1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type, 578 struct task_struct *task); 579 580 static void update_context_time(struct perf_event_context *ctx); 581 static u64 perf_event_time(struct perf_event *event); 582 583 void __weak perf_event_print_debug(void) { } 584 585 static inline u64 perf_clock(void) 586 { 587 return local_clock(); 588 } 589 590 static inline u64 perf_event_clock(struct perf_event *event) 591 { 592 return event->clock(); 593 } 594 595 /* 596 * State based event timekeeping... 597 * 598 * The basic idea is to use event->state to determine which (if any) time 599 * fields to increment with the current delta. This means we only need to 600 * update timestamps when we change state or when they are explicitly requested 601 * (read). 602 * 603 * Event groups make things a little more complicated, but not terribly so. The 604 * rules for a group are that if the group leader is OFF the entire group is 605 * OFF, irrespecive of what the group member states are. This results in 606 * __perf_effective_state(). 607 * 608 * A futher ramification is that when a group leader flips between OFF and 609 * !OFF, we need to update all group member times. 610 * 611 * 612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 613 * need to make sure the relevant context time is updated before we try and 614 * update our timestamps. 615 */ 616 617 static __always_inline enum perf_event_state 618 __perf_effective_state(struct perf_event *event) 619 { 620 struct perf_event *leader = event->group_leader; 621 622 if (leader->state <= PERF_EVENT_STATE_OFF) 623 return leader->state; 624 625 return event->state; 626 } 627 628 static __always_inline void 629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 630 { 631 enum perf_event_state state = __perf_effective_state(event); 632 u64 delta = now - event->tstamp; 633 634 *enabled = event->total_time_enabled; 635 if (state >= PERF_EVENT_STATE_INACTIVE) 636 *enabled += delta; 637 638 *running = event->total_time_running; 639 if (state >= PERF_EVENT_STATE_ACTIVE) 640 *running += delta; 641 } 642 643 static void perf_event_update_time(struct perf_event *event) 644 { 645 u64 now = perf_event_time(event); 646 647 __perf_update_times(event, now, &event->total_time_enabled, 648 &event->total_time_running); 649 event->tstamp = now; 650 } 651 652 static void perf_event_update_sibling_time(struct perf_event *leader) 653 { 654 struct perf_event *sibling; 655 656 for_each_sibling_event(sibling, leader) 657 perf_event_update_time(sibling); 658 } 659 660 static void 661 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 662 { 663 if (event->state == state) 664 return; 665 666 perf_event_update_time(event); 667 /* 668 * If a group leader gets enabled/disabled all its siblings 669 * are affected too. 670 */ 671 if ((event->state < 0) ^ (state < 0)) 672 perf_event_update_sibling_time(event); 673 674 WRITE_ONCE(event->state, state); 675 } 676 677 #ifdef CONFIG_CGROUP_PERF 678 679 static inline bool 680 perf_cgroup_match(struct perf_event *event) 681 { 682 struct perf_event_context *ctx = event->ctx; 683 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 684 685 /* @event doesn't care about cgroup */ 686 if (!event->cgrp) 687 return true; 688 689 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 690 if (!cpuctx->cgrp) 691 return false; 692 693 /* 694 * Cgroup scoping is recursive. An event enabled for a cgroup is 695 * also enabled for all its descendant cgroups. If @cpuctx's 696 * cgroup is a descendant of @event's (the test covers identity 697 * case), it's a match. 698 */ 699 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 700 event->cgrp->css.cgroup); 701 } 702 703 static inline void perf_detach_cgroup(struct perf_event *event) 704 { 705 css_put(&event->cgrp->css); 706 event->cgrp = NULL; 707 } 708 709 static inline int is_cgroup_event(struct perf_event *event) 710 { 711 return event->cgrp != NULL; 712 } 713 714 static inline u64 perf_cgroup_event_time(struct perf_event *event) 715 { 716 struct perf_cgroup_info *t; 717 718 t = per_cpu_ptr(event->cgrp->info, event->cpu); 719 return t->time; 720 } 721 722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 723 { 724 struct perf_cgroup_info *info; 725 u64 now; 726 727 now = perf_clock(); 728 729 info = this_cpu_ptr(cgrp->info); 730 731 info->time += now - info->timestamp; 732 info->timestamp = now; 733 } 734 735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 736 { 737 struct perf_cgroup *cgrp = cpuctx->cgrp; 738 struct cgroup_subsys_state *css; 739 740 if (cgrp) { 741 for (css = &cgrp->css; css; css = css->parent) { 742 cgrp = container_of(css, struct perf_cgroup, css); 743 __update_cgrp_time(cgrp); 744 } 745 } 746 } 747 748 static inline void update_cgrp_time_from_event(struct perf_event *event) 749 { 750 struct perf_cgroup *cgrp; 751 752 /* 753 * ensure we access cgroup data only when needed and 754 * when we know the cgroup is pinned (css_get) 755 */ 756 if (!is_cgroup_event(event)) 757 return; 758 759 cgrp = perf_cgroup_from_task(current, event->ctx); 760 /* 761 * Do not update time when cgroup is not active 762 */ 763 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 764 __update_cgrp_time(event->cgrp); 765 } 766 767 static inline void 768 perf_cgroup_set_timestamp(struct task_struct *task, 769 struct perf_event_context *ctx) 770 { 771 struct perf_cgroup *cgrp; 772 struct perf_cgroup_info *info; 773 struct cgroup_subsys_state *css; 774 775 /* 776 * ctx->lock held by caller 777 * ensure we do not access cgroup data 778 * unless we have the cgroup pinned (css_get) 779 */ 780 if (!task || !ctx->nr_cgroups) 781 return; 782 783 cgrp = perf_cgroup_from_task(task, ctx); 784 785 for (css = &cgrp->css; css; css = css->parent) { 786 cgrp = container_of(css, struct perf_cgroup, css); 787 info = this_cpu_ptr(cgrp->info); 788 info->timestamp = ctx->timestamp; 789 } 790 } 791 792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 793 794 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 795 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 796 797 /* 798 * reschedule events based on the cgroup constraint of task. 799 * 800 * mode SWOUT : schedule out everything 801 * mode SWIN : schedule in based on cgroup for next 802 */ 803 static void perf_cgroup_switch(struct task_struct *task, int mode) 804 { 805 struct perf_cpu_context *cpuctx; 806 struct list_head *list; 807 unsigned long flags; 808 809 /* 810 * Disable interrupts and preemption to avoid this CPU's 811 * cgrp_cpuctx_entry to change under us. 812 */ 813 local_irq_save(flags); 814 815 list = this_cpu_ptr(&cgrp_cpuctx_list); 816 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 817 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 818 819 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 820 perf_pmu_disable(cpuctx->ctx.pmu); 821 822 if (mode & PERF_CGROUP_SWOUT) { 823 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 824 /* 825 * must not be done before ctxswout due 826 * to event_filter_match() in event_sched_out() 827 */ 828 cpuctx->cgrp = NULL; 829 } 830 831 if (mode & PERF_CGROUP_SWIN) { 832 WARN_ON_ONCE(cpuctx->cgrp); 833 /* 834 * set cgrp before ctxsw in to allow 835 * event_filter_match() to not have to pass 836 * task around 837 * we pass the cpuctx->ctx to perf_cgroup_from_task() 838 * because cgorup events are only per-cpu 839 */ 840 cpuctx->cgrp = perf_cgroup_from_task(task, 841 &cpuctx->ctx); 842 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 843 } 844 perf_pmu_enable(cpuctx->ctx.pmu); 845 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 846 } 847 848 local_irq_restore(flags); 849 } 850 851 static inline void perf_cgroup_sched_out(struct task_struct *task, 852 struct task_struct *next) 853 { 854 struct perf_cgroup *cgrp1; 855 struct perf_cgroup *cgrp2 = NULL; 856 857 rcu_read_lock(); 858 /* 859 * we come here when we know perf_cgroup_events > 0 860 * we do not need to pass the ctx here because we know 861 * we are holding the rcu lock 862 */ 863 cgrp1 = perf_cgroup_from_task(task, NULL); 864 cgrp2 = perf_cgroup_from_task(next, NULL); 865 866 /* 867 * only schedule out current cgroup events if we know 868 * that we are switching to a different cgroup. Otherwise, 869 * do no touch the cgroup events. 870 */ 871 if (cgrp1 != cgrp2) 872 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 873 874 rcu_read_unlock(); 875 } 876 877 static inline void perf_cgroup_sched_in(struct task_struct *prev, 878 struct task_struct *task) 879 { 880 struct perf_cgroup *cgrp1; 881 struct perf_cgroup *cgrp2 = NULL; 882 883 rcu_read_lock(); 884 /* 885 * we come here when we know perf_cgroup_events > 0 886 * we do not need to pass the ctx here because we know 887 * we are holding the rcu lock 888 */ 889 cgrp1 = perf_cgroup_from_task(task, NULL); 890 cgrp2 = perf_cgroup_from_task(prev, NULL); 891 892 /* 893 * only need to schedule in cgroup events if we are changing 894 * cgroup during ctxsw. Cgroup events were not scheduled 895 * out of ctxsw out if that was not the case. 896 */ 897 if (cgrp1 != cgrp2) 898 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 899 900 rcu_read_unlock(); 901 } 902 903 static int perf_cgroup_ensure_storage(struct perf_event *event, 904 struct cgroup_subsys_state *css) 905 { 906 struct perf_cpu_context *cpuctx; 907 struct perf_event **storage; 908 int cpu, heap_size, ret = 0; 909 910 /* 911 * Allow storage to have sufficent space for an iterator for each 912 * possibly nested cgroup plus an iterator for events with no cgroup. 913 */ 914 for (heap_size = 1; css; css = css->parent) 915 heap_size++; 916 917 for_each_possible_cpu(cpu) { 918 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 919 if (heap_size <= cpuctx->heap_size) 920 continue; 921 922 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 923 GFP_KERNEL, cpu_to_node(cpu)); 924 if (!storage) { 925 ret = -ENOMEM; 926 break; 927 } 928 929 raw_spin_lock_irq(&cpuctx->ctx.lock); 930 if (cpuctx->heap_size < heap_size) { 931 swap(cpuctx->heap, storage); 932 if (storage == cpuctx->heap_default) 933 storage = NULL; 934 cpuctx->heap_size = heap_size; 935 } 936 raw_spin_unlock_irq(&cpuctx->ctx.lock); 937 938 kfree(storage); 939 } 940 941 return ret; 942 } 943 944 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 945 struct perf_event_attr *attr, 946 struct perf_event *group_leader) 947 { 948 struct perf_cgroup *cgrp; 949 struct cgroup_subsys_state *css; 950 struct fd f = fdget(fd); 951 int ret = 0; 952 953 if (!f.file) 954 return -EBADF; 955 956 css = css_tryget_online_from_dir(f.file->f_path.dentry, 957 &perf_event_cgrp_subsys); 958 if (IS_ERR(css)) { 959 ret = PTR_ERR(css); 960 goto out; 961 } 962 963 ret = perf_cgroup_ensure_storage(event, css); 964 if (ret) 965 goto out; 966 967 cgrp = container_of(css, struct perf_cgroup, css); 968 event->cgrp = cgrp; 969 970 /* 971 * all events in a group must monitor 972 * the same cgroup because a task belongs 973 * to only one perf cgroup at a time 974 */ 975 if (group_leader && group_leader->cgrp != cgrp) { 976 perf_detach_cgroup(event); 977 ret = -EINVAL; 978 } 979 out: 980 fdput(f); 981 return ret; 982 } 983 984 static inline void 985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 986 { 987 struct perf_cgroup_info *t; 988 t = per_cpu_ptr(event->cgrp->info, event->cpu); 989 event->shadow_ctx_time = now - t->timestamp; 990 } 991 992 static inline void 993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 994 { 995 struct perf_cpu_context *cpuctx; 996 997 if (!is_cgroup_event(event)) 998 return; 999 1000 /* 1001 * Because cgroup events are always per-cpu events, 1002 * @ctx == &cpuctx->ctx. 1003 */ 1004 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1005 1006 /* 1007 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1008 * matching the event's cgroup, we must do this for every new event, 1009 * because if the first would mismatch, the second would not try again 1010 * and we would leave cpuctx->cgrp unset. 1011 */ 1012 if (ctx->is_active && !cpuctx->cgrp) { 1013 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1014 1015 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1016 cpuctx->cgrp = cgrp; 1017 } 1018 1019 if (ctx->nr_cgroups++) 1020 return; 1021 1022 list_add(&cpuctx->cgrp_cpuctx_entry, 1023 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1024 } 1025 1026 static inline void 1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1028 { 1029 struct perf_cpu_context *cpuctx; 1030 1031 if (!is_cgroup_event(event)) 1032 return; 1033 1034 /* 1035 * Because cgroup events are always per-cpu events, 1036 * @ctx == &cpuctx->ctx. 1037 */ 1038 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1039 1040 if (--ctx->nr_cgroups) 1041 return; 1042 1043 if (ctx->is_active && cpuctx->cgrp) 1044 cpuctx->cgrp = NULL; 1045 1046 list_del(&cpuctx->cgrp_cpuctx_entry); 1047 } 1048 1049 #else /* !CONFIG_CGROUP_PERF */ 1050 1051 static inline bool 1052 perf_cgroup_match(struct perf_event *event) 1053 { 1054 return true; 1055 } 1056 1057 static inline void perf_detach_cgroup(struct perf_event *event) 1058 {} 1059 1060 static inline int is_cgroup_event(struct perf_event *event) 1061 { 1062 return 0; 1063 } 1064 1065 static inline void update_cgrp_time_from_event(struct perf_event *event) 1066 { 1067 } 1068 1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1070 { 1071 } 1072 1073 static inline void perf_cgroup_sched_out(struct task_struct *task, 1074 struct task_struct *next) 1075 { 1076 } 1077 1078 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1079 struct task_struct *task) 1080 { 1081 } 1082 1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1084 struct perf_event_attr *attr, 1085 struct perf_event *group_leader) 1086 { 1087 return -EINVAL; 1088 } 1089 1090 static inline void 1091 perf_cgroup_set_timestamp(struct task_struct *task, 1092 struct perf_event_context *ctx) 1093 { 1094 } 1095 1096 static inline void 1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1098 { 1099 } 1100 1101 static inline void 1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1103 { 1104 } 1105 1106 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1107 { 1108 return 0; 1109 } 1110 1111 static inline void 1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1113 { 1114 } 1115 1116 static inline void 1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1118 { 1119 } 1120 #endif 1121 1122 /* 1123 * set default to be dependent on timer tick just 1124 * like original code 1125 */ 1126 #define PERF_CPU_HRTIMER (1000 / HZ) 1127 /* 1128 * function must be called with interrupts disabled 1129 */ 1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1131 { 1132 struct perf_cpu_context *cpuctx; 1133 bool rotations; 1134 1135 lockdep_assert_irqs_disabled(); 1136 1137 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1138 rotations = perf_rotate_context(cpuctx); 1139 1140 raw_spin_lock(&cpuctx->hrtimer_lock); 1141 if (rotations) 1142 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1143 else 1144 cpuctx->hrtimer_active = 0; 1145 raw_spin_unlock(&cpuctx->hrtimer_lock); 1146 1147 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1148 } 1149 1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1151 { 1152 struct hrtimer *timer = &cpuctx->hrtimer; 1153 struct pmu *pmu = cpuctx->ctx.pmu; 1154 u64 interval; 1155 1156 /* no multiplexing needed for SW PMU */ 1157 if (pmu->task_ctx_nr == perf_sw_context) 1158 return; 1159 1160 /* 1161 * check default is sane, if not set then force to 1162 * default interval (1/tick) 1163 */ 1164 interval = pmu->hrtimer_interval_ms; 1165 if (interval < 1) 1166 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1167 1168 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1169 1170 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1171 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1172 timer->function = perf_mux_hrtimer_handler; 1173 } 1174 1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1176 { 1177 struct hrtimer *timer = &cpuctx->hrtimer; 1178 struct pmu *pmu = cpuctx->ctx.pmu; 1179 unsigned long flags; 1180 1181 /* not for SW PMU */ 1182 if (pmu->task_ctx_nr == perf_sw_context) 1183 return 0; 1184 1185 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1186 if (!cpuctx->hrtimer_active) { 1187 cpuctx->hrtimer_active = 1; 1188 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1189 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1190 } 1191 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1192 1193 return 0; 1194 } 1195 1196 void perf_pmu_disable(struct pmu *pmu) 1197 { 1198 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1199 if (!(*count)++) 1200 pmu->pmu_disable(pmu); 1201 } 1202 1203 void perf_pmu_enable(struct pmu *pmu) 1204 { 1205 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1206 if (!--(*count)) 1207 pmu->pmu_enable(pmu); 1208 } 1209 1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1211 1212 /* 1213 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1214 * perf_event_task_tick() are fully serialized because they're strictly cpu 1215 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1216 * disabled, while perf_event_task_tick is called from IRQ context. 1217 */ 1218 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1219 { 1220 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1221 1222 lockdep_assert_irqs_disabled(); 1223 1224 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1225 1226 list_add(&ctx->active_ctx_list, head); 1227 } 1228 1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1230 { 1231 lockdep_assert_irqs_disabled(); 1232 1233 WARN_ON(list_empty(&ctx->active_ctx_list)); 1234 1235 list_del_init(&ctx->active_ctx_list); 1236 } 1237 1238 static void get_ctx(struct perf_event_context *ctx) 1239 { 1240 refcount_inc(&ctx->refcount); 1241 } 1242 1243 static void *alloc_task_ctx_data(struct pmu *pmu) 1244 { 1245 if (pmu->task_ctx_cache) 1246 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1247 1248 return NULL; 1249 } 1250 1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1252 { 1253 if (pmu->task_ctx_cache && task_ctx_data) 1254 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1255 } 1256 1257 static void free_ctx(struct rcu_head *head) 1258 { 1259 struct perf_event_context *ctx; 1260 1261 ctx = container_of(head, struct perf_event_context, rcu_head); 1262 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1263 kfree(ctx); 1264 } 1265 1266 static void put_ctx(struct perf_event_context *ctx) 1267 { 1268 if (refcount_dec_and_test(&ctx->refcount)) { 1269 if (ctx->parent_ctx) 1270 put_ctx(ctx->parent_ctx); 1271 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1272 put_task_struct(ctx->task); 1273 call_rcu(&ctx->rcu_head, free_ctx); 1274 } 1275 } 1276 1277 /* 1278 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1279 * perf_pmu_migrate_context() we need some magic. 1280 * 1281 * Those places that change perf_event::ctx will hold both 1282 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1283 * 1284 * Lock ordering is by mutex address. There are two other sites where 1285 * perf_event_context::mutex nests and those are: 1286 * 1287 * - perf_event_exit_task_context() [ child , 0 ] 1288 * perf_event_exit_event() 1289 * put_event() [ parent, 1 ] 1290 * 1291 * - perf_event_init_context() [ parent, 0 ] 1292 * inherit_task_group() 1293 * inherit_group() 1294 * inherit_event() 1295 * perf_event_alloc() 1296 * perf_init_event() 1297 * perf_try_init_event() [ child , 1 ] 1298 * 1299 * While it appears there is an obvious deadlock here -- the parent and child 1300 * nesting levels are inverted between the two. This is in fact safe because 1301 * life-time rules separate them. That is an exiting task cannot fork, and a 1302 * spawning task cannot (yet) exit. 1303 * 1304 * But remember that these are parent<->child context relations, and 1305 * migration does not affect children, therefore these two orderings should not 1306 * interact. 1307 * 1308 * The change in perf_event::ctx does not affect children (as claimed above) 1309 * because the sys_perf_event_open() case will install a new event and break 1310 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1311 * concerned with cpuctx and that doesn't have children. 1312 * 1313 * The places that change perf_event::ctx will issue: 1314 * 1315 * perf_remove_from_context(); 1316 * synchronize_rcu(); 1317 * perf_install_in_context(); 1318 * 1319 * to affect the change. The remove_from_context() + synchronize_rcu() should 1320 * quiesce the event, after which we can install it in the new location. This 1321 * means that only external vectors (perf_fops, prctl) can perturb the event 1322 * while in transit. Therefore all such accessors should also acquire 1323 * perf_event_context::mutex to serialize against this. 1324 * 1325 * However; because event->ctx can change while we're waiting to acquire 1326 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1327 * function. 1328 * 1329 * Lock order: 1330 * exec_update_lock 1331 * task_struct::perf_event_mutex 1332 * perf_event_context::mutex 1333 * perf_event::child_mutex; 1334 * perf_event_context::lock 1335 * perf_event::mmap_mutex 1336 * mmap_lock 1337 * perf_addr_filters_head::lock 1338 * 1339 * cpu_hotplug_lock 1340 * pmus_lock 1341 * cpuctx->mutex / perf_event_context::mutex 1342 */ 1343 static struct perf_event_context * 1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1345 { 1346 struct perf_event_context *ctx; 1347 1348 again: 1349 rcu_read_lock(); 1350 ctx = READ_ONCE(event->ctx); 1351 if (!refcount_inc_not_zero(&ctx->refcount)) { 1352 rcu_read_unlock(); 1353 goto again; 1354 } 1355 rcu_read_unlock(); 1356 1357 mutex_lock_nested(&ctx->mutex, nesting); 1358 if (event->ctx != ctx) { 1359 mutex_unlock(&ctx->mutex); 1360 put_ctx(ctx); 1361 goto again; 1362 } 1363 1364 return ctx; 1365 } 1366 1367 static inline struct perf_event_context * 1368 perf_event_ctx_lock(struct perf_event *event) 1369 { 1370 return perf_event_ctx_lock_nested(event, 0); 1371 } 1372 1373 static void perf_event_ctx_unlock(struct perf_event *event, 1374 struct perf_event_context *ctx) 1375 { 1376 mutex_unlock(&ctx->mutex); 1377 put_ctx(ctx); 1378 } 1379 1380 /* 1381 * This must be done under the ctx->lock, such as to serialize against 1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1383 * calling scheduler related locks and ctx->lock nests inside those. 1384 */ 1385 static __must_check struct perf_event_context * 1386 unclone_ctx(struct perf_event_context *ctx) 1387 { 1388 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1389 1390 lockdep_assert_held(&ctx->lock); 1391 1392 if (parent_ctx) 1393 ctx->parent_ctx = NULL; 1394 ctx->generation++; 1395 1396 return parent_ctx; 1397 } 1398 1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1400 enum pid_type type) 1401 { 1402 u32 nr; 1403 /* 1404 * only top level events have the pid namespace they were created in 1405 */ 1406 if (event->parent) 1407 event = event->parent; 1408 1409 nr = __task_pid_nr_ns(p, type, event->ns); 1410 /* avoid -1 if it is idle thread or runs in another ns */ 1411 if (!nr && !pid_alive(p)) 1412 nr = -1; 1413 return nr; 1414 } 1415 1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1417 { 1418 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1419 } 1420 1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1422 { 1423 return perf_event_pid_type(event, p, PIDTYPE_PID); 1424 } 1425 1426 /* 1427 * If we inherit events we want to return the parent event id 1428 * to userspace. 1429 */ 1430 static u64 primary_event_id(struct perf_event *event) 1431 { 1432 u64 id = event->id; 1433 1434 if (event->parent) 1435 id = event->parent->id; 1436 1437 return id; 1438 } 1439 1440 /* 1441 * Get the perf_event_context for a task and lock it. 1442 * 1443 * This has to cope with the fact that until it is locked, 1444 * the context could get moved to another task. 1445 */ 1446 static struct perf_event_context * 1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1448 { 1449 struct perf_event_context *ctx; 1450 1451 retry: 1452 /* 1453 * One of the few rules of preemptible RCU is that one cannot do 1454 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1455 * part of the read side critical section was irqs-enabled -- see 1456 * rcu_read_unlock_special(). 1457 * 1458 * Since ctx->lock nests under rq->lock we must ensure the entire read 1459 * side critical section has interrupts disabled. 1460 */ 1461 local_irq_save(*flags); 1462 rcu_read_lock(); 1463 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1464 if (ctx) { 1465 /* 1466 * If this context is a clone of another, it might 1467 * get swapped for another underneath us by 1468 * perf_event_task_sched_out, though the 1469 * rcu_read_lock() protects us from any context 1470 * getting freed. Lock the context and check if it 1471 * got swapped before we could get the lock, and retry 1472 * if so. If we locked the right context, then it 1473 * can't get swapped on us any more. 1474 */ 1475 raw_spin_lock(&ctx->lock); 1476 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1477 raw_spin_unlock(&ctx->lock); 1478 rcu_read_unlock(); 1479 local_irq_restore(*flags); 1480 goto retry; 1481 } 1482 1483 if (ctx->task == TASK_TOMBSTONE || 1484 !refcount_inc_not_zero(&ctx->refcount)) { 1485 raw_spin_unlock(&ctx->lock); 1486 ctx = NULL; 1487 } else { 1488 WARN_ON_ONCE(ctx->task != task); 1489 } 1490 } 1491 rcu_read_unlock(); 1492 if (!ctx) 1493 local_irq_restore(*flags); 1494 return ctx; 1495 } 1496 1497 /* 1498 * Get the context for a task and increment its pin_count so it 1499 * can't get swapped to another task. This also increments its 1500 * reference count so that the context can't get freed. 1501 */ 1502 static struct perf_event_context * 1503 perf_pin_task_context(struct task_struct *task, int ctxn) 1504 { 1505 struct perf_event_context *ctx; 1506 unsigned long flags; 1507 1508 ctx = perf_lock_task_context(task, ctxn, &flags); 1509 if (ctx) { 1510 ++ctx->pin_count; 1511 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1512 } 1513 return ctx; 1514 } 1515 1516 static void perf_unpin_context(struct perf_event_context *ctx) 1517 { 1518 unsigned long flags; 1519 1520 raw_spin_lock_irqsave(&ctx->lock, flags); 1521 --ctx->pin_count; 1522 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1523 } 1524 1525 /* 1526 * Update the record of the current time in a context. 1527 */ 1528 static void update_context_time(struct perf_event_context *ctx) 1529 { 1530 u64 now = perf_clock(); 1531 1532 ctx->time += now - ctx->timestamp; 1533 ctx->timestamp = now; 1534 } 1535 1536 static u64 perf_event_time(struct perf_event *event) 1537 { 1538 struct perf_event_context *ctx = event->ctx; 1539 1540 if (is_cgroup_event(event)) 1541 return perf_cgroup_event_time(event); 1542 1543 return ctx ? ctx->time : 0; 1544 } 1545 1546 static enum event_type_t get_event_type(struct perf_event *event) 1547 { 1548 struct perf_event_context *ctx = event->ctx; 1549 enum event_type_t event_type; 1550 1551 lockdep_assert_held(&ctx->lock); 1552 1553 /* 1554 * It's 'group type', really, because if our group leader is 1555 * pinned, so are we. 1556 */ 1557 if (event->group_leader != event) 1558 event = event->group_leader; 1559 1560 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1561 if (!ctx->task) 1562 event_type |= EVENT_CPU; 1563 1564 return event_type; 1565 } 1566 1567 /* 1568 * Helper function to initialize event group nodes. 1569 */ 1570 static void init_event_group(struct perf_event *event) 1571 { 1572 RB_CLEAR_NODE(&event->group_node); 1573 event->group_index = 0; 1574 } 1575 1576 /* 1577 * Extract pinned or flexible groups from the context 1578 * based on event attrs bits. 1579 */ 1580 static struct perf_event_groups * 1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1582 { 1583 if (event->attr.pinned) 1584 return &ctx->pinned_groups; 1585 else 1586 return &ctx->flexible_groups; 1587 } 1588 1589 /* 1590 * Helper function to initializes perf_event_group trees. 1591 */ 1592 static void perf_event_groups_init(struct perf_event_groups *groups) 1593 { 1594 groups->tree = RB_ROOT; 1595 groups->index = 0; 1596 } 1597 1598 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1599 { 1600 struct cgroup *cgroup = NULL; 1601 1602 #ifdef CONFIG_CGROUP_PERF 1603 if (event->cgrp) 1604 cgroup = event->cgrp->css.cgroup; 1605 #endif 1606 1607 return cgroup; 1608 } 1609 1610 /* 1611 * Compare function for event groups; 1612 * 1613 * Implements complex key that first sorts by CPU and then by virtual index 1614 * which provides ordering when rotating groups for the same CPU. 1615 */ 1616 static __always_inline int 1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1618 const u64 left_group_index, const struct perf_event *right) 1619 { 1620 if (left_cpu < right->cpu) 1621 return -1; 1622 if (left_cpu > right->cpu) 1623 return 1; 1624 1625 #ifdef CONFIG_CGROUP_PERF 1626 { 1627 const struct cgroup *right_cgroup = event_cgroup(right); 1628 1629 if (left_cgroup != right_cgroup) { 1630 if (!left_cgroup) { 1631 /* 1632 * Left has no cgroup but right does, no 1633 * cgroups come first. 1634 */ 1635 return -1; 1636 } 1637 if (!right_cgroup) { 1638 /* 1639 * Right has no cgroup but left does, no 1640 * cgroups come first. 1641 */ 1642 return 1; 1643 } 1644 /* Two dissimilar cgroups, order by id. */ 1645 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1646 return -1; 1647 1648 return 1; 1649 } 1650 } 1651 #endif 1652 1653 if (left_group_index < right->group_index) 1654 return -1; 1655 if (left_group_index > right->group_index) 1656 return 1; 1657 1658 return 0; 1659 } 1660 1661 #define __node_2_pe(node) \ 1662 rb_entry((node), struct perf_event, group_node) 1663 1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1665 { 1666 struct perf_event *e = __node_2_pe(a); 1667 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1668 __node_2_pe(b)) < 0; 1669 } 1670 1671 struct __group_key { 1672 int cpu; 1673 struct cgroup *cgroup; 1674 }; 1675 1676 static inline int __group_cmp(const void *key, const struct rb_node *node) 1677 { 1678 const struct __group_key *a = key; 1679 const struct perf_event *b = __node_2_pe(node); 1680 1681 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1682 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1683 } 1684 1685 /* 1686 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1687 * key (see perf_event_groups_less). This places it last inside the CPU 1688 * subtree. 1689 */ 1690 static void 1691 perf_event_groups_insert(struct perf_event_groups *groups, 1692 struct perf_event *event) 1693 { 1694 event->group_index = ++groups->index; 1695 1696 rb_add(&event->group_node, &groups->tree, __group_less); 1697 } 1698 1699 /* 1700 * Helper function to insert event into the pinned or flexible groups. 1701 */ 1702 static void 1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1704 { 1705 struct perf_event_groups *groups; 1706 1707 groups = get_event_groups(event, ctx); 1708 perf_event_groups_insert(groups, event); 1709 } 1710 1711 /* 1712 * Delete a group from a tree. 1713 */ 1714 static void 1715 perf_event_groups_delete(struct perf_event_groups *groups, 1716 struct perf_event *event) 1717 { 1718 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1719 RB_EMPTY_ROOT(&groups->tree)); 1720 1721 rb_erase(&event->group_node, &groups->tree); 1722 init_event_group(event); 1723 } 1724 1725 /* 1726 * Helper function to delete event from its groups. 1727 */ 1728 static void 1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1730 { 1731 struct perf_event_groups *groups; 1732 1733 groups = get_event_groups(event, ctx); 1734 perf_event_groups_delete(groups, event); 1735 } 1736 1737 /* 1738 * Get the leftmost event in the cpu/cgroup subtree. 1739 */ 1740 static struct perf_event * 1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1742 struct cgroup *cgrp) 1743 { 1744 struct __group_key key = { 1745 .cpu = cpu, 1746 .cgroup = cgrp, 1747 }; 1748 struct rb_node *node; 1749 1750 node = rb_find_first(&key, &groups->tree, __group_cmp); 1751 if (node) 1752 return __node_2_pe(node); 1753 1754 return NULL; 1755 } 1756 1757 /* 1758 * Like rb_entry_next_safe() for the @cpu subtree. 1759 */ 1760 static struct perf_event * 1761 perf_event_groups_next(struct perf_event *event) 1762 { 1763 struct __group_key key = { 1764 .cpu = event->cpu, 1765 .cgroup = event_cgroup(event), 1766 }; 1767 struct rb_node *next; 1768 1769 next = rb_next_match(&key, &event->group_node, __group_cmp); 1770 if (next) 1771 return __node_2_pe(next); 1772 1773 return NULL; 1774 } 1775 1776 /* 1777 * Iterate through the whole groups tree. 1778 */ 1779 #define perf_event_groups_for_each(event, groups) \ 1780 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1781 typeof(*event), group_node); event; \ 1782 event = rb_entry_safe(rb_next(&event->group_node), \ 1783 typeof(*event), group_node)) 1784 1785 /* 1786 * Add an event from the lists for its context. 1787 * Must be called with ctx->mutex and ctx->lock held. 1788 */ 1789 static void 1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1791 { 1792 lockdep_assert_held(&ctx->lock); 1793 1794 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1795 event->attach_state |= PERF_ATTACH_CONTEXT; 1796 1797 event->tstamp = perf_event_time(event); 1798 1799 /* 1800 * If we're a stand alone event or group leader, we go to the context 1801 * list, group events are kept attached to the group so that 1802 * perf_group_detach can, at all times, locate all siblings. 1803 */ 1804 if (event->group_leader == event) { 1805 event->group_caps = event->event_caps; 1806 add_event_to_groups(event, ctx); 1807 } 1808 1809 list_add_rcu(&event->event_entry, &ctx->event_list); 1810 ctx->nr_events++; 1811 if (event->attr.inherit_stat) 1812 ctx->nr_stat++; 1813 1814 if (event->state > PERF_EVENT_STATE_OFF) 1815 perf_cgroup_event_enable(event, ctx); 1816 1817 ctx->generation++; 1818 } 1819 1820 /* 1821 * Initialize event state based on the perf_event_attr::disabled. 1822 */ 1823 static inline void perf_event__state_init(struct perf_event *event) 1824 { 1825 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1826 PERF_EVENT_STATE_INACTIVE; 1827 } 1828 1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1830 { 1831 int entry = sizeof(u64); /* value */ 1832 int size = 0; 1833 int nr = 1; 1834 1835 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1836 size += sizeof(u64); 1837 1838 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1839 size += sizeof(u64); 1840 1841 if (event->attr.read_format & PERF_FORMAT_ID) 1842 entry += sizeof(u64); 1843 1844 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1845 nr += nr_siblings; 1846 size += sizeof(u64); 1847 } 1848 1849 size += entry * nr; 1850 event->read_size = size; 1851 } 1852 1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1854 { 1855 struct perf_sample_data *data; 1856 u16 size = 0; 1857 1858 if (sample_type & PERF_SAMPLE_IP) 1859 size += sizeof(data->ip); 1860 1861 if (sample_type & PERF_SAMPLE_ADDR) 1862 size += sizeof(data->addr); 1863 1864 if (sample_type & PERF_SAMPLE_PERIOD) 1865 size += sizeof(data->period); 1866 1867 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1868 size += sizeof(data->weight.full); 1869 1870 if (sample_type & PERF_SAMPLE_READ) 1871 size += event->read_size; 1872 1873 if (sample_type & PERF_SAMPLE_DATA_SRC) 1874 size += sizeof(data->data_src.val); 1875 1876 if (sample_type & PERF_SAMPLE_TRANSACTION) 1877 size += sizeof(data->txn); 1878 1879 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1880 size += sizeof(data->phys_addr); 1881 1882 if (sample_type & PERF_SAMPLE_CGROUP) 1883 size += sizeof(data->cgroup); 1884 1885 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1886 size += sizeof(data->data_page_size); 1887 1888 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1889 size += sizeof(data->code_page_size); 1890 1891 event->header_size = size; 1892 } 1893 1894 /* 1895 * Called at perf_event creation and when events are attached/detached from a 1896 * group. 1897 */ 1898 static void perf_event__header_size(struct perf_event *event) 1899 { 1900 __perf_event_read_size(event, 1901 event->group_leader->nr_siblings); 1902 __perf_event_header_size(event, event->attr.sample_type); 1903 } 1904 1905 static void perf_event__id_header_size(struct perf_event *event) 1906 { 1907 struct perf_sample_data *data; 1908 u64 sample_type = event->attr.sample_type; 1909 u16 size = 0; 1910 1911 if (sample_type & PERF_SAMPLE_TID) 1912 size += sizeof(data->tid_entry); 1913 1914 if (sample_type & PERF_SAMPLE_TIME) 1915 size += sizeof(data->time); 1916 1917 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1918 size += sizeof(data->id); 1919 1920 if (sample_type & PERF_SAMPLE_ID) 1921 size += sizeof(data->id); 1922 1923 if (sample_type & PERF_SAMPLE_STREAM_ID) 1924 size += sizeof(data->stream_id); 1925 1926 if (sample_type & PERF_SAMPLE_CPU) 1927 size += sizeof(data->cpu_entry); 1928 1929 event->id_header_size = size; 1930 } 1931 1932 static bool perf_event_validate_size(struct perf_event *event) 1933 { 1934 /* 1935 * The values computed here will be over-written when we actually 1936 * attach the event. 1937 */ 1938 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1939 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1940 perf_event__id_header_size(event); 1941 1942 /* 1943 * Sum the lot; should not exceed the 64k limit we have on records. 1944 * Conservative limit to allow for callchains and other variable fields. 1945 */ 1946 if (event->read_size + event->header_size + 1947 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1948 return false; 1949 1950 return true; 1951 } 1952 1953 static void perf_group_attach(struct perf_event *event) 1954 { 1955 struct perf_event *group_leader = event->group_leader, *pos; 1956 1957 lockdep_assert_held(&event->ctx->lock); 1958 1959 /* 1960 * We can have double attach due to group movement in perf_event_open. 1961 */ 1962 if (event->attach_state & PERF_ATTACH_GROUP) 1963 return; 1964 1965 event->attach_state |= PERF_ATTACH_GROUP; 1966 1967 if (group_leader == event) 1968 return; 1969 1970 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1971 1972 group_leader->group_caps &= event->event_caps; 1973 1974 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1975 group_leader->nr_siblings++; 1976 1977 perf_event__header_size(group_leader); 1978 1979 for_each_sibling_event(pos, group_leader) 1980 perf_event__header_size(pos); 1981 } 1982 1983 /* 1984 * Remove an event from the lists for its context. 1985 * Must be called with ctx->mutex and ctx->lock held. 1986 */ 1987 static void 1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1989 { 1990 WARN_ON_ONCE(event->ctx != ctx); 1991 lockdep_assert_held(&ctx->lock); 1992 1993 /* 1994 * We can have double detach due to exit/hot-unplug + close. 1995 */ 1996 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1997 return; 1998 1999 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2000 2001 ctx->nr_events--; 2002 if (event->attr.inherit_stat) 2003 ctx->nr_stat--; 2004 2005 list_del_rcu(&event->event_entry); 2006 2007 if (event->group_leader == event) 2008 del_event_from_groups(event, ctx); 2009 2010 /* 2011 * If event was in error state, then keep it 2012 * that way, otherwise bogus counts will be 2013 * returned on read(). The only way to get out 2014 * of error state is by explicit re-enabling 2015 * of the event 2016 */ 2017 if (event->state > PERF_EVENT_STATE_OFF) { 2018 perf_cgroup_event_disable(event, ctx); 2019 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2020 } 2021 2022 ctx->generation++; 2023 } 2024 2025 static int 2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2027 { 2028 if (!has_aux(aux_event)) 2029 return 0; 2030 2031 if (!event->pmu->aux_output_match) 2032 return 0; 2033 2034 return event->pmu->aux_output_match(aux_event); 2035 } 2036 2037 static void put_event(struct perf_event *event); 2038 static void event_sched_out(struct perf_event *event, 2039 struct perf_cpu_context *cpuctx, 2040 struct perf_event_context *ctx); 2041 2042 static void perf_put_aux_event(struct perf_event *event) 2043 { 2044 struct perf_event_context *ctx = event->ctx; 2045 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2046 struct perf_event *iter; 2047 2048 /* 2049 * If event uses aux_event tear down the link 2050 */ 2051 if (event->aux_event) { 2052 iter = event->aux_event; 2053 event->aux_event = NULL; 2054 put_event(iter); 2055 return; 2056 } 2057 2058 /* 2059 * If the event is an aux_event, tear down all links to 2060 * it from other events. 2061 */ 2062 for_each_sibling_event(iter, event->group_leader) { 2063 if (iter->aux_event != event) 2064 continue; 2065 2066 iter->aux_event = NULL; 2067 put_event(event); 2068 2069 /* 2070 * If it's ACTIVE, schedule it out and put it into ERROR 2071 * state so that we don't try to schedule it again. Note 2072 * that perf_event_enable() will clear the ERROR status. 2073 */ 2074 event_sched_out(iter, cpuctx, ctx); 2075 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2076 } 2077 } 2078 2079 static bool perf_need_aux_event(struct perf_event *event) 2080 { 2081 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2082 } 2083 2084 static int perf_get_aux_event(struct perf_event *event, 2085 struct perf_event *group_leader) 2086 { 2087 /* 2088 * Our group leader must be an aux event if we want to be 2089 * an aux_output. This way, the aux event will precede its 2090 * aux_output events in the group, and therefore will always 2091 * schedule first. 2092 */ 2093 if (!group_leader) 2094 return 0; 2095 2096 /* 2097 * aux_output and aux_sample_size are mutually exclusive. 2098 */ 2099 if (event->attr.aux_output && event->attr.aux_sample_size) 2100 return 0; 2101 2102 if (event->attr.aux_output && 2103 !perf_aux_output_match(event, group_leader)) 2104 return 0; 2105 2106 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2107 return 0; 2108 2109 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2110 return 0; 2111 2112 /* 2113 * Link aux_outputs to their aux event; this is undone in 2114 * perf_group_detach() by perf_put_aux_event(). When the 2115 * group in torn down, the aux_output events loose their 2116 * link to the aux_event and can't schedule any more. 2117 */ 2118 event->aux_event = group_leader; 2119 2120 return 1; 2121 } 2122 2123 static inline struct list_head *get_event_list(struct perf_event *event) 2124 { 2125 struct perf_event_context *ctx = event->ctx; 2126 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2127 } 2128 2129 /* 2130 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2131 * cannot exist on their own, schedule them out and move them into the ERROR 2132 * state. Also see _perf_event_enable(), it will not be able to recover 2133 * this ERROR state. 2134 */ 2135 static inline void perf_remove_sibling_event(struct perf_event *event) 2136 { 2137 struct perf_event_context *ctx = event->ctx; 2138 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2139 2140 event_sched_out(event, cpuctx, ctx); 2141 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2142 } 2143 2144 static void perf_group_detach(struct perf_event *event) 2145 { 2146 struct perf_event *leader = event->group_leader; 2147 struct perf_event *sibling, *tmp; 2148 struct perf_event_context *ctx = event->ctx; 2149 2150 lockdep_assert_held(&ctx->lock); 2151 2152 /* 2153 * We can have double detach due to exit/hot-unplug + close. 2154 */ 2155 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2156 return; 2157 2158 event->attach_state &= ~PERF_ATTACH_GROUP; 2159 2160 perf_put_aux_event(event); 2161 2162 /* 2163 * If this is a sibling, remove it from its group. 