u64);
1268 	}
1269 
1270 	size += entry * nr;
1271 	event->read_size = size;
1272 }
1273 
1274 static void perf_event__header_size(struct perf_event *event)
1275 {
1276 	struct perf_sample_data *data;
1277 	u64 sample_type = event->attr.sample_type;
1278 	u16 size = 0;
1279 
1280 	perf_event__read_size(event);
1281 
1282 	if (sample_type & PERF_SAMPLE_IP)
1283 		size += sizeof(data->ip);
1284 
1285 	if (sample_type & PERF_SAMPLE_ADDR)
1286 		size += sizeof(data->addr);
1287 
1288 	if (sample_type & PERF_SAMPLE_PERIOD)
1289 		size += sizeof(data->period);
1290 
1291 	if (sample_type & PERF_SAMPLE_WEIGHT)
1292 		size += sizeof(data->weight);
1293 
1294 	if (sample_type & PERF_SAMPLE_READ)
1295 		size += event->read_size;
1296 
1297 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 		size += sizeof(data->data_src.val);
1299 
1300 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 		size += sizeof(data->txn);
1302 
1303 	event->header_size = size;
1304 }
1305 
1306 static void perf_event__id_header_size(struct perf_event *event)
1307 {
1308 	struct perf_sample_data *data;
1309 	u64 sample_type = event->attr.sample_type;
1310 	u16 size = 0;
1311 
1312 	if (sample_type & PERF_SAMPLE_TID)
1313 		size += sizeof(data->tid_entry);
1314 
1315 	if (sample_type & PERF_SAMPLE_TIME)
1316 		size += sizeof(data->time);
1317 
1318 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 		size += sizeof(data->id);
1320 
1321 	if (sample_type & PERF_SAMPLE_ID)
1322 		size += sizeof(data->id);
1323 
1324 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 		size += sizeof(data->stream_id);
1326 
1327 	if (sample_type & PERF_SAMPLE_CPU)
1328 		size += sizeof(data->cpu_entry);
1329 
1330 	event->id_header_size = size;
1331 }
1332 
1333 static void perf_group_attach(struct perf_event *event)
1334 {
1335 	struct perf_event *group_leader = event->group_leader, *pos;
1336 
1337 	/*
1338 	 * We can have double attach due to group movement in perf_event_open.
1339 	 */
1340 	if (event->attach_state & PERF_ATTACH_GROUP)
1341 		return;
1342 
1343 	event->attach_state |= PERF_ATTACH_GROUP;
1344 
1345 	if (group_leader == event)
1346 		return;
1347 
1348 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349 
1350 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 			!is_software_event(event))
1352 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353 
1354 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 	group_leader->nr_siblings++;
1356 
1357 	perf_event__header_size(group_leader);
1358 
1359 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 		perf_event__header_size(pos);
1361 }
1362 
1363 /*
1364  * Remove a event from the lists for its context.
1365  * Must be called with ctx->mutex and ctx->lock held.
1366  */
1367 static void
1368 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1369 {
1370 	struct perf_cpu_context *cpuctx;
1371 
1372 	WARN_ON_ONCE(event->ctx != ctx);
1373 	lockdep_assert_held(&ctx->lock);
1374 
1375 	/*
1376 	 * We can have double detach due to exit/hot-unplug + close.
1377 	 */
1378 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1379 		return;
1380 
1381 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382 
1383 	if (is_cgroup_event(event)) {
1384 		ctx->nr_cgroups--;
1385 		cpuctx = __get_cpu_context(ctx);
1386 		/*
1387 		 * if there are no more cgroup events
1388 		 * then cler cgrp to avoid stale pointer
1389 		 * in update_cgrp_time_from_cpuctx()
1390 		 */
1391 		if (!ctx->nr_cgroups)
1392 			cpuctx->cgrp = NULL;
1393 	}
1394 
1395 	ctx->nr_events--;
1396 	if (event->attr.inherit_stat)
1397 		ctx->nr_stat--;
1398 
1399 	list_del_rcu(&event->event_entry);
1400 
1401 	if (event->group_leader == event)
1402 		list_del_init(&event->group_entry);
1403 
1404 	update_group_times(event);
1405 
1406 	/*
1407 	 * If event was in error state, then keep it
1408 	 * that way, otherwise bogus counts will be
1409 	 * returned on read(). The only way to get out
1410 	 * of error state is by explicit re-enabling
1411 	 * of the event
1412 	 */
1413 	if (event->state > PERF_EVENT_STATE_OFF)
1414 		event->state = PERF_EVENT_STATE_OFF;
1415 
1416 	ctx->generation++;
1417 }
1418 
1419 static void perf_group_detach(struct perf_event *event)
1420 {
1421 	struct perf_event *sibling, *tmp;
1422 	struct list_head *list = NULL;
1423 
1424 	/*
1425 	 * We can have double detach due to exit/hot-unplug + close.
1426 	 */
1427 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 		return;
1429 
1430 	event->attach_state &= ~PERF_ATTACH_GROUP;
1431 
1432 	/*
1433 	 * If this is a sibling, remove it from its group.
1434 	 */
1435 	if (event->group_leader != event) {
1436 		list_del_init(&event->group_entry);
1437 		event->group_leader->nr_siblings--;
1438 		goto out;
1439 	}
1440 
1441 	if (!list_empty(&event->group_entry))
1442 		list = &event->group_entry;
1443 
1444 	/*
1445 	 * If this was a group event with sibling events then
1446 	 * upgrade the siblings to singleton events by adding them
1447 	 * to whatever list we are on.
1448 	 */
1449 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1450 		if (list)
1451 			list_move_tail(&sibling->group_entry, list);
1452 		sibling->group_leader = sibling;
1453 
1454 		/* Inherit group flags from the previous leader */
1455 		sibling->group_flags = event->group_flags;
1456 
1457 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1458 	}
1459 
1460 out:
1461 	perf_event__header_size(event->group_leader);
1462 
1463 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 		perf_event__header_size(tmp);
1465 }
1466 
1467 /*
1468  * User event without the task.
1469  */
1470 static bool is_orphaned_event(struct perf_event *event)
1471 {
1472 	return event && !is_kernel_event(event) && !event->owner;
1473 }
1474 
1475 /*
1476  * Event has a parent but parent's task finished and it's
1477  * alive only because of children holding refference.
1478  */
1479 static bool is_orphaned_child(struct perf_event *event)
1480 {
1481 	return is_orphaned_event(event->parent);
1482 }
1483 
1484 static void orphans_remove_work(struct work_struct *work);
1485 
1486 static void schedule_orphans_remove(struct perf_event_context *ctx)
1487 {
1488 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 		return;
1490 
1491 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 		get_ctx(ctx);
1493 		ctx->orphans_remove_sched = true;
1494 	}
1495 }
1496 
1497 static int __init perf_workqueue_init(void)
1498 {
1499 	perf_wq = create_singlethread_workqueue("perf");
1500 	WARN(!perf_wq, "failed to create perf workqueue\n");
1501 	return perf_wq ? 0 : -1;
1502 }
1503 
1504 core_initcall(perf_workqueue_init);
1505 
1506 static inline int pmu_filter_match(struct perf_event *event)
1507 {
1508 	struct pmu *pmu = event->pmu;
1509 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1510 }
1511 
1512 static inline int
1513 event_filter_match(struct perf_event *event)
1514 {
1515 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1516 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1517 }
1518 
1519 static void
1520 event_sched_out(struct perf_event *event,
1521 		  struct perf_cpu_context *cpuctx,
1522 		  struct perf_event_context *ctx)
1523 {
1524 	u64 tstamp = perf_event_time(event);
1525 	u64 delta;
1526 
1527 	WARN_ON_ONCE(event->ctx != ctx);
1528 	lockdep_assert_held(&ctx->lock);
1529 
1530 	/*
1531 	 * An event which could not be activated because of
1532 	 * filter mismatch still needs to have its timings
1533 	 * maintained, otherwise bogus information is return
1534 	 * via read() for time_enabled, time_running:
1535 	 */
1536 	if (event->state == PERF_EVENT_STATE_INACTIVE
1537 	    && !event_filter_match(event)) {
1538 		delta = tstamp - event->tstamp_stopped;
1539 		event->tstamp_running += delta;
1540 		event->tstamp_stopped = tstamp;
1541 	}
1542 
1543 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1544 		return;
1545 
1546 	perf_pmu_disable(event->pmu);
1547 
1548 	event->state = PERF_EVENT_STATE_INACTIVE;
1549 	if (event->pending_disable) {
1550 		event->pending_disable = 0;
1551 		event->state = PERF_EVENT_STATE_OFF;
1552 	}
1553 	event->tstamp_stopped = tstamp;
1554 	event->pmu->del(event, 0);
1555 	event->oncpu = -1;
1556 
1557 	if (!is_software_event(event))
1558 		cpuctx->active_oncpu--;
1559 	if (!--ctx->nr_active)
1560 		perf_event_ctx_deactivate(ctx);
1561 	if (event->attr.freq && event->attr.sample_freq)
1562 		ctx->nr_freq--;
1563 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1564 		cpuctx->exclusive = 0;
1565 
1566 	if (is_orphaned_child(event))
1567 		schedule_orphans_remove(ctx);
1568 
1569 	perf_pmu_enable(event->pmu);
1570 }
1571 
1572 static void
1573 group_sched_out(struct perf_event *group_event,
1574 		struct perf_cpu_context *cpuctx,
1575 		struct perf_event_context *ctx)
1576 {
1577 	struct perf_event *event;
1578 	int state = group_event->state;
1579 
1580 	event_sched_out(group_event, cpuctx, ctx);
1581 
1582 	/*
1583 	 * Schedule out siblings (if any):
1584 	 */
1585 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 		event_sched_out(event, cpuctx, ctx);
1587 
1588 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1589 		cpuctx->exclusive = 0;
1590 }
1591 
1592 struct remove_event {
1593 	struct perf_event *event;
1594 	bool detach_group;
1595 };
1596 
1597 /*
1598  * Cross CPU call to remove a performance event
1599  *
1600  * We disable the event on the hardware level first. After that we
1601  * remove it from the context list.
1602  */
1603 static int __perf_remove_from_context(void *info)
1604 {
1605 	struct remove_event *re = info;
1606 	struct perf_event *event = re->event;
1607 	struct perf_event_context *ctx = event->ctx;
1608 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1609 
1610 	raw_spin_lock(&ctx->lock);
1611 	event_sched_out(event, cpuctx, ctx);
1612 	if (re->detach_group)
1613 		perf_group_detach(event);
1614 	list_del_event(event, ctx);
1615 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 		ctx->is_active = 0;
1617 		cpuctx->task_ctx = NULL;
1618 	}
1619 	raw_spin_unlock(&ctx->lock);
1620 
1621 	return 0;
1622 }
1623 
1624 
1625 /*
1626  * Remove the event from a task's (or a CPU's) list of events.
1627  *
1628  * CPU events are removed with a smp call. For task events we only
1629  * call when the task is on a CPU.
1630  *
1631  * If event->ctx is a cloned context, callers must make sure that
1632  * every task struct that event->ctx->task could possibly point to
1633  * remains valid.  This is OK when called from perf_release since
1634  * that only calls us on the top-level context, which can't be a clone.
1635  * When called from perf_event_exit_task, it's OK because the
1636  * context has been detached from its task.
1637  */
1638 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1639 {
1640 	struct perf_event_context *ctx = event->ctx;
1641 	struct task_struct *task = ctx->task;
1642 	struct remove_event re = {
1643 		.event = event,
1644 		.detach_group = detach_group,
1645 	};
1646 
1647 	lockdep_assert_held(&ctx->mutex);
1648 
1649 	if (!task) {
1650 		/*
1651 		 * Per cpu events are removed via an smp call. The removal can
1652 		 * fail if the CPU is currently offline, but in that case we
1653 		 * already called __perf_remove_from_context from
1654 		 * perf_event_exit_cpu.
1655 		 */
1656 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1657 		return;
1658 	}
1659 
1660 retry:
1661 	if (!task_function_call(task, __perf_remove_from_context, &re))
1662 		return;
1663 
1664 	raw_spin_lock_irq(&ctx->lock);
1665 	/*
1666 	 * If we failed to find a running task, but find the context active now
1667 	 * that we've acquired the ctx->lock, retry.
1668 	 */
1669 	if (ctx->is_active) {
1670 		raw_spin_unlock_irq(&ctx->lock);
1671 		/*
1672 		 * Reload the task pointer, it might have been changed by
1673 		 * a concurrent perf_event_context_sched_out().
1674 		 */
1675 		task = ctx->task;
1676 		goto retry;
1677 	}
1678 
1679 	/*
1680 	 * Since the task isn't running, its safe to remove the event, us
1681 	 * holding the ctx->lock ensures the task won't get scheduled in.
1682 	 */
1683 	if (detach_group)
1684 		perf_group_detach(event);
1685 	list_del_event(event, ctx);
1686 	raw_spin_unlock_irq(&ctx->lock);
1687 }
1688 
1689 /*
1690  * Cross CPU call to disable a performance event
1691  */
1692 int __perf_event_disable(void *info)
1693 {
1694 	struct perf_event *event = info;
1695 	struct perf_event_context *ctx = event->ctx;
1696 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1697 
1698 	/*
1699 	 * If this is a per-task event, need to check whether this
1700 	 * event's task is the current task on this cpu.
1701 	 *
1702 	 * Can trigger due to concurrent perf_event_context_sched_out()
1703 	 * flipping contexts around.
1704 	 */
1705 	if (ctx->task && cpuctx->task_ctx != ctx)
1706 		return -EINVAL;
1707 
1708 	raw_spin_lock(&ctx->lock);
1709 
1710 	/*
1711 	 * If the event is on, turn it off.
1712 	 * If it is in error state, leave it in error state.
1713 	 */
1714 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1715 		update_context_time(ctx);
1716 		update_cgrp_time_from_event(event);
1717 		update_group_times(event);
1718 		if (event == event->group_leader)
1719 			group_sched_out(event, cpuctx, ctx);
1720 		else
1721 			event_sched_out(event, cpuctx, ctx);
1722 		event->state = PERF_EVENT_STATE_OFF;
1723 	}
1724 
1725 	raw_spin_unlock(&ctx->lock);
1726 
1727 	return 0;
1728 }
1729 
1730 /*
1731  * Disable a event.
1732  *
1733  * If event->ctx is a cloned context, callers must make sure that
1734  * every task struct that event->ctx->task could possibly point to
1735  * remains valid.  This condition is satisifed when called through
1736  * perf_event_for_each_child or perf_event_for_each because they
1737  * hold the top-level event's child_mutex, so any descendant that
1738  * goes to exit will block in sync_child_event.
1739  * When called from perf_pending_event it's OK because event->ctx
1740  * is the current context on this CPU and preemption is disabled,
1741  * hence we can't get into perf_event_task_sched_out for this context.
1742  */
1743 static void _perf_event_disable(struct perf_event *event)
1744 {
1745 	struct perf_event_context *ctx = event->ctx;
1746 	struct task_struct *task = ctx->task;
1747 
1748 	if (!task) {
1749 		/*
1750 		 * Disable the event on the cpu that it's on
1751 		 */
1752 		cpu_function_call(event->cpu, __perf_event_disable, event);
1753 		return;
1754 	}
1755 
1756 retry:
1757 	if (!task_function_call(task, __perf_event_disable, event))
1758 		return;
1759 
1760 	raw_spin_lock_irq(&ctx->lock);
1761 	/*
1762 	 * If the event is still active, we need to retry the cross-call.
1763 	 */
1764 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1765 		raw_spin_unlock_irq(&ctx->lock);
1766 		/*
1767 		 * Reload the task pointer, it might have been changed by
1768 		 * a concurrent perf_event_context_sched_out().
1769 		 */
1770 		task = ctx->task;
1771 		goto retry;
1772 	}
1773 
1774 	/*
1775 	 * Since we have the lock this context can't be scheduled
1776 	 * in, so we can change the state safely.
1777 	 */
1778 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 		update_group_times(event);
1780 		event->state = PERF_EVENT_STATE_OFF;
1781 	}
1782 	raw_spin_unlock_irq(&ctx->lock);
1783 }
1784 
1785 /*
1786  * Strictly speaking kernel users cannot create groups and therefore this
1787  * interface does not need the perf_event_ctx_lock() magic.
1788  */
1789 void perf_event_disable(struct perf_event *event)
1790 {
1791 	struct perf_event_context *ctx;
1792 
1793 	ctx = perf_event_ctx_lock(event);
1794 	_perf_event_disable(event);
1795 	perf_event_ctx_unlock(event, ctx);
1796 }
1797 EXPORT_SYMBOL_GPL(perf_event_disable);
1798 
1799 static void perf_set_shadow_time(struct perf_event *event,
1800 				 struct perf_event_context *ctx,
1801 				 u64 tstamp)
1802 {
1803 	/*
1804 	 * use the correct time source for the time snapshot
1805 	 *
1806 	 * We could get by without this by leveraging the
1807 	 * fact that to get to this function, the caller
1808 	 * has most likely already called update_context_time()
1809 	 * and update_cgrp_time_xx() and thus both timestamp
1810 	 * are identical (or very close). Given that tstamp is,
1811 	 * already adjusted for cgroup, we could say that:
1812 	 *    tstamp - ctx->timestamp
1813 	 * is equivalent to
1814 	 *    tstamp - cgrp->timestamp.
1815 	 *
1816 	 * Then, in perf_output_read(), the calculation would
1817 	 * work with no changes because:
1818 	 * - event is guaranteed scheduled in
1819 	 * - no scheduled out in between
1820 	 * - thus the timestamp would be the same
1821 	 *
1822 	 * But this is a bit hairy.
1823 	 *
1824 	 * So instead, we have an explicit cgroup call to remain
1825 	 * within the time time source all along. We believe it
1826 	 * is cleaner and simpler to understand.
1827 	 */
1828 	if (is_cgroup_event(event))
1829 		perf_cgroup_set_shadow_time(event, tstamp);
1830 	else
1831 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1832 }
1833 
1834 #define MAX_INTERRUPTS (~0ULL)
1835 
1836 static void perf_log_throttle(struct perf_event *event, int enable);
1837 static void perf_log_itrace_start(struct perf_event *event);
1838 
1839 static int
1840 event_sched_in(struct perf_event *event,
1841 		 struct perf_cpu_context *cpuctx,
1842 		 struct perf_event_context *ctx)
1843 {
1844 	u64 tstamp = perf_event_time(event);
1845 	int ret = 0;
1846 
1847 	lockdep_assert_held(&ctx->lock);
1848 
1849 	if (event->state <= PERF_EVENT_STATE_OFF)
1850 		return 0;
1851 
1852 	event->state = PERF_EVENT_STATE_ACTIVE;
1853 	event->oncpu = smp_processor_id();
1854 
1855 	/*
1856 	 * Unthrottle events, since we scheduled we might have missed several
1857 	 * ticks already, also for a heavily scheduling task there is little
1858 	 * guarantee it'll get a tick in a timely manner.
1859 	 */
1860 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 		perf_log_throttle(event, 1);
1862 		event->hw.interrupts = 0;
1863 	}
1864 
1865 	/*
1866 	 * The new state must be visible before we turn it on in the hardware:
1867 	 */
1868 	smp_wmb();
1869 
1870 	perf_pmu_disable(event->pmu);
1871 
1872 	perf_set_shadow_time(event, ctx, tstamp);
1873 
1874 	perf_log_itrace_start(event);
1875 
1876 	if (event->pmu->add(event, PERF_EF_START)) {
1877 		event->state = PERF_EVENT_STATE_INACTIVE;
1878 		event->oncpu = -1;
1879 		ret = -EAGAIN;
1880 		goto out;
1881 	}
1882 
1883 	event->tstamp_running += tstamp - event->tstamp_stopped;
1884 
1885 	if (!is_software_event(event))
1886 		cpuctx->active_oncpu++;
1887 	if (!ctx->nr_active++)
1888 		perf_event_ctx_activate(ctx);
1889 	if (event->attr.freq && event->attr.sample_freq)
1890 		ctx->nr_freq++;
1891 
1892 	if (event->attr.exclusive)
1893 		cpuctx->exclusive = 1;
1894 
1895 	if (is_orphaned_child(event))
1896 		schedule_orphans_remove(ctx);
1897 
1898 out:
1899 	perf_pmu_enable(event->pmu);
1900 
1901 	return ret;
1902 }
1903 
1904 static int
1905 group_sched_in(struct perf_event *group_event,
1906 	       struct perf_cpu_context *cpuctx,
1907 	       struct perf_event_context *ctx)
1908 {
1909 	struct perf_event *event, *partial_group = NULL;
1910 	struct pmu *pmu = ctx->pmu;
1911 	u64 now = ctx->time;
1912 	bool simulate = false;
1913 
1914 	if (group_event->state == PERF_EVENT_STATE_OFF)
1915 		return 0;
1916 
1917 	pmu->start_txn(pmu);
1918 
1919 	if (event_sched_in(group_event, cpuctx, ctx)) {
1920 		pmu->cancel_txn(pmu);
1921 		perf_mux_hrtimer_restart(cpuctx);
1922 		return -EAGAIN;
1923 	}
1924 
1925 	/*
1926 	 * Schedule in siblings as one group (if any):
1927 	 */
1928 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929 		if (event_sched_in(event, cpuctx, ctx)) {
1930 			partial_group = event;
1931 			goto group_error;
1932 		}
1933 	}
1934 
1935 	if (!pmu->commit_txn(pmu))
1936 		return 0;
1937 
1938 group_error:
1939 	/*
1940 	 * Groups can be scheduled in as one unit only, so undo any
1941 	 * partial group before returning:
1942 	 * The events up to the failed event are scheduled out normally,
1943 	 * tstamp_stopped will be updated.
1944 	 *
1945 	 * The failed events and the remaining siblings need to have
1946 	 * their timings updated as if they had gone thru event_sched_in()
1947 	 * and event_sched_out(). This is required to get consistent timings
1948 	 * across the group. This also takes care of the case where the group
1949 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 	 * the time the event was actually stopped, such that time delta
1951 	 * calculation in update_event_times() is correct.
1952 	 */
1953 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 		if (event == partial_group)
1955 			simulate = true;
1956 
1957 		if (simulate) {
1958 			event->tstamp_running += now - event->tstamp_stopped;
1959 			event->tstamp_stopped = now;
1960 		} else {
1961 			event_sched_out(event, cpuctx, ctx);
1962 		}
1963 	}
1964 	event_sched_out(group_event, cpuctx, ctx);
1965 
1966 	pmu->cancel_txn(pmu);
1967 
1968 	perf_mux_hrtimer_restart(cpuctx);
1969 
1970 	return -EAGAIN;
1971 }
1972 
1973 /*
1974  * Work out whether we can put this event group on the CPU now.
1975  */
1976 static int group_can_go_on(struct perf_event *event,
1977 			   struct perf_cpu_context *cpuctx,
1978 			   int can_add_hw)
1979 {
1980 	/*
1981 	 * Groups consisting entirely of software events can always go on.
1982 	 */
1983 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 		return 1;
1985 	/*
1986 	 * If an exclusive group is already on, no other hardware
1987 	 * events can go on.
1988 	 */
1989 	if (cpuctx->exclusive)
1990 		return 0;
1991 	/*
1992 	 * If this group is exclusive and there are already
1993 	 * events on the CPU, it can't go on.
1994 	 */
1995 	if (event->attr.exclusive && cpuctx->active_oncpu)
1996 		return 0;
1997 	/*
1998 	 * Otherwise, try to add it if all previous groups were able
1999 	 * to go on.
2000 	 */
2001 	return can_add_hw;
2002 }
2003 
2004 static void add_event_to_ctx(struct perf_event *event,
2005 			       struct perf_event_context *ctx)
2006 {
2007 	u64 tstamp = perf_event_time(event);
2008 
2009 	list_add_event(event, ctx);
2010 	perf_group_attach(event);
2011 	event->tstamp_enabled = tstamp;
2012 	event->tstamp_running = tstamp;
2013 	event->tstamp_stopped = tstamp;
2014 }
2015 
2016 static void task_ctx_sched_out(struct perf_event_context *ctx);
2017 static void
2018 ctx_sched_in(struct perf_event_context *ctx,
2019 	     struct perf_cpu_context *cpuctx,
2020 	     enum event_type_t event_type,
2021 	     struct task_struct *task);
2022 
2023 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 				struct perf_event_context *ctx,
2025 				struct task_struct *task)
2026 {
2027 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 	if (ctx)
2029 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 	if (ctx)
2032 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033 }
2034 
2035 /*
2036  * Cross CPU call to install and enable a performance event
2037  *
2038  * Must be called with ctx->mutex held
2039  */
2040 static int  __perf_install_in_context(void *info)
2041 {
2042 	struct perf_event *event = info;
2043 	struct perf_event_context *ctx = event->ctx;
2044 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 	struct task_struct *task = current;
2047 
2048 	perf_ctx_lock(cpuctx, task_ctx);
2049 	perf_pmu_disable(cpuctx->ctx.pmu);
2050 
2051 	/*
2052 	 * If there was an active task_ctx schedule it out.
2053 	 */
2054 	if (task_ctx)
2055 		task_ctx_sched_out(task_ctx);
2056 
2057 	/*
2058 	 * If the context we're installing events in is not the
2059 	 * active task_ctx, flip them.
2060 	 */
2061 	if (ctx->task && task_ctx != ctx) {
2062 		if (task_ctx)
2063 			raw_spin_unlock(&task_ctx->lock);
2064 		raw_spin_lock(&ctx->lock);
2065 		task_ctx = ctx;
2066 	}
2067 
2068 	if (task_ctx) {
2069 		cpuctx->task_ctx = task_ctx;
2070 		task = task_ctx->task;
2071 	}
2072 
2073 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2074 
2075 	update_context_time(ctx);
2076 	/*
2077 	 * update cgrp time only if current cgrp
2078 	 * matches event->cgrp. Must be done before
2079 	 * calling add_event_to_ctx()
2080 	 */
2081 	update_cgrp_time_from_event(event);
2082 
2083 	add_event_to_ctx(event, ctx);
2084 
2085 	/*
2086 	 * Schedule everything back in
2087 	 */
2088 	perf_event_sched_in(cpuctx, task_ctx, task);
2089 
2090 	perf_pmu_enable(cpuctx->ctx.pmu);
2091 	perf_ctx_unlock(cpuctx, task_ctx);
2092 
2093 	return 0;
2094 }
2095 
2096 /*
2097  * Attach a performance event to a context
2098  *
2099  * First we add the event to the list with the hardware enable bit
2100  * in event->hw_config cleared.
2101  *
2102  * If the event is attached to a task which is on a CPU we use a smp
2103  * call to enable it in the task context. The task might have been
2104  * scheduled away, but we check this in the smp call again.
2105  */
2106 static void
2107 perf_install_in_context(struct perf_event_context *ctx,
2108 			struct perf_event *event,
2109 			int cpu)
2110 {
2111 	struct task_struct *task = ctx->task;
2112 
2113 	lockdep_assert_held(&ctx->mutex);
2114 
2115 	event->ctx = ctx;
2116 	if (event->cpu != -1)
2117 		event->cpu = cpu;
2118 
2119 	if (!task) {
2120 		/*
2121 		 * Per cpu events are installed via an smp call and
2122 		 * the install is always successful.
2123 		 */
2124 		cpu_function_call(cpu, __perf_install_in_context, event);
2125 		return;
2126 	}
2127 
2128 retry:
2129 	if (!task_function_call(task, __perf_install_in_context, event))
2130 		return;
2131 
2132 	raw_spin_lock_irq(&ctx->lock);
2133 	/*
2134 	 * If we failed to find a running task, but find the context active now
2135 	 * that we've acquired the ctx->lock, retry.
2136 	 */
2137 	if (ctx->is_active) {
2138 		raw_spin_unlock_irq(&ctx->lock);
2139 		/*
2140 		 * Reload the task pointer, it might have been changed by
2141 		 * a concurrent perf_event_context_sched_out().
2142 		 */
2143 		task = ctx->task;
2144 		goto retry;
2145 	}
2146 
2147 	/*
2148 	 * Since the task isn't running, its safe to add the event, us holding
2149 	 * the ctx->lock ensures the task won't get scheduled in.
2150 	 */
2151 	add_event_to_ctx(event, ctx);
2152 	raw_spin_unlock_irq(&ctx->lock);
2153 }
2154 
2155 /*
2156  * Put a event into inactive state and update time fields.
2157  * Enabling the leader of a group effectively enables all
2158  * the group members that aren't explicitly disabled, so we
2159  * have to update their ->tstamp_enabled also.
2160  * Note: this works for group members as well as group leaders
2161  * since the non-leader members' sibling_lists will be empty.
2162  */
2163 static void __perf_event_mark_enabled(struct perf_event *event)
2164 {
2165 	struct perf_event *sub;
2166 	u64 tstamp = perf_event_time(event);
2167 
2168 	event->state = PERF_EVENT_STATE_INACTIVE;
2169 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2170 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2173 	}
2174 }
2175 
2176 /*
2177  * Cross CPU call to enable a performance event
2178  */
2179 static int __perf_event_enable(void *info)
2180 {
2181 	struct perf_event *event = info;
2182 	struct perf_event_context *ctx = event->ctx;
2183 	struct perf_event *leader = event->group_leader;
2184 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185 	int err;
2186 
2187 	/*
2188 	 * There's a time window between 'ctx->is_active' check
2189 	 * in perf_event_enable function and this place having:
2190 	 *   - IRQs on
2191 	 *   - ctx->lock unlocked
2192 	 *
2193 	 * where the task could be killed and 'ctx' deactivated
2194 	 * by perf_event_exit_task.
2195 	 */
2196 	if (!ctx->is_active)
2197 		return -EINVAL;
2198 
2199 	raw_spin_lock(&ctx->lock);
2200 	update_context_time(ctx);
2201 
2202 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203 		goto unlock;
2204 
2205 	/*
2206 	 * set current task's cgroup time reference point
2207 	 */
2208 	perf_cgroup_set_timestamp(current, ctx);
2209 
2210 	__perf_event_mark_enabled(event);
2211 
2212 	if (!event_filter_match(event)) {
2213 		if (is_cgroup_event(event))
2214 			perf_cgroup_defer_enabled(event);
2215 		goto unlock;
2216 	}
2217 
2218 	/*
2219 	 * If the event is in a group and isn't the group leader,
2220 	 * then don't put it on unless the group is on.
