xref: /openbmc/linux/kernel/events/core.c (revision e2c75e76)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 	if (cgrp_out)
729 		__update_cgrp_time(cgrp_out);
730 }
731 
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734 	struct perf_cgroup *cgrp;
735 
736 	/*
737 	 * ensure we access cgroup data only when needed and
738 	 * when we know the cgroup is pinned (css_get)
739 	 */
740 	if (!is_cgroup_event(event))
741 		return;
742 
743 	cgrp = perf_cgroup_from_task(current, event->ctx);
744 	/*
745 	 * Do not update time when cgroup is not active
746 	 */
747        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748 		__update_cgrp_time(event->cgrp);
749 }
750 
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753 			  struct perf_event_context *ctx)
754 {
755 	struct perf_cgroup *cgrp;
756 	struct perf_cgroup_info *info;
757 
758 	/*
759 	 * ctx->lock held by caller
760 	 * ensure we do not access cgroup data
761 	 * unless we have the cgroup pinned (css_get)
762 	 */
763 	if (!task || !ctx->nr_cgroups)
764 		return;
765 
766 	cgrp = perf_cgroup_from_task(task, ctx);
767 	info = this_cpu_ptr(cgrp->info);
768 	info->timestamp = ctx->timestamp;
769 }
770 
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772 
773 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
775 
776 /*
777  * reschedule events based on the cgroup constraint of task.
778  *
779  * mode SWOUT : schedule out everything
780  * mode SWIN : schedule in based on cgroup for next
781  */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784 	struct perf_cpu_context *cpuctx;
785 	struct list_head *list;
786 	unsigned long flags;
787 
788 	/*
789 	 * Disable interrupts and preemption to avoid this CPU's
790 	 * cgrp_cpuctx_entry to change under us.
791 	 */
792 	local_irq_save(flags);
793 
794 	list = this_cpu_ptr(&cgrp_cpuctx_list);
795 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797 
798 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 		perf_pmu_disable(cpuctx->ctx.pmu);
800 
801 		if (mode & PERF_CGROUP_SWOUT) {
802 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 			/*
804 			 * must not be done before ctxswout due
805 			 * to event_filter_match() in event_sched_out()
806 			 */
807 			cpuctx->cgrp = NULL;
808 		}
809 
810 		if (mode & PERF_CGROUP_SWIN) {
811 			WARN_ON_ONCE(cpuctx->cgrp);
812 			/*
813 			 * set cgrp before ctxsw in to allow
814 			 * event_filter_match() to not have to pass
815 			 * task around
816 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 			 * because cgorup events are only per-cpu
818 			 */
819 			cpuctx->cgrp = perf_cgroup_from_task(task,
820 							     &cpuctx->ctx);
821 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822 		}
823 		perf_pmu_enable(cpuctx->ctx.pmu);
824 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825 	}
826 
827 	local_irq_restore(flags);
828 }
829 
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831 					 struct task_struct *next)
832 {
833 	struct perf_cgroup *cgrp1;
834 	struct perf_cgroup *cgrp2 = NULL;
835 
836 	rcu_read_lock();
837 	/*
838 	 * we come here when we know perf_cgroup_events > 0
839 	 * we do not need to pass the ctx here because we know
840 	 * we are holding the rcu lock
841 	 */
842 	cgrp1 = perf_cgroup_from_task(task, NULL);
843 	cgrp2 = perf_cgroup_from_task(next, NULL);
844 
845 	/*
846 	 * only schedule out current cgroup events if we know
847 	 * that we are switching to a different cgroup. Otherwise,
848 	 * do no touch the cgroup events.