2164 */ 2165 if (leader != event) { 2166 list_del_init(&event->sibling_list); 2167 event->group_leader->nr_siblings--; 2168 goto out; 2169 } 2170 2171 /* 2172 * If this was a group event with sibling events then 2173 * upgrade the siblings to singleton events by adding them 2174 * to whatever list we are on. 2175 */ 2176 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2177 2178 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2179 perf_remove_sibling_event(sibling); 2180 2181 sibling->group_leader = sibling; 2182 list_del_init(&sibling->sibling_list); 2183 2184 /* Inherit group flags from the previous leader */ 2185 sibling->group_caps = event->group_caps; 2186 2187 if (!RB_EMPTY_NODE(&event->group_node)) { 2188 add_event_to_groups(sibling, event->ctx); 2189 2190 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2191 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2192 } 2193 2194 WARN_ON_ONCE(sibling->ctx != event->ctx); 2195 } 2196 2197 out: 2198 for_each_sibling_event(tmp, leader) 2199 perf_event__header_size(tmp); 2200 2201 perf_event__header_size(leader); 2202 } 2203 2204 static void sync_child_event(struct perf_event *child_event); 2205 2206 static void perf_child_detach(struct perf_event *event) 2207 { 2208 struct perf_event *parent_event = event->parent; 2209 2210 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2211 return; 2212 2213 event->attach_state &= ~PERF_ATTACH_CHILD; 2214 2215 if (WARN_ON_ONCE(!parent_event)) 2216 return; 2217 2218 lockdep_assert_held(&parent_event->child_mutex); 2219 2220 sync_child_event(event); 2221 list_del_init(&event->child_list); 2222 } 2223 2224 static bool is_orphaned_event(struct perf_event *event) 2225 { 2226 return event->state == PERF_EVENT_STATE_DEAD; 2227 } 2228 2229 static inline int __pmu_filter_match(struct perf_event *event) 2230 { 2231 struct pmu *pmu = event->pmu; 2232 return pmu->filter_match ? pmu->filter_match(event) : 1; 2233 } 2234 2235 /* 2236 * Check whether we should attempt to schedule an event group based on 2237 * PMU-specific filtering. An event group can consist of HW and SW events, 2238 * potentially with a SW leader, so we must check all the filters, to 2239 * determine whether a group is schedulable: 2240 */ 2241 static inline int pmu_filter_match(struct perf_event *event) 2242 { 2243 struct perf_event *sibling; 2244 2245 if (!__pmu_filter_match(event)) 2246 return 0; 2247 2248 for_each_sibling_event(sibling, event) { 2249 if (!__pmu_filter_match(sibling)) 2250 return 0; 2251 } 2252 2253 return 1; 2254 } 2255 2256 static inline int 2257 event_filter_match(struct perf_event *event) 2258 { 2259 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2260 perf_cgroup_match(event) && pmu_filter_match(event); 2261 } 2262 2263 static void 2264 event_sched_out(struct perf_event *event, 2265 struct perf_cpu_context *cpuctx, 2266 struct perf_event_context *ctx) 2267 { 2268 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2269 2270 WARN_ON_ONCE(event->ctx != ctx); 2271 lockdep_assert_held(&ctx->lock); 2272 2273 if (event->state != PERF_EVENT_STATE_ACTIVE) 2274 return; 2275 2276 /* 2277 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2278 * we can schedule events _OUT_ individually through things like 2279 * __perf_remove_from_context(). 2280 */ 2281 list_del_init(&event->active_list); 2282 2283 perf_pmu_disable(event->pmu); 2284 2285 event->pmu->del(event, 0); 2286 event->oncpu = -1; 2287 2288 if (READ_ONCE(event->pending_disable) >= 0) { 2289 WRITE_ONCE(event->pending_disable, -1); 2290 perf_cgroup_event_disable(event, ctx); 2291 state = PERF_EVENT_STATE_OFF; 2292 } 2293 perf_event_set_state(event, state); 2294 2295 if (!is_software_event(event)) 2296 cpuctx->active_oncpu--; 2297 if (!--ctx->nr_active) 2298 perf_event_ctx_deactivate(ctx); 2299 if (event->attr.freq && event->attr.sample_freq) 2300 ctx->nr_freq--; 2301 if (event->attr.exclusive || !cpuctx->active_oncpu) 2302 cpuctx->exclusive = 0; 2303 2304 perf_pmu_enable(event->pmu); 2305 } 2306 2307 static void 2308 group_sched_out(struct perf_event *group_event, 2309 struct perf_cpu_context *cpuctx, 2310 struct perf_event_context *ctx) 2311 { 2312 struct perf_event *event; 2313 2314 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2315 return; 2316 2317 perf_pmu_disable(ctx->pmu); 2318 2319 event_sched_out(group_event, cpuctx, ctx); 2320 2321 /* 2322 * Schedule out siblings (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) 2325 event_sched_out(event, cpuctx, ctx); 2326 2327 perf_pmu_enable(ctx->pmu); 2328 } 2329 2330 #define DETACH_GROUP 0x01UL 2331 #define DETACH_CHILD 0x02UL 2332 2333 /* 2334 * Cross CPU call to remove a performance event 2335 * 2336 * We disable the event on the hardware level first. After that we 2337 * remove it from the context list. 2338 */ 2339 static void 2340 __perf_remove_from_context(struct perf_event *event, 2341 struct perf_cpu_context *cpuctx, 2342 struct perf_event_context *ctx, 2343 void *info) 2344 { 2345 unsigned long flags = (unsigned long)info; 2346 2347 if (ctx->is_active & EVENT_TIME) { 2348 update_context_time(ctx); 2349 update_cgrp_time_from_cpuctx(cpuctx); 2350 } 2351 2352 event_sched_out(event, cpuctx, ctx); 2353 if (flags & DETACH_GROUP) 2354 perf_group_detach(event); 2355 if (flags & DETACH_CHILD) 2356 perf_child_detach(event); 2357 list_del_event(event, ctx); 2358 2359 if (!ctx->nr_events && ctx->is_active) { 2360 ctx->is_active = 0; 2361 ctx->rotate_necessary = 0; 2362 if (ctx->task) { 2363 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2364 cpuctx->task_ctx = NULL; 2365 } 2366 } 2367 } 2368 2369 /* 2370 * Remove the event from a task's (or a CPU's) list of events. 2371 * 2372 * If event->ctx is a cloned context, callers must make sure that 2373 * every task struct that event->ctx->task could possibly point to 2374 * remains valid. This is OK when called from perf_release since 2375 * that only calls us on the top-level context, which can't be a clone. 2376 * When called from perf_event_exit_task, it's OK because the 2377 * context has been detached from its task. 2378 */ 2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2380 { 2381 struct perf_event_context *ctx = event->ctx; 2382 2383 lockdep_assert_held(&ctx->mutex); 2384 2385 /* 2386 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2387 * to work in the face of TASK_TOMBSTONE, unlike every other 2388 * event_function_call() user. 2389 */ 2390 raw_spin_lock_irq(&ctx->lock); 2391 if (!ctx->is_active) { 2392 __perf_remove_from_context(event, __get_cpu_context(ctx), 2393 ctx, (void *)flags); 2394 raw_spin_unlock_irq(&ctx->lock); 2395 return; 2396 } 2397 raw_spin_unlock_irq(&ctx->lock); 2398 2399 event_function_call(event, __perf_remove_from_context, (void *)flags); 2400 } 2401 2402 /* 2403 * Cross CPU call to disable a performance event 2404 */ 2405 static void __perf_event_disable(struct perf_event *event, 2406 struct perf_cpu_context *cpuctx, 2407 struct perf_event_context *ctx, 2408 void *info) 2409 { 2410 if (event->state < PERF_EVENT_STATE_INACTIVE) 2411 return; 2412 2413 if (ctx->is_active & EVENT_TIME) { 2414 update_context_time(ctx); 2415 update_cgrp_time_from_event(event); 2416 } 2417 2418 if (event == event->group_leader) 2419 group_sched_out(event, cpuctx, ctx); 2420 else 2421 event_sched_out(event, cpuctx, ctx); 2422 2423 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2424 perf_cgroup_event_disable(event, ctx); 2425 } 2426 2427 /* 2428 * Disable an event. 2429 * 2430 * If event->ctx is a cloned context, callers must make sure that 2431 * every task struct that event->ctx->task could possibly point to 2432 * remains valid. This condition is satisfied when called through 2433 * perf_event_for_each_child or perf_event_for_each because they 2434 * hold the top-level event's child_mutex, so any descendant that 2435 * goes to exit will block in perf_event_exit_event(). 2436 * 2437 * When called from perf_pending_event it's OK because event->ctx 2438 * is the current context on this CPU and preemption is disabled, 2439 * hence we can't get into perf_event_task_sched_out for this context. 2440 */ 2441 static void _perf_event_disable(struct perf_event *event) 2442 { 2443 struct perf_event_context *ctx = event->ctx; 2444 2445 raw_spin_lock_irq(&ctx->lock); 2446 if (event->state <= PERF_EVENT_STATE_OFF) { 2447 raw_spin_unlock_irq(&ctx->lock); 2448 return; 2449 } 2450 raw_spin_unlock_irq(&ctx->lock); 2451 2452 event_function_call(event, __perf_event_disable, NULL); 2453 } 2454 2455 void perf_event_disable_local(struct perf_event *event) 2456 { 2457 event_function_local(event, __perf_event_disable, NULL); 2458 } 2459 2460 /* 2461 * Strictly speaking kernel users cannot create groups and therefore this 2462 * interface does not need the perf_event_ctx_lock() magic. 2463 */ 2464 void perf_event_disable(struct perf_event *event) 2465 { 2466 struct perf_event_context *ctx; 2467 2468 ctx = perf_event_ctx_lock(event); 2469 _perf_event_disable(event); 2470 perf_event_ctx_unlock(event, ctx); 2471 } 2472 EXPORT_SYMBOL_GPL(perf_event_disable); 2473 2474 void perf_event_disable_inatomic(struct perf_event *event) 2475 { 2476 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2477 /* can fail, see perf_pending_event_disable() */ 2478 irq_work_queue(&event->pending); 2479 } 2480 2481 static void perf_set_shadow_time(struct perf_event *event, 2482 struct perf_event_context *ctx) 2483 { 2484 /* 2485 * use the correct time source for the time snapshot 2486 * 2487 * We could get by without this by leveraging the 2488 * fact that to get to this function, the caller 2489 * has most likely already called update_context_time() 2490 * and update_cgrp_time_xx() and thus both timestamp 2491 * are identical (or very close). Given that tstamp is, 2492 * already adjusted for cgroup, we could say that: 2493 * tstamp - ctx->timestamp 2494 * is equivalent to 2495 * tstamp - cgrp->timestamp. 2496 * 2497 * Then, in perf_output_read(), the calculation would 2498 * work with no changes because: 2499 * - event is guaranteed scheduled in 2500 * - no scheduled out in between 2501 * - thus the timestamp would be the same 2502 * 2503 * But this is a bit hairy. 2504 * 2505 * So instead, we have an explicit cgroup call to remain 2506 * within the time source all along. We believe it 2507 * is cleaner and simpler to understand. 2508 */ 2509 if (is_cgroup_event(event)) 2510 perf_cgroup_set_shadow_time(event, event->tstamp); 2511 else 2512 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2513 } 2514 2515 #define MAX_INTERRUPTS (~0ULL) 2516 2517 static void perf_log_throttle(struct perf_event *event, int enable); 2518 static void perf_log_itrace_start(struct perf_event *event); 2519 2520 static int 2521 event_sched_in(struct perf_event *event, 2522 struct perf_cpu_context *cpuctx, 2523 struct perf_event_context *ctx) 2524 { 2525 int ret = 0; 2526 2527 WARN_ON_ONCE(event->ctx != ctx); 2528 2529 lockdep_assert_held(&ctx->lock); 2530 2531 if (event->state <= PERF_EVENT_STATE_OFF) 2532 return 0; 2533 2534 WRITE_ONCE(event->oncpu, smp_processor_id()); 2535 /* 2536 * Order event::oncpu write to happen before the ACTIVE state is 2537 * visible. This allows perf_event_{stop,read}() to observe the correct 2538 * ->oncpu if it sees ACTIVE. 2539 */ 2540 smp_wmb(); 2541 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2542 2543 /* 2544 * Unthrottle events, since we scheduled we might have missed several 2545 * ticks already, also for a heavily scheduling task there is little 2546 * guarantee it'll get a tick in a timely manner. 2547 */ 2548 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2549 perf_log_throttle(event, 1); 2550 event->hw.interrupts = 0; 2551 } 2552 2553 perf_pmu_disable(event->pmu); 2554 2555 perf_set_shadow_time(event, ctx); 2556 2557 perf_log_itrace_start(event); 2558 2559 if (event->pmu->add(event, PERF_EF_START)) { 2560 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2561 event->oncpu = -1; 2562 ret = -EAGAIN; 2563 goto out; 2564 } 2565 2566 if (!is_software_event(event)) 2567 cpuctx->active_oncpu++; 2568 if (!ctx->nr_active++) 2569 perf_event_ctx_activate(ctx); 2570 if (event->attr.freq && event->attr.sample_freq) 2571 ctx->nr_freq++; 2572 2573 if (event->attr.exclusive) 2574 cpuctx->exclusive = 1; 2575 2576 out: 2577 perf_pmu_enable(event->pmu); 2578 2579 return ret; 2580 } 2581 2582 static int 2583 group_sched_in(struct perf_event *group_event, 2584 struct perf_cpu_context *cpuctx, 2585 struct perf_event_context *ctx) 2586 { 2587 struct perf_event *event, *partial_group = NULL; 2588 struct pmu *pmu = ctx->pmu; 2589 2590 if (group_event->state == PERF_EVENT_STATE_OFF) 2591 return 0; 2592 2593 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2594 2595 if (event_sched_in(group_event, cpuctx, ctx)) 2596 goto error; 2597 2598 /* 2599 * Schedule in siblings as one group (if any): 2600 */ 2601 for_each_sibling_event(event, group_event) { 2602 if (event_sched_in(event, cpuctx, ctx)) { 2603 partial_group = event; 2604 goto group_error; 2605 } 2606 } 2607 2608 if (!pmu->commit_txn(pmu)) 2609 return 0; 2610 2611 group_error: 2612 /* 2613 * Groups can be scheduled in as one unit only, so undo any 2614 * partial group before returning: 2615 * The events up to the failed event are scheduled out normally. 2616 */ 2617 for_each_sibling_event(event, group_event) { 2618 if (event == partial_group) 2619 break; 2620 2621 event_sched_out(event, cpuctx, ctx); 2622 } 2623 event_sched_out(group_event, cpuctx, ctx); 2624 2625 error: 2626 pmu->cancel_txn(pmu); 2627 return -EAGAIN; 2628 } 2629 2630 /* 2631 * Work out whether we can put this event group on the CPU now. 2632 */ 2633 static int group_can_go_on(struct perf_event *event, 2634 struct perf_cpu_context *cpuctx, 2635 int can_add_hw) 2636 { 2637 /* 2638 * Groups consisting entirely of software events can always go on. 2639 */ 2640 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2641 return 1; 2642 /* 2643 * If an exclusive group is already on, no other hardware 2644 * events can go on. 2645 */ 2646 if (cpuctx->exclusive) 2647 return 0; 2648 /* 2649 * If this group is exclusive and there are already 2650 * events on the CPU, it can't go on. 2651 */ 2652 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2653 return 0; 2654 /* 2655 * Otherwise, try to add it if all previous groups were able 2656 * to go on. 2657 */ 2658 return can_add_hw; 2659 } 2660 2661 static void add_event_to_ctx(struct perf_event *event, 2662 struct perf_event_context *ctx) 2663 { 2664 list_add_event(event, ctx); 2665 perf_group_attach(event); 2666 } 2667 2668 static void ctx_sched_out(struct perf_event_context *ctx, 2669 struct perf_cpu_context *cpuctx, 2670 enum event_type_t event_type); 2671 static void 2672 ctx_sched_in(struct perf_event_context *ctx, 2673 struct perf_cpu_context *cpuctx, 2674 enum event_type_t event_type, 2675 struct task_struct *task); 2676 2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2678 struct perf_event_context *ctx, 2679 enum event_type_t event_type) 2680 { 2681 if (!cpuctx->task_ctx) 2682 return; 2683 2684 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2685 return; 2686 2687 ctx_sched_out(ctx, cpuctx, event_type); 2688 } 2689 2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2691 struct perf_event_context *ctx, 2692 struct task_struct *task) 2693 { 2694 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2695 if (ctx) 2696 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2697 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2698 if (ctx) 2699 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2700 } 2701 2702 /* 2703 * We want to maintain the following priority of scheduling: 2704 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2705 * - task pinned (EVENT_PINNED) 2706 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2707 * - task flexible (EVENT_FLEXIBLE). 2708 * 2709 * In order to avoid unscheduling and scheduling back in everything every 2710 * time an event is added, only do it for the groups of equal priority and 2711 * below. 2712 * 2713 * This can be called after a batch operation on task events, in which case 2714 * event_type is a bit mask of the types of events involved. For CPU events, 2715 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2716 */ 2717 static void ctx_resched(struct perf_cpu_context *cpuctx, 2718 struct perf_event_context *task_ctx, 2719 enum event_type_t event_type) 2720 { 2721 enum event_type_t ctx_event_type; 2722 bool cpu_event = !!(event_type & EVENT_CPU); 2723 2724 /* 2725 * If pinned groups are involved, flexible groups also need to be 2726 * scheduled out. 2727 */ 2728 if (event_type & EVENT_PINNED) 2729 event_type |= EVENT_FLEXIBLE; 2730 2731 ctx_event_type = event_type & EVENT_ALL; 2732 2733 perf_pmu_disable(cpuctx->ctx.pmu); 2734 if (task_ctx) 2735 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2736 2737 /* 2738 * Decide which cpu ctx groups to schedule out based on the types 2739 * of events that caused rescheduling: 2740 * - EVENT_CPU: schedule out corresponding groups; 2741 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2742 * - otherwise, do nothing more. 2743 */ 2744 if (cpu_event) 2745 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2746 else if (ctx_event_type & EVENT_PINNED) 2747 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2748 2749 perf_event_sched_in(cpuctx, task_ctx, current); 2750 perf_pmu_enable(cpuctx->ctx.pmu); 2751 } 2752 2753 void perf_pmu_resched(struct pmu *pmu) 2754 { 2755 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2756 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2757 2758 perf_ctx_lock(cpuctx, task_ctx); 2759 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2760 perf_ctx_unlock(cpuctx, task_ctx); 2761 } 2762 2763 /* 2764 * Cross CPU call to install and enable a performance event 2765 * 2766 * Very similar to remote_function() + event_function() but cannot assume that 2767 * things like ctx->is_active and cpuctx->task_ctx are set. 2768 */ 2769 static int __perf_install_in_context(void *info) 2770 { 2771 struct perf_event *event = info; 2772 struct perf_event_context *ctx = event->ctx; 2773 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2774 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2775 bool reprogram = true; 2776 int ret = 0; 2777 2778 raw_spin_lock(&cpuctx->ctx.lock); 2779 if (ctx->task) { 2780 raw_spin_lock(&ctx->lock); 2781 task_ctx = ctx; 2782 2783 reprogram = (ctx->task == current); 2784 2785 /* 2786 * If the task is running, it must be running on this CPU, 2787 * otherwise we cannot reprogram things. 2788 * 2789 * If its not running, we don't care, ctx->lock will 2790 * serialize against it becoming runnable. 2791 */ 2792 if (task_curr(ctx->task) && !reprogram) { 2793 ret = -ESRCH; 2794 goto unlock; 2795 } 2796 2797 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2798 } else if (task_ctx) { 2799 raw_spin_lock(&task_ctx->lock); 2800 } 2801 2802 #ifdef CONFIG_CGROUP_PERF 2803 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2804 /* 2805 * If the current cgroup doesn't match the event's 2806 * cgroup, we should not try to schedule it. 2807 */ 2808 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2809 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2810 event->cgrp->css.cgroup); 2811 } 2812 #endif 2813 2814 if (reprogram) { 2815 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2816 add_event_to_ctx(event, ctx); 2817 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2818 } else { 2819 add_event_to_ctx(event, ctx); 2820 } 2821 2822 unlock: 2823 perf_ctx_unlock(cpuctx, task_ctx); 2824 2825 return ret; 2826 } 2827 2828 static bool exclusive_event_installable(struct perf_event *event, 2829 struct perf_event_context *ctx); 2830 2831 /* 2832 * Attach a performance event to a context. 2833 * 2834 * Very similar to event_function_call, see comment there. 2835 */ 2836 static void 2837 perf_install_in_context(struct perf_event_context *ctx, 2838 struct perf_event *event, 2839 int cpu) 2840 { 2841 struct task_struct *task = READ_ONCE(ctx->task); 2842 2843 lockdep_assert_held(&ctx->mutex); 2844 2845 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2846 2847 if (event->cpu != -1) 2848 event->cpu = cpu; 2849 2850 /* 2851 * Ensures that if we can observe event->ctx, both the event and ctx 2852 * will be 'complete'. See perf_iterate_sb_cpu(). 2853 */ 2854 smp_store_release(&event->ctx, ctx); 2855 2856 /* 2857 * perf_event_attr::disabled events will not run and can be initialized 2858 * without IPI. Except when this is the first event for the context, in 2859 * that case we need the magic of the IPI to set ctx->is_active. 2860 * 2861 * The IOC_ENABLE that is sure to follow the creation of a disabled 2862 * event will issue the IPI and reprogram the hardware. 2863 */ 2864 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2865 raw_spin_lock_irq(&ctx->lock); 2866 if (ctx->task == TASK_TOMBSTONE) { 2867 raw_spin_unlock_irq(&ctx->lock); 2868 return; 2869 } 2870 add_event_to_ctx(event, ctx); 2871 raw_spin_unlock_irq(&ctx->lock); 2872 return; 2873 } 2874 2875 if (!task) { 2876 cpu_function_call(cpu, __perf_install_in_context, event); 2877 return; 2878 } 2879 2880 /* 2881 * Should not happen, we validate the ctx is still alive before calling. 2882 */ 2883 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2884 return; 2885 2886 /* 2887 * Installing events is tricky because we cannot rely on ctx->is_active 2888 * to be set in case this is the nr_events 0 -> 1 transition. 2889 * 2890 * Instead we use task_curr(), which tells us if the task is running. 2891 * However, since we use task_curr() outside of rq::lock, we can race 2892 * against the actual state. This means the result can be wrong. 2893 * 2894 * If we get a false positive, we retry, this is harmless. 2895 * 2896 * If we get a false negative, things are complicated. If we are after 2897 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2898 * value must be correct. If we're before, it doesn't matter since 2899 * perf_event_context_sched_in() will program the counter. 2900 * 2901 * However, this hinges on the remote context switch having observed 2902 * our task->perf_event_ctxp[] store, such that it will in fact take 2903 * ctx::lock in perf_event_context_sched_in(). 2904 * 2905 * We do this by task_function_call(), if the IPI fails to hit the task 2906 * we know any future context switch of task must see the 2907 * perf_event_ctpx[] store. 2908 */ 2909 2910 /* 2911 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2912 * task_cpu() load, such that if the IPI then does not find the task 2913 * running, a future context switch of that task must observe the 2914 * store. 2915 */ 2916 smp_mb(); 2917 again: 2918 if (!task_function_call(task, __perf_install_in_context, event)) 2919 return; 2920 2921 raw_spin_lock_irq(&ctx->lock); 2922 task = ctx->task; 2923 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2924 /* 2925 * Cannot happen because we already checked above (which also 2926 * cannot happen), and we hold ctx->mutex, which serializes us 2927 * against perf_event_exit_task_context(). 2928 */ 2929 raw_spin_unlock_irq(&ctx->lock); 2930 return; 2931 } 2932 /* 2933 * If the task is not running, ctx->lock will avoid it becoming so, 2934 * thus we can safely install the event. 2935 */ 2936 if (task_curr(task)) { 2937 raw_spin_unlock_irq(&ctx->lock); 2938 goto again; 2939 } 2940 add_event_to_ctx(event, ctx); 2941 raw_spin_unlock_irq(&ctx->lock); 2942 } 2943 2944 /* 2945 * Cross CPU call to enable a performance event 2946 */ 2947 static void __perf_event_enable(struct perf_event *event, 2948 struct perf_cpu_context *cpuctx, 2949 struct perf_event_context *ctx, 2950 void *info) 2951 { 2952 struct perf_event *leader = event->group_leader; 2953 struct perf_event_context *task_ctx; 2954 2955 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2956 event->state <= PERF_EVENT_STATE_ERROR) 2957 return; 2958 2959 if (ctx->is_active) 2960 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2961 2962 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2963 perf_cgroup_event_enable(event, ctx); 2964 2965 if (!ctx->is_active) 2966 return; 2967 2968 if (!event_filter_match(event)) { 2969 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2970 return; 2971 } 2972 2973 /* 2974 * If the event is in a group and isn't the group leader, 2975 * then don't put it on unless the group is on. 2976 */ 2977 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2978 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2979 return; 2980 } 2981 2982 task_ctx = cpuctx->task_ctx; 2983 if (ctx->task) 2984 WARN_ON_ONCE(task_ctx != ctx); 2985 2986 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2987 } 2988 2989 /* 2990 * Enable an event. 2991 * 2992 * If event->ctx is a cloned context, callers must make sure that 2993 * every task struct that event->ctx->task could possibly point to 2994 * remains valid. This condition is satisfied when called through 2995 * perf_event_for_each_child or perf_event_for_each as described 2996 * for perf_event_disable. 2997 */ 2998 static void _perf_event_enable(struct perf_event *event) 2999 { 3000 struct perf_event_context *ctx = event->ctx; 3001 3002 raw_spin_lock_irq(&ctx->lock); 3003 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3004 event->state < PERF_EVENT_STATE_ERROR) { 3005 out: 3006 raw_spin_unlock_irq(&ctx->lock); 3007 return; 3008 } 3009 3010 /* 3011 * If the event is in error state, clear that first. 3012 * 3013 * That way, if we see the event in error state below, we know that it 3014 * has gone back into error state, as distinct from the task having 3015 * been scheduled away before the cross-call arrived. 3016 */ 3017 if (event->state == PERF_EVENT_STATE_ERROR) { 3018 /* 3019 * Detached SIBLING events cannot leave ERROR state. 3020 */ 3021 if (event->event_caps & PERF_EV_CAP_SIBLING && 3022 event->group_leader == event) 3023 goto out; 3024 3025 event->state = PERF_EVENT_STATE_OFF; 3026 } 3027 raw_spin_unlock_irq(&ctx->lock); 3028 3029 event_function_call(event, __perf_event_enable, NULL); 3030 } 3031 3032 /* 3033 * See perf_event_disable(); 3034 */ 3035 void perf_event_enable(struct perf_event *event) 3036 { 3037 struct perf_event_context *ctx; 3038 3039 ctx = perf_event_ctx_lock(event); 3040 _perf_event_enable(event); 3041 perf_event_ctx_unlock(event, ctx); 3042 } 3043 EXPORT_SYMBOL_GPL(perf_event_enable); 3044 3045 struct stop_event_data { 3046 struct perf_event *event; 3047 unsigned int restart; 3048 }; 3049 3050 static int __perf_event_stop(void *info) 3051 { 3052 struct stop_event_data *sd = info; 3053 struct perf_event *event = sd->event; 3054 3055 /* if it's already INACTIVE, do nothing */ 3056 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3057 return 0; 3058 3059 /* matches smp_wmb() in event_sched_in() */ 3060 smp_rmb(); 3061 3062 /* 3063 * There is a window with interrupts enabled before we get here, 3064 * so we need to check again lest we try to stop another CPU's event. 3065 */ 3066 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3067 return -EAGAIN; 3068 3069 event->pmu->stop(event, PERF_EF_UPDATE); 3070 3071 /* 3072 * May race with the actual stop (through perf_pmu_output_stop()), 3073 * but it is only used for events with AUX ring buffer, and such 3074 * events will refuse to restart because of rb::aux_mmap_count==0, 3075 * see comments in perf_aux_output_begin(). 3076 * 3077 * Since this is happening on an event-local CPU, no trace is lost 3078 * while restarting. 3079 */ 3080 if (sd->restart) 3081 event->pmu->start(event, 0); 3082 3083 return 0; 3084 } 3085 3086 static int perf_event_stop(struct perf_event *event, int restart) 3087 { 3088 struct stop_event_data sd = { 3089 .event = event, 3090 .restart = restart, 3091 }; 3092 int ret = 0; 3093 3094 do { 3095 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3096 return 0; 3097 3098 /* matches smp_wmb() in event_sched_in() */ 3099 smp_rmb(); 3100 3101 /* 3102 * We only want to restart ACTIVE events, so if the event goes 3103 * inactive here (event->oncpu==-1), there's nothing more to do; 3104 * fall through with ret==-ENXIO. 3105 */ 3106 ret = cpu_function_call(READ_ONCE(event->oncpu), 3107 __perf_event_stop, &sd); 3108 } while (ret == -EAGAIN); 3109 3110 return ret; 3111 } 3112 3113 /* 3114 * In order to contain the amount of racy and tricky in the address filter 3115 * configuration management, it is a two part process: 3116 * 3117 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3118 * we update the addresses of corresponding vmas in 3119 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3120 * (p2) when an event is scheduled in (pmu::add), it calls 3121 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3122 * if the generation has changed since the previous call. 3123 * 3124 * If (p1) happens while the event is active, we restart it to force (p2). 3125 * 3126 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3127 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3128 * ioctl; 3129 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3130 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3131 * for reading; 3132 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3133 * of exec. 3134 */ 3135 void perf_event_addr_filters_sync(struct perf_event *event) 3136 { 3137 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3138 3139 if (!has_addr_filter(event)) 3140 return; 3141 3142 raw_spin_lock(&ifh->lock); 3143 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3144 event->pmu->addr_filters_sync(event); 3145 event->hw.addr_filters_gen = event->addr_filters_gen; 3146 } 3147 raw_spin_unlock(&ifh->lock); 3148 } 3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3150 3151 static int _perf_event_refresh(struct perf_event *event, int refresh) 3152 { 3153 /* 3154 * not supported on inherited events 3155 */ 3156 if (event->attr.inherit || !is_sampling_event(event)) 3157 return -EINVAL; 3158 3159 atomic_add(refresh, &event->event_limit); 3160 _perf_event_enable(event); 3161 3162 return 0; 3163 } 3164 3165 /* 3166 * See perf_event_disable() 3167 */ 3168 int perf_event_refresh(struct perf_event *event, int refresh) 3169 { 3170 struct perf_event_context *ctx; 3171 int ret; 3172 3173 ctx = perf_event_ctx_lock(event); 3174 ret = _perf_event_refresh(event, refresh); 3175 perf_event_ctx_unlock(event, ctx); 3176 3177 return ret; 3178 } 3179 EXPORT_SYMBOL_GPL(perf_event_refresh); 3180 3181 static int perf_event_modify_breakpoint(struct perf_event *bp, 3182 struct perf_event_attr *attr) 3183 { 3184 int err; 3185 3186 _perf_event_disable(bp); 3187 3188 err = modify_user_hw_breakpoint_check(bp, attr, true); 3189 3190 if (!bp->attr.disabled) 3191 _perf_event_enable(bp); 3192 3193 return err; 3194 } 3195 3196 static int perf_event_modify_attr(struct perf_event *event, 3197 struct perf_event_attr *attr) 3198 { 3199 int (*func)(struct perf_event *, struct perf_event_attr *); 3200 struct perf_event *child; 3201 int err; 3202 3203 if (event->attr.type != attr->type) 3204 return -EINVAL; 3205 3206 switch (event->attr.type) { 3207 case PERF_TYPE_BREAKPOINT: 3208 func = perf_event_modify_breakpoint; 3209 break; 3210 default: 3211 /* Place holder for future additions. */ 3212 return -EOPNOTSUPP; 3213 } 3214 3215 WARN_ON_ONCE(event->ctx->parent_ctx); 3216 3217 mutex_lock(&event->child_mutex); 3218 err = func(event, attr); 3219 if (err) 3220 goto out; 3221 list_for_each_entry(child, &event->child_list, child_list) { 3222 err = func(child, attr); 3223 if (err) 3224 goto out; 3225 } 3226 out: 3227 mutex_unlock(&event->child_mutex); 3228 return err; 3229 } 3230 3231 static void ctx_sched_out(struct perf_event_context *ctx, 3232 struct perf_cpu_context *cpuctx, 3233 enum event_type_t event_type) 3234 { 3235 struct perf_event *event, *tmp; 3236 int is_active = ctx->is_active; 3237 3238 lockdep_assert_held(&ctx->lock); 3239 3240 if (likely(!ctx->nr_events)) { 3241 /* 3242 * See __perf_remove_from_context(). 3243 */ 3244 WARN_ON_ONCE(ctx->is_active); 3245 if (ctx->task) 3246 WARN_ON_ONCE(cpuctx->task_ctx); 3247 return; 3248 } 3249 3250 ctx->is_active &= ~event_type; 3251 if (!(ctx->is_active & EVENT_ALL)) 3252 ctx->is_active = 0; 3253 3254 if (ctx->task) { 3255 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3256 if (!ctx->is_active) 3257 cpuctx->task_ctx = NULL; 3258 } 3259 3260 /* 3261 * Always update time if it was set; not only when it changes. 3262 * Otherwise we can 'forget' to update time for any but the last 3263 * context we sched out. For example: 3264 * 3265 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3266 * ctx_sched_out(.event_type = EVENT_PINNED) 3267 * 3268 * would only update time for the pinned events. 3269 */ 3270 if (is_active & EVENT_TIME) { 3271 /* update (and stop) ctx time */ 3272 update_context_time(ctx); 3273 update_cgrp_time_from_cpuctx(cpuctx); 3274 } 3275 3276 is_active ^= ctx->is_active; /* changed bits */ 3277 3278 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3279 return; 3280 3281 perf_pmu_disable(ctx->pmu); 3282 if (is_active & EVENT_PINNED) { 3283 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3284 group_sched_out(event, cpuctx, ctx); 3285 } 3286 3287 if (is_active & EVENT_FLEXIBLE) { 3288 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3289 group_sched_out(event, cpuctx, ctx); 3290 3291 /* 3292 * Since we cleared EVENT_FLEXIBLE, also clear 3293 * rotate_necessary, is will be reset by 3294 * ctx_flexible_sched_in() when needed. 3295 */ 3296 ctx->rotate_necessary = 0; 3297 } 3298 perf_pmu_enable(ctx->pmu); 3299 } 3300 3301 /* 3302 * Test whether two contexts are equivalent, i.e. whether they have both been 3303 * cloned from the same version of the same context. 3304 * 3305 * Equivalence is measured using a generation number in the context that is 3306 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3307 * and list_del_event(). 3308 */ 3309 static int context_equiv(struct perf_event_context *ctx1, 3310 struct perf_event_context *ctx2) 3311 { 3312 lockdep_assert_held(&ctx1->lock); 3313 lockdep_assert_held(&ctx2->lock); 3314 3315 /* Pinning disables the swap optimization */ 3316 if (ctx1->pin_count || ctx2->pin_count) 3317 return 0; 3318 3319 /* If ctx1 is the parent of ctx2 */ 3320 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3321 return 1; 3322 3323 /* If ctx2 is the parent of ctx1 */ 3324 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3325 return 1; 3326 3327 /* 3328 * If ctx1 and ctx2 have the same parent; we flatten the parent 3329 * hierarchy, see perf_event_init_context(). 3330 */ 3331 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3332 ctx1->parent_gen == ctx2->parent_gen) 3333 return 1; 3334 3335 /* Unmatched */ 3336 return 0; 3337 } 3338 3339 static void __perf_event_sync_stat(struct perf_event *event, 3340 struct perf_event *next_event) 3341 { 3342 u64 value; 3343 3344 if (!event->attr.inherit_stat) 3345 return; 3346 3347 /* 3348 * Update the event value, we cannot use perf_event_read() 3349 * because we're in the middle of a context switch and have IRQs 3350 * disabled, which upsets smp_call_function_single(), however 3351 * we know the event must be on the current CPU, therefore we 3352 * don't need to use it. 3353 */ 3354 if (event->state == PERF_EVENT_STATE_ACTIVE) 3355 event->pmu->read(event); 3356 3357 perf_event_update_time(event); 3358 3359 /* 3360 * In order to keep per-task stats reliable we need to flip the event 3361 * values when we flip the contexts. 3362 */ 3363 value = local64_read(&next_event->count); 3364 value = local64_xchg(&event->count, value); 3365 local64_set(&next_event->count, value); 3366 3367 swap(event->total_time_enabled, next_event->total_time_enabled); 3368 swap(event->total_time_running, next_event->total_time_running); 3369 3370 /* 3371 * Since we swizzled the values, update the user visible data too. 3372 */ 3373 perf_event_update_userpage(event); 3374 perf_event_update_userpage(next_event); 3375 } 3376 3377 static void perf_event_sync_stat(struct perf_event_context *ctx, 3378 struct perf_event_context *next_ctx) 3379 { 3380 struct perf_event *event, *next_event; 3381 3382 if (!ctx->nr_stat) 3383 return; 3384 3385 update_context_time(ctx); 3386 3387 event = list_first_entry(&ctx->event_list, 3388 struct perf_event, event_entry); 3389 3390 next_event = list_first_entry(&next_ctx->event_list, 3391 struct perf_event, event_entry); 3392 3393 while (&event->event_entry != &ctx->event_list && 3394 &next_event->event_entry != &next_ctx->event_list) { 3395 3396 __perf_event_sync_stat(event, next_event); 3397 3398 event = list_next_entry(event, event_entry); 3399 next_event = list_next_entry(next_event, event_entry); 3400 } 3401 } 3402 3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3404 struct task_struct *next) 3405 { 3406 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3407 struct perf_event_context *next_ctx; 3408 struct perf_event_context *parent, *next_parent; 3409 struct perf_cpu_context *cpuctx; 3410 int do_switch = 1; 3411 struct pmu *pmu; 3412 3413 if (likely(!ctx)) 3414 return; 3415 3416 pmu = ctx->pmu; 3417 cpuctx = __get_cpu_context(ctx); 3418 if (!cpuctx->task_ctx) 3419 return; 3420 3421 rcu_read_lock(); 3422 next_ctx = next->perf_event_ctxp[ctxn]; 3423 if (!next_ctx) 3424 goto unlock; 3425 3426 parent = rcu_dereference(ctx->parent_ctx); 3427 next_parent = rcu_dereference(next_ctx->parent_ctx); 3428 3429 /* If neither context have a parent context; they cannot be clones. */ 3430 if (!parent && !next_parent) 3431 goto unlock; 3432 3433 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3434 /* 3435 * Looks like the two contexts are clones, so we might be 3436 * able to optimize the context switch. We lock both 3437 * contexts and check that they are clones under the 3438 * lock (including re-checking that neither has been 3439 * uncloned in the meantime). It doesn't matter which 3440 * order we take the locks because no other cpu could 3441 * be trying to lock both of these tasks. 3442 */ 3443 raw_spin_lock(&ctx->lock); 3444 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3445 if (context_equiv(ctx, next_ctx)) { 3446 3447 WRITE_ONCE(ctx->task, next); 3448 WRITE_ONCE(next_ctx->task, task); 3449 3450 perf_pmu_disable(pmu); 3451 3452 if (cpuctx->sched_cb_usage && pmu->sched_task) 3453 pmu->sched_task(ctx, false); 3454 3455 /* 3456 * PMU specific parts of task perf context can require 3457 * additional synchronization. As an example of such 3458 * synchronization see implementation details of Intel 3459 * LBR call stack data profiling; 3460 */ 3461 if (pmu->swap_task_ctx) 3462 pmu->swap_task_ctx(ctx, next_ctx); 3463 else 3464 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3465 3466 perf_pmu_enable(pmu); 3467 3468 /* 3469 * RCU_INIT_POINTER here is safe because we've not 3470 * modified the ctx and the above modification of 3471 * ctx->task and ctx->task_ctx_data are immaterial 3472 * since those values are always verified under 3473 * ctx->lock which we're now holding. 3474 */ 3475 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3476 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3477 3478 do_switch = 0; 3479 3480 perf_event_sync_stat(ctx, next_ctx); 3481 } 3482 raw_spin_unlock(&next_ctx->lock); 3483 raw_spin_unlock(&ctx->lock); 3484 } 3485 unlock: 3486 rcu_read_unlock(); 3487 3488 if (do_switch) { 3489 raw_spin_lock(&ctx->lock); 3490 perf_pmu_disable(pmu); 3491 3492 if (cpuctx->sched_cb_usage && pmu->sched_task) 3493 pmu->sched_task(ctx, false); 3494 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3495 3496 perf_pmu_enable(pmu); 3497 raw_spin_unlock(&ctx->lock); 3498 } 3499 } 3500 3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3502 3503 void perf_sched_cb_dec(struct pmu *pmu) 3504 { 3505 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3506 3507 this_cpu_dec(perf_sched_cb_usages); 3508 3509 if (!--cpuctx->sched_cb_usage) 3510 list_del(&cpuctx->sched_cb_entry); 3511 } 3512 3513 3514 void perf_sched_cb_inc(struct pmu *pmu) 3515 { 3516 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3517 3518 if (!cpuctx->sched_cb_usage++) 3519 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3520 3521 this_cpu_inc(perf_sched_cb_usages); 3522 } 3523 3524 /* 3525 * This function provides the context switch callback to the lower code 3526 * layer. It is invoked ONLY when the context switch callback is enabled. 3527 * 3528 * This callback is relevant even to per-cpu events; for example multi event 3529 * PEBS requires this to provide PID/TID information. This requires we flush 3530 * all queued PEBS records before we context switch to a new task. 3531 */ 3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3533 { 3534 struct pmu *pmu; 3535 3536 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3537 3538 if (WARN_ON_ONCE(!pmu->sched_task)) 3539 return; 3540 3541 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3542 perf_pmu_disable(pmu); 3543 3544 pmu->sched_task(cpuctx->task_ctx, sched_in); 3545 3546 perf_pmu_enable(pmu); 3547 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3548 } 3549 3550 static void perf_pmu_sched_task(struct task_struct *prev, 3551 struct task_struct *next, 3552 bool sched_in) 3553 { 3554 struct perf_cpu_context *cpuctx; 3555 3556 if (prev == next) 3557 return; 3558 3559 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3560 /* will be handled in perf_event_context_sched_in/out */ 3561 if (cpuctx->task_ctx) 3562 continue; 3563 3564 __perf_pmu_sched_task(cpuctx, sched_in); 3565 } 3566 } 3567 3568 static void perf_event_switch(struct task_struct *task, 3569 struct task_struct *next_prev, bool sched_in); 3570 3571 #define for_each_task_context_nr(ctxn) \ 3572 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3573 3574 /* 3575 * Called from scheduler to remove the events of the current task, 3576 * with interrupts disabled. 3577 * 3578 * We stop each event and update the event value in event->count. 3579 * 3580 * This does not protect us against NMI, but disable() 3581 * sets the disabled bit in the control field of event _before_ 3582 * accessing the event control register. If a NMI hits, then it will 3583 * not restart the event. 3584 */ 3585 void __perf_event_task_sched_out(struct task_struct *task, 3586 struct task_struct *next) 3587 { 3588 int ctxn; 3589 3590 if (__this_cpu_read(perf_sched_cb_usages)) 3591 perf_pmu_sched_task(task, next, false); 3592 3593 if (atomic_read(&nr_switch_events)) 3594 perf_event_switch(task, next, false); 3595 3596 for_each_task_context_nr(ctxn) 3597 perf_event_context_sched_out(task, ctxn, next); 3598 3599 /* 3600 * if cgroup events exist on this CPU, then we need 3601 * to check if we have to switch out PMU state. 