2221 	 */
2222 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223 		goto unlock;
2224 
2225 	if (!group_can_go_on(event, cpuctx, 1)) {
2226 		err = -EEXIST;
2227 	} else {
2228 		if (event == leader)
2229 			err = group_sched_in(event, cpuctx, ctx);
2230 		else
2231 			err = event_sched_in(event, cpuctx, ctx);
2232 	}
2233 
2234 	if (err) {
2235 		/*
2236 		 * If this event can't go on and it's part of a
2237 		 * group, then the whole group has to come off.
2238 		 */
2239 		if (leader != event) {
2240 			group_sched_out(leader, cpuctx, ctx);
2241 			perf_mux_hrtimer_restart(cpuctx);
2242 		}
2243 		if (leader->attr.pinned) {
2244 			update_group_times(leader);
2245 			leader->state = PERF_EVENT_STATE_ERROR;
2246 		}
2247 	}
2248 
2249 unlock:
2250 	raw_spin_unlock(&ctx->lock);
2251 
2252 	return 0;
2253 }
2254 
2255 /*
2256  * Enable a event.
2257  *
2258  * If event->ctx is a cloned context, callers must make sure that
2259  * every task struct that event->ctx->task could possibly point to
2260  * remains valid.  This condition is satisfied when called through
2261  * perf_event_for_each_child or perf_event_for_each as described
2262  * for perf_event_disable.
2263  */
2264 static void _perf_event_enable(struct perf_event *event)
2265 {
2266 	struct perf_event_context *ctx = event->ctx;
2267 	struct task_struct *task = ctx->task;
2268 
2269 	if (!task) {
2270 		/*
2271 		 * Enable the event on the cpu that it's on
2272 		 */
2273 		cpu_function_call(event->cpu, __perf_event_enable, event);
2274 		return;
2275 	}
2276 
2277 	raw_spin_lock_irq(&ctx->lock);
2278 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 		goto out;
2280 
2281 	/*
2282 	 * If the event is in error state, clear that first.
2283 	 * That way, if we see the event in error state below, we
2284 	 * know that it has gone back into error state, as distinct
2285 	 * from the task having been scheduled away before the
2286 	 * cross-call arrived.
2287 	 */
2288 	if (event->state == PERF_EVENT_STATE_ERROR)
2289 		event->state = PERF_EVENT_STATE_OFF;
2290 
2291 retry:
2292 	if (!ctx->is_active) {
2293 		__perf_event_mark_enabled(event);
2294 		goto out;
2295 	}
2296 
2297 	raw_spin_unlock_irq(&ctx->lock);
2298 
2299 	if (!task_function_call(task, __perf_event_enable, event))
2300 		return;
2301 
2302 	raw_spin_lock_irq(&ctx->lock);
2303 
2304 	/*
2305 	 * If the context is active and the event is still off,
2306 	 * we need to retry the cross-call.
2307 	 */
2308 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 		/*
2310 		 * task could have been flipped by a concurrent
2311 		 * perf_event_context_sched_out()
2312 		 */
2313 		task = ctx->task;
2314 		goto retry;
2315 	}
2316 
2317 out:
2318 	raw_spin_unlock_irq(&ctx->lock);
2319 }
2320 
2321 /*
2322  * See perf_event_disable();
2323  */
2324 void perf_event_enable(struct perf_event *event)
2325 {
2326 	struct perf_event_context *ctx;
2327 
2328 	ctx = perf_event_ctx_lock(event);
2329 	_perf_event_enable(event);
2330 	perf_event_ctx_unlock(event, ctx);
2331 }
2332 EXPORT_SYMBOL_GPL(perf_event_enable);
2333 
2334 static int _perf_event_refresh(struct perf_event *event, int refresh)
2335 {
2336 	/*
2337 	 * not supported on inherited events
2338 	 */
2339 	if (event->attr.inherit || !is_sampling_event(event))
2340 		return -EINVAL;
2341 
2342 	atomic_add(refresh, &event->event_limit);
2343 	_perf_event_enable(event);
2344 
2345 	return 0;
2346 }
2347 
2348 /*
2349  * See perf_event_disable()
2350  */
2351 int perf_event_refresh(struct perf_event *event, int refresh)
2352 {
2353 	struct perf_event_context *ctx;
2354 	int ret;
2355 
2356 	ctx = perf_event_ctx_lock(event);
2357 	ret = _perf_event_refresh(event, refresh);
2358 	perf_event_ctx_unlock(event, ctx);
2359 
2360 	return ret;
2361 }
2362 EXPORT_SYMBOL_GPL(perf_event_refresh);
2363 
2364 static void ctx_sched_out(struct perf_event_context *ctx,
2365 			  struct perf_cpu_context *cpuctx,
2366 			  enum event_type_t event_type)
2367 {
2368 	struct perf_event *event;
2369 	int is_active = ctx->is_active;
2370 
2371 	ctx->is_active &= ~event_type;
2372 	if (likely(!ctx->nr_events))
2373 		return;
2374 
2375 	update_context_time(ctx);
2376 	update_cgrp_time_from_cpuctx(cpuctx);
2377 	if (!ctx->nr_active)
2378 		return;
2379 
2380 	perf_pmu_disable(ctx->pmu);
2381 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 			group_sched_out(event, cpuctx, ctx);
2384 	}
2385 
2386 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388 			group_sched_out(event, cpuctx, ctx);
2389 	}
2390 	perf_pmu_enable(ctx->pmu);
2391 }
2392 
2393 /*
2394  * Test whether two contexts are equivalent, i.e. whether they have both been
2395  * cloned from the same version of the same context.
2396  *
2397  * Equivalence is measured using a generation number in the context that is
2398  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399  * and list_del_event().
2400  */
2401 static int context_equiv(struct perf_event_context *ctx1,
2402 			 struct perf_event_context *ctx2)
2403 {
2404 	lockdep_assert_held(&ctx1->lock);
2405 	lockdep_assert_held(&ctx2->lock);
2406 
2407 	/* Pinning disables the swap optimization */
2408 	if (ctx1->pin_count || ctx2->pin_count)
2409 		return 0;
2410 
2411 	/* If ctx1 is the parent of ctx2 */
2412 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 		return 1;
2414 
2415 	/* If ctx2 is the parent of ctx1 */
2416 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 		return 1;
2418 
2419 	/*
2420 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 	 * hierarchy, see perf_event_init_context().
2422 	 */
2423 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 			ctx1->parent_gen == ctx2->parent_gen)
2425 		return 1;
2426 
2427 	/* Unmatched */
2428 	return 0;
2429 }
2430 
2431 static void __perf_event_sync_stat(struct perf_event *event,
2432 				     struct perf_event *next_event)
2433 {
2434 	u64 value;
2435 
2436 	if (!event->attr.inherit_stat)
2437 		return;
2438 
2439 	/*
2440 	 * Update the event value, we cannot use perf_event_read()
2441 	 * because we're in the middle of a context switch and have IRQs
2442 	 * disabled, which upsets smp_call_function_single(), however
2443 	 * we know the event must be on the current CPU, therefore we
2444 	 * don't need to use it.
2445 	 */
2446 	switch (event->state) {
2447 	case PERF_EVENT_STATE_ACTIVE:
2448 		event->pmu->read(event);
2449 		/* fall-through */
2450 
2451 	case PERF_EVENT_STATE_INACTIVE:
2452 		update_event_times(event);
2453 		break;
2454 
2455 	default:
2456 		break;
2457 	}
2458 
2459 	/*
2460 	 * In order to keep per-task stats reliable we need to flip the event
2461 	 * values when we flip the contexts.
2462 	 */
2463 	value = local64_read(&next_event->count);
2464 	value = local64_xchg(&event->count, value);
2465 	local64_set(&next_event->count, value);
2466 
2467 	swap(event->total_time_enabled, next_event->total_time_enabled);
2468 	swap(event->total_time_running, next_event->total_time_running);
2469 
2470 	/*
2471 	 * Since we swizzled the values, update the user visible data too.
2472 	 */
2473 	perf_event_update_userpage(event);
2474 	perf_event_update_userpage(next_event);
2475 }
2476 
2477 static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 				   struct perf_event_context *next_ctx)
2479 {
2480 	struct perf_event *event, *next_event;
2481 
2482 	if (!ctx->nr_stat)
2483 		return;
2484 
2485 	update_context_time(ctx);
2486 
2487 	event = list_first_entry(&ctx->event_list,
2488 				   struct perf_event, event_entry);
2489 
2490 	next_event = list_first_entry(&next_ctx->event_list,
2491 					struct perf_event, event_entry);
2492 
2493 	while (&event->event_entry != &ctx->event_list &&
2494 	       &next_event->event_entry != &next_ctx->event_list) {
2495 
2496 		__perf_event_sync_stat(event, next_event);
2497 
2498 		event = list_next_entry(event, event_entry);
2499 		next_event = list_next_entry(next_event, event_entry);
2500 	}
2501 }
2502 
2503 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 					 struct task_struct *next)
2505 {
2506 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507 	struct perf_event_context *next_ctx;
2508 	struct perf_event_context *parent, *next_parent;
2509 	struct perf_cpu_context *cpuctx;
2510 	int do_switch = 1;
2511 
2512 	if (likely(!ctx))
2513 		return;
2514 
2515 	cpuctx = __get_cpu_context(ctx);
2516 	if (!cpuctx->task_ctx)
2517 		return;
2518 
2519 	rcu_read_lock();
2520 	next_ctx = next->perf_event_ctxp[ctxn];
2521 	if (!next_ctx)
2522 		goto unlock;
2523 
2524 	parent = rcu_dereference(ctx->parent_ctx);
2525 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2526 
2527 	/* If neither context have a parent context; they cannot be clones. */
2528 	if (!parent && !next_parent)
2529 		goto unlock;
2530 
2531 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 		/*
2533 		 * Looks like the two contexts are clones, so we might be
2534 		 * able to optimize the context switch.  We lock both
2535 		 * contexts and check that they are clones under the
2536 		 * lock (including re-checking that neither has been
2537 		 * uncloned in the meantime).  It doesn't matter which
2538 		 * order we take the locks because no other cpu could
2539 		 * be trying to lock both of these tasks.
2540 		 */
2541 		raw_spin_lock(&ctx->lock);
2542 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543 		if (context_equiv(ctx, next_ctx)) {
2544 			/*
2545 			 * XXX do we need a memory barrier of sorts
2546 			 * wrt to rcu_dereference() of perf_event_ctxp
2547 			 */
2548 			task->perf_event_ctxp[ctxn] = next_ctx;
2549 			next->perf_event_ctxp[ctxn] = ctx;
2550 			ctx->task = next;
2551 			next_ctx->task = task;
2552 
2553 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554 
2555 			do_switch = 0;
2556 
2557 			perf_event_sync_stat(ctx, next_ctx);
2558 		}
2559 		raw_spin_unlock(&next_ctx->lock);
2560 		raw_spin_unlock(&ctx->lock);
2561 	}
2562 unlock:
2563 	rcu_read_unlock();
2564 
2565 	if (do_switch) {
2566 		raw_spin_lock(&ctx->lock);
2567 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2568 		cpuctx->task_ctx = NULL;
2569 		raw_spin_unlock(&ctx->lock);
2570 	}
2571 }
2572 
2573 void perf_sched_cb_dec(struct pmu *pmu)
2574 {
2575 	this_cpu_dec(perf_sched_cb_usages);
2576 }
2577 
2578 void perf_sched_cb_inc(struct pmu *pmu)
2579 {
2580 	this_cpu_inc(perf_sched_cb_usages);
2581 }
2582 
2583 /*
2584  * This function provides the context switch callback to the lower code
2585  * layer. It is invoked ONLY when the context switch callback is enabled.
2586  */
2587 static void perf_pmu_sched_task(struct task_struct *prev,
2588 				struct task_struct *next,
2589 				bool sched_in)
2590 {
2591 	struct perf_cpu_context *cpuctx;
2592 	struct pmu *pmu;
2593 	unsigned long flags;
2594 
2595 	if (prev == next)
2596 		return;
2597 
2598 	local_irq_save(flags);
2599 
2600 	rcu_read_lock();
2601 
2602 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 		if (pmu->sched_task) {
2604 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605 
2606 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607 
2608 			perf_pmu_disable(pmu);
2609 
2610 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2611 
2612 			perf_pmu_enable(pmu);
2613 
2614 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 		}
2616 	}
2617 
2618 	rcu_read_unlock();
2619 
2620 	local_irq_restore(flags);
2621 }
2622 
2623 static void perf_event_switch(struct task_struct *task,
2624 			      struct task_struct *next_prev, bool sched_in);
2625 
2626 #define for_each_task_context_nr(ctxn)					\
2627 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628 
2629 /*
2630  * Called from scheduler to remove the events of the current task,
2631  * with interrupts disabled.
2632  *
2633  * We stop each event and update the event value in event->count.
2634  *
2635  * This does not protect us against NMI, but disable()
2636  * sets the disabled bit in the control field of event _before_
2637  * accessing the event control register. If a NMI hits, then it will
2638  * not restart the event.
2639  */
2640 void __perf_event_task_sched_out(struct task_struct *task,
2641 				 struct task_struct *next)
2642 {
2643 	int ctxn;
2644 
2645 	if (__this_cpu_read(perf_sched_cb_usages))
2646 		perf_pmu_sched_task(task, next, false);
2647 
2648 	if (atomic_read(&nr_switch_events))
2649 		perf_event_switch(task, next, false);
2650 
2651 	for_each_task_context_nr(ctxn)
2652 		perf_event_context_sched_out(task, ctxn, next);
2653 
2654 	/*
2655 	 * if cgroup events exist on this CPU, then we need
2656 	 * to check if we have to switch out PMU state.
2657 	 * cgroup event are system-wide mode only
2658 	 */
2659 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2660 		perf_cgroup_sched_out(task, next);
2661 }
2662 
2663 static void task_ctx_sched_out(struct perf_event_context *ctx)
2664 {
2665 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2666 
2667 	if (!cpuctx->task_ctx)
2668 		return;
2669 
2670 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 		return;
2672 
2673 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2674 	cpuctx->task_ctx = NULL;
2675 }
2676 
2677 /*
2678  * Called with IRQs disabled
2679  */
2680 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 			      enum event_type_t event_type)
2682 {
2683 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2684 }
2685 
2686 static void
2687 ctx_pinned_sched_in(struct perf_event_context *ctx,
2688 		    struct perf_cpu_context *cpuctx)
2689 {
2690 	struct perf_event *event;
2691 
2692 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 		if (event->state <= PERF_EVENT_STATE_OFF)
2694 			continue;
2695 		if (!event_filter_match(event))
2696 			continue;
2697 
2698 		/* may need to reset tstamp_enabled */
2699 		if (is_cgroup_event(event))
2700 			perf_cgroup_mark_enabled(event, ctx);
2701 
2702 		if (group_can_go_on(event, cpuctx, 1))
2703 			group_sched_in(event, cpuctx, ctx);
2704 
2705 		/*
2706 		 * If this pinned group hasn't been scheduled,
2707 		 * put it in error state.
2708 		 */
2709 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 			update_group_times(event);
2711 			event->state = PERF_EVENT_STATE_ERROR;
2712 		}
2713 	}
2714 }
2715 
2716 static void
2717 ctx_flexible_sched_in(struct perf_event_context *ctx,
2718 		      struct perf_cpu_context *cpuctx)
2719 {
2720 	struct perf_event *event;
2721 	int can_add_hw = 1;
2722 
2723 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 		/* Ignore events in OFF or ERROR state */
2725 		if (event->state <= PERF_EVENT_STATE_OFF)
2726 			continue;
2727 		/*
2728 		 * Listen to the 'cpu' scheduling filter constraint
2729 		 * of events:
2730 		 */
2731 		if (!event_filter_match(event))
2732 			continue;
2733 
2734 		/* may need to reset tstamp_enabled */
2735 		if (is_cgroup_event(event))
2736 			perf_cgroup_mark_enabled(event, ctx);
2737 
2738 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2739 			if (group_sched_in(event, cpuctx, ctx))
2740 				can_add_hw = 0;
2741 		}
2742 	}
2743 }
2744 
2745 static void
2746 ctx_sched_in(struct perf_event_context *ctx,
2747 	     struct perf_cpu_context *cpuctx,
2748 	     enum event_type_t event_type,
2749 	     struct task_struct *task)
2750 {
2751 	u64 now;
2752 	int is_active = ctx->is_active;
2753 
2754 	ctx->is_active |= event_type;
2755 	if (likely(!ctx->nr_events))
2756 		return;
2757 
2758 	now = perf_clock();
2759 	ctx->timestamp = now;
2760 	perf_cgroup_set_timestamp(task, ctx);
2761 	/*
2762 	 * First go through the list and put on any pinned groups
2763 	 * in order to give them the best chance of going on.
2764 	 */
2765 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2766 		ctx_pinned_sched_in(ctx, cpuctx);
2767 
2768 	/* Then walk through the lower prio flexible groups */
2769 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2770 		ctx_flexible_sched_in(ctx, cpuctx);
2771 }
2772 
2773 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2774 			     enum event_type_t event_type,
2775 			     struct task_struct *task)
2776 {
2777 	struct perf_event_context *ctx = &cpuctx->ctx;
2778 
2779 	ctx_sched_in(ctx, cpuctx, event_type, task);
2780 }
2781 
2782 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 					struct task_struct *task)
2784 {
2785 	struct perf_cpu_context *cpuctx;
2786 
2787 	cpuctx = __get_cpu_context(ctx);
2788 	if (cpuctx->task_ctx == ctx)
2789 		return;
2790 
2791 	perf_ctx_lock(cpuctx, ctx);
2792 	perf_pmu_disable(ctx->pmu);
2793 	/*
2794 	 * We want to keep the following priority order:
2795 	 * cpu pinned (that don't need to move), task pinned,
2796 	 * cpu flexible, task flexible.
2797 	 */
2798 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799 
2800 	if (ctx->nr_events)
2801 		cpuctx->task_ctx = ctx;
2802 
2803 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804 
2805 	perf_pmu_enable(ctx->pmu);
2806 	perf_ctx_unlock(cpuctx, ctx);
2807 }
2808 
2809 /*
2810  * Called from scheduler to add the events of the current task
2811  * with interrupts disabled.
2812  *
2813  * We restore the event value and then enable it.
2814  *
2815  * This does not protect us against NMI, but enable()
2816  * sets the enabled bit in the control field of event _before_
2817  * accessing the event control register. If a NMI hits, then it will
2818  * keep the event running.
2819  */
2820 void __perf_event_task_sched_in(struct task_struct *prev,
2821 				struct task_struct *task)
2822 {
2823 	struct perf_event_context *ctx;
2824 	int ctxn;
2825 
2826 	for_each_task_context_nr(ctxn) {
2827 		ctx = task->perf_event_ctxp[ctxn];
2828 		if (likely(!ctx))
2829 			continue;
2830 
2831 		perf_event_context_sched_in(ctx, task);
2832 	}
2833 	/*
2834 	 * if cgroup events exist on this CPU, then we need
2835 	 * to check if we have to switch in PMU state.
2836 	 * cgroup event are system-wide mode only
2837 	 */
2838 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839 		perf_cgroup_sched_in(prev, task);
2840 
2841 	if (atomic_read(&nr_switch_events))
2842 		perf_event_switch(task, prev, true);
2843 
2844 	if (__this_cpu_read(perf_sched_cb_usages))
2845 		perf_pmu_sched_task(prev, task, true);
2846 }
2847 
2848 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849 {
2850 	u64 frequency = event->attr.sample_freq;
2851 	u64 sec = NSEC_PER_SEC;
2852 	u64 divisor, dividend;
2853 
2854 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2855 
2856 	count_fls = fls64(count);
2857 	nsec_fls = fls64(nsec);
2858 	frequency_fls = fls64(frequency);
2859 	sec_fls = 30;
2860 
2861 	/*
2862 	 * We got @count in @nsec, with a target of sample_freq HZ
2863 	 * the target period becomes:
2864 	 *
2865 	 *             @count * 10^9
2866 	 * period = -------------------
2867 	 *          @nsec * sample_freq
2868 	 *
2869 	 */
2870 
2871 	/*
2872 	 * Reduce accuracy by one bit such that @a and @b converge
2873 	 * to a similar magnitude.
2874 	 */
2875 #define REDUCE_FLS(a, b)		\
2876 do {					\
2877 	if (a##_fls > b##_fls) {	\
2878 		a >>= 1;		\
2879 		a##_fls--;		\
2880 	} else {			\
2881 		b >>= 1;		\
2882 		b##_fls--;		\
2883 	}				\
2884 } while (0)
2885 
2886 	/*
2887 	 * Reduce accuracy until either term fits in a u64, then proceed with
2888 	 * the other, so that finally we can do a u64/u64 division.
2889 	 */
2890 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 		REDUCE_FLS(nsec, frequency);
2892 		REDUCE_FLS(sec, count);
2893 	}
2894 
2895 	if (count_fls + sec_fls > 64) {
2896 		divisor = nsec * frequency;
2897 
2898 		while (count_fls + sec_fls > 64) {
2899 			REDUCE_FLS(count, sec);
2900 			divisor >>= 1;
2901 		}
2902 
2903 		dividend = count * sec;
2904 	} else {
2905 		dividend = count * sec;
2906 
2907 		while (nsec_fls + frequency_fls > 64) {
2908 			REDUCE_FLS(nsec, frequency);
2909 			dividend >>= 1;
2910 		}
2911 
2912 		divisor = nsec * frequency;
2913 	}
2914 
2915 	if (!divisor)
2916 		return dividend;
2917 
2918 	return div64_u64(dividend, divisor);
2919 }
2920 
2921 static DEFINE_PER_CPU(int, perf_throttled_count);
2922 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923 
2924 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925 {
2926 	struct hw_perf_event *hwc = &event->hw;
2927 	s64 period, sample_period;
2928 	s64 delta;
2929 
2930 	period = perf_calculate_period(event, nsec, count);
2931 
2932 	delta = (s64)(period - hwc->sample_period);
2933 	delta = (delta + 7) / 8; /* low pass filter */
2934 
2935 	sample_period = hwc->sample_period + delta;
2936 
2937 	if (!sample_period)
2938 		sample_period = 1;
2939 
2940 	hwc->sample_period = sample_period;
2941 
2942 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 		if (disable)
2944 			event->pmu->stop(event, PERF_EF_UPDATE);
2945 
2946 		local64_set(&hwc->period_left, 0);
2947 
2948 		if (disable)
2949 			event->pmu->start(event, PERF_EF_RELOAD);
2950 	}
2951 }
2952 
2953 /*
2954  * combine freq adjustment with unthrottling to avoid two passes over the
2955  * events. At the same time, make sure, having freq events does not change
2956  * the rate of unthrottling as that would introduce bias.
2957  */
2958 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 					   int needs_unthr)
2960 {
2961 	struct perf_event *event;
2962 	struct hw_perf_event *hwc;
2963 	u64 now, period = TICK_NSEC;
2964 	s64 delta;
2965 
2966 	/*
2967 	 * only need to iterate over all events iff:
2968 	 * - context have events in frequency mode (needs freq adjust)
2969 	 * - there are events to unthrottle on this cpu
2970 	 */
2971 	if (!(ctx->nr_freq || needs_unthr))
2972 		return;
2973 
2974 	raw_spin_lock(&ctx->lock);
2975 	perf_pmu_disable(ctx->pmu);
2976 
2977 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 			continue;
2980 
2981 		if (!event_filter_match(event))
2982 			continue;
2983 
2984 		perf_pmu_disable(event->pmu);
2985 
2986 		hwc = &event->hw;
2987 
2988 		if (hwc->interrupts == MAX_INTERRUPTS) {
2989 			hwc->interrupts = 0;
2990 			perf_log_throttle(event, 1);
2991 			event->pmu->start(event, 0);
2992 		}
2993 
2994 		if (!event->attr.freq || !event->attr.sample_freq)
2995 			goto next;
2996 
2997 		/*
2998 		 * stop the event and update event->count
2999 		 */
3000 		event->pmu->stop(event, PERF_EF_UPDATE);
3001 
3002 		now = local64_read(&event->count);
3003 		delta = now - hwc->freq_count_stamp;
3004 		hwc->freq_count_stamp = now;
3005 
3006 		/*
3007 		 * restart the event
3008 		 * reload only if value has changed
3009 		 * we have stopped the event so tell that
3010 		 * to perf_adjust_period() to avoid stopping it
3011 		 * twice.
3012 		 */
3013 		if (delta > 0)
3014 			perf_adjust_period(event, period, delta, false);
3015 
3016 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 	next:
3018 		perf_pmu_enable(event->pmu);
3019 	}
3020 
3021 	perf_pmu_enable(ctx->pmu);
3022 	raw_spin_unlock(&ctx->lock);
3023 }
3024 
3025 /*
3026  * Round-robin a context's events:
3027  */
3028 static void rotate_ctx(struct perf_event_context *ctx)
3029 {
3030 	/*
3031 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 	 * disabled by the inheritance code.
3033 	 */
3034 	if (!ctx->rotate_disable)
3035 		list_rotate_left(&ctx->flexible_groups);
3036 }
3037 
3038 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3039 {
3040 	struct perf_event_context *ctx = NULL;
3041 	int rotate = 0;
3042 
3043 	if (cpuctx->ctx.nr_events) {
3044 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 			rotate = 1;
3046 	}
3047 
3048 	ctx = cpuctx->task_ctx;
3049 	if (ctx && ctx->nr_events) {
3050 		if (ctx->nr_events != ctx->nr_active)
3051 			rotate = 1;
3052 	}
3053 
3054 	if (!rotate)
3055 		goto done;
3056 
3057 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3058 	perf_pmu_disable(cpuctx->ctx.pmu);
3059 
3060 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 	if (ctx)
3062 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3063 
3064 	rotate_ctx(&cpuctx->ctx);
3065 	if (ctx)
3066 		rotate_ctx(ctx);
3067 
3068 	perf_event_sched_in(cpuctx, ctx, current);
3069 
3070 	perf_pmu_enable(cpuctx->ctx.pmu);
3071 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072 done:
3073 
3074 	return rotate;
3075 }
3076 
3077 #ifdef CONFIG_NO_HZ_FULL
3078 bool perf_event_can_stop_tick(void)
3079 {
3080 	if (atomic_read(&nr_freq_events) ||
3081 	    __this_cpu_read(perf_throttled_count))
3082 		return false;
3083 	else
3084 		return true;
3085 }
3086 #endif
3087 
3088 void perf_event_task_tick(void)
3089 {
3090 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 	struct perf_event_context *ctx, *tmp;
3092 	int throttled;
3093 
3094 	WARN_ON(!irqs_disabled());
3095 
3096 	__this_cpu_inc(perf_throttled_seq);
3097 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098 
3099 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3100 		perf_adjust_freq_unthr_context(ctx, throttled);
3101 }
3102 
3103 static int event_enable_on_exec(struct perf_event *event,
3104 				struct perf_event_context *ctx)
3105 {
3106 	if (!event->attr.enable_on_exec)
3107 		return 0;
3108 
3109 	event->attr.enable_on_exec = 0;
3110 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 		return 0;
3112 
3113 	__perf_event_mark_enabled(event);
3114 
3115 	return 1;
3116 }
3117 
3118 /*
3119  * Enable all of a task's events that have been marked enable-on-exec.
3120  * This expects task == current.
3121  */
3122 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3123 {
3124 	struct perf_event_context *clone_ctx = NULL;
3125 	struct perf_event *event;
3126 	unsigned long flags;
3127 	int enabled = 0;
3128 	int ret;
3129 
3130 	local_irq_save(flags);
3131 	if (!ctx || !ctx->nr_events)
3132 		goto out;
3133 
3134 	/*
3135 	 * We must ctxsw out cgroup events to avoid conflict
3136 	 * when invoking perf_task_event_sched_in() later on
3137 	 * in this function. Otherwise we end up trying to
3138 	 * ctxswin cgroup events which are already scheduled
3139 	 * in.
3140 	 */
3141 	perf_cgroup_sched_out(current, NULL);
3142 
3143 	raw_spin_lock(&ctx->lock);
3144 	task_ctx_sched_out(ctx);
3145 
3146 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3147 		ret = event_enable_on_exec(event, ctx);
3148 		if (ret)
3149 			enabled = 1;
3150 	}
3151 
3152 	/*
3153 	 * Unclone this context if we enabled any event.
3154 	 */
3155 	if (enabled)
3156 		clone_ctx = unclone_ctx(ctx);
3157 
3158 	raw_spin_unlock(&ctx->lock);
3159 
3160 	/*
3161 	 * Also calls ctxswin for cgroup events, if any:
3162 	 */
3163 	perf_event_context_sched_in(ctx, ctx->task);
3164 out:
3165 	local_irq_restore(flags);
3166 
3167 	if (clone_ctx)
3168 		put_ctx(clone_ctx);
3169 }
3170 
3171 void perf_event_exec(void)
3172 {
3173 	struct perf_event_context *ctx;
3174 	int ctxn;
3175 
3176 	rcu_read_lock();
3177 	for_each_task_context_nr(ctxn) {
3178 		ctx = current->perf_event_ctxp[ctxn];
3179 		if (!ctx)
3180 			continue;
3181 
3182 		perf_event_enable_on_exec(ctx);
3183 	}
3184 	rcu_read_unlock();
3185 }
3186 
3187 /*
3188  * Cross CPU call to read the hardware event
3189  */
3190 static void __perf_event_read(void *info)
3191 {
3192 	struct perf_event *event = info;
3193 	struct perf_event_context *ctx = event->ctx;
3194 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3195 
3196 	/*
3197 	 * If this is a task context, we need to check whether it is
3198 	 * the current task context of this cpu.  If not it has been
3199 	 * scheduled out before the smp call arrived.  In that case
3200 	 * event->count would have been updated to a recent sample
3201 	 * when the event was scheduled out.
3202 	 */
3203 	if (ctx->task && cpuctx->task_ctx != ctx)
3204 		return;
3205 
3206 	raw_spin_lock(&ctx->lock);
3207 	if (ctx->is_active) {
3208 		update_context_time(ctx);
3209 		update_cgrp_time_from_event(event);
3210 	}
3211 	update_event_times(event);
3212 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3213 		event->pmu->read(event);
3214 	raw_spin_unlock(&ctx->lock);
3215 }
3216 
3217 static inline u64 perf_event_count(struct perf_event *event)
3218 {
3219 	if (event->pmu->count)
3220 		return event->pmu->count(event);
3221 
3222 	return __perf_event_count(event);
3223 }
3224 
3225 /*
3226  * NMI-safe method to read a local event, that is an event that
3227  * is:
3228  *   - either for the current task, or for this CPU
3229  *   - does not have inherit set, for inherited task events
3230  *     will not be local and we cannot read them atomically
3231  *   - must not have a pmu::count method
3232  */
3233 u64 perf_event_read_local(struct perf_event *event)
3234 {
3235 	unsigned long flags;
3236 	u64 val;
3237 
3238 	/*
3239 	 * Disabling interrupts avoids all counter scheduling (context
3240 	 * switches, timer based rotation and IPIs).