849 	 */
850 	if (cgrp1 != cgrp2)
851 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852 
853 	rcu_read_unlock();
854 }
855 
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 					struct task_struct *task)
858 {
859 	struct perf_cgroup *cgrp1;
860 	struct perf_cgroup *cgrp2 = NULL;
861 
862 	rcu_read_lock();
863 	/*
864 	 * we come here when we know perf_cgroup_events > 0
865 	 * we do not need to pass the ctx here because we know
866 	 * we are holding the rcu lock
867 	 */
868 	cgrp1 = perf_cgroup_from_task(task, NULL);
869 	cgrp2 = perf_cgroup_from_task(prev, NULL);
870 
871 	/*
872 	 * only need to schedule in cgroup events if we are changing
873 	 * cgroup during ctxsw. Cgroup events were not scheduled
874 	 * out of ctxsw out if that was not the case.
875 	 */
876 	if (cgrp1 != cgrp2)
877 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878 
879 	rcu_read_unlock();
880 }
881 
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 				      struct perf_event_attr *attr,
884 				      struct perf_event *group_leader)
885 {
886 	struct perf_cgroup *cgrp;
887 	struct cgroup_subsys_state *css;
888 	struct fd f = fdget(fd);
889 	int ret = 0;
890 
891 	if (!f.file)
892 		return -EBADF;
893 
894 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
895 					 &perf_event_cgrp_subsys);
896 	if (IS_ERR(css)) {
897 		ret = PTR_ERR(css);
898 		goto out;
899 	}
900 
901 	cgrp = container_of(css, struct perf_cgroup, css);
902 	event->cgrp = cgrp;
903 
904 	/*
905 	 * all events in a group must monitor
906 	 * the same cgroup because a task belongs
907 	 * to only one perf cgroup at a time
908 	 */
909 	if (group_leader && group_leader->cgrp != cgrp) {
910 		perf_detach_cgroup(event);
911 		ret = -EINVAL;
912 	}
913 out:
914 	fdput(f);
915 	return ret;
916 }
917 
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921 	struct perf_cgroup_info *t;
922 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 	event->shadow_ctx_time = now - t->timestamp;
924 }
925 
926 /*
927  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928  * cleared when last cgroup event is removed.
929  */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932 			 struct perf_event_context *ctx, bool add)
933 {
934 	struct perf_cpu_context *cpuctx;
935 	struct list_head *cpuctx_entry;
936 
937 	if (!is_cgroup_event(event))
938 		return;
939 
940 	if (add && ctx->nr_cgroups++)
941 		return;
942 	else if (!add && --ctx->nr_cgroups)
943 		return;
944 	/*
945 	 * Because cgroup events are always per-cpu events,
946 	 * this will always be called from the right CPU.
947 	 */
948 	cpuctx = __get_cpu_context(ctx);
949 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 	if (add) {
952 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953 
954 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 			cpuctx->cgrp = cgrp;
957 	} else {
958 		list_del(cpuctx_entry);
959 		cpuctx->cgrp = NULL;
960 	}
961 }
962 
963 #else /* !CONFIG_CGROUP_PERF */
964 
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968 	return true;
969 }
970 
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973 
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976 	return 0;
977 }
978 
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982 
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986 
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988 					 struct task_struct *next)
989 {
990 }
991 
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 					struct task_struct *task)
994 {
995 }
996 
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 				      struct perf_event_attr *attr,
999 				      struct perf_event *group_leader)
1000 {
1001 	return -EINVAL;
1002 }
1003 
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006 			  struct perf_event_context *ctx)
1007 {
1008 }
1009 
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014 
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019 
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022 	return 0;
1023 }
1024 
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027 			 struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030 
1031 #endif
1032 
1033 /*
1034  * set default to be dependent on timer tick just
1035  * like original code
1036  */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039  * function must be called with interrupts disabled
1040  */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043 	struct perf_cpu_context *cpuctx;
1044 	int rotations = 0;
1045 
1046 	lockdep_assert_irqs_disabled();
1047 
1048 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049 	rotations = perf_rotate_context(cpuctx);
1050 
1051 	raw_spin_lock(&cpuctx->hrtimer_lock);
1052 	if (rotations)