3602 * cgroup event are system-wide mode only 3603 */ 3604 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3605 perf_cgroup_sched_out(task, next); 3606 } 3607 3608 /* 3609 * Called with IRQs disabled 3610 */ 3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3612 enum event_type_t event_type) 3613 { 3614 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3615 } 3616 3617 static bool perf_less_group_idx(const void *l, const void *r) 3618 { 3619 const struct perf_event *le = *(const struct perf_event **)l; 3620 const struct perf_event *re = *(const struct perf_event **)r; 3621 3622 return le->group_index < re->group_index; 3623 } 3624 3625 static void swap_ptr(void *l, void *r) 3626 { 3627 void **lp = l, **rp = r; 3628 3629 swap(*lp, *rp); 3630 } 3631 3632 static const struct min_heap_callbacks perf_min_heap = { 3633 .elem_size = sizeof(struct perf_event *), 3634 .less = perf_less_group_idx, 3635 .swp = swap_ptr, 3636 }; 3637 3638 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3639 { 3640 struct perf_event **itrs = heap->data; 3641 3642 if (event) { 3643 itrs[heap->nr] = event; 3644 heap->nr++; 3645 } 3646 } 3647 3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3649 struct perf_event_groups *groups, int cpu, 3650 int (*func)(struct perf_event *, void *), 3651 void *data) 3652 { 3653 #ifdef CONFIG_CGROUP_PERF 3654 struct cgroup_subsys_state *css = NULL; 3655 #endif 3656 /* Space for per CPU and/or any CPU event iterators. */ 3657 struct perf_event *itrs[2]; 3658 struct min_heap event_heap; 3659 struct perf_event **evt; 3660 int ret; 3661 3662 if (cpuctx) { 3663 event_heap = (struct min_heap){ 3664 .data = cpuctx->heap, 3665 .nr = 0, 3666 .size = cpuctx->heap_size, 3667 }; 3668 3669 lockdep_assert_held(&cpuctx->ctx.lock); 3670 3671 #ifdef CONFIG_CGROUP_PERF 3672 if (cpuctx->cgrp) 3673 css = &cpuctx->cgrp->css; 3674 #endif 3675 } else { 3676 event_heap = (struct min_heap){ 3677 .data = itrs, 3678 .nr = 0, 3679 .size = ARRAY_SIZE(itrs), 3680 }; 3681 /* Events not within a CPU context may be on any CPU. */ 3682 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3683 } 3684 evt = event_heap.data; 3685 3686 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3687 3688 #ifdef CONFIG_CGROUP_PERF 3689 for (; css; css = css->parent) 3690 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3691 #endif 3692 3693 min_heapify_all(&event_heap, &perf_min_heap); 3694 3695 while (event_heap.nr) { 3696 ret = func(*evt, data); 3697 if (ret) 3698 return ret; 3699 3700 *evt = perf_event_groups_next(*evt); 3701 if (*evt) 3702 min_heapify(&event_heap, 0, &perf_min_heap); 3703 else 3704 min_heap_pop(&event_heap, &perf_min_heap); 3705 } 3706 3707 return 0; 3708 } 3709 3710 static int merge_sched_in(struct perf_event *event, void *data) 3711 { 3712 struct perf_event_context *ctx = event->ctx; 3713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3714 int *can_add_hw = data; 3715 3716 if (event->state <= PERF_EVENT_STATE_OFF) 3717 return 0; 3718 3719 if (!event_filter_match(event)) 3720 return 0; 3721 3722 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3723 if (!group_sched_in(event, cpuctx, ctx)) 3724 list_add_tail(&event->active_list, get_event_list(event)); 3725 } 3726 3727 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3728 if (event->attr.pinned) { 3729 perf_cgroup_event_disable(event, ctx); 3730 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3731 } 3732 3733 *can_add_hw = 0; 3734 ctx->rotate_necessary = 1; 3735 perf_mux_hrtimer_restart(cpuctx); 3736 } 3737 3738 return 0; 3739 } 3740 3741 static void 3742 ctx_pinned_sched_in(struct perf_event_context *ctx, 3743 struct perf_cpu_context *cpuctx) 3744 { 3745 int can_add_hw = 1; 3746 3747 if (ctx != &cpuctx->ctx) 3748 cpuctx = NULL; 3749 3750 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3751 smp_processor_id(), 3752 merge_sched_in, &can_add_hw); 3753 } 3754 3755 static void 3756 ctx_flexible_sched_in(struct perf_event_context *ctx, 3757 struct perf_cpu_context *cpuctx) 3758 { 3759 int can_add_hw = 1; 3760 3761 if (ctx != &cpuctx->ctx) 3762 cpuctx = NULL; 3763 3764 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3765 smp_processor_id(), 3766 merge_sched_in, &can_add_hw); 3767 } 3768 3769 static void 3770 ctx_sched_in(struct perf_event_context *ctx, 3771 struct perf_cpu_context *cpuctx, 3772 enum event_type_t event_type, 3773 struct task_struct *task) 3774 { 3775 int is_active = ctx->is_active; 3776 u64 now; 3777 3778 lockdep_assert_held(&ctx->lock); 3779 3780 if (likely(!ctx->nr_events)) 3781 return; 3782 3783 ctx->is_active |= (event_type | EVENT_TIME); 3784 if (ctx->task) { 3785 if (!is_active) 3786 cpuctx->task_ctx = ctx; 3787 else 3788 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3789 } 3790 3791 is_active ^= ctx->is_active; /* changed bits */ 3792 3793 if (is_active & EVENT_TIME) { 3794 /* start ctx time */ 3795 now = perf_clock(); 3796 ctx->timestamp = now; 3797 perf_cgroup_set_timestamp(task, ctx); 3798 } 3799 3800 /* 3801 * First go through the list and put on any pinned groups 3802 * in order to give them the best chance of going on. 3803 */ 3804 if (is_active & EVENT_PINNED) 3805 ctx_pinned_sched_in(ctx, cpuctx); 3806 3807 /* Then walk through the lower prio flexible groups */ 3808 if (is_active & EVENT_FLEXIBLE) 3809 ctx_flexible_sched_in(ctx, cpuctx); 3810 } 3811 3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3813 enum event_type_t event_type, 3814 struct task_struct *task) 3815 { 3816 struct perf_event_context *ctx = &cpuctx->ctx; 3817 3818 ctx_sched_in(ctx, cpuctx, event_type, task); 3819 } 3820 3821 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3822 struct task_struct *task) 3823 { 3824 struct perf_cpu_context *cpuctx; 3825 struct pmu *pmu; 3826 3827 cpuctx = __get_cpu_context(ctx); 3828 3829 /* 3830 * HACK: for HETEROGENEOUS the task context might have switched to a 3831 * different PMU, force (re)set the context, 3832 */ 3833 pmu = ctx->pmu = cpuctx->ctx.pmu; 3834 3835 if (cpuctx->task_ctx == ctx) { 3836 if (cpuctx->sched_cb_usage) 3837 __perf_pmu_sched_task(cpuctx, true); 3838 return; 3839 } 3840 3841 perf_ctx_lock(cpuctx, ctx); 3842 /* 3843 * We must check ctx->nr_events while holding ctx->lock, such 3844 * that we serialize against perf_install_in_context(). 3845 */ 3846 if (!ctx->nr_events) 3847 goto unlock; 3848 3849 perf_pmu_disable(pmu); 3850 /* 3851 * We want to keep the following priority order: 3852 * cpu pinned (that don't need to move), task pinned, 3853 * cpu flexible, task flexible. 3854 * 3855 * However, if task's ctx is not carrying any pinned 3856 * events, no need to flip the cpuctx's events around. 3857 */ 3858 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3859 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3860 perf_event_sched_in(cpuctx, ctx, task); 3861 3862 if (cpuctx->sched_cb_usage && pmu->sched_task) 3863 pmu->sched_task(cpuctx->task_ctx, true); 3864 3865 perf_pmu_enable(pmu); 3866 3867 unlock: 3868 perf_ctx_unlock(cpuctx, ctx); 3869 } 3870 3871 /* 3872 * Called from scheduler to add the events of the current task 3873 * with interrupts disabled. 3874 * 3875 * We restore the event value and then enable it. 3876 * 3877 * This does not protect us against NMI, but enable() 3878 * sets the enabled bit in the control field of event _before_ 3879 * accessing the event control register. If a NMI hits, then it will 3880 * keep the event running. 3881 */ 3882 void __perf_event_task_sched_in(struct task_struct *prev, 3883 struct task_struct *task) 3884 { 3885 struct perf_event_context *ctx; 3886 int ctxn; 3887 3888 /* 3889 * If cgroup events exist on this CPU, then we need to check if we have 3890 * to switch in PMU state; cgroup event are system-wide mode only. 3891 * 3892 * Since cgroup events are CPU events, we must schedule these in before 3893 * we schedule in the task events. 3894 */ 3895 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3896 perf_cgroup_sched_in(prev, task); 3897 3898 for_each_task_context_nr(ctxn) { 3899 ctx = task->perf_event_ctxp[ctxn]; 3900 if (likely(!ctx)) 3901 continue; 3902 3903 perf_event_context_sched_in(ctx, task); 3904 } 3905 3906 if (atomic_read(&nr_switch_events)) 3907 perf_event_switch(task, prev, true); 3908 3909 if (__this_cpu_read(perf_sched_cb_usages)) 3910 perf_pmu_sched_task(prev, task, true); 3911 } 3912 3913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3914 { 3915 u64 frequency = event->attr.sample_freq; 3916 u64 sec = NSEC_PER_SEC; 3917 u64 divisor, dividend; 3918 3919 int count_fls, nsec_fls, frequency_fls, sec_fls; 3920 3921 count_fls = fls64(count); 3922 nsec_fls = fls64(nsec); 3923 frequency_fls = fls64(frequency); 3924 sec_fls = 30; 3925 3926 /* 3927 * We got @count in @nsec, with a target of sample_freq HZ 3928 * the target period becomes: 3929 * 3930 * @count * 10^9 3931 * period = ------------------- 3932 * @nsec * sample_freq 3933 * 3934 */ 3935 3936 /* 3937 * Reduce accuracy by one bit such that @a and @b converge 3938 * to a similar magnitude. 3939 */ 3940 #define REDUCE_FLS(a, b) \ 3941 do { \ 3942 if (a##_fls > b##_fls) { \ 3943 a >>= 1; \ 3944 a##_fls--; \ 3945 } else { \ 3946 b >>= 1; \ 3947 b##_fls--; \ 3948 } \ 3949 } while (0) 3950 3951 /* 3952 * Reduce accuracy until either term fits in a u64, then proceed with 3953 * the other, so that finally we can do a u64/u64 division. 3954 */ 3955 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3956 REDUCE_FLS(nsec, frequency); 3957 REDUCE_FLS(sec, count); 3958 } 3959 3960 if (count_fls + sec_fls > 64) { 3961 divisor = nsec * frequency; 3962 3963 while (count_fls + sec_fls > 64) { 3964 REDUCE_FLS(count, sec); 3965 divisor >>= 1; 3966 } 3967 3968 dividend = count * sec; 3969 } else { 3970 dividend = count * sec; 3971 3972 while (nsec_fls + frequency_fls > 64) { 3973 REDUCE_FLS(nsec, frequency); 3974 dividend >>= 1; 3975 } 3976 3977 divisor = nsec * frequency; 3978 } 3979 3980 if (!divisor) 3981 return dividend; 3982 3983 return div64_u64(dividend, divisor); 3984 } 3985 3986 static DEFINE_PER_CPU(int, perf_throttled_count); 3987 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3988 3989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3990 { 3991 struct hw_perf_event *hwc = &event->hw; 3992 s64 period, sample_period; 3993 s64 delta; 3994 3995 period = perf_calculate_period(event, nsec, count); 3996 3997 delta = (s64)(period - hwc->sample_period); 3998 delta = (delta + 7) / 8; /* low pass filter */ 3999 4000 sample_period = hwc->sample_period + delta; 4001 4002 if (!sample_period) 4003 sample_period = 1; 4004 4005 hwc->sample_period = sample_period; 4006 4007 if (local64_read(&hwc->period_left) > 8*sample_period) { 4008 if (disable) 4009 event->pmu->stop(event, PERF_EF_UPDATE); 4010 4011 local64_set(&hwc->period_left, 0); 4012 4013 if (disable) 4014 event->pmu->start(event, PERF_EF_RELOAD); 4015 } 4016 } 4017 4018 /* 4019 * combine freq adjustment with unthrottling to avoid two passes over the 4020 * events. At the same time, make sure, having freq events does not change 4021 * the rate of unthrottling as that would introduce bias. 4022 */ 4023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4024 int needs_unthr) 4025 { 4026 struct perf_event *event; 4027 struct hw_perf_event *hwc; 4028 u64 now, period = TICK_NSEC; 4029 s64 delta; 4030 4031 /* 4032 * only need to iterate over all events iff: 4033 * - context have events in frequency mode (needs freq adjust) 4034 * - there are events to unthrottle on this cpu 4035 */ 4036 if (!(ctx->nr_freq || needs_unthr)) 4037 return; 4038 4039 raw_spin_lock(&ctx->lock); 4040 perf_pmu_disable(ctx->pmu); 4041 4042 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4043 if (event->state != PERF_EVENT_STATE_ACTIVE) 4044 continue; 4045 4046 if (!event_filter_match(event)) 4047 continue; 4048 4049 perf_pmu_disable(event->pmu); 4050 4051 hwc = &event->hw; 4052 4053 if (hwc->interrupts == MAX_INTERRUPTS) { 4054 hwc->interrupts = 0; 4055 perf_log_throttle(event, 1); 4056 event->pmu->start(event, 0); 4057 } 4058 4059 if (!event->attr.freq || !event->attr.sample_freq) 4060 goto next; 4061 4062 /* 4063 * stop the event and update event->count 4064 */ 4065 event->pmu->stop(event, PERF_EF_UPDATE); 4066 4067 now = local64_read(&event->count); 4068 delta = now - hwc->freq_count_stamp; 4069 hwc->freq_count_stamp = now; 4070 4071 /* 4072 * restart the event 4073 * reload only if value has changed 4074 * we have stopped the event so tell that 4075 * to perf_adjust_period() to avoid stopping it 4076 * twice. 4077 */ 4078 if (delta > 0) 4079 perf_adjust_period(event, period, delta, false); 4080 4081 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4082 next: 4083 perf_pmu_enable(event->pmu); 4084 } 4085 4086 perf_pmu_enable(ctx->pmu); 4087 raw_spin_unlock(&ctx->lock); 4088 } 4089 4090 /* 4091 * Move @event to the tail of the @ctx's elegible events. 4092 */ 4093 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4094 { 4095 /* 4096 * Rotate the first entry last of non-pinned groups. Rotation might be 4097 * disabled by the inheritance code. 4098 */ 4099 if (ctx->rotate_disable) 4100 return; 4101 4102 perf_event_groups_delete(&ctx->flexible_groups, event); 4103 perf_event_groups_insert(&ctx->flexible_groups, event); 4104 } 4105 4106 /* pick an event from the flexible_groups to rotate */ 4107 static inline struct perf_event * 4108 ctx_event_to_rotate(struct perf_event_context *ctx) 4109 { 4110 struct perf_event *event; 4111 4112 /* pick the first active flexible event */ 4113 event = list_first_entry_or_null(&ctx->flexible_active, 4114 struct perf_event, active_list); 4115 4116 /* if no active flexible event, pick the first event */ 4117 if (!event) { 4118 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4119 typeof(*event), group_node); 4120 } 4121 4122 /* 4123 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4124 * finds there are unschedulable events, it will set it again. 4125 */ 4126 ctx->rotate_necessary = 0; 4127 4128 return event; 4129 } 4130 4131 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4132 { 4133 struct perf_event *cpu_event = NULL, *task_event = NULL; 4134 struct perf_event_context *task_ctx = NULL; 4135 int cpu_rotate, task_rotate; 4136 4137 /* 4138 * Since we run this from IRQ context, nobody can install new 4139 * events, thus the event count values are stable. 4140 */ 4141 4142 cpu_rotate = cpuctx->ctx.rotate_necessary; 4143 task_ctx = cpuctx->task_ctx; 4144 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4145 4146 if (!(cpu_rotate || task_rotate)) 4147 return false; 4148 4149 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4150 perf_pmu_disable(cpuctx->ctx.pmu); 4151 4152 if (task_rotate) 4153 task_event = ctx_event_to_rotate(task_ctx); 4154 if (cpu_rotate) 4155 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4156 4157 /* 4158 * As per the order given at ctx_resched() first 'pop' task flexible 4159 * and then, if needed CPU flexible. 4160 */ 4161 if (task_event || (task_ctx && cpu_event)) 4162 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4163 if (cpu_event) 4164 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4165 4166 if (task_event) 4167 rotate_ctx(task_ctx, task_event); 4168 if (cpu_event) 4169 rotate_ctx(&cpuctx->ctx, cpu_event); 4170 4171 perf_event_sched_in(cpuctx, task_ctx, current); 4172 4173 perf_pmu_enable(cpuctx->ctx.pmu); 4174 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4175 4176 return true; 4177 } 4178 4179 void perf_event_task_tick(void) 4180 { 4181 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4182 struct perf_event_context *ctx, *tmp; 4183 int throttled; 4184 4185 lockdep_assert_irqs_disabled(); 4186 4187 __this_cpu_inc(perf_throttled_seq); 4188 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4189 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4190 4191 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4192 perf_adjust_freq_unthr_context(ctx, throttled); 4193 } 4194 4195 static int event_enable_on_exec(struct perf_event *event, 4196 struct perf_event_context *ctx) 4197 { 4198 if (!event->attr.enable_on_exec) 4199 return 0; 4200 4201 event->attr.enable_on_exec = 0; 4202 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4203 return 0; 4204 4205 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4206 4207 return 1; 4208 } 4209 4210 /* 4211 * Enable all of a task's events that have been marked enable-on-exec. 4212 * This expects task == current. 4213 */ 4214 static void perf_event_enable_on_exec(int ctxn) 4215 { 4216 struct perf_event_context *ctx, *clone_ctx = NULL; 4217 enum event_type_t event_type = 0; 4218 struct perf_cpu_context *cpuctx; 4219 struct perf_event *event; 4220 unsigned long flags; 4221 int enabled = 0; 4222 4223 local_irq_save(flags); 4224 ctx = current->perf_event_ctxp[ctxn]; 4225 if (!ctx || !ctx->nr_events) 4226 goto out; 4227 4228 cpuctx = __get_cpu_context(ctx); 4229 perf_ctx_lock(cpuctx, ctx); 4230 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4231 list_for_each_entry(event, &ctx->event_list, event_entry) { 4232 enabled |= event_enable_on_exec(event, ctx); 4233 event_type |= get_event_type(event); 4234 } 4235 4236 /* 4237 * Unclone and reschedule this context if we enabled any event. 4238 */ 4239 if (enabled) { 4240 clone_ctx = unclone_ctx(ctx); 4241 ctx_resched(cpuctx, ctx, event_type); 4242 } else { 4243 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4244 } 4245 perf_ctx_unlock(cpuctx, ctx); 4246 4247 out: 4248 local_irq_restore(flags); 4249 4250 if (clone_ctx) 4251 put_ctx(clone_ctx); 4252 } 4253 4254 static void perf_remove_from_owner(struct perf_event *event); 4255 static void perf_event_exit_event(struct perf_event *event, 4256 struct perf_event_context *ctx); 4257 4258 /* 4259 * Removes all events from the current task that have been marked 4260 * remove-on-exec, and feeds their values back to parent events. 4261 */ 4262 static void perf_event_remove_on_exec(int ctxn) 4263 { 4264 struct perf_event_context *ctx, *clone_ctx = NULL; 4265 struct perf_event *event, *next; 4266 LIST_HEAD(free_list); 4267 unsigned long flags; 4268 bool modified = false; 4269 4270 ctx = perf_pin_task_context(current, ctxn); 4271 if (!ctx) 4272 return; 4273 4274 mutex_lock(&ctx->mutex); 4275 4276 if (WARN_ON_ONCE(ctx->task != current)) 4277 goto unlock; 4278 4279 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4280 if (!event->attr.remove_on_exec) 4281 continue; 4282 4283 if (!is_kernel_event(event)) 4284 perf_remove_from_owner(event); 4285 4286 modified = true; 4287 4288 perf_event_exit_event(event, ctx); 4289 } 4290 4291 raw_spin_lock_irqsave(&ctx->lock, flags); 4292 if (modified) 4293 clone_ctx = unclone_ctx(ctx); 4294 --ctx->pin_count; 4295 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4296 4297 unlock: 4298 mutex_unlock(&ctx->mutex); 4299 4300 put_ctx(ctx); 4301 if (clone_ctx) 4302 put_ctx(clone_ctx); 4303 } 4304 4305 struct perf_read_data { 4306 struct perf_event *event; 4307 bool group; 4308 int ret; 4309 }; 4310 4311 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4312 { 4313 u16 local_pkg, event_pkg; 4314 4315 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4316 int local_cpu = smp_processor_id(); 4317 4318 event_pkg = topology_physical_package_id(event_cpu); 4319 local_pkg = topology_physical_package_id(local_cpu); 4320 4321 if (event_pkg == local_pkg) 4322 return local_cpu; 4323 } 4324 4325 return event_cpu; 4326 } 4327 4328 /* 4329 * Cross CPU call to read the hardware event 4330 */ 4331 static void __perf_event_read(void *info) 4332 { 4333 struct perf_read_data *data = info; 4334 struct perf_event *sub, *event = data->event; 4335 struct perf_event_context *ctx = event->ctx; 4336 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4337 struct pmu *pmu = event->pmu; 4338 4339 /* 4340 * If this is a task context, we need to check whether it is 4341 * the current task context of this cpu. If not it has been 4342 * scheduled out before the smp call arrived. In that case 4343 * event->count would have been updated to a recent sample 4344 * when the event was scheduled out. 4345 */ 4346 if (ctx->task && cpuctx->task_ctx != ctx) 4347 return; 4348 4349 raw_spin_lock(&ctx->lock); 4350 if (ctx->is_active & EVENT_TIME) { 4351 update_context_time(ctx); 4352 update_cgrp_time_from_event(event); 4353 } 4354 4355 perf_event_update_time(event); 4356 if (data->group) 4357 perf_event_update_sibling_time(event); 4358 4359 if (event->state != PERF_EVENT_STATE_ACTIVE) 4360 goto unlock; 4361 4362 if (!data->group) { 4363 pmu->read(event); 4364 data->ret = 0; 4365 goto unlock; 4366 } 4367 4368 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4369 4370 pmu->read(event); 4371 4372 for_each_sibling_event(sub, event) { 4373 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4374 /* 4375 * Use sibling's PMU rather than @event's since 4376 * sibling could be on different (eg: software) PMU. 4377 */ 4378 sub->pmu->read(sub); 4379 } 4380 } 4381 4382 data->ret = pmu->commit_txn(pmu); 4383 4384 unlock: 4385 raw_spin_unlock(&ctx->lock); 4386 } 4387 4388 static inline u64 perf_event_count(struct perf_event *event) 4389 { 4390 return local64_read(&event->count) + atomic64_read(&event->child_count); 4391 } 4392 4393 /* 4394 * NMI-safe method to read a local event, that is an event that 4395 * is: 4396 * - either for the current task, or for this CPU 4397 * - does not have inherit set, for inherited task events 4398 * will not be local and we cannot read them atomically 4399 * - must not have a pmu::count method 4400 */ 4401 int perf_event_read_local(struct perf_event *event, u64 *value, 4402 u64 *enabled, u64 *running) 4403 { 4404 unsigned long flags; 4405 int ret = 0; 4406 4407 /* 4408 * Disabling interrupts avoids all counter scheduling (context 4409 * switches, timer based rotation and IPIs). 4410 */ 4411 local_irq_save(flags); 4412 4413 /* 4414 * It must not be an event with inherit set, we cannot read 4415 * all child counters from atomic context. 4416 */ 4417 if (event->attr.inherit) { 4418 ret = -EOPNOTSUPP; 4419 goto out; 4420 } 4421 4422 /* If this is a per-task event, it must be for current */ 4423 if ((event->attach_state & PERF_ATTACH_TASK) && 4424 event->hw.target != current) { 4425 ret = -EINVAL; 4426 goto out; 4427 } 4428 4429 /* If this is a per-CPU event, it must be for this CPU */ 4430 if (!(event->attach_state & PERF_ATTACH_TASK) && 4431 event->cpu != smp_processor_id()) { 4432 ret = -EINVAL; 4433 goto out; 4434 } 4435 4436 /* If this is a pinned event it must be running on this CPU */ 4437 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4438 ret = -EBUSY; 4439 goto out; 4440 } 4441 4442 /* 4443 * If the event is currently on this CPU, its either a per-task event, 4444 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4445 * oncpu == -1). 4446 */ 4447 if (event->oncpu == smp_processor_id()) 4448 event->pmu->read(event); 4449 4450 *value = local64_read(&event->count); 4451 if (enabled || running) { 4452 u64 now = event->shadow_ctx_time + perf_clock(); 4453 u64 __enabled, __running; 4454 4455 __perf_update_times(event, now, &__enabled, &__running); 4456 if (enabled) 4457 *enabled = __enabled; 4458 if (running) 4459 *running = __running; 4460 } 4461 out: 4462 local_irq_restore(flags); 4463 4464 return ret; 4465 } 4466 4467 static int perf_event_read(struct perf_event *event, bool group) 4468 { 4469 enum perf_event_state state = READ_ONCE(event->state); 4470 int event_cpu, ret = 0; 4471 4472 /* 4473 * If event is enabled and currently active on a CPU, update the 4474 * value in the event structure: 4475 */ 4476 again: 4477 if (state == PERF_EVENT_STATE_ACTIVE) { 4478 struct perf_read_data data; 4479 4480 /* 4481 * Orders the ->state and ->oncpu loads such that if we see 4482 * ACTIVE we must also see the right ->oncpu. 4483 * 4484 * Matches the smp_wmb() from event_sched_in(). 4485 */ 4486 smp_rmb(); 4487 4488 event_cpu = READ_ONCE(event->oncpu); 4489 if ((unsigned)event_cpu >= nr_cpu_ids) 4490 return 0; 4491 4492 data = (struct perf_read_data){ 4493 .event = event, 4494 .group = group, 4495 .ret = 0, 4496 }; 4497 4498 preempt_disable(); 4499 event_cpu = __perf_event_read_cpu(event, event_cpu); 4500 4501 /* 4502 * Purposely ignore the smp_call_function_single() return 4503 * value. 4504 * 4505 * If event_cpu isn't a valid CPU it means the event got 4506 * scheduled out and that will have updated the event count. 4507 * 4508 * Therefore, either way, we'll have an up-to-date event count 4509 * after this. 4510 */ 4511 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4512 preempt_enable(); 4513 ret = data.ret; 4514 4515 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4516 struct perf_event_context *ctx = event->ctx; 4517 unsigned long flags; 4518 4519 raw_spin_lock_irqsave(&ctx->lock, flags); 4520 state = event->state; 4521 if (state != PERF_EVENT_STATE_INACTIVE) { 4522 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4523 goto again; 4524 } 4525 4526 /* 4527 * May read while context is not active (e.g., thread is 4528 * blocked), in that case we cannot update context time 4529 */ 4530 if (ctx->is_active & EVENT_TIME) { 4531 update_context_time(ctx); 4532 update_cgrp_time_from_event(event); 4533 } 4534 4535 perf_event_update_time(event); 4536 if (group) 4537 perf_event_update_sibling_time(event); 4538 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4539 } 4540 4541 return ret; 4542 } 4543 4544 /* 4545 * Initialize the perf_event context in a task_struct: 4546 */ 4547 static void __perf_event_init_context(struct perf_event_context *ctx) 4548 { 4549 raw_spin_lock_init(&ctx->lock); 4550 mutex_init(&ctx->mutex); 4551 INIT_LIST_HEAD(&ctx->active_ctx_list); 4552 perf_event_groups_init(&ctx->pinned_groups); 4553 perf_event_groups_init(&ctx->flexible_groups); 4554 INIT_LIST_HEAD(&ctx->event_list); 4555 INIT_LIST_HEAD(&ctx->pinned_active); 4556 INIT_LIST_HEAD(&ctx->flexible_active); 4557 refcount_set(&ctx->refcount, 1); 4558 } 4559 4560 static struct perf_event_context * 4561 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4562 { 4563 struct perf_event_context *ctx; 4564 4565 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4566 if (!ctx) 4567 return NULL; 4568 4569 __perf_event_init_context(ctx); 4570 if (task) 4571 ctx->task = get_task_struct(task); 4572 ctx->pmu = pmu; 4573 4574 return ctx; 4575 } 4576 4577 static struct task_struct * 4578 find_lively_task_by_vpid(pid_t vpid) 4579 { 4580 struct task_struct *task; 4581 4582 rcu_read_lock(); 4583 if (!vpid) 4584 task = current; 4585 else 4586 task = find_task_by_vpid(vpid); 4587 if (task) 4588 get_task_struct(task); 4589 rcu_read_unlock(); 4590 4591 if (!task) 4592 return ERR_PTR(-ESRCH); 4593 4594 return task; 4595 } 4596 4597 /* 4598 * Returns a matching context with refcount and pincount. 4599 */ 4600 static struct perf_event_context * 4601 find_get_context(struct pmu *pmu, struct task_struct *task, 4602 struct perf_event *event) 4603 { 4604 struct perf_event_context *ctx, *clone_ctx = NULL; 4605 struct perf_cpu_context *cpuctx; 4606 void *task_ctx_data = NULL; 4607 unsigned long flags; 4608 int ctxn, err; 4609 int cpu = event->cpu; 4610 4611 if (!task) { 4612 /* Must be root to operate on a CPU event: */ 4613 err = perf_allow_cpu(&event->attr); 4614 if (err) 4615 return ERR_PTR(err); 4616 4617 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4618 ctx = &cpuctx->ctx; 4619 get_ctx(ctx); 4620 raw_spin_lock_irqsave(&ctx->lock, flags); 4621 ++ctx->pin_count; 4622 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4623 4624 return ctx; 4625 } 4626 4627 err = -EINVAL; 4628 ctxn = pmu->task_ctx_nr; 4629 if (ctxn < 0) 4630 goto errout; 4631 4632 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4633 task_ctx_data = alloc_task_ctx_data(pmu); 4634 if (!task_ctx_data) { 4635 err = -ENOMEM; 4636 goto errout; 4637 } 4638 } 4639 4640 retry: 4641 ctx = perf_lock_task_context(task, ctxn, &flags); 4642 if (ctx) { 4643 clone_ctx = unclone_ctx(ctx); 4644 ++ctx->pin_count; 4645 4646 if (task_ctx_data && !ctx->task_ctx_data) { 4647 ctx->task_ctx_data = task_ctx_data; 4648 task_ctx_data = NULL; 4649 } 4650 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4651 4652 if (clone_ctx) 4653 put_ctx(clone_ctx); 4654 } else { 4655 ctx = alloc_perf_context(pmu, task); 4656 err = -ENOMEM; 4657 if (!ctx) 4658 goto errout; 4659 4660 if (task_ctx_data) { 4661 ctx->task_ctx_data = task_ctx_data; 4662 task_ctx_data = NULL; 4663 } 4664 4665 err = 0; 4666 mutex_lock(&task->perf_event_mutex); 4667 /* 4668 * If it has already passed perf_event_exit_task(). 4669 * we must see PF_EXITING, it takes this mutex too. 4670 */ 4671 if (task->flags & PF_EXITING) 4672 err = -ESRCH; 4673 else if (task->perf_event_ctxp[ctxn]) 4674 err = -EAGAIN; 4675 else { 4676 get_ctx(ctx); 4677 ++ctx->pin_count; 4678 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4679 } 4680 mutex_unlock(&task->perf_event_mutex); 4681 4682 if (unlikely(err)) { 4683 put_ctx(ctx); 4684 4685 if (err == -EAGAIN) 4686 goto retry; 4687 goto errout; 4688 } 4689 } 4690 4691 free_task_ctx_data(pmu, task_ctx_data); 4692 return ctx; 4693 4694 errout: 4695 free_task_ctx_data(pmu, task_ctx_data); 4696 return ERR_PTR(err); 4697 } 4698 4699 static void perf_event_free_filter(struct perf_event *event); 4700 4701 static void free_event_rcu(struct rcu_head *head) 4702 { 4703 struct perf_event *event; 4704 4705 event = container_of(head, struct perf_event, rcu_head); 4706 if (event->ns) 4707 put_pid_ns(event->ns); 4708 perf_event_free_filter(event); 4709 kmem_cache_free(perf_event_cache, event); 4710 } 4711 4712 static void ring_buffer_attach(struct perf_event *event, 4713 struct perf_buffer *rb); 4714 4715 static void detach_sb_event(struct perf_event *event) 4716 { 4717 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4718 4719 raw_spin_lock(&pel->lock); 4720 list_del_rcu(&event->sb_list); 4721 raw_spin_unlock(&pel->lock); 4722 } 4723 4724 static bool is_sb_event(struct perf_event *event) 4725 { 4726 struct perf_event_attr *attr = &event->attr; 4727 4728 if (event->parent) 4729 return false; 4730 4731 if (event->attach_state & PERF_ATTACH_TASK) 4732 return false; 4733 4734 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4735 attr->comm || attr->comm_exec || 4736 attr->task || attr->ksymbol || 4737 attr->context_switch || attr->text_poke || 4738 attr->bpf_event) 4739 return true; 4740 return false; 4741 } 4742 4743 static void unaccount_pmu_sb_event(struct perf_event *event) 4744 { 4745 if (is_sb_event(event)) 4746 detach_sb_event(event); 4747 } 4748 4749 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4750 { 4751 if (event->parent) 4752 return; 4753 4754 if (is_cgroup_event(event)) 4755 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4756 } 4757 4758 #ifdef CONFIG_NO_HZ_FULL 4759 static DEFINE_SPINLOCK(nr_freq_lock); 4760 #endif 4761 4762 static void unaccount_freq_event_nohz(void) 4763 { 4764 #ifdef CONFIG_NO_HZ_FULL 4765 spin_lock(&nr_freq_lock); 4766 if (atomic_dec_and_test(&nr_freq_events)) 4767 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4768 spin_unlock(&nr_freq_lock); 4769 #endif 4770 } 4771 4772 static void unaccount_freq_event(void) 4773 { 4774 if (tick_nohz_full_enabled()) 4775 unaccount_freq_event_nohz(); 4776 else 4777 atomic_dec(&nr_freq_events); 4778 } 4779 4780 static void unaccount_event(struct perf_event *event) 4781 { 4782 bool dec = false; 4783 4784 if (event->parent) 4785 return; 4786 4787 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4788 dec = true; 4789 if (event->attr.mmap || event->attr.mmap_data) 4790 atomic_dec(&nr_mmap_events); 4791 if (event->attr.build_id) 4792 atomic_dec(&nr_build_id_events); 4793 if (event->attr.comm) 4794 atomic_dec(&nr_comm_events); 4795 if (event->attr.namespaces) 4796 atomic_dec(&nr_namespaces_events); 4797 if (event->attr.cgroup) 4798 atomic_dec(&nr_cgroup_events); 4799 if (event->attr.task) 4800 atomic_dec(&nr_task_events); 4801 if (event->attr.freq) 4802 unaccount_freq_event(); 4803 if (event->attr.context_switch) { 4804 dec = true; 4805 atomic_dec(&nr_switch_events); 4806 } 4807 if (is_cgroup_event(event)) 4808 dec = true; 4809 if (has_branch_stack(event)) 4810 dec = true; 4811 if (event->attr.ksymbol) 4812 atomic_dec(&nr_ksymbol_events); 4813 if (event->attr.bpf_event) 4814 atomic_dec(&nr_bpf_events); 4815 if (event->attr.text_poke) 4816 atomic_dec(&nr_text_poke_events); 4817 4818 if (dec) { 4819 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4820 schedule_delayed_work(&perf_sched_work, HZ); 4821 } 4822 4823 unaccount_event_cpu(event, event->cpu); 4824 4825 unaccount_pmu_sb_event(event); 4826 } 4827 4828 static void perf_sched_delayed(struct work_struct *work) 4829 { 4830 mutex_lock(&perf_sched_mutex); 4831 if (atomic_dec_and_test(&perf_sched_count)) 4832 static_branch_disable(&perf_sched_events); 4833 mutex_unlock(&perf_sched_mutex); 4834 } 4835 4836 /* 4837 * The following implement mutual exclusion of events on "exclusive" pmus 4838 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4839 * at a time, so we disallow creating events that might conflict, namely: 4840 * 4841 * 1) cpu-wide events in the presence of per-task events, 4842 * 2) per-task events in the presence of cpu-wide events, 4843 * 3) two matching events on the same context. 4844 * 4845 * The former two cases are handled in the allocation path (perf_event_alloc(), 4846 * _free_event()), the latter -- before the first perf_install_in_context(). 4847 */ 4848 static int exclusive_event_init(struct perf_event *event) 4849 { 4850 struct pmu *pmu = event->pmu; 4851 4852 if (!is_exclusive_pmu(pmu)) 4853 return 0; 4854 4855 /* 4856 * Prevent co-existence of per-task and cpu-wide events on the 4857 * same exclusive pmu. 4858 * 4859 * Negative pmu::exclusive_cnt means there are cpu-wide 4860 * events on this "exclusive" pmu, positive means there are 4861 * per-task events. 4862 * 4863 * Since this is called in perf_event_alloc() path, event::ctx 4864 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4865 * to mean "per-task event", because unlike other attach states it 4866 * never gets cleared. 4867 */ 4868 if (event->attach_state & PERF_ATTACH_TASK) { 4869 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4870 return -EBUSY; 4871 } else { 4872 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4873 return -EBUSY; 4874 } 4875 4876 return 0; 4877 } 4878 4879 static void exclusive_event_destroy(struct perf_event *event) 4880 { 4881 struct pmu *pmu = event->pmu; 4882 4883 if (!is_exclusive_pmu(pmu)) 4884 return; 4885 4886 /* see comment in exclusive_event_init() */ 4887 if (event->attach_state & PERF_ATTACH_TASK) 4888 atomic_dec(&pmu->exclusive_cnt); 4889 else 4890 atomic_inc(&pmu->exclusive_cnt); 4891 } 4892 4893 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4894 { 4895 if ((e1->pmu == e2->pmu) && 4896 (e1->cpu == e2->cpu || 4897 e1->cpu == -1 || 4898 e2->cpu == -1)) 4899 return true; 4900 return false; 4901 } 4902 4903 static bool exclusive_event_installable(struct perf_event *event, 4904 struct perf_event_context *ctx) 4905 { 4906 struct perf_event *iter_event; 4907 struct pmu *pmu = event->pmu; 4908 4909 lockdep_assert_held(&ctx->mutex); 4910 4911 if (!is_exclusive_pmu(pmu)) 4912 return true; 4913 4914 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4915 if (exclusive_event_match(iter_event, event)) 4916 return false; 4917 } 4918 4919 return true; 4920 } 4921 4922 static void perf_addr_filters_splice(struct perf_event *event, 4923 struct list_head *head); 4924 4925 static void _free_event(struct perf_event *event) 4926 { 4927 irq_work_sync(&event->pending); 4928 4929 unaccount_event(event); 4930 4931 security_perf_event_free(event); 4932 4933 if (event->rb) { 4934 /* 4935 * Can happen when we close an event with re-directed output. 4936 * 4937 * Since we have a 0 refcount, perf_mmap_close() will skip 4938 * over us; possibly making our ring_buffer_put() the last. 4939 */ 4940 mutex_lock(&event->mmap_mutex); 4941 ring_buffer_attach(event, NULL); 4942 mutex_unlock(&event->mmap_mutex); 4943 } 4944 4945 if (is_cgroup_event(event)) 4946 perf_detach_cgroup(event); 4947 4948 if (!event->parent) { 4949 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4950 put_callchain_buffers(); 4951 } 4952 4953 perf_event_free_bpf_prog(event); 4954 perf_addr_filters_splice(event, NULL); 4955 kfree(event->addr_filter_ranges); 4956 4957 if (event->destroy) 4958 event->destroy(event); 4959 4960 /* 4961 * Must be after ->destroy(), due to uprobe_perf_close() using 4962 * hw.target. 4963 */ 4964 if (event->hw.target) 4965 put_task_struct(event->hw.target); 4966 4967 /* 4968 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4969 * all task references must be cleaned up. 4970 */ 4971 if (event->ctx) 4972 put_ctx(event->ctx); 4973 4974 exclusive_event_destroy(event); 4975 module_put(event->pmu->module); 4976 4977 call_rcu(&event->rcu_head, free_event_rcu); 4978 } 4979 4980 /* 4981 * Used to free events which have a known refcount of 1, such as in error paths 4982 * where the event isn't exposed yet and inherited events. 4983 */ 4984 static void free_event(struct perf_event *event) 4985 { 4986 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4987 "unexpected event refcount: %ld; ptr=%p\n", 4988 atomic_long_read(&event->refcount), event)) { 4989 /* leak to avoid use-after-free */ 4990 return; 4991 } 4992 4993 _free_event(event); 4994 } 4995 4996 /* 4997 * Remove user event from the owner task. 4998 */ 4999 static void perf_remove_from_owner(struct perf_event *event) 5000 { 5001 struct task_struct *owner; 5002 5003 rcu_read_lock(); 5004 /* 5005 * Matches the smp_store_release() in perf_event_exit_task(). If we 5006 * observe !owner it means the list deletion is complete and we can 5007 * indeed free this event, otherwise we need to serialize on 5008 * owner->perf_event_mutex. 5009 */ 5010 owner = READ_ONCE(event->owner); 5011 if (owner) { 5012 /* 5013 * Since delayed_put_task_struct() also drops the last 5014 * task reference we can safely take a new reference 5015 * while holding the rcu_read_lock(). 5016 */ 5017 get_task_struct(owner); 5018 } 5019 rcu_read_unlock(); 5020 5021 if (owner) { 5022 /* 5023 * If we're here through perf_event_exit_task() we're already 5024 * holding ctx->mutex which would be an inversion wrt. the 5025 * normal lock order. 5026 * 5027 * However we can safely take this lock because its the child 5028 * ctx->mutex. 5029 */ 5030 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5031 5032 /* 5033 * We have to re-check the event->owner field, if it is cleared 5034 * we raced with perf_event_exit_task(), acquiring the mutex 5035 * ensured they're done, and we can proceed with freeing the 5036 * event. 5037 */ 5038 if (event->owner) { 5039 list_del_init(&event->owner_entry); 5040 smp_store_release(&event->owner, NULL); 5041 } 5042 mutex_unlock(&owner->perf_event_mutex); 5043 put_task_struct(owner); 5044 } 5045 } 5046 5047 static void put_event(struct perf_event *event) 5048 { 5049 if (!atomic_long_dec_and_test(&event->refcount)) 5050 return; 5051 5052 _free_event(event); 5053 } 5054 5055 /* 5056 * Kill an event dead; while event:refcount will preserve the event 5057 * object, it will not preserve its functionality. Once the last 'user' 5058 * gives up the object, we'll destroy the thing. 5059 */ 5060 int perf_event_release_kernel(struct perf_event *event) 5061 { 5062 struct perf_event_context *ctx = event->ctx; 5063 struct perf_event *child, *tmp; 5064 LIST_HEAD(free_list); 5065 5066 /* 5067 * If we got here through err_file: fput(event_file); we will not have 5068 * attached to a context yet. 5069 */ 5070 if (!ctx) { 5071 WARN_ON_ONCE(event->attach_state & 5072 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5073 goto no_ctx; 5074 } 5075 5076 if (!is_kernel_event(event)) 5077 perf_remove_from_owner(event); 5078 5079 ctx = perf_event_ctx_lock(event); 5080 WARN_ON_ONCE(ctx->parent_ctx); 5081 perf_remove_from_context(event, DETACH_GROUP); 5082 5083 raw_spin_lock_irq(&ctx->lock); 5084 /* 5085 * Mark this event as STATE_DEAD, there is no external reference to it 5086 * anymore. 5087 * 5088 * Anybody acquiring event->child_mutex after the below loop _must_ 5089 * also see this, most importantly inherit_event() which will avoid 5090 * placing more children on the list. 5091 * 5092 * Thus this guarantees that we will in fact observe and kill _ALL_ 5093 * child events. 5094 */ 5095 event->state = PERF_EVENT_STATE_DEAD; 5096 raw_spin_unlock_irq(&ctx->lock); 5097 5098 perf_event_ctx_unlock(event, ctx); 5099 5100 again: 5101 mutex_lock(&event->child_mutex); 5102 list_for_each_entry(child, &event->child_list, child_list) { 5103 5104 /* 5105 * Cannot change, child events are not migrated, see the 5106 * comment with perf_event_ctx_lock_nested(). 5107 */ 5108 ctx = READ_ONCE(child->ctx); 5109 /* 5110 * Since child_mutex nests inside ctx::mutex, we must jump 5111 * through hoops. We start by grabbing a reference on the ctx. 5112 * 5113 * Since the event cannot get freed while we hold the 5114 * child_mutex, the context must also exist and have a !0 5115 * reference count. 5116 */ 5117 get_ctx(ctx); 5118 5119 /* 5120 * Now that we have a ctx ref, we can drop child_mutex, and 5121 * acquire ctx::mutex without fear of it going away. Then we 5122 * can re-acquire child_mutex. 5123 */ 5124 mutex_unlock(&event->child_mutex); 5125 mutex_lock(&ctx->mutex); 5126 mutex_lock(&event->child_mutex); 5127 5128 /* 5129 * Now that we hold ctx::mutex and child_mutex, revalidate our 5130 * state, if child is still the first entry, it didn't get freed 5131 * and we can continue doing so. 5132 */ 5133 tmp = list_first_entry_or_null(&event->child_list, 5134 struct perf_event, child_list); 5135 if (tmp == child) { 5136 perf_remove_from_context(child, DETACH_GROUP); 5137 list_move(&child->child_list, &free_list); 5138 /* 5139 * This matches the refcount bump in inherit_event(); 5140 * this can't be the last reference. 5141 */ 5142 put_event(event); 5143 } 5144 5145 mutex_unlock(&event->child_mutex); 5146 mutex_unlock(&ctx->mutex); 5147 put_ctx(ctx); 5148 goto again; 5149 } 5150 mutex_unlock(&event->child_mutex); 5151 5152 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5153 void *var = &child->ctx->refcount; 5154 5155 list_del(&child->child_list); 5156 free_event(child); 5157 5158 /* 5159 * Wake any perf_event_free_task() waiting for this event to be 5160 * freed. 5161 */ 5162 smp_mb(); /* pairs with wait_var_event() */ 5163 wake_up_var(var); 5164 } 5165 5166 no_ctx: 5167 put_event(event); /* Must be the 'last' reference */ 5168 return 0; 5169 } 5170 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5171 5172 /* 5173 * Called when the last reference to the file is gone. 5174 */ 5175 static int perf_release(struct inode *inode, struct file *file) 5176 { 5177 perf_event_release_kernel(file->private_data); 5178 return 0; 5179 } 5180 5181 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5182 { 5183 struct perf_event *child; 5184 u64 total = 0; 5185 5186 *enabled = 0; 5187 *running = 0; 5188 5189 mutex_lock(&event->child_mutex); 5190 5191 (void)perf_event_read(event, false); 5192 total += perf_event_count(event); 5193 5194 *enabled += event->total_time_enabled + 5195 atomic64_read(&event->child_total_time_enabled); 5196 *running += event->total_time_running + 5197 atomic64_read(&event->child_total_time_running); 5198 5199 list_for_each_entry(child, &event->child_list, child_list) { 5200 (void)perf_event_read(child, false); 5201 total += perf_event_count(child); 5202 *enabled += child->total_time_enabled; 5203 *running += child->total_time_running; 5204 } 5205 mutex_unlock(&event->child_mutex); 5206 5207 return total; 5208 } 5209 5210 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5211 { 5212 struct perf_event_context *ctx; 5213 u64 count; 5214 5215 ctx = perf_event_ctx_lock(event); 5216 count = __perf_event_read_value(event, enabled, running); 5217 perf_event_ctx_unlock(event, ctx); 5218 5219 return count; 5220 } 5221 EXPORT_SYMBOL_GPL(perf_event_read_value); 5222 5223 static int __perf_read_group_add(struct perf_event *leader, 5224 u64 read_format, u64 *values) 5225 { 5226 struct perf_event_context *ctx = leader->ctx; 5227 struct perf_event *sub; 5228 unsigned long flags; 5229 int n = 1; /* skip @nr */ 5230 int ret; 5231 5232 ret = perf_event_read(leader, true); 5233 if (ret) 5234 return ret; 5235 5236 raw_spin_lock_irqsave(&ctx->lock, flags); 5237 5238 /* 5239 * Since we co-schedule groups, {enabled,running} times of siblings 5240 * will be identical to those of the leader, so we only publish one 5241 * set. 5242 */ 5243 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5244 values[n++] += leader->total_time_enabled + 5245 atomic64_read(&leader->child_total_time_enabled); 5246 } 5247 5248 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5249 values[n++] += leader->total_time_running + 5250 atomic64_read(&leader->child_total_time_running); 5251 } 5252 5253 /* 5254 * Write {count,id} tuples for every sibling. 