3241 	 */
3242 	local_irq_save(flags);
3243 
3244 	/* If this is a per-task event, it must be for current */
3245 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3246 		     event->hw.target != current);
3247 
3248 	/* If this is a per-CPU event, it must be for this CPU */
3249 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3250 		     event->cpu != smp_processor_id());
3251 
3252 	/*
3253 	 * It must not be an event with inherit set, we cannot read
3254 	 * all child counters from atomic context.
3255 	 */
3256 	WARN_ON_ONCE(event->attr.inherit);
3257 
3258 	/*
3259 	 * It must not have a pmu::count method, those are not
3260 	 * NMI safe.
3261 	 */
3262 	WARN_ON_ONCE(event->pmu->count);
3263 
3264 	/*
3265 	 * If the event is currently on this CPU, its either a per-task event,
3266 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3267 	 * oncpu == -1).
3268 	 */
3269 	if (event->oncpu == smp_processor_id())
3270 		event->pmu->read(event);
3271 
3272 	val = local64_read(&event->count);
3273 	local_irq_restore(flags);
3274 
3275 	return val;
3276 }
3277 
3278 static u64 perf_event_read(struct perf_event *event)
3279 {
3280 	/*
3281 	 * If event is enabled and currently active on a CPU, update the
3282 	 * value in the event structure:
3283 	 */
3284 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3285 		smp_call_function_single(event->oncpu,
3286 					 __perf_event_read, event, 1);
3287 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3288 		struct perf_event_context *ctx = event->ctx;
3289 		unsigned long flags;
3290 
3291 		raw_spin_lock_irqsave(&ctx->lock, flags);
3292 		/*
3293 		 * may read while context is not active
3294 		 * (e.g., thread is blocked), in that case
3295 		 * we cannot update context time
3296 		 */
3297 		if (ctx->is_active) {
3298 			update_context_time(ctx);
3299 			update_cgrp_time_from_event(event);
3300 		}
3301 		update_event_times(event);
3302 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3303 	}
3304 
3305 	return perf_event_count(event);
3306 }
3307 
3308 /*
3309  * Initialize the perf_event context in a task_struct:
3310  */
3311 static void __perf_event_init_context(struct perf_event_context *ctx)
3312 {
3313 	raw_spin_lock_init(&ctx->lock);
3314 	mutex_init(&ctx->mutex);
3315 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3316 	INIT_LIST_HEAD(&ctx->pinned_groups);
3317 	INIT_LIST_HEAD(&ctx->flexible_groups);
3318 	INIT_LIST_HEAD(&ctx->event_list);
3319 	atomic_set(&ctx->refcount, 1);
3320 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3321 }
3322 
3323 static struct perf_event_context *
3324 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3325 {
3326 	struct perf_event_context *ctx;
3327 
3328 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3329 	if (!ctx)
3330 		return NULL;
3331 
3332 	__perf_event_init_context(ctx);
3333 	if (task) {
3334 		ctx->task = task;
3335 		get_task_struct(task);
3336 	}
3337 	ctx->pmu = pmu;
3338 
3339 	return ctx;
3340 }
3341 
3342 static struct task_struct *
3343 find_lively_task_by_vpid(pid_t vpid)
3344 {
3345 	struct task_struct *task;
3346 	int err;
3347 
3348 	rcu_read_lock();
3349 	if (!vpid)
3350 		task = current;
3351 	else
3352 		task = find_task_by_vpid(vpid);
3353 	if (task)
3354 		get_task_struct(task);
3355 	rcu_read_unlock();
3356 
3357 	if (!task)
3358 		return ERR_PTR(-ESRCH);
3359 
3360 	/* Reuse ptrace permission checks for now. */
3361 	err = -EACCES;
3362 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3363 		goto errout;
3364 
3365 	return task;
3366 errout:
3367 	put_task_struct(task);
3368 	return ERR_PTR(err);
3369 
3370 }
3371 
3372 /*
3373  * Returns a matching context with refcount and pincount.
3374  */
3375 static struct perf_event_context *
3376 find_get_context(struct pmu *pmu, struct task_struct *task,
3377 		struct perf_event *event)
3378 {
3379 	struct perf_event_context *ctx, *clone_ctx = NULL;
3380 	struct perf_cpu_context *cpuctx;
3381 	void *task_ctx_data = NULL;
3382 	unsigned long flags;
3383 	int ctxn, err;
3384 	int cpu = event->cpu;
3385 
3386 	if (!task) {
3387 		/* Must be root to operate on a CPU event: */
3388 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3389 			return ERR_PTR(-EACCES);
3390 
3391 		/*
3392 		 * We could be clever and allow to attach a event to an
3393 		 * offline CPU and activate it when the CPU comes up, but
3394 		 * that's for later.
3395 		 */
3396 		if (!cpu_online(cpu))
3397 			return ERR_PTR(-ENODEV);
3398 
3399 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3400 		ctx = &cpuctx->ctx;
3401 		get_ctx(ctx);
3402 		++ctx->pin_count;
3403 
3404 		return ctx;
3405 	}
3406 
3407 	err = -EINVAL;
3408 	ctxn = pmu->task_ctx_nr;
3409 	if (ctxn < 0)
3410 		goto errout;
3411 
3412 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3413 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3414 		if (!task_ctx_data) {
3415 			err = -ENOMEM;
3416 			goto errout;
3417 		}
3418 	}
3419 
3420 retry:
3421 	ctx = perf_lock_task_context(task, ctxn, &flags);
3422 	if (ctx) {
3423 		clone_ctx = unclone_ctx(ctx);
3424 		++ctx->pin_count;
3425 
3426 		if (task_ctx_data && !ctx->task_ctx_data) {
3427 			ctx->task_ctx_data = task_ctx_data;
3428 			task_ctx_data = NULL;
3429 		}
3430 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3431 
3432 		if (clone_ctx)
3433 			put_ctx(clone_ctx);
3434 	} else {
3435 		ctx = alloc_perf_context(pmu, task);
3436 		err = -ENOMEM;
3437 		if (!ctx)
3438 			goto errout;
3439 
3440 		if (task_ctx_data) {
3441 			ctx->task_ctx_data = task_ctx_data;
3442 			task_ctx_data = NULL;
3443 		}
3444 
3445 		err = 0;
3446 		mutex_lock(&task->perf_event_mutex);
3447 		/*
3448 		 * If it has already passed perf_event_exit_task().
3449 		 * we must see PF_EXITING, it takes this mutex too.
3450 		 */
3451 		if (task->flags & PF_EXITING)
3452 			err = -ESRCH;
3453 		else if (task->perf_event_ctxp[ctxn])
3454 			err = -EAGAIN;
3455 		else {
3456 			get_ctx(ctx);
3457 			++ctx->pin_count;
3458 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3459 		}
3460 		mutex_unlock(&task->perf_event_mutex);
3461 
3462 		if (unlikely(err)) {
3463 			put_ctx(ctx);
3464 
3465 			if (err == -EAGAIN)
3466 				goto retry;
3467 			goto errout;
3468 		}
3469 	}
3470 
3471 	kfree(task_ctx_data);
3472 	return ctx;
3473 
3474 errout:
3475 	kfree(task_ctx_data);
3476 	return ERR_PTR(err);
3477 }
3478 
3479 static void perf_event_free_filter(struct perf_event *event);
3480 static void perf_event_free_bpf_prog(struct perf_event *event);
3481 
3482 static void free_event_rcu(struct rcu_head *head)
3483 {
3484 	struct perf_event *event;
3485 
3486 	event = container_of(head, struct perf_event, rcu_head);
3487 	if (event->ns)
3488 		put_pid_ns(event->ns);
3489 	perf_event_free_filter(event);
3490 	kfree(event);
3491 }
3492 
3493 static void ring_buffer_attach(struct perf_event *event,
3494 			       struct ring_buffer *rb);
3495 
3496 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3497 {
3498 	if (event->parent)
3499 		return;
3500 
3501 	if (is_cgroup_event(event))
3502 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3503 }
3504 
3505 static void unaccount_event(struct perf_event *event)
3506 {
3507 	if (event->parent)
3508 		return;
3509 
3510 	if (event->attach_state & PERF_ATTACH_TASK)
3511 		static_key_slow_dec_deferred(&perf_sched_events);
3512 	if (event->attr.mmap || event->attr.mmap_data)
3513 		atomic_dec(&nr_mmap_events);
3514 	if (event->attr.comm)
3515 		atomic_dec(&nr_comm_events);
3516 	if (event->attr.task)
3517 		atomic_dec(&nr_task_events);
3518 	if (event->attr.freq)
3519 		atomic_dec(&nr_freq_events);
3520 	if (event->attr.context_switch) {
3521 		static_key_slow_dec_deferred(&perf_sched_events);
3522 		atomic_dec(&nr_switch_events);
3523 	}
3524 	if (is_cgroup_event(event))
3525 		static_key_slow_dec_deferred(&perf_sched_events);
3526 	if (has_branch_stack(event))
3527 		static_key_slow_dec_deferred(&perf_sched_events);
3528 
3529 	unaccount_event_cpu(event, event->cpu);
3530 }
3531 
3532 /*
3533  * The following implement mutual exclusion of events on "exclusive" pmus
3534  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3535  * at a time, so we disallow creating events that might conflict, namely:
3536  *
3537  *  1) cpu-wide events in the presence of per-task events,
3538  *  2) per-task events in the presence of cpu-wide events,
3539  *  3) two matching events on the same context.
3540  *
3541  * The former two cases are handled in the allocation path (perf_event_alloc(),
3542  * __free_event()), the latter -- before the first perf_install_in_context().
3543  */
3544 static int exclusive_event_init(struct perf_event *event)
3545 {
3546 	struct pmu *pmu = event->pmu;
3547 
3548 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3549 		return 0;
3550 
3551 	/*
3552 	 * Prevent co-existence of per-task and cpu-wide events on the
3553 	 * same exclusive pmu.
3554 	 *
3555 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3556 	 * events on this "exclusive" pmu, positive means there are
3557 	 * per-task events.
3558 	 *
3559 	 * Since this is called in perf_event_alloc() path, event::ctx
3560 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3561 	 * to mean "per-task event", because unlike other attach states it
3562 	 * never gets cleared.
3563 	 */
3564 	if (event->attach_state & PERF_ATTACH_TASK) {
3565 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3566 			return -EBUSY;
3567 	} else {
3568 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3569 			return -EBUSY;
3570 	}
3571 
3572 	return 0;
3573 }
3574 
3575 static void exclusive_event_destroy(struct perf_event *event)
3576 {
3577 	struct pmu *pmu = event->pmu;
3578 
3579 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3580 		return;
3581 
3582 	/* see comment in exclusive_event_init() */
3583 	if (event->attach_state & PERF_ATTACH_TASK)
3584 		atomic_dec(&pmu->exclusive_cnt);
3585 	else
3586 		atomic_inc(&pmu->exclusive_cnt);
3587 }
3588 
3589 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3590 {
3591 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3592 	    (e1->cpu == e2->cpu ||
3593 	     e1->cpu == -1 ||
3594 	     e2->cpu == -1))
3595 		return true;
3596 	return false;
3597 }
3598 
3599 /* Called under the same ctx::mutex as perf_install_in_context() */
3600 static bool exclusive_event_installable(struct perf_event *event,
3601 					struct perf_event_context *ctx)
3602 {
3603 	struct perf_event *iter_event;
3604 	struct pmu *pmu = event->pmu;
3605 
3606 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3607 		return true;
3608 
3609 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3610 		if (exclusive_event_match(iter_event, event))
3611 			return false;
3612 	}
3613 
3614 	return true;
3615 }
3616 
3617 static void __free_event(struct perf_event *event)
3618 {
3619 	if (!event->parent) {
3620 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3621 			put_callchain_buffers();
3622 	}
3623 
3624 	perf_event_free_bpf_prog(event);
3625 
3626 	if (event->destroy)
3627 		event->destroy(event);
3628 
3629 	if (event->ctx)
3630 		put_ctx(event->ctx);
3631 
3632 	if (event->pmu) {
3633 		exclusive_event_destroy(event);
3634 		module_put(event->pmu->module);
3635 	}
3636 
3637 	call_rcu(&event->rcu_head, free_event_rcu);
3638 }
3639 
3640 static void _free_event(struct perf_event *event)
3641 {
3642 	irq_work_sync(&event->pending);
3643 
3644 	unaccount_event(event);
3645 
3646 	if (event->rb) {
3647 		/*
3648 		 * Can happen when we close an event with re-directed output.
3649 		 *
3650 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3651 		 * over us; possibly making our ring_buffer_put() the last.
3652 		 */
3653 		mutex_lock(&event->mmap_mutex);
3654 		ring_buffer_attach(event, NULL);
3655 		mutex_unlock(&event->mmap_mutex);
3656 	}
3657 
3658 	if (is_cgroup_event(event))
3659 		perf_detach_cgroup(event);
3660 
3661 	__free_event(event);
3662 }
3663 
3664 /*
3665  * Used to free events which have a known refcount of 1, such as in error paths
3666  * where the event isn't exposed yet and inherited events.
3667  */
3668 static void free_event(struct perf_event *event)
3669 {
3670 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3671 				"unexpected event refcount: %ld; ptr=%p\n",
3672 				atomic_long_read(&event->refcount), event)) {
3673 		/* leak to avoid use-after-free */
3674 		return;
3675 	}
3676 
3677 	_free_event(event);
3678 }
3679 
3680 /*
3681  * Remove user event from the owner task.
3682  */
3683 static void perf_remove_from_owner(struct perf_event *event)
3684 {
3685 	struct task_struct *owner;
3686 
3687 	rcu_read_lock();
3688 	owner = ACCESS_ONCE(event->owner);
3689 	/*
3690 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3691 	 * !owner it means the list deletion is complete and we can indeed
3692 	 * free this event, otherwise we need to serialize on
3693 	 * owner->perf_event_mutex.
3694 	 */
3695 	smp_read_barrier_depends();
3696 	if (owner) {
3697 		/*
3698 		 * Since delayed_put_task_struct() also drops the last
3699 		 * task reference we can safely take a new reference
3700 		 * while holding the rcu_read_lock().
3701 		 */
3702 		get_task_struct(owner);
3703 	}
3704 	rcu_read_unlock();
3705 
3706 	if (owner) {
3707 		/*
3708 		 * If we're here through perf_event_exit_task() we're already
3709 		 * holding ctx->mutex which would be an inversion wrt. the
3710 		 * normal lock order.
3711 		 *
3712 		 * However we can safely take this lock because its the child
3713 		 * ctx->mutex.
3714 		 */
3715 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3716 
3717 		/*
3718 		 * We have to re-check the event->owner field, if it is cleared
3719 		 * we raced with perf_event_exit_task(), acquiring the mutex
3720 		 * ensured they're done, and we can proceed with freeing the
3721 		 * event.
3722 		 */
3723 		if (event->owner)
3724 			list_del_init(&event->owner_entry);
3725 		mutex_unlock(&owner->perf_event_mutex);
3726 		put_task_struct(owner);
3727 	}
3728 }
3729 
3730 static void put_event(struct perf_event *event)
3731 {
3732 	struct perf_event_context *ctx;
3733 
3734 	if (!atomic_long_dec_and_test(&event->refcount))
3735 		return;
3736 
3737 	if (!is_kernel_event(event))
3738 		perf_remove_from_owner(event);
3739 
3740 	/*
3741 	 * There are two ways this annotation is useful:
3742 	 *
3743 	 *  1) there is a lock recursion from perf_event_exit_task
3744 	 *     see the comment there.
3745 	 *
3746 	 *  2) there is a lock-inversion with mmap_sem through
3747 	 *     perf_event_read_group(), which takes faults while
3748 	 *     holding ctx->mutex, however this is called after
3749 	 *     the last filedesc died, so there is no possibility
3750 	 *     to trigger the AB-BA case.
3751 	 */
3752 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3753 	WARN_ON_ONCE(ctx->parent_ctx);
3754 	perf_remove_from_context(event, true);
3755 	perf_event_ctx_unlock(event, ctx);
3756 
3757 	_free_event(event);
3758 }
3759 
3760 int perf_event_release_kernel(struct perf_event *event)
3761 {
3762 	put_event(event);
3763 	return 0;
3764 }
3765 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3766 
3767 /*
3768  * Called when the last reference to the file is gone.
3769  */
3770 static int perf_release(struct inode *inode, struct file *file)
3771 {
3772 	put_event(file->private_data);
3773 	return 0;
3774 }
3775 
3776 /*
3777  * Remove all orphanes events from the context.
3778  */
3779 static void orphans_remove_work(struct work_struct *work)
3780 {
3781 	struct perf_event_context *ctx;
3782 	struct perf_event *event, *tmp;
3783 
3784 	ctx = container_of(work, struct perf_event_context,
3785 			   orphans_remove.work);
3786 
3787 	mutex_lock(&ctx->mutex);
3788 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3789 		struct perf_event *parent_event = event->parent;
3790 
3791 		if (!is_orphaned_child(event))
3792 			continue;
3793 
3794 		perf_remove_from_context(event, true);
3795 
3796 		mutex_lock(&parent_event->child_mutex);
3797 		list_del_init(&event->child_list);
3798 		mutex_unlock(&parent_event->child_mutex);
3799 
3800 		free_event(event);
3801 		put_event(parent_event);
3802 	}
3803 
3804 	raw_spin_lock_irq(&ctx->lock);
3805 	ctx->orphans_remove_sched = false;
3806 	raw_spin_unlock_irq(&ctx->lock);
3807 	mutex_unlock(&ctx->mutex);
3808 
3809 	put_ctx(ctx);
3810 }
3811 
3812 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3813 {
3814 	struct perf_event *child;
3815 	u64 total = 0;
3816 
3817 	*enabled = 0;
3818 	*running = 0;
3819 
3820 	mutex_lock(&event->child_mutex);
3821 	total += perf_event_read(event);
3822 	*enabled += event->total_time_enabled +
3823 			atomic64_read(&event->child_total_time_enabled);
3824 	*running += event->total_time_running +
3825 			atomic64_read(&event->child_total_time_running);
3826 
3827 	list_for_each_entry(child, &event->child_list, child_list) {
3828 		total += perf_event_read(child);
3829 		*enabled += child->total_time_enabled;
3830 		*running += child->total_time_running;
3831 	}
3832 	mutex_unlock(&event->child_mutex);
3833 
3834 	return total;
3835 }
3836 EXPORT_SYMBOL_GPL(perf_event_read_value);
3837 
3838 static int perf_event_read_group(struct perf_event *event,
3839 				   u64 read_format, char __user *buf)
3840 {
3841 	struct perf_event *leader = event->group_leader, *sub;
3842 	struct perf_event_context *ctx = leader->ctx;
3843 	int n = 0, size = 0, ret;
3844 	u64 count, enabled, running;
3845 	u64 values[5];
3846 
3847 	lockdep_assert_held(&ctx->mutex);
3848 
3849 	count = perf_event_read_value(leader, &enabled, &running);
3850 
3851 	values[n++] = 1 + leader->nr_siblings;
3852 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3853 		values[n++] = enabled;
3854 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3855 		values[n++] = running;
3856 	values[n++] = count;
3857 	if (read_format & PERF_FORMAT_ID)
3858 		values[n++] = primary_event_id(leader);
3859 
3860 	size = n * sizeof(u64);
3861 
3862 	if (copy_to_user(buf, values, size))
3863 		return -EFAULT;
3864 
3865 	ret = size;
3866 
3867 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3868 		n = 0;
3869 
3870 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3871 		if (read_format & PERF_FORMAT_ID)
3872 			values[n++] = primary_event_id(sub);
3873 
3874 		size = n * sizeof(u64);
3875 
3876 		if (copy_to_user(buf + ret, values, size)) {
3877 			return -EFAULT;
3878 		}
3879 
3880 		ret += size;
3881 	}
3882 
3883 	return ret;
3884 }
3885 
3886 static int perf_event_read_one(struct perf_event *event,
3887 				 u64 read_format, char __user *buf)
3888 {
3889 	u64 enabled, running;
3890 	u64 values[4];
3891 	int n = 0;
3892 
3893 	values[n++] = perf_event_read_value(event, &enabled, &running);
3894 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3895 		values[n++] = enabled;
3896 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3897 		values[n++] = running;
3898 	if (read_format & PERF_FORMAT_ID)
3899 		values[n++] = primary_event_id(event);
3900 
3901 	if (copy_to_user(buf, values, n * sizeof(u64)))
3902 		return -EFAULT;
3903 
3904 	return n * sizeof(u64);
3905 }
3906 
3907 static bool is_event_hup(struct perf_event *event)
3908 {
3909 	bool no_children;
3910 
3911 	if (event->state != PERF_EVENT_STATE_EXIT)
3912 		return false;
3913 
3914 	mutex_lock(&event->child_mutex);
3915 	no_children = list_empty(&event->child_list);
3916 	mutex_unlock(&event->child_mutex);
3917 	return no_children;
3918 }
3919 
3920 /*
3921  * Read the performance event - simple non blocking version for now
3922  */
3923 static ssize_t
3924 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3925 {
3926 	u64 read_format = event->attr.read_format;
3927 	int ret;
3928 
3929 	/*
3930 	 * Return end-of-file for a read on a event that is in
3931 	 * error state (i.e. because it was pinned but it couldn't be
3932 	 * scheduled on to the CPU at some point).
3933 	 */
3934 	if (event->state == PERF_EVENT_STATE_ERROR)
3935 		return 0;
3936 
3937 	if (count < event->read_size)
3938 		return -ENOSPC;
3939 
3940 	WARN_ON_ONCE(event->ctx->parent_ctx);
3941 	if (read_format & PERF_FORMAT_GROUP)
3942 		ret = perf_event_read_group(event, read_format, buf);
3943 	else
3944 		ret = perf_event_read_one(event, read_format, buf);
3945 
3946 	return ret;
3947 }
3948 
3949 static ssize_t
3950 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3951 {
3952 	struct perf_event *event = file->private_data;
3953 	struct perf_event_context *ctx;
3954 	int ret;
3955 
3956 	ctx = perf_event_ctx_lock(event);
3957 	ret = perf_read_hw(event, buf, count);
3958 	perf_event_ctx_unlock(event, ctx);
3959 
3960 	return ret;
3961 }
3962 
3963 static unsigned int perf_poll(struct file *file, poll_table *wait)
3964 {
3965 	struct perf_event *event = file->private_data;
3966 	struct ring_buffer *rb;
3967 	unsigned int events = POLLHUP;
3968 
3969 	poll_wait(file, &event->waitq, wait);
3970 
3971 	if (is_event_hup(event))
3972 		return events;
3973 
3974 	/*
3975 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3976 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3977 	 */
3978 	mutex_lock(&event->mmap_mutex);
3979 	rb = event->rb;
3980 	if (rb)
3981 		events = atomic_xchg(&rb->poll, 0);
3982 	mutex_unlock(&event->mmap_mutex);
3983 	return events;
3984 }
3985 
3986 static void _perf_event_reset(struct perf_event *event)
3987 {
3988 	(void)perf_event_read(event);
3989 	local64_set(&event->count, 0);
3990 	perf_event_update_userpage(event);
3991 }
3992 
3993 /*
3994  * Holding the top-level event's child_mutex means that any
3995  * descendant process that has inherited this event will block
3996  * in sync_child_event if it goes to exit, thus satisfying the
3997  * task existence requirements of perf_event_enable/disable.
3998  */
3999 static void perf_event_for_each_child(struct perf_event *event,
4000 					void (*func)(struct perf_event *))
4001 {
4002 	struct perf_event *child;
4003 
4004 	WARN_ON_ONCE(event->ctx->parent_ctx);
4005 
4006 	mutex_lock(&event->child_mutex);
4007 	func(event);
4008 	list_for_each_entry(child, &event->child_list, child_list)
4009 		func(child);
4010 	mutex_unlock(&event->child_mutex);
4011 }
4012 
4013 static void perf_event_for_each(struct perf_event *event,
4014 				  void (*func)(struct perf_event *))
4015 {
4016 	struct perf_event_context *ctx = event->ctx;
4017 	struct perf_event *sibling;
4018 
4019 	lockdep_assert_held(&ctx->mutex);
4020 
4021 	event = event->group_leader;
4022 
4023 	perf_event_for_each_child(event, func);
4024 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4025 		perf_event_for_each_child(sibling, func);
4026 }
4027 
4028 struct period_event {
4029 	struct perf_event *event;
4030 	u64 value;
4031 };
4032 
4033 static int __perf_event_period(void *info)
4034 {
4035 	struct period_event *pe = info;
4036 	struct perf_event *event = pe->event;
4037 	struct perf_event_context *ctx = event->ctx;
4038 	u64 value = pe->value;
4039 	bool active;
4040 
4041 	raw_spin_lock(&ctx->lock);
4042 	if (event->attr.freq) {
4043 		event->attr.sample_freq = value;
4044 	} else {
4045 		event->attr.sample_period = value;
4046 		event->hw.sample_period = value;
4047 	}
4048 
4049 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4050 	if (active) {
4051 		perf_pmu_disable(ctx->pmu);
4052 		event->pmu->stop(event, PERF_EF_UPDATE);
4053 	}
4054 
4055 	local64_set(&event->hw.period_left, 0);
4056 
4057 	if (active) {
4058 		event->pmu->start(event, PERF_EF_RELOAD);
4059 		perf_pmu_enable(ctx->pmu);
4060 	}
4061 	raw_spin_unlock(&ctx->lock);
4062 
4063 	return 0;
4064 }
4065 
4066 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4067 {
4068 	struct period_event pe = { .event = event, };
4069 	struct perf_event_context *ctx = event->ctx;
4070 	struct task_struct *task;
4071 	u64 value;
4072 
4073 	if (!is_sampling_event(event))
4074 		return -EINVAL;
4075 
4076 	if (copy_from_user(&value, arg, sizeof(value)))
4077 		return -EFAULT;
4078 
4079 	if (!value)
4080 		return -EINVAL;
4081 
4082 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4083 		return -EINVAL;
4084 
4085 	task = ctx->task;
4086 	pe.value = value;
4087 
4088 	if (!task) {
4089 		cpu_function_call(event->cpu, __perf_event_period, &pe);
4090 		return 0;
4091 	}
4092 
4093 retry:
4094 	if (!task_function_call(task, __perf_event_period, &pe))
4095 		return 0;
4096 
4097 	raw_spin_lock_irq(&ctx->lock);
4098 	if (ctx->is_active) {
4099 		raw_spin_unlock_irq(&ctx->lock);
4100 		task = ctx->task;
4101 		goto retry;
4102 	}
4103 
4104 	__perf_event_period(&pe);
4105 	raw_spin_unlock_irq(&ctx->lock);
4106 
4107 	return 0;
4108 }
4109 
4110 static const struct file_operations perf_fops;
4111 
4112 static inline int perf_fget_light(int fd, struct fd *p)
4113 {
4114 	struct fd f = fdget(fd);
4115 	if (!f.file)
4116 		return -EBADF;
4117 
4118 	if (f.file->f_op != &perf_fops) {
4119 		fdput(f);
4120 		return -EBADF;
4121 	}
4122 	*p = f;
4123 	return 0;
4124 }
4125 
4126 static int perf_event_set_output(struct perf_event *event,
4127 				 struct perf_event *output_event);
4128 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4129 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4130 
4131 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4132 {
4133 	void (*func)(struct perf_event *);
4134 	u32 flags = arg;
4135 
4136 	switch (cmd) {
4137 	case PERF_EVENT_IOC_ENABLE:
4138 		func = _perf_event_enable;
4139 		break;
4140 	case PERF_EVENT_IOC_DISABLE:
4141 		func = _perf_event_disable;
4142 		break;
4143 	case PERF_EVENT_IOC_RESET:
4144 		func = _perf_event_reset;
4145 		break;
4146 
4147 	case PERF_EVENT_IOC_REFRESH:
4148 		return _perf_event_refresh(event, arg);
4149 
4150 	case PERF_EVENT_IOC_PERIOD:
4151 		return perf_event_period(event, (u64 __user *)arg);
4152 
4153 	case PERF_EVENT_IOC_ID:
4154 	{
4155 		u64 id = primary_event_id(event);
4156 
4157 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4158 			return -EFAULT;
4159 		return 0;
4160 	}
4161 
4162 	case PERF_EVENT_IOC_SET_OUTPUT:
4163 	{
4164 		int ret;
4165 		if (arg != -1) {
4166 			struct perf_event *output_event;
4167 			struct fd output;
4168 			ret = perf_fget_light(arg, &output);
4169 			if (ret)
4170 				return ret;
4171 			output_event = output.file->private_data;
4172 			ret = perf_event_set_output(event, output_event);
4173 			fdput(output);
4174 		} else {
4175 			ret = perf_event_set_output(event, NULL);
4176 		}
4177 		return ret;
4178 	}
4179 
4180 	case PERF_EVENT_IOC_SET_FILTER:
4181 		return perf_event_set_filter(event, (void __user *)arg);
4182 
4183 	case PERF_EVENT_IOC_SET_BPF:
4184 		return perf_event_set_bpf_prog(event, arg);
4185 
4186 	default:
4187 		return -ENOTTY;
4188 	}
4189 
4190 	if (flags & PERF_IOC_FLAG_GROUP)
4191 		perf_event_for_each(event, func);
4192 	else
4193 		perf_event_for_each_child(event, func);
4194 
4195 	return 0;
4196 }
4197 
4198 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4199 {
4200 	struct perf_event *event = file->private_data;
4201 	struct perf_event_context *ctx;
4202 	long ret;
4203 
4204 	ctx = perf_event_ctx_lock(event);
4205 	ret = _perf_ioctl(event, cmd, arg);
4206 	perf_event_ctx_unlock(event, ctx);
4207 
4208 	return ret;
4209 }
4210 
4211 #ifdef CONFIG_COMPAT
4212 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4213 				unsigned long arg)
4214 {
4215 	switch (_IOC_NR(cmd)) {
4216 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4217 	case _IOC_NR(PERF_EVENT_IOC_ID):
4218 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4219 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4220 			cmd &= ~IOCSIZE_MASK;
4221 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4222 		}
4223 		break;
4224 	}
4225 	return perf_ioctl(file, cmd, arg);
4226 }
4227 #else
4228 # define perf_compat_ioctl NULL
4229 #endif
4230 
4231 int perf_event_task_enable(void)
4232 {
4233 	struct perf_event_context *ctx;
4234 	struct perf_event *event;
4235 
4236 	mutex_lock(&current->perf_event_mutex);
4237 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4238 		ctx = perf_event_ctx_lock(event);
4239 		perf_event_for_each_child(event, _perf_event_enable);
4240 		perf_event_ctx_unlock(event, ctx);
4241 	}
4242 	mutex_unlock(&current->perf_event_mutex);
4243 
4244 	return 0;
4245 }
4246 
4247 int perf_event_task_disable(void)
4248 {
4249 	struct perf_event_context *ctx;
4250 	struct perf_event *event;
4251 
4252 	mutex_lock(&current->perf_event_mutex);
4253 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4254 		ctx = perf_event_ctx_lock(event);
4255 		perf_event_for_each_child(event, _perf_event_disable);
4256 		perf_event_ctx_unlock(event, ctx);
4257 	}
4258 	mutex_unlock(&current->perf_event_mutex);
4259 
4260 	return 0;
4261 }
4262 
4263 static int perf_event_index(struct perf_event *event)
4264 {
4265 	if (event->hw.state & PERF_HES_STOPPED)
4266 		return 0;
4267 
4268 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4269 		return 0;
4270 
4271 	return event->pmu->event_idx(event);
4272 }
4273 
4274 static void calc_timer_values(struct perf_event *event,
4275 				u64 *now,
4276 				u64 *enabled,
4277 				u64 *running)
4278 {
4279 	u64 ctx_time;
4280 
4281 	*now = perf_clock();
4282 	ctx_time = event->shadow_ctx_time + *now;
4283 	*enabled = ctx_time - event->tstamp_enabled;
4284 	*running = ctx_time - event->tstamp_running;
4285 }
4286 
4287 static void perf_event_init_userpage(struct perf_event *event)
4288 {
4289 	struct perf_event_mmap_page *userpg;
4290 	struct ring_buffer *rb;
4291 
4292 	rcu_read_lock();
4293 	rb = rcu_dereference(event->rb);
4294 	if (!rb)
4295 		goto unlock;
4296 
4297 	userpg = rb->user_page;
4298 
4299 	/* Allow new userspace to detect that bit 0 is deprecated */
4300 	userpg->cap_bit0_is_deprecated = 1;
4301 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4302 	userpg->data_offset = PAGE_SIZE;
4303 	userpg->data_size = perf_data_size(rb);
4304 
4305 unlock:
4306 	rcu_read_unlock();
4307 }
4308 
4309 void __weak arch_perf_update_userpage(
4310 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4311 {
4312 }
4313 
4314 /*
4315  * Callers need to ensure there can be no nesting of this function, otherwise
4316  * the seqlock logic goes bad. We can not serialize this because the arch
4317  * code calls this from NMI context.