1053 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054 	else
1055 		cpuctx->hrtimer_active = 0;
1056 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1057 
1058 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060 
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063 	struct hrtimer *timer = &cpuctx->hrtimer;
1064 	struct pmu *pmu = cpuctx->ctx.pmu;
1065 	u64 interval;
1066 
1067 	/* no multiplexing needed for SW PMU */
1068 	if (pmu->task_ctx_nr == perf_sw_context)
1069 		return;
1070 
1071 	/*
1072 	 * check default is sane, if not set then force to
1073 	 * default interval (1/tick)
1074 	 */
1075 	interval = pmu->hrtimer_interval_ms;
1076 	if (interval < 1)
1077 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078 
1079 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080 
1081 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083 	timer->function = perf_mux_hrtimer_handler;
1084 }
1085 
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088 	struct hrtimer *timer = &cpuctx->hrtimer;
1089 	struct pmu *pmu = cpuctx->ctx.pmu;
1090 	unsigned long flags;
1091 
1092 	/* not for SW PMU */
1093 	if (pmu->task_ctx_nr == perf_sw_context)
1094 		return 0;
1095 
1096 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 	if (!cpuctx->hrtimer_active) {
1098 		cpuctx->hrtimer_active = 1;
1099 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 	}
1102 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103 
1104 	return 0;
1105 }
1106 
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 	if (!(*count)++)
1111 		pmu->pmu_disable(pmu);
1112 }
1113 
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 	if (!--(*count))
1118 		pmu->pmu_enable(pmu);
1119 }
1120 
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122 
1123 /*
1124  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125  * perf_event_task_tick() are fully serialized because they're strictly cpu
1126  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127  * disabled, while perf_event_task_tick is called from IRQ context.
1128  */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132 
1133 	lockdep_assert_irqs_disabled();
1134 
1135 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1136 
1137 	list_add(&ctx->active_ctx_list, head);
1138 }
1139 
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142 	lockdep_assert_irqs_disabled();
1143 
1144 	WARN_ON(list_empty(&ctx->active_ctx_list));
1145 
1146 	list_del_init(&ctx->active_ctx_list);
1147 }
1148 
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153 
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156 	struct perf_event_context *ctx;
1157 
1158 	ctx = container_of(head, struct perf_event_context, rcu_head);
1159 	kfree(ctx->task_ctx_data);
1160 	kfree(ctx);
1161 }
1162 
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165 	if (atomic_dec_and_test(&ctx->refcount)) {
1166 		if (ctx->parent_ctx)
1167 			put_ctx(ctx->parent_ctx);
1168 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169 			put_task_struct(ctx->task);
1170 		call_rcu(&ctx->rcu_head, free_ctx);
1171 	}
1172 }
1173 
1174 /*
1175  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176  * perf_pmu_migrate_context() we need some magic.
1177  *
1178  * Those places that change perf_event::ctx will hold both
1179  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180  *
1181  * Lock ordering is by mutex address. There are two other sites where
1182  * perf_event_context::mutex nests and those are:
1183  *
1184  *  - perf_event_exit_task_context()	[ child , 0 ]
1185  *      perf_event_exit_event()
1186  *        put_event()			[ parent, 1 ]
1187  *
1188  *  - perf_event_init_context()		[ parent, 0 ]
1189  *      inherit_task_group()
1190  *        inherit_group()
1191  *          inherit_event()
1192  *            perf_event_alloc()
1193  *              perf_init_event()
1194  *                perf_try_init_event()	[ child , 1 ]
1195  *
1196  * While it appears there is an obvious deadlock here -- the parent and child
1197  * nesting levels are inverted between the two. This is in fact safe because
1198  * life-time rules separate them. That is an exiting task cannot fork, and a
1199  * spawning task cannot (yet) exit.
1200  *
1201  * But remember that that these are parent<->child context relations, and
1202  * migration does not affect children, therefore these two orderings should not
1203  * interact.
1204  *
1205  * The change in perf_event::ctx does not affect children (as claimed above)
1206  * because the sys_perf_event_open() case will install a new event and break
1207  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208  * concerned with cpuctx and that doesn't have children.