5255 */ 5256 values[n++] += perf_event_count(leader); 5257 if (read_format & PERF_FORMAT_ID) 5258 values[n++] = primary_event_id(leader); 5259 5260 for_each_sibling_event(sub, leader) { 5261 values[n++] += perf_event_count(sub); 5262 if (read_format & PERF_FORMAT_ID) 5263 values[n++] = primary_event_id(sub); 5264 } 5265 5266 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5267 return 0; 5268 } 5269 5270 static int perf_read_group(struct perf_event *event, 5271 u64 read_format, char __user *buf) 5272 { 5273 struct perf_event *leader = event->group_leader, *child; 5274 struct perf_event_context *ctx = leader->ctx; 5275 int ret; 5276 u64 *values; 5277 5278 lockdep_assert_held(&ctx->mutex); 5279 5280 values = kzalloc(event->read_size, GFP_KERNEL); 5281 if (!values) 5282 return -ENOMEM; 5283 5284 values[0] = 1 + leader->nr_siblings; 5285 5286 /* 5287 * By locking the child_mutex of the leader we effectively 5288 * lock the child list of all siblings.. XXX explain how. 5289 */ 5290 mutex_lock(&leader->child_mutex); 5291 5292 ret = __perf_read_group_add(leader, read_format, values); 5293 if (ret) 5294 goto unlock; 5295 5296 list_for_each_entry(child, &leader->child_list, child_list) { 5297 ret = __perf_read_group_add(child, read_format, values); 5298 if (ret) 5299 goto unlock; 5300 } 5301 5302 mutex_unlock(&leader->child_mutex); 5303 5304 ret = event->read_size; 5305 if (copy_to_user(buf, values, event->read_size)) 5306 ret = -EFAULT; 5307 goto out; 5308 5309 unlock: 5310 mutex_unlock(&leader->child_mutex); 5311 out: 5312 kfree(values); 5313 return ret; 5314 } 5315 5316 static int perf_read_one(struct perf_event *event, 5317 u64 read_format, char __user *buf) 5318 { 5319 u64 enabled, running; 5320 u64 values[4]; 5321 int n = 0; 5322 5323 values[n++] = __perf_event_read_value(event, &enabled, &running); 5324 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5325 values[n++] = enabled; 5326 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5327 values[n++] = running; 5328 if (read_format & PERF_FORMAT_ID) 5329 values[n++] = primary_event_id(event); 5330 5331 if (copy_to_user(buf, values, n * sizeof(u64))) 5332 return -EFAULT; 5333 5334 return n * sizeof(u64); 5335 } 5336 5337 static bool is_event_hup(struct perf_event *event) 5338 { 5339 bool no_children; 5340 5341 if (event->state > PERF_EVENT_STATE_EXIT) 5342 return false; 5343 5344 mutex_lock(&event->child_mutex); 5345 no_children = list_empty(&event->child_list); 5346 mutex_unlock(&event->child_mutex); 5347 return no_children; 5348 } 5349 5350 /* 5351 * Read the performance event - simple non blocking version for now 5352 */ 5353 static ssize_t 5354 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5355 { 5356 u64 read_format = event->attr.read_format; 5357 int ret; 5358 5359 /* 5360 * Return end-of-file for a read on an event that is in 5361 * error state (i.e. because it was pinned but it couldn't be 5362 * scheduled on to the CPU at some point). 5363 */ 5364 if (event->state == PERF_EVENT_STATE_ERROR) 5365 return 0; 5366 5367 if (count < event->read_size) 5368 return -ENOSPC; 5369 5370 WARN_ON_ONCE(event->ctx->parent_ctx); 5371 if (read_format & PERF_FORMAT_GROUP) 5372 ret = perf_read_group(event, read_format, buf); 5373 else 5374 ret = perf_read_one(event, read_format, buf); 5375 5376 return ret; 5377 } 5378 5379 static ssize_t 5380 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5381 { 5382 struct perf_event *event = file->private_data; 5383 struct perf_event_context *ctx; 5384 int ret; 5385 5386 ret = security_perf_event_read(event); 5387 if (ret) 5388 return ret; 5389 5390 ctx = perf_event_ctx_lock(event); 5391 ret = __perf_read(event, buf, count); 5392 perf_event_ctx_unlock(event, ctx); 5393 5394 return ret; 5395 } 5396 5397 static __poll_t perf_poll(struct file *file, poll_table *wait) 5398 { 5399 struct perf_event *event = file->private_data; 5400 struct perf_buffer *rb; 5401 __poll_t events = EPOLLHUP; 5402 5403 poll_wait(file, &event->waitq, wait); 5404 5405 if (is_event_hup(event)) 5406 return events; 5407 5408 /* 5409 * Pin the event->rb by taking event->mmap_mutex; otherwise 5410 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5411 */ 5412 mutex_lock(&event->mmap_mutex); 5413 rb = event->rb; 5414 if (rb) 5415 events = atomic_xchg(&rb->poll, 0); 5416 mutex_unlock(&event->mmap_mutex); 5417 return events; 5418 } 5419 5420 static void _perf_event_reset(struct perf_event *event) 5421 { 5422 (void)perf_event_read(event, false); 5423 local64_set(&event->count, 0); 5424 perf_event_update_userpage(event); 5425 } 5426 5427 /* Assume it's not an event with inherit set. */ 5428 u64 perf_event_pause(struct perf_event *event, bool reset) 5429 { 5430 struct perf_event_context *ctx; 5431 u64 count; 5432 5433 ctx = perf_event_ctx_lock(event); 5434 WARN_ON_ONCE(event->attr.inherit); 5435 _perf_event_disable(event); 5436 count = local64_read(&event->count); 5437 if (reset) 5438 local64_set(&event->count, 0); 5439 perf_event_ctx_unlock(event, ctx); 5440 5441 return count; 5442 } 5443 EXPORT_SYMBOL_GPL(perf_event_pause); 5444 5445 /* 5446 * Holding the top-level event's child_mutex means that any 5447 * descendant process that has inherited this event will block 5448 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5449 * task existence requirements of perf_event_enable/disable. 5450 */ 5451 static void perf_event_for_each_child(struct perf_event *event, 5452 void (*func)(struct perf_event *)) 5453 { 5454 struct perf_event *child; 5455 5456 WARN_ON_ONCE(event->ctx->parent_ctx); 5457 5458 mutex_lock(&event->child_mutex); 5459 func(event); 5460 list_for_each_entry(child, &event->child_list, child_list) 5461 func(child); 5462 mutex_unlock(&event->child_mutex); 5463 } 5464 5465 static void perf_event_for_each(struct perf_event *event, 5466 void (*func)(struct perf_event *)) 5467 { 5468 struct perf_event_context *ctx = event->ctx; 5469 struct perf_event *sibling; 5470 5471 lockdep_assert_held(&ctx->mutex); 5472 5473 event = event->group_leader; 5474 5475 perf_event_for_each_child(event, func); 5476 for_each_sibling_event(sibling, event) 5477 perf_event_for_each_child(sibling, func); 5478 } 5479 5480 static void __perf_event_period(struct perf_event *event, 5481 struct perf_cpu_context *cpuctx, 5482 struct perf_event_context *ctx, 5483 void *info) 5484 { 5485 u64 value = *((u64 *)info); 5486 bool active; 5487 5488 if (event->attr.freq) { 5489 event->attr.sample_freq = value; 5490 } else { 5491 event->attr.sample_period = value; 5492 event->hw.sample_period = value; 5493 } 5494 5495 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5496 if (active) { 5497 perf_pmu_disable(ctx->pmu); 5498 /* 5499 * We could be throttled; unthrottle now to avoid the tick 5500 * trying to unthrottle while we already re-started the event. 5501 */ 5502 if (event->hw.interrupts == MAX_INTERRUPTS) { 5503 event->hw.interrupts = 0; 5504 perf_log_throttle(event, 1); 5505 } 5506 event->pmu->stop(event, PERF_EF_UPDATE); 5507 } 5508 5509 local64_set(&event->hw.period_left, 0); 5510 5511 if (active) { 5512 event->pmu->start(event, PERF_EF_RELOAD); 5513 perf_pmu_enable(ctx->pmu); 5514 } 5515 } 5516 5517 static int perf_event_check_period(struct perf_event *event, u64 value) 5518 { 5519 return event->pmu->check_period(event, value); 5520 } 5521 5522 static int _perf_event_period(struct perf_event *event, u64 value) 5523 { 5524 if (!is_sampling_event(event)) 5525 return -EINVAL; 5526 5527 if (!value) 5528 return -EINVAL; 5529 5530 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5531 return -EINVAL; 5532 5533 if (perf_event_check_period(event, value)) 5534 return -EINVAL; 5535 5536 if (!event->attr.freq && (value & (1ULL << 63))) 5537 return -EINVAL; 5538 5539 event_function_call(event, __perf_event_period, &value); 5540 5541 return 0; 5542 } 5543 5544 int perf_event_period(struct perf_event *event, u64 value) 5545 { 5546 struct perf_event_context *ctx; 5547 int ret; 5548 5549 ctx = perf_event_ctx_lock(event); 5550 ret = _perf_event_period(event, value); 5551 perf_event_ctx_unlock(event, ctx); 5552 5553 return ret; 5554 } 5555 EXPORT_SYMBOL_GPL(perf_event_period); 5556 5557 static const struct file_operations perf_fops; 5558 5559 static inline int perf_fget_light(int fd, struct fd *p) 5560 { 5561 struct fd f = fdget(fd); 5562 if (!f.file) 5563 return -EBADF; 5564 5565 if (f.file->f_op != &perf_fops) { 5566 fdput(f); 5567 return -EBADF; 5568 } 5569 *p = f; 5570 return 0; 5571 } 5572 5573 static int perf_event_set_output(struct perf_event *event, 5574 struct perf_event *output_event); 5575 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5576 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5577 struct perf_event_attr *attr); 5578 5579 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5580 { 5581 void (*func)(struct perf_event *); 5582 u32 flags = arg; 5583 5584 switch (cmd) { 5585 case PERF_EVENT_IOC_ENABLE: 5586 func = _perf_event_enable; 5587 break; 5588 case PERF_EVENT_IOC_DISABLE: 5589 func = _perf_event_disable; 5590 break; 5591 case PERF_EVENT_IOC_RESET: 5592 func = _perf_event_reset; 5593 break; 5594 5595 case PERF_EVENT_IOC_REFRESH: 5596 return _perf_event_refresh(event, arg); 5597 5598 case PERF_EVENT_IOC_PERIOD: 5599 { 5600 u64 value; 5601 5602 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5603 return -EFAULT; 5604 5605 return _perf_event_period(event, value); 5606 } 5607 case PERF_EVENT_IOC_ID: 5608 { 5609 u64 id = primary_event_id(event); 5610 5611 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5612 return -EFAULT; 5613 return 0; 5614 } 5615 5616 case PERF_EVENT_IOC_SET_OUTPUT: 5617 { 5618 int ret; 5619 if (arg != -1) { 5620 struct perf_event *output_event; 5621 struct fd output; 5622 ret = perf_fget_light(arg, &output); 5623 if (ret) 5624 return ret; 5625 output_event = output.file->private_data; 5626 ret = perf_event_set_output(event, output_event); 5627 fdput(output); 5628 } else { 5629 ret = perf_event_set_output(event, NULL); 5630 } 5631 return ret; 5632 } 5633 5634 case PERF_EVENT_IOC_SET_FILTER: 5635 return perf_event_set_filter(event, (void __user *)arg); 5636 5637 case PERF_EVENT_IOC_SET_BPF: 5638 { 5639 struct bpf_prog *prog; 5640 int err; 5641 5642 prog = bpf_prog_get(arg); 5643 if (IS_ERR(prog)) 5644 return PTR_ERR(prog); 5645 5646 err = perf_event_set_bpf_prog(event, prog, 0); 5647 if (err) { 5648 bpf_prog_put(prog); 5649 return err; 5650 } 5651 5652 return 0; 5653 } 5654 5655 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5656 struct perf_buffer *rb; 5657 5658 rcu_read_lock(); 5659 rb = rcu_dereference(event->rb); 5660 if (!rb || !rb->nr_pages) { 5661 rcu_read_unlock(); 5662 return -EINVAL; 5663 } 5664 rb_toggle_paused(rb, !!arg); 5665 rcu_read_unlock(); 5666 return 0; 5667 } 5668 5669 case PERF_EVENT_IOC_QUERY_BPF: 5670 return perf_event_query_prog_array(event, (void __user *)arg); 5671 5672 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5673 struct perf_event_attr new_attr; 5674 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5675 &new_attr); 5676 5677 if (err) 5678 return err; 5679 5680 return perf_event_modify_attr(event, &new_attr); 5681 } 5682 default: 5683 return -ENOTTY; 5684 } 5685 5686 if (flags & PERF_IOC_FLAG_GROUP) 5687 perf_event_for_each(event, func); 5688 else 5689 perf_event_for_each_child(event, func); 5690 5691 return 0; 5692 } 5693 5694 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5695 { 5696 struct perf_event *event = file->private_data; 5697 struct perf_event_context *ctx; 5698 long ret; 5699 5700 /* Treat ioctl like writes as it is likely a mutating operation. */ 5701 ret = security_perf_event_write(event); 5702 if (ret) 5703 return ret; 5704 5705 ctx = perf_event_ctx_lock(event); 5706 ret = _perf_ioctl(event, cmd, arg); 5707 perf_event_ctx_unlock(event, ctx); 5708 5709 return ret; 5710 } 5711 5712 #ifdef CONFIG_COMPAT 5713 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5714 unsigned long arg) 5715 { 5716 switch (_IOC_NR(cmd)) { 5717 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5718 case _IOC_NR(PERF_EVENT_IOC_ID): 5719 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5720 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5721 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5722 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5723 cmd &= ~IOCSIZE_MASK; 5724 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5725 } 5726 break; 5727 } 5728 return perf_ioctl(file, cmd, arg); 5729 } 5730 #else 5731 # define perf_compat_ioctl NULL 5732 #endif 5733 5734 int perf_event_task_enable(void) 5735 { 5736 struct perf_event_context *ctx; 5737 struct perf_event *event; 5738 5739 mutex_lock(¤t->perf_event_mutex); 5740 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5741 ctx = perf_event_ctx_lock(event); 5742 perf_event_for_each_child(event, _perf_event_enable); 5743 perf_event_ctx_unlock(event, ctx); 5744 } 5745 mutex_unlock(¤t->perf_event_mutex); 5746 5747 return 0; 5748 } 5749 5750 int perf_event_task_disable(void) 5751 { 5752 struct perf_event_context *ctx; 5753 struct perf_event *event; 5754 5755 mutex_lock(¤t->perf_event_mutex); 5756 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5757 ctx = perf_event_ctx_lock(event); 5758 perf_event_for_each_child(event, _perf_event_disable); 5759 perf_event_ctx_unlock(event, ctx); 5760 } 5761 mutex_unlock(¤t->perf_event_mutex); 5762 5763 return 0; 5764 } 5765 5766 static int perf_event_index(struct perf_event *event) 5767 { 5768 if (event->hw.state & PERF_HES_STOPPED) 5769 return 0; 5770 5771 if (event->state != PERF_EVENT_STATE_ACTIVE) 5772 return 0; 5773 5774 return event->pmu->event_idx(event); 5775 } 5776 5777 static void calc_timer_values(struct perf_event *event, 5778 u64 *now, 5779 u64 *enabled, 5780 u64 *running) 5781 { 5782 u64 ctx_time; 5783 5784 *now = perf_clock(); 5785 ctx_time = event->shadow_ctx_time + *now; 5786 __perf_update_times(event, ctx_time, enabled, running); 5787 } 5788 5789 static void perf_event_init_userpage(struct perf_event *event) 5790 { 5791 struct perf_event_mmap_page *userpg; 5792 struct perf_buffer *rb; 5793 5794 rcu_read_lock(); 5795 rb = rcu_dereference(event->rb); 5796 if (!rb) 5797 goto unlock; 5798 5799 userpg = rb->user_page; 5800 5801 /* Allow new userspace to detect that bit 0 is deprecated */ 5802 userpg->cap_bit0_is_deprecated = 1; 5803 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5804 userpg->data_offset = PAGE_SIZE; 5805 userpg->data_size = perf_data_size(rb); 5806 5807 unlock: 5808 rcu_read_unlock(); 5809 } 5810 5811 void __weak arch_perf_update_userpage( 5812 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5813 { 5814 } 5815 5816 /* 5817 * Callers need to ensure there can be no nesting of this function, otherwise 5818 * the seqlock logic goes bad. We can not serialize this because the arch 5819 * code calls this from NMI context. 5820 */ 5821 void perf_event_update_userpage(struct perf_event *event) 5822 { 5823 struct perf_event_mmap_page *userpg; 5824 struct perf_buffer *rb; 5825 u64 enabled, running, now; 5826 5827 rcu_read_lock(); 5828 rb = rcu_dereference(event->rb); 5829 if (!rb) 5830 goto unlock; 5831 5832 /* 5833 * compute total_time_enabled, total_time_running 5834 * based on snapshot values taken when the event 5835 * was last scheduled in. 5836 * 5837 * we cannot simply called update_context_time() 5838 * because of locking issue as we can be called in 5839 * NMI context 5840 */ 5841 calc_timer_values(event, &now, &enabled, &running); 5842 5843 userpg = rb->user_page; 5844 /* 5845 * Disable preemption to guarantee consistent time stamps are stored to 5846 * the user page. 5847 */ 5848 preempt_disable(); 5849 ++userpg->lock; 5850 barrier(); 5851 userpg->index = perf_event_index(event); 5852 userpg->offset = perf_event_count(event); 5853 if (userpg->index) 5854 userpg->offset -= local64_read(&event->hw.prev_count); 5855 5856 userpg->time_enabled = enabled + 5857 atomic64_read(&event->child_total_time_enabled); 5858 5859 userpg->time_running = running + 5860 atomic64_read(&event->child_total_time_running); 5861 5862 arch_perf_update_userpage(event, userpg, now); 5863 5864 barrier(); 5865 ++userpg->lock; 5866 preempt_enable(); 5867 unlock: 5868 rcu_read_unlock(); 5869 } 5870 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5871 5872 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5873 { 5874 struct perf_event *event = vmf->vma->vm_file->private_data; 5875 struct perf_buffer *rb; 5876 vm_fault_t ret = VM_FAULT_SIGBUS; 5877 5878 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5879 if (vmf->pgoff == 0) 5880 ret = 0; 5881 return ret; 5882 } 5883 5884 rcu_read_lock(); 5885 rb = rcu_dereference(event->rb); 5886 if (!rb) 5887 goto unlock; 5888 5889 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5890 goto unlock; 5891 5892 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5893 if (!vmf->page) 5894 goto unlock; 5895 5896 get_page(vmf->page); 5897 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5898 vmf->page->index = vmf->pgoff; 5899 5900 ret = 0; 5901 unlock: 5902 rcu_read_unlock(); 5903 5904 return ret; 5905 } 5906 5907 static void ring_buffer_attach(struct perf_event *event, 5908 struct perf_buffer *rb) 5909 { 5910 struct perf_buffer *old_rb = NULL; 5911 unsigned long flags; 5912 5913 if (event->rb) { 5914 /* 5915 * Should be impossible, we set this when removing 5916 * event->rb_entry and wait/clear when adding event->rb_entry. 5917 */ 5918 WARN_ON_ONCE(event->rcu_pending); 5919 5920 old_rb = event->rb; 5921 spin_lock_irqsave(&old_rb->event_lock, flags); 5922 list_del_rcu(&event->rb_entry); 5923 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5924 5925 event->rcu_batches = get_state_synchronize_rcu(); 5926 event->rcu_pending = 1; 5927 } 5928 5929 if (rb) { 5930 if (event->rcu_pending) { 5931 cond_synchronize_rcu(event->rcu_batches); 5932 event->rcu_pending = 0; 5933 } 5934 5935 spin_lock_irqsave(&rb->event_lock, flags); 5936 list_add_rcu(&event->rb_entry, &rb->event_list); 5937 spin_unlock_irqrestore(&rb->event_lock, flags); 5938 } 5939 5940 /* 5941 * Avoid racing with perf_mmap_close(AUX): stop the event 5942 * before swizzling the event::rb pointer; if it's getting 5943 * unmapped, its aux_mmap_count will be 0 and it won't 5944 * restart. See the comment in __perf_pmu_output_stop(). 5945 * 5946 * Data will inevitably be lost when set_output is done in 5947 * mid-air, but then again, whoever does it like this is 5948 * not in for the data anyway. 5949 */ 5950 if (has_aux(event)) 5951 perf_event_stop(event, 0); 5952 5953 rcu_assign_pointer(event->rb, rb); 5954 5955 if (old_rb) { 5956 ring_buffer_put(old_rb); 5957 /* 5958 * Since we detached before setting the new rb, so that we 5959 * could attach the new rb, we could have missed a wakeup. 5960 * Provide it now. 5961 */ 5962 wake_up_all(&event->waitq); 5963 } 5964 } 5965 5966 static void ring_buffer_wakeup(struct perf_event *event) 5967 { 5968 struct perf_buffer *rb; 5969 5970 rcu_read_lock(); 5971 rb = rcu_dereference(event->rb); 5972 if (rb) { 5973 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5974 wake_up_all(&event->waitq); 5975 } 5976 rcu_read_unlock(); 5977 } 5978 5979 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5980 { 5981 struct perf_buffer *rb; 5982 5983 rcu_read_lock(); 5984 rb = rcu_dereference(event->rb); 5985 if (rb) { 5986 if (!refcount_inc_not_zero(&rb->refcount)) 5987 rb = NULL; 5988 } 5989 rcu_read_unlock(); 5990 5991 return rb; 5992 } 5993 5994 void ring_buffer_put(struct perf_buffer *rb) 5995 { 5996 if (!refcount_dec_and_test(&rb->refcount)) 5997 return; 5998 5999 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6000 6001 call_rcu(&rb->rcu_head, rb_free_rcu); 6002 } 6003 6004 static void perf_mmap_open(struct vm_area_struct *vma) 6005 { 6006 struct perf_event *event = vma->vm_file->private_data; 6007 6008 atomic_inc(&event->mmap_count); 6009 atomic_inc(&event->rb->mmap_count); 6010 6011 if (vma->vm_pgoff) 6012 atomic_inc(&event->rb->aux_mmap_count); 6013 6014 if (event->pmu->event_mapped) 6015 event->pmu->event_mapped(event, vma->vm_mm); 6016 } 6017 6018 static void perf_pmu_output_stop(struct perf_event *event); 6019 6020 /* 6021 * A buffer can be mmap()ed multiple times; either directly through the same 6022 * event, or through other events by use of perf_event_set_output(). 6023 * 6024 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6025 * the buffer here, where we still have a VM context. This means we need 6026 * to detach all events redirecting to us. 6027 */ 6028 static void perf_mmap_close(struct vm_area_struct *vma) 6029 { 6030 struct perf_event *event = vma->vm_file->private_data; 6031 struct perf_buffer *rb = ring_buffer_get(event); 6032 struct user_struct *mmap_user = rb->mmap_user; 6033 int mmap_locked = rb->mmap_locked; 6034 unsigned long size = perf_data_size(rb); 6035 bool detach_rest = false; 6036 6037 if (event->pmu->event_unmapped) 6038 event->pmu->event_unmapped(event, vma->vm_mm); 6039 6040 /* 6041 * rb->aux_mmap_count will always drop before rb->mmap_count and 6042 * event->mmap_count, so it is ok to use event->mmap_mutex to 6043 * serialize with perf_mmap here. 6044 */ 6045 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6046 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6047 /* 6048 * Stop all AUX events that are writing to this buffer, 6049 * so that we can free its AUX pages and corresponding PMU 6050 * data. Note that after rb::aux_mmap_count dropped to zero, 6051 * they won't start any more (see perf_aux_output_begin()). 6052 */ 6053 perf_pmu_output_stop(event); 6054 6055 /* now it's safe to free the pages */ 6056 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6057 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6058 6059 /* this has to be the last one */ 6060 rb_free_aux(rb); 6061 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6062 6063 mutex_unlock(&event->mmap_mutex); 6064 } 6065 6066 if (atomic_dec_and_test(&rb->mmap_count)) 6067 detach_rest = true; 6068 6069 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6070 goto out_put; 6071 6072 ring_buffer_attach(event, NULL); 6073 mutex_unlock(&event->mmap_mutex); 6074 6075 /* If there's still other mmap()s of this buffer, we're done. */ 6076 if (!detach_rest) 6077 goto out_put; 6078 6079 /* 6080 * No other mmap()s, detach from all other events that might redirect 6081 * into the now unreachable buffer. Somewhat complicated by the 6082 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6083 */ 6084 again: 6085 rcu_read_lock(); 6086 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6087 if (!atomic_long_inc_not_zero(&event->refcount)) { 6088 /* 6089 * This event is en-route to free_event() which will 6090 * detach it and remove it from the list. 6091 */ 6092 continue; 6093 } 6094 rcu_read_unlock(); 6095 6096 mutex_lock(&event->mmap_mutex); 6097 /* 6098 * Check we didn't race with perf_event_set_output() which can 6099 * swizzle the rb from under us while we were waiting to 6100 * acquire mmap_mutex. 6101 * 6102 * If we find a different rb; ignore this event, a next 6103 * iteration will no longer find it on the list. We have to 6104 * still restart the iteration to make sure we're not now 6105 * iterating the wrong list. 6106 */ 6107 if (event->rb == rb) 6108 ring_buffer_attach(event, NULL); 6109 6110 mutex_unlock(&event->mmap_mutex); 6111 put_event(event); 6112 6113 /* 6114 * Restart the iteration; either we're on the wrong list or 6115 * destroyed its integrity by doing a deletion. 6116 */ 6117 goto again; 6118 } 6119 rcu_read_unlock(); 6120 6121 /* 6122 * It could be there's still a few 0-ref events on the list; they'll 6123 * get cleaned up by free_event() -- they'll also still have their 6124 * ref on the rb and will free it whenever they are done with it. 6125 * 6126 * Aside from that, this buffer is 'fully' detached and unmapped, 6127 * undo the VM accounting. 6128 */ 6129 6130 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6131 &mmap_user->locked_vm); 6132 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6133 free_uid(mmap_user); 6134 6135 out_put: 6136 ring_buffer_put(rb); /* could be last */ 6137 } 6138 6139 static const struct vm_operations_struct perf_mmap_vmops = { 6140 .open = perf_mmap_open, 6141 .close = perf_mmap_close, /* non mergeable */ 6142 .fault = perf_mmap_fault, 6143 .page_mkwrite = perf_mmap_fault, 6144 }; 6145 6146 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6147 { 6148 struct perf_event *event = file->private_data; 6149 unsigned long user_locked, user_lock_limit; 6150 struct user_struct *user = current_user(); 6151 struct perf_buffer *rb = NULL; 6152 unsigned long locked, lock_limit; 6153 unsigned long vma_size; 6154 unsigned long nr_pages; 6155 long user_extra = 0, extra = 0; 6156 int ret = 0, flags = 0; 6157 6158 /* 6159 * Don't allow mmap() of inherited per-task counters. This would 6160 * create a performance issue due to all children writing to the 6161 * same rb. 6162 */ 6163 if (event->cpu == -1 && event->attr.inherit) 6164 return -EINVAL; 6165 6166 if (!(vma->vm_flags & VM_SHARED)) 6167 return -EINVAL; 6168 6169 ret = security_perf_event_read(event); 6170 if (ret) 6171 return ret; 6172 6173 vma_size = vma->vm_end - vma->vm_start; 6174 6175 if (vma->vm_pgoff == 0) { 6176 nr_pages = (vma_size / PAGE_SIZE) - 1; 6177 } else { 6178 /* 6179 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6180 * mapped, all subsequent mappings should have the same size 6181 * and offset. Must be above the normal perf buffer. 6182 */ 6183 u64 aux_offset, aux_size; 6184 6185 if (!event->rb) 6186 return -EINVAL; 6187 6188 nr_pages = vma_size / PAGE_SIZE; 6189 6190 mutex_lock(&event->mmap_mutex); 6191 ret = -EINVAL; 6192 6193 rb = event->rb; 6194 if (!rb) 6195 goto aux_unlock; 6196 6197 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6198 aux_size = READ_ONCE(rb->user_page->aux_size); 6199 6200 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6201 goto aux_unlock; 6202 6203 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6204 goto aux_unlock; 6205 6206 /* already mapped with a different offset */ 6207 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6208 goto aux_unlock; 6209 6210 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6211 goto aux_unlock; 6212 6213 /* already mapped with a different size */ 6214 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6215 goto aux_unlock; 6216 6217 if (!is_power_of_2(nr_pages)) 6218 goto aux_unlock; 6219 6220 if (!atomic_inc_not_zero(&rb->mmap_count)) 6221 goto aux_unlock; 6222 6223 if (rb_has_aux(rb)) { 6224 atomic_inc(&rb->aux_mmap_count); 6225 ret = 0; 6226 goto unlock; 6227 } 6228 6229 atomic_set(&rb->aux_mmap_count, 1); 6230 user_extra = nr_pages; 6231 6232 goto accounting; 6233 } 6234 6235 /* 6236 * If we have rb pages ensure they're a power-of-two number, so we 6237 * can do bitmasks instead of modulo. 6238 */ 6239 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6240 return -EINVAL; 6241 6242 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6243 return -EINVAL; 6244 6245 WARN_ON_ONCE(event->ctx->parent_ctx); 6246 again: 6247 mutex_lock(&event->mmap_mutex); 6248 if (event->rb) { 6249 if (event->rb->nr_pages != nr_pages) { 6250 ret = -EINVAL; 6251 goto unlock; 6252 } 6253 6254 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6255 /* 6256 * Raced against perf_mmap_close() through 6257 * perf_event_set_output(). Try again, hope for better 6258 * luck. 6259 */ 6260 mutex_unlock(&event->mmap_mutex); 6261 goto again; 6262 } 6263 6264 goto unlock; 6265 } 6266 6267 user_extra = nr_pages + 1; 6268 6269 accounting: 6270 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6271 6272 /* 6273 * Increase the limit linearly with more CPUs: 6274 */ 6275 user_lock_limit *= num_online_cpus(); 6276 6277 user_locked = atomic_long_read(&user->locked_vm); 6278 6279 /* 6280 * sysctl_perf_event_mlock may have changed, so that 6281 * user->locked_vm > user_lock_limit 6282 */ 6283 if (user_locked > user_lock_limit) 6284 user_locked = user_lock_limit; 6285 user_locked += user_extra; 6286 6287 if (user_locked > user_lock_limit) { 6288 /* 6289 * charge locked_vm until it hits user_lock_limit; 6290 * charge the rest from pinned_vm 6291 */ 6292 extra = user_locked - user_lock_limit; 6293 user_extra -= extra; 6294 } 6295 6296 lock_limit = rlimit(RLIMIT_MEMLOCK); 6297 lock_limit >>= PAGE_SHIFT; 6298 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6299 6300 if ((locked > lock_limit) && perf_is_paranoid() && 6301 !capable(CAP_IPC_LOCK)) { 6302 ret = -EPERM; 6303 goto unlock; 6304 } 6305 6306 WARN_ON(!rb && event->rb); 6307 6308 if (vma->vm_flags & VM_WRITE) 6309 flags |= RING_BUFFER_WRITABLE; 6310 6311 if (!rb) { 6312 rb = rb_alloc(nr_pages, 6313 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6314 event->cpu, flags); 6315 6316 if (!rb) { 6317 ret = -ENOMEM; 6318 goto unlock; 6319 } 6320 6321 atomic_set(&rb->mmap_count, 1); 6322 rb->mmap_user = get_current_user(); 6323 rb->mmap_locked = extra; 6324 6325 ring_buffer_attach(event, rb); 6326 6327 perf_event_init_userpage(event); 6328 perf_event_update_userpage(event); 6329 } else { 6330 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6331 event->attr.aux_watermark, flags); 6332 if (!ret) 6333 rb->aux_mmap_locked = extra; 6334 } 6335 6336 unlock: 6337 if (!ret) { 6338 atomic_long_add(user_extra, &user->locked_vm); 6339 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6340 6341 atomic_inc(&event->mmap_count); 6342 } else if (rb) { 6343 atomic_dec(&rb->mmap_count); 6344 } 6345 aux_unlock: 6346 mutex_unlock(&event->mmap_mutex); 6347 6348 /* 6349 * Since pinned accounting is per vm we cannot allow fork() to copy our 6350 * vma. 6351 */ 6352 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6353 vma->vm_ops = &perf_mmap_vmops; 6354 6355 if (event->pmu->event_mapped) 6356 event->pmu->event_mapped(event, vma->vm_mm); 6357 6358 return ret; 6359 } 6360 6361 static int perf_fasync(int fd, struct file *filp, int on) 6362 { 6363 struct inode *inode = file_inode(filp); 6364 struct perf_event *event = filp->private_data; 6365 int retval; 6366 6367 inode_lock(inode); 6368 retval = fasync_helper(fd, filp, on, &event->fasync); 6369 inode_unlock(inode); 6370 6371 if (retval < 0) 6372 return retval; 6373 6374 return 0; 6375 } 6376 6377 static const struct file_operations perf_fops = { 6378 .llseek = no_llseek, 6379 .release = perf_release, 6380 .read = perf_read, 6381 .poll = perf_poll, 6382 .unlocked_ioctl = perf_ioctl, 6383 .compat_ioctl = perf_compat_ioctl, 6384 .mmap = perf_mmap, 6385 .fasync = perf_fasync, 6386 }; 6387 6388 /* 6389 * Perf event wakeup 6390 * 6391 * If there's data, ensure we set the poll() state and publish everything 6392 * to user-space before waking everybody up. 6393 */ 6394 6395 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6396 { 6397 /* only the parent has fasync state */ 6398 if (event->parent) 6399 event = event->parent; 6400 return &event->fasync; 6401 } 6402 6403 void perf_event_wakeup(struct perf_event *event) 6404 { 6405 ring_buffer_wakeup(event); 6406 6407 if (event->pending_kill) { 6408 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6409 event->pending_kill = 0; 6410 } 6411 } 6412 6413 static void perf_sigtrap(struct perf_event *event) 6414 { 6415 /* 6416 * We'd expect this to only occur if the irq_work is delayed and either 6417 * ctx->task or current has changed in the meantime. This can be the 6418 * case on architectures that do not implement arch_irq_work_raise(). 6419 */ 6420 if (WARN_ON_ONCE(event->ctx->task != current)) 6421 return; 6422 6423 /* 6424 * perf_pending_event() can race with the task exiting. 6425 */ 6426 if (current->flags & PF_EXITING) 6427 return; 6428 6429 force_sig_perf((void __user *)event->pending_addr, 6430 event->attr.type, event->attr.sig_data); 6431 } 6432 6433 static void perf_pending_event_disable(struct perf_event *event) 6434 { 6435 int cpu = READ_ONCE(event->pending_disable); 6436 6437 if (cpu < 0) 6438 return; 6439 6440 if (cpu == smp_processor_id()) { 6441 WRITE_ONCE(event->pending_disable, -1); 6442 6443 if (event->attr.sigtrap) { 6444 perf_sigtrap(event); 6445 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6446 return; 6447 } 6448 6449 perf_event_disable_local(event); 6450 return; 6451 } 6452 6453 /* 6454 * CPU-A CPU-B 6455 * 6456 * perf_event_disable_inatomic() 6457 * @pending_disable = CPU-A; 6458 * irq_work_queue(); 6459 * 6460 * sched-out 6461 * @pending_disable = -1; 6462 * 6463 * sched-in 6464 * perf_event_disable_inatomic() 6465 * @pending_disable = CPU-B; 6466 * irq_work_queue(); // FAILS 6467 * 6468 * irq_work_run() 6469 * perf_pending_event() 6470 * 6471 * But the event runs on CPU-B and wants disabling there. 6472 */ 6473 irq_work_queue_on(&event->pending, cpu); 6474 } 6475 6476 static void perf_pending_event(struct irq_work *entry) 6477 { 6478 struct perf_event *event = container_of(entry, struct perf_event, pending); 6479 int rctx; 6480 6481 rctx = perf_swevent_get_recursion_context(); 6482 /* 6483 * If we 'fail' here, that's OK, it means recursion is already disabled 6484 * and we won't recurse 'further'. 6485 */ 6486 6487 perf_pending_event_disable(event); 6488 6489 if (event->pending_wakeup) { 6490 event->pending_wakeup = 0; 6491 perf_event_wakeup(event); 6492 } 6493 6494 if (rctx >= 0) 6495 perf_swevent_put_recursion_context(rctx); 6496 } 6497 6498 /* 6499 * We assume there is only KVM supporting the callbacks. 6500 * Later on, we might change it to a list if there is 6501 * another virtualization implementation supporting the callbacks. 6502 */ 6503 struct perf_guest_info_callbacks *perf_guest_cbs; 6504 6505 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6506 { 6507 perf_guest_cbs = cbs; 6508 return 0; 6509 } 6510 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6511 6512 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6513 { 6514 perf_guest_cbs = NULL; 6515 return 0; 6516 } 6517 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6518 6519 static void 6520 perf_output_sample_regs(struct perf_output_handle *handle, 6521 struct pt_regs *regs, u64 mask) 6522 { 6523 int bit; 6524 DECLARE_BITMAP(_mask, 64); 6525 6526 bitmap_from_u64(_mask, mask); 6527 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6528 u64 val; 6529 6530 val = perf_reg_value(regs, bit); 6531 perf_output_put(handle, val); 6532 } 6533 } 6534 6535 static void perf_sample_regs_user(struct perf_regs *regs_user, 6536 struct pt_regs *regs) 6537 { 6538 if (user_mode(regs)) { 6539 regs_user->abi = perf_reg_abi(current); 6540 regs_user->regs = regs; 6541 } else if (!(current->flags & PF_KTHREAD)) { 6542 perf_get_regs_user(regs_user, regs); 6543 } else { 6544 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6545 regs_user->regs = NULL; 6546 } 6547 } 6548 6549 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6550 struct pt_regs *regs) 6551 { 6552 regs_intr->regs = regs; 6553 regs_intr->abi = perf_reg_abi(current); 6554 } 6555 6556 6557 /* 6558 * Get remaining task size from user stack pointer. 6559 * 6560 * It'd be better to take stack vma map and limit this more 6561 * precisely, but there's no way to get it safely under interrupt, 6562 * so using TASK_SIZE as limit. 6563 */ 6564 static u64 perf_ustack_task_size(struct pt_regs *regs) 6565 { 6566 unsigned long addr = perf_user_stack_pointer(regs); 6567 6568 if (!addr || addr >= TASK_SIZE) 6569 return 0; 6570 6571 return TASK_SIZE - addr; 6572 } 6573 6574 static u16 6575 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6576 struct pt_regs *regs) 6577 { 6578 u64 task_size; 6579 6580 /* No regs, no stack pointer, no dump. */ 6581 if (!regs) 6582 return 0; 6583 6584 /* 6585 * Check if we fit in with the requested stack size into the: 6586 * - TASK_SIZE 6587 * If we don't, we limit the size to the TASK_SIZE. 6588 * 6589 * - remaining sample size 6590 * If we don't, we customize the stack size to 6591 * fit in to the remaining sample size. 6592 */ 6593 6594 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6595 stack_size = min(stack_size, (u16) task_size); 6596 6597 /* Current header size plus static size and dynamic size. */ 6598 header_size += 2 * sizeof(u64); 6599 6600 /* Do we fit in with the current stack dump size? */ 6601 if ((u16) (header_size + stack_size) < header_size) { 6602 /* 6603 * If we overflow the maximum size for the sample, 6604 * we customize the stack dump size to fit in. 6605 */ 6606 stack_size = USHRT_MAX - header_size - sizeof(u64); 6607 stack_size = round_up(stack_size, sizeof(u64)); 6608 } 6609 6610 return stack_size; 6611 } 6612 6613 static void 6614 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6615 struct pt_regs *regs) 6616 { 6617 /* Case of a kernel thread, nothing to dump */ 6618 if (!regs) { 6619 u64 size = 0; 6620 perf_output_put(handle, size); 6621 } else { 6622 unsigned long sp; 6623 unsigned int rem; 6624 u64 dyn_size; 6625 mm_segment_t fs; 6626 6627 /* 6628 * We dump: 6629 * static size 6630 * - the size requested by user or the best one we can fit 6631 * in to the sample max size 6632 * data 6633 * - user stack dump data 6634 * dynamic size 6635 * - the actual dumped size 6636 */ 6637 6638 /* Static size. */ 6639 perf_output_put(handle, dump_size); 6640 6641 /* Data. */ 6642 sp = perf_user_stack_pointer(regs); 6643 fs = force_uaccess_begin(); 6644 rem = __output_copy_user(handle, (void *) sp, dump_size); 6645 force_uaccess_end(fs); 6646 dyn_size = dump_size - rem; 6647 6648 perf_output_skip(handle, rem); 6649 6650 /* Dynamic size. */ 6651 perf_output_put(handle, dyn_size); 6652 } 6653 } 6654 6655 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6656 struct perf_sample_data *data, 6657 size_t size) 6658 { 6659 struct perf_event *sampler = event->aux_event; 6660 struct perf_buffer *rb; 6661 6662 data->aux_size = 0; 6663 6664 if (!sampler) 6665 goto out; 6666 6667 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6668 goto out; 6669 6670 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6671 goto out; 6672 6673 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6674 if (!rb) 6675 goto out; 6676 6677 /* 6678 * If this is an NMI hit inside sampling code, don't take 6679 * the sample. See also perf_aux_sample_output(). 6680 */ 6681 if (READ_ONCE(rb->aux_in_sampling)) { 6682 data->aux_size = 0; 6683 } else { 6684 size = min_t(size_t, size, perf_aux_size(rb)); 6685 data->aux_size = ALIGN(size, sizeof(u64)); 6686 } 6687 ring_buffer_put(rb); 6688 6689 out: 6690 return data->aux_size; 6691 } 6692 6693 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6694 struct perf_event *event, 6695 struct perf_output_handle *handle, 6696 unsigned long size) 6697 { 6698 unsigned long flags; 6699 long ret; 6700 6701 /* 6702 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6703 * paths. If we start calling them in NMI context, they may race with 6704 * the IRQ ones, that is, for example, re-starting an event that's just 6705 * been stopped, which is why we're using a separate callback that 6706 * doesn't change the event state. 6707 * 6708 * IRQs need to be disabled to prevent IPIs from racing with us. 6709 */ 6710 local_irq_save(flags); 6711 /* 6712 * Guard against NMI hits inside the critical section; 6713 * see also perf_prepare_sample_aux(). 6714 */ 6715 WRITE_ONCE(rb->aux_in_sampling, 1); 6716 barrier(); 6717 6718 ret = event->pmu->snapshot_aux(event, handle, size); 6719 6720 barrier(); 6721 WRITE_ONCE(rb->aux_in_sampling, 0); 6722 local_irq_restore(flags); 6723 6724 return ret; 6725 } 6726 6727 static void perf_aux_sample_output(struct perf_event *event, 6728 struct perf_output_handle *handle, 6729 struct perf_sample_data *data) 6730 { 6731 struct perf_event *sampler = event->aux_event; 6732 struct perf_buffer *rb; 6733 unsigned long pad; 6734 long size; 6735 6736 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6737 return; 6738 6739 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6740 if (!rb) 6741 return; 6742 6743 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6744 6745 /* 6746 * An error here means that perf_output_copy() failed (returned a 6747 * non-zero surplus that it didn't copy), which in its current 6748 * enlightened implementation is not possible. If that changes, we'd 6749 * like to know. 6750 */ 6751 if (WARN_ON_ONCE(size < 0)) 6752 goto out_put; 6753 6754 /* 6755 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6756 * perf_prepare_sample_aux(), so should not be more than that. 6757 */ 6758 pad = data->aux_size - size; 6759 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6760 pad = 8; 6761 6762 if (pad) { 6763 u64 zero = 0; 6764 perf_output_copy(handle, &zero, pad); 6765 } 6766 6767 out_put: 6768 ring_buffer_put(rb); 6769 } 6770 6771 static void __perf_event_header__init_id(struct perf_event_header *header, 6772 struct perf_sample_data *data, 6773 struct perf_event *event) 6774 { 6775 u64 sample_type = event->attr.sample_type; 6776 6777 data->type = sample_type; 6778 header->size += event->id_header_size; 6779 6780 if (sample_type & PERF_SAMPLE_TID) { 6781 /* namespace issues */ 6782 data->tid_entry.pid = perf_event_pid(event, current); 6783 data->tid_entry.tid = perf_event_tid(event, current); 6784 } 6785 6786 if (sample_type & PERF_SAMPLE_TIME) 6787 data->time = perf_event_clock(event); 6788 6789 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6790 data->id = primary_event_id(event); 6791 6792 if (sample_type & PERF_SAMPLE_STREAM_ID) 6793 data->stream_id = event->id; 6794 6795 if (sample_type & PERF_SAMPLE_CPU) { 6796 data->cpu_entry.cpu = raw_smp_processor_id(); 6797 data->cpu_entry.reserved = 0; 6798 } 6799 } 6800 6801 void perf_event_header__init_id(struct perf_event_header *header, 6802 struct perf_sample_data *data, 6803 struct perf_event *event) 6804 { 6805 if (event->attr.sample_id_all) 6806 __perf_event_header__init_id(header, data, event); 6807 } 6808 6809 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6810 struct perf_sample_data *data) 6811 { 6812 u64 sample_type = data->type; 6813 6814 if (sample_type & PERF_SAMPLE_TID) 6815 perf_output_put(handle, data->tid_entry); 6816 6817 if (sample_type & PERF_SAMPLE_TIME) 6818 perf_output_put(handle, data->time); 6819 6820 if (sample_type & PERF_SAMPLE_ID) 6821 perf_output_put(handle, data->id); 6822 6823 if (sample_type & PERF_SAMPLE_STREAM_ID) 6824 perf_output_put(handle, data->stream_id); 6825 6826 if (sample_type & PERF_SAMPLE_CPU) 6827 perf_output_put(handle, data->cpu_entry); 6828 6829 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6830 perf_output_put(handle, data->id); 6831 } 6832 6833 void perf_event__output_id_sample(struct perf_event *event, 6834 struct perf_output_handle *handle, 6835 struct perf_sample_data *sample) 6836 { 6837 if (event->attr.sample_id_all) 6838 __perf_event__output_id_sample(handle, sample); 6839 } 6840 6841 static void perf_output_read_one(struct perf_output_handle *handle, 6842 struct perf_event *event, 6843 u64 enabled, u64 running) 6844 { 6845 u64 read_format = event->attr.read_format; 6846 u64 values[4]; 6847 int n = 0; 6848 6849 values[n++] = perf_event_count(event); 6850 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6851 values[n++] = enabled + 6852 atomic64_read(&event->child_total_time_enabled); 6853 } 6854 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6855 values[n++] = running + 6856 atomic64_read(&event->child_total_time_running); 6857 } 6858 if (read_format & PERF_FORMAT_ID) 6859 values[n++] = primary_event_id(event); 6860 6861 __output_copy(handle, values, n * sizeof(u64)); 6862 } 6863 6864 static void perf_output_read_group(struct perf_output_handle *handle, 6865 struct perf_event *event, 6866 u64 enabled, u64 running) 6867 { 6868 struct perf_event *leader = event->group_leader, *sub; 6869 u64 read_format = event->attr.read_format; 6870 u64 values[5]; 6871 int n = 0; 6872 6873 values[n++] = 1 + leader->nr_siblings; 6874 6875 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6876 values[n++] = enabled; 6877 6878 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6879 values[n++] = running; 6880 6881 if ((leader != event) && 6882 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6883 leader->pmu->read(leader); 6884 6885 values[n++] = perf_event_count(leader); 6886 if (read_format & PERF_FORMAT_ID) 6887 values[n++] = primary_event_id(leader); 6888 6889 __output_copy(handle, values, n * sizeof(u64)); 6890 6891 for_each_sibling_event(sub, leader) { 6892 n = 0; 6893 6894 if ((sub != event) && 6895 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6896 sub->pmu->read(sub); 6897 6898 values[n++] = perf_event_count(sub); 6899 if (read_format & PERF_FORMAT_ID) 6900 values[n++] = primary_event_id(sub); 6901 6902 __output_copy(handle, values, n * sizeof(u64)); 6903 } 6904 } 6905 6906 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6907 PERF_FORMAT_TOTAL_TIME_RUNNING) 6908 6909 /* 6910 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6911 * 6912 * The problem is that its both hard and excessively expensive to iterate the 6913 * child list, not to mention that its impossible to IPI the children running 6914 * on another CPU, from interrupt/NMI context. 