4318  */
4319 void perf_event_update_userpage(struct perf_event *event)
4320 {
4321 	struct perf_event_mmap_page *userpg;
4322 	struct ring_buffer *rb;
4323 	u64 enabled, running, now;
4324 
4325 	rcu_read_lock();
4326 	rb = rcu_dereference(event->rb);
4327 	if (!rb)
4328 		goto unlock;
4329 
4330 	/*
4331 	 * compute total_time_enabled, total_time_running
4332 	 * based on snapshot values taken when the event
4333 	 * was last scheduled in.
4334 	 *
4335 	 * we cannot simply called update_context_time()
4336 	 * because of locking issue as we can be called in
4337 	 * NMI context
4338 	 */
4339 	calc_timer_values(event, &now, &enabled, &running);
4340 
4341 	userpg = rb->user_page;
4342 	/*
4343 	 * Disable preemption so as to not let the corresponding user-space
4344 	 * spin too long if we get preempted.
4345 	 */
4346 	preempt_disable();
4347 	++userpg->lock;
4348 	barrier();
4349 	userpg->index = perf_event_index(event);
4350 	userpg->offset = perf_event_count(event);
4351 	if (userpg->index)
4352 		userpg->offset -= local64_read(&event->hw.prev_count);
4353 
4354 	userpg->time_enabled = enabled +
4355 			atomic64_read(&event->child_total_time_enabled);
4356 
4357 	userpg->time_running = running +
4358 			atomic64_read(&event->child_total_time_running);
4359 
4360 	arch_perf_update_userpage(event, userpg, now);
4361 
4362 	barrier();
4363 	++userpg->lock;
4364 	preempt_enable();
4365 unlock:
4366 	rcu_read_unlock();
4367 }
4368 
4369 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4370 {
4371 	struct perf_event *event = vma->vm_file->private_data;
4372 	struct ring_buffer *rb;
4373 	int ret = VM_FAULT_SIGBUS;
4374 
4375 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4376 		if (vmf->pgoff == 0)
4377 			ret = 0;
4378 		return ret;
4379 	}
4380 
4381 	rcu_read_lock();
4382 	rb = rcu_dereference(event->rb);
4383 	if (!rb)
4384 		goto unlock;
4385 
4386 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4387 		goto unlock;
4388 
4389 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4390 	if (!vmf->page)
4391 		goto unlock;
4392 
4393 	get_page(vmf->page);
4394 	vmf->page->mapping = vma->vm_file->f_mapping;
4395 	vmf->page->index   = vmf->pgoff;
4396 
4397 	ret = 0;
4398 unlock:
4399 	rcu_read_unlock();
4400 
4401 	return ret;
4402 }
4403 
4404 static void ring_buffer_attach(struct perf_event *event,
4405 			       struct ring_buffer *rb)
4406 {
4407 	struct ring_buffer *old_rb = NULL;
4408 	unsigned long flags;
4409 
4410 	if (event->rb) {
4411 		/*
4412 		 * Should be impossible, we set this when removing
4413 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4414 		 */
4415 		WARN_ON_ONCE(event->rcu_pending);
4416 
4417 		old_rb = event->rb;
4418 		spin_lock_irqsave(&old_rb->event_lock, flags);
4419 		list_del_rcu(&event->rb_entry);
4420 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4421 
4422 		event->rcu_batches = get_state_synchronize_rcu();
4423 		event->rcu_pending = 1;
4424 	}
4425 
4426 	if (rb) {
4427 		if (event->rcu_pending) {
4428 			cond_synchronize_rcu(event->rcu_batches);
4429 			event->rcu_pending = 0;
4430 		}
4431 
4432 		spin_lock_irqsave(&rb->event_lock, flags);
4433 		list_add_rcu(&event->rb_entry, &rb->event_list);
4434 		spin_unlock_irqrestore(&rb->event_lock, flags);
4435 	}
4436 
4437 	rcu_assign_pointer(event->rb, rb);
4438 
4439 	if (old_rb) {
4440 		ring_buffer_put(old_rb);
4441 		/*
4442 		 * Since we detached before setting the new rb, so that we
4443 		 * could attach the new rb, we could have missed a wakeup.
4444 		 * Provide it now.
4445 		 */
4446 		wake_up_all(&event->waitq);
4447 	}
4448 }
4449 
4450 static void ring_buffer_wakeup(struct perf_event *event)
4451 {
4452 	struct ring_buffer *rb;
4453 
4454 	rcu_read_lock();
4455 	rb = rcu_dereference(event->rb);
4456 	if (rb) {
4457 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4458 			wake_up_all(&event->waitq);
4459 	}
4460 	rcu_read_unlock();
4461 }
4462 
4463 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4464 {
4465 	struct ring_buffer *rb;
4466 
4467 	rcu_read_lock();
4468 	rb = rcu_dereference(event->rb);
4469 	if (rb) {
4470 		if (!atomic_inc_not_zero(&rb->refcount))
4471 			rb = NULL;
4472 	}
4473 	rcu_read_unlock();
4474 
4475 	return rb;
4476 }
4477 
4478 void ring_buffer_put(struct ring_buffer *rb)
4479 {
4480 	if (!atomic_dec_and_test(&rb->refcount))
4481 		return;
4482 
4483 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4484 
4485 	call_rcu(&rb->rcu_head, rb_free_rcu);
4486 }
4487 
4488 static void perf_mmap_open(struct vm_area_struct *vma)
4489 {
4490 	struct perf_event *event = vma->vm_file->private_data;
4491 
4492 	atomic_inc(&event->mmap_count);
4493 	atomic_inc(&event->rb->mmap_count);
4494 
4495 	if (vma->vm_pgoff)
4496 		atomic_inc(&event->rb->aux_mmap_count);
4497 
4498 	if (event->pmu->event_mapped)
4499 		event->pmu->event_mapped(event);
4500 }
4501 
4502 /*
4503  * A buffer can be mmap()ed multiple times; either directly through the same
4504  * event, or through other events by use of perf_event_set_output().
4505  *
4506  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4507  * the buffer here, where we still have a VM context. This means we need
4508  * to detach all events redirecting to us.
4509  */
4510 static void perf_mmap_close(struct vm_area_struct *vma)
4511 {
4512 	struct perf_event *event = vma->vm_file->private_data;
4513 
4514 	struct ring_buffer *rb = ring_buffer_get(event);
4515 	struct user_struct *mmap_user = rb->mmap_user;
4516 	int mmap_locked = rb->mmap_locked;
4517 	unsigned long size = perf_data_size(rb);
4518 
4519 	if (event->pmu->event_unmapped)
4520 		event->pmu->event_unmapped(event);
4521 
4522 	/*
4523 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4524 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4525 	 * serialize with perf_mmap here.
4526 	 */
4527 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4528 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4529 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4530 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4531 
4532 		rb_free_aux(rb);
4533 		mutex_unlock(&event->mmap_mutex);
4534 	}
4535 
4536 	atomic_dec(&rb->mmap_count);
4537 
4538 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4539 		goto out_put;
4540 
4541 	ring_buffer_attach(event, NULL);
4542 	mutex_unlock(&event->mmap_mutex);
4543 
4544 	/* If there's still other mmap()s of this buffer, we're done. */
4545 	if (atomic_read(&rb->mmap_count))
4546 		goto out_put;
4547 
4548 	/*
4549 	 * No other mmap()s, detach from all other events that might redirect
4550 	 * into the now unreachable buffer. Somewhat complicated by the
4551 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4552 	 */
4553 again:
4554 	rcu_read_lock();
4555 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4556 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4557 			/*
4558 			 * This event is en-route to free_event() which will
4559 			 * detach it and remove it from the list.
4560 			 */
4561 			continue;
4562 		}
4563 		rcu_read_unlock();
4564 
4565 		mutex_lock(&event->mmap_mutex);
4566 		/*
4567 		 * Check we didn't race with perf_event_set_output() which can
4568 		 * swizzle the rb from under us while we were waiting to
4569 		 * acquire mmap_mutex.
4570 		 *
4571 		 * If we find a different rb; ignore this event, a next
4572 		 * iteration will no longer find it on the list. We have to
4573 		 * still restart the iteration to make sure we're not now
4574 		 * iterating the wrong list.
4575 		 */
4576 		if (event->rb == rb)
4577 			ring_buffer_attach(event, NULL);
4578 
4579 		mutex_unlock(&event->mmap_mutex);
4580 		put_event(event);
4581 
4582 		/*
4583 		 * Restart the iteration; either we're on the wrong list or
4584 		 * destroyed its integrity by doing a deletion.
4585 		 */
4586 		goto again;
4587 	}
4588 	rcu_read_unlock();
4589 
4590 	/*
4591 	 * It could be there's still a few 0-ref events on the list; they'll
4592 	 * get cleaned up by free_event() -- they'll also still have their
4593 	 * ref on the rb and will free it whenever they are done with it.
4594 	 *
4595 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4596 	 * undo the VM accounting.
4597 	 */
4598 
4599 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4600 	vma->vm_mm->pinned_vm -= mmap_locked;
4601 	free_uid(mmap_user);
4602 
4603 out_put:
4604 	ring_buffer_put(rb); /* could be last */
4605 }
4606 
4607 static const struct vm_operations_struct perf_mmap_vmops = {
4608 	.open		= perf_mmap_open,
4609 	.close		= perf_mmap_close, /* non mergable */
4610 	.fault		= perf_mmap_fault,
4611 	.page_mkwrite	= perf_mmap_fault,
4612 };
4613 
4614 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4615 {
4616 	struct perf_event *event = file->private_data;
4617 	unsigned long user_locked, user_lock_limit;
4618 	struct user_struct *user = current_user();
4619 	unsigned long locked, lock_limit;
4620 	struct ring_buffer *rb = NULL;
4621 	unsigned long vma_size;
4622 	unsigned long nr_pages;
4623 	long user_extra = 0, extra = 0;
4624 	int ret = 0, flags = 0;
4625 
4626 	/*
4627 	 * Don't allow mmap() of inherited per-task counters. This would
4628 	 * create a performance issue due to all children writing to the
4629 	 * same rb.
4630 	 */
4631 	if (event->cpu == -1 && event->attr.inherit)
4632 		return -EINVAL;
4633 
4634 	if (!(vma->vm_flags & VM_SHARED))
4635 		return -EINVAL;
4636 
4637 	vma_size = vma->vm_end - vma->vm_start;
4638 
4639 	if (vma->vm_pgoff == 0) {
4640 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4641 	} else {
4642 		/*
4643 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4644 		 * mapped, all subsequent mappings should have the same size
4645 		 * and offset. Must be above the normal perf buffer.
4646 		 */
4647 		u64 aux_offset, aux_size;
4648 
4649 		if (!event->rb)
4650 			return -EINVAL;
4651 
4652 		nr_pages = vma_size / PAGE_SIZE;
4653 
4654 		mutex_lock(&event->mmap_mutex);
4655 		ret = -EINVAL;
4656 
4657 		rb = event->rb;
4658 		if (!rb)
4659 			goto aux_unlock;
4660 
4661 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4662 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4663 
4664 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4665 			goto aux_unlock;
4666 
4667 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4668 			goto aux_unlock;
4669 
4670 		/* already mapped with a different offset */
4671 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4672 			goto aux_unlock;
4673 
4674 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4675 			goto aux_unlock;
4676 
4677 		/* already mapped with a different size */
4678 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4679 			goto aux_unlock;
4680 
4681 		if (!is_power_of_2(nr_pages))
4682 			goto aux_unlock;
4683 
4684 		if (!atomic_inc_not_zero(&rb->mmap_count))
4685 			goto aux_unlock;
4686 
4687 		if (rb_has_aux(rb)) {
4688 			atomic_inc(&rb->aux_mmap_count);
4689 			ret = 0;
4690 			goto unlock;
4691 		}
4692 
4693 		atomic_set(&rb->aux_mmap_count, 1);
4694 		user_extra = nr_pages;
4695 
4696 		goto accounting;
4697 	}
4698 
4699 	/*
4700 	 * If we have rb pages ensure they're a power-of-two number, so we
4701 	 * can do bitmasks instead of modulo.
4702 	 */
4703 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4704 		return -EINVAL;
4705 
4706 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4707 		return -EINVAL;
4708 
4709 	WARN_ON_ONCE(event->ctx->parent_ctx);
4710 again:
4711 	mutex_lock(&event->mmap_mutex);
4712 	if (event->rb) {
4713 		if (event->rb->nr_pages != nr_pages) {
4714 			ret = -EINVAL;
4715 			goto unlock;
4716 		}
4717 
4718 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4719 			/*
4720 			 * Raced against perf_mmap_close() through
4721 			 * perf_event_set_output(). Try again, hope for better
4722 			 * luck.
4723 			 */
4724 			mutex_unlock(&event->mmap_mutex);
4725 			goto again;
4726 		}
4727 
4728 		goto unlock;
4729 	}
4730 
4731 	user_extra = nr_pages + 1;
4732 
4733 accounting:
4734 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4735 
4736 	/*
4737 	 * Increase the limit linearly with more CPUs:
4738 	 */
4739 	user_lock_limit *= num_online_cpus();
4740 
4741 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4742 
4743 	if (user_locked > user_lock_limit)
4744 		extra = user_locked - user_lock_limit;
4745 
4746 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4747 	lock_limit >>= PAGE_SHIFT;
4748 	locked = vma->vm_mm->pinned_vm + extra;
4749 
4750 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4751 		!capable(CAP_IPC_LOCK)) {
4752 		ret = -EPERM;
4753 		goto unlock;
4754 	}
4755 
4756 	WARN_ON(!rb && event->rb);
4757 
4758 	if (vma->vm_flags & VM_WRITE)
4759 		flags |= RING_BUFFER_WRITABLE;
4760 
4761 	if (!rb) {
4762 		rb = rb_alloc(nr_pages,
4763 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4764 			      event->cpu, flags);
4765 
4766 		if (!rb) {
4767 			ret = -ENOMEM;
4768 			goto unlock;
4769 		}
4770 
4771 		atomic_set(&rb->mmap_count, 1);
4772 		rb->mmap_user = get_current_user();
4773 		rb->mmap_locked = extra;
4774 
4775 		ring_buffer_attach(event, rb);
4776 
4777 		perf_event_init_userpage(event);
4778 		perf_event_update_userpage(event);
4779 	} else {
4780 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4781 				   event->attr.aux_watermark, flags);
4782 		if (!ret)
4783 			rb->aux_mmap_locked = extra;
4784 	}
4785 
4786 unlock:
4787 	if (!ret) {
4788 		atomic_long_add(user_extra, &user->locked_vm);
4789 		vma->vm_mm->pinned_vm += extra;
4790 
4791 		atomic_inc(&event->mmap_count);
4792 	} else if (rb) {
4793 		atomic_dec(&rb->mmap_count);
4794 	}
4795 aux_unlock:
4796 	mutex_unlock(&event->mmap_mutex);
4797 
4798 	/*
4799 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4800 	 * vma.
4801 	 */
4802 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4803 	vma->vm_ops = &perf_mmap_vmops;
4804 
4805 	if (event->pmu->event_mapped)
4806 		event->pmu->event_mapped(event);
4807 
4808 	return ret;
4809 }
4810 
4811 static int perf_fasync(int fd, struct file *filp, int on)
4812 {
4813 	struct inode *inode = file_inode(filp);
4814 	struct perf_event *event = filp->private_data;
4815 	int retval;
4816 
4817 	mutex_lock(&inode->i_mutex);
4818 	retval = fasync_helper(fd, filp, on, &event->fasync);
4819 	mutex_unlock(&inode->i_mutex);
4820 
4821 	if (retval < 0)
4822 		return retval;
4823 
4824 	return 0;
4825 }
4826 
4827 static const struct file_operations perf_fops = {
4828 	.llseek			= no_llseek,
4829 	.release		= perf_release,
4830 	.read			= perf_read,
4831 	.poll			= perf_poll,
4832 	.unlocked_ioctl		= perf_ioctl,
4833 	.compat_ioctl		= perf_compat_ioctl,
4834 	.mmap			= perf_mmap,
4835 	.fasync			= perf_fasync,
4836 };
4837 
4838 /*
4839  * Perf event wakeup
4840  *
4841  * If there's data, ensure we set the poll() state and publish everything
4842  * to user-space before waking everybody up.
4843  */
4844 
4845 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4846 {
4847 	/* only the parent has fasync state */
4848 	if (event->parent)
4849 		event = event->parent;
4850 	return &event->fasync;
4851 }
4852 
4853 void perf_event_wakeup(struct perf_event *event)
4854 {
4855 	ring_buffer_wakeup(event);
4856 
4857 	if (event->pending_kill) {
4858 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4859 		event->pending_kill = 0;
4860 	}
4861 }
4862 
4863 static void perf_pending_event(struct irq_work *entry)
4864 {
4865 	struct perf_event *event = container_of(entry,
4866 			struct perf_event, pending);
4867 	int rctx;
4868 
4869 	rctx = perf_swevent_get_recursion_context();
4870 	/*
4871 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4872 	 * and we won't recurse 'further'.
4873 	 */
4874 
4875 	if (event->pending_disable) {
4876 		event->pending_disable = 0;
4877 		__perf_event_disable(event);
4878 	}
4879 
4880 	if (event->pending_wakeup) {
4881 		event->pending_wakeup = 0;
4882 		perf_event_wakeup(event);
4883 	}
4884 
4885 	if (rctx >= 0)
4886 		perf_swevent_put_recursion_context(rctx);
4887 }
4888 
4889 /*
4890  * We assume there is only KVM supporting the callbacks.
4891  * Later on, we might change it to a list if there is
4892  * another virtualization implementation supporting the callbacks.
4893  */
4894 struct perf_guest_info_callbacks *perf_guest_cbs;
4895 
4896 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4897 {
4898 	perf_guest_cbs = cbs;
4899 	return 0;
4900 }
4901 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4902 
4903 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4904 {
4905 	perf_guest_cbs = NULL;
4906 	return 0;
4907 }
4908 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4909 
4910 static void
4911 perf_output_sample_regs(struct perf_output_handle *handle,
4912 			struct pt_regs *regs, u64 mask)
4913 {
4914 	int bit;
4915 
4916 	for_each_set_bit(bit, (const unsigned long *) &mask,
4917 			 sizeof(mask) * BITS_PER_BYTE) {
4918 		u64 val;
4919 
4920 		val = perf_reg_value(regs, bit);
4921 		perf_output_put(handle, val);
4922 	}
4923 }
4924 
4925 static void perf_sample_regs_user(struct perf_regs *regs_user,
4926 				  struct pt_regs *regs,
4927 				  struct pt_regs *regs_user_copy)
4928 {
4929 	if (user_mode(regs)) {
4930 		regs_user->abi = perf_reg_abi(current);
4931 		regs_user->regs = regs;
4932 	} else if (current->mm) {
4933 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4934 	} else {
4935 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4936 		regs_user->regs = NULL;
4937 	}
4938 }
4939 
4940 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4941 				  struct pt_regs *regs)
4942 {
4943 	regs_intr->regs = regs;
4944 	regs_intr->abi  = perf_reg_abi(current);
4945 }
4946 
4947 
4948 /*
4949  * Get remaining task size from user stack pointer.
4950  *
4951  * It'd be better to take stack vma map and limit this more
4952  * precisly, but there's no way to get it safely under interrupt,
4953  * so using TASK_SIZE as limit.
4954  */
4955 static u64 perf_ustack_task_size(struct pt_regs *regs)
4956 {
4957 	unsigned long addr = perf_user_stack_pointer(regs);
4958 
4959 	if (!addr || addr >= TASK_SIZE)
4960 		return 0;
4961 
4962 	return TASK_SIZE - addr;
4963 }
4964 
4965 static u16
4966 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4967 			struct pt_regs *regs)
4968 {
4969 	u64 task_size;
4970 
4971 	/* No regs, no stack pointer, no dump. */
4972 	if (!regs)
4973 		return 0;
4974 
4975 	/*
4976 	 * Check if we fit in with the requested stack size into the:
4977 	 * - TASK_SIZE
4978 	 *   If we don't, we limit the size to the TASK_SIZE.
4979 	 *
4980 	 * - remaining sample size
4981 	 *   If we don't, we customize the stack size to
4982 	 *   fit in to the remaining sample size.
4983 	 */
4984 
4985 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4986 	stack_size = min(stack_size, (u16) task_size);
4987 
4988 	/* Current header size plus static size and dynamic size. */
4989 	header_size += 2 * sizeof(u64);
4990 
4991 	/* Do we fit in with the current stack dump size? */
4992 	if ((u16) (header_size + stack_size) < header_size) {
4993 		/*
4994 		 * If we overflow the maximum size for the sample,
4995 		 * we customize the stack dump size to fit in.
4996 		 */
4997 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4998 		stack_size = round_up(stack_size, sizeof(u64));
4999 	}
5000 
5001 	return stack_size;
5002 }
5003 
5004 static void
5005 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5006 			  struct pt_regs *regs)
5007 {
5008 	/* Case of a kernel thread, nothing to dump */
5009 	if (!regs) {
5010 		u64 size = 0;
5011 		perf_output_put(handle, size);
5012 	} else {
5013 		unsigned long sp;
5014 		unsigned int rem;
5015 		u64 dyn_size;
5016 
5017 		/*
5018 		 * We dump:
5019 		 * static size
5020 		 *   - the size requested by user or the best one we can fit
5021 		 *     in to the sample max size
5022 		 * data
5023 		 *   - user stack dump data
5024 		 * dynamic size
5025 		 *   - the actual dumped size
5026 		 */
5027 
5028 		/* Static size. */
5029 		perf_output_put(handle, dump_size);
5030 
5031 		/* Data. */
5032 		sp = perf_user_stack_pointer(regs);
5033 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5034 		dyn_size = dump_size - rem;
5035 
5036 		perf_output_skip(handle, rem);
5037 
5038 		/* Dynamic size. */
5039 		perf_output_put(handle, dyn_size);
5040 	}
5041 }
5042 
5043 static void __perf_event_header__init_id(struct perf_event_header *header,
5044 					 struct perf_sample_data *data,
5045 					 struct perf_event *event)
5046 {
5047 	u64 sample_type = event->attr.sample_type;
5048 
5049 	data->type = sample_type;
5050 	header->size += event->id_header_size;
5051 
5052 	if (sample_type & PERF_SAMPLE_TID) {
5053 		/* namespace issues */
5054 		data->tid_entry.pid = perf_event_pid(event, current);
5055 		data->tid_entry.tid = perf_event_tid(event, current);
5056 	}
5057 
5058 	if (sample_type & PERF_SAMPLE_TIME)
5059 		data->time = perf_event_clock(event);
5060 
5061 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5062 		data->id = primary_event_id(event);
5063 
5064 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5065 		data->stream_id = event->id;
5066 
5067 	if (sample_type & PERF_SAMPLE_CPU) {
5068 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5069 		data->cpu_entry.reserved = 0;
5070 	}
5071 }
5072 
5073 void perf_event_header__init_id(struct perf_event_header *header,
5074 				struct perf_sample_data *data,
5075 				struct perf_event *event)
5076 {
5077 	if (event->attr.sample_id_all)
5078 		__perf_event_header__init_id(header, data, event);
5079 }
5080 
5081 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5082 					   struct perf_sample_data *data)
5083 {
5084 	u64 sample_type = data->type;
5085 
5086 	if (sample_type & PERF_SAMPLE_TID)
5087 		perf_output_put(handle, data->tid_entry);
5088 
5089 	if (sample_type & PERF_SAMPLE_TIME)
5090 		perf_output_put(handle, data->time);
5091 
5092 	if (sample_type & PERF_SAMPLE_ID)
5093 		perf_output_put(handle, data->id);
5094 
5095 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5096 		perf_output_put(handle, data->stream_id);
5097 
5098 	if (sample_type & PERF_SAMPLE_CPU)
5099 		perf_output_put(handle, data->cpu_entry);
5100 
5101 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5102 		perf_output_put(handle, data->id);
5103 }
5104 
5105 void perf_event__output_id_sample(struct perf_event *event,
5106 				  struct perf_output_handle *handle,
5107 				  struct perf_sample_data *sample)
5108 {
5109 	if (event->attr.sample_id_all)
5110 		__perf_event__output_id_sample(handle, sample);
5111 }
5112 
5113 static void perf_output_read_one(struct perf_output_handle *handle,
5114 				 struct perf_event *event,
5115 				 u64 enabled, u64 running)
5116 {
5117 	u64 read_format = event->attr.read_format;
5118 	u64 values[4];
5119 	int n = 0;
5120 
5121 	values[n++] = perf_event_count(event);
5122 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5123 		values[n++] = enabled +
5124 			atomic64_read(&event->child_total_time_enabled);
5125 	}
5126 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5127 		values[n++] = running +
5128 			atomic64_read(&event->child_total_time_running);
5129 	}
5130 	if (read_format & PERF_FORMAT_ID)
5131 		values[n++] = primary_event_id(event);
5132 
5133 	__output_copy(handle, values, n * sizeof(u64));
5134 }
5135 
5136 /*
5137  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5138  */
5139 static void perf_output_read_group(struct perf_output_handle *handle,
5140 			    struct perf_event *event,
5141 			    u64 enabled, u64 running)
5142 {
5143 	struct perf_event *leader = event->group_leader, *sub;
5144 	u64 read_format = event->attr.read_format;
5145 	u64 values[5];
5146 	int n = 0;
5147 
5148 	values[n++] = 1 + leader->nr_siblings;
5149 
5150 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5151 		values[n++] = enabled;
5152 
5153 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5154 		values[n++] = running;
5155 
5156 	if (leader != event)
5157 		leader->pmu->read(leader);
5158 
5159 	values[n++] = perf_event_count(leader);
5160 	if (read_format & PERF_FORMAT_ID)
5161 		values[n++] = primary_event_id(leader);
5162 
5163 	__output_copy(handle, values, n * sizeof(u64));
5164 
5165 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5166 		n = 0;
5167 
5168 		if ((sub != event) &&
5169 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5170 			sub->pmu->read(sub);
5171 
5172 		values[n++] = perf_event_count(sub);
5173 		if (read_format & PERF_FORMAT_ID)
5174 			values[n++] = primary_event_id(sub);
5175 
5176 		__output_copy(handle, values, n * sizeof(u64));
5177 	}
5178 }
5179 
5180 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5181 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5182 
5183 static void perf_output_read(struct perf_output_handle *handle,
5184 			     struct perf_event *event)
5185 {
5186 	u64 enabled = 0, running = 0, now;
5187 	u64 read_format = event->attr.read_format;
5188 
5189 	/*
5190 	 * compute total_time_enabled, total_time_running
5191 	 * based on snapshot values taken when the event
5192 	 * was last scheduled in.