1209  *
1210  * The places that change perf_event::ctx will issue:
1211  *
1212  *   perf_remove_from_context();
1213  *   synchronize_rcu();
1214  *   perf_install_in_context();
1215  *
1216  * to affect the change. The remove_from_context() + synchronize_rcu() should
1217  * quiesce the event, after which we can install it in the new location. This
1218  * means that only external vectors (perf_fops, prctl) can perturb the event
1219  * while in transit. Therefore all such accessors should also acquire
1220  * perf_event_context::mutex to serialize against this.
1221  *
1222  * However; because event->ctx can change while we're waiting to acquire
1223  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224  * function.
1225  *
1226  * Lock order:
1227  *    cred_guard_mutex
1228  *	task_struct::perf_event_mutex
1229  *	  perf_event_context::mutex
1230  *	    perf_event::child_mutex;
1231  *	      perf_event_context::lock
1232  *	    perf_event::mmap_mutex
1233  *	    mmap_sem
1234  *
1235  *    cpu_hotplug_lock
1236  *      pmus_lock
1237  *	  cpuctx->mutex / perf_event_context::mutex
1238  */
1239 static struct perf_event_context *
1240 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1241 {
1242 	struct perf_event_context *ctx;
1243 
1244 again:
1245 	rcu_read_lock();
1246 	ctx = READ_ONCE(event->ctx);
1247 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1248 		rcu_read_unlock();
1249 		goto again;
1250 	}
1251 	rcu_read_unlock();
1252 
1253 	mutex_lock_nested(&ctx->mutex, nesting);
1254 	if (event->ctx != ctx) {
1255 		mutex_unlock(&ctx->mutex);
1256 		put_ctx(ctx);
1257 		goto again;
1258 	}
1259 
1260 	return ctx;
1261 }
1262 
1263 static inline struct perf_event_context *
1264 perf_event_ctx_lock(struct perf_event *event)
1265 {
1266 	return perf_event_ctx_lock_nested(event, 0);
1267 }
1268 
1269 static void perf_event_ctx_unlock(struct perf_event *event,
1270 				  struct perf_event_context *ctx)
1271 {
1272 	mutex_unlock(&ctx->mutex);
1273 	put_ctx(ctx);
1274 }
1275 
1276 /*
1277  * This must be done under the ctx->lock, such as to serialize against
1278  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279  * calling scheduler related locks and ctx->lock nests inside those.
1280  */
1281 static __must_check struct perf_event_context *
1282 unclone_ctx(struct perf_event_context *ctx)
1283 {
1284 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1285 
1286 	lockdep_assert_held(&ctx->lock);
1287 
1288 	if (parent_ctx)
1289 		ctx->parent_ctx = NULL;
1290 	ctx->generation++;
1291 
1292 	return parent_ctx;
1293 }
1294 
1295 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296 				enum pid_type type)
1297 {
1298 	u32 nr;
1299 	/*
1300 	 * only top level events have the pid namespace they were created in
1301 	 */
1302 	if (event->parent)
1303 		event = event->parent;
1304 
1305 	nr = __task_pid_nr_ns(p, type, event->ns);
1306 	/* avoid -1 if it is idle thread or runs in another ns */
1307 	if (!nr && !pid_alive(p))
1308 		nr = -1;
1309 	return nr;
1310 }
1311 
1312 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1313 {
1314 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1315 }
1316 
1317 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1318 {
1319 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1320 }
1321 
1322 /*
1323  * If we inherit events we want to return the parent event id
1324  * to userspace.
1325  */
1326 static u64 primary_event_id(struct perf_event *event)
1327 {
1328 	u64 id = event->id;
1329 
1330 	if (event->parent)
1331 		id = event->parent->id;
1332 
1333 	return id;
1334 }
1335 
1336 /*
1337  * Get the perf_event_context for a task and lock it.
1338  *
1339  * This has to cope with with the fact that until it is locked,
1340  * the context could get moved to another task.
1341  */
1342 static struct perf_event_context *
1343 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1344 {
1345 	struct perf_event_context *ctx;
1346 
1347 retry:
1348 	/*
1349 	 * One of the few rules of preemptible RCU is that one cannot do
1350 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1351 	 * part of the read side critical section was irqs-enabled -- see
1352 	 * rcu_read_unlock_special().