6915 */ 6916 static void perf_output_read(struct perf_output_handle *handle, 6917 struct perf_event *event) 6918 { 6919 u64 enabled = 0, running = 0, now; 6920 u64 read_format = event->attr.read_format; 6921 6922 /* 6923 * compute total_time_enabled, total_time_running 6924 * based on snapshot values taken when the event 6925 * was last scheduled in. 6926 * 6927 * we cannot simply called update_context_time() 6928 * because of locking issue as we are called in 6929 * NMI context 6930 */ 6931 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6932 calc_timer_values(event, &now, &enabled, &running); 6933 6934 if (event->attr.read_format & PERF_FORMAT_GROUP) 6935 perf_output_read_group(handle, event, enabled, running); 6936 else 6937 perf_output_read_one(handle, event, enabled, running); 6938 } 6939 6940 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6941 { 6942 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6943 } 6944 6945 void perf_output_sample(struct perf_output_handle *handle, 6946 struct perf_event_header *header, 6947 struct perf_sample_data *data, 6948 struct perf_event *event) 6949 { 6950 u64 sample_type = data->type; 6951 6952 perf_output_put(handle, *header); 6953 6954 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6955 perf_output_put(handle, data->id); 6956 6957 if (sample_type & PERF_SAMPLE_IP) 6958 perf_output_put(handle, data->ip); 6959 6960 if (sample_type & PERF_SAMPLE_TID) 6961 perf_output_put(handle, data->tid_entry); 6962 6963 if (sample_type & PERF_SAMPLE_TIME) 6964 perf_output_put(handle, data->time); 6965 6966 if (sample_type & PERF_SAMPLE_ADDR) 6967 perf_output_put(handle, data->addr); 6968 6969 if (sample_type & PERF_SAMPLE_ID) 6970 perf_output_put(handle, data->id); 6971 6972 if (sample_type & PERF_SAMPLE_STREAM_ID) 6973 perf_output_put(handle, data->stream_id); 6974 6975 if (sample_type & PERF_SAMPLE_CPU) 6976 perf_output_put(handle, data->cpu_entry); 6977 6978 if (sample_type & PERF_SAMPLE_PERIOD) 6979 perf_output_put(handle, data->period); 6980 6981 if (sample_type & PERF_SAMPLE_READ) 6982 perf_output_read(handle, event); 6983 6984 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6985 int size = 1; 6986 6987 size += data->callchain->nr; 6988 size *= sizeof(u64); 6989 __output_copy(handle, data->callchain, size); 6990 } 6991 6992 if (sample_type & PERF_SAMPLE_RAW) { 6993 struct perf_raw_record *raw = data->raw; 6994 6995 if (raw) { 6996 struct perf_raw_frag *frag = &raw->frag; 6997 6998 perf_output_put(handle, raw->size); 6999 do { 7000 if (frag->copy) { 7001 __output_custom(handle, frag->copy, 7002 frag->data, frag->size); 7003 } else { 7004 __output_copy(handle, frag->data, 7005 frag->size); 7006 } 7007 if (perf_raw_frag_last(frag)) 7008 break; 7009 frag = frag->next; 7010 } while (1); 7011 if (frag->pad) 7012 __output_skip(handle, NULL, frag->pad); 7013 } else { 7014 struct { 7015 u32 size; 7016 u32 data; 7017 } raw = { 7018 .size = sizeof(u32), 7019 .data = 0, 7020 }; 7021 perf_output_put(handle, raw); 7022 } 7023 } 7024 7025 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7026 if (data->br_stack) { 7027 size_t size; 7028 7029 size = data->br_stack->nr 7030 * sizeof(struct perf_branch_entry); 7031 7032 perf_output_put(handle, data->br_stack->nr); 7033 if (perf_sample_save_hw_index(event)) 7034 perf_output_put(handle, data->br_stack->hw_idx); 7035 perf_output_copy(handle, data->br_stack->entries, size); 7036 } else { 7037 /* 7038 * we always store at least the value of nr 7039 */ 7040 u64 nr = 0; 7041 perf_output_put(handle, nr); 7042 } 7043 } 7044 7045 if (sample_type & PERF_SAMPLE_REGS_USER) { 7046 u64 abi = data->regs_user.abi; 7047 7048 /* 7049 * If there are no regs to dump, notice it through 7050 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7051 */ 7052 perf_output_put(handle, abi); 7053 7054 if (abi) { 7055 u64 mask = event->attr.sample_regs_user; 7056 perf_output_sample_regs(handle, 7057 data->regs_user.regs, 7058 mask); 7059 } 7060 } 7061 7062 if (sample_type & PERF_SAMPLE_STACK_USER) { 7063 perf_output_sample_ustack(handle, 7064 data->stack_user_size, 7065 data->regs_user.regs); 7066 } 7067 7068 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7069 perf_output_put(handle, data->weight.full); 7070 7071 if (sample_type & PERF_SAMPLE_DATA_SRC) 7072 perf_output_put(handle, data->data_src.val); 7073 7074 if (sample_type & PERF_SAMPLE_TRANSACTION) 7075 perf_output_put(handle, data->txn); 7076 7077 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7078 u64 abi = data->regs_intr.abi; 7079 /* 7080 * If there are no regs to dump, notice it through 7081 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7082 */ 7083 perf_output_put(handle, abi); 7084 7085 if (abi) { 7086 u64 mask = event->attr.sample_regs_intr; 7087 7088 perf_output_sample_regs(handle, 7089 data->regs_intr.regs, 7090 mask); 7091 } 7092 } 7093 7094 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7095 perf_output_put(handle, data->phys_addr); 7096 7097 if (sample_type & PERF_SAMPLE_CGROUP) 7098 perf_output_put(handle, data->cgroup); 7099 7100 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7101 perf_output_put(handle, data->data_page_size); 7102 7103 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7104 perf_output_put(handle, data->code_page_size); 7105 7106 if (sample_type & PERF_SAMPLE_AUX) { 7107 perf_output_put(handle, data->aux_size); 7108 7109 if (data->aux_size) 7110 perf_aux_sample_output(event, handle, data); 7111 } 7112 7113 if (!event->attr.watermark) { 7114 int wakeup_events = event->attr.wakeup_events; 7115 7116 if (wakeup_events) { 7117 struct perf_buffer *rb = handle->rb; 7118 int events = local_inc_return(&rb->events); 7119 7120 if (events >= wakeup_events) { 7121 local_sub(wakeup_events, &rb->events); 7122 local_inc(&rb->wakeup); 7123 } 7124 } 7125 } 7126 } 7127 7128 static u64 perf_virt_to_phys(u64 virt) 7129 { 7130 u64 phys_addr = 0; 7131 struct page *p = NULL; 7132 7133 if (!virt) 7134 return 0; 7135 7136 if (virt >= TASK_SIZE) { 7137 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7138 if (virt_addr_valid((void *)(uintptr_t)virt) && 7139 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7140 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7141 } else { 7142 /* 7143 * Walking the pages tables for user address. 7144 * Interrupts are disabled, so it prevents any tear down 7145 * of the page tables. 7146 * Try IRQ-safe get_user_page_fast_only first. 7147 * If failed, leave phys_addr as 0. 7148 */ 7149 if (current->mm != NULL) { 7150 pagefault_disable(); 7151 if (get_user_page_fast_only(virt, 0, &p)) 7152 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7153 pagefault_enable(); 7154 } 7155 7156 if (p) 7157 put_page(p); 7158 } 7159 7160 return phys_addr; 7161 } 7162 7163 /* 7164 * Return the pagetable size of a given virtual address. 7165 */ 7166 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7167 { 7168 u64 size = 0; 7169 7170 #ifdef CONFIG_HAVE_FAST_GUP 7171 pgd_t *pgdp, pgd; 7172 p4d_t *p4dp, p4d; 7173 pud_t *pudp, pud; 7174 pmd_t *pmdp, pmd; 7175 pte_t *ptep, pte; 7176 7177 pgdp = pgd_offset(mm, addr); 7178 pgd = READ_ONCE(*pgdp); 7179 if (pgd_none(pgd)) 7180 return 0; 7181 7182 if (pgd_leaf(pgd)) 7183 return pgd_leaf_size(pgd); 7184 7185 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7186 p4d = READ_ONCE(*p4dp); 7187 if (!p4d_present(p4d)) 7188 return 0; 7189 7190 if (p4d_leaf(p4d)) 7191 return p4d_leaf_size(p4d); 7192 7193 pudp = pud_offset_lockless(p4dp, p4d, addr); 7194 pud = READ_ONCE(*pudp); 7195 if (!pud_present(pud)) 7196 return 0; 7197 7198 if (pud_leaf(pud)) 7199 return pud_leaf_size(pud); 7200 7201 pmdp = pmd_offset_lockless(pudp, pud, addr); 7202 pmd = READ_ONCE(*pmdp); 7203 if (!pmd_present(pmd)) 7204 return 0; 7205 7206 if (pmd_leaf(pmd)) 7207 return pmd_leaf_size(pmd); 7208 7209 ptep = pte_offset_map(&pmd, addr); 7210 pte = ptep_get_lockless(ptep); 7211 if (pte_present(pte)) 7212 size = pte_leaf_size(pte); 7213 pte_unmap(ptep); 7214 #endif /* CONFIG_HAVE_FAST_GUP */ 7215 7216 return size; 7217 } 7218 7219 static u64 perf_get_page_size(unsigned long addr) 7220 { 7221 struct mm_struct *mm; 7222 unsigned long flags; 7223 u64 size; 7224 7225 if (!addr) 7226 return 0; 7227 7228 /* 7229 * Software page-table walkers must disable IRQs, 7230 * which prevents any tear down of the page tables. 7231 */ 7232 local_irq_save(flags); 7233 7234 mm = current->mm; 7235 if (!mm) { 7236 /* 7237 * For kernel threads and the like, use init_mm so that 7238 * we can find kernel memory. 7239 */ 7240 mm = &init_mm; 7241 } 7242 7243 size = perf_get_pgtable_size(mm, addr); 7244 7245 local_irq_restore(flags); 7246 7247 return size; 7248 } 7249 7250 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7251 7252 struct perf_callchain_entry * 7253 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7254 { 7255 bool kernel = !event->attr.exclude_callchain_kernel; 7256 bool user = !event->attr.exclude_callchain_user; 7257 /* Disallow cross-task user callchains. */ 7258 bool crosstask = event->ctx->task && event->ctx->task != current; 7259 const u32 max_stack = event->attr.sample_max_stack; 7260 struct perf_callchain_entry *callchain; 7261 7262 if (!kernel && !user) 7263 return &__empty_callchain; 7264 7265 callchain = get_perf_callchain(regs, 0, kernel, user, 7266 max_stack, crosstask, true); 7267 return callchain ?: &__empty_callchain; 7268 } 7269 7270 void perf_prepare_sample(struct perf_event_header *header, 7271 struct perf_sample_data *data, 7272 struct perf_event *event, 7273 struct pt_regs *regs) 7274 { 7275 u64 sample_type = event->attr.sample_type; 7276 7277 header->type = PERF_RECORD_SAMPLE; 7278 header->size = sizeof(*header) + event->header_size; 7279 7280 header->misc = 0; 7281 header->misc |= perf_misc_flags(regs); 7282 7283 __perf_event_header__init_id(header, data, event); 7284 7285 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7286 data->ip = perf_instruction_pointer(regs); 7287 7288 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7289 int size = 1; 7290 7291 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7292 data->callchain = perf_callchain(event, regs); 7293 7294 size += data->callchain->nr; 7295 7296 header->size += size * sizeof(u64); 7297 } 7298 7299 if (sample_type & PERF_SAMPLE_RAW) { 7300 struct perf_raw_record *raw = data->raw; 7301 int size; 7302 7303 if (raw) { 7304 struct perf_raw_frag *frag = &raw->frag; 7305 u32 sum = 0; 7306 7307 do { 7308 sum += frag->size; 7309 if (perf_raw_frag_last(frag)) 7310 break; 7311 frag = frag->next; 7312 } while (1); 7313 7314 size = round_up(sum + sizeof(u32), sizeof(u64)); 7315 raw->size = size - sizeof(u32); 7316 frag->pad = raw->size - sum; 7317 } else { 7318 size = sizeof(u64); 7319 } 7320 7321 header->size += size; 7322 } 7323 7324 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7325 int size = sizeof(u64); /* nr */ 7326 if (data->br_stack) { 7327 if (perf_sample_save_hw_index(event)) 7328 size += sizeof(u64); 7329 7330 size += data->br_stack->nr 7331 * sizeof(struct perf_branch_entry); 7332 } 7333 header->size += size; 7334 } 7335 7336 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7337 perf_sample_regs_user(&data->regs_user, regs); 7338 7339 if (sample_type & PERF_SAMPLE_REGS_USER) { 7340 /* regs dump ABI info */ 7341 int size = sizeof(u64); 7342 7343 if (data->regs_user.regs) { 7344 u64 mask = event->attr.sample_regs_user; 7345 size += hweight64(mask) * sizeof(u64); 7346 } 7347 7348 header->size += size; 7349 } 7350 7351 if (sample_type & PERF_SAMPLE_STACK_USER) { 7352 /* 7353 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7354 * processed as the last one or have additional check added 7355 * in case new sample type is added, because we could eat 7356 * up the rest of the sample size. 7357 */ 7358 u16 stack_size = event->attr.sample_stack_user; 7359 u16 size = sizeof(u64); 7360 7361 stack_size = perf_sample_ustack_size(stack_size, header->size, 7362 data->regs_user.regs); 7363 7364 /* 7365 * If there is something to dump, add space for the dump 7366 * itself and for the field that tells the dynamic size, 7367 * which is how many have been actually dumped. 7368 */ 7369 if (stack_size) 7370 size += sizeof(u64) + stack_size; 7371 7372 data->stack_user_size = stack_size; 7373 header->size += size; 7374 } 7375 7376 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7377 /* regs dump ABI info */ 7378 int size = sizeof(u64); 7379 7380 perf_sample_regs_intr(&data->regs_intr, regs); 7381 7382 if (data->regs_intr.regs) { 7383 u64 mask = event->attr.sample_regs_intr; 7384 7385 size += hweight64(mask) * sizeof(u64); 7386 } 7387 7388 header->size += size; 7389 } 7390 7391 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7392 data->phys_addr = perf_virt_to_phys(data->addr); 7393 7394 #ifdef CONFIG_CGROUP_PERF 7395 if (sample_type & PERF_SAMPLE_CGROUP) { 7396 struct cgroup *cgrp; 7397 7398 /* protected by RCU */ 7399 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7400 data->cgroup = cgroup_id(cgrp); 7401 } 7402 #endif 7403 7404 /* 7405 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7406 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7407 * but the value will not dump to the userspace. 7408 */ 7409 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7410 data->data_page_size = perf_get_page_size(data->addr); 7411 7412 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7413 data->code_page_size = perf_get_page_size(data->ip); 7414 7415 if (sample_type & PERF_SAMPLE_AUX) { 7416 u64 size; 7417 7418 header->size += sizeof(u64); /* size */ 7419 7420 /* 7421 * Given the 16bit nature of header::size, an AUX sample can 7422 * easily overflow it, what with all the preceding sample bits. 7423 * Make sure this doesn't happen by using up to U16_MAX bytes 7424 * per sample in total (rounded down to 8 byte boundary). 7425 */ 7426 size = min_t(size_t, U16_MAX - header->size, 7427 event->attr.aux_sample_size); 7428 size = rounddown(size, 8); 7429 size = perf_prepare_sample_aux(event, data, size); 7430 7431 WARN_ON_ONCE(size + header->size > U16_MAX); 7432 header->size += size; 7433 } 7434 /* 7435 * If you're adding more sample types here, you likely need to do 7436 * something about the overflowing header::size, like repurpose the 7437 * lowest 3 bits of size, which should be always zero at the moment. 7438 * This raises a more important question, do we really need 512k sized 7439 * samples and why, so good argumentation is in order for whatever you 7440 * do here next. 7441 */ 7442 WARN_ON_ONCE(header->size & 7); 7443 } 7444 7445 static __always_inline int 7446 __perf_event_output(struct perf_event *event, 7447 struct perf_sample_data *data, 7448 struct pt_regs *regs, 7449 int (*output_begin)(struct perf_output_handle *, 7450 struct perf_sample_data *, 7451 struct perf_event *, 7452 unsigned int)) 7453 { 7454 struct perf_output_handle handle; 7455 struct perf_event_header header; 7456 int err; 7457 7458 /* protect the callchain buffers */ 7459 rcu_read_lock(); 7460 7461 perf_prepare_sample(&header, data, event, regs); 7462 7463 err = output_begin(&handle, data, event, header.size); 7464 if (err) 7465 goto exit; 7466 7467 perf_output_sample(&handle, &header, data, event); 7468 7469 perf_output_end(&handle); 7470 7471 exit: 7472 rcu_read_unlock(); 7473 return err; 7474 } 7475 7476 void 7477 perf_event_output_forward(struct perf_event *event, 7478 struct perf_sample_data *data, 7479 struct pt_regs *regs) 7480 { 7481 __perf_event_output(event, data, regs, perf_output_begin_forward); 7482 } 7483 7484 void 7485 perf_event_output_backward(struct perf_event *event, 7486 struct perf_sample_data *data, 7487 struct pt_regs *regs) 7488 { 7489 __perf_event_output(event, data, regs, perf_output_begin_backward); 7490 } 7491 7492 int 7493 perf_event_output(struct perf_event *event, 7494 struct perf_sample_data *data, 7495 struct pt_regs *regs) 7496 { 7497 return __perf_event_output(event, data, regs, perf_output_begin); 7498 } 7499 7500 /* 7501 * read event_id 7502 */ 7503 7504 struct perf_read_event { 7505 struct perf_event_header header; 7506 7507 u32 pid; 7508 u32 tid; 7509 }; 7510 7511 static void 7512 perf_event_read_event(struct perf_event *event, 7513 struct task_struct *task) 7514 { 7515 struct perf_output_handle handle; 7516 struct perf_sample_data sample; 7517 struct perf_read_event read_event = { 7518 .header = { 7519 .type = PERF_RECORD_READ, 7520 .misc = 0, 7521 .size = sizeof(read_event) + event->read_size, 7522 }, 7523 .pid = perf_event_pid(event, task), 7524 .tid = perf_event_tid(event, task), 7525 }; 7526 int ret; 7527 7528 perf_event_header__init_id(&read_event.header, &sample, event); 7529 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7530 if (ret) 7531 return; 7532 7533 perf_output_put(&handle, read_event); 7534 perf_output_read(&handle, event); 7535 perf_event__output_id_sample(event, &handle, &sample); 7536 7537 perf_output_end(&handle); 7538 } 7539 7540 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7541 7542 static void 7543 perf_iterate_ctx(struct perf_event_context *ctx, 7544 perf_iterate_f output, 7545 void *data, bool all) 7546 { 7547 struct perf_event *event; 7548 7549 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7550 if (!all) { 7551 if (event->state < PERF_EVENT_STATE_INACTIVE) 7552 continue; 7553 if (!event_filter_match(event)) 7554 continue; 7555 } 7556 7557 output(event, data); 7558 } 7559 } 7560 7561 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7562 { 7563 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7564 struct perf_event *event; 7565 7566 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7567 /* 7568 * Skip events that are not fully formed yet; ensure that 7569 * if we observe event->ctx, both event and ctx will be 7570 * complete enough. See perf_install_in_context(). 7571 */ 7572 if (!smp_load_acquire(&event->ctx)) 7573 continue; 7574 7575 if (event->state < PERF_EVENT_STATE_INACTIVE) 7576 continue; 7577 if (!event_filter_match(event)) 7578 continue; 7579 output(event, data); 7580 } 7581 } 7582 7583 /* 7584 * Iterate all events that need to receive side-band events. 7585 * 7586 * For new callers; ensure that account_pmu_sb_event() includes 7587 * your event, otherwise it might not get delivered. 7588 */ 7589 static void 7590 perf_iterate_sb(perf_iterate_f output, void *data, 7591 struct perf_event_context *task_ctx) 7592 { 7593 struct perf_event_context *ctx; 7594 int ctxn; 7595 7596 rcu_read_lock(); 7597 preempt_disable(); 7598 7599 /* 7600 * If we have task_ctx != NULL we only notify the task context itself. 7601 * The task_ctx is set only for EXIT events before releasing task 7602 * context. 7603 */ 7604 if (task_ctx) { 7605 perf_iterate_ctx(task_ctx, output, data, false); 7606 goto done; 7607 } 7608 7609 perf_iterate_sb_cpu(output, data); 7610 7611 for_each_task_context_nr(ctxn) { 7612 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7613 if (ctx) 7614 perf_iterate_ctx(ctx, output, data, false); 7615 } 7616 done: 7617 preempt_enable(); 7618 rcu_read_unlock(); 7619 } 7620 7621 /* 7622 * Clear all file-based filters at exec, they'll have to be 7623 * re-instated when/if these objects are mmapped again. 7624 */ 7625 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7626 { 7627 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7628 struct perf_addr_filter *filter; 7629 unsigned int restart = 0, count = 0; 7630 unsigned long flags; 7631 7632 if (!has_addr_filter(event)) 7633 return; 7634 7635 raw_spin_lock_irqsave(&ifh->lock, flags); 7636 list_for_each_entry(filter, &ifh->list, entry) { 7637 if (filter->path.dentry) { 7638 event->addr_filter_ranges[count].start = 0; 7639 event->addr_filter_ranges[count].size = 0; 7640 restart++; 7641 } 7642 7643 count++; 7644 } 7645 7646 if (restart) 7647 event->addr_filters_gen++; 7648 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7649 7650 if (restart) 7651 perf_event_stop(event, 1); 7652 } 7653 7654 void perf_event_exec(void) 7655 { 7656 struct perf_event_context *ctx; 7657 int ctxn; 7658 7659 for_each_task_context_nr(ctxn) { 7660 perf_event_enable_on_exec(ctxn); 7661 perf_event_remove_on_exec(ctxn); 7662 7663 rcu_read_lock(); 7664 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7665 if (ctx) { 7666 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7667 NULL, true); 7668 } 7669 rcu_read_unlock(); 7670 } 7671 } 7672 7673 struct remote_output { 7674 struct perf_buffer *rb; 7675 int err; 7676 }; 7677 7678 static void __perf_event_output_stop(struct perf_event *event, void *data) 7679 { 7680 struct perf_event *parent = event->parent; 7681 struct remote_output *ro = data; 7682 struct perf_buffer *rb = ro->rb; 7683 struct stop_event_data sd = { 7684 .event = event, 7685 }; 7686 7687 if (!has_aux(event)) 7688 return; 7689 7690 if (!parent) 7691 parent = event; 7692 7693 /* 7694 * In case of inheritance, it will be the parent that links to the 7695 * ring-buffer, but it will be the child that's actually using it. 7696 * 7697 * We are using event::rb to determine if the event should be stopped, 7698 * however this may race with ring_buffer_attach() (through set_output), 7699 * which will make us skip the event that actually needs to be stopped. 7700 * So ring_buffer_attach() has to stop an aux event before re-assigning 7701 * its rb pointer. 7702 */ 7703 if (rcu_dereference(parent->rb) == rb) 7704 ro->err = __perf_event_stop(&sd); 7705 } 7706 7707 static int __perf_pmu_output_stop(void *info) 7708 { 7709 struct perf_event *event = info; 7710 struct pmu *pmu = event->ctx->pmu; 7711 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7712 struct remote_output ro = { 7713 .rb = event->rb, 7714 }; 7715 7716 rcu_read_lock(); 7717 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7718 if (cpuctx->task_ctx) 7719 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7720 &ro, false); 7721 rcu_read_unlock(); 7722 7723 return ro.err; 7724 } 7725 7726 static void perf_pmu_output_stop(struct perf_event *event) 7727 { 7728 struct perf_event *iter; 7729 int err, cpu; 7730 7731 restart: 7732 rcu_read_lock(); 7733 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7734 /* 7735 * For per-CPU events, we need to make sure that neither they 7736 * nor their children are running; for cpu==-1 events it's 7737 * sufficient to stop the event itself if it's active, since 7738 * it can't have children. 7739 */ 7740 cpu = iter->cpu; 7741 if (cpu == -1) 7742 cpu = READ_ONCE(iter->oncpu); 7743 7744 if (cpu == -1) 7745 continue; 7746 7747 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7748 if (err == -EAGAIN) { 7749 rcu_read_unlock(); 7750 goto restart; 7751 } 7752 } 7753 rcu_read_unlock(); 7754 } 7755 7756 /* 7757 * task tracking -- fork/exit 7758 * 7759 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7760 */ 7761 7762 struct perf_task_event { 7763 struct task_struct *task; 7764 struct perf_event_context *task_ctx; 7765 7766 struct { 7767 struct perf_event_header header; 7768 7769 u32 pid; 7770 u32 ppid; 7771 u32 tid; 7772 u32 ptid; 7773 u64 time; 7774 } event_id; 7775 }; 7776 7777 static int perf_event_task_match(struct perf_event *event) 7778 { 7779 return event->attr.comm || event->attr.mmap || 7780 event->attr.mmap2 || event->attr.mmap_data || 7781 event->attr.task; 7782 } 7783 7784 static void perf_event_task_output(struct perf_event *event, 7785 void *data) 7786 { 7787 struct perf_task_event *task_event = data; 7788 struct perf_output_handle handle; 7789 struct perf_sample_data sample; 7790 struct task_struct *task = task_event->task; 7791 int ret, size = task_event->event_id.header.size; 7792 7793 if (!perf_event_task_match(event)) 7794 return; 7795 7796 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7797 7798 ret = perf_output_begin(&handle, &sample, event, 7799 task_event->event_id.header.size); 7800 if (ret) 7801 goto out; 7802 7803 task_event->event_id.pid = perf_event_pid(event, task); 7804 task_event->event_id.tid = perf_event_tid(event, task); 7805 7806 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7807 task_event->event_id.ppid = perf_event_pid(event, 7808 task->real_parent); 7809 task_event->event_id.ptid = perf_event_pid(event, 7810 task->real_parent); 7811 } else { /* PERF_RECORD_FORK */ 7812 task_event->event_id.ppid = perf_event_pid(event, current); 7813 task_event->event_id.ptid = perf_event_tid(event, current); 7814 } 7815 7816 task_event->event_id.time = perf_event_clock(event); 7817 7818 perf_output_put(&handle, task_event->event_id); 7819 7820 perf_event__output_id_sample(event, &handle, &sample); 7821 7822 perf_output_end(&handle); 7823 out: 7824 task_event->event_id.header.size = size; 7825 } 7826 7827 static void perf_event_task(struct task_struct *task, 7828 struct perf_event_context *task_ctx, 7829 int new) 7830 { 7831 struct perf_task_event task_event; 7832 7833 if (!atomic_read(&nr_comm_events) && 7834 !atomic_read(&nr_mmap_events) && 7835 !atomic_read(&nr_task_events)) 7836 return; 7837 7838 task_event = (struct perf_task_event){ 7839 .task = task, 7840 .task_ctx = task_ctx, 7841 .event_id = { 7842 .header = { 7843 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7844 .misc = 0, 7845 .size = sizeof(task_event.event_id), 7846 }, 7847 /* .pid */ 7848 /* .ppid */ 7849 /* .tid */ 7850 /* .ptid */ 7851 /* .time */ 7852 }, 7853 }; 7854 7855 perf_iterate_sb(perf_event_task_output, 7856 &task_event, 7857 task_ctx); 7858 } 7859 7860 void perf_event_fork(struct task_struct *task) 7861 { 7862 perf_event_task(task, NULL, 1); 7863 perf_event_namespaces(task); 7864 } 7865 7866 /* 7867 * comm tracking 7868 */ 7869 7870 struct perf_comm_event { 7871 struct task_struct *task; 7872 char *comm; 7873 int comm_size; 7874 7875 struct { 7876 struct perf_event_header header; 7877 7878 u32 pid; 7879 u32 tid; 7880 } event_id; 7881 }; 7882 7883 static int perf_event_comm_match(struct perf_event *event) 7884 { 7885 return event->attr.comm; 7886 } 7887 7888 static void perf_event_comm_output(struct perf_event *event, 7889 void *data) 7890 { 7891 struct perf_comm_event *comm_event = data; 7892 struct perf_output_handle handle; 7893 struct perf_sample_data sample; 7894 int size = comm_event->event_id.header.size; 7895 int ret; 7896 7897 if (!perf_event_comm_match(event)) 7898 return; 7899 7900 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7901 ret = perf_output_begin(&handle, &sample, event, 7902 comm_event->event_id.header.size); 7903 7904 if (ret) 7905 goto out; 7906 7907 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7908 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7909 7910 perf_output_put(&handle, comm_event->event_id); 7911 __output_copy(&handle, comm_event->comm, 7912 comm_event->comm_size); 7913 7914 perf_event__output_id_sample(event, &handle, &sample); 7915 7916 perf_output_end(&handle); 7917 out: 7918 comm_event->event_id.header.size = size; 7919 } 7920 7921 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7922 { 7923 char comm[TASK_COMM_LEN]; 7924 unsigned int size; 7925 7926 memset(comm, 0, sizeof(comm)); 7927 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7928 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7929 7930 comm_event->comm = comm; 7931 comm_event->comm_size = size; 7932 7933 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7934 7935 perf_iterate_sb(perf_event_comm_output, 7936 comm_event, 7937 NULL); 7938 } 7939 7940 void perf_event_comm(struct task_struct *task, bool exec) 7941 { 7942 struct perf_comm_event comm_event; 7943 7944 if (!atomic_read(&nr_comm_events)) 7945 return; 7946 7947 comm_event = (struct perf_comm_event){ 7948 .task = task, 7949 /* .comm */ 7950 /* .comm_size */ 7951 .event_id = { 7952 .header = { 7953 .type = PERF_RECORD_COMM, 7954 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7955 /* .size */ 7956 }, 7957 /* .pid */ 7958 /* .tid */ 7959 }, 7960 }; 7961 7962 perf_event_comm_event(&comm_event); 7963 } 7964 7965 /* 7966 * namespaces tracking 7967 */ 7968 7969 struct perf_namespaces_event { 7970 struct task_struct *task; 7971 7972 struct { 7973 struct perf_event_header header; 7974 7975 u32 pid; 7976 u32 tid; 7977 u64 nr_namespaces; 7978 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7979 } event_id; 7980 }; 7981 7982 static int perf_event_namespaces_match(struct perf_event *event) 7983 { 7984 return event->attr.namespaces; 7985 } 7986 7987 static void perf_event_namespaces_output(struct perf_event *event, 7988 void *data) 7989 { 7990 struct perf_namespaces_event *namespaces_event = data; 7991 struct perf_output_handle handle; 7992 struct perf_sample_data sample; 7993 u16 header_size = namespaces_event->event_id.header.size; 7994 int ret; 7995 7996 if (!perf_event_namespaces_match(event)) 7997 return; 7998 7999 perf_event_header__init_id(&namespaces_event->event_id.header, 8000 &sample, event); 8001 ret = perf_output_begin(&handle, &sample, event, 8002 namespaces_event->event_id.header.size); 8003 if (ret) 8004 goto out; 8005 8006 namespaces_event->event_id.pid = perf_event_pid(event, 8007 namespaces_event->task); 8008 namespaces_event->event_id.tid = perf_event_tid(event, 8009 namespaces_event->task); 8010 8011 perf_output_put(&handle, namespaces_event->event_id); 8012 8013 perf_event__output_id_sample(event, &handle, &sample); 8014 8015 perf_output_end(&handle); 8016 out: 8017 namespaces_event->event_id.header.size = header_size; 8018 } 8019 8020 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8021 struct task_struct *task, 8022 const struct proc_ns_operations *ns_ops) 8023 { 8024 struct path ns_path; 8025 struct inode *ns_inode; 8026 int error; 8027 8028 error = ns_get_path(&ns_path, task, ns_ops); 8029 if (!error) { 8030 ns_inode = ns_path.dentry->d_inode; 8031 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8032 ns_link_info->ino = ns_inode->i_ino; 8033 path_put(&ns_path); 8034 } 8035 } 8036 8037 void perf_event_namespaces(struct task_struct *task) 8038 { 8039 struct perf_namespaces_event namespaces_event; 8040 struct perf_ns_link_info *ns_link_info; 8041 8042 if (!atomic_read(&nr_namespaces_events)) 8043 return; 8044 8045 namespaces_event = (struct perf_namespaces_event){ 8046 .task = task, 8047 .event_id = { 8048 .header = { 8049 .type = PERF_RECORD_NAMESPACES, 8050 .misc = 0, 8051 .size = sizeof(namespaces_event.event_id), 8052 }, 8053 /* .pid */ 8054 /* .tid */ 8055 .nr_namespaces = NR_NAMESPACES, 8056 /* .link_info[NR_NAMESPACES] */ 8057 }, 8058 }; 8059 8060 ns_link_info = namespaces_event.event_id.link_info; 8061 8062 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8063 task, &mntns_operations); 8064 8065 #ifdef CONFIG_USER_NS 8066 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8067 task, &userns_operations); 8068 #endif 8069 #ifdef CONFIG_NET_NS 8070 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8071 task, &netns_operations); 8072 #endif 8073 #ifdef CONFIG_UTS_NS 8074 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8075 task, &utsns_operations); 8076 #endif 8077 #ifdef CONFIG_IPC_NS 8078 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8079 task, &ipcns_operations); 8080 #endif 8081 #ifdef CONFIG_PID_NS 8082 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8083 task, &pidns_operations); 8084 #endif 8085 #ifdef CONFIG_CGROUPS 8086 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8087 task, &cgroupns_operations); 8088 #endif 8089 8090 perf_iterate_sb(perf_event_namespaces_output, 8091 &namespaces_event, 8092 NULL); 8093 } 8094 8095 /* 8096 * cgroup tracking 8097 */ 8098 #ifdef CONFIG_CGROUP_PERF 8099 8100 struct perf_cgroup_event { 8101 char *path; 8102 int path_size; 8103 struct { 8104 struct perf_event_header header; 8105 u64 id; 8106 char path[]; 8107 } event_id; 8108 }; 8109 8110 static int perf_event_cgroup_match(struct perf_event *event) 8111 { 8112 return event->attr.cgroup; 8113 } 8114 8115 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8116 { 8117 struct perf_cgroup_event *cgroup_event = data; 8118 struct perf_output_handle handle; 8119 struct perf_sample_data sample; 8120 u16 header_size = cgroup_event->event_id.header.size; 8121 int ret; 8122 8123 if (!perf_event_cgroup_match(event)) 8124 return; 8125 8126 perf_event_header__init_id(&cgroup_event->event_id.header, 8127 &sample, event); 8128 ret = perf_output_begin(&handle, &sample, event, 8129 cgroup_event->event_id.header.size); 8130 if (ret) 8131 goto out; 8132 8133 perf_output_put(&handle, cgroup_event->event_id); 8134 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8135 8136 perf_event__output_id_sample(event, &handle, &sample); 8137 8138 perf_output_end(&handle); 8139 out: 8140 cgroup_event->event_id.header.size = header_size; 8141 } 8142 8143 static void perf_event_cgroup(struct cgroup *cgrp) 8144 { 8145 struct perf_cgroup_event cgroup_event; 8146 char path_enomem[16] = "//enomem"; 8147 char *pathname; 8148 size_t size; 8149 8150 if (!atomic_read(&nr_cgroup_events)) 8151 return; 8152 8153 cgroup_event = (struct perf_cgroup_event){ 8154 .event_id = { 8155 .header = { 8156 .type = PERF_RECORD_CGROUP, 8157 .misc = 0, 8158 .size = sizeof(cgroup_event.event_id), 8159 }, 8160 .id = cgroup_id(cgrp), 8161 }, 8162 }; 8163 8164 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8165 if (pathname == NULL) { 8166 cgroup_event.path = path_enomem; 8167 } else { 8168 /* just to be sure to have enough space for alignment */ 8169 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8170 cgroup_event.path = pathname; 8171 } 8172 8173 /* 8174 * Since our buffer works in 8 byte units we need to align our string 8175 * size to a multiple of 8. However, we must guarantee the tail end is 8176 * zero'd out to avoid leaking random bits to userspace. 8177 */ 8178 size = strlen(cgroup_event.path) + 1; 8179 while (!IS_ALIGNED(size, sizeof(u64))) 8180 cgroup_event.path[size++] = '\0'; 8181 8182 cgroup_event.event_id.header.size += size; 8183 cgroup_event.path_size = size; 8184 8185 perf_iterate_sb(perf_event_cgroup_output, 8186 &cgroup_event, 8187 NULL); 8188 8189 kfree(pathname); 8190 } 8191 8192 #endif 8193 8194 /* 8195 * mmap tracking 8196 */ 8197 8198 struct perf_mmap_event { 8199 struct vm_area_struct *vma; 8200 8201 const char *file_name; 8202 int file_size; 8203 int maj, min; 8204 u64 ino; 8205 u64 ino_generation; 8206 u32 prot, flags; 8207 u8 build_id[BUILD_ID_SIZE_MAX]; 8208 u32 build_id_size; 8209 8210 struct { 8211 struct perf_event_header header; 8212 8213 u32 pid; 8214 u32 tid; 8215 u64 start; 8216 u64 len; 8217 u64 pgoff; 8218 } event_id; 8219 }; 8220 8221 static int perf_event_mmap_match(struct perf_event *event, 8222 void *data) 8223 { 8224 struct perf_mmap_event *mmap_event = data; 8225 struct vm_area_struct *vma = mmap_event->vma; 8226 int executable = vma->vm_flags & VM_EXEC; 8227 8228 return (!executable && event->attr.mmap_data) || 8229 (executable && (event->attr.mmap || event->attr.mmap2)); 8230 } 8231 8232 static void perf_event_mmap_output(struct perf_event *event, 8233 void *data) 8234 { 8235 struct perf_mmap_event *mmap_event = data; 8236 struct perf_output_handle handle; 8237 struct perf_sample_data sample; 8238 int size = mmap_event->event_id.header.size; 8239 u32 type = mmap_event->event_id.header.type; 8240 bool use_build_id; 8241 int ret; 8242 8243 if (!perf_event_mmap_match(event, data)) 8244 return; 8245 8246 if (event->attr.mmap2) { 8247 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8248 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8249 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8250 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8251 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8252 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8253 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8254 } 8255 8256 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8257 ret = perf_output_begin(&handle, &sample, event, 8258 mmap_event->event_id.header.size); 8259 if (ret) 8260 goto out; 8261 8262 mmap_event->event_id.pid = perf_event_pid(event, current); 8263 mmap_event->event_id.tid = perf_event_tid(event, current); 8264 8265 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8266 8267 if (event->attr.mmap2 && use_build_id) 8268 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8269 8270 perf_output_put(&handle, mmap_event->event_id); 8271 8272 if (event->attr.mmap2) { 8273 if (use_build_id) { 8274 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8275 8276 __output_copy(&handle, size, 4); 8277 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8278 } else { 8279 perf_output_put(&handle, mmap_event->maj); 8280 perf_output_put(&handle, mmap_event->min); 8281 perf_output_put(&handle, mmap_event->ino); 8282 perf_output_put(&handle, mmap_event->ino_generation); 8283 } 8284 perf_output_put(&handle, mmap_event->prot); 8285 perf_output_put(&handle, mmap_event->flags); 8286 } 8287 8288 __output_copy(&handle, mmap_event->file_name, 8289 mmap_event->file_size); 8290 8291 perf_event__output_id_sample(event, &handle, &sample); 8292 8293 perf_output_end(&handle); 8294 out: 8295 mmap_event->event_id.header.size = size; 8296 mmap_event->event_id.header.type = type; 8297 } 8298 8299 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8300 { 8301 struct vm_area_struct *vma = mmap_event->vma; 8302 struct file *file = vma->vm_file; 8303 int maj = 0, min = 0; 8304 u64 ino = 0, gen = 0; 8305 u32 prot = 0, flags = 0; 8306 unsigned int size; 8307 char tmp[16]; 8308 char *buf = NULL; 8309 char *name; 8310 8311 if (vma->vm_flags & VM_READ) 8312 prot |= PROT_READ; 8313 if (vma->vm_flags & VM_WRITE) 8314 prot |= PROT_WRITE; 8315 if (vma->vm_flags & VM_EXEC) 8316 prot |= PROT_EXEC; 8317 8318 if (vma->vm_flags & VM_MAYSHARE) 8319 flags = MAP_SHARED; 8320 else 8321 flags = MAP_PRIVATE; 8322 8323 if (vma->vm_flags & VM_DENYWRITE) 8324 flags |= MAP_DENYWRITE; 8325 if (vma->vm_flags & VM_LOCKED) 8326 flags |= MAP_LOCKED; 8327 if (is_vm_hugetlb_page(vma)) 8328 flags |= MAP_HUGETLB; 8329 8330 if (file) { 8331 struct inode *inode; 8332 dev_t dev; 8333 8334 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8335 if (!buf) { 8336 name = "//enomem"; 8337 goto cpy_name; 8338 } 8339 /* 8340 * d_path() works from the end of the rb backwards, so we 8341 * need to add enough zero bytes after the string to handle 8342 * the 64bit alignment we do later. 8343 */ 8344 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8345 if (IS_ERR(name)) { 8346 name = "//toolong"; 8347 goto cpy_name; 8348 } 8349 inode = file_inode(vma->vm_file); 8350 dev = inode->i_sb->s_dev; 8351 ino = inode->i_ino; 8352 gen = inode->i_generation; 8353 maj = MAJOR(dev); 8354 min = MINOR(dev); 8355 8356 goto got_name; 8357 } else { 8358 if (vma->vm_ops && vma->vm_ops->name) { 8359 name = (char *) vma->vm_ops->name(vma); 8360 if (name) 8361 goto cpy_name; 8362 } 8363 8364 name = (char *)arch_vma_name(vma); 8365 if (name) 8366 goto cpy_name; 8367 8368 if (vma->vm_start <= vma->vm_mm->start_brk && 8369 vma->vm_end >= vma->vm_mm->brk) { 8370 name = "[heap]"; 8371 goto cpy_name; 8372 } 8373 if (vma->vm_start <= vma->vm_mm->start_stack && 8374 vma->vm_end >= vma->vm_mm->start_stack) { 8375 name = "[stack]"; 8376 goto cpy_name; 8377 } 8378 8379 name = "//anon"; 8380 goto cpy_name; 8381 } 8382 8383 cpy_name: 8384 strlcpy(tmp, name, sizeof(tmp)); 8385 name = tmp; 8386 got_name: 8387 /* 8388 * Since our buffer works in 8 byte units we need to align our string 8389 * size to a multiple of 8. However, we must guarantee the tail end is 8390 * zero'd out to avoid leaking random bits to userspace. 8391 */ 8392 size = strlen(name)+1; 8393 while (!IS_ALIGNED(size, sizeof(u64))) 8394 name[size++] = '\0'; 8395 8396 mmap_event->file_name = name; 8397 mmap_event->file_size = size; 8398 mmap_event->maj = maj; 8399 mmap_event->min = min; 8400 mmap_event->ino = ino; 8401 mmap_event->ino_generation = gen; 8402 mmap_event->prot = prot; 8403 mmap_event->flags = flags; 8404 8405 if (!(vma->vm_flags & VM_EXEC)) 8406 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8407 8408 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8409 8410 if (atomic_read(&nr_build_id_events)) 8411 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8412 8413 perf_iterate_sb(perf_event_mmap_output, 8414 mmap_event, 8415 NULL); 8416 8417 kfree(buf); 8418 } 8419 8420 /* 8421 * Check whether inode and address range match filter criteria. 8422 */ 8423 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8424 struct file *file, unsigned long offset, 8425 unsigned long size) 8426 { 8427 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8428 if (!filter->path.dentry) 8429 return false; 8430 8431 if (d_inode(filter->path.dentry) != file_inode(file)) 8432 return false; 8433 8434 if (filter->offset > offset + size) 8435 return false; 8436 8437 if (filter->offset + filter->size < offset) 8438 return false; 8439 8440 return true; 8441 } 8442 8443 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8444 struct vm_area_struct *vma, 8445 struct perf_addr_filter_range *fr) 8446 { 8447 unsigned long vma_size = vma->vm_end - vma->vm_start; 8448 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8449 struct file *file = vma->vm_file; 8450 8451 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8452 return false; 8453 8454 if (filter->offset < off) { 8455 fr->start = vma->vm_start; 8456 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8457 } else { 8458 fr->start = vma->vm_start + filter->offset - off; 8459 fr->size = min(vma->vm_end - fr->start, filter->size); 8460 } 8461 8462 return true; 8463 } 8464 8465 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8466 { 8467 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8468 struct vm_area_struct *vma = data; 8469 struct perf_addr_filter *filter; 8470 unsigned int restart = 0, count = 0; 8471 unsigned long flags; 8472 8473 if (!has_addr_filter(event)) 8474 return; 8475 8476 if (!vma->vm_file) 8477 return; 8478 8479 raw_spin_lock_irqsave(&ifh->lock, flags); 8480 list_for_each_entry(filter, &ifh->list, entry) { 8481 if (perf_addr_filter_vma_adjust(filter, vma, 8482 &event->addr_filter_ranges[count])) 8483 restart++; 8484 8485 count++; 8486 } 8487 8488 if (restart) 8489 event->addr_filters_gen++; 8490 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8491 8492 if (restart) 8493 perf_event_stop(event, 1); 8494 } 8495 8496 /* 8497 * Adjust all task's events' filters to the new vma 8498 */ 8499 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8500 { 8501 struct perf_event_context *ctx; 8502 int ctxn; 8503 8504 /* 8505 * Data tracing isn't supported yet and as such there is no need 8506 * to keep track of anything that isn't related to executable code: 8507 */ 8508 if (!