5193 	 *
5194 	 * we cannot simply called update_context_time()
5195 	 * because of locking issue as we are called in
5196 	 * NMI context
5197 	 */
5198 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5199 		calc_timer_values(event, &now, &enabled, &running);
5200 
5201 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5202 		perf_output_read_group(handle, event, enabled, running);
5203 	else
5204 		perf_output_read_one(handle, event, enabled, running);
5205 }
5206 
5207 void perf_output_sample(struct perf_output_handle *handle,
5208 			struct perf_event_header *header,
5209 			struct perf_sample_data *data,
5210 			struct perf_event *event)
5211 {
5212 	u64 sample_type = data->type;
5213 
5214 	perf_output_put(handle, *header);
5215 
5216 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5217 		perf_output_put(handle, data->id);
5218 
5219 	if (sample_type & PERF_SAMPLE_IP)
5220 		perf_output_put(handle, data->ip);
5221 
5222 	if (sample_type & PERF_SAMPLE_TID)
5223 		perf_output_put(handle, data->tid_entry);
5224 
5225 	if (sample_type & PERF_SAMPLE_TIME)
5226 		perf_output_put(handle, data->time);
5227 
5228 	if (sample_type & PERF_SAMPLE_ADDR)
5229 		perf_output_put(handle, data->addr);
5230 
5231 	if (sample_type & PERF_SAMPLE_ID)
5232 		perf_output_put(handle, data->id);
5233 
5234 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5235 		perf_output_put(handle, data->stream_id);
5236 
5237 	if (sample_type & PERF_SAMPLE_CPU)
5238 		perf_output_put(handle, data->cpu_entry);
5239 
5240 	if (sample_type & PERF_SAMPLE_PERIOD)
5241 		perf_output_put(handle, data->period);
5242 
5243 	if (sample_type & PERF_SAMPLE_READ)
5244 		perf_output_read(handle, event);
5245 
5246 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5247 		if (data->callchain) {
5248 			int size = 1;
5249 
5250 			if (data->callchain)
5251 				size += data->callchain->nr;
5252 
5253 			size *= sizeof(u64);
5254 
5255 			__output_copy(handle, data->callchain, size);
5256 		} else {
5257 			u64 nr = 0;
5258 			perf_output_put(handle, nr);
5259 		}
5260 	}
5261 
5262 	if (sample_type & PERF_SAMPLE_RAW) {
5263 		if (data->raw) {
5264 			perf_output_put(handle, data->raw->size);
5265 			__output_copy(handle, data->raw->data,
5266 					   data->raw->size);
5267 		} else {
5268 			struct {
5269 				u32	size;
5270 				u32	data;
5271 			} raw = {
5272 				.size = sizeof(u32),
5273 				.data = 0,
5274 			};
5275 			perf_output_put(handle, raw);
5276 		}
5277 	}
5278 
5279 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5280 		if (data->br_stack) {
5281 			size_t size;
5282 
5283 			size = data->br_stack->nr
5284 			     * sizeof(struct perf_branch_entry);
5285 
5286 			perf_output_put(handle, data->br_stack->nr);
5287 			perf_output_copy(handle, data->br_stack->entries, size);
5288 		} else {
5289 			/*
5290 			 * we always store at least the value of nr
5291 			 */
5292 			u64 nr = 0;
5293 			perf_output_put(handle, nr);
5294 		}
5295 	}
5296 
5297 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5298 		u64 abi = data->regs_user.abi;
5299 
5300 		/*
5301 		 * If there are no regs to dump, notice it through
5302 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5303 		 */
5304 		perf_output_put(handle, abi);
5305 
5306 		if (abi) {
5307 			u64 mask = event->attr.sample_regs_user;
5308 			perf_output_sample_regs(handle,
5309 						data->regs_user.regs,
5310 						mask);
5311 		}
5312 	}
5313 
5314 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5315 		perf_output_sample_ustack(handle,
5316 					  data->stack_user_size,
5317 					  data->regs_user.regs);
5318 	}
5319 
5320 	if (sample_type & PERF_SAMPLE_WEIGHT)
5321 		perf_output_put(handle, data->weight);
5322 
5323 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5324 		perf_output_put(handle, data->data_src.val);
5325 
5326 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5327 		perf_output_put(handle, data->txn);
5328 
5329 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5330 		u64 abi = data->regs_intr.abi;
5331 		/*
5332 		 * If there are no regs to dump, notice it through
5333 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5334 		 */
5335 		perf_output_put(handle, abi);
5336 
5337 		if (abi) {
5338 			u64 mask = event->attr.sample_regs_intr;
5339 
5340 			perf_output_sample_regs(handle,
5341 						data->regs_intr.regs,
5342 						mask);
5343 		}
5344 	}
5345 
5346 	if (!event->attr.watermark) {
5347 		int wakeup_events = event->attr.wakeup_events;
5348 
5349 		if (wakeup_events) {
5350 			struct ring_buffer *rb = handle->rb;
5351 			int events = local_inc_return(&rb->events);
5352 
5353 			if (events >= wakeup_events) {
5354 				local_sub(wakeup_events, &rb->events);
5355 				local_inc(&rb->wakeup);
5356 			}
5357 		}
5358 	}
5359 }
5360 
5361 void perf_prepare_sample(struct perf_event_header *header,
5362 			 struct perf_sample_data *data,
5363 			 struct perf_event *event,
5364 			 struct pt_regs *regs)
5365 {
5366 	u64 sample_type = event->attr.sample_type;
5367 
5368 	header->type = PERF_RECORD_SAMPLE;
5369 	header->size = sizeof(*header) + event->header_size;
5370 
5371 	header->misc = 0;
5372 	header->misc |= perf_misc_flags(regs);
5373 
5374 	__perf_event_header__init_id(header, data, event);
5375 
5376 	if (sample_type & PERF_SAMPLE_IP)
5377 		data->ip = perf_instruction_pointer(regs);
5378 
5379 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5380 		int size = 1;
5381 
5382 		data->callchain = perf_callchain(event, regs);
5383 
5384 		if (data->callchain)
5385 			size += data->callchain->nr;
5386 
5387 		header->size += size * sizeof(u64);
5388 	}
5389 
5390 	if (sample_type & PERF_SAMPLE_RAW) {
5391 		int size = sizeof(u32);
5392 
5393 		if (data->raw)
5394 			size += data->raw->size;
5395 		else
5396 			size += sizeof(u32);
5397 
5398 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5399 		header->size += size;
5400 	}
5401 
5402 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5403 		int size = sizeof(u64); /* nr */
5404 		if (data->br_stack) {
5405 			size += data->br_stack->nr
5406 			      * sizeof(struct perf_branch_entry);
5407 		}
5408 		header->size += size;
5409 	}
5410 
5411 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5412 		perf_sample_regs_user(&data->regs_user, regs,
5413 				      &data->regs_user_copy);
5414 
5415 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5416 		/* regs dump ABI info */
5417 		int size = sizeof(u64);
5418 
5419 		if (data->regs_user.regs) {
5420 			u64 mask = event->attr.sample_regs_user;
5421 			size += hweight64(mask) * sizeof(u64);
5422 		}
5423 
5424 		header->size += size;
5425 	}
5426 
5427 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5428 		/*
5429 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5430 		 * processed as the last one or have additional check added
5431 		 * in case new sample type is added, because we could eat
5432 		 * up the rest of the sample size.
5433 		 */
5434 		u16 stack_size = event->attr.sample_stack_user;
5435 		u16 size = sizeof(u64);
5436 
5437 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5438 						     data->regs_user.regs);
5439 
5440 		/*
5441 		 * If there is something to dump, add space for the dump
5442 		 * itself and for the field that tells the dynamic size,
5443 		 * which is how many have been actually dumped.
5444 		 */
5445 		if (stack_size)
5446 			size += sizeof(u64) + stack_size;
5447 
5448 		data->stack_user_size = stack_size;
5449 		header->size += size;
5450 	}
5451 
5452 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5453 		/* regs dump ABI info */
5454 		int size = sizeof(u64);
5455 
5456 		perf_sample_regs_intr(&data->regs_intr, regs);
5457 
5458 		if (data->regs_intr.regs) {
5459 			u64 mask = event->attr.sample_regs_intr;
5460 
5461 			size += hweight64(mask) * sizeof(u64);
5462 		}
5463 
5464 		header->size += size;
5465 	}
5466 }
5467 
5468 void perf_event_output(struct perf_event *event,
5469 			struct perf_sample_data *data,
5470 			struct pt_regs *regs)
5471 {
5472 	struct perf_output_handle handle;
5473 	struct perf_event_header header;
5474 
5475 	/* protect the callchain buffers */
5476 	rcu_read_lock();
5477 
5478 	perf_prepare_sample(&header, data, event, regs);
5479 
5480 	if (perf_output_begin(&handle, event, header.size))
5481 		goto exit;
5482 
5483 	perf_output_sample(&handle, &header, data, event);
5484 
5485 	perf_output_end(&handle);
5486 
5487 exit:
5488 	rcu_read_unlock();
5489 }
5490 
5491 /*
5492  * read event_id
5493  */
5494 
5495 struct perf_read_event {
5496 	struct perf_event_header	header;
5497 
5498 	u32				pid;
5499 	u32				tid;
5500 };
5501 
5502 static void
5503 perf_event_read_event(struct perf_event *event,
5504 			struct task_struct *task)
5505 {
5506 	struct perf_output_handle handle;
5507 	struct perf_sample_data sample;
5508 	struct perf_read_event read_event = {
5509 		.header = {
5510 			.type = PERF_RECORD_READ,
5511 			.misc = 0,
5512 			.size = sizeof(read_event) + event->read_size,
5513 		},
5514 		.pid = perf_event_pid(event, task),
5515 		.tid = perf_event_tid(event, task),
5516 	};
5517 	int ret;
5518 
5519 	perf_event_header__init_id(&read_event.header, &sample, event);
5520 	ret = perf_output_begin(&handle, event, read_event.header.size);
5521 	if (ret)
5522 		return;
5523 
5524 	perf_output_put(&handle, read_event);
5525 	perf_output_read(&handle, event);
5526 	perf_event__output_id_sample(event, &handle, &sample);
5527 
5528 	perf_output_end(&handle);
5529 }
5530 
5531 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5532 
5533 static void
5534 perf_event_aux_ctx(struct perf_event_context *ctx,
5535 		   perf_event_aux_output_cb output,
5536 		   void *data)
5537 {
5538 	struct perf_event *event;
5539 
5540 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5541 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5542 			continue;
5543 		if (!event_filter_match(event))
5544 			continue;
5545 		output(event, data);
5546 	}
5547 }
5548 
5549 static void
5550 perf_event_aux(perf_event_aux_output_cb output, void *data,
5551 	       struct perf_event_context *task_ctx)
5552 {
5553 	struct perf_cpu_context *cpuctx;
5554 	struct perf_event_context *ctx;
5555 	struct pmu *pmu;
5556 	int ctxn;
5557 
5558 	rcu_read_lock();
5559 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5560 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5561 		if (cpuctx->unique_pmu != pmu)
5562 			goto next;
5563 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5564 		if (task_ctx)
5565 			goto next;
5566 		ctxn = pmu->task_ctx_nr;
5567 		if (ctxn < 0)
5568 			goto next;
5569 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5570 		if (ctx)
5571 			perf_event_aux_ctx(ctx, output, data);
5572 next:
5573 		put_cpu_ptr(pmu->pmu_cpu_context);
5574 	}
5575 
5576 	if (task_ctx) {
5577 		preempt_disable();
5578 		perf_event_aux_ctx(task_ctx, output, data);
5579 		preempt_enable();
5580 	}
5581 	rcu_read_unlock();
5582 }
5583 
5584 /*
5585  * task tracking -- fork/exit
5586  *
5587  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5588  */
5589 
5590 struct perf_task_event {
5591 	struct task_struct		*task;
5592 	struct perf_event_context	*task_ctx;
5593 
5594 	struct {
5595 		struct perf_event_header	header;
5596 
5597 		u32				pid;
5598 		u32				ppid;
5599 		u32				tid;
5600 		u32				ptid;
5601 		u64				time;
5602 	} event_id;
5603 };
5604 
5605 static int perf_event_task_match(struct perf_event *event)
5606 {
5607 	return event->attr.comm  || event->attr.mmap ||
5608 	       event->attr.mmap2 || event->attr.mmap_data ||
5609 	       event->attr.task;
5610 }
5611 
5612 static void perf_event_task_output(struct perf_event *event,
5613 				   void *data)
5614 {
5615 	struct perf_task_event *task_event = data;
5616 	struct perf_output_handle handle;
5617 	struct perf_sample_data	sample;
5618 	struct task_struct *task = task_event->task;
5619 	int ret, size = task_event->event_id.header.size;
5620 
5621 	if (!perf_event_task_match(event))
5622 		return;
5623 
5624 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5625 
5626 	ret = perf_output_begin(&handle, event,
5627 				task_event->event_id.header.size);
5628 	if (ret)
5629 		goto out;
5630 
5631 	task_event->event_id.pid = perf_event_pid(event, task);
5632 	task_event->event_id.ppid = perf_event_pid(event, current);
5633 
5634 	task_event->event_id.tid = perf_event_tid(event, task);
5635 	task_event->event_id.ptid = perf_event_tid(event, current);
5636 
5637 	task_event->event_id.time = perf_event_clock(event);
5638 
5639 	perf_output_put(&handle, task_event->event_id);
5640 
5641 	perf_event__output_id_sample(event, &handle, &sample);
5642 
5643 	perf_output_end(&handle);
5644 out:
5645 	task_event->event_id.header.size = size;
5646 }
5647 
5648 static void perf_event_task(struct task_struct *task,
5649 			      struct perf_event_context *task_ctx,
5650 			      int new)
5651 {
5652 	struct perf_task_event task_event;
5653 
5654 	if (!atomic_read(&nr_comm_events) &&
5655 	    !atomic_read(&nr_mmap_events) &&
5656 	    !atomic_read(&nr_task_events))
5657 		return;
5658 
5659 	task_event = (struct perf_task_event){
5660 		.task	  = task,
5661 		.task_ctx = task_ctx,
5662 		.event_id    = {
5663 			.header = {
5664 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5665 				.misc = 0,
5666 				.size = sizeof(task_event.event_id),
5667 			},
5668 			/* .pid  */
5669 			/* .ppid */
5670 			/* .tid  */
5671 			/* .ptid */
5672 			/* .time */
5673 		},
5674 	};
5675 
5676 	perf_event_aux(perf_event_task_output,
5677 		       &task_event,
5678 		       task_ctx);
5679 }
5680 
5681 void perf_event_fork(struct task_struct *task)
5682 {
5683 	perf_event_task(task, NULL, 1);
5684 }
5685 
5686 /*
5687  * comm tracking
5688  */
5689 
5690 struct perf_comm_event {
5691 	struct task_struct	*task;
5692 	char			*comm;
5693 	int			comm_size;
5694 
5695 	struct {
5696 		struct perf_event_header	header;
5697 
5698 		u32				pid;
5699 		u32				tid;
5700 	} event_id;
5701 };
5702 
5703 static int perf_event_comm_match(struct perf_event *event)
5704 {
5705 	return event->attr.comm;
5706 }
5707 
5708 static void perf_event_comm_output(struct perf_event *event,
5709 				   void *data)
5710 {
5711 	struct perf_comm_event *comm_event = data;
5712 	struct perf_output_handle handle;
5713 	struct perf_sample_data sample;
5714 	int size = comm_event->event_id.header.size;
5715 	int ret;
5716 
5717 	if (!perf_event_comm_match(event))
5718 		return;
5719 
5720 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5721 	ret = perf_output_begin(&handle, event,
5722 				comm_event->event_id.header.size);
5723 
5724 	if (ret)
5725 		goto out;
5726 
5727 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5728 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5729 
5730 	perf_output_put(&handle, comm_event->event_id);
5731 	__output_copy(&handle, comm_event->comm,
5732 				   comm_event->comm_size);
5733 
5734 	perf_event__output_id_sample(event, &handle, &sample);
5735 
5736 	perf_output_end(&handle);
5737 out:
5738 	comm_event->event_id.header.size = size;
5739 }
5740 
5741 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5742 {
5743 	char comm[TASK_COMM_LEN];
5744 	unsigned int size;
5745 
5746 	memset(comm, 0, sizeof(comm));
5747 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5748 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5749 
5750 	comm_event->comm = comm;
5751 	comm_event->comm_size = size;
5752 
5753 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5754 
5755 	perf_event_aux(perf_event_comm_output,
5756 		       comm_event,
5757 		       NULL);
5758 }
5759 
5760 void perf_event_comm(struct task_struct *task, bool exec)
5761 {
5762 	struct perf_comm_event comm_event;
5763 
5764 	if (!atomic_read(&nr_comm_events))
5765 		return;
5766 
5767 	comm_event = (struct perf_comm_event){
5768 		.task	= task,
5769 		/* .comm      */
5770 		/* .comm_size */
5771 		.event_id  = {
5772 			.header = {
5773 				.type = PERF_RECORD_COMM,
5774 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5775 				/* .size */
5776 			},
5777 			/* .pid */
5778 			/* .tid */
5779 		},
5780 	};
5781 
5782 	perf_event_comm_event(&comm_event);
5783 }
5784 
5785 /*
5786  * mmap tracking
5787  */
5788 
5789 struct perf_mmap_event {
5790 	struct vm_area_struct	*vma;
5791 
5792 	const char		*file_name;
5793 	int			file_size;
5794 	int			maj, min;
5795 	u64			ino;
5796 	u64			ino_generation;
5797 	u32			prot, flags;
5798 
5799 	struct {
5800 		struct perf_event_header	header;
5801 
5802 		u32				pid;
5803 		u32				tid;
5804 		u64				start;
5805 		u64				len;
5806 		u64				pgoff;
5807 	} event_id;
5808 };
5809 
5810 static int perf_event_mmap_match(struct perf_event *event,
5811 				 void *data)
5812 {
5813 	struct perf_mmap_event *mmap_event = data;
5814 	struct vm_area_struct *vma = mmap_event->vma;
5815 	int executable = vma->vm_flags & VM_EXEC;
5816 
5817 	return (!executable && event->attr.mmap_data) ||
5818 	       (executable && (event->attr.mmap || event->attr.mmap2));
5819 }
5820 
5821 static void perf_event_mmap_output(struct perf_event *event,
5822 				   void *data)
5823 {
5824 	struct perf_mmap_event *mmap_event = data;
5825 	struct perf_output_handle handle;
5826 	struct perf_sample_data sample;
5827 	int size = mmap_event->event_id.header.size;
5828 	int ret;
5829 
5830 	if (!perf_event_mmap_match(event, data))
5831 		return;
5832 
5833 	if (event->attr.mmap2) {
5834 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5835 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5836 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5837 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5838 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5839 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5840 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5841 	}
5842 
5843 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5844 	ret = perf_output_begin(&handle, event,
5845 				mmap_event->event_id.header.size);
5846 	if (ret)
5847 		goto out;
5848 
5849 	mmap_event->event_id.pid = perf_event_pid(event, current);
5850 	mmap_event->event_id.tid = perf_event_tid(event, current);
5851 
5852 	perf_output_put(&handle, mmap_event->event_id);
5853 
5854 	if (event->attr.mmap2) {
5855 		perf_output_put(&handle, mmap_event->maj);
5856 		perf_output_put(&handle, mmap_event->min);
5857 		perf_output_put(&handle, mmap_event->ino);
5858 		perf_output_put(&handle, mmap_event->ino_generation);
5859 		perf_output_put(&handle, mmap_event->prot);
5860 		perf_output_put(&handle, mmap_event->flags);
5861 	}
5862 
5863 	__output_copy(&handle, mmap_event->file_name,
5864 				   mmap_event->file_size);
5865 
5866 	perf_event__output_id_sample(event, &handle, &sample);
5867 
5868 	perf_output_end(&handle);
5869 out:
5870 	mmap_event->event_id.header.size = size;
5871 }
5872 
5873 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5874 {
5875 	struct vm_area_struct *vma = mmap_event->vma;
5876 	struct file *file = vma->vm_file;
5877 	int maj = 0, min = 0;
5878 	u64 ino = 0, gen = 0;
5879 	u32 prot = 0, flags = 0;
5880 	unsigned int size;
5881 	char tmp[16];
5882 	char *buf = NULL;
5883 	char *name;
5884 
5885 	if (file) {
5886 		struct inode *inode;
5887 		dev_t dev;
5888 
5889 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5890 		if (!buf) {
5891 			name = "//enomem";
5892 			goto cpy_name;
5893 		}
5894 		/*
5895 		 * d_path() works from the end of the rb backwards, so we
5896 		 * need to add enough zero bytes after the string to handle
5897 		 * the 64bit alignment we do later.
5898 		 */
5899 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5900 		if (IS_ERR(name)) {
5901 			name = "//toolong";
5902 			goto cpy_name;
5903 		}
5904 		inode = file_inode(vma->vm_file);
5905 		dev = inode->i_sb->s_dev;
5906 		ino = inode->i_ino;
5907 		gen = inode->i_generation;
5908 		maj = MAJOR(dev);
5909 		min = MINOR(dev);
5910 
5911 		if (vma->vm_flags & VM_READ)
5912 			prot |= PROT_READ;
5913 		if (vma->vm_flags & VM_WRITE)
5914 			prot |= PROT_WRITE;
5915 		if (vma->vm_flags & VM_EXEC)
5916 			prot |= PROT_EXEC;
5917 
5918 		if (vma->vm_flags & VM_MAYSHARE)
5919 			flags = MAP_SHARED;
5920 		else
5921 			flags = MAP_PRIVATE;
5922 
5923 		if (vma->vm_flags & VM_DENYWRITE)
5924 			flags |= MAP_DENYWRITE;
5925 		if (vma->vm_flags & VM_MAYEXEC)
5926 			flags |= MAP_EXECUTABLE;
5927 		if (vma->vm_flags & VM_LOCKED)
5928 			flags |= MAP_LOCKED;
5929 		if (vma->vm_flags & VM_HUGETLB)
5930 			flags |= MAP_HUGETLB;
5931 
5932 		goto got_name;
5933 	} else {
5934 		if (vma->vm_ops && vma->vm_ops->name) {
5935 			name = (char *) vma->vm_ops->name(vma);
5936 			if (name)
5937 				goto cpy_name;
5938 		}
5939 
5940 		name = (char *)arch_vma_name(vma);
5941 		if (name)
5942 			goto cpy_name;
5943 
5944 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5945 				vma->vm_end >= vma->vm_mm->brk) {
5946 			name = "[heap]";
5947 			goto cpy_name;
5948 		}
5949 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5950 				vma->vm_end >= vma->vm_mm->start_stack) {
5951 			name = "[stack]";
5952 			goto cpy_name;
5953 		}
5954 
5955 		name = "//anon";
5956 		goto cpy_name;
5957 	}
5958 
5959 cpy_name:
5960 	strlcpy(tmp, name, sizeof(tmp));
5961 	name = tmp;
5962 got_name:
5963 	/*
5964 	 * Since our buffer works in 8 byte units we need to align our string
5965 	 * size to a multiple of 8. However, we must guarantee the tail end is
5966 	 * zero'd out to avoid leaking random bits to userspace.
5967 	 */
5968 	size = strlen(name)+1;
5969 	while (!IS_ALIGNED(size, sizeof(u64)))
5970 		name[size++] = '\0';
5971 
5972 	mmap_event->file_name = name;
5973 	mmap_event->file_size = size;
5974 	mmap_event->maj = maj;
5975 	mmap_event->min = min;
5976 	mmap_event->ino = ino;
5977 	mmap_event->ino_generation = gen;
5978 	mmap_event->prot = prot;
5979 	mmap_event->flags = flags;
5980 
5981 	if (!(vma->vm_flags & VM_EXEC))
5982 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5983 
5984 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5985 
5986 	perf_event_aux(perf_event_mmap_output,
5987 		       mmap_event,
5988 		       NULL);
5989 
5990 	kfree(buf);
5991 }
5992 
5993 void perf_event_mmap(struct vm_area_struct *vma)
5994 {
5995 	struct perf_mmap_event mmap_event;
5996 
5997 	if (!atomic_read(&nr_mmap_events))
5998 		return;
5999 
6000 	mmap_event = (struct perf_mmap_event){
6001 		.vma	= vma,
6002 		/* .file_name */
6003 		/* .file_size */
6004 		.event_id  = {
6005 			.header = {
6006 				.type = PERF_RECORD_MMAP,
6007 				.misc = PERF_RECORD_MISC_USER,
6008 				/* .size */
6009 			},
6010 			/* .pid */
6011 			/* .tid */
6012 			.start  = vma->vm_start,
6013 			.len    = vma->vm_end - vma->vm_start,
6014 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6015 		},
6016 		/* .maj (attr_mmap2 only) */
6017 		/* .min (attr_mmap2 only) */
6018 		/* .ino (attr_mmap2 only) */
6019 		/* .ino_generation (attr_mmap2 only) */
6020 		/* .prot (attr_mmap2 only) */
6021 		/* .flags (attr_mmap2 only) */
6022 	};
6023 
6024 	perf_event_mmap_event(&mmap_event);
6025 }
6026 
6027 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6028 			  unsigned long size, u64 flags)
6029 {
6030 	struct perf_output_handle handle;
6031 	struct perf_sample_data sample;
6032 	struct perf_aux_event {
6033 		struct perf_event_header	header;
6034 		u64				offset;
6035 		u64				size;
6036 		u64				flags;
6037 	} rec = {
6038 		.header = {
6039 			.type = PERF_RECORD_AUX,
6040 			.misc = 0,
6041 			.size = sizeof(rec),
6042 		},
6043 		.offset		= head,
6044 		.size		= size,
6045 		.flags		= flags,
6046 	};
6047 	int ret;
6048 
6049 	perf_event_header__init_id(&rec.header, &sample, event);
6050 	ret = perf_output_begin(&handle, event, rec.header.size);
6051 
6052 	if (ret)
6053 		return;
6054 
6055 	perf_output_put(&handle, rec);
6056 	perf_event__output_id_sample(event, &handle, &sample);
6057 
6058 	perf_output_end(&handle);
6059 }
6060 
6061 /*
6062  * Lost/dropped samples logging
6063  */
6064 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6065 {
6066 	struct perf_output_handle handle;
6067 	struct perf_sample_data sample;
6068 	int ret;
6069 
6070 	struct {
6071 		struct perf_event_header	header;
6072 		u64				lost;
6073 	} lost_samples_event = {
6074 		.header = {
6075 			.type = PERF_RECORD_LOST_SAMPLES,
6076 			.misc = 0,
6077 			.size = sizeof(lost_samples_event),
6078 		},
6079 		.lost		= lost,
6080 	};
6081 
6082 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6083 
6084 	ret = perf_output_begin(&handle, event,
6085 				lost_samples_event.header.size);
6086 	if (ret)
6087 		return;
6088 
6089 	perf_output_put(&handle, lost_samples_event);
6090 	perf_event__output_id_sample(event, &handle, &sample);
6091 	perf_output_end(&handle);
6092 }
6093 
6094 /*
6095  * context_switch tracking
6096  */
6097 
6098 struct perf_switch_event {
6099 	struct task_struct	*task;
6100 	struct task_struct	*next_prev;
6101 
6102 	struct {
6103 		struct perf_event_header	header;
6104 		u32				next_prev_pid;
6105 		u32				next_prev_tid;
6106 	} event_id;
6107 };
6108 
6109 static int perf_event_switch_match(struct perf_event *event)
6110 {
6111 	return event->attr.context_switch;
6112 }
6113 
6114 static void perf_event_switch_output(struct perf_event *event, void *data)
6115 {
6116 	struct perf_switch_event *se = data;
6117 	struct perf_output_handle handle;
6118 	struct perf_sample_data sample;
6119 	int ret;
6120 
6121 	if (!perf_event_switch_match(event))
6122 		return;
6123 
6124 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6125 	if (event->ctx->task) {
6126 		se->event_id.header.type = PERF_RECORD_SWITCH;
6127 		se->event_id.header.size = sizeof(se->event_id.header);
6128 	} else {
6129 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6130 		se->event_id.header.size = sizeof(se->event_id);
6131 		se->event_id.next_prev_pid =
6132 					perf_event_pid(event, se->next_prev);
6133 		se->event_id.next_prev_tid =
6134 					perf_event_tid(event, se->next_prev);
6135 	}
6136 
6137 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6138 
6139 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6140 	if (ret)
6141 		return;
6142 
6143 	if (event->ctx->task)
6144 		perf_output_put(&handle, se->event_id.header);
6145 	else
6146 		perf_output_put(&handle, se->event_id);
6147 
6148 	perf_event__output_id_sample(event, &handle, &sample);
6149 
6150 	perf_output_end(&handle);
6151 }
6152 
6153 static void perf_event_switch(struct task_struct *task,
6154 			      struct task_struct *next_prev, bool sched_in)
6155 {
6156 	struct perf_switch_event switch_event;
6157 
6158 	/* N.B. caller checks nr_switch_events != 0 */
6159 
6160 	switch_event = (struct perf_switch_event){
6161 		.task		= task,
6162 		.next_prev	= next_prev,
6163 		.event_id	= {
6164 			.header = {
6165 				/* .type */
6166 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6167 				/* .size */
6168 			},
6169 			/* .next_prev_pid */
6170 			/* .next_prev_tid */
6171 		},
6172 	};
6173 
6174 	perf_event_aux(perf_event_switch_output,
6175 		       &switch_event,
6176 		       NULL);
6177 }
6178 
6179 /*
6180  * IRQ throttle logging
6181  */
6182 
6183 static void perf_log_throttle(struct perf_event *event, int enable)
6184 {
6185 	struct perf_output_handle handle;
6186 	struct perf_sample_data sample;
6187 	int ret;
6188 
6189 	struct {
6190 		struct perf_event_header	header;
6191 		u64				time;
6192 		u64				id;
6193 		u64				stream_id;
6194 	} throttle_event = {
6195 		.header = {
6196 			.type = PERF_RECORD_THROTTLE,
6197 			.misc = 0,
6198 			.size = sizeof(throttle_event),
6199 		},
6200 		.time		= perf_event_clock(event),
6201 		.id		= primary_event_id(event),
6202 		.stream_id	= event->id,
6203 	};
6204 
6205 	if (enable)
6206 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6207 
6208 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6209 
6210 	ret = perf_output_begin(&handle, event,
6211 				throttle_event.header.size);
6212 	if (ret)
6213 		return;
6214 
6215 	perf_output_put(&handle, throttle_event);
6216 	perf_event__output_id_sample(event, &handle, &sample);
6217 	perf_output_end(&handle);
6218 }
6219 
6220 static void perf_log_itrace_start(struct perf_event *event)
6221 {
6222 	struct perf_output_handle handle;
6223 	struct perf_sample_data sample;
6224 	struct perf_aux_event {
6225 		struct perf_event_header        header;
6226 		u32				pid;
6227 		u32				tid;
6228 	} rec;
6229 	int ret;
6230 
6231 	if (event->parent)
6232 		event = event->parent;
6233 
6234 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6235 	    event->hw.itrace_started)
6236 		return;
6237 
6238 	rec.header.type	= PERF_RECORD_ITRACE_START;
6239 	rec.header.misc	= 0;
6240 	rec.header.size	= sizeof(rec);
6241 	rec.pid	= perf_event_pid(event, current);
6242 	rec.tid	= perf_event_tid(event, current);
6243 
6244 	perf_event_header__init_id(&rec.header, &sample, event);
6245 	ret = perf_output_begin(&handle, event, rec.header.size);
6246 
6247 	if (ret)
6248 		return;
6249 
6250 	perf_output_put(&handle, rec);
6251 	perf_event__output_id_sample(event, &handle, &sample);
6252 
6253 	perf_output_end(&handle);
6254 }
6255 
6256 /*
6257  * Generic event overflow handling, sampling.