(vma->vm_flags & VM_EXEC)) 8509 return; 8510 8511 rcu_read_lock(); 8512 for_each_task_context_nr(ctxn) { 8513 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8514 if (!ctx) 8515 continue; 8516 8517 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8518 } 8519 rcu_read_unlock(); 8520 } 8521 8522 void perf_event_mmap(struct vm_area_struct *vma) 8523 { 8524 struct perf_mmap_event mmap_event; 8525 8526 if (!atomic_read(&nr_mmap_events)) 8527 return; 8528 8529 mmap_event = (struct perf_mmap_event){ 8530 .vma = vma, 8531 /* .file_name */ 8532 /* .file_size */ 8533 .event_id = { 8534 .header = { 8535 .type = PERF_RECORD_MMAP, 8536 .misc = PERF_RECORD_MISC_USER, 8537 /* .size */ 8538 }, 8539 /* .pid */ 8540 /* .tid */ 8541 .start = vma->vm_start, 8542 .len = vma->vm_end - vma->vm_start, 8543 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8544 }, 8545 /* .maj (attr_mmap2 only) */ 8546 /* .min (attr_mmap2 only) */ 8547 /* .ino (attr_mmap2 only) */ 8548 /* .ino_generation (attr_mmap2 only) */ 8549 /* .prot (attr_mmap2 only) */ 8550 /* .flags (attr_mmap2 only) */ 8551 }; 8552 8553 perf_addr_filters_adjust(vma); 8554 perf_event_mmap_event(&mmap_event); 8555 } 8556 8557 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8558 unsigned long size, u64 flags) 8559 { 8560 struct perf_output_handle handle; 8561 struct perf_sample_data sample; 8562 struct perf_aux_event { 8563 struct perf_event_header header; 8564 u64 offset; 8565 u64 size; 8566 u64 flags; 8567 } rec = { 8568 .header = { 8569 .type = PERF_RECORD_AUX, 8570 .misc = 0, 8571 .size = sizeof(rec), 8572 }, 8573 .offset = head, 8574 .size = size, 8575 .flags = flags, 8576 }; 8577 int ret; 8578 8579 perf_event_header__init_id(&rec.header, &sample, event); 8580 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8581 8582 if (ret) 8583 return; 8584 8585 perf_output_put(&handle, rec); 8586 perf_event__output_id_sample(event, &handle, &sample); 8587 8588 perf_output_end(&handle); 8589 } 8590 8591 /* 8592 * Lost/dropped samples logging 8593 */ 8594 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8595 { 8596 struct perf_output_handle handle; 8597 struct perf_sample_data sample; 8598 int ret; 8599 8600 struct { 8601 struct perf_event_header header; 8602 u64 lost; 8603 } lost_samples_event = { 8604 .header = { 8605 .type = PERF_RECORD_LOST_SAMPLES, 8606 .misc = 0, 8607 .size = sizeof(lost_samples_event), 8608 }, 8609 .lost = lost, 8610 }; 8611 8612 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8613 8614 ret = perf_output_begin(&handle, &sample, event, 8615 lost_samples_event.header.size); 8616 if (ret) 8617 return; 8618 8619 perf_output_put(&handle, lost_samples_event); 8620 perf_event__output_id_sample(event, &handle, &sample); 8621 perf_output_end(&handle); 8622 } 8623 8624 /* 8625 * context_switch tracking 8626 */ 8627 8628 struct perf_switch_event { 8629 struct task_struct *task; 8630 struct task_struct *next_prev; 8631 8632 struct { 8633 struct perf_event_header header; 8634 u32 next_prev_pid; 8635 u32 next_prev_tid; 8636 } event_id; 8637 }; 8638 8639 static int perf_event_switch_match(struct perf_event *event) 8640 { 8641 return event->attr.context_switch; 8642 } 8643 8644 static void perf_event_switch_output(struct perf_event *event, void *data) 8645 { 8646 struct perf_switch_event *se = data; 8647 struct perf_output_handle handle; 8648 struct perf_sample_data sample; 8649 int ret; 8650 8651 if (!perf_event_switch_match(event)) 8652 return; 8653 8654 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8655 if (event->ctx->task) { 8656 se->event_id.header.type = PERF_RECORD_SWITCH; 8657 se->event_id.header.size = sizeof(se->event_id.header); 8658 } else { 8659 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8660 se->event_id.header.size = sizeof(se->event_id); 8661 se->event_id.next_prev_pid = 8662 perf_event_pid(event, se->next_prev); 8663 se->event_id.next_prev_tid = 8664 perf_event_tid(event, se->next_prev); 8665 } 8666 8667 perf_event_header__init_id(&se->event_id.header, &sample, event); 8668 8669 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8670 if (ret) 8671 return; 8672 8673 if (event->ctx->task) 8674 perf_output_put(&handle, se->event_id.header); 8675 else 8676 perf_output_put(&handle, se->event_id); 8677 8678 perf_event__output_id_sample(event, &handle, &sample); 8679 8680 perf_output_end(&handle); 8681 } 8682 8683 static void perf_event_switch(struct task_struct *task, 8684 struct task_struct *next_prev, bool sched_in) 8685 { 8686 struct perf_switch_event switch_event; 8687 8688 /* N.B. caller checks nr_switch_events != 0 */ 8689 8690 switch_event = (struct perf_switch_event){ 8691 .task = task, 8692 .next_prev = next_prev, 8693 .event_id = { 8694 .header = { 8695 /* .type */ 8696 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8697 /* .size */ 8698 }, 8699 /* .next_prev_pid */ 8700 /* .next_prev_tid */ 8701 }, 8702 }; 8703 8704 if (!sched_in && task->on_rq) { 8705 switch_event.event_id.header.misc |= 8706 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8707 } 8708 8709 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8710 } 8711 8712 /* 8713 * IRQ throttle logging 8714 */ 8715 8716 static void perf_log_throttle(struct perf_event *event, int enable) 8717 { 8718 struct perf_output_handle handle; 8719 struct perf_sample_data sample; 8720 int ret; 8721 8722 struct { 8723 struct perf_event_header header; 8724 u64 time; 8725 u64 id; 8726 u64 stream_id; 8727 } throttle_event = { 8728 .header = { 8729 .type = PERF_RECORD_THROTTLE, 8730 .misc = 0, 8731 .size = sizeof(throttle_event), 8732 }, 8733 .time = perf_event_clock(event), 8734 .id = primary_event_id(event), 8735 .stream_id = event->id, 8736 }; 8737 8738 if (enable) 8739 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8740 8741 perf_event_header__init_id(&throttle_event.header, &sample, event); 8742 8743 ret = perf_output_begin(&handle, &sample, event, 8744 throttle_event.header.size); 8745 if (ret) 8746 return; 8747 8748 perf_output_put(&handle, throttle_event); 8749 perf_event__output_id_sample(event, &handle, &sample); 8750 perf_output_end(&handle); 8751 } 8752 8753 /* 8754 * ksymbol register/unregister tracking 8755 */ 8756 8757 struct perf_ksymbol_event { 8758 const char *name; 8759 int name_len; 8760 struct { 8761 struct perf_event_header header; 8762 u64 addr; 8763 u32 len; 8764 u16 ksym_type; 8765 u16 flags; 8766 } event_id; 8767 }; 8768 8769 static int perf_event_ksymbol_match(struct perf_event *event) 8770 { 8771 return event->attr.ksymbol; 8772 } 8773 8774 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8775 { 8776 struct perf_ksymbol_event *ksymbol_event = data; 8777 struct perf_output_handle handle; 8778 struct perf_sample_data sample; 8779 int ret; 8780 8781 if (!perf_event_ksymbol_match(event)) 8782 return; 8783 8784 perf_event_header__init_id(&ksymbol_event->event_id.header, 8785 &sample, event); 8786 ret = perf_output_begin(&handle, &sample, event, 8787 ksymbol_event->event_id.header.size); 8788 if (ret) 8789 return; 8790 8791 perf_output_put(&handle, ksymbol_event->event_id); 8792 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8793 perf_event__output_id_sample(event, &handle, &sample); 8794 8795 perf_output_end(&handle); 8796 } 8797 8798 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8799 const char *sym) 8800 { 8801 struct perf_ksymbol_event ksymbol_event; 8802 char name[KSYM_NAME_LEN]; 8803 u16 flags = 0; 8804 int name_len; 8805 8806 if (!atomic_read(&nr_ksymbol_events)) 8807 return; 8808 8809 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8810 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8811 goto err; 8812 8813 strlcpy(name, sym, KSYM_NAME_LEN); 8814 name_len = strlen(name) + 1; 8815 while (!IS_ALIGNED(name_len, sizeof(u64))) 8816 name[name_len++] = '\0'; 8817 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8818 8819 if (unregister) 8820 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8821 8822 ksymbol_event = (struct perf_ksymbol_event){ 8823 .name = name, 8824 .name_len = name_len, 8825 .event_id = { 8826 .header = { 8827 .type = PERF_RECORD_KSYMBOL, 8828 .size = sizeof(ksymbol_event.event_id) + 8829 name_len, 8830 }, 8831 .addr = addr, 8832 .len = len, 8833 .ksym_type = ksym_type, 8834 .flags = flags, 8835 }, 8836 }; 8837 8838 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8839 return; 8840 err: 8841 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8842 } 8843 8844 /* 8845 * bpf program load/unload tracking 8846 */ 8847 8848 struct perf_bpf_event { 8849 struct bpf_prog *prog; 8850 struct { 8851 struct perf_event_header header; 8852 u16 type; 8853 u16 flags; 8854 u32 id; 8855 u8 tag[BPF_TAG_SIZE]; 8856 } event_id; 8857 }; 8858 8859 static int perf_event_bpf_match(struct perf_event *event) 8860 { 8861 return event->attr.bpf_event; 8862 } 8863 8864 static void perf_event_bpf_output(struct perf_event *event, void *data) 8865 { 8866 struct perf_bpf_event *bpf_event = data; 8867 struct perf_output_handle handle; 8868 struct perf_sample_data sample; 8869 int ret; 8870 8871 if (!perf_event_bpf_match(event)) 8872 return; 8873 8874 perf_event_header__init_id(&bpf_event->event_id.header, 8875 &sample, event); 8876 ret = perf_output_begin(&handle, data, event, 8877 bpf_event->event_id.header.size); 8878 if (ret) 8879 return; 8880 8881 perf_output_put(&handle, bpf_event->event_id); 8882 perf_event__output_id_sample(event, &handle, &sample); 8883 8884 perf_output_end(&handle); 8885 } 8886 8887 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8888 enum perf_bpf_event_type type) 8889 { 8890 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8891 int i; 8892 8893 if (prog->aux->func_cnt == 0) { 8894 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8895 (u64)(unsigned long)prog->bpf_func, 8896 prog->jited_len, unregister, 8897 prog->aux->ksym.name); 8898 } else { 8899 for (i = 0; i < prog->aux->func_cnt; i++) { 8900 struct bpf_prog *subprog = prog->aux->func[i]; 8901 8902 perf_event_ksymbol( 8903 PERF_RECORD_KSYMBOL_TYPE_BPF, 8904 (u64)(unsigned long)subprog->bpf_func, 8905 subprog->jited_len, unregister, 8906 prog->aux->ksym.name); 8907 } 8908 } 8909 } 8910 8911 void perf_event_bpf_event(struct bpf_prog *prog, 8912 enum perf_bpf_event_type type, 8913 u16 flags) 8914 { 8915 struct perf_bpf_event bpf_event; 8916 8917 if (type <= PERF_BPF_EVENT_UNKNOWN || 8918 type >= PERF_BPF_EVENT_MAX) 8919 return; 8920 8921 switch (type) { 8922 case PERF_BPF_EVENT_PROG_LOAD: 8923 case PERF_BPF_EVENT_PROG_UNLOAD: 8924 if (atomic_read(&nr_ksymbol_events)) 8925 perf_event_bpf_emit_ksymbols(prog, type); 8926 break; 8927 default: 8928 break; 8929 } 8930 8931 if (!atomic_read(&nr_bpf_events)) 8932 return; 8933 8934 bpf_event = (struct perf_bpf_event){ 8935 .prog = prog, 8936 .event_id = { 8937 .header = { 8938 .type = PERF_RECORD_BPF_EVENT, 8939 .size = sizeof(bpf_event.event_id), 8940 }, 8941 .type = type, 8942 .flags = flags, 8943 .id = prog->aux->id, 8944 }, 8945 }; 8946 8947 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8948 8949 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8950 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8951 } 8952 8953 struct perf_text_poke_event { 8954 const void *old_bytes; 8955 const void *new_bytes; 8956 size_t pad; 8957 u16 old_len; 8958 u16 new_len; 8959 8960 struct { 8961 struct perf_event_header header; 8962 8963 u64 addr; 8964 } event_id; 8965 }; 8966 8967 static int perf_event_text_poke_match(struct perf_event *event) 8968 { 8969 return event->attr.text_poke; 8970 } 8971 8972 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8973 { 8974 struct perf_text_poke_event *text_poke_event = data; 8975 struct perf_output_handle handle; 8976 struct perf_sample_data sample; 8977 u64 padding = 0; 8978 int ret; 8979 8980 if (!perf_event_text_poke_match(event)) 8981 return; 8982 8983 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8984 8985 ret = perf_output_begin(&handle, &sample, event, 8986 text_poke_event->event_id.header.size); 8987 if (ret) 8988 return; 8989 8990 perf_output_put(&handle, text_poke_event->event_id); 8991 perf_output_put(&handle, text_poke_event->old_len); 8992 perf_output_put(&handle, text_poke_event->new_len); 8993 8994 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 8995 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 8996 8997 if (text_poke_event->pad) 8998 __output_copy(&handle, &padding, text_poke_event->pad); 8999 9000 perf_event__output_id_sample(event, &handle, &sample); 9001 9002 perf_output_end(&handle); 9003 } 9004 9005 void perf_event_text_poke(const void *addr, const void *old_bytes, 9006 size_t old_len, const void *new_bytes, size_t new_len) 9007 { 9008 struct perf_text_poke_event text_poke_event; 9009 size_t tot, pad; 9010 9011 if (!atomic_read(&nr_text_poke_events)) 9012 return; 9013 9014 tot = sizeof(text_poke_event.old_len) + old_len; 9015 tot += sizeof(text_poke_event.new_len) + new_len; 9016 pad = ALIGN(tot, sizeof(u64)) - tot; 9017 9018 text_poke_event = (struct perf_text_poke_event){ 9019 .old_bytes = old_bytes, 9020 .new_bytes = new_bytes, 9021 .pad = pad, 9022 .old_len = old_len, 9023 .new_len = new_len, 9024 .event_id = { 9025 .header = { 9026 .type = PERF_RECORD_TEXT_POKE, 9027 .misc = PERF_RECORD_MISC_KERNEL, 9028 .size = sizeof(text_poke_event.event_id) + tot + pad, 9029 }, 9030 .addr = (unsigned long)addr, 9031 }, 9032 }; 9033 9034 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9035 } 9036 9037 void perf_event_itrace_started(struct perf_event *event) 9038 { 9039 event->attach_state |= PERF_ATTACH_ITRACE; 9040 } 9041 9042 static void perf_log_itrace_start(struct perf_event *event) 9043 { 9044 struct perf_output_handle handle; 9045 struct perf_sample_data sample; 9046 struct perf_aux_event { 9047 struct perf_event_header header; 9048 u32 pid; 9049 u32 tid; 9050 } rec; 9051 int ret; 9052 9053 if (event->parent) 9054 event = event->parent; 9055 9056 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9057 event->attach_state & PERF_ATTACH_ITRACE) 9058 return; 9059 9060 rec.header.type = PERF_RECORD_ITRACE_START; 9061 rec.header.misc = 0; 9062 rec.header.size = sizeof(rec); 9063 rec.pid = perf_event_pid(event, current); 9064 rec.tid = perf_event_tid(event, current); 9065 9066 perf_event_header__init_id(&rec.header, &sample, event); 9067 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9068 9069 if (ret) 9070 return; 9071 9072 perf_output_put(&handle, rec); 9073 perf_event__output_id_sample(event, &handle, &sample); 9074 9075 perf_output_end(&handle); 9076 } 9077 9078 static int 9079 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9080 { 9081 struct hw_perf_event *hwc = &event->hw; 9082 int ret = 0; 9083 u64 seq; 9084 9085 seq = __this_cpu_read(perf_throttled_seq); 9086 if (seq != hwc->interrupts_seq) { 9087 hwc->interrupts_seq = seq; 9088 hwc->interrupts = 1; 9089 } else { 9090 hwc->interrupts++; 9091 if (unlikely(throttle 9092 && hwc->interrupts >= max_samples_per_tick)) { 9093 __this_cpu_inc(perf_throttled_count); 9094 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9095 hwc->interrupts = MAX_INTERRUPTS; 9096 perf_log_throttle(event, 0); 9097 ret = 1; 9098 } 9099 } 9100 9101 if (event->attr.freq) { 9102 u64 now = perf_clock(); 9103 s64 delta = now - hwc->freq_time_stamp; 9104 9105 hwc->freq_time_stamp = now; 9106 9107 if (delta > 0 && delta < 2*TICK_NSEC) 9108 perf_adjust_period(event, delta, hwc->last_period, true); 9109 } 9110 9111 return ret; 9112 } 9113 9114 int perf_event_account_interrupt(struct perf_event *event) 9115 { 9116 return __perf_event_account_interrupt(event, 1); 9117 } 9118 9119 /* 9120 * Generic event overflow handling, sampling. 9121 */ 9122 9123 static int __perf_event_overflow(struct perf_event *event, 9124 int throttle, struct perf_sample_data *data, 9125 struct pt_regs *regs) 9126 { 9127 int events = atomic_read(&event->event_limit); 9128 int ret = 0; 9129 9130 /* 9131 * Non-sampling counters might still use the PMI to fold short 9132 * hardware counters, ignore those. 9133 */ 9134 if (unlikely(!is_sampling_event(event))) 9135 return 0; 9136 9137 ret = __perf_event_account_interrupt(event, throttle); 9138 9139 /* 9140 * XXX event_limit might not quite work as expected on inherited 9141 * events 9142 */ 9143 9144 event->pending_kill = POLL_IN; 9145 if (events && atomic_dec_and_test(&event->event_limit)) { 9146 ret = 1; 9147 event->pending_kill = POLL_HUP; 9148 event->pending_addr = data->addr; 9149 9150 perf_event_disable_inatomic(event); 9151 } 9152 9153 READ_ONCE(event->overflow_handler)(event, data, regs); 9154 9155 if (*perf_event_fasync(event) && event->pending_kill) { 9156 event->pending_wakeup = 1; 9157 irq_work_queue(&event->pending); 9158 } 9159 9160 return ret; 9161 } 9162 9163 int perf_event_overflow(struct perf_event *event, 9164 struct perf_sample_data *data, 9165 struct pt_regs *regs) 9166 { 9167 return __perf_event_overflow(event, 1, data, regs); 9168 } 9169 9170 /* 9171 * Generic software event infrastructure 9172 */ 9173 9174 struct swevent_htable { 9175 struct swevent_hlist *swevent_hlist; 9176 struct mutex hlist_mutex; 9177 int hlist_refcount; 9178 9179 /* Recursion avoidance in each contexts */ 9180 int recursion[PERF_NR_CONTEXTS]; 9181 }; 9182 9183 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9184 9185 /* 9186 * We directly increment event->count and keep a second value in 9187 * event->hw.period_left to count intervals. This period event 9188 * is kept in the range [-sample_period, 0] so that we can use the 9189 * sign as trigger. 9190 */ 9191 9192 u64 perf_swevent_set_period(struct perf_event *event) 9193 { 9194 struct hw_perf_event *hwc = &event->hw; 9195 u64 period = hwc->last_period; 9196 u64 nr, offset; 9197 s64 old, val; 9198 9199 hwc->last_period = hwc->sample_period; 9200 9201 again: 9202 old = val = local64_read(&hwc->period_left); 9203 if (val < 0) 9204 return 0; 9205 9206 nr = div64_u64(period + val, period); 9207 offset = nr * period; 9208 val -= offset; 9209 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9210 goto again; 9211 9212 return nr; 9213 } 9214 9215 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9216 struct perf_sample_data *data, 9217 struct pt_regs *regs) 9218 { 9219 struct hw_perf_event *hwc = &event->hw; 9220 int throttle = 0; 9221 9222 if (!overflow) 9223 overflow = perf_swevent_set_period(event); 9224 9225 if (hwc->interrupts == MAX_INTERRUPTS) 9226 return; 9227 9228 for (; overflow; overflow--) { 9229 if (__perf_event_overflow(event, throttle, 9230 data, regs)) { 9231 /* 9232 * We inhibit the overflow from happening when 9233 * hwc->interrupts == MAX_INTERRUPTS. 9234 */ 9235 break; 9236 } 9237 throttle = 1; 9238 } 9239 } 9240 9241 static void perf_swevent_event(struct perf_event *event, u64 nr, 9242 struct perf_sample_data *data, 9243 struct pt_regs *regs) 9244 { 9245 struct hw_perf_event *hwc = &event->hw; 9246 9247 local64_add(nr, &event->count); 9248 9249 if (!regs) 9250 return; 9251 9252 if (!is_sampling_event(event)) 9253 return; 9254 9255 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9256 data->period = nr; 9257 return perf_swevent_overflow(event, 1, data, regs); 9258 } else 9259 data->period = event->hw.last_period; 9260 9261 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9262 return perf_swevent_overflow(event, 1, data, regs); 9263 9264 if (local64_add_negative(nr, &hwc->period_left)) 9265 return; 9266 9267 perf_swevent_overflow(event, 0, data, regs); 9268 } 9269 9270 static int perf_exclude_event(struct perf_event *event, 9271 struct pt_regs *regs) 9272 { 9273 if (event->hw.state & PERF_HES_STOPPED) 9274 return 1; 9275 9276 if (regs) { 9277 if (event->attr.exclude_user && user_mode(regs)) 9278 return 1; 9279 9280 if (event->attr.exclude_kernel && !user_mode(regs)) 9281 return 1; 9282 } 9283 9284 return 0; 9285 } 9286 9287 static int perf_swevent_match(struct perf_event *event, 9288 enum perf_type_id type, 9289 u32 event_id, 9290 struct perf_sample_data *data, 9291 struct pt_regs *regs) 9292 { 9293 if (event->attr.type != type) 9294 return 0; 9295 9296 if (event->attr.config != event_id) 9297 return 0; 9298 9299 if (perf_exclude_event(event, regs)) 9300 return 0; 9301 9302 return 1; 9303 } 9304 9305 static inline u64 swevent_hash(u64 type, u32 event_id) 9306 { 9307 u64 val = event_id | (type << 32); 9308 9309 return hash_64(val, SWEVENT_HLIST_BITS); 9310 } 9311 9312 static inline struct hlist_head * 9313 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9314 { 9315 u64 hash = swevent_hash(type, event_id); 9316 9317 return &hlist->heads[hash]; 9318 } 9319 9320 /* For the read side: events when they trigger */ 9321 static inline struct hlist_head * 9322 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9323 { 9324 struct swevent_hlist *hlist; 9325 9326 hlist = rcu_dereference(swhash->swevent_hlist); 9327 if (!hlist) 9328 return NULL; 9329 9330 return __find_swevent_head(hlist, type, event_id); 9331 } 9332 9333 /* For the event head insertion and removal in the hlist */ 9334 static inline struct hlist_head * 9335 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9336 { 9337 struct swevent_hlist *hlist; 9338 u32 event_id = event->attr.config; 9339 u64 type = event->attr.type; 9340 9341 /* 9342 * Event scheduling is always serialized against hlist allocation 9343 * and release. Which makes the protected version suitable here. 9344 * The context lock guarantees that. 9345 */ 9346 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9347 lockdep_is_held(&event->ctx->lock)); 9348 if (!hlist) 9349 return NULL; 9350 9351 return __find_swevent_head(hlist, type, event_id); 9352 } 9353 9354 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9355 u64 nr, 9356 struct perf_sample_data *data, 9357 struct pt_regs *regs) 9358 { 9359 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9360 struct perf_event *event; 9361 struct hlist_head *head; 9362 9363 rcu_read_lock(); 9364 head = find_swevent_head_rcu(swhash, type, event_id); 9365 if (!head) 9366 goto end; 9367 9368 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9369 if (perf_swevent_match(event, type, event_id, data, regs)) 9370 perf_swevent_event(event, nr, data, regs); 9371 } 9372 end: 9373 rcu_read_unlock(); 9374 } 9375 9376 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9377 9378 int perf_swevent_get_recursion_context(void) 9379 { 9380 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9381 9382 return get_recursion_context(swhash->recursion); 9383 } 9384 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9385 9386 void perf_swevent_put_recursion_context(int rctx) 9387 { 9388 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9389 9390 put_recursion_context(swhash->recursion, rctx); 9391 } 9392 9393 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9394 { 9395 struct perf_sample_data data; 9396 9397 if (WARN_ON_ONCE(!regs)) 9398 return; 9399 9400 perf_sample_data_init(&data, addr, 0); 9401 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9402 } 9403 9404 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9405 { 9406 int rctx; 9407 9408 preempt_disable_notrace(); 9409 rctx = perf_swevent_get_recursion_context(); 9410 if (unlikely(rctx < 0)) 9411 goto fail; 9412 9413 ___perf_sw_event(event_id, nr, regs, addr); 9414 9415 perf_swevent_put_recursion_context(rctx); 9416 fail: 9417 preempt_enable_notrace(); 9418 } 9419 9420 static void perf_swevent_read(struct perf_event *event) 9421 { 9422 } 9423 9424 static int perf_swevent_add(struct perf_event *event, int flags) 9425 { 9426 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9427 struct hw_perf_event *hwc = &event->hw; 9428 struct hlist_head *head; 9429 9430 if (is_sampling_event(event)) { 9431 hwc->last_period = hwc->sample_period; 9432 perf_swevent_set_period(event); 9433 } 9434 9435 hwc->state = !(flags & PERF_EF_START); 9436 9437 head = find_swevent_head(swhash, event); 9438 if (WARN_ON_ONCE(!head)) 9439 return -EINVAL; 9440 9441 hlist_add_head_rcu(&event->hlist_entry, head); 9442 perf_event_update_userpage(event); 9443 9444 return 0; 9445 } 9446 9447 static void perf_swevent_del(struct perf_event *event, int flags) 9448 { 9449 hlist_del_rcu(&event->hlist_entry); 9450 } 9451 9452 static void perf_swevent_start(struct perf_event *event, int flags) 9453 { 9454 event->hw.state = 0; 9455 } 9456 9457 static void perf_swevent_stop(struct perf_event *event, int flags) 9458 { 9459 event->hw.state = PERF_HES_STOPPED; 9460 } 9461 9462 /* Deref the hlist from the update side */ 9463 static inline struct swevent_hlist * 9464 swevent_hlist_deref(struct swevent_htable *swhash) 9465 { 9466 return rcu_dereference_protected(swhash->swevent_hlist, 9467 lockdep_is_held(&swhash->hlist_mutex)); 9468 } 9469 9470 static void swevent_hlist_release(struct swevent_htable *swhash) 9471 { 9472 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9473 9474 if (!hlist) 9475 return; 9476 9477 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9478 kfree_rcu(hlist, rcu_head); 9479 } 9480 9481 static void swevent_hlist_put_cpu(int cpu) 9482 { 9483 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9484 9485 mutex_lock(&swhash->hlist_mutex); 9486 9487 if (!--swhash->hlist_refcount) 9488 swevent_hlist_release(swhash); 9489 9490 mutex_unlock(&swhash->hlist_mutex); 9491 } 9492 9493 static void swevent_hlist_put(void) 9494 { 9495 int cpu; 9496 9497 for_each_possible_cpu(cpu) 9498 swevent_hlist_put_cpu(cpu); 9499 } 9500 9501 static int swevent_hlist_get_cpu(int cpu) 9502 { 9503 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9504 int err = 0; 9505 9506 mutex_lock(&swhash->hlist_mutex); 9507 if (!swevent_hlist_deref(swhash) && 9508 cpumask_test_cpu(cpu, perf_online_mask)) { 9509 struct swevent_hlist *hlist; 9510 9511 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9512 if (!hlist) { 9513 err = -ENOMEM; 9514 goto exit; 9515 } 9516 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9517 } 9518 swhash->hlist_refcount++; 9519 exit: 9520 mutex_unlock(&swhash->hlist_mutex); 9521 9522 return err; 9523 } 9524 9525 static int swevent_hlist_get(void) 9526 { 9527 int err, cpu, failed_cpu; 9528 9529 mutex_lock(&pmus_lock); 9530 for_each_possible_cpu(cpu) { 9531 err = swevent_hlist_get_cpu(cpu); 9532 if (err) { 9533 failed_cpu = cpu; 9534 goto fail; 9535 } 9536 } 9537 mutex_unlock(&pmus_lock); 9538 return 0; 9539 fail: 9540 for_each_possible_cpu(cpu) { 9541 if (cpu == failed_cpu) 9542 break; 9543 swevent_hlist_put_cpu(cpu); 9544 } 9545 mutex_unlock(&pmus_lock); 9546 return err; 9547 } 9548 9549 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9550 9551 static void sw_perf_event_destroy(struct perf_event *event) 9552 { 9553 u64 event_id = event->attr.config; 9554 9555 WARN_ON(event->parent); 9556 9557 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9558 swevent_hlist_put(); 9559 } 9560 9561 static int perf_swevent_init(struct perf_event *event) 9562 { 9563 u64 event_id = event->attr.config; 9564 9565 if (event->attr.type != PERF_TYPE_SOFTWARE) 9566 return -ENOENT; 9567 9568 /* 9569 * no branch sampling for software events 9570 */ 9571 if (has_branch_stack(event)) 9572 return -EOPNOTSUPP; 9573 9574 switch (event_id) { 9575 case PERF_COUNT_SW_CPU_CLOCK: 9576 case PERF_COUNT_SW_TASK_CLOCK: 9577 return -ENOENT; 9578 9579 default: 9580 break; 9581 } 9582 9583 if (event_id >= PERF_COUNT_SW_MAX) 9584 return -ENOENT; 9585 9586 if (!event->parent) { 9587 int err; 9588 9589 err = swevent_hlist_get(); 9590 if (err) 9591 return err; 9592 9593 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9594 event->destroy = sw_perf_event_destroy; 9595 } 9596 9597 return 0; 9598 } 9599 9600 static struct pmu perf_swevent = { 9601 .task_ctx_nr = perf_sw_context, 9602 9603 .capabilities = PERF_PMU_CAP_NO_NMI, 9604 9605 .event_init = perf_swevent_init, 9606 .add = perf_swevent_add, 9607 .del = perf_swevent_del, 9608 .start = perf_swevent_start, 9609 .stop = perf_swevent_stop, 9610 .read = perf_swevent_read, 9611 }; 9612 9613 #ifdef CONFIG_EVENT_TRACING 9614 9615 static int perf_tp_filter_match(struct perf_event *event, 9616 struct perf_sample_data *data) 9617 { 9618 void *record = data->raw->frag.data; 9619 9620 /* only top level events have filters set */ 9621 if (event->parent) 9622 event = event->parent; 9623 9624 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9625 return 1; 9626 return 0; 9627 } 9628 9629 static int perf_tp_event_match(struct perf_event *event, 9630 struct perf_sample_data *data, 9631 struct pt_regs *regs) 9632 { 9633 if (event->hw.state & PERF_HES_STOPPED) 9634 return 0; 9635 /* 9636 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9637 */ 9638 if (event->attr.exclude_kernel && !user_mode(regs)) 9639 return 0; 9640 9641 if (!perf_tp_filter_match(event, data)) 9642 return 0; 9643 9644 return 1; 9645 } 9646 9647 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9648 struct trace_event_call *call, u64 count, 9649 struct pt_regs *regs, struct hlist_head *head, 9650 struct task_struct *task) 9651 { 9652 if (bpf_prog_array_valid(call)) { 9653 *(struct pt_regs **)raw_data = regs; 9654 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9655 perf_swevent_put_recursion_context(rctx); 9656 return; 9657 } 9658 } 9659 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9660 rctx, task); 9661 } 9662 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9663 9664 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9665 struct pt_regs *regs, struct hlist_head *head, int rctx, 9666 struct task_struct *task) 9667 { 9668 struct perf_sample_data data; 9669 struct perf_event *event; 9670 9671 struct perf_raw_record raw = { 9672 .frag = { 9673 .size = entry_size, 9674 .data = record, 9675 }, 9676 }; 9677 9678 perf_sample_data_init(&data, 0, 0); 9679 data.raw = &raw; 9680 9681 perf_trace_buf_update(record, event_type); 9682 9683 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9684 if (perf_tp_event_match(event, &data, regs)) 9685 perf_swevent_event(event, count, &data, regs); 9686 } 9687 9688 /* 9689 * If we got specified a target task, also iterate its context and 9690 * deliver this event there too. 9691 */ 9692 if (task && task != current) { 9693 struct perf_event_context *ctx; 9694 struct trace_entry *entry = record; 9695 9696 rcu_read_lock(); 9697 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9698 if (!ctx) 9699 goto unlock; 9700 9701 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9702 if (event->cpu != smp_processor_id()) 9703 continue; 9704 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9705 continue; 9706 if (event->attr.config != entry->type) 9707 continue; 9708 if (perf_tp_event_match(event, &data, regs)) 9709 perf_swevent_event(event, count, &data, regs); 9710 } 9711 unlock: 9712 rcu_read_unlock(); 9713 } 9714 9715 perf_swevent_put_recursion_context(rctx); 9716 } 9717 EXPORT_SYMBOL_GPL(perf_tp_event); 9718 9719 static void tp_perf_event_destroy(struct perf_event *event) 9720 { 9721 perf_trace_destroy(event); 9722 } 9723 9724 static int perf_tp_event_init(struct perf_event *event) 9725 { 9726 int err; 9727 9728 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9729 return -ENOENT; 9730 9731 /* 9732 * no branch sampling for tracepoint events 9733 */ 9734 if (has_branch_stack(event)) 9735 return -EOPNOTSUPP; 9736 9737 err = perf_trace_init(event); 9738 if (err) 9739 return err; 9740 9741 event->destroy = tp_perf_event_destroy; 9742 9743 return 0; 9744 } 9745 9746 static struct pmu perf_tracepoint = { 9747 .task_ctx_nr = perf_sw_context, 9748 9749 .event_init = perf_tp_event_init, 9750 .add = perf_trace_add, 9751 .del = perf_trace_del, 9752 .start = perf_swevent_start, 9753 .stop = perf_swevent_stop, 9754 .read = perf_swevent_read, 9755 }; 9756 9757 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9758 /* 9759 * Flags in config, used by dynamic PMU kprobe and uprobe 9760 * The flags should match following PMU_FORMAT_ATTR(). 9761 * 9762 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9763 * if not set, create kprobe/uprobe 9764 * 9765 * The following values specify a reference counter (or semaphore in the 9766 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9767 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9768 * 9769 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9770 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9771 */ 9772 enum perf_probe_config { 9773 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9774 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9775 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9776 }; 9777 9778 PMU_FORMAT_ATTR(retprobe, "config:0"); 9779 #endif 9780 9781 #ifdef CONFIG_KPROBE_EVENTS 9782 static struct attribute *kprobe_attrs[] = { 9783 &format_attr_retprobe.attr, 9784 NULL, 9785 }; 9786 9787 static struct attribute_group kprobe_format_group = { 9788 .name = "format", 9789 .attrs = kprobe_attrs, 9790 }; 9791 9792 static const struct attribute_group *kprobe_attr_groups[] = { 9793 &kprobe_format_group, 9794 NULL, 9795 }; 9796 9797 static int perf_kprobe_event_init(struct perf_event *event); 9798 static struct pmu perf_kprobe = { 9799 .task_ctx_nr = perf_sw_context, 9800 .event_init = perf_kprobe_event_init, 9801 .add = perf_trace_add, 9802 .del = perf_trace_del, 9803 .start = perf_swevent_start, 9804 .stop = perf_swevent_stop, 9805 .read = perf_swevent_read, 9806 .attr_groups = kprobe_attr_groups, 9807 }; 9808 9809 static int perf_kprobe_event_init(struct perf_event *event) 9810 { 9811 int err; 9812 bool is_retprobe; 9813 9814 if (event->attr.type != perf_kprobe.type) 9815 return -ENOENT; 9816 9817 if (!perfmon_capable()) 9818 return -EACCES; 9819 9820 /* 9821 * no branch sampling for probe events 9822 */ 9823 if (has_branch_stack(event)) 9824 return -EOPNOTSUPP; 9825 9826 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9827 err = perf_kprobe_init(event, is_retprobe); 9828 if (err) 9829 return err; 9830 9831 event->destroy = perf_kprobe_destroy; 9832 9833 return 0; 9834 } 9835 #endif /* CONFIG_KPROBE_EVENTS */ 9836 9837 #ifdef CONFIG_UPROBE_EVENTS 9838 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9839 9840 static struct attribute *uprobe_attrs[] = { 9841 &format_attr_retprobe.attr, 9842 &format_attr_ref_ctr_offset.attr, 9843 NULL, 9844 }; 9845 9846 static struct attribute_group uprobe_format_group = { 9847 .name = "format", 9848 .attrs = uprobe_attrs, 9849 }; 9850 9851 static const struct attribute_group *uprobe_attr_groups[] = { 9852 &uprobe_format_group, 9853 NULL, 9854 }; 9855 9856 static int perf_uprobe_event_init(struct perf_event *event); 9857 static struct pmu perf_uprobe = { 9858 .task_ctx_nr = perf_sw_context, 9859 .event_init = perf_uprobe_event_init, 9860 .add = perf_trace_add, 9861 .del = perf_trace_del, 9862 .start = perf_swevent_start, 9863 .stop = perf_swevent_stop, 9864 .read = perf_swevent_read, 9865 .attr_groups = uprobe_attr_groups, 9866 }; 9867 9868 static int perf_uprobe_event_init(struct perf_event *event) 9869 { 9870 int err; 9871 unsigned long ref_ctr_offset; 9872 bool is_retprobe; 9873 9874 if (event->attr.type != perf_uprobe.type) 9875 return -ENOENT; 9876 9877 if (!perfmon_capable()) 9878 return -EACCES; 9879 9880 /* 9881 * no branch sampling for probe events 9882 */ 9883 if (has_branch_stack(event)) 9884 return -EOPNOTSUPP; 9885 9886 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9887 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9888 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9889 if (err) 9890 return err; 9891 9892 event->destroy = perf_uprobe_destroy; 9893 9894 return 0; 9895 } 9896 #endif /* CONFIG_UPROBE_EVENTS */ 9897 9898 static inline void perf_tp_register(void) 9899 { 9900 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9901 #ifdef CONFIG_KPROBE_EVENTS 9902 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9903 #endif 9904 #ifdef CONFIG_UPROBE_EVENTS 9905 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9906 #endif 9907 } 9908 9909 static void perf_event_free_filter(struct perf_event *event) 9910 { 9911 ftrace_profile_free_filter(event); 9912 } 9913 9914 #ifdef CONFIG_BPF_SYSCALL 9915 static void bpf_overflow_handler(struct perf_event *event, 9916 struct perf_sample_data *data, 9917 struct pt_regs *regs) 9918 { 9919 struct bpf_perf_event_data_kern ctx = { 9920 .data = data, 9921 .event = event, 9922 }; 9923 struct bpf_prog *prog; 9924 int ret = 0; 9925 9926 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9927 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9928 goto out; 9929 rcu_read_lock(); 9930 prog = READ_ONCE(event->prog); 9931 if (prog) 9932 ret = bpf_prog_run(prog, &ctx); 9933 rcu_read_unlock(); 9934 out: 9935 __this_cpu_dec(bpf_prog_active); 9936 if (!ret) 9937 return; 9938 9939 event->orig_overflow_handler(event, data, regs); 9940 } 9941 9942 static int perf_event_set_bpf_handler(struct perf_event *event, 9943 struct bpf_prog *prog, 9944 u64 bpf_cookie) 9945 { 9946 if (event->overflow_handler_context) 9947 /* hw breakpoint or kernel counter */ 9948 return -EINVAL; 9949 9950 if (event->prog) 9951 return -EEXIST; 9952 9953 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9954 return -EINVAL; 9955 9956 if (event->attr.precise_ip && 9957 prog->call_get_stack && 9958 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 9959 event->attr.exclude_callchain_kernel || 9960 event->attr.exclude_callchain_user)) { 9961 /* 9962 * On perf_event with precise_ip, calling bpf_get_stack() 9963 * may trigger unwinder warnings and occasional crashes. 9964 * bpf_get_[stack|stackid] works around this issue by using 9965 * callchain attached to perf_sample_data. If the 9966 * perf_event does not full (kernel and user) callchain 9967 * attached to perf_sample_data, do not allow attaching BPF 9968 * program that calls bpf_get_[stack|stackid]. 9969 */ 9970 return -EPROTO; 9971 } 9972 9973 event->prog = prog; 9974 event->bpf_cookie = bpf_cookie; 9975 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9976 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9977 return 0; 9978 } 9979 9980 static void perf_event_free_bpf_handler(struct perf_event *event) 9981 { 9982 struct bpf_prog *prog = event->prog; 9983 9984 if (!prog) 9985 return; 9986 9987 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9988 event->prog = NULL; 9989 bpf_prog_put(prog); 9990 } 9991 #else 9992 static int perf_event_set_bpf_handler(struct perf_event *event, 9993 struct bpf_prog *prog, 9994 u64 bpf_cookie) 9995 { 9996 return -EOPNOTSUPP; 9997 } 9998 static void perf_event_free_bpf_handler(struct perf_event *event) 9999 { 10000 } 10001 #endif 10002 10003 /* 10004 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10005 * with perf_event_open() 10006 */ 10007 static inline bool perf_event_is_tracing(struct perf_event *event) 10008 { 10009 if (event->pmu == &perf_tracepoint) 10010 return true; 10011 #ifdef CONFIG_KPROBE_EVENTS 10012 if (event->pmu == &perf_kprobe) 10013 return true; 10014 #endif 10015 #ifdef CONFIG_UPROBE_EVENTS 10016 if (event->pmu == &perf_uprobe) 10017 return true; 10018 #endif 10019 return false; 10020 } 10021 10022 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10023 u64 bpf_cookie) 10024 { 10025 bool is_kprobe, is_tracepoint, is_syscall_tp; 10026 10027 if (!perf_event_is_tracing(event)) 10028 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10029 10030 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10031 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10032 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10033 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10034 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10035 return -EINVAL; 10036 10037 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10038 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10039 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10040 return -EINVAL; 10041 10042 /* Kprobe override only works for kprobes, not uprobes. */ 10043 if (prog->kprobe_override && 10044 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 10045 return -EINVAL; 10046 10047 if (is_tracepoint || is_syscall_tp) { 10048 int off = trace_event_get_offsets(event->tp_event); 10049 10050 if (prog->aux->max_ctx_offset > off) 10051 return -EACCES; 10052 } 10053 10054 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10055 } 10056 10057 void perf_event_free_bpf_prog(struct perf_event *event) 10058 { 10059 if (!perf_event_is_tracing(event)) { 10060 perf_event_free_bpf_handler(event); 10061 return; 10062 } 10063 perf_event_detach_bpf_prog(event); 10064 } 10065 10066 #else 10067 10068 static inline void perf_tp_register(void) 10069 { 10070 } 10071 10072 static void perf_event_free_filter(struct perf_event *event) 10073 { 10074 } 10075 10076 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10077 u64 bpf_cookie) 10078 { 10079 return -ENOENT; 10080 } 10081 10082 void perf_event_free_bpf_prog(struct perf_event *event) 10083 { 10084 } 10085 #endif /* CONFIG_EVENT_TRACING */ 10086 10087 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10088 void perf_bp_event(struct perf_event *bp, void *data) 10089 { 10090 struct perf_sample_data sample; 10091 struct pt_regs *regs = data; 10092 10093 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10094 10095 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10096 perf_swevent_event(bp, 1, &sample, regs); 10097 } 10098 #endif 10099 10100 /* 10101 * Allocate a new address filter 10102 */ 10103 static struct perf_addr_filter * 10104 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10105 { 10106 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10107 struct perf_addr_filter *filter; 10108 10109 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10110 if (!filter) 10111 return NULL; 10112 10113 INIT_LIST_HEAD(&filter->entry); 10114 list_add_tail(&filter->entry, filters); 10115 10116 return filter; 10117 } 10118 10119 static void free_filters_list(struct list_head *filters) 10120 { 10121 struct perf_addr_filter *filter, *iter; 10122 10123 list_for_each_entry_safe(filter, iter, filters, entry) { 10124 path_put(&filter->path); 10125 list_del(&filter->entry); 10126 kfree(filter); 10127 } 10128 } 10129 10130 /* 10131 * Free existing address filters and optionally install new ones 10132 */ 10133 static void perf_addr_filters_splice(struct perf_event *event, 10134 struct list_head *head) 10135 { 10136 unsigned long flags; 10137 LIST_HEAD(list); 10138 10139 if (!has_addr_filter(event)) 10140 return; 10141 10142 /* don't bother with children, they don't have their own filters */ 10143 if (event->parent) 10144 return; 10145 10146 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10147 10148 list_splice_init(&event->addr_filters.list, &list); 10149 if (head) 10150 list_splice(head, &event->addr_filters.list); 10151 10152 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10153 10154 free_filters_list(&list); 10155 } 10156 10157 /* 10158 * Scan through mm's vmas and see if one of them matches the 10159 * @filter; if so, adjust filter's address range. 10160 * Called with mm::mmap_lock down for reading. 10161 */ 10162 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10163 struct mm_struct *mm, 10164 struct perf_addr_filter_range *fr) 10165 { 10166 struct vm_area_struct *vma; 10167 10168 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10169 if (!vma->vm_file) 10170 continue; 10171 10172 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10173 return; 10174 } 10175 } 10176 10177 /* 10178 * Update event's address range filters based on the 10179 * task's existing mappings, if any. 10180 */ 10181 static void perf_event_addr_filters_apply(struct perf_event *event) 10182 { 10183 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10184 struct task_struct *task = READ_ONCE(event->ctx->task); 10185 struct perf_addr_filter *filter; 10186 struct mm_struct *mm = NULL; 10187 unsigned int count = 0; 10188 unsigned long flags; 10189 10190 /* 10191 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10192 * will stop on the parent's child_mutex that our caller is also holding 10193 */ 10194 if (task == TASK_TOMBSTONE) 10195 return; 10196 10197 if (ifh->nr_file_filters) { 10198 mm = get_task_mm(event->ctx->task); 10199 if (!mm) 10200 goto restart; 10201 10202 mmap_read_lock(mm); 10203 } 10204 10205 raw_spin_lock_irqsave(&ifh->lock, flags); 10206 list_for_each_entry(filter, &ifh->list, entry) { 10207 if (filter->path.dentry) { 10208 /* 10209 * Adjust base offset if the filter is associated to a 10210 * binary that needs to be mapped: 10211 */ 10212 event->addr_filter_ranges[count].start = 0; 10213 event->addr_filter_ranges[count].size = 0; 10214 10215 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10216 } else { 10217 event->addr_filter_ranges[count].start = filter->offset; 10218 event->addr_filter_ranges[count].size = filter->size; 10219 } 10220 10221 count++; 10222 } 10223 10224 event->addr_filters_gen++; 10225 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10226 10227 if (ifh->nr_file_filters) { 10228 mmap_read_unlock(mm); 10229 10230 mmput(mm); 10231 } 10232 10233 restart: 10234 perf_event_stop(event, 1); 10235 } 10236 10237 /* 10238 * Address range filtering: limiting the data to certain 10239 * instruction address ranges. Filters are ioctl()ed to us from 10240 * userspace as ascii strings. 10241 * 10242 * Filter string format: 10243 * 10244 * ACTION RANGE_SPEC 10245 * where ACTION is one of the 10246 * * "filter": limit the trace to this region 10247 * * "start": start tracing from this address 10248 * * "stop": stop tracing at this address/region; 10249 * RANGE_SPEC is 10250 * * for kernel addresses: <start address>[/<size>] 10251 * * for object files: <start address>[/<size>]@</path/to/object/file> 10252 * 10253 * if <size> is not specified or is zero, the range is treated as a single 10254 * address; not valid for ACTION=="filter". 