6258  */
6259 
6260 static int __perf_event_overflow(struct perf_event *event,
6261 				   int throttle, struct perf_sample_data *data,
6262 				   struct pt_regs *regs)
6263 {
6264 	int events = atomic_read(&event->event_limit);
6265 	struct hw_perf_event *hwc = &event->hw;
6266 	u64 seq;
6267 	int ret = 0;
6268 
6269 	/*
6270 	 * Non-sampling counters might still use the PMI to fold short
6271 	 * hardware counters, ignore those.
6272 	 */
6273 	if (unlikely(!is_sampling_event(event)))
6274 		return 0;
6275 
6276 	seq = __this_cpu_read(perf_throttled_seq);
6277 	if (seq != hwc->interrupts_seq) {
6278 		hwc->interrupts_seq = seq;
6279 		hwc->interrupts = 1;
6280 	} else {
6281 		hwc->interrupts++;
6282 		if (unlikely(throttle
6283 			     && hwc->interrupts >= max_samples_per_tick)) {
6284 			__this_cpu_inc(perf_throttled_count);
6285 			hwc->interrupts = MAX_INTERRUPTS;
6286 			perf_log_throttle(event, 0);
6287 			tick_nohz_full_kick();
6288 			ret = 1;
6289 		}
6290 	}
6291 
6292 	if (event->attr.freq) {
6293 		u64 now = perf_clock();
6294 		s64 delta = now - hwc->freq_time_stamp;
6295 
6296 		hwc->freq_time_stamp = now;
6297 
6298 		if (delta > 0 && delta < 2*TICK_NSEC)
6299 			perf_adjust_period(event, delta, hwc->last_period, true);
6300 	}
6301 
6302 	/*
6303 	 * XXX event_limit might not quite work as expected on inherited
6304 	 * events
6305 	 */
6306 
6307 	event->pending_kill = POLL_IN;
6308 	if (events && atomic_dec_and_test(&event->event_limit)) {
6309 		ret = 1;
6310 		event->pending_kill = POLL_HUP;
6311 		event->pending_disable = 1;
6312 		irq_work_queue(&event->pending);
6313 	}
6314 
6315 	if (event->overflow_handler)
6316 		event->overflow_handler(event, data, regs);
6317 	else
6318 		perf_event_output(event, data, regs);
6319 
6320 	if (*perf_event_fasync(event) && event->pending_kill) {
6321 		event->pending_wakeup = 1;
6322 		irq_work_queue(&event->pending);
6323 	}
6324 
6325 	return ret;
6326 }
6327 
6328 int perf_event_overflow(struct perf_event *event,
6329 			  struct perf_sample_data *data,
6330 			  struct pt_regs *regs)
6331 {
6332 	return __perf_event_overflow(event, 1, data, regs);
6333 }
6334 
6335 /*
6336  * Generic software event infrastructure
6337  */
6338 
6339 struct swevent_htable {
6340 	struct swevent_hlist		*swevent_hlist;
6341 	struct mutex			hlist_mutex;
6342 	int				hlist_refcount;
6343 
6344 	/* Recursion avoidance in each contexts */
6345 	int				recursion[PERF_NR_CONTEXTS];
6346 
6347 	/* Keeps track of cpu being initialized/exited */
6348 	bool				online;
6349 };
6350 
6351 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6352 
6353 /*
6354  * We directly increment event->count and keep a second value in
6355  * event->hw.period_left to count intervals. This period event
6356  * is kept in the range [-sample_period, 0] so that we can use the
6357  * sign as trigger.
6358  */
6359 
6360 u64 perf_swevent_set_period(struct perf_event *event)
6361 {
6362 	struct hw_perf_event *hwc = &event->hw;
6363 	u64 period = hwc->last_period;
6364 	u64 nr, offset;
6365 	s64 old, val;
6366 
6367 	hwc->last_period = hwc->sample_period;
6368 
6369 again:
6370 	old = val = local64_read(&hwc->period_left);
6371 	if (val < 0)
6372 		return 0;
6373 
6374 	nr = div64_u64(period + val, period);
6375 	offset = nr * period;
6376 	val -= offset;
6377 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6378 		goto again;
6379 
6380 	return nr;
6381 }
6382 
6383 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6384 				    struct perf_sample_data *data,
6385 				    struct pt_regs *regs)
6386 {
6387 	struct hw_perf_event *hwc = &event->hw;
6388 	int throttle = 0;
6389 
6390 	if (!overflow)
6391 		overflow = perf_swevent_set_period(event);
6392 
6393 	if (hwc->interrupts == MAX_INTERRUPTS)
6394 		return;
6395 
6396 	for (; overflow; overflow--) {
6397 		if (__perf_event_overflow(event, throttle,
6398 					    data, regs)) {
6399 			/*
6400 			 * We inhibit the overflow from happening when
6401 			 * hwc->interrupts == MAX_INTERRUPTS.
6402 			 */
6403 			break;
6404 		}
6405 		throttle = 1;
6406 	}
6407 }
6408 
6409 static void perf_swevent_event(struct perf_event *event, u64 nr,
6410 			       struct perf_sample_data *data,
6411 			       struct pt_regs *regs)
6412 {
6413 	struct hw_perf_event *hwc = &event->hw;
6414 
6415 	local64_add(nr, &event->count);
6416 
6417 	if (!regs)
6418 		return;
6419 
6420 	if (!is_sampling_event(event))
6421 		return;
6422 
6423 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6424 		data->period = nr;
6425 		return perf_swevent_overflow(event, 1, data, regs);
6426 	} else
6427 		data->period = event->hw.last_period;
6428 
6429 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6430 		return perf_swevent_overflow(event, 1, data, regs);
6431 
6432 	if (local64_add_negative(nr, &hwc->period_left))
6433 		return;
6434 
6435 	perf_swevent_overflow(event, 0, data, regs);
6436 }
6437 
6438 static int perf_exclude_event(struct perf_event *event,
6439 			      struct pt_regs *regs)
6440 {
6441 	if (event->hw.state & PERF_HES_STOPPED)
6442 		return 1;
6443 
6444 	if (regs) {
6445 		if (event->attr.exclude_user && user_mode(regs))
6446 			return 1;
6447 
6448 		if (event->attr.exclude_kernel && !user_mode(regs))
6449 			return 1;
6450 	}
6451 
6452 	return 0;
6453 }
6454 
6455 static int perf_swevent_match(struct perf_event *event,
6456 				enum perf_type_id type,
6457 				u32 event_id,
6458 				struct perf_sample_data *data,
6459 				struct pt_regs *regs)
6460 {
6461 	if (event->attr.type != type)
6462 		return 0;
6463 
6464 	if (event->attr.config != event_id)
6465 		return 0;
6466 
6467 	if (perf_exclude_event(event, regs))
6468 		return 0;
6469 
6470 	return 1;
6471 }
6472 
6473 static inline u64 swevent_hash(u64 type, u32 event_id)
6474 {
6475 	u64 val = event_id | (type << 32);
6476 
6477 	return hash_64(val, SWEVENT_HLIST_BITS);
6478 }
6479 
6480 static inline struct hlist_head *
6481 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6482 {
6483 	u64 hash = swevent_hash(type, event_id);
6484 
6485 	return &hlist->heads[hash];
6486 }
6487 
6488 /* For the read side: events when they trigger */
6489 static inline struct hlist_head *
6490 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6491 {
6492 	struct swevent_hlist *hlist;
6493 
6494 	hlist = rcu_dereference(swhash->swevent_hlist);
6495 	if (!hlist)
6496 		return NULL;
6497 
6498 	return __find_swevent_head(hlist, type, event_id);
6499 }
6500 
6501 /* For the event head insertion and removal in the hlist */
6502 static inline struct hlist_head *
6503 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6504 {
6505 	struct swevent_hlist *hlist;
6506 	u32 event_id = event->attr.config;
6507 	u64 type = event->attr.type;
6508 
6509 	/*
6510 	 * Event scheduling is always serialized against hlist allocation
6511 	 * and release. Which makes the protected version suitable here.
6512 	 * The context lock guarantees that.
6513 	 */
6514 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6515 					  lockdep_is_held(&event->ctx->lock));
6516 	if (!hlist)
6517 		return NULL;
6518 
6519 	return __find_swevent_head(hlist, type, event_id);
6520 }
6521 
6522 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6523 				    u64 nr,
6524 				    struct perf_sample_data *data,
6525 				    struct pt_regs *regs)
6526 {
6527 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6528 	struct perf_event *event;
6529 	struct hlist_head *head;
6530 
6531 	rcu_read_lock();
6532 	head = find_swevent_head_rcu(swhash, type, event_id);
6533 	if (!head)
6534 		goto end;
6535 
6536 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6537 		if (perf_swevent_match(event, type, event_id, data, regs))
6538 			perf_swevent_event(event, nr, data, regs);
6539 	}
6540 end:
6541 	rcu_read_unlock();
6542 }
6543 
6544 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6545 
6546 int perf_swevent_get_recursion_context(void)
6547 {
6548 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6549 
6550 	return get_recursion_context(swhash->recursion);
6551 }
6552 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6553 
6554 inline void perf_swevent_put_recursion_context(int rctx)
6555 {
6556 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6557 
6558 	put_recursion_context(swhash->recursion, rctx);
6559 }
6560 
6561 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6562 {
6563 	struct perf_sample_data data;
6564 
6565 	if (WARN_ON_ONCE(!regs))
6566 		return;
6567 
6568 	perf_sample_data_init(&data, addr, 0);
6569 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6570 }
6571 
6572 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6573 {
6574 	int rctx;
6575 
6576 	preempt_disable_notrace();
6577 	rctx = perf_swevent_get_recursion_context();
6578 	if (unlikely(rctx < 0))
6579 		goto fail;
6580 
6581 	___perf_sw_event(event_id, nr, regs, addr);
6582 
6583 	perf_swevent_put_recursion_context(rctx);
6584 fail:
6585 	preempt_enable_notrace();
6586 }
6587 
6588 static void perf_swevent_read(struct perf_event *event)
6589 {
6590 }
6591 
6592 static int perf_swevent_add(struct perf_event *event, int flags)
6593 {
6594 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6595 	struct hw_perf_event *hwc = &event->hw;
6596 	struct hlist_head *head;
6597 
6598 	if (is_sampling_event(event)) {
6599 		hwc->last_period = hwc->sample_period;
6600 		perf_swevent_set_period(event);
6601 	}
6602 
6603 	hwc->state = !(flags & PERF_EF_START);
6604 
6605 	head = find_swevent_head(swhash, event);
6606 	if (!head) {
6607 		/*
6608 		 * We can race with cpu hotplug code. Do not
6609 		 * WARN if the cpu just got unplugged.
6610 		 */
6611 		WARN_ON_ONCE(swhash->online);
6612 		return -EINVAL;
6613 	}
6614 
6615 	hlist_add_head_rcu(&event->hlist_entry, head);
6616 	perf_event_update_userpage(event);
6617 
6618 	return 0;
6619 }
6620 
6621 static void perf_swevent_del(struct perf_event *event, int flags)
6622 {
6623 	hlist_del_rcu(&event->hlist_entry);
6624 }
6625 
6626 static void perf_swevent_start(struct perf_event *event, int flags)
6627 {
6628 	event->hw.state = 0;
6629 }
6630 
6631 static void perf_swevent_stop(struct perf_event *event, int flags)
6632 {
6633 	event->hw.state = PERF_HES_STOPPED;
6634 }
6635 
6636 /* Deref the hlist from the update side */
6637 static inline struct swevent_hlist *
6638 swevent_hlist_deref(struct swevent_htable *swhash)
6639 {
6640 	return rcu_dereference_protected(swhash->swevent_hlist,
6641 					 lockdep_is_held(&swhash->hlist_mutex));
6642 }
6643 
6644 static void swevent_hlist_release(struct swevent_htable *swhash)
6645 {
6646 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6647 
6648 	if (!hlist)
6649 		return;
6650 
6651 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6652 	kfree_rcu(hlist, rcu_head);
6653 }
6654 
6655 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6656 {
6657 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6658 
6659 	mutex_lock(&swhash->hlist_mutex);
6660 
6661 	if (!--swhash->hlist_refcount)
6662 		swevent_hlist_release(swhash);
6663 
6664 	mutex_unlock(&swhash->hlist_mutex);
6665 }
6666 
6667 static void swevent_hlist_put(struct perf_event *event)
6668 {
6669 	int cpu;
6670 
6671 	for_each_possible_cpu(cpu)
6672 		swevent_hlist_put_cpu(event, cpu);
6673 }
6674 
6675 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6676 {
6677 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6678 	int err = 0;
6679 
6680 	mutex_lock(&swhash->hlist_mutex);
6681 
6682 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6683 		struct swevent_hlist *hlist;
6684 
6685 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6686 		if (!hlist) {
6687 			err = -ENOMEM;
6688 			goto exit;
6689 		}
6690 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6691 	}
6692 	swhash->hlist_refcount++;
6693 exit:
6694 	mutex_unlock(&swhash->hlist_mutex);
6695 
6696 	return err;
6697 }
6698 
6699 static int swevent_hlist_get(struct perf_event *event)
6700 {
6701 	int err;
6702 	int cpu, failed_cpu;
6703 
6704 	get_online_cpus();
6705 	for_each_possible_cpu(cpu) {
6706 		err = swevent_hlist_get_cpu(event, cpu);
6707 		if (err) {
6708 			failed_cpu = cpu;
6709 			goto fail;
6710 		}
6711 	}
6712 	put_online_cpus();
6713 
6714 	return 0;
6715 fail:
6716 	for_each_possible_cpu(cpu) {
6717 		if (cpu == failed_cpu)
6718 			break;
6719 		swevent_hlist_put_cpu(event, cpu);
6720 	}
6721 
6722 	put_online_cpus();
6723 	return err;
6724 }
6725 
6726 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6727 
6728 static void sw_perf_event_destroy(struct perf_event *event)
6729 {
6730 	u64 event_id = event->attr.config;
6731 
6732 	WARN_ON(event->parent);
6733 
6734 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6735 	swevent_hlist_put(event);
6736 }
6737 
6738 static int perf_swevent_init(struct perf_event *event)
6739 {
6740 	u64 event_id = event->attr.config;
6741 
6742 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6743 		return -ENOENT;
6744 
6745 	/*
6746 	 * no branch sampling for software events
6747 	 */
6748 	if (has_branch_stack(event))
6749 		return -EOPNOTSUPP;
6750 
6751 	switch (event_id) {
6752 	case PERF_COUNT_SW_CPU_CLOCK:
6753 	case PERF_COUNT_SW_TASK_CLOCK:
6754 		return -ENOENT;
6755 
6756 	default:
6757 		break;
6758 	}
6759 
6760 	if (event_id >= PERF_COUNT_SW_MAX)
6761 		return -ENOENT;
6762 
6763 	if (!event->parent) {
6764 		int err;
6765 
6766 		err = swevent_hlist_get(event);
6767 		if (err)
6768 			return err;
6769 
6770 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6771 		event->destroy = sw_perf_event_destroy;
6772 	}
6773 
6774 	return 0;
6775 }
6776 
6777 static struct pmu perf_swevent = {
6778 	.task_ctx_nr	= perf_sw_context,
6779 
6780 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6781 
6782 	.event_init	= perf_swevent_init,
6783 	.add		= perf_swevent_add,
6784 	.del		= perf_swevent_del,
6785 	.start		= perf_swevent_start,
6786 	.stop		= perf_swevent_stop,
6787 	.read		= perf_swevent_read,
6788 };
6789 
6790 #ifdef CONFIG_EVENT_TRACING
6791 
6792 static int perf_tp_filter_match(struct perf_event *event,
6793 				struct perf_sample_data *data)
6794 {
6795 	void *record = data->raw->data;
6796 
6797 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6798 		return 1;
6799 	return 0;
6800 }
6801 
6802 static int perf_tp_event_match(struct perf_event *event,
6803 				struct perf_sample_data *data,
6804 				struct pt_regs *regs)
6805 {
6806 	if (event->hw.state & PERF_HES_STOPPED)
6807 		return 0;
6808 	/*
6809 	 * All tracepoints are from kernel-space.
6810 	 */
6811 	if (event->attr.exclude_kernel)
6812 		return 0;
6813 
6814 	if (!perf_tp_filter_match(event, data))
6815 		return 0;
6816 
6817 	return 1;
6818 }
6819 
6820 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6821 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6822 		   struct task_struct *task)
6823 {
6824 	struct perf_sample_data data;
6825 	struct perf_event *event;
6826 
6827 	struct perf_raw_record raw = {
6828 		.size = entry_size,
6829 		.data = record,
6830 	};
6831 
6832 	perf_sample_data_init(&data, addr, 0);
6833 	data.raw = &raw;
6834 
6835 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6836 		if (perf_tp_event_match(event, &data, regs))
6837 			perf_swevent_event(event, count, &data, regs);
6838 	}
6839 
6840 	/*
6841 	 * If we got specified a target task, also iterate its context and
6842 	 * deliver this event there too.
6843 	 */
6844 	if (task && task != current) {
6845 		struct perf_event_context *ctx;
6846 		struct trace_entry *entry = record;
6847 
6848 		rcu_read_lock();
6849 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6850 		if (!ctx)
6851 			goto unlock;
6852 
6853 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6854 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6855 				continue;
6856 			if (event->attr.config != entry->type)
6857 				continue;
6858 			if (perf_tp_event_match(event, &data, regs))
6859 				perf_swevent_event(event, count, &data, regs);
6860 		}
6861 unlock:
6862 		rcu_read_unlock();
6863 	}
6864 
6865 	perf_swevent_put_recursion_context(rctx);
6866 }
6867 EXPORT_SYMBOL_GPL(perf_tp_event);
6868 
6869 static void tp_perf_event_destroy(struct perf_event *event)
6870 {
6871 	perf_trace_destroy(event);
6872 }
6873 
6874 static int perf_tp_event_init(struct perf_event *event)
6875 {
6876 	int err;
6877 
6878 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6879 		return -ENOENT;
6880 
6881 	/*
6882 	 * no branch sampling for tracepoint events
6883 	 */
6884 	if (has_branch_stack(event))
6885 		return -EOPNOTSUPP;
6886 
6887 	err = perf_trace_init(event);
6888 	if (err)
6889 		return err;
6890 
6891 	event->destroy = tp_perf_event_destroy;
6892 
6893 	return 0;
6894 }
6895 
6896 static struct pmu perf_tracepoint = {
6897 	.task_ctx_nr	= perf_sw_context,
6898 
6899 	.event_init	= perf_tp_event_init,
6900 	.add		= perf_trace_add,
6901 	.del		= perf_trace_del,
6902 	.start		= perf_swevent_start,
6903 	.stop		= perf_swevent_stop,
6904 	.read		= perf_swevent_read,
6905 };
6906 
6907 static inline void perf_tp_register(void)
6908 {
6909 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6910 }
6911 
6912 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6913 {
6914 	char *filter_str;
6915 	int ret;
6916 
6917 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6918 		return -EINVAL;
6919 
6920 	filter_str = strndup_user(arg, PAGE_SIZE);
6921 	if (IS_ERR(filter_str))
6922 		return PTR_ERR(filter_str);
6923 
6924 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6925 
6926 	kfree(filter_str);
6927 	return ret;
6928 }
6929 
6930 static void perf_event_free_filter(struct perf_event *event)
6931 {
6932 	ftrace_profile_free_filter(event);
6933 }
6934 
6935 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6936 {
6937 	struct bpf_prog *prog;
6938 
6939 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6940 		return -EINVAL;
6941 
6942 	if (event->tp_event->prog)
6943 		return -EEXIST;
6944 
6945 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6946 		/* bpf programs can only be attached to u/kprobes */
6947 		return -EINVAL;
6948 
6949 	prog = bpf_prog_get(prog_fd);
6950 	if (IS_ERR(prog))
6951 		return PTR_ERR(prog);
6952 
6953 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6954 		/* valid fd, but invalid bpf program type */
6955 		bpf_prog_put(prog);
6956 		return -EINVAL;
6957 	}
6958 
6959 	event->tp_event->prog = prog;
6960 
6961 	return 0;
6962 }
6963 
6964 static void perf_event_free_bpf_prog(struct perf_event *event)
6965 {
6966 	struct bpf_prog *prog;
6967 
6968 	if (!event->tp_event)
6969 		return;
6970 
6971 	prog = event->tp_event->prog;
6972 	if (prog) {
6973 		event->tp_event->prog = NULL;
6974 		bpf_prog_put(prog);
6975 	}
6976 }
6977 
6978 #else
6979 
6980 static inline void perf_tp_register(void)
6981 {
6982 }
6983 
6984 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6985 {
6986 	return -ENOENT;
6987 }
6988 
6989 static void perf_event_free_filter(struct perf_event *event)
6990 {
6991 }
6992 
6993 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6994 {
6995 	return -ENOENT;
6996 }
6997 
6998 static void perf_event_free_bpf_prog(struct perf_event *event)
6999 {
7000 }
7001 #endif /* CONFIG_EVENT_TRACING */
7002 
7003 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7004 void perf_bp_event(struct perf_event *bp, void *data)
7005 {
7006 	struct perf_sample_data sample;
7007 	struct pt_regs *regs = data;
7008 
7009 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7010 
7011 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7012 		perf_swevent_event(bp, 1, &sample, regs);
7013 }
7014 #endif
7015 
7016 /*
7017  * hrtimer based swevent callback
7018  */
7019 
7020 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7021 {
7022 	enum hrtimer_restart ret = HRTIMER_RESTART;
7023 	struct perf_sample_data data;
7024 	struct pt_regs *regs;
7025 	struct perf_event *event;
7026 	u64 period;
7027 
7028 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7029 
7030 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7031 		return HRTIMER_NORESTART;
7032 
7033 	event->pmu->read(event);
7034 
7035 	perf_sample_data_init(&data, 0, event->hw.last_period);
7036 	regs = get_irq_regs();
7037 
7038 	if (regs && !perf_exclude_event(event, regs)) {
7039 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7040 			if (__perf_event_overflow(event, 1, &data, regs))
7041 				ret = HRTIMER_NORESTART;
7042 	}
7043 
7044 	period = max_t(u64, 10000, event->hw.sample_period);
7045 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7046 
7047 	return ret;
7048 }
7049 
7050 static void perf_swevent_start_hrtimer(struct perf_event *event)
7051 {
7052 	struct hw_perf_event *hwc = &event->hw;
7053 	s64 period;
7054 
7055 	if (!is_sampling_event(event))
7056 		return;
7057 
7058 	period = local64_read(&hwc->period_left);
7059 	if (period) {
7060 		if (period < 0)
7061 			period = 10000;
7062 
7063 		local64_set(&hwc->period_left, 0);
7064 	} else {
7065 		period = max_t(u64, 10000, hwc->sample_period);
7066 	}
7067 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7068 		      HRTIMER_MODE_REL_PINNED);
7069 }
7070 
7071 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7072 {
7073 	struct hw_perf_event *hwc = &event->hw;
7074 
7075 	if (is_sampling_event(event)) {
7076 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7077 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7078 
7079 		hrtimer_cancel(&hwc->hrtimer);
7080 	}
7081 }
7082 
7083 static void perf_swevent_init_hrtimer(struct perf_event *event)
7084 {
7085 	struct hw_perf_event *hwc = &event->hw;
7086 
7087 	if (!is_sampling_event(event))
7088 		return;
7089 
7090 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7091 	hwc->hrtimer.function = perf_swevent_hrtimer;
7092 
7093 	/*
7094 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7095 	 * mapping and avoid the whole period adjust feedback stuff.
7096 	 */
7097 	if (event->attr.freq) {
7098 		long freq = event->attr.sample_freq;
7099 
7100 		event->attr.sample_period = NSEC_PER_SEC / freq;
7101 		hwc->sample_period = event->attr.sample_period;
7102 		local64_set(&hwc->period_left, hwc->sample_period);
7103 		hwc->last_period = hwc->sample_period;
7104 		event->attr.freq = 0;
7105 	}
7106 }
7107 
7108 /*
7109  * Software event: cpu wall time clock
7110  */
7111 
7112 static void cpu_clock_event_update(struct perf_event *event)
7113 {
7114 	s64 prev;
7115 	u64 now;
7116 
7117 	now = local_clock();
7118 	prev = local64_xchg(&event->hw.prev_count, now);
7119 	local64_add(now - prev, &event->count);
7120 }
7121 
7122 static void cpu_clock_event_start(struct perf_event *event, int flags)
7123 {
7124 	local64_set(&event->hw.prev_count, local_clock());
7125 	perf_swevent_start_hrtimer(event);
7126 }
7127 
7128 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7129 {
7130 	perf_swevent_cancel_hrtimer(event);
7131 	cpu_clock_event_update(event);
7132 }
7133 
7134 static int cpu_clock_event_add(struct perf_event *event, int flags)
7135 {
7136 	if (flags & PERF_EF_START)
7137 		cpu_clock_event_start(event, flags);
7138 	perf_event_update_userpage(event);
7139 
7140 	return 0;
7141 }
7142 
7143 static void cpu_clock_event_del(struct perf_event *event, int flags)
7144 {
7145 	cpu_clock_event_stop(event, flags);
7146 }
7147 
7148 static void cpu_clock_event_read(struct perf_event *event)
7149 {
7150 	cpu_clock_event_update(event);
7151 }
7152 
7153 static int cpu_clock_event_init(struct perf_event *event)
7154 {
7155 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7156 		return -ENOENT;
7157 
7158 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7159 		return -ENOENT;
7160 
7161 	/*
7162 	 * no branch sampling for software events
7163 	 */
7164 	if (has_branch_stack(event))
7165 		return -EOPNOTSUPP;
7166 
7167 	perf_swevent_init_hrtimer(event);
7168 
7169 	return 0;
7170 }
7171 
7172 static struct pmu perf_cpu_clock = {
7173 	.task_ctx_nr	= perf_sw_context,
7174 
7175 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7176 
7177 	.event_init	= cpu_clock_event_init,
7178 	.add		= cpu_clock_event_add,
7179 	.del		= cpu_clock_event_del,
7180 	.start		= cpu_clock_event_start,
7181 	.stop		= cpu_clock_event_stop,
7182 	.read		= cpu_clock_event_read,
7183 };
7184 
7185 /*
7186  * Software event: task time clock
7187  */
7188 
7189 static void task_clock_event_update(struct perf_event *event, u64 now)
7190 {
7191 	u64 prev;
7192 	s64 delta;
7193 
7194 	prev = local64_xchg(&event->hw.prev_count, now);
7195 	delta = now - prev;
7196 	local64_add(delta, &event->count);
7197 }
7198 
7199 static void task_clock_event_start(struct perf_event *event, int flags)
7200 {
7201 	local64_set(&event->hw.prev_count, event->ctx->time);
7202 	perf_swevent_start_hrtimer(event);
7203 }
7204 
7205 static void task_clock_event_stop(struct perf_event *event, int flags)
7206 {
7207 	perf_swevent_cancel_hrtimer(event);
7208 	task_clock_event_update(event, event->ctx->time);
7209 }
7210 
7211 static int task_clock_event_add(struct perf_event *event, int flags)
7212 {
7213 	if (flags & PERF_EF_START)
7214 		task_clock_event_start(event, flags);
7215 	perf_event_update_userpage(event);
7216 
7217 	return 0;
7218 }
7219 
7220 static void task_clock_event_del(struct perf_event *event, int flags)
7221 {
7222 	task_clock_event_stop(event, PERF_EF_UPDATE);
7223 }
7224 
7225 static void task_clock_event_read(struct perf_event *event)
7226 {
7227 	u64 now = perf_clock();
7228 	u64 delta = now - event->ctx->timestamp;
7229 	u64 time = event->ctx->time + delta;
7230 
7231 	task_clock_event_update(event, time);
7232 }
7233 
7234 static int task_clock_event_init(struct perf_event *event)
7235 {
7236 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7237 		return -ENOENT;
7238 
7239 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7240 		return -ENOENT;
7241 
7242 	/*
7243 	 * no branch sampling for software events
7244 	 */
7245 	if (has_branch_stack(event))
7246 		return -EOPNOTSUPP;
7247 
7248 	perf_swevent_init_hrtimer(event);
7249 
7250 	return 0;
7251 }
7252 
7253 static struct pmu perf_task_clock = {
7254 	.task_ctx_nr	= perf_sw_context,
7255 
7256 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7257 
7258 	.event_init	= task_clock_event_init,
7259 	.add		= task_clock_event_add,
7260 	.del		= task_clock_event_del,
7261 	.start		= task_clock_event_start,
7262 	.stop		= task_clock_event_stop,
7263 	.read		= task_clock_event_read,
7264 };
7265 
7266 static void perf_pmu_nop_void(struct pmu *pmu)
7267 {
7268 }
7269 
7270 static int perf_pmu_nop_int(struct pmu *pmu)
7271 {
7272 	return 0;
7273 }
7274 
7275 static void perf_pmu_start_txn(struct pmu *pmu)
7276 {
7277 	perf_pmu_disable(pmu);
7278 }
7279 
7280 static int perf_pmu_commit_txn(struct pmu *pmu)
7281 {
7282 	perf_pmu_enable(pmu);
7283 	return 0;
7284 }
7285 
7286 static void perf_pmu_cancel_txn(struct pmu *pmu)
7287 {
7288 	perf_pmu_enable(pmu);
7289 }
7290 
7291 static int perf_event_idx_default(struct perf_event *event)
7292 {
7293 	return 0;
7294 }
7295 
7296 /*
7297  * Ensures all contexts with the same task_ctx_nr have the same
7298  * pmu_cpu_context too.
7299  */
7300 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7301 {
7302 	struct pmu *pmu;
7303 
7304 	if (ctxn < 0)
7305 		return NULL;
7306 
7307 	list_for_each_entry(pmu, &pmus, entry) {
7308 		if (pmu->task_ctx_nr == ctxn)
7309 			return pmu->pmu_cpu_context;
7310 	}
7311 
7312 	return NULL;
7313 }
7314 
7315 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7316 {
7317 	int cpu;
7318 
7319 	for_each_possible_cpu(cpu) {
7320 		struct perf_cpu_context *cpuctx;
7321 
7322 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7323 
7324 		if (cpuctx->unique_pmu == old_pmu)
7325 			cpuctx->unique_pmu = pmu;
7326 	}
7327 }
7328 
7329 static void free_pmu_context(struct pmu *pmu)
7330 {
7331 	struct pmu *i;
7332 
7333 	mutex_lock(&pmus_lock);
7334 	/*
7335 	 * Like a real lame refcount.