10255 */ 10256 enum { 10257 IF_ACT_NONE = -1, 10258 IF_ACT_FILTER, 10259 IF_ACT_START, 10260 IF_ACT_STOP, 10261 IF_SRC_FILE, 10262 IF_SRC_KERNEL, 10263 IF_SRC_FILEADDR, 10264 IF_SRC_KERNELADDR, 10265 }; 10266 10267 enum { 10268 IF_STATE_ACTION = 0, 10269 IF_STATE_SOURCE, 10270 IF_STATE_END, 10271 }; 10272 10273 static const match_table_t if_tokens = { 10274 { IF_ACT_FILTER, "filter" }, 10275 { IF_ACT_START, "start" }, 10276 { IF_ACT_STOP, "stop" }, 10277 { IF_SRC_FILE, "%u/%u@%s" }, 10278 { IF_SRC_KERNEL, "%u/%u" }, 10279 { IF_SRC_FILEADDR, "%u@%s" }, 10280 { IF_SRC_KERNELADDR, "%u" }, 10281 { IF_ACT_NONE, NULL }, 10282 }; 10283 10284 /* 10285 * Address filter string parser 10286 */ 10287 static int 10288 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10289 struct list_head *filters) 10290 { 10291 struct perf_addr_filter *filter = NULL; 10292 char *start, *orig, *filename = NULL; 10293 substring_t args[MAX_OPT_ARGS]; 10294 int state = IF_STATE_ACTION, token; 10295 unsigned int kernel = 0; 10296 int ret = -EINVAL; 10297 10298 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10299 if (!fstr) 10300 return -ENOMEM; 10301 10302 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10303 static const enum perf_addr_filter_action_t actions[] = { 10304 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10305 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10306 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10307 }; 10308 ret = -EINVAL; 10309 10310 if (!*start) 10311 continue; 10312 10313 /* filter definition begins */ 10314 if (state == IF_STATE_ACTION) { 10315 filter = perf_addr_filter_new(event, filters); 10316 if (!filter) 10317 goto fail; 10318 } 10319 10320 token = match_token(start, if_tokens, args); 10321 switch (token) { 10322 case IF_ACT_FILTER: 10323 case IF_ACT_START: 10324 case IF_ACT_STOP: 10325 if (state != IF_STATE_ACTION) 10326 goto fail; 10327 10328 filter->action = actions[token]; 10329 state = IF_STATE_SOURCE; 10330 break; 10331 10332 case IF_SRC_KERNELADDR: 10333 case IF_SRC_KERNEL: 10334 kernel = 1; 10335 fallthrough; 10336 10337 case IF_SRC_FILEADDR: 10338 case IF_SRC_FILE: 10339 if (state != IF_STATE_SOURCE) 10340 goto fail; 10341 10342 *args[0].to = 0; 10343 ret = kstrtoul(args[0].from, 0, &filter->offset); 10344 if (ret) 10345 goto fail; 10346 10347 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10348 *args[1].to = 0; 10349 ret = kstrtoul(args[1].from, 0, &filter->size); 10350 if (ret) 10351 goto fail; 10352 } 10353 10354 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10355 int fpos = token == IF_SRC_FILE ? 2 : 1; 10356 10357 kfree(filename); 10358 filename = match_strdup(&args[fpos]); 10359 if (!filename) { 10360 ret = -ENOMEM; 10361 goto fail; 10362 } 10363 } 10364 10365 state = IF_STATE_END; 10366 break; 10367 10368 default: 10369 goto fail; 10370 } 10371 10372 /* 10373 * Filter definition is fully parsed, validate and install it. 10374 * Make sure that it doesn't contradict itself or the event's 10375 * attribute. 10376 */ 10377 if (state == IF_STATE_END) { 10378 ret = -EINVAL; 10379 if (kernel && event->attr.exclude_kernel) 10380 goto fail; 10381 10382 /* 10383 * ACTION "filter" must have a non-zero length region 10384 * specified. 10385 */ 10386 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10387 !filter->size) 10388 goto fail; 10389 10390 if (!kernel) { 10391 if (!filename) 10392 goto fail; 10393 10394 /* 10395 * For now, we only support file-based filters 10396 * in per-task events; doing so for CPU-wide 10397 * events requires additional context switching 10398 * trickery, since same object code will be 10399 * mapped at different virtual addresses in 10400 * different processes. 10401 */ 10402 ret = -EOPNOTSUPP; 10403 if (!event->ctx->task) 10404 goto fail; 10405 10406 /* look up the path and grab its inode */ 10407 ret = kern_path(filename, LOOKUP_FOLLOW, 10408 &filter->path); 10409 if (ret) 10410 goto fail; 10411 10412 ret = -EINVAL; 10413 if (!filter->path.dentry || 10414 !S_ISREG(d_inode(filter->path.dentry) 10415 ->i_mode)) 10416 goto fail; 10417 10418 event->addr_filters.nr_file_filters++; 10419 } 10420 10421 /* ready to consume more filters */ 10422 state = IF_STATE_ACTION; 10423 filter = NULL; 10424 } 10425 } 10426 10427 if (state != IF_STATE_ACTION) 10428 goto fail; 10429 10430 kfree(filename); 10431 kfree(orig); 10432 10433 return 0; 10434 10435 fail: 10436 kfree(filename); 10437 free_filters_list(filters); 10438 kfree(orig); 10439 10440 return ret; 10441 } 10442 10443 static int 10444 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10445 { 10446 LIST_HEAD(filters); 10447 int ret; 10448 10449 /* 10450 * Since this is called in perf_ioctl() path, we're already holding 10451 * ctx::mutex. 10452 */ 10453 lockdep_assert_held(&event->ctx->mutex); 10454 10455 if (WARN_ON_ONCE(event->parent)) 10456 return -EINVAL; 10457 10458 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10459 if (ret) 10460 goto fail_clear_files; 10461 10462 ret = event->pmu->addr_filters_validate(&filters); 10463 if (ret) 10464 goto fail_free_filters; 10465 10466 /* remove existing filters, if any */ 10467 perf_addr_filters_splice(event, &filters); 10468 10469 /* install new filters */ 10470 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10471 10472 return ret; 10473 10474 fail_free_filters: 10475 free_filters_list(&filters); 10476 10477 fail_clear_files: 10478 event->addr_filters.nr_file_filters = 0; 10479 10480 return ret; 10481 } 10482 10483 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10484 { 10485 int ret = -EINVAL; 10486 char *filter_str; 10487 10488 filter_str = strndup_user(arg, PAGE_SIZE); 10489 if (IS_ERR(filter_str)) 10490 return PTR_ERR(filter_str); 10491 10492 #ifdef CONFIG_EVENT_TRACING 10493 if (perf_event_is_tracing(event)) { 10494 struct perf_event_context *ctx = event->ctx; 10495 10496 /* 10497 * Beware, here be dragons!! 10498 * 10499 * the tracepoint muck will deadlock against ctx->mutex, but 10500 * the tracepoint stuff does not actually need it. So 10501 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10502 * already have a reference on ctx. 10503 * 10504 * This can result in event getting moved to a different ctx, 10505 * but that does not affect the tracepoint state. 10506 */ 10507 mutex_unlock(&ctx->mutex); 10508 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10509 mutex_lock(&ctx->mutex); 10510 } else 10511 #endif 10512 if (has_addr_filter(event)) 10513 ret = perf_event_set_addr_filter(event, filter_str); 10514 10515 kfree(filter_str); 10516 return ret; 10517 } 10518 10519 /* 10520 * hrtimer based swevent callback 10521 */ 10522 10523 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10524 { 10525 enum hrtimer_restart ret = HRTIMER_RESTART; 10526 struct perf_sample_data data; 10527 struct pt_regs *regs; 10528 struct perf_event *event; 10529 u64 period; 10530 10531 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10532 10533 if (event->state != PERF_EVENT_STATE_ACTIVE) 10534 return HRTIMER_NORESTART; 10535 10536 event->pmu->read(event); 10537 10538 perf_sample_data_init(&data, 0, event->hw.last_period); 10539 regs = get_irq_regs(); 10540 10541 if (regs && !perf_exclude_event(event, regs)) { 10542 if (!(event->attr.exclude_idle && is_idle_task(current))) 10543 if (__perf_event_overflow(event, 1, &data, regs)) 10544 ret = HRTIMER_NORESTART; 10545 } 10546 10547 period = max_t(u64, 10000, event->hw.sample_period); 10548 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10549 10550 return ret; 10551 } 10552 10553 static void perf_swevent_start_hrtimer(struct perf_event *event) 10554 { 10555 struct hw_perf_event *hwc = &event->hw; 10556 s64 period; 10557 10558 if (!is_sampling_event(event)) 10559 return; 10560 10561 period = local64_read(&hwc->period_left); 10562 if (period) { 10563 if (period < 0) 10564 period = 10000; 10565 10566 local64_set(&hwc->period_left, 0); 10567 } else { 10568 period = max_t(u64, 10000, hwc->sample_period); 10569 } 10570 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10571 HRTIMER_MODE_REL_PINNED_HARD); 10572 } 10573 10574 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10575 { 10576 struct hw_perf_event *hwc = &event->hw; 10577 10578 if (is_sampling_event(event)) { 10579 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10580 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10581 10582 hrtimer_cancel(&hwc->hrtimer); 10583 } 10584 } 10585 10586 static void perf_swevent_init_hrtimer(struct perf_event *event) 10587 { 10588 struct hw_perf_event *hwc = &event->hw; 10589 10590 if (!is_sampling_event(event)) 10591 return; 10592 10593 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10594 hwc->hrtimer.function = perf_swevent_hrtimer; 10595 10596 /* 10597 * Since hrtimers have a fixed rate, we can do a static freq->period 10598 * mapping and avoid the whole period adjust feedback stuff. 10599 */ 10600 if (event->attr.freq) { 10601 long freq = event->attr.sample_freq; 10602 10603 event->attr.sample_period = NSEC_PER_SEC / freq; 10604 hwc->sample_period = event->attr.sample_period; 10605 local64_set(&hwc->period_left, hwc->sample_period); 10606 hwc->last_period = hwc->sample_period; 10607 event->attr.freq = 0; 10608 } 10609 } 10610 10611 /* 10612 * Software event: cpu wall time clock 10613 */ 10614 10615 static void cpu_clock_event_update(struct perf_event *event) 10616 { 10617 s64 prev; 10618 u64 now; 10619 10620 now = local_clock(); 10621 prev = local64_xchg(&event->hw.prev_count, now); 10622 local64_add(now - prev, &event->count); 10623 } 10624 10625 static void cpu_clock_event_start(struct perf_event *event, int flags) 10626 { 10627 local64_set(&event->hw.prev_count, local_clock()); 10628 perf_swevent_start_hrtimer(event); 10629 } 10630 10631 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10632 { 10633 perf_swevent_cancel_hrtimer(event); 10634 cpu_clock_event_update(event); 10635 } 10636 10637 static int cpu_clock_event_add(struct perf_event *event, int flags) 10638 { 10639 if (flags & PERF_EF_START) 10640 cpu_clock_event_start(event, flags); 10641 perf_event_update_userpage(event); 10642 10643 return 0; 10644 } 10645 10646 static void cpu_clock_event_del(struct perf_event *event, int flags) 10647 { 10648 cpu_clock_event_stop(event, flags); 10649 } 10650 10651 static void cpu_clock_event_read(struct perf_event *event) 10652 { 10653 cpu_clock_event_update(event); 10654 } 10655 10656 static int cpu_clock_event_init(struct perf_event *event) 10657 { 10658 if (event->attr.type != PERF_TYPE_SOFTWARE) 10659 return -ENOENT; 10660 10661 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10662 return -ENOENT; 10663 10664 /* 10665 * no branch sampling for software events 10666 */ 10667 if (has_branch_stack(event)) 10668 return -EOPNOTSUPP; 10669 10670 perf_swevent_init_hrtimer(event); 10671 10672 return 0; 10673 } 10674 10675 static struct pmu perf_cpu_clock = { 10676 .task_ctx_nr = perf_sw_context, 10677 10678 .capabilities = PERF_PMU_CAP_NO_NMI, 10679 10680 .event_init = cpu_clock_event_init, 10681 .add = cpu_clock_event_add, 10682 .del = cpu_clock_event_del, 10683 .start = cpu_clock_event_start, 10684 .stop = cpu_clock_event_stop, 10685 .read = cpu_clock_event_read, 10686 }; 10687 10688 /* 10689 * Software event: task time clock 10690 */ 10691 10692 static void task_clock_event_update(struct perf_event *event, u64 now) 10693 { 10694 u64 prev; 10695 s64 delta; 10696 10697 prev = local64_xchg(&event->hw.prev_count, now); 10698 delta = now - prev; 10699 local64_add(delta, &event->count); 10700 } 10701 10702 static void task_clock_event_start(struct perf_event *event, int flags) 10703 { 10704 local64_set(&event->hw.prev_count, event->ctx->time); 10705 perf_swevent_start_hrtimer(event); 10706 } 10707 10708 static void task_clock_event_stop(struct perf_event *event, int flags) 10709 { 10710 perf_swevent_cancel_hrtimer(event); 10711 task_clock_event_update(event, event->ctx->time); 10712 } 10713 10714 static int task_clock_event_add(struct perf_event *event, int flags) 10715 { 10716 if (flags & PERF_EF_START) 10717 task_clock_event_start(event, flags); 10718 perf_event_update_userpage(event); 10719 10720 return 0; 10721 } 10722 10723 static void task_clock_event_del(struct perf_event *event, int flags) 10724 { 10725 task_clock_event_stop(event, PERF_EF_UPDATE); 10726 } 10727 10728 static void task_clock_event_read(struct perf_event *event) 10729 { 10730 u64 now = perf_clock(); 10731 u64 delta = now - event->ctx->timestamp; 10732 u64 time = event->ctx->time + delta; 10733 10734 task_clock_event_update(event, time); 10735 } 10736 10737 static int task_clock_event_init(struct perf_event *event) 10738 { 10739 if (event->attr.type != PERF_TYPE_SOFTWARE) 10740 return -ENOENT; 10741 10742 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10743 return -ENOENT; 10744 10745 /* 10746 * no branch sampling for software events 10747 */ 10748 if (has_branch_stack(event)) 10749 return -EOPNOTSUPP; 10750 10751 perf_swevent_init_hrtimer(event); 10752 10753 return 0; 10754 } 10755 10756 static struct pmu perf_task_clock = { 10757 .task_ctx_nr = perf_sw_context, 10758 10759 .capabilities = PERF_PMU_CAP_NO_NMI, 10760 10761 .event_init = task_clock_event_init, 10762 .add = task_clock_event_add, 10763 .del = task_clock_event_del, 10764 .start = task_clock_event_start, 10765 .stop = task_clock_event_stop, 10766 .read = task_clock_event_read, 10767 }; 10768 10769 static void perf_pmu_nop_void(struct pmu *pmu) 10770 { 10771 } 10772 10773 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10774 { 10775 } 10776 10777 static int perf_pmu_nop_int(struct pmu *pmu) 10778 { 10779 return 0; 10780 } 10781 10782 static int perf_event_nop_int(struct perf_event *event, u64 value) 10783 { 10784 return 0; 10785 } 10786 10787 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10788 10789 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10790 { 10791 __this_cpu_write(nop_txn_flags, flags); 10792 10793 if (flags & ~PERF_PMU_TXN_ADD) 10794 return; 10795 10796 perf_pmu_disable(pmu); 10797 } 10798 10799 static int perf_pmu_commit_txn(struct pmu *pmu) 10800 { 10801 unsigned int flags = __this_cpu_read(nop_txn_flags); 10802 10803 __this_cpu_write(nop_txn_flags, 0); 10804 10805 if (flags & ~PERF_PMU_TXN_ADD) 10806 return 0; 10807 10808 perf_pmu_enable(pmu); 10809 return 0; 10810 } 10811 10812 static void perf_pmu_cancel_txn(struct pmu *pmu) 10813 { 10814 unsigned int flags = __this_cpu_read(nop_txn_flags); 10815 10816 __this_cpu_write(nop_txn_flags, 0); 10817 10818 if (flags & ~PERF_PMU_TXN_ADD) 10819 return; 10820 10821 perf_pmu_enable(pmu); 10822 } 10823 10824 static int perf_event_idx_default(struct perf_event *event) 10825 { 10826 return 0; 10827 } 10828 10829 /* 10830 * Ensures all contexts with the same task_ctx_nr have the same 10831 * pmu_cpu_context too. 10832 */ 10833 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10834 { 10835 struct pmu *pmu; 10836 10837 if (ctxn < 0) 10838 return NULL; 10839 10840 list_for_each_entry(pmu, &pmus, entry) { 10841 if (pmu->task_ctx_nr == ctxn) 10842 return pmu->pmu_cpu_context; 10843 } 10844 10845 return NULL; 10846 } 10847 10848 static void free_pmu_context(struct pmu *pmu) 10849 { 10850 /* 10851 * Static contexts such as perf_sw_context have a global lifetime 10852 * and may be shared between different PMUs. Avoid freeing them 10853 * when a single PMU is going away. 10854 */ 10855 if (pmu->task_ctx_nr > perf_invalid_context) 10856 return; 10857 10858 free_percpu(pmu->pmu_cpu_context); 10859 } 10860 10861 /* 10862 * Let userspace know that this PMU supports address range filtering: 10863 */ 10864 static ssize_t nr_addr_filters_show(struct device *dev, 10865 struct device_attribute *attr, 10866 char *page) 10867 { 10868 struct pmu *pmu = dev_get_drvdata(dev); 10869 10870 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10871 } 10872 DEVICE_ATTR_RO(nr_addr_filters); 10873 10874 static struct idr pmu_idr; 10875 10876 static ssize_t 10877 type_show(struct device *dev, struct device_attribute *attr, char *page) 10878 { 10879 struct pmu *pmu = dev_get_drvdata(dev); 10880 10881 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10882 } 10883 static DEVICE_ATTR_RO(type); 10884 10885 static ssize_t 10886 perf_event_mux_interval_ms_show(struct device *dev, 10887 struct device_attribute *attr, 10888 char *page) 10889 { 10890 struct pmu *pmu = dev_get_drvdata(dev); 10891 10892 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10893 } 10894 10895 static DEFINE_MUTEX(mux_interval_mutex); 10896 10897 static ssize_t 10898 perf_event_mux_interval_ms_store(struct device *dev, 10899 struct device_attribute *attr, 10900 const char *buf, size_t count) 10901 { 10902 struct pmu *pmu = dev_get_drvdata(dev); 10903 int timer, cpu, ret; 10904 10905 ret = kstrtoint(buf, 0, &timer); 10906 if (ret) 10907 return ret; 10908 10909 if (timer < 1) 10910 return -EINVAL; 10911 10912 /* same value, noting to do */ 10913 if (timer == pmu->hrtimer_interval_ms) 10914 return count; 10915 10916 mutex_lock(&mux_interval_mutex); 10917 pmu->hrtimer_interval_ms = timer; 10918 10919 /* update all cpuctx for this PMU */ 10920 cpus_read_lock(); 10921 for_each_online_cpu(cpu) { 10922 struct perf_cpu_context *cpuctx; 10923 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10924 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10925 10926 cpu_function_call(cpu, 10927 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10928 } 10929 cpus_read_unlock(); 10930 mutex_unlock(&mux_interval_mutex); 10931 10932 return count; 10933 } 10934 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10935 10936 static struct attribute *pmu_dev_attrs[] = { 10937 &dev_attr_type.attr, 10938 &dev_attr_perf_event_mux_interval_ms.attr, 10939 NULL, 10940 }; 10941 ATTRIBUTE_GROUPS(pmu_dev); 10942 10943 static int pmu_bus_running; 10944 static struct bus_type pmu_bus = { 10945 .name = "event_source", 10946 .dev_groups = pmu_dev_groups, 10947 }; 10948 10949 static void pmu_dev_release(struct device *dev) 10950 { 10951 kfree(dev); 10952 } 10953 10954 static int pmu_dev_alloc(struct pmu *pmu) 10955 { 10956 int ret = -ENOMEM; 10957 10958 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10959 if (!pmu->dev) 10960 goto out; 10961 10962 pmu->dev->groups = pmu->attr_groups; 10963 device_initialize(pmu->dev); 10964 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10965 if (ret) 10966 goto free_dev; 10967 10968 dev_set_drvdata(pmu->dev, pmu); 10969 pmu->dev->bus = &pmu_bus; 10970 pmu->dev->release = pmu_dev_release; 10971 ret = device_add(pmu->dev); 10972 if (ret) 10973 goto free_dev; 10974 10975 /* For PMUs with address filters, throw in an extra attribute: */ 10976 if (pmu->nr_addr_filters) 10977 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10978 10979 if (ret) 10980 goto del_dev; 10981 10982 if (pmu->attr_update) 10983 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10984 10985 if (ret) 10986 goto del_dev; 10987 10988 out: 10989 return ret; 10990 10991 del_dev: 10992 device_del(pmu->dev); 10993 10994 free_dev: 10995 put_device(pmu->dev); 10996 goto out; 10997 } 10998 10999 static struct lock_class_key cpuctx_mutex; 11000 static struct lock_class_key cpuctx_lock; 11001 11002 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11003 { 11004 int cpu, ret, max = PERF_TYPE_MAX; 11005 11006 mutex_lock(&pmus_lock); 11007 ret = -ENOMEM; 11008 pmu->pmu_disable_count = alloc_percpu(int); 11009 if (!pmu->pmu_disable_count) 11010 goto unlock; 11011 11012 pmu->type = -1; 11013 if (!name) 11014 goto skip_type; 11015 pmu->name = name; 11016 11017 if (type != PERF_TYPE_SOFTWARE) { 11018 if (type >= 0) 11019 max = type; 11020 11021 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11022 if (ret < 0) 11023 goto free_pdc; 11024 11025 WARN_ON(type >= 0 && ret != type); 11026 11027 type = ret; 11028 } 11029 pmu->type = type; 11030 11031 if (pmu_bus_running) { 11032 ret = pmu_dev_alloc(pmu); 11033 if (ret) 11034 goto free_idr; 11035 } 11036 11037 skip_type: 11038 if (pmu->task_ctx_nr == perf_hw_context) { 11039 static int hw_context_taken = 0; 11040 11041 /* 11042 * Other than systems with heterogeneous CPUs, it never makes 11043 * sense for two PMUs to share perf_hw_context. PMUs which are 11044 * uncore must use perf_invalid_context. 11045 */ 11046 if (WARN_ON_ONCE(hw_context_taken && 11047 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11048 pmu->task_ctx_nr = perf_invalid_context; 11049 11050 hw_context_taken = 1; 11051 } 11052 11053 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11054 if (pmu->pmu_cpu_context) 11055 goto got_cpu_context; 11056 11057 ret = -ENOMEM; 11058 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11059 if (!pmu->pmu_cpu_context) 11060 goto free_dev; 11061 11062 for_each_possible_cpu(cpu) { 11063 struct perf_cpu_context *cpuctx; 11064 11065 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11066 __perf_event_init_context(&cpuctx->ctx); 11067 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11068 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11069 cpuctx->ctx.pmu = pmu; 11070 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11071 11072 __perf_mux_hrtimer_init(cpuctx, cpu); 11073 11074 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11075 cpuctx->heap = cpuctx->heap_default; 11076 } 11077 11078 got_cpu_context: 11079 if (!pmu->start_txn) { 11080 if (pmu->pmu_enable) { 11081 /* 11082 * If we have pmu_enable/pmu_disable calls, install 11083 * transaction stubs that use that to try and batch 11084 * hardware accesses. 11085 */ 11086 pmu->start_txn = perf_pmu_start_txn; 11087 pmu->commit_txn = perf_pmu_commit_txn; 11088 pmu->cancel_txn = perf_pmu_cancel_txn; 11089 } else { 11090 pmu->start_txn = perf_pmu_nop_txn; 11091 pmu->commit_txn = perf_pmu_nop_int; 11092 pmu->cancel_txn = perf_pmu_nop_void; 11093 } 11094 } 11095 11096 if (!pmu->pmu_enable) { 11097 pmu->pmu_enable = perf_pmu_nop_void; 11098 pmu->pmu_disable = perf_pmu_nop_void; 11099 } 11100 11101 if (!pmu->check_period) 11102 pmu->check_period = perf_event_nop_int; 11103 11104 if (!pmu->event_idx) 11105 pmu->event_idx = perf_event_idx_default; 11106 11107 /* 11108 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11109 * since these cannot be in the IDR. This way the linear search 11110 * is fast, provided a valid software event is provided. 11111 */ 11112 if (type == PERF_TYPE_SOFTWARE || !name) 11113 list_add_rcu(&pmu->entry, &pmus); 11114 else 11115 list_add_tail_rcu(&pmu->entry, &pmus); 11116 11117 atomic_set(&pmu->exclusive_cnt, 0); 11118 ret = 0; 11119 unlock: 11120 mutex_unlock(&pmus_lock); 11121 11122 return ret; 11123 11124 free_dev: 11125 device_del(pmu->dev); 11126 put_device(pmu->dev); 11127 11128 free_idr: 11129 if (pmu->type != PERF_TYPE_SOFTWARE) 11130 idr_remove(&pmu_idr, pmu->type); 11131 11132 free_pdc: 11133 free_percpu(pmu->pmu_disable_count); 11134 goto unlock; 11135 } 11136 EXPORT_SYMBOL_GPL(perf_pmu_register); 11137 11138 void perf_pmu_unregister(struct pmu *pmu) 11139 { 11140 mutex_lock(&pmus_lock); 11141 list_del_rcu(&pmu->entry); 11142 11143 /* 11144 * We dereference the pmu list under both SRCU and regular RCU, so 11145 * synchronize against both of those. 11146 */ 11147 synchronize_srcu(&pmus_srcu); 11148 synchronize_rcu(); 11149 11150 free_percpu(pmu->pmu_disable_count); 11151 if (pmu->type != PERF_TYPE_SOFTWARE) 11152 idr_remove(&pmu_idr, pmu->type); 11153 if (pmu_bus_running) { 11154 if (pmu->nr_addr_filters) 11155 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11156 device_del(pmu->dev); 11157 put_device(pmu->dev); 11158 } 11159 free_pmu_context(pmu); 11160 mutex_unlock(&pmus_lock); 11161 } 11162 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11163 11164 static inline bool has_extended_regs(struct perf_event *event) 11165 { 11166 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11167 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11168 } 11169 11170 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11171 { 11172 struct perf_event_context *ctx = NULL; 11173 int ret; 11174 11175 if (!try_module_get(pmu->module)) 11176 return -ENODEV; 11177 11178 /* 11179 * A number of pmu->event_init() methods iterate the sibling_list to, 11180 * for example, validate if the group fits on the PMU. Therefore, 11181 * if this is a sibling event, acquire the ctx->mutex to protect 11182 * the sibling_list. 11183 */ 11184 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11185 /* 11186 * This ctx->mutex can nest when we're called through 11187 * inheritance. See the perf_event_ctx_lock_nested() comment. 11188 */ 11189 ctx = perf_event_ctx_lock_nested(event->group_leader, 11190 SINGLE_DEPTH_NESTING); 11191 BUG_ON(!ctx); 11192 } 11193 11194 event->pmu = pmu; 11195 ret = pmu->event_init(event); 11196 11197 if (ctx) 11198 perf_event_ctx_unlock(event->group_leader, ctx); 11199 11200 if (!ret) { 11201 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11202 has_extended_regs(event)) 11203 ret = -EOPNOTSUPP; 11204 11205 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11206 event_has_any_exclude_flag(event)) 11207 ret = -EINVAL; 11208 11209 if (ret && event->destroy) 11210 event->destroy(event); 11211 } 11212 11213 if (ret) 11214 module_put(pmu->module); 11215 11216 return ret; 11217 } 11218 11219 static struct pmu *perf_init_event(struct perf_event *event) 11220 { 11221 bool extended_type = false; 11222 int idx, type, ret; 11223 struct pmu *pmu; 11224 11225 idx = srcu_read_lock(&pmus_srcu); 11226 11227 /* Try parent's PMU first: */ 11228 if (event->parent && event->parent->pmu) { 11229 pmu = event->parent->pmu; 11230 ret = perf_try_init_event(pmu, event); 11231 if (!ret) 11232 goto unlock; 11233 } 11234 11235 /* 11236 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11237 * are often aliases for PERF_TYPE_RAW. 11238 */ 11239 type = event->attr.type; 11240 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11241 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11242 if (!type) { 11243 type = PERF_TYPE_RAW; 11244 } else { 11245 extended_type = true; 11246 event->attr.config &= PERF_HW_EVENT_MASK; 11247 } 11248 } 11249 11250 again: 11251 rcu_read_lock(); 11252 pmu = idr_find(&pmu_idr, type); 11253 rcu_read_unlock(); 11254 if (pmu) { 11255 if (event->attr.type != type && type != PERF_TYPE_RAW && 11256 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11257 goto fail; 11258 11259 ret = perf_try_init_event(pmu, event); 11260 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11261 type = event->attr.type; 11262 goto again; 11263 } 11264 11265 if (ret) 11266 pmu = ERR_PTR(ret); 11267 11268 goto unlock; 11269 } 11270 11271 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11272 ret = perf_try_init_event(pmu, event); 11273 if (!ret) 11274 goto unlock; 11275 11276 if (ret != -ENOENT) { 11277 pmu = ERR_PTR(ret); 11278 goto unlock; 11279 } 11280 } 11281 fail: 11282 pmu = ERR_PTR(-ENOENT); 11283 unlock: 11284 srcu_read_unlock(&pmus_srcu, idx); 11285 11286 return pmu; 11287 } 11288 11289 static void attach_sb_event(struct perf_event *event) 11290 { 11291 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11292 11293 raw_spin_lock(&pel->lock); 11294 list_add_rcu(&event->sb_list, &pel->list); 11295 raw_spin_unlock(&pel->lock); 11296 } 11297 11298 /* 11299 * We keep a list of all !task (and therefore per-cpu) events 11300 * that need to receive side-band records. 11301 * 11302 * This avoids having to scan all the various PMU per-cpu contexts 11303 * looking for them. 11304 */ 11305 static void account_pmu_sb_event(struct perf_event *event) 11306 { 11307 if (is_sb_event(event)) 11308 attach_sb_event(event); 11309 } 11310 11311 static void account_event_cpu(struct perf_event *event, int cpu) 11312 { 11313 if (event->parent) 11314 return; 11315 11316 if (is_cgroup_event(event)) 11317 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11318 } 11319 11320 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11321 static void account_freq_event_nohz(void) 11322 { 11323 #ifdef CONFIG_NO_HZ_FULL 11324 /* Lock so we don't race with concurrent unaccount */ 11325 spin_lock(&nr_freq_lock); 11326 if (atomic_inc_return(&nr_freq_events) == 1) 11327 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11328 spin_unlock(&nr_freq_lock); 11329 #endif 11330 } 11331 11332 static void account_freq_event(void) 11333 { 11334 if (tick_nohz_full_enabled()) 11335 account_freq_event_nohz(); 11336 else 11337 atomic_inc(&nr_freq_events); 11338 } 11339 11340 11341 static void account_event(struct perf_event *event) 11342 { 11343 bool inc = false; 11344 11345 if (event->parent) 11346 return; 11347 11348 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11349 inc = true; 11350 if (event->attr.mmap || event->attr.mmap_data) 11351 atomic_inc(&nr_mmap_events); 11352 if (event->attr.build_id) 11353 atomic_inc(&nr_build_id_events); 11354 if (event->attr.comm) 11355 atomic_inc(&nr_comm_events); 11356 if (event->attr.namespaces) 11357 atomic_inc(&nr_namespaces_events); 11358 if (event->attr.cgroup) 11359 atomic_inc(&nr_cgroup_events); 11360 if (event->attr.task) 11361 atomic_inc(&nr_task_events); 11362 if (event->attr.freq) 11363 account_freq_event(); 11364 if (event->attr.context_switch) { 11365 atomic_inc(&nr_switch_events); 11366 inc = true; 11367 } 11368 if (has_branch_stack(event)) 11369 inc = true; 11370 if (is_cgroup_event(event)) 11371 inc = true; 11372 if (event->attr.ksymbol) 11373 atomic_inc(&nr_ksymbol_events); 11374 if (event->attr.bpf_event) 11375 atomic_inc(&nr_bpf_events); 11376 if (event->attr.text_poke) 11377 atomic_inc(&nr_text_poke_events); 11378 11379 if (inc) { 11380 /* 11381 * We need the mutex here because static_branch_enable() 11382 * must complete *before* the perf_sched_count increment 11383 * becomes visible. 11384 */ 11385 if (atomic_inc_not_zero(&perf_sched_count)) 11386 goto enabled; 11387 11388 mutex_lock(&perf_sched_mutex); 11389 if (!atomic_read(&perf_sched_count)) { 11390 static_branch_enable(&perf_sched_events); 11391 /* 11392 * Guarantee that all CPUs observe they key change and 11393 * call the perf scheduling hooks before proceeding to 11394 * install events that need them. 11395 */ 11396 synchronize_rcu(); 11397 } 11398 /* 11399 * Now that we have waited for the sync_sched(), allow further 11400 * increments to by-pass the mutex. 11401 */ 11402 atomic_inc(&perf_sched_count); 11403 mutex_unlock(&perf_sched_mutex); 11404 } 11405 enabled: 11406 11407 account_event_cpu(event, event->cpu); 11408 11409 account_pmu_sb_event(event); 11410 } 11411 11412 /* 11413 * Allocate and initialize an event structure 11414 */ 11415 static struct perf_event * 11416 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11417 struct task_struct *task, 11418 struct perf_event *group_leader, 11419 struct perf_event *parent_event, 11420 perf_overflow_handler_t overflow_handler, 11421 void *context, int cgroup_fd) 11422 { 11423 struct pmu *pmu; 11424 struct perf_event *event; 11425 struct hw_perf_event *hwc; 11426 long err = -EINVAL; 11427 int node; 11428 11429 if ((unsigned)cpu >= nr_cpu_ids) { 11430 if (!task || cpu != -1) 11431 return ERR_PTR(-EINVAL); 11432 } 11433 if (attr->sigtrap && !task) { 11434 /* Requires a task: avoid signalling random tasks. */ 11435 return ERR_PTR(-EINVAL); 11436 } 11437 11438 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11439 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11440 node); 11441 if (!event) 11442 return ERR_PTR(-ENOMEM); 11443 11444 /* 11445 * Single events are their own group leaders, with an 11446 * empty sibling list: 11447 */ 11448 if (!group_leader) 11449 group_leader = event; 11450 11451 mutex_init(&event->child_mutex); 11452 INIT_LIST_HEAD(&event->child_list); 11453 11454 INIT_LIST_HEAD(&event->event_entry); 11455 INIT_LIST_HEAD(&event->sibling_list); 11456 INIT_LIST_HEAD(&event->active_list); 11457 init_event_group(event); 11458 INIT_LIST_HEAD(&event->rb_entry); 11459 INIT_LIST_HEAD(&event->active_entry); 11460 INIT_LIST_HEAD(&event->addr_filters.list); 11461 INIT_HLIST_NODE(&event->hlist_entry); 11462 11463 11464 init_waitqueue_head(&event->waitq); 11465 event->pending_disable = -1; 11466 init_irq_work(&event->pending, perf_pending_event); 11467 11468 mutex_init(&event->mmap_mutex); 11469 raw_spin_lock_init(&event->addr_filters.lock); 11470 11471 atomic_long_set(&event->refcount, 1); 11472 event->cpu = cpu; 11473 event->attr = *attr; 11474 event->group_leader = group_leader; 11475 event->pmu = NULL; 11476 event->oncpu = -1; 11477 11478 event->parent = parent_event; 11479 11480 event->ns = get_pid_ns(task_active_pid_ns(current)); 11481 event->id = atomic64_inc_return(&perf_event_id); 11482 11483 event->state = PERF_EVENT_STATE_INACTIVE; 11484 11485 if (event->attr.sigtrap) 11486 atomic_set(&event->event_limit, 1); 11487 11488 if (task) { 11489 event->attach_state = PERF_ATTACH_TASK; 11490 /* 11491 * XXX pmu::event_init needs to know what task to account to 11492 * and we cannot use the ctx information because we need the 11493 * pmu before we get a ctx. 11494 */ 11495 event->hw.target = get_task_struct(task); 11496 } 11497 11498 event->clock = &local_clock; 11499 if (parent_event) 11500 event->clock = parent_event->clock; 11501 11502 if (!overflow_handler && parent_event) { 11503 overflow_handler = parent_event->overflow_handler; 11504 context = parent_event->overflow_handler_context; 11505 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11506 if (overflow_handler == bpf_overflow_handler) { 11507 struct bpf_prog *prog = parent_event->prog; 11508 11509 bpf_prog_inc(prog); 11510 event->prog = prog; 11511 event->orig_overflow_handler = 11512 parent_event->orig_overflow_handler; 11513 } 11514 #endif 11515 } 11516 11517 if (overflow_handler) { 11518 event->overflow_handler = overflow_handler; 11519 event->overflow_handler_context = context; 11520 } else if (is_write_backward(event)){ 11521 event->overflow_handler = perf_event_output_backward; 11522 event->overflow_handler_context = NULL; 11523 } else { 11524 event->overflow_handler = perf_event_output_forward; 11525 event->overflow_handler_context = NULL; 11526 } 11527 11528 perf_event__state_init(event); 11529 11530 pmu = NULL; 11531 11532 hwc = &event->hw; 11533 hwc->sample_period = attr->sample_period; 11534 if (attr->freq && attr->sample_freq) 11535 hwc->sample_period = 1; 11536 hwc->last_period = hwc->sample_period; 11537 11538 local64_set(&hwc->period_left, hwc->sample_period); 11539 11540 /* 11541 * We currently do not support PERF_SAMPLE_READ on inherited events. 11542 * See perf_output_read(). 11543 */ 11544 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11545 goto err_ns; 11546 11547 if (!has_branch_stack(event)) 11548 event->attr.branch_sample_type = 0; 11549 11550 pmu = perf_init_event(event); 11551 if (IS_ERR(pmu)) { 11552 err = PTR_ERR(pmu); 11553 goto err_ns; 11554 } 11555 11556 /* 11557 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11558 * be different on other CPUs in the uncore mask. 11559 */ 11560 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11561 err = -EINVAL; 11562 goto err_pmu; 11563 } 11564 11565 if (event->attr.aux_output && 11566 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11567 err = -EOPNOTSUPP; 11568 goto err_pmu; 11569 } 11570 11571 if (cgroup_fd != -1) { 11572 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11573 if (err) 11574 goto err_pmu; 11575 } 11576 11577 err = exclusive_event_init(event); 11578 if (err) 11579 goto err_pmu; 11580 11581 if (has_addr_filter(event)) { 11582 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11583 sizeof(struct perf_addr_filter_range), 11584 GFP_KERNEL); 11585 if (!event->addr_filter_ranges) { 11586 err = -ENOMEM; 11587 goto err_per_task; 11588 } 11589 11590 /* 11591 * Clone the parent's vma offsets: they are valid until exec() 11592 * even if the mm is not shared with the parent. 11593 */ 11594 if (event->parent) { 11595 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11596 11597 raw_spin_lock_irq(&ifh->lock); 11598 memcpy(event->addr_filter_ranges, 11599 event->parent->addr_filter_ranges, 11600 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11601 raw_spin_unlock_irq(&ifh->lock); 11602 } 11603 11604 /* force hw sync on the address filters */ 11605 event->addr_filters_gen = 1; 11606 } 11607 11608 if (!event->parent) { 11609 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11610 err = get_callchain_buffers(attr->sample_max_stack); 11611 if (err) 11612 goto err_addr_filters; 11613 } 11614 } 11615 11616 err = security_perf_event_alloc(event); 11617 if (err) 11618 goto err_callchain_buffer; 11619 11620 /* symmetric to unaccount_event() in _free_event() */ 11621 account_event(event); 11622 11623 return event; 11624 11625 err_callchain_buffer: 11626 if (!event->parent) { 11627 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11628 put_callchain_buffers(); 11629 } 11630 err_addr_filters: 11631 kfree(event->addr_filter_ranges); 11632 11633 err_per_task: 11634 exclusive_event_destroy(event); 11635 11636 err_pmu: 11637 if (is_cgroup_event(event)) 11638 perf_detach_cgroup(event); 11639 if (event->destroy) 11640 event->destroy(event); 11641 module_put(pmu->module); 11642 err_ns: 11643 if (event->ns) 11644 put_pid_ns(event->ns); 11645 if (event->hw.target) 11646 put_task_struct(event->hw.target); 11647 kmem_cache_free(perf_event_cache, event); 11648 11649 return ERR_PTR(err); 11650 } 11651 11652 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11653 struct perf_event_attr *attr) 11654 { 11655 u32 size; 11656 int ret; 11657 11658 /* Zero the full structure, so that a short copy will be nice. */ 11659 memset(attr, 0, sizeof(*attr)); 11660 11661 ret = get_user(size, &uattr->size); 11662 if (ret) 11663 return ret; 11664 11665 /* ABI compatibility quirk: */ 11666 if (!size) 11667 size = PERF_ATTR_SIZE_VER0; 11668 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11669 goto err_size; 11670 11671 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11672 if (ret) { 11673 if (ret == -E2BIG) 11674 goto err_size; 11675 return ret; 11676 } 11677 11678 attr->size = size; 11679 11680 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11681 return -EINVAL; 11682 11683 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11684 return -EINVAL; 11685 11686 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11687 return -EINVAL; 11688 11689 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11690 u64 mask = attr->branch_sample_type; 11691 11692 /* only using defined bits */ 11693 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11694 return -EINVAL; 11695 11696 /* at least one branch bit must be set */ 11697 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11698 return -EINVAL; 11699 11700 /* propagate priv level, when not set for branch */ 11701 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11702 11703 /* exclude_kernel checked on syscall entry */ 11704 if (!attr->exclude_kernel) 11705 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11706 11707 if (!attr->exclude_user) 11708 mask |= PERF_SAMPLE_BRANCH_USER; 11709 11710 if (!attr->exclude_hv) 11711 mask |= PERF_SAMPLE_BRANCH_HV; 11712 /* 11713 * adjust user setting (for HW filter setup) 11714 */ 11715 attr->branch_sample_type = mask; 11716 } 11717 /* privileged levels capture (kernel, hv): check permissions */ 11718 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11719 ret = perf_allow_kernel(attr); 11720 if (ret) 11721 return ret; 11722 } 11723 } 11724 11725 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11726 ret = perf_reg_validate(attr->sample_regs_user); 11727 if (ret) 11728 return ret; 11729 } 11730 11731 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11732 if (!arch_perf_have_user_stack_dump()) 11733 return -ENOSYS; 11734 11735 /* 11736 * We have __u32 type for the size, but so far 11737 * we can only use __u16 as maximum due to the 11738 * __u16 sample size limit. 11739 */ 11740 if (attr->sample_stack_user >= USHRT_MAX) 11741 return -EINVAL; 11742 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11743 return -EINVAL; 11744 } 11745 11746 if (!attr->sample_max_stack) 11747 attr->sample_max_stack = sysctl_perf_event_max_stack; 11748 11749 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11750 ret = perf_reg_validate(attr->sample_regs_intr); 11751 11752 #ifndef CONFIG_CGROUP_PERF 11753 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11754 return -EINVAL; 11755 #endif 11756 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11757 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11758 return -EINVAL; 11759 11760 if (!attr->inherit && attr->inherit_thread) 11761 return -EINVAL; 11762 11763 if (attr->remove_on_exec && attr->enable_on_exec) 11764 return -EINVAL; 11765 11766 if (attr->sigtrap && !attr->remove_on_exec) 11767 return -EINVAL; 11768 11769 out: 11770 return ret; 11771 11772 err_size: 11773 put_user(sizeof(*attr), &uattr->size); 11774 ret = -E2BIG; 11775 goto out; 11776 } 11777 11778 static int 11779 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11780 { 11781 struct perf_buffer *rb = NULL; 11782 int ret = -EINVAL; 11783 11784 if (!output_event) 11785 goto set; 11786 11787 /* don't allow circular references */ 11788 if (event == output_event) 11789 goto out; 11790 11791 /* 11792 * Don't allow cross-cpu buffers 11793 */ 11794 if (output_event->cpu != event->cpu) 11795 goto out; 11796 11797 /* 11798 * If its not a per-cpu rb, it must be the same task. 11799 */ 11800 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11801 goto out; 11802 11803 /* 11804 * Mixing clocks in the same buffer is trouble you don't need. 11805 */ 11806 if (output_event->clock != event->clock) 11807 goto out; 11808 11809 /* 11810 * Either writing ring buffer from beginning or from end. 11811 * Mixing is not allowed. 11812 */ 11813 if (is_write_backward(output_event) != is_write_backward(event)) 11814 goto out; 11815 11816 /* 11817 * If both events generate aux data, they must be on the same PMU 11818 */ 11819 if (has_aux(event) && has_aux(output_event) && 11820 event->pmu != output_event->pmu) 11821 goto out; 11822 11823 set: 11824 mutex_lock(&event->mmap_mutex); 11825 /* Can't redirect output if we've got an active mmap() */ 11826 if (atomic_read(&event->mmap_count)) 11827 goto unlock; 11828 11829 if (output_event) { 11830 /* get the rb we want to redirect to */ 11831 rb = ring_buffer_get(output_event); 11832 if (!rb) 11833 goto unlock; 11834 } 11835 11836 ring_buffer_attach(event, rb); 11837 11838 ret = 0; 11839 unlock: 11840 mutex_unlock(&event->mmap_mutex); 11841 11842 out: 11843 return ret; 11844 } 11845 11846 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11847 { 11848 if (b < a) 11849 swap(a, b); 11850 11851 mutex_lock(a); 11852 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11853 } 11854 11855 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11856 { 11857 bool nmi_safe = false; 11858 11859 switch (clk_id) { 11860 case CLOCK_MONOTONIC: 11861 event->clock = &ktime_get_mono_fast_ns; 11862 nmi_safe = true; 11863 break; 11864 11865 case CLOCK_MONOTONIC_RAW: 11866 event->clock = &ktime_get_raw_fast_ns; 11867 nmi_safe = true; 11868 break; 11869 11870 case CLOCK_REALTIME: 11871 event->clock = &ktime_get_real_ns; 11872 break; 11873 11874 case CLOCK_BOOTTIME: 11875 event->clock = &ktime_get_boottime_ns; 11876 break; 11877 11878 case CLOCK_TAI: 11879 event->clock = &ktime_get_clocktai_ns; 11880 break; 11881 11882 default: 11883 return -EINVAL; 11884 } 11885 11886 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11887 return -EINVAL; 11888 11889 return 0; 11890 } 11891 11892 /* 11893 * Variation on perf_event_ctx_lock_nested(), except we take two context 11894 * mutexes. 11895 */ 11896 static struct perf_event_context * 11897 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11898 struct perf_event_context *ctx) 11899 { 11900 struct perf_event_context *gctx; 11901 11902 again: 11903 rcu_read_lock(); 11904 gctx = READ_ONCE(group_leader->ctx); 11905 if (!refcount_inc_not_zero(&gctx->refcount)) { 11906 rcu_read_unlock(); 11907 goto again; 11908 } 11909 rcu_read_unlock(); 11910 11911 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11912 11913 if (group_leader->ctx != gctx) { 11914 mutex_unlock(&ctx->mutex); 11915 mutex_unlock(&gctx->mutex); 11916 put_ctx(gctx); 11917 goto again; 11918 } 11919 11920 return gctx; 11921 } 11922 11923 static bool 11924 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 11925 { 11926 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 11927 bool is_capable = perfmon_capable(); 11928 11929 if (attr->sigtrap) { 11930 /* 11931 * perf_event_attr::sigtrap sends signals to the other task. 11932 * Require the current task to also have CAP_KILL. 11933 */ 11934 rcu_read_lock(); 11935 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 11936 rcu_read_unlock(); 11937 11938 /* 11939 * If the required capabilities aren't available, checks for 11940 * ptrace permissions: upgrade to ATTACH, since sending signals 11941 * can effectively change the target task. 11942 */ 11943 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 11944 } 11945 11946 /* 11947 * Preserve ptrace permission check for backwards compatibility. The 11948 * ptrace check also includes checks that the current task and other 11949 * task have matching uids, and is therefore not done here explicitly. 