7336 	 */
7337 	list_for_each_entry(i, &pmus, entry) {
7338 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7339 			update_pmu_context(i, pmu);
7340 			goto out;
7341 		}
7342 	}
7343 
7344 	free_percpu(pmu->pmu_cpu_context);
7345 out:
7346 	mutex_unlock(&pmus_lock);
7347 }
7348 static struct idr pmu_idr;
7349 
7350 static ssize_t
7351 type_show(struct device *dev, struct device_attribute *attr, char *page)
7352 {
7353 	struct pmu *pmu = dev_get_drvdata(dev);
7354 
7355 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7356 }
7357 static DEVICE_ATTR_RO(type);
7358 
7359 static ssize_t
7360 perf_event_mux_interval_ms_show(struct device *dev,
7361 				struct device_attribute *attr,
7362 				char *page)
7363 {
7364 	struct pmu *pmu = dev_get_drvdata(dev);
7365 
7366 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7367 }
7368 
7369 static DEFINE_MUTEX(mux_interval_mutex);
7370 
7371 static ssize_t
7372 perf_event_mux_interval_ms_store(struct device *dev,
7373 				 struct device_attribute *attr,
7374 				 const char *buf, size_t count)
7375 {
7376 	struct pmu *pmu = dev_get_drvdata(dev);
7377 	int timer, cpu, ret;
7378 
7379 	ret = kstrtoint(buf, 0, &timer);
7380 	if (ret)
7381 		return ret;
7382 
7383 	if (timer < 1)
7384 		return -EINVAL;
7385 
7386 	/* same value, noting to do */
7387 	if (timer == pmu->hrtimer_interval_ms)
7388 		return count;
7389 
7390 	mutex_lock(&mux_interval_mutex);
7391 	pmu->hrtimer_interval_ms = timer;
7392 
7393 	/* update all cpuctx for this PMU */
7394 	get_online_cpus();
7395 	for_each_online_cpu(cpu) {
7396 		struct perf_cpu_context *cpuctx;
7397 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7398 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7399 
7400 		cpu_function_call(cpu,
7401 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7402 	}
7403 	put_online_cpus();
7404 	mutex_unlock(&mux_interval_mutex);
7405 
7406 	return count;
7407 }
7408 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7409 
7410 static struct attribute *pmu_dev_attrs[] = {
7411 	&dev_attr_type.attr,
7412 	&dev_attr_perf_event_mux_interval_ms.attr,
7413 	NULL,
7414 };
7415 ATTRIBUTE_GROUPS(pmu_dev);
7416 
7417 static int pmu_bus_running;
7418 static struct bus_type pmu_bus = {
7419 	.name		= "event_source",
7420 	.dev_groups	= pmu_dev_groups,
7421 };
7422 
7423 static void pmu_dev_release(struct device *dev)
7424 {
7425 	kfree(dev);
7426 }
7427 
7428 static int pmu_dev_alloc(struct pmu *pmu)
7429 {
7430 	int ret = -ENOMEM;
7431 
7432 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7433 	if (!pmu->dev)
7434 		goto out;
7435 
7436 	pmu->dev->groups = pmu->attr_groups;
7437 	device_initialize(pmu->dev);
7438 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7439 	if (ret)
7440 		goto free_dev;
7441 
7442 	dev_set_drvdata(pmu->dev, pmu);
7443 	pmu->dev->bus = &pmu_bus;
7444 	pmu->dev->release = pmu_dev_release;
7445 	ret = device_add(pmu->dev);
7446 	if (ret)
7447 		goto free_dev;
7448 
7449 out:
7450 	return ret;
7451 
7452 free_dev:
7453 	put_device(pmu->dev);
7454 	goto out;
7455 }
7456 
7457 static struct lock_class_key cpuctx_mutex;
7458 static struct lock_class_key cpuctx_lock;
7459 
7460 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7461 {
7462 	int cpu, ret;
7463 
7464 	mutex_lock(&pmus_lock);
7465 	ret = -ENOMEM;
7466 	pmu->pmu_disable_count = alloc_percpu(int);
7467 	if (!pmu->pmu_disable_count)
7468 		goto unlock;
7469 
7470 	pmu->type = -1;
7471 	if (!name)
7472 		goto skip_type;
7473 	pmu->name = name;
7474 
7475 	if (type < 0) {
7476 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7477 		if (type < 0) {
7478 			ret = type;
7479 			goto free_pdc;
7480 		}
7481 	}
7482 	pmu->type = type;
7483 
7484 	if (pmu_bus_running) {
7485 		ret = pmu_dev_alloc(pmu);
7486 		if (ret)
7487 			goto free_idr;
7488 	}
7489 
7490 skip_type:
7491 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7492 	if (pmu->pmu_cpu_context)
7493 		goto got_cpu_context;
7494 
7495 	ret = -ENOMEM;
7496 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7497 	if (!pmu->pmu_cpu_context)
7498 		goto free_dev;
7499 
7500 	for_each_possible_cpu(cpu) {
7501 		struct perf_cpu_context *cpuctx;
7502 
7503 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7504 		__perf_event_init_context(&cpuctx->ctx);
7505 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7506 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7507 		cpuctx->ctx.pmu = pmu;
7508 
7509 		__perf_mux_hrtimer_init(cpuctx, cpu);
7510 
7511 		cpuctx->unique_pmu = pmu;
7512 	}
7513 
7514 got_cpu_context:
7515 	if (!pmu->start_txn) {
7516 		if (pmu->pmu_enable) {
7517 			/*
7518 			 * If we have pmu_enable/pmu_disable calls, install
7519 			 * transaction stubs that use that to try and batch
7520 			 * hardware accesses.
7521 			 */
7522 			pmu->start_txn  = perf_pmu_start_txn;
7523 			pmu->commit_txn = perf_pmu_commit_txn;
7524 			pmu->cancel_txn = perf_pmu_cancel_txn;
7525 		} else {
7526 			pmu->start_txn  = perf_pmu_nop_void;
7527 			pmu->commit_txn = perf_pmu_nop_int;
7528 			pmu->cancel_txn = perf_pmu_nop_void;
7529 		}
7530 	}
7531 
7532 	if (!pmu->pmu_enable) {
7533 		pmu->pmu_enable  = perf_pmu_nop_void;
7534 		pmu->pmu_disable = perf_pmu_nop_void;
7535 	}
7536 
7537 	if (!pmu->event_idx)
7538 		pmu->event_idx = perf_event_idx_default;
7539 
7540 	list_add_rcu(&pmu->entry, &pmus);
7541 	atomic_set(&pmu->exclusive_cnt, 0);
7542 	ret = 0;
7543 unlock:
7544 	mutex_unlock(&pmus_lock);
7545 
7546 	return ret;
7547 
7548 free_dev:
7549 	device_del(pmu->dev);
7550 	put_device(pmu->dev);
7551 
7552 free_idr:
7553 	if (pmu->type >= PERF_TYPE_MAX)
7554 		idr_remove(&pmu_idr, pmu->type);
7555 
7556 free_pdc:
7557 	free_percpu(pmu->pmu_disable_count);
7558 	goto unlock;
7559 }
7560 EXPORT_SYMBOL_GPL(perf_pmu_register);
7561 
7562 void perf_pmu_unregister(struct pmu *pmu)
7563 {
7564 	mutex_lock(&pmus_lock);
7565 	list_del_rcu(&pmu->entry);
7566 	mutex_unlock(&pmus_lock);
7567 
7568 	/*
7569 	 * We dereference the pmu list under both SRCU and regular RCU, so
7570 	 * synchronize against both of those.
7571 	 */
7572 	synchronize_srcu(&pmus_srcu);
7573 	synchronize_rcu();
7574 
7575 	free_percpu(pmu->pmu_disable_count);
7576 	if (pmu->type >= PERF_TYPE_MAX)
7577 		idr_remove(&pmu_idr, pmu->type);
7578 	device_del(pmu->dev);
7579 	put_device(pmu->dev);
7580 	free_pmu_context(pmu);
7581 }
7582 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7583 
7584 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7585 {
7586 	struct perf_event_context *ctx = NULL;
7587 	int ret;
7588 
7589 	if (!try_module_get(pmu->module))
7590 		return -ENODEV;
7591 
7592 	if (event->group_leader != event) {
7593 		/*
7594 		 * This ctx->mutex can nest when we're called through
7595 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7596 		 */
7597 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7598 						 SINGLE_DEPTH_NESTING);
7599 		BUG_ON(!ctx);
7600 	}
7601 
7602 	event->pmu = pmu;
7603 	ret = pmu->event_init(event);
7604 
7605 	if (ctx)
7606 		perf_event_ctx_unlock(event->group_leader, ctx);
7607 
7608 	if (ret)
7609 		module_put(pmu->module);
7610 
7611 	return ret;
7612 }
7613 
7614 struct pmu *perf_init_event(struct perf_event *event)
7615 {
7616 	struct pmu *pmu = NULL;
7617 	int idx;
7618 	int ret;
7619 
7620 	idx = srcu_read_lock(&pmus_srcu);
7621 
7622 	rcu_read_lock();
7623 	pmu = idr_find(&pmu_idr, event->attr.type);
7624 	rcu_read_unlock();
7625 	if (pmu) {
7626 		ret = perf_try_init_event(pmu, event);
7627 		if (ret)
7628 			pmu = ERR_PTR(ret);
7629 		goto unlock;
7630 	}
7631 
7632 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7633 		ret = perf_try_init_event(pmu, event);
7634 		if (!ret)
7635 			goto unlock;
7636 
7637 		if (ret != -ENOENT) {
7638 			pmu = ERR_PTR(ret);
7639 			goto unlock;
7640 		}
7641 	}
7642 	pmu = ERR_PTR(-ENOENT);
7643 unlock:
7644 	srcu_read_unlock(&pmus_srcu, idx);
7645 
7646 	return pmu;
7647 }
7648 
7649 static void account_event_cpu(struct perf_event *event, int cpu)
7650 {
7651 	if (event->parent)
7652 		return;
7653 
7654 	if (is_cgroup_event(event))
7655 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7656 }
7657 
7658 static void account_event(struct perf_event *event)
7659 {
7660 	if (event->parent)
7661 		return;
7662 
7663 	if (event->attach_state & PERF_ATTACH_TASK)
7664 		static_key_slow_inc(&perf_sched_events.key);
7665 	if (event->attr.mmap || event->attr.mmap_data)
7666 		atomic_inc(&nr_mmap_events);
7667 	if (event->attr.comm)
7668 		atomic_inc(&nr_comm_events);
7669 	if (event->attr.task)
7670 		atomic_inc(&nr_task_events);
7671 	if (event->attr.freq) {
7672 		if (atomic_inc_return(&nr_freq_events) == 1)
7673 			tick_nohz_full_kick_all();
7674 	}
7675 	if (event->attr.context_switch) {
7676 		atomic_inc(&nr_switch_events);
7677 		static_key_slow_inc(&perf_sched_events.key);
7678 	}
7679 	if (has_branch_stack(event))
7680 		static_key_slow_inc(&perf_sched_events.key);
7681 	if (is_cgroup_event(event))
7682 		static_key_slow_inc(&perf_sched_events.key);
7683 
7684 	account_event_cpu(event, event->cpu);
7685 }
7686 
7687 /*
7688  * Allocate and initialize a event structure
7689  */
7690 static struct perf_event *
7691 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7692 		 struct task_struct *task,
7693 		 struct perf_event *group_leader,
7694 		 struct perf_event *parent_event,
7695 		 perf_overflow_handler_t overflow_handler,
7696 		 void *context, int cgroup_fd)
7697 {
7698 	struct pmu *pmu;
7699 	struct perf_event *event;
7700 	struct hw_perf_event *hwc;
7701 	long err = -EINVAL;
7702 
7703 	if ((unsigned)cpu >= nr_cpu_ids) {
7704 		if (!task || cpu != -1)
7705 			return ERR_PTR(-EINVAL);
7706 	}
7707 
7708 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7709 	if (!event)
7710 		return ERR_PTR(-ENOMEM);
7711 
7712 	/*
7713 	 * Single events are their own group leaders, with an
7714 	 * empty sibling list:
7715 	 */
7716 	if (!group_leader)
7717 		group_leader = event;
7718 
7719 	mutex_init(&event->child_mutex);
7720 	INIT_LIST_HEAD(&event->child_list);
7721 
7722 	INIT_LIST_HEAD(&event->group_entry);
7723 	INIT_LIST_HEAD(&event->event_entry);
7724 	INIT_LIST_HEAD(&event->sibling_list);
7725 	INIT_LIST_HEAD(&event->rb_entry);
7726 	INIT_LIST_HEAD(&event->active_entry);
7727 	INIT_HLIST_NODE(&event->hlist_entry);
7728 
7729 
7730 	init_waitqueue_head(&event->waitq);
7731 	init_irq_work(&event->pending, perf_pending_event);
7732 
7733 	mutex_init(&event->mmap_mutex);
7734 
7735 	atomic_long_set(&event->refcount, 1);
7736 	event->cpu		= cpu;
7737 	event->attr		= *attr;
7738 	event->group_leader	= group_leader;
7739 	event->pmu		= NULL;
7740 	event->oncpu		= -1;
7741 
7742 	event->parent		= parent_event;
7743 
7744 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7745 	event->id		= atomic64_inc_return(&perf_event_id);
7746 
7747 	event->state		= PERF_EVENT_STATE_INACTIVE;
7748 
7749 	if (task) {
7750 		event->attach_state = PERF_ATTACH_TASK;
7751 		/*
7752 		 * XXX pmu::event_init needs to know what task to account to
7753 		 * and we cannot use the ctx information because we need the
7754 		 * pmu before we get a ctx.
7755 		 */
7756 		event->hw.target = task;
7757 	}
7758 
7759 	event->clock = &local_clock;
7760 	if (parent_event)
7761 		event->clock = parent_event->clock;
7762 
7763 	if (!overflow_handler && parent_event) {
7764 		overflow_handler = parent_event->overflow_handler;
7765 		context = parent_event->overflow_handler_context;
7766 	}
7767 
7768 	event->overflow_handler	= overflow_handler;
7769 	event->overflow_handler_context = context;
7770 
7771 	perf_event__state_init(event);
7772 
7773 	pmu = NULL;
7774 
7775 	hwc = &event->hw;
7776 	hwc->sample_period = attr->sample_period;
7777 	if (attr->freq && attr->sample_freq)
7778 		hwc->sample_period = 1;
7779 	hwc->last_period = hwc->sample_period;
7780 
7781 	local64_set(&hwc->period_left, hwc->sample_period);
7782 
7783 	/*
7784 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7785 	 */
7786 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7787 		goto err_ns;
7788 
7789 	if (!has_branch_stack(event))
7790 		event->attr.branch_sample_type = 0;
7791 
7792 	if (cgroup_fd != -1) {
7793 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7794 		if (err)
7795 			goto err_ns;
7796 	}
7797 
7798 	pmu = perf_init_event(event);
7799 	if (!pmu)
7800 		goto err_ns;
7801 	else if (IS_ERR(pmu)) {
7802 		err = PTR_ERR(pmu);
7803 		goto err_ns;
7804 	}
7805 
7806 	err = exclusive_event_init(event);
7807 	if (err)
7808 		goto err_pmu;
7809 
7810 	if (!event->parent) {
7811 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7812 			err = get_callchain_buffers();
7813 			if (err)
7814 				goto err_per_task;
7815 		}
7816 	}
7817 
7818 	return event;
7819 
7820 err_per_task:
7821 	exclusive_event_destroy(event);
7822 
7823 err_pmu:
7824 	if (event->destroy)
7825 		event->destroy(event);
7826 	module_put(pmu->module);
7827 err_ns:
7828 	if (is_cgroup_event(event))
7829 		perf_detach_cgroup(event);
7830 	if (event->ns)
7831 		put_pid_ns(event->ns);
7832 	kfree(event);
7833 
7834 	return ERR_PTR(err);
7835 }
7836 
7837 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7838 			  struct perf_event_attr *attr)
7839 {
7840 	u32 size;
7841 	int ret;
7842 
7843 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7844 		return -EFAULT;
7845 
7846 	/*
7847 	 * zero the full structure, so that a short copy will be nice.
7848 	 */
7849 	memset(attr, 0, sizeof(*attr));
7850 
7851 	ret = get_user(size, &uattr->size);
7852 	if (ret)
7853 		return ret;
7854 
7855 	if (size > PAGE_SIZE)	/* silly large */
7856 		goto err_size;
7857 
7858 	if (!size)		/* abi compat */
7859 		size = PERF_ATTR_SIZE_VER0;
7860 
7861 	if (size < PERF_ATTR_SIZE_VER0)
7862 		goto err_size;
7863 
7864 	/*
7865 	 * If we're handed a bigger struct than we know of,
7866 	 * ensure all the unknown bits are 0 - i.e. new
7867 	 * user-space does not rely on any kernel feature
7868 	 * extensions we dont know about yet.
7869 	 */
7870 	if (size > sizeof(*attr)) {
7871 		unsigned char __user *addr;
7872 		unsigned char __user *end;
7873 		unsigned char val;
7874 
7875 		addr = (void __user *)uattr + sizeof(*attr);
7876 		end  = (void __user *)uattr + size;
7877 
7878 		for (; addr < end; addr++) {
7879 			ret = get_user(val, addr);
7880 			if (ret)
7881 				return ret;
7882 			if (val)
7883 				goto err_size;
7884 		}
7885 		size = sizeof(*attr);
7886 	}
7887 
7888 	ret = copy_from_user(attr, uattr, size);
7889 	if (ret)
7890 		return -EFAULT;
7891 
7892 	if (attr->__reserved_1)
7893 		return -EINVAL;
7894 
7895 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7896 		return -EINVAL;
7897 
7898 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7899 		return -EINVAL;
7900 
7901 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7902 		u64 mask = attr->branch_sample_type;
7903 
7904 		/* only using defined bits */
7905 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7906 			return -EINVAL;
7907 
7908 		/* at least one branch bit must be set */
7909 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7910 			return -EINVAL;
7911 
7912 		/* propagate priv level, when not set for branch */
7913 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7914 
7915 			/* exclude_kernel checked on syscall entry */
7916 			if (!attr->exclude_kernel)
7917 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7918 
7919 			if (!attr->exclude_user)
7920 				mask |= PERF_SAMPLE_BRANCH_USER;
7921 
7922 			if (!attr->exclude_hv)
7923 				mask |= PERF_SAMPLE_BRANCH_HV;
7924 			/*
7925 			 * adjust user setting (for HW filter setup)
7926 			 */
7927 			attr->branch_sample_type = mask;
7928 		}
7929 		/* privileged levels capture (kernel, hv): check permissions */
7930 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7931 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7932 			return -EACCES;
7933 	}
7934 
7935 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7936 		ret = perf_reg_validate(attr->sample_regs_user);
7937 		if (ret)
7938 			return ret;
7939 	}
7940 
7941 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7942 		if (!arch_perf_have_user_stack_dump())
7943 			return -ENOSYS;
7944 
7945 		/*
7946 		 * We have __u32 type for the size, but so far
7947 		 * we can only use __u16 as maximum due to the
7948 		 * __u16 sample size limit.
7949 		 */
7950 		if (attr->sample_stack_user >= USHRT_MAX)
7951 			ret = -EINVAL;
7952 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7953 			ret = -EINVAL;
7954 	}
7955 
7956 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7957 		ret = perf_reg_validate(attr->sample_regs_intr);
7958 out:
7959 	return ret;
7960 
7961 err_size:
7962 	put_user(sizeof(*attr), &uattr->size);
7963 	ret = -E2BIG;
7964 	goto out;
7965 }
7966 
7967 static int
7968 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7969 {
7970 	struct ring_buffer *rb = NULL;
7971 	int ret = -EINVAL;
7972 
7973 	if (!output_event)
7974 		goto set;
7975 
7976 	/* don't allow circular references */
7977 	if (event == output_event)
7978 		goto out;
7979 
7980 	/*
7981 	 * Don't allow cross-cpu buffers
7982 	 */
7983 	if (output_event->cpu != event->cpu)
7984 		goto out;
7985 
7986 	/*
7987 	 * If its not a per-cpu rb, it must be the same task.
7988 	 */
7989 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7990 		goto out;
7991 
7992 	/*
7993 	 * Mixing clocks in the same buffer is trouble you don't need.
7994 	 */
7995 	if (output_event->clock != event->clock)
7996 		goto out;
7997 
7998 	/*
7999 	 * If both events generate aux data, they must be on the same PMU
8000 	 */
8001 	if (has_aux(event) && has_aux(output_event) &&
8002 	    event->pmu != output_event->pmu)
8003 		goto out;
8004 
8005 set:
8006 	mutex_lock(&event->mmap_mutex);
8007 	/* Can't redirect output if we've got an active mmap() */
8008 	if (atomic_read(&event->mmap_count))
8009 		goto unlock;
8010 
8011 	if (output_event) {
8012 		/* get the rb we want to redirect to */
8013 		rb = ring_buffer_get(output_event);
8014 		if (!rb)
8015 			goto unlock;
8016 	}
8017 
8018 	ring_buffer_attach(event, rb);
8019 
8020 	ret = 0;
8021 unlock:
8022 	mutex_unlock(&event->mmap_mutex);
8023 
8024 out:
8025 	return ret;
8026 }
8027 
8028 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8029 {
8030 	if (b < a)
8031 		swap(a, b);
8032 
8033 	mutex_lock(a);
8034 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8035 }
8036 
8037 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8038 {
8039 	bool nmi_safe = false;
8040 
8041 	switch (clk_id) {
8042 	case CLOCK_MONOTONIC:
8043 		event->clock = &ktime_get_mono_fast_ns;
8044 		nmi_safe = true;
8045 		break;
8046 
8047 	case CLOCK_MONOTONIC_RAW:
8048 		event->clock = &ktime_get_raw_fast_ns;
8049 		nmi_safe = true;
8050 		break;
8051 
8052 	case CLOCK_REALTIME:
8053 		event->clock = &ktime_get_real_ns;
8054 		break;
8055 
8056 	case CLOCK_BOOTTIME:
8057 		event->clock = &ktime_get_boot_ns;
8058 		break;
8059 
8060 	case CLOCK_TAI:
8061 		event->clock = &ktime_get_tai_ns;
8062 		break;
8063 
8064 	default:
8065 		return -EINVAL;
8066 	}
8067 
8068 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8069 		return -EINVAL;
8070 
8071 	return 0;
8072 }
8073 
8074 /**
8075  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8076  *
8077  * @attr_uptr:	event_id type attributes for monitoring/sampling
8078  * @pid:		target pid
8079  * @cpu:		target cpu
8080  * @group_fd:		group leader event fd
8081  */
8082 SYSCALL_DEFINE5(perf_event_open,
8083 		struct perf_event_attr __user *, attr_uptr,
8084 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8085 {
8086 	struct perf_event *group_leader = NULL, *output_event = NULL;
8087 	struct perf_event *event, *sibling;
8088 	struct perf_event_attr attr;
8089 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8090 	struct file *event_file = NULL;
8091 	struct fd group = {NULL, 0};
8092 	struct task_struct *task = NULL;
8093 	struct pmu *pmu;
8094 	int event_fd;
8095 	int move_group = 0;
8096 	int err;
8097 	int f_flags = O_RDWR;
8098 	int cgroup_fd = -1;
8099 
8100 	/* for future expandability... */
8101 	if (flags & ~PERF_FLAG_ALL)
8102 		return -EINVAL;
8103 
8104 	err = perf_copy_attr(attr_uptr, &attr);
8105 	if (err)
8106 		return err;
8107 
8108 	if (!attr.exclude_kernel) {
8109 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8110 			return -EACCES;
8111 	}
8112 
8113 	if (attr.freq) {
8114 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8115 			return -EINVAL;
8116 	} else {
8117 		if (attr.sample_period & (1ULL << 63))
8118 			return -EINVAL;
8119 	}
8120 
8121 	/*
8122 	 * In cgroup mode, the pid argument is used to pass the fd
8123 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8124 	 * designates the cpu on which to monitor threads from that
8125 	 * cgroup.
8126 	 */
8127 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8128 		return -EINVAL;
8129 
8130 	if (flags & PERF_FLAG_FD_CLOEXEC)
8131 		f_flags |= O_CLOEXEC;
8132 
8133 	event_fd = get_unused_fd_flags(f_flags);
8134 	if (event_fd < 0)
8135 		return event_fd;
8136 
8137 	if (group_fd != -1) {
8138 		err = perf_fget_light(group_fd, &group);
8139 		if (err)
8140 			goto err_fd;
8141 		group_leader = group.file->private_data;
8142 		if (flags & PERF_FLAG_FD_OUTPUT)
8143 			output_event = group_leader;
8144 		if (flags & PERF_FLAG_FD_NO_GROUP)
8145 			group_leader = NULL;
8146 	}
8147 
8148 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8149 		task = find_lively_task_by_vpid(pid);
8150 		if (IS_ERR(task)) {
8151 			err = PTR_ERR(task);
8152 			goto err_group_fd;
8153 		}
8154 	}
8155 
8156 	if (task && group_leader &&
8157 	    group_leader->attr.inherit != attr.inherit) {
8158 		err = -EINVAL;
8159 		goto err_task;
8160 	}
8161 
8162 	get_online_cpus();
8163 
8164 	if (flags & PERF_FLAG_PID_CGROUP)
8165 		cgroup_fd = pid;
8166 
8167 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8168 				 NULL, NULL, cgroup_fd);
8169 	if (IS_ERR(event)) {
8170 		err = PTR_ERR(event);
8171 		goto err_cpus;
8172 	}
8173 
8174 	if (is_sampling_event(event)) {
8175 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8176 			err = -ENOTSUPP;
8177 			goto err_alloc;
8178 		}
8179 	}
8180 
8181 	account_event(event);
8182 
8183 	/*
8184 	 * Special case software events and allow them to be part of
8185 	 * any hardware group.
8186 	 */
8187 	pmu = event->pmu;
8188 
8189 	if (attr.use_clockid) {
8190 		err = perf_event_set_clock(event, attr.clockid);
8191 		if (err)
8192 			goto err_alloc;
8193 	}
8194 
8195 	if (group_leader &&
8196 	    (is_software_event(event) != is_software_event(group_leader))) {
8197 		if (is_software_event(event)) {
8198 			/*
8199 			 * If event and group_leader are not both a software
8200 			 * event, and event is, then group leader is not.
8201 			 *
8202 			 * Allow the addition of software events to !software
8203 			 * groups, this is safe because software events never
8204 			 * fail to schedule.
8205 			 */
8206 			pmu = group_leader->pmu;
8207 		} else if (is_software_event(group_leader) &&
8208 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8209 			/*
8210 			 * In case the group is a pure software group, and we
8211 			 * try to add a hardware event, move the whole group to
8212 			 * the hardware context.
8213 			 */
8214 			move_group = 1;
8215 		}
8216 	}
8217 
8218 	/*
8219 	 * Get the target context (task or percpu):
8220 	 */
8221 	ctx = find_get_context(pmu, task, event);
8222 	if (IS_ERR(ctx)) {
8223 		err = PTR_ERR(ctx);
8224 		goto err_alloc;
8225 	}
8226 
8227 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8228 		err = -EBUSY;
8229 		goto err_context;
8230 	}
8231 
8232 	if (task) {
8233 		put_task_struct(task);
8234 		task = NULL;
8235 	}
8236 
8237 	/*
8238 	 * Look up the group leader (we will attach this event to it):
8239 	 */
8240 	if (group_leader) {
8241 		err = -EINVAL;
8242 
8243 		/*
8244 		 * Do not allow a recursive hierarchy (this new sibling
8245 		 * becoming part of another group-sibling):
8246 		 */
8247 		if (group_leader->group_leader != group_leader)
8248 			goto err_context;
8249 
8250 		/* All events in a group should have the same clock */
8251 		if (group_leader->clock != event->clock)
8252 			goto err_context;
8253 
8254 		/*
8255 		 * Do not allow to attach to a group in a different
8256 		 * task or CPU context:
8257 		 */
8258 		if (move_group) {
8259 			/*
8260 			 * Make sure we're both on the same task, or both
8261 			 * per-cpu events.
8262 			 */
8263 			if (group_leader->ctx->task != ctx->task)
8264 				goto err_context;
8265 
8266 			/*
8267 			 * Make sure we're both events for the same CPU;
8268 			 * grouping events for different CPUs is broken; since
8269 			 * you can never concurrently schedule them anyhow.
8270 			 */
8271 			if (group_leader->cpu != event->cpu)
8272 				goto err_context;
8273 		} else {
8274 			if (group_leader->ctx != ctx)
8275 				goto err_context;
8276 		}
8277 
8278 		/*
8279 		 * Only a group leader can be exclusive or pinned
8280 		 */
8281 		if (attr.exclusive || attr.pinned)
8282 			goto err_context;
8283 	}
8284 
8285 	if (output_event) {
8286 		err = perf_event_set_output(event, output_event);
8287 		if (err)
8288 			goto err_context;
8289 	}
8290 
8291 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8292 					f_flags);
8293 	if (IS_ERR(event_file)) {
8294 		err = PTR_ERR(event_file);
8295 		goto err_context;
8296 	}
8297 
8298 	if (move_group) {
8299 		gctx = group_leader->ctx;
8300 
8301 		/*
8302 		 * See perf_event_ctx_lock() for comments on the details
8303 		 * of swizzling perf_event::ctx.
8304 		 */
8305 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8306 
8307 		perf_remove_from_context(group_leader, false);
8308 
8309 		list_for_each_entry(sibling, &group_leader->sibling_list,
8310 				    group_entry) {
8311 			perf_remove_from_context(sibling, false);
8312 			put_ctx(gctx);
8313 		}
8314 	} else {
8315 		mutex_lock(&ctx->mutex);
8316 	}
8317 
8318 	WARN_ON_ONCE(ctx->parent_ctx);
8319 
8320 	if (move_group) {
8321 		/*
8322 		 * Wait for everybody to stop referencing the events through
8323 		 * the old lists, before installing it on new lists.
8324 		 */
8325 		synchronize_rcu();
8326 
8327 		/*
8328 		 * Install the group siblings before the group leader.
8329 		 *
8330 		 * Because a group leader will try and install the entire group
8331 		 * (through the sibling list, which is still in-tact), we can
8332 		 * end up with siblings installed in the wrong context.
8333 		 *
8334 		 * By installing siblings first we NO-OP because they're not
8335 		 * reachable through the group lists.
8336 		 */
8337 		list_for_each_entry(sibling, &group_leader->sibling_list,
8338 				    group_entry) {
8339 			perf_event__state_init(sibling);
8340 			perf_install_in_context(ctx, sibling, sibling->cpu);
8341 			get_ctx(ctx);
8342 		}
8343 
8344 		/*
8345 		 * Removing from the context ends up with disabled
8346 		 * event. What we want here is event in the initial
8347 		 * startup state, ready to be add into new context.
8348 		 */
8349 		perf_event__state_init(group_leader);
8350 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8351 		get_ctx(ctx);
8352 	}
8353 
8354 	if (!exclusive_event_installable(event, ctx)) {
8355 		err = -EBUSY;
8356 		mutex_unlock(&ctx->mutex);
8357 		fput(event_file);
8358 		goto err_context;
8359 	}
8360 
8361 	perf_install_in_context(ctx, event, event->cpu);
8362 	perf_unpin_context(ctx);
8363 
8364 	if (move_group) {
8365 		mutex_unlock(&gctx->mutex);
8366 		put_ctx(gctx);
8367 	}
8368 	mutex_unlock(&ctx->mutex);
8369 
8370 	put_online_cpus();
8371 
8372 	event->owner = current;
8373 
8374 	mutex_lock(&current->perf_event_mutex);
8375 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8376 	mutex_unlock(&current->perf_event_mutex);
8377 
8378 	/*
8379 	 * Precalculate sample_data sizes
8380 	 */
8381 	perf_event__header_size(event);
8382 	perf_event__id_header_size(event);
8383 
8384 	/*
8385 	 * Drop the reference on the group_event after placing the
8386 	 * new event on the sibling_list. This ensures destruction
8387 	 * of the group leader will find the pointer to itself in
8388 	 * perf_group_detach().
8389 	 */
8390 	fdput(group);
8391 	fd_install(event_fd, event_file);
8392 	return event_fd;
8393 
8394 err_context:
8395 	perf_unpin_context(ctx);
8396 	put_ctx(ctx);
8397 err_alloc:
8398 	free_event(event);
8399 err_cpus:
8400 	put_online_cpus();
8401 err_task:
8402 	if (task)
8403 		put_task_struct(task);
8404 err_group_fd:
8405 	fdput(group);
8406 err_fd:
8407 	put_unused_fd(event_fd);
8408 	return err;
8409 }
8410 
8411 /**
8412  * perf_event_create_kernel_counter
8413  *
8414  * @attr: attributes of the counter to create
8415  * @cpu: cpu in which the counter is bound
8416  * @task: task to profile (NULL for percpu)
8417  */
8418 struct perf_event *
8419 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8420 				 struct task_struct *task,
8421 				 perf_overflow_handler_t overflow_handler,
8422 				 void *context)
8423 {
8424 	struct perf_event_context *ctx;
8425 	struct perf_event *event;
8426 	int err;
8427 
8428 	/*
8429 	 * Get the target context (task or percpu):
8430 	 */
8431 
8432 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8433 				 overflow_handler, context, -1);
8434 	if (IS_ERR(event)) {
8435 		err = PTR_ERR(event);
8436 		goto err;
8437 	}
8438 
8439 	/* Mark owner so we could distinguish it from user events. */
8440 	event->owner = EVENT_OWNER_KERNEL;
8441 
8442 	account_event(event);
8443 
8444 	ctx = find_get_context(event->pmu, task, event);
8445 	if (IS_ERR(ctx)) {
8446 		err = PTR_ERR(ctx);
8447 		goto err_free;
8448 	}
8449 
8450 	WARN_ON_ONCE(ctx->parent_ctx);
8451 	mutex_lock(&ctx->mutex);
8452 	if (!exclusive_event_installable(event, ctx)) {
8453 		mutex_unlock(&ctx->mutex);
8454 		perf_unpin_context(ctx);
8455 		put_ctx(ctx);
8456 		err = -EBUSY;
8457 		goto err_free;
8458 	}
8459 
8460 	perf_install_in_context(ctx, event, cpu);
8461 	perf_unpin_context(ctx);
8462 	mutex_unlock(&ctx->mutex);
8463 
8464 	return event;
8465 
8466 err_free:
8467 	free_event(event);
8468 err:
8469 	return ERR_PTR(err);
8470 }
8471 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8472 
8473 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8474 {
8475 	struct perf_event_context *src_ctx;
8476 	struct perf_event_context *dst_ctx;
8477 	struct perf_event *event, *tmp;
8478 	LIST_HEAD(events);
8479 
8480 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8481 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8482 
8483 	/*
8484 	 * See perf_event_ctx_lock() for comments on the details
8485 	 * of swizzling perf_event::ctx.
8486 	 */
8487 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8488 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8489 				 event_entry) {
8490 		perf_remove_from_context(event, false);
8491 		unaccount_event_cpu(event, src_cpu);
8492 		put_ctx(src_ctx);
8493 		list_add(&event->migrate_entry, &events);
8494 	}
8495 
8496 	/*
8497 	 * Wait for the events to quiesce before re-instating them.
8498 	 */
8499 	synchronize_rcu();
8500 
8501 	/*
8502 	 * Re-instate events in 2 passes.
8503 	 *
8504 	 * Skip over group leaders and only install siblings on this first
8505 	 * pass, siblings will not get enabled without a leader, however a
8506 	 * leader will enable its siblings, even if those are still on the old
8507 	 * context.
8508 	 */
8509 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8510 		if (event->group_leader == event)
8511 			continue;
8512 
8513 		list_del(&event->migrate_entry);
8514 		if (event->state >= PERF_EVENT_STATE_OFF)
8515 			event->state = PERF_EVENT_STATE_INACTIVE;
8516 		account_event_cpu(event, dst_cpu);
8517 		perf_install_in_context(dst_ctx, event, dst_cpu);
8518 		get_ctx(dst_ctx);
8519 	}
8520 
8521 	/*
8522 	 * Once all the siblings are setup properly, install the group leaders
8523 	 * to make it go.
8524 	 */
8525 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8526 		list_del(&event->migrate_entry);
8527 		if (event->state >= PERF_EVENT_STATE_OFF)
8528 			event->state = PERF_EVENT_STATE_INACTIVE;
8529 		account_event_cpu(event, dst_cpu);
8530 		perf_install_in_context(dst_ctx, event, dst_cpu);
8531 		get_ctx(dst_ctx);
8532 	}
8533 	mutex_unlock(&dst_ctx->mutex);
8534 	mutex_unlock(&src_ctx->mutex);
8535 }
8536 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8537 
8538 static void sync_child_event(struct perf_event *child_event,
8539 			       struct task_struct *child)
8540 {
8541 	struct perf_event *parent_event = child_event->parent;
8542 	u64 child_val;
8543 
8544 	if (child_event->attr.inherit_stat)
8545 		perf_event_read_event(child_event, child);
8546 
8547 	child_val = perf_event_count(child_event);
8548 
8549 	/*
8550 	 * Add back the child's count to the parent's count:
8551 	 */
8552 	atomic64_add(child_val, &parent_event->child_count);
8553 	atomic64_add(child_event->total_time_enabled,
8554 		     &parent_event->child_total_time_enabled);
8555 	atomic64_add(child_event->total_time_running,
8556 		     &parent_event->child_total_time_running);
8557 
8558 	/*
8559 	 * Remove this event from the parent's list
8560 	 */
8561 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8562 	mutex_lock(&parent_event->child_mutex);
8563 	list_del_init(&child_event->child_list);
8564 	mutex_unlock(&parent_event->child_mutex);
8565 
8566 	/*
8567 	 * Make sure user/parent get notified, that we just
8568 	 * lost one event.
8569 	 */
8570 	perf_event_wakeup(parent_event);
8571 
8572 	/*
8573 	 * Release the parent event, if this was the last
8574 	 * reference to it.
8575 	 */
8576 	put_event(parent_event);
8577 }
8578 
8579 static void
8580 __perf_event_exit_task(struct perf_event *child_event,
8581 			 struct perf_event_context *child_ctx,
8582 			 struct task_struct *child)
8583 {
8584 	/*
8585 	 * Do not destroy the 'original' grouping; because of the context
8586 	 * switch optimization the original events could've ended up in a
8587 	 * random child task.
8588 	 *
8589 	 * If we were to destroy the original group, all group related
8590 	 * operations would cease to function properly after this random
8591 	 * child dies.
8592 	 *
8593 	 * Do destroy all inherited groups, we don't care about those
8594 	 * and being thorough is better.
8595 	 */
8596 	perf_remove_from_context(child_event, !!child_event->parent);
8597 
8598 	/*
8599 	 * It can happen that the parent exits first, and has events
8600 	 * that are still around due to the child reference. These
8601 	 * events need to be zapped.
8602 	 */
8603 	if (child_event->parent) {
8604 		sync_child_event(child_event, child);
8605 		free_event(child_event);
8606 	} else {
8607 		child_event->state = PERF_EVENT_STATE_EXIT;
8608 		perf_event_wakeup(child_event);
8609 	}
8610 }
8611 
8612 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8613 {
8614 	struct perf_event *child_event, *next;
8615 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8616 	unsigned long flags;
8617 
8618 	if (likely(!child->perf_event_ctxp[ctxn])) {
8619 		perf_event_task(child, NULL, 0);
8620 		return;
8621 	}
8622 
8623 	local_irq_save(flags);
8624 	/*
8625 	 * We can't reschedule here because interrupts are disabled,
8626 	 * and either child is current or it is a task that can't be
8627 	 * scheduled, so we are now safe from rescheduling changing
8628 	 * our context.
8629 	 */
8630 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8631 
8632 	/*
8633 	 * Take the context lock here so that if find_get_context is
8634 	 * reading child->perf_event_ctxp, we wait until it has
8635 	 * incremented the context's refcount before we do put_ctx below.
8636 	 */
8637 	raw_spin_lock(&child_ctx->lock);
8638 	task_ctx_sched_out(child_ctx);
8639 	child->perf_event_ctxp[ctxn] = NULL;
8640 
8641 	/*
8642 	 * If this context is a clone; unclone it so it can't get
8643 	 * swapped to another process while we're removing all
8644 	 * the events from it.
8645 	 */
8646 	clone_ctx = unclone_ctx(child_ctx);
8647 	update_context_time(child_ctx);
8648 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8649 
8650 	if (clone_ctx)
8651 		put_ctx(clone_ctx);
8652 
8653 	/*
8654 	 * Report the task dead after unscheduling the events so that we
8655 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8656 	 * get a few PERF_RECORD_READ events.
8657 	 */
8658 	perf_event_task(child, child_ctx, 0);
8659 
8660 	/*
8661 	 * We can recurse on the same lock type through:
8662 	 *
8663 	 *   __perf_event_exit_task()
8664 	 *     sync_child_event()
8665 	 *       put_event()
8666 	 *         mutex_lock(&ctx->mutex)
8667 	 *
8668 	 * But since its the parent context it won't be the same instance.
8669 	 */
8670 	mutex_lock(&child_ctx->mutex);
8671 
8672 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8673 		__perf_event_exit_task(child_event, child_ctx, child);
8674 
8675 	mutex_unlock(&child_ctx->mutex);
8676 
8677 	put_ctx(child_ctx);
8678 }
8679 
8680 /*
8681  * When a child task exits, feed back event values to parent events.
8682  */
8683 void perf_event_exit_task(struct task_struct *child)
8684 {
8685 	struct perf_event *event, *tmp;
8686 	int ctxn;
8687 
8688 	mutex_lock(&child->perf_event_mutex);
8689 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8690 				 owner_entry) {
8691 		list_del_init(&event->owner_entry);
8692 
8693 		/*
8694 		 * Ensure the list deletion is visible before we clear
8695 		 * the owner, closes a race against perf_release() where
8696 		 * we need to serialize on the owner->perf_event_mutex.
8697 		 */
8698 		smp_wmb();
8699 		event->owner = NULL;
8700 	}
8701 	mutex_unlock(&child->perf_event_mutex);
8702 
8703 	for_each_task_context_nr(ctxn)
8704 		perf_event_exit_task_context(child, ctxn);
8705 }
8706 
8707 static void perf_free_event(struct perf_event *event,
8708 			    struct perf_event_context *ctx)
8709 {
8710 	struct perf_event *parent = event->parent;
8711 
8712 	if (WARN_ON_ONCE(!parent))
8713 		return;
8714 
8715 	mutex_lock(&parent->child_mutex);
8716 	list_del_init(&event->child_list);
8717 	mutex_unlock(&parent->child_mutex);
8718 
8719 	put_event(parent);
8720 
8721 	raw_spin_lock_irq(&ctx->lock);
8722 	perf_group_detach(event);
8723 	list_del_event(event, ctx);
8724 	raw_spin_unlock_irq(&ctx->lock);
8725 	free_event(event);
8726 }
8727 
8728 /*
8729  * Free an unexposed, unused context as created by inheritance by
8730  * perf_event_init_task below, used by fork() in case of fail.
8731  *
8732  * Not all locks are strictly required, but take them anyway to be nice and
8733  * help out with the lockdep assertions.
8734  */
8735 void perf_event_free_task(struct task_struct *task)
8736 {
8737 	struct perf_event_context *ctx;
8738 	struct perf_event *event, *tmp;
8739 	int ctxn;
8740 
8741 	for_each_task_context_nr(ctxn) {
8742 		ctx = task->perf_event_ctxp[ctxn];
8743 		if (!ctx)
8744 			continue;
8745 
8746 		mutex_lock(&ctx->mutex);
8747 again:
8748 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8749 				group_entry)
8750 			perf_free_event(event, ctx);
8751 
8752 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8753 				group_entry)
8754 			perf_free_event(event, ctx);
8755 
8756 		if (!list_empty(&ctx->pinned_groups) ||
8757 				!list_empty(&ctx->flexible_groups))
8758 			goto again;
8759 
8760 		mutex_unlock(&ctx->mutex);
8761 
8762 		put_ctx(ctx);
8763 	}
8764 }
8765 
8766 void perf_event_delayed_put(struct task_struct *task)
8767 {
8768 	int ctxn;
8769 
8770 	for_each_task_context_nr(ctxn)
8771 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8772 }
8773 
8774 struct perf_event *perf_event_get(unsigned int fd)
8775 {
8776 	int err;
8777 	struct fd f;
8778 	struct perf_event *event;
8779 
8780 	err = perf_fget_light(fd, &f);
8781 	if (err)
8782 		return ERR_PTR(err);
8783 
8784 	event = f.file->private_data;
8785 	atomic_long_inc(&event->refcount);
8786 	fdput(f);
8787 
8788 	return event;
8789 }
8790 
8791 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8792 {
8793 	if (!event)
8794 		return ERR_PTR(-EINVAL);
8795 
8796 	return &event->attr;
8797 }
8798 
8799 /*
8800  * inherit a event from parent task to child task:
8801  */
8802 static struct perf_event *
8803 inherit_event(struct perf_event *parent_event,
8804 	      struct task_struct *parent,
8805 	      struct perf_event_context *parent_ctx,
8806 	      struct task_struct *child,
8807 	      struct perf_event *group_leader,
8808 	      struct perf_event_context *child_ctx)
8809 {
8810 	enum perf_event_active_state parent_state = parent_event->state;
8811 	struct perf_event *child_event;
8812 	unsigned long flags;
8813 
8814 	/*
8815 	 * Instead of creating recursive hierarchies of events,
8816 	 * we link inherited events back to the original parent,
8817 	 * which has a filp for sure, which we use as the reference
8818 	 * count:
8819 	 */
8820 	if (parent_event->parent)
8821 		parent_event = parent_event->parent;
8822 
8823 	child_event = perf_event_alloc(&parent_event->attr,
8824 					   parent_event->cpu,
8825 					   child,
8826 					   group_leader, parent_event,
8827 					   NULL, NULL, -1);
8828 	if (IS_ERR(child_event))
8829 		return child_event;
8830 
8831 	if (is_orphaned_event(parent_event) ||
8832 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8833 		free_event(child_event);
8834 		return NULL;
8835 	}
8836 
8837 	get_ctx(child_ctx);
8838 
8839 	/*
8840 	 * Make the child state follow the state of the parent event,
8841 	 * not its attr.disabled bit.  We hold the parent's mutex,
8842 	 * so we won't race with perf_event_{en, dis}able_family.
8843 	 */
8844 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8845 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8846 	else
8847 		child_event->state = PERF_EVENT_STATE_OFF;
8848 
8849 	if (parent_event->attr.freq) {
8850 		u64 sample_period = parent_event->hw.sample_period;
8851 		struct hw_perf_event *hwc = &child_event->hw;
8852 
8853 		hwc->sample_period = sample_period;
8854 		hwc->last_period   = sample_period;
8855 
8856 		local64_set(&hwc->period_left, sample_period);
8857 	}
8858 
8859 	child_event->ctx = child_ctx;
8860 	child_event->overflow_handler = parent_event->overflow_handler;
8861 	child_event->overflow_handler_context
8862 		= parent_event->overflow_handler_context;
8863 
8864 	/*
8865 	 * Precalculate sample_data sizes
8866 	 */
8867 	perf_event__header_size(child_event);
8868 	perf_event__id_header_size(child_event);
8869 
8870 	/*
8871 	 * Link it up in the child's context:
8872 	 */
8873 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8874 	add_event_to_ctx(child_event, child_ctx);
8875 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8876 
8877 	/*
8878 	 * Link this into the parent event's child list
8879 	 */
8880 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8881 	mutex_lock(&parent_event->child_mutex);
8882 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8883 	mutex_unlock(&parent_event->child_mutex);
8884 
8885 	return child_event;
8886 }
8887 
8888 static int inherit_group(struct perf_event *parent_event,
8889 	      struct task_struct *parent,
8890 	      struct perf_event_context *parent_ctx,
8891 	      struct task_struct *child,
8892 	      struct perf_event_context *child_ctx)
8893 {
8894 	struct perf_event *leader;
8895 	struct perf_event *sub;
8896 	struct perf_event *child_ctr;
8897 
8898 	leader = inherit_event(parent_event, parent, parent_ctx,
8899 				 child, NULL, child_ctx);
8900 	if (IS_ERR(leader))
8901 		return PTR_ERR(leader);
8902 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8903 		child_ctr = inherit_event(sub, parent, parent_ctx,
8904 					    child, leader, child_ctx);
8905 		if (IS_ERR(child_ctr))
8906 			return PTR_ERR(child_ctr);
8907 	}
8908 	return 0;
8909 }
8910 
8911 static int
8912 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8913 		   struct perf_event_context *parent_ctx,
8914 		   struct task_struct *child, int ctxn,
8915 		   int *inherited_all)
8916 {
8917 	int ret;
8918 	struct perf_event_context *child_ctx;
8919 
8920 	if (!event->attr.inherit) {
8921 		*inherited_all = 0;
8922 		return 0;
8923 	}
8924 
8925 	child_ctx = child->perf_event_ctxp[ctxn];
8926 	if (!child_ctx) {
8927 		/*
8928 		 * This is executed from the parent task context, so
8929 		 * inherit events that have been marked for cloning.
8930 		 * First allocate and initialize a context for the
8931 		 * child.
8932 		 */
8933 
8934 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8935 		if (!child_ctx)
8936 			return -ENOMEM;
8937 
8938 		child->perf_event_ctxp[ctxn] = child_ctx;
8939 	}
8940 
8941 	ret = inherit_group(event, parent, parent_ctx,
8942 			    child, child_ctx);
8943 
8944 	if (ret)
8945 		*inherited_all = 0;
8946 
8947 	return ret;
8948 }
8949 
8950 /*
8951  * Initialize the perf_event context in task_struct
8952  */
8953 static int perf_event_init_context(struct task_struct *child, int ctxn)
8954 {
8955 	struct perf_event_context *child_ctx, *parent_ctx;
8956 	struct perf_event_context *cloned_ctx;
8957 	struct perf_event *event;
8958 	struct task_struct *parent = current;
8959 	int inherited_all = 1;
8960 	unsigned long flags;
8961 	int ret = 0;
8962 
8963 	if (likely(!parent->perf_event_ctxp[ctxn]))
8964 		return 0;
8965 
8966 	/*
8967 	 * If the parent's context is a clone, pin it so it won't get
8968 	 * swapped under us.
8969 	 */
8970 	parent_ctx = perf_pin_task_context(parent, ctxn);
8971 	if (!parent_ctx)
8972 		return 0;
8973 
8974 	/*
8975 	 * No need to check if parent_ctx != NULL here; since we saw
8976 	 * it non-NULL earlier, the only reason for it to become NULL
8977 	 * is if we exit, and since we're currently in the middle of
8978 	 * a fork we can't be exiting at the same time.
8979 	 */
8980 
8981 	/*
8982 	 * Lock the parent list. No need to lock the child - not PID
8983 	 * hashed yet and not running, so nobody can access it.
8984 	 */
8985 	mutex_lock(&parent_ctx->mutex);
8986 
8987 	/*
8988 	 * We dont have to disable NMIs - we are only looking at
8989 	 * the list, not manipulating it:
8990 	 */
8991 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8992 		ret = inherit_task_group(event, parent, parent_ctx,
8993 					 child, ctxn, &inherited_all);
8994 		if (ret)
8995 			break;
8996 	}
8997 
8998 	/*
8999 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9000 	 * to allocations, but we need to prevent rotation because
9001 	 * rotate_ctx() will change the list from interrupt context.
9002 	 */
9003 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9004 	parent_ctx->rotate_disable = 1;
9005 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9006 
9007 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9008 		ret = inherit_task_group(event, parent, parent_ctx,
9009 					 child, ctxn, &inherited_all);
9010 		if (ret)
9011 			break;
9012 	}
9013 
9014 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9015 	parent_ctx->rotate_disable = 0;
9016 
9017 	child_ctx = child->perf_event_ctxp[ctxn];
9018 
9019 	if (child_ctx && inherited_all) {
9020 		/*
9021 		 * Mark the child context as a clone of the parent
9022 		 * context, or of whatever the parent is a clone of.
9023 		 *
9024 		 * Note that if the parent is a clone, the holding of
9025 		 * parent_ctx->lock avoids it from being uncloned.
9026 		 */
9027 		cloned_ctx = parent_ctx->parent_ctx;
9028 		if (cloned_ctx) {
9029 			child_ctx->parent_ctx = cloned_ctx;
9030 			child_ctx->parent_gen = parent_ctx->parent_gen;
9031 		} else {
9032 			child_ctx->parent_ctx = parent_ctx;
9033 			child_ctx->parent_gen = parent_ctx->generation;
9034 		}
9035 		get_ctx(child_ctx->parent_ctx);
9036 	}
9037 
9038 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9039 	mutex_unlock(&parent_ctx->mutex);
9040 
9041 	perf_unpin_context(parent_ctx);
9042 	put_ctx(parent_ctx);
9043 
9044 	return ret;
9045 }
9046 
9047 /*
9048  * Initialize the perf_event context in task_struct
9049  */
9050 int perf_event_init_task(struct task_struct *child)
9051 {
9052 	int ctxn, ret;
9053 
9054 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9055 	mutex_init(&child->perf_event_mutex);
9056 	INIT_LIST_HEAD(&child->perf_event_list);
9057 
9058 	for_each_task_context_nr(ctxn) {
9059 		ret = perf_event_init_context(child, ctxn);
9060 		if (ret) {
9061 			perf_event_free_task(child);
9062 			return ret;
9063 		}
9064 	}
9065 
9066 	return 0;
9067 }
9068 
9069 static void __init perf_event_init_all_cpus(void)
9070 {
9071 	struct swevent_htable *swhash;
9072 	int cpu;
9073 
9074 	for_each_possible_cpu(cpu) {
9075 		swhash = &per_cpu(swevent_htable, cpu);
9076 		mutex_init(&swhash->hlist_mutex);
9077 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9078 	}
9079 }
9080 
9081 static void perf_event_init_cpu(int cpu)
9082 {
9083 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9084 
9085 	mutex_lock(&swhash->hlist_mutex);
9086 	swhash->online = true;
9087 	if (swhash->hlist_refcount > 0) {
9088 		struct swevent_hlist *hlist;
9089 
9090 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9091 		WARN_ON(!hlist);
9092 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9093 	}
9094 	mutex_unlock(&swhash->hlist_mutex);
9095 }
9096 
9097 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9098 static void __perf_event_exit_context(void *__info)
9099 {
9100 	struct remove_event re = { .detach_group = true };
9101 	struct perf_event_context *ctx = __info;
9102 
9103 	rcu_read_lock();
9104 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9105 		__perf_remove_from_context(&re);
9106 	rcu_read_unlock();
9107 }
9108 
9109 static void perf_event_exit_cpu_context(int cpu)
9110 {
9111 	struct perf_event_context *ctx;
9112 	struct pmu *pmu;
9113 	int idx;
9114 
9115 	idx = srcu_read_lock(&pmus_srcu);
9116 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9117 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9118 
9119 		mutex_lock(&ctx->mutex);
9120 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9121 		mutex_unlock(&ctx->mutex);
9122 	}
9123 	srcu_read_unlock(&pmus_srcu, idx);
9124 }
9125 
9126 static void perf_event_exit_cpu(int cpu)
9127 {
9128 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9129 
9130 	perf_event_exit_cpu_context(cpu);
9131 
9132 	mutex_lock(&swhash->hlist_mutex);
9133 	swhash->online = false;
9134 	swevent_hlist_release(swhash);
9135 	mutex_unlock(&swhash->hlist_mutex);
9136 }
9137 #else
9138 static inline void perf_event_exit_cpu(int cpu) { }
9139 #endif
9140 
9141 static int
9142 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9143 {
9144 	int cpu;
9145 
9146 	for_each_online_cpu(cpu)
9147 		perf_event_exit_cpu(cpu);
9148 
9149 	return NOTIFY_OK;
9150 }
9151 
9152 /*
9153  * Run the perf reboot notifier at the very last possible moment so that
9154  * the generic watchdog code runs as long as possible.
9155  */
9156 static struct notifier_block perf_reboot_notifier = {
9157 	.notifier_call = perf_reboot,
9158 	.priority = INT_MIN,
9159 };
9160 
9161 static int
9162 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9163 {
9164 	unsigned int cpu = (long)hcpu;
9165 
9166 	switch (action & ~CPU_TASKS_FROZEN) {
9167 
9168 	case CPU_UP_PREPARE:
9169 	case CPU_DOWN_FAILED:
9170 		perf_event_init_cpu(cpu);
9171 		break;
9172 
9173 	case CPU_UP_CANCELED:
9174 	case CPU_DOWN_PREPARE:
9175 		perf_event_exit_cpu(cpu);
9176 		break;
9177 	default:
9178 		break;
9179 	}
9180 
9181 	return NOTIFY_OK;
9182 }
9183 
9184 void __init perf_event_init(void)
9185 {
9186 	int ret;
9187 
9188 	idr_init(&pmu_idr);
9189 
9190 	perf_event_init_all_cpus();
9191 	init_srcu_struct(&pmus_srcu);
9192 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9193 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9194 	perf_pmu_register(&perf_task_clock, NULL, -1);
9195 	perf_tp_register();
9196 	perf_cpu_notifier(perf_cpu_notify);
9197 	register_reboot_notifier(&perf_reboot_notifier);
9198 
9199 	ret = init_hw_breakpoint();
9200 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9201 
9202 	/* do not patch jump label more than once per second */
9203 	jump_label_rate_limit(&perf_sched_events, HZ);
9204 
9205 	/*
9206 	 * Build time assertion that we keep the data_head at the intended
9207 	 * location.  IOW, validation we got the __reserved[] size right.
9208 	 */
9209 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9210 		     != 1024);
9211 }
9212 
9213 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9214 			      char *page)
9215 {
9216 	struct perf_pmu_events_attr *pmu_attr =
9217 		container_of(attr, struct perf_pmu_events_attr, attr);
9218 
9219 	if (pmu_attr->event_str)
9220 		return sprintf(page, "%s\n", pmu_attr->event_str);
9221 
9222 	return 0;
9223 }
9224 
9225 static int __init perf_event_sysfs_init(void)
9226 {
9227 	struct pmu *pmu;
9228 	int ret;
9229 
9230 	mutex_lock(&pmus_lock);
9231 
9232 	ret = bus_register(&pmu_bus);
9233 	if (ret)
9234 		goto unlock;
9235 
9236 	list_for_each_entry(pmu, &pmus, entry) {
9237 		if (!pmu->name || pmu->type < 0)
9238 			continue;
9239 
9240 		ret = pmu_dev_alloc(pmu);
9241 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9242 	}
9243 	pmu_bus_running = 1;
9244 	ret = 0;
9245 
9246 unlock:
9247 	mutex_unlock(&pmus_lock);
9248 
9249 	return ret;
9250 }
9251 device_initcall(perf_event_sysfs_init);
9252 
9253 #ifdef CONFIG_CGROUP_PERF
9254 static struct cgroup_subsys_state *
9255 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9256 {
9257 	struct perf_cgroup *jc;
9258 
9259 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9260 	if (!jc)
9261 		return ERR_PTR(-ENOMEM);
9262 
9263 	jc->info = alloc_percpu(struct perf_cgroup_info);
9264 	if (!jc->info) {
9265 		kfree(jc);
9266 		return ERR_PTR(-ENOMEM);
9267 	}
9268 
9269 	return &jc->css;
9270 }
9271 
9272 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9273 {
9274 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9275 
9276 	free_percpu(jc->info);
9277 	kfree(jc);
9278 }
9279 
9280 static int __perf_cgroup_move(void *info)
9281 {
9282 	struct task_struct *task = info;
9283 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9284 	return 0;
9285 }
9286 
9287 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9288 			       struct cgroup_taskset *tset)
9289 {
9290 	struct task_struct *task;
9291 
9292 	cgroup_taskset_for_each(task, tset)
9293 		task_function_call(task, __perf_cgroup_move, task);
9294 }
9295 
9296 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9297 			     struct cgroup_subsys_state *old_css,
9298 			     struct task_struct *task)
9299 {
9300 	/*
9301 	 * cgroup_exit() is called in the copy_process() failure path.
9302 	 * Ignore this case since the task hasn't ran yet, this avoids
9303 	 * trying to poke a half freed task state from generic code.
9304 	 */
9305 	if (!(task->flags & PF_EXITING))
9306 		return;
9307 
9308 	task_function_call(task, __perf_cgroup_move, task);
9309 }
9310 
9311 struct cgroup_subsys perf_event_cgrp_subsys = {
9312 	.css_alloc	= perf_cgroup_css_alloc,
9313 	.css_free	= perf_cgroup_css_free,
9314 	.exit		= perf_cgroup_exit,
9315 	.attach		= perf_cgroup_attach,
9316 };
9317 #endif /* CONFIG_CGROUP_PERF */
9318