11950 */ 11951 return is_capable || ptrace_may_access(task, ptrace_mode); 11952 } 11953 11954 /** 11955 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11956 * 11957 * @attr_uptr: event_id type attributes for monitoring/sampling 11958 * @pid: target pid 11959 * @cpu: target cpu 11960 * @group_fd: group leader event fd 11961 * @flags: perf event open flags 11962 */ 11963 SYSCALL_DEFINE5(perf_event_open, 11964 struct perf_event_attr __user *, attr_uptr, 11965 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11966 { 11967 struct perf_event *group_leader = NULL, *output_event = NULL; 11968 struct perf_event *event, *sibling; 11969 struct perf_event_attr attr; 11970 struct perf_event_context *ctx, *gctx; 11971 struct file *event_file = NULL; 11972 struct fd group = {NULL, 0}; 11973 struct task_struct *task = NULL; 11974 struct pmu *pmu; 11975 int event_fd; 11976 int move_group = 0; 11977 int err; 11978 int f_flags = O_RDWR; 11979 int cgroup_fd = -1; 11980 11981 /* for future expandability... */ 11982 if (flags & ~PERF_FLAG_ALL) 11983 return -EINVAL; 11984 11985 /* Do we allow access to perf_event_open(2) ? */ 11986 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11987 if (err) 11988 return err; 11989 11990 err = perf_copy_attr(attr_uptr, &attr); 11991 if (err) 11992 return err; 11993 11994 if (!attr.exclude_kernel) { 11995 err = perf_allow_kernel(&attr); 11996 if (err) 11997 return err; 11998 } 11999 12000 if (attr.namespaces) { 12001 if (!perfmon_capable()) 12002 return -EACCES; 12003 } 12004 12005 if (attr.freq) { 12006 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12007 return -EINVAL; 12008 } else { 12009 if (attr.sample_period & (1ULL << 63)) 12010 return -EINVAL; 12011 } 12012 12013 /* Only privileged users can get physical addresses */ 12014 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12015 err = perf_allow_kernel(&attr); 12016 if (err) 12017 return err; 12018 } 12019 12020 /* REGS_INTR can leak data, lockdown must prevent this */ 12021 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12022 err = security_locked_down(LOCKDOWN_PERF); 12023 if (err) 12024 return err; 12025 } 12026 12027 /* 12028 * In cgroup mode, the pid argument is used to pass the fd 12029 * opened to the cgroup directory in cgroupfs. The cpu argument 12030 * designates the cpu on which to monitor threads from that 12031 * cgroup. 12032 */ 12033 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12034 return -EINVAL; 12035 12036 if (flags & PERF_FLAG_FD_CLOEXEC) 12037 f_flags |= O_CLOEXEC; 12038 12039 event_fd = get_unused_fd_flags(f_flags); 12040 if (event_fd < 0) 12041 return event_fd; 12042 12043 if (group_fd != -1) { 12044 err = perf_fget_light(group_fd, &group); 12045 if (err) 12046 goto err_fd; 12047 group_leader = group.file->private_data; 12048 if (flags & PERF_FLAG_FD_OUTPUT) 12049 output_event = group_leader; 12050 if (flags & PERF_FLAG_FD_NO_GROUP) 12051 group_leader = NULL; 12052 } 12053 12054 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12055 task = find_lively_task_by_vpid(pid); 12056 if (IS_ERR(task)) { 12057 err = PTR_ERR(task); 12058 goto err_group_fd; 12059 } 12060 } 12061 12062 if (task && group_leader && 12063 group_leader->attr.inherit != attr.inherit) { 12064 err = -EINVAL; 12065 goto err_task; 12066 } 12067 12068 if (flags & PERF_FLAG_PID_CGROUP) 12069 cgroup_fd = pid; 12070 12071 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12072 NULL, NULL, cgroup_fd); 12073 if (IS_ERR(event)) { 12074 err = PTR_ERR(event); 12075 goto err_task; 12076 } 12077 12078 if (is_sampling_event(event)) { 12079 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12080 err = -EOPNOTSUPP; 12081 goto err_alloc; 12082 } 12083 } 12084 12085 /* 12086 * Special case software events and allow them to be part of 12087 * any hardware group. 12088 */ 12089 pmu = event->pmu; 12090 12091 if (attr.use_clockid) { 12092 err = perf_event_set_clock(event, attr.clockid); 12093 if (err) 12094 goto err_alloc; 12095 } 12096 12097 if (pmu->task_ctx_nr == perf_sw_context) 12098 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12099 12100 if (group_leader) { 12101 if (is_software_event(event) && 12102 !in_software_context(group_leader)) { 12103 /* 12104 * If the event is a sw event, but the group_leader 12105 * is on hw context. 12106 * 12107 * Allow the addition of software events to hw 12108 * groups, this is safe because software events 12109 * never fail to schedule. 12110 */ 12111 pmu = group_leader->ctx->pmu; 12112 } else if (!is_software_event(event) && 12113 is_software_event(group_leader) && 12114 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12115 /* 12116 * In case the group is a pure software group, and we 12117 * try to add a hardware event, move the whole group to 12118 * the hardware context. 12119 */ 12120 move_group = 1; 12121 } 12122 } 12123 12124 /* 12125 * Get the target context (task or percpu): 12126 */ 12127 ctx = find_get_context(pmu, task, event); 12128 if (IS_ERR(ctx)) { 12129 err = PTR_ERR(ctx); 12130 goto err_alloc; 12131 } 12132 12133 /* 12134 * Look up the group leader (we will attach this event to it): 12135 */ 12136 if (group_leader) { 12137 err = -EINVAL; 12138 12139 /* 12140 * Do not allow a recursive hierarchy (this new sibling 12141 * becoming part of another group-sibling): 12142 */ 12143 if (group_leader->group_leader != group_leader) 12144 goto err_context; 12145 12146 /* All events in a group should have the same clock */ 12147 if (group_leader->clock != event->clock) 12148 goto err_context; 12149 12150 /* 12151 * Make sure we're both events for the same CPU; 12152 * grouping events for different CPUs is broken; since 12153 * you can never concurrently schedule them anyhow. 12154 */ 12155 if (group_leader->cpu != event->cpu) 12156 goto err_context; 12157 12158 /* 12159 * Make sure we're both on the same task, or both 12160 * per-CPU events. 12161 */ 12162 if (group_leader->ctx->task != ctx->task) 12163 goto err_context; 12164 12165 /* 12166 * Do not allow to attach to a group in a different task 12167 * or CPU context. If we're moving SW events, we'll fix 12168 * this up later, so allow that. 12169 */ 12170 if (!move_group && group_leader->ctx != ctx) 12171 goto err_context; 12172 12173 /* 12174 * Only a group leader can be exclusive or pinned 12175 */ 12176 if (attr.exclusive || attr.pinned) 12177 goto err_context; 12178 } 12179 12180 if (output_event) { 12181 err = perf_event_set_output(event, output_event); 12182 if (err) 12183 goto err_context; 12184 } 12185 12186 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12187 f_flags); 12188 if (IS_ERR(event_file)) { 12189 err = PTR_ERR(event_file); 12190 event_file = NULL; 12191 goto err_context; 12192 } 12193 12194 if (task) { 12195 err = down_read_interruptible(&task->signal->exec_update_lock); 12196 if (err) 12197 goto err_file; 12198 12199 /* 12200 * We must hold exec_update_lock across this and any potential 12201 * perf_install_in_context() call for this new event to 12202 * serialize against exec() altering our credentials (and the 12203 * perf_event_exit_task() that could imply). 12204 */ 12205 err = -EACCES; 12206 if (!perf_check_permission(&attr, task)) 12207 goto err_cred; 12208 } 12209 12210 if (move_group) { 12211 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12212 12213 if (gctx->task == TASK_TOMBSTONE) { 12214 err = -ESRCH; 12215 goto err_locked; 12216 } 12217 12218 /* 12219 * Check if we raced against another sys_perf_event_open() call 12220 * moving the software group underneath us. 12221 */ 12222 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12223 /* 12224 * If someone moved the group out from under us, check 12225 * if this new event wound up on the same ctx, if so 12226 * its the regular !move_group case, otherwise fail. 12227 */ 12228 if (gctx != ctx) { 12229 err = -EINVAL; 12230 goto err_locked; 12231 } else { 12232 perf_event_ctx_unlock(group_leader, gctx); 12233 move_group = 0; 12234 } 12235 } 12236 12237 /* 12238 * Failure to create exclusive events returns -EBUSY. 12239 */ 12240 err = -EBUSY; 12241 if (!exclusive_event_installable(group_leader, ctx)) 12242 goto err_locked; 12243 12244 for_each_sibling_event(sibling, group_leader) { 12245 if (!exclusive_event_installable(sibling, ctx)) 12246 goto err_locked; 12247 } 12248 } else { 12249 mutex_lock(&ctx->mutex); 12250 } 12251 12252 if (ctx->task == TASK_TOMBSTONE) { 12253 err = -ESRCH; 12254 goto err_locked; 12255 } 12256 12257 if (!perf_event_validate_size(event)) { 12258 err = -E2BIG; 12259 goto err_locked; 12260 } 12261 12262 if (!task) { 12263 /* 12264 * Check if the @cpu we're creating an event for is online. 12265 * 12266 * We use the perf_cpu_context::ctx::mutex to serialize against 12267 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12268 */ 12269 struct perf_cpu_context *cpuctx = 12270 container_of(ctx, struct perf_cpu_context, ctx); 12271 12272 if (!cpuctx->online) { 12273 err = -ENODEV; 12274 goto err_locked; 12275 } 12276 } 12277 12278 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12279 err = -EINVAL; 12280 goto err_locked; 12281 } 12282 12283 /* 12284 * Must be under the same ctx::mutex as perf_install_in_context(), 12285 * because we need to serialize with concurrent event creation. 12286 */ 12287 if (!exclusive_event_installable(event, ctx)) { 12288 err = -EBUSY; 12289 goto err_locked; 12290 } 12291 12292 WARN_ON_ONCE(ctx->parent_ctx); 12293 12294 /* 12295 * This is the point on no return; we cannot fail hereafter. This is 12296 * where we start modifying current state. 12297 */ 12298 12299 if (move_group) { 12300 /* 12301 * See perf_event_ctx_lock() for comments on the details 12302 * of swizzling perf_event::ctx. 12303 */ 12304 perf_remove_from_context(group_leader, 0); 12305 put_ctx(gctx); 12306 12307 for_each_sibling_event(sibling, group_leader) { 12308 perf_remove_from_context(sibling, 0); 12309 put_ctx(gctx); 12310 } 12311 12312 /* 12313 * Wait for everybody to stop referencing the events through 12314 * the old lists, before installing it on new lists. 12315 */ 12316 synchronize_rcu(); 12317 12318 /* 12319 * Install the group siblings before the group leader. 12320 * 12321 * Because a group leader will try and install the entire group 12322 * (through the sibling list, which is still in-tact), we can 12323 * end up with siblings installed in the wrong context. 12324 * 12325 * By installing siblings first we NO-OP because they're not 12326 * reachable through the group lists. 12327 */ 12328 for_each_sibling_event(sibling, group_leader) { 12329 perf_event__state_init(sibling); 12330 perf_install_in_context(ctx, sibling, sibling->cpu); 12331 get_ctx(ctx); 12332 } 12333 12334 /* 12335 * Removing from the context ends up with disabled 12336 * event. What we want here is event in the initial 12337 * startup state, ready to be add into new context. 12338 */ 12339 perf_event__state_init(group_leader); 12340 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12341 get_ctx(ctx); 12342 } 12343 12344 /* 12345 * Precalculate sample_data sizes; do while holding ctx::mutex such 12346 * that we're serialized against further additions and before 12347 * perf_install_in_context() which is the point the event is active and 12348 * can use these values. 12349 */ 12350 perf_event__header_size(event); 12351 perf_event__id_header_size(event); 12352 12353 event->owner = current; 12354 12355 perf_install_in_context(ctx, event, event->cpu); 12356 perf_unpin_context(ctx); 12357 12358 if (move_group) 12359 perf_event_ctx_unlock(group_leader, gctx); 12360 mutex_unlock(&ctx->mutex); 12361 12362 if (task) { 12363 up_read(&task->signal->exec_update_lock); 12364 put_task_struct(task); 12365 } 12366 12367 mutex_lock(¤t->perf_event_mutex); 12368 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12369 mutex_unlock(¤t->perf_event_mutex); 12370 12371 /* 12372 * Drop the reference on the group_event after placing the 12373 * new event on the sibling_list. This ensures destruction 12374 * of the group leader will find the pointer to itself in 12375 * perf_group_detach(). 12376 */ 12377 fdput(group); 12378 fd_install(event_fd, event_file); 12379 return event_fd; 12380 12381 err_locked: 12382 if (move_group) 12383 perf_event_ctx_unlock(group_leader, gctx); 12384 mutex_unlock(&ctx->mutex); 12385 err_cred: 12386 if (task) 12387 up_read(&task->signal->exec_update_lock); 12388 err_file: 12389 fput(event_file); 12390 err_context: 12391 perf_unpin_context(ctx); 12392 put_ctx(ctx); 12393 err_alloc: 12394 /* 12395 * If event_file is set, the fput() above will have called ->release() 12396 * and that will take care of freeing the event. 12397 */ 12398 if (!event_file) 12399 free_event(event); 12400 err_task: 12401 if (task) 12402 put_task_struct(task); 12403 err_group_fd: 12404 fdput(group); 12405 err_fd: 12406 put_unused_fd(event_fd); 12407 return err; 12408 } 12409 12410 /** 12411 * perf_event_create_kernel_counter 12412 * 12413 * @attr: attributes of the counter to create 12414 * @cpu: cpu in which the counter is bound 12415 * @task: task to profile (NULL for percpu) 12416 * @overflow_handler: callback to trigger when we hit the event 12417 * @context: context data could be used in overflow_handler callback 12418 */ 12419 struct perf_event * 12420 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12421 struct task_struct *task, 12422 perf_overflow_handler_t overflow_handler, 12423 void *context) 12424 { 12425 struct perf_event_context *ctx; 12426 struct perf_event *event; 12427 int err; 12428 12429 /* 12430 * Grouping is not supported for kernel events, neither is 'AUX', 12431 * make sure the caller's intentions are adjusted. 12432 */ 12433 if (attr->aux_output) 12434 return ERR_PTR(-EINVAL); 12435 12436 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12437 overflow_handler, context, -1); 12438 if (IS_ERR(event)) { 12439 err = PTR_ERR(event); 12440 goto err; 12441 } 12442 12443 /* Mark owner so we could distinguish it from user events. */ 12444 event->owner = TASK_TOMBSTONE; 12445 12446 /* 12447 * Get the target context (task or percpu): 12448 */ 12449 ctx = find_get_context(event->pmu, task, event); 12450 if (IS_ERR(ctx)) { 12451 err = PTR_ERR(ctx); 12452 goto err_free; 12453 } 12454 12455 WARN_ON_ONCE(ctx->parent_ctx); 12456 mutex_lock(&ctx->mutex); 12457 if (ctx->task == TASK_TOMBSTONE) { 12458 err = -ESRCH; 12459 goto err_unlock; 12460 } 12461 12462 if (!task) { 12463 /* 12464 * Check if the @cpu we're creating an event for is online. 12465 * 12466 * We use the perf_cpu_context::ctx::mutex to serialize against 12467 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12468 */ 12469 struct perf_cpu_context *cpuctx = 12470 container_of(ctx, struct perf_cpu_context, ctx); 12471 if (!cpuctx->online) { 12472 err = -ENODEV; 12473 goto err_unlock; 12474 } 12475 } 12476 12477 if (!exclusive_event_installable(event, ctx)) { 12478 err = -EBUSY; 12479 goto err_unlock; 12480 } 12481 12482 perf_install_in_context(ctx, event, event->cpu); 12483 perf_unpin_context(ctx); 12484 mutex_unlock(&ctx->mutex); 12485 12486 return event; 12487 12488 err_unlock: 12489 mutex_unlock(&ctx->mutex); 12490 perf_unpin_context(ctx); 12491 put_ctx(ctx); 12492 err_free: 12493 free_event(event); 12494 err: 12495 return ERR_PTR(err); 12496 } 12497 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12498 12499 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12500 { 12501 struct perf_event_context *src_ctx; 12502 struct perf_event_context *dst_ctx; 12503 struct perf_event *event, *tmp; 12504 LIST_HEAD(events); 12505 12506 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12507 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12508 12509 /* 12510 * See perf_event_ctx_lock() for comments on the details 12511 * of swizzling perf_event::ctx. 12512 */ 12513 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12514 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12515 event_entry) { 12516 perf_remove_from_context(event, 0); 12517 unaccount_event_cpu(event, src_cpu); 12518 put_ctx(src_ctx); 12519 list_add(&event->migrate_entry, &events); 12520 } 12521 12522 /* 12523 * Wait for the events to quiesce before re-instating them. 12524 */ 12525 synchronize_rcu(); 12526 12527 /* 12528 * Re-instate events in 2 passes. 12529 * 12530 * Skip over group leaders and only install siblings on this first 12531 * pass, siblings will not get enabled without a leader, however a 12532 * leader will enable its siblings, even if those are still on the old 12533 * context. 12534 */ 12535 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12536 if (event->group_leader == event) 12537 continue; 12538 12539 list_del(&event->migrate_entry); 12540 if (event->state >= PERF_EVENT_STATE_OFF) 12541 event->state = PERF_EVENT_STATE_INACTIVE; 12542 account_event_cpu(event, dst_cpu); 12543 perf_install_in_context(dst_ctx, event, dst_cpu); 12544 get_ctx(dst_ctx); 12545 } 12546 12547 /* 12548 * Once all the siblings are setup properly, install the group leaders 12549 * to make it go. 12550 */ 12551 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12552 list_del(&event->migrate_entry); 12553 if (event->state >= PERF_EVENT_STATE_OFF) 12554 event->state = PERF_EVENT_STATE_INACTIVE; 12555 account_event_cpu(event, dst_cpu); 12556 perf_install_in_context(dst_ctx, event, dst_cpu); 12557 get_ctx(dst_ctx); 12558 } 12559 mutex_unlock(&dst_ctx->mutex); 12560 mutex_unlock(&src_ctx->mutex); 12561 } 12562 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12563 12564 static void sync_child_event(struct perf_event *child_event) 12565 { 12566 struct perf_event *parent_event = child_event->parent; 12567 u64 child_val; 12568 12569 if (child_event->attr.inherit_stat) { 12570 struct task_struct *task = child_event->ctx->task; 12571 12572 if (task && task != TASK_TOMBSTONE) 12573 perf_event_read_event(child_event, task); 12574 } 12575 12576 child_val = perf_event_count(child_event); 12577 12578 /* 12579 * Add back the child's count to the parent's count: 12580 */ 12581 atomic64_add(child_val, &parent_event->child_count); 12582 atomic64_add(child_event->total_time_enabled, 12583 &parent_event->child_total_time_enabled); 12584 atomic64_add(child_event->total_time_running, 12585 &parent_event->child_total_time_running); 12586 } 12587 12588 static void 12589 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12590 { 12591 struct perf_event *parent_event = event->parent; 12592 unsigned long detach_flags = 0; 12593 12594 if (parent_event) { 12595 /* 12596 * Do not destroy the 'original' grouping; because of the 12597 * context switch optimization the original events could've 12598 * ended up in a random child task. 12599 * 12600 * If we were to destroy the original group, all group related 12601 * operations would cease to function properly after this 12602 * random child dies. 12603 * 12604 * Do destroy all inherited groups, we don't care about those 12605 * and being thorough is better. 12606 */ 12607 detach_flags = DETACH_GROUP | DETACH_CHILD; 12608 mutex_lock(&parent_event->child_mutex); 12609 } 12610 12611 perf_remove_from_context(event, detach_flags); 12612 12613 raw_spin_lock_irq(&ctx->lock); 12614 if (event->state > PERF_EVENT_STATE_EXIT) 12615 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12616 raw_spin_unlock_irq(&ctx->lock); 12617 12618 /* 12619 * Child events can be freed. 12620 */ 12621 if (parent_event) { 12622 mutex_unlock(&parent_event->child_mutex); 12623 /* 12624 * Kick perf_poll() for is_event_hup(); 12625 */ 12626 perf_event_wakeup(parent_event); 12627 free_event(event); 12628 put_event(parent_event); 12629 return; 12630 } 12631 12632 /* 12633 * Parent events are governed by their filedesc, retain them. 12634 */ 12635 perf_event_wakeup(event); 12636 } 12637 12638 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12639 { 12640 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12641 struct perf_event *child_event, *next; 12642 12643 WARN_ON_ONCE(child != current); 12644 12645 child_ctx = perf_pin_task_context(child, ctxn); 12646 if (!child_ctx) 12647 return; 12648 12649 /* 12650 * In order to reduce the amount of tricky in ctx tear-down, we hold 12651 * ctx::mutex over the entire thing. This serializes against almost 12652 * everything that wants to access the ctx. 12653 * 12654 * The exception is sys_perf_event_open() / 12655 * perf_event_create_kernel_count() which does find_get_context() 12656 * without ctx::mutex (it cannot because of the move_group double mutex 12657 * lock thing). See the comments in perf_install_in_context(). 12658 */ 12659 mutex_lock(&child_ctx->mutex); 12660 12661 /* 12662 * In a single ctx::lock section, de-schedule the events and detach the 12663 * context from the task such that we cannot ever get it scheduled back 12664 * in. 12665 */ 12666 raw_spin_lock_irq(&child_ctx->lock); 12667 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12668 12669 /* 12670 * Now that the context is inactive, destroy the task <-> ctx relation 12671 * and mark the context dead. 12672 */ 12673 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12674 put_ctx(child_ctx); /* cannot be last */ 12675 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12676 put_task_struct(current); /* cannot be last */ 12677 12678 clone_ctx = unclone_ctx(child_ctx); 12679 raw_spin_unlock_irq(&child_ctx->lock); 12680 12681 if (clone_ctx) 12682 put_ctx(clone_ctx); 12683 12684 /* 12685 * Report the task dead after unscheduling the events so that we 12686 * won't get any samples after PERF_RECORD_EXIT. We can however still 12687 * get a few PERF_RECORD_READ events. 12688 */ 12689 perf_event_task(child, child_ctx, 0); 12690 12691 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12692 perf_event_exit_event(child_event, child_ctx); 12693 12694 mutex_unlock(&child_ctx->mutex); 12695 12696 put_ctx(child_ctx); 12697 } 12698 12699 /* 12700 * When a child task exits, feed back event values to parent events. 12701 * 12702 * Can be called with exec_update_lock held when called from 12703 * setup_new_exec(). 12704 */ 12705 void perf_event_exit_task(struct task_struct *child) 12706 { 12707 struct perf_event *event, *tmp; 12708 int ctxn; 12709 12710 mutex_lock(&child->perf_event_mutex); 12711 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12712 owner_entry) { 12713 list_del_init(&event->owner_entry); 12714 12715 /* 12716 * Ensure the list deletion is visible before we clear 12717 * the owner, closes a race against perf_release() where 12718 * we need to serialize on the owner->perf_event_mutex. 12719 */ 12720 smp_store_release(&event->owner, NULL); 12721 } 12722 mutex_unlock(&child->perf_event_mutex); 12723 12724 for_each_task_context_nr(ctxn) 12725 perf_event_exit_task_context(child, ctxn); 12726 12727 /* 12728 * The perf_event_exit_task_context calls perf_event_task 12729 * with child's task_ctx, which generates EXIT events for 12730 * child contexts and sets child->perf_event_ctxp[] to NULL. 12731 * At this point we need to send EXIT events to cpu contexts. 12732 */ 12733 perf_event_task(child, NULL, 0); 12734 } 12735 12736 static void perf_free_event(struct perf_event *event, 12737 struct perf_event_context *ctx) 12738 { 12739 struct perf_event *parent = event->parent; 12740 12741 if (WARN_ON_ONCE(!parent)) 12742 return; 12743 12744 mutex_lock(&parent->child_mutex); 12745 list_del_init(&event->child_list); 12746 mutex_unlock(&parent->child_mutex); 12747 12748 put_event(parent); 12749 12750 raw_spin_lock_irq(&ctx->lock); 12751 perf_group_detach(event); 12752 list_del_event(event, ctx); 12753 raw_spin_unlock_irq(&ctx->lock); 12754 free_event(event); 12755 } 12756 12757 /* 12758 * Free a context as created by inheritance by perf_event_init_task() below, 12759 * used by fork() in case of fail. 12760 * 12761 * Even though the task has never lived, the context and events have been 12762 * exposed through the child_list, so we must take care tearing it all down. 12763 */ 12764 void perf_event_free_task(struct task_struct *task) 12765 { 12766 struct perf_event_context *ctx; 12767 struct perf_event *event, *tmp; 12768 int ctxn; 12769 12770 for_each_task_context_nr(ctxn) { 12771 ctx = task->perf_event_ctxp[ctxn]; 12772 if (!ctx) 12773 continue; 12774 12775 mutex_lock(&ctx->mutex); 12776 raw_spin_lock_irq(&ctx->lock); 12777 /* 12778 * Destroy the task <-> ctx relation and mark the context dead. 12779 * 12780 * This is important because even though the task hasn't been 12781 * exposed yet the context has been (through child_list). 12782 */ 12783 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12784 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12785 put_task_struct(task); /* cannot be last */ 12786 raw_spin_unlock_irq(&ctx->lock); 12787 12788 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12789 perf_free_event(event, ctx); 12790 12791 mutex_unlock(&ctx->mutex); 12792 12793 /* 12794 * perf_event_release_kernel() could've stolen some of our 12795 * child events and still have them on its free_list. In that 12796 * case we must wait for these events to have been freed (in 12797 * particular all their references to this task must've been 12798 * dropped). 12799 * 12800 * Without this copy_process() will unconditionally free this 12801 * task (irrespective of its reference count) and 12802 * _free_event()'s put_task_struct(event->hw.target) will be a 12803 * use-after-free. 12804 * 12805 * Wait for all events to drop their context reference. 12806 */ 12807 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12808 put_ctx(ctx); /* must be last */ 12809 } 12810 } 12811 12812 void perf_event_delayed_put(struct task_struct *task) 12813 { 12814 int ctxn; 12815 12816 for_each_task_context_nr(ctxn) 12817 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12818 } 12819 12820 struct file *perf_event_get(unsigned int fd) 12821 { 12822 struct file *file = fget(fd); 12823 if (!file) 12824 return ERR_PTR(-EBADF); 12825 12826 if (file->f_op != &perf_fops) { 12827 fput(file); 12828 return ERR_PTR(-EBADF); 12829 } 12830 12831 return file; 12832 } 12833 12834 const struct perf_event *perf_get_event(struct file *file) 12835 { 12836 if (file->f_op != &perf_fops) 12837 return ERR_PTR(-EINVAL); 12838 12839 return file->private_data; 12840 } 12841 12842 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12843 { 12844 if (!event) 12845 return ERR_PTR(-EINVAL); 12846 12847 return &event->attr; 12848 } 12849 12850 /* 12851 * Inherit an event from parent task to child task. 12852 * 12853 * Returns: 12854 * - valid pointer on success 12855 * - NULL for orphaned events 12856 * - IS_ERR() on error 12857 */ 12858 static struct perf_event * 12859 inherit_event(struct perf_event *parent_event, 12860 struct task_struct *parent, 12861 struct perf_event_context *parent_ctx, 12862 struct task_struct *child, 12863 struct perf_event *group_leader, 12864 struct perf_event_context *child_ctx) 12865 { 12866 enum perf_event_state parent_state = parent_event->state; 12867 struct perf_event *child_event; 12868 unsigned long flags; 12869 12870 /* 12871 * Instead of creating recursive hierarchies of events, 12872 * we link inherited events back to the original parent, 12873 * which has a filp for sure, which we use as the reference 12874 * count: 12875 */ 12876 if (parent_event->parent) 12877 parent_event = parent_event->parent; 12878 12879 child_event = perf_event_alloc(&parent_event->attr, 12880 parent_event->cpu, 12881 child, 12882 group_leader, parent_event, 12883 NULL, NULL, -1); 12884 if (IS_ERR(child_event)) 12885 return child_event; 12886 12887 12888 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12889 !child_ctx->task_ctx_data) { 12890 struct pmu *pmu = child_event->pmu; 12891 12892 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12893 if (!child_ctx->task_ctx_data) { 12894 free_event(child_event); 12895 return ERR_PTR(-ENOMEM); 12896 } 12897 } 12898 12899 /* 12900 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12901 * must be under the same lock in order to serialize against 12902 * perf_event_release_kernel(), such that either we must observe 12903 * is_orphaned_event() or they will observe us on the child_list. 12904 */ 12905 mutex_lock(&parent_event->child_mutex); 12906 if (is_orphaned_event(parent_event) || 12907 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12908 mutex_unlock(&parent_event->child_mutex); 12909 /* task_ctx_data is freed with child_ctx */ 12910 free_event(child_event); 12911 return NULL; 12912 } 12913 12914 get_ctx(child_ctx); 12915 12916 /* 12917 * Make the child state follow the state of the parent event, 12918 * not its attr.disabled bit. We hold the parent's mutex, 12919 * so we won't race with perf_event_{en, dis}able_family. 12920 */ 12921 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12922 child_event->state = PERF_EVENT_STATE_INACTIVE; 12923 else 12924 child_event->state = PERF_EVENT_STATE_OFF; 12925 12926 if (parent_event->attr.freq) { 12927 u64 sample_period = parent_event->hw.sample_period; 12928 struct hw_perf_event *hwc = &child_event->hw; 12929 12930 hwc->sample_period = sample_period; 12931 hwc->last_period = sample_period; 12932 12933 local64_set(&hwc->period_left, sample_period); 12934 } 12935 12936 child_event->ctx = child_ctx; 12937 child_event->overflow_handler = parent_event->overflow_handler; 12938 child_event->overflow_handler_context 12939 = parent_event->overflow_handler_context; 12940 12941 /* 12942 * Precalculate sample_data sizes 12943 */ 12944 perf_event__header_size(child_event); 12945 perf_event__id_header_size(child_event); 12946 12947 /* 12948 * Link it up in the child's context: 12949 */ 12950 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12951 add_event_to_ctx(child_event, child_ctx); 12952 child_event->attach_state |= PERF_ATTACH_CHILD; 12953 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12954 12955 /* 12956 * Link this into the parent event's child list 12957 */ 12958 list_add_tail(&child_event->child_list, &parent_event->child_list); 12959 mutex_unlock(&parent_event->child_mutex); 12960 12961 return child_event; 12962 } 12963 12964 /* 12965 * Inherits an event group. 12966 * 12967 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12968 * This matches with perf_event_release_kernel() removing all child events. 12969 * 12970 * Returns: 12971 * - 0 on success 12972 * - <0 on error 12973 */ 12974 static int inherit_group(struct perf_event *parent_event, 12975 struct task_struct *parent, 12976 struct perf_event_context *parent_ctx, 12977 struct task_struct *child, 12978 struct perf_event_context *child_ctx) 12979 { 12980 struct perf_event *leader; 12981 struct perf_event *sub; 12982 struct perf_event *child_ctr; 12983 12984 leader = inherit_event(parent_event, parent, parent_ctx, 12985 child, NULL, child_ctx); 12986 if (IS_ERR(leader)) 12987 return PTR_ERR(leader); 12988 /* 12989 * @leader can be NULL here because of is_orphaned_event(). In this 12990 * case inherit_event() will create individual events, similar to what 12991 * perf_group_detach() would do anyway. 12992 */ 12993 for_each_sibling_event(sub, parent_event) { 12994 child_ctr = inherit_event(sub, parent, parent_ctx, 12995 child, leader, child_ctx); 12996 if (IS_ERR(child_ctr)) 12997 return PTR_ERR(child_ctr); 12998 12999 if (sub->aux_event == parent_event && child_ctr && 13000 !perf_get_aux_event(child_ctr, leader)) 13001 return -EINVAL; 13002 } 13003 return 0; 13004 } 13005 13006 /* 13007 * Creates the child task context and tries to inherit the event-group. 13008 * 13009 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13010 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13011 * consistent with perf_event_release_kernel() removing all child events. 13012 * 13013 * Returns: 13014 * - 0 on success 13015 * - <0 on error 13016 */ 13017 static int 13018 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13019 struct perf_event_context *parent_ctx, 13020 struct task_struct *child, int ctxn, 13021 u64 clone_flags, int *inherited_all) 13022 { 13023 int ret; 13024 struct perf_event_context *child_ctx; 13025 13026 if (!event->attr.inherit || 13027 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13028 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13029 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13030 *inherited_all = 0; 13031 return 0; 13032 } 13033 13034 child_ctx = child->perf_event_ctxp[ctxn]; 13035 if (!child_ctx) { 13036 /* 13037 * This is executed from the parent task context, so 13038 * inherit events that have been marked for cloning. 13039 * First allocate and initialize a context for the 13040 * child. 13041 */ 13042 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13043 if (!child_ctx) 13044 return -ENOMEM; 13045 13046 child->perf_event_ctxp[ctxn] = child_ctx; 13047 } 13048 13049 ret = inherit_group(event, parent, parent_ctx, 13050 child, child_ctx); 13051 13052 if (ret) 13053 *inherited_all = 0; 13054 13055 return ret; 13056 } 13057 13058 /* 13059 * Initialize the perf_event context in task_struct 13060 */ 13061 static int perf_event_init_context(struct task_struct *child, int ctxn, 13062 u64 clone_flags) 13063 { 13064 struct perf_event_context *child_ctx, *parent_ctx; 13065 struct perf_event_context *cloned_ctx; 13066 struct perf_event *event; 13067 struct task_struct *parent = current; 13068 int inherited_all = 1; 13069 unsigned long flags; 13070 int ret = 0; 13071 13072 if (likely(!parent->perf_event_ctxp[ctxn])) 13073 return 0; 13074 13075 /* 13076 * If the parent's context is a clone, pin it so it won't get 13077 * swapped under us. 13078 */ 13079 parent_ctx = perf_pin_task_context(parent, ctxn); 13080 if (!parent_ctx) 13081 return 0; 13082 13083 /* 13084 * No need to check if parent_ctx != NULL here; since we saw 13085 * it non-NULL earlier, the only reason for it to become NULL 13086 * is if we exit, and since we're currently in the middle of 13087 * a fork we can't be exiting at the same time. 13088 */ 13089 13090 /* 13091 * Lock the parent list. No need to lock the child - not PID 13092 * hashed yet and not running, so nobody can access it. 13093 */ 13094 mutex_lock(&parent_ctx->mutex); 13095 13096 /* 13097 * We dont have to disable NMIs - we are only looking at 13098 * the list, not manipulating it: 13099 */ 13100 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13101 ret = inherit_task_group(event, parent, parent_ctx, 13102 child, ctxn, clone_flags, 13103 &inherited_all); 13104 if (ret) 13105 goto out_unlock; 13106 } 13107 13108 /* 13109 * We can't hold ctx->lock when iterating the ->flexible_group list due 13110 * to allocations, but we need to prevent rotation because 13111 * rotate_ctx() will change the list from interrupt context. 13112 */ 13113 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13114 parent_ctx->rotate_disable = 1; 13115 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13116 13117 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13118 ret = inherit_task_group(event, parent, parent_ctx, 13119 child, ctxn, clone_flags, 13120 &inherited_all); 13121 if (ret) 13122 goto out_unlock; 13123 } 13124 13125 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13126 parent_ctx->rotate_disable = 0; 13127 13128 child_ctx = child->perf_event_ctxp[ctxn]; 13129 13130 if (child_ctx && inherited_all) { 13131 /* 13132 * Mark the child context as a clone of the parent 13133 * context, or of whatever the parent is a clone of. 13134 * 13135 * Note that if the parent is a clone, the holding of 13136 * parent_ctx->lock avoids it from being uncloned. 13137 */ 13138 cloned_ctx = parent_ctx->parent_ctx; 13139 if (cloned_ctx) { 13140 child_ctx->parent_ctx = cloned_ctx; 13141 child_ctx->parent_gen = parent_ctx->parent_gen; 13142 } else { 13143 child_ctx->parent_ctx = parent_ctx; 13144 child_ctx->parent_gen = parent_ctx->generation; 13145 } 13146 get_ctx(child_ctx->parent_ctx); 13147 } 13148 13149 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13150 out_unlock: 13151 mutex_unlock(&parent_ctx->mutex); 13152 13153 perf_unpin_context(parent_ctx); 13154 put_ctx(parent_ctx); 13155 13156 return ret; 13157 } 13158 13159 /* 13160 * Initialize the perf_event context in task_struct 13161 */ 13162 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13163 { 13164 int ctxn, ret; 13165 13166 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13167 mutex_init(&child->perf_event_mutex); 13168 INIT_LIST_HEAD(&child->perf_event_list); 13169 13170 for_each_task_context_nr(ctxn) { 13171 ret = perf_event_init_context(child, ctxn, clone_flags); 13172 if (ret) { 13173 perf_event_free_task(child); 13174 return ret; 13175 } 13176 } 13177 13178 return 0; 13179 } 13180 13181 static void __init perf_event_init_all_cpus(void) 13182 { 13183 struct swevent_htable *swhash; 13184 int cpu; 13185 13186 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13187 13188 for_each_possible_cpu(cpu) { 13189 swhash = &per_cpu(swevent_htable, cpu); 13190 mutex_init(&swhash->hlist_mutex); 13191 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13192 13193 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13194 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13195 13196 #ifdef CONFIG_CGROUP_PERF 13197 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13198 #endif 13199 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13200 } 13201 } 13202 13203 static void perf_swevent_init_cpu(unsigned int cpu) 13204 { 13205 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13206 13207 mutex_lock(&swhash->hlist_mutex); 13208 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13209 struct swevent_hlist *hlist; 13210 13211 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13212 WARN_ON(!hlist); 13213 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13214 } 13215 mutex_unlock(&swhash->hlist_mutex); 13216 } 13217 13218 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13219 static void __perf_event_exit_context(void *__info) 13220 { 13221 struct perf_event_context *ctx = __info; 13222 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13223 struct perf_event *event; 13224 13225 raw_spin_lock(&ctx->lock); 13226 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13227 list_for_each_entry(event, &ctx->event_list, event_entry) 13228 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13229 raw_spin_unlock(&ctx->lock); 13230 } 13231 13232 static void perf_event_exit_cpu_context(int cpu) 13233 { 13234 struct perf_cpu_context *cpuctx; 13235 struct perf_event_context *ctx; 13236 struct pmu *pmu; 13237 13238 mutex_lock(&pmus_lock); 13239 list_for_each_entry(pmu, &pmus, entry) { 13240 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13241 ctx = &cpuctx->ctx; 13242 13243 mutex_lock(&ctx->mutex); 13244 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13245 cpuctx->online = 0; 13246 mutex_unlock(&ctx->mutex); 13247 } 13248 cpumask_clear_cpu(cpu, perf_online_mask); 13249 mutex_unlock(&pmus_lock); 13250 } 13251 #else 13252 13253 static void perf_event_exit_cpu_context(int cpu) { } 13254 13255 #endif 13256 13257 int perf_event_init_cpu(unsigned int cpu) 13258 { 13259 struct perf_cpu_context *cpuctx; 13260 struct perf_event_context *ctx; 13261 struct pmu *pmu; 13262 13263 perf_swevent_init_cpu(cpu); 13264 13265 mutex_lock(&pmus_lock); 13266 cpumask_set_cpu(cpu, perf_online_mask); 13267 list_for_each_entry(pmu, &pmus, entry) { 13268 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13269 ctx = &cpuctx->ctx; 13270 13271 mutex_lock(&ctx->mutex); 13272 cpuctx->online = 1; 13273 mutex_unlock(&ctx->mutex); 13274 } 13275 mutex_unlock(&pmus_lock); 13276 13277 return 0; 13278 } 13279 13280 int perf_event_exit_cpu(unsigned int cpu) 13281 { 13282 perf_event_exit_cpu_context(cpu); 13283 return 0; 13284 } 13285 13286 static int 13287 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13288 { 13289 int cpu; 13290 13291 for_each_online_cpu(cpu) 13292 perf_event_exit_cpu(cpu); 13293 13294 return NOTIFY_OK; 13295 } 13296 13297 /* 13298 * Run the perf reboot notifier at the very last possible moment so that 13299 * the generic watchdog code runs as long as possible. 13300 */ 13301 static struct notifier_block perf_reboot_notifier = { 13302 .notifier_call = perf_reboot, 13303 .priority = INT_MIN, 13304 }; 13305 13306 void __init perf_event_init(void) 13307 { 13308 int ret; 13309 13310 idr_init(&pmu_idr); 13311 13312 perf_event_init_all_cpus(); 13313 init_srcu_struct(&pmus_srcu); 13314 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13315 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13316 perf_pmu_register(&perf_task_clock, NULL, -1); 13317 perf_tp_register(); 13318 perf_event_init_cpu(smp_processor_id()); 13319 register_reboot_notifier(&perf_reboot_notifier); 13320 13321 ret = init_hw_breakpoint(); 13322 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13323 13324 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13325 13326 /* 13327 * Build time assertion that we keep the data_head at the intended 13328 * location. IOW, validation we got the __reserved[] size right. 13329 */ 13330 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13331 != 1024); 13332 } 13333 13334 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13335 char *page) 13336 { 13337 struct perf_pmu_events_attr *pmu_attr = 13338 container_of(attr, struct perf_pmu_events_attr, attr); 13339 13340 if (pmu_attr->event_str) 13341 return sprintf(page, "%s\n", pmu_attr->event_str); 13342 13343 return 0; 13344 } 13345 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13346 13347 static int __init perf_event_sysfs_init(void) 13348 { 13349 struct pmu *pmu; 13350 int ret; 13351 13352 mutex_lock(&pmus_lock); 13353 13354 ret = bus_register(&pmu_bus); 13355 if (ret) 13356 goto unlock; 13357 13358 list_for_each_entry(pmu, &pmus, entry) { 13359 if (!pmu->name || pmu->type < 0) 13360 continue; 13361 13362 ret = pmu_dev_alloc(pmu); 13363 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13364 } 13365 pmu_bus_running = 1; 13366 ret = 0; 13367 13368 unlock: 13369 mutex_unlock(&pmus_lock); 13370 13371 return ret; 13372 } 13373 device_initcall(perf_event_sysfs_init); 13374 13375 #ifdef CONFIG_CGROUP_PERF 13376 static struct cgroup_subsys_state * 13377 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13378 { 13379 struct perf_cgroup *jc; 13380 13381 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13382 if (!jc) 13383 return ERR_PTR(-ENOMEM); 13384 13385 jc->info = alloc_percpu(struct perf_cgroup_info); 13386 if (!jc->info) { 13387 kfree(jc); 13388 return ERR_PTR(-ENOMEM); 13389 } 13390 13391 return &jc->css; 13392 } 13393 13394 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13395 { 13396 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13397 13398 free_percpu(jc->info); 13399 kfree(jc); 13400 } 13401 13402 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13403 { 13404 perf_event_cgroup(css->cgroup); 13405 return 0; 13406 } 13407 13408 static int __perf_cgroup_move(void *info) 13409 { 13410 struct task_struct *task = info; 13411 rcu_read_lock(); 13412 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13413 rcu_read_unlock(); 13414 return 0; 13415 } 13416 13417 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13418 { 13419 struct task_struct *task; 13420 struct cgroup_subsys_state *css; 13421 13422 cgroup_taskset_for_each(task, css, tset) 13423 task_function_call(task, __perf_cgroup_move, task); 13424 } 13425 13426 struct cgroup_subsys perf_event_cgrp_subsys = { 13427 .css_alloc = perf_cgroup_css_alloc, 13428 .css_free = perf_cgroup_css_free, 13429 .css_online = perf_cgroup_css_online, 13430 .attach = perf_cgroup_attach, 13431 /* 13432 * Implicitly enable on dfl hierarchy so that perf events can 13433 * always be filtered by cgroup2 path as long as perf_event 13434 * controller is not mounted on a legacy hierarchy. 13435 */ 13436 .implicit_on_dfl = true, 13437 .threaded = true, 13438 }; 13439 #endif /* CONFIG_CGROUP_PERF */ 13440