1353 	 *
1354 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1355 	 * side critical section has interrupts disabled.
1356 	 */
1357 	local_irq_save(*flags);
1358 	rcu_read_lock();
1359 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1360 	if (ctx) {
1361 		/*
1362 		 * If this context is a clone of another, it might
1363 		 * get swapped for another underneath us by
1364 		 * perf_event_task_sched_out, though the
1365 		 * rcu_read_lock() protects us from any context
1366 		 * getting freed.  Lock the context and check if it
1367 		 * got swapped before we could get the lock, and retry
1368 		 * if so.  If we locked the right context, then it
1369 		 * can't get swapped on us any more.
1370 		 */
1371 		raw_spin_lock(&ctx->lock);
1372 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1373 			raw_spin_unlock(&ctx->lock);
1374 			rcu_read_unlock();
1375 			local_irq_restore(*flags);
1376 			goto retry;
1377 		}
1378 
1379 		if (ctx->task == TASK_TOMBSTONE ||
1380 		    !atomic_inc_not_zero(&ctx->refcount)) {
1381 			raw_spin_unlock(&ctx->lock);
1382 			ctx = NULL;
1383 		} else {
1384 			WARN_ON_ONCE(ctx->task != task);
1385 		}
1386 	}
1387 	rcu_read_unlock();
1388 	if (!ctx)
1389 		local_irq_restore(*flags);
1390 	return ctx;
1391 }
1392 
1393 /*
1394  * Get the context for a task and increment its pin_count so it
1395  * can't get swapped to another task.  This also increments its
1396  * reference count so that the context can't get freed.
1397  */
1398 static struct perf_event_context *
1399 perf_pin_task_context(struct task_struct *task, int ctxn)
1400 {
1401 	struct perf_event_context *ctx;
1402 	unsigned long flags;
1403 
1404 	ctx = perf_lock_task_context(task, ctxn, &flags);
1405 	if (ctx) {
1406 		++ctx->pin_count;
1407 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1408 	}
1409 	return ctx;
1410 }
1411 
1412 static void perf_unpin_context(struct perf_event_context *ctx)
1413 {
1414 	unsigned long flags;
1415 
1416 	raw_spin_lock_irqsave(&ctx->lock, flags);
1417 	--ctx->pin_count;
1418 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1419 }
1420 
1421 /*
1422  * Update the record of the current time in a context.
1423  */
1424 static void update_context_time(struct perf_event_context *ctx)
1425 {
1426 	u64 now = perf_clock();
1427 
1428 	ctx->time += now - ctx->timestamp;
1429 	ctx->timestamp = now;
1430 }
1431 
1432 static u64 perf_event_time(struct perf_event *event)
1433 {
1434 	struct perf_event_context *ctx = event->ctx;
1435 
1436 	if (is_cgroup_event(event))
1437 		return perf_cgroup_event_time(event);
1438 
1439 	return ctx ? ctx->time : 0;
1440 }
1441 
1442 static enum event_type_t get_event_type(struct perf_event *event)
1443 {
1444 	struct perf_event_context *ctx = event->ctx;
1445 	enum event_type_t event_type;
1446 
1447 	lockdep_assert_held(&ctx->lock);
1448 
1449 	/*
1450 	 * It's 'group type', really, because if our group leader is
1451 	 * pinned, so are we.
1452 	 */
1453 	if (event->group_leader != event)
1454 		event = event->group_leader;
1455 
1456 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457 	if (!ctx->task)
1458 		event_type |= EVENT_CPU;
1459 
1460 	return event_type;
1461 }
1462 
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465 {
1466 	if (event->attr.pinned)
1467 		return &ctx->pinned_groups;
1468 	else
1469 		return &ctx->flexible_groups;
1470 }
1471 
1472 /*
1473  * Add a event from the lists for its context.
1474  * Must be called with ctx->mutex and ctx->lock held.
1475  */
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479 	lockdep_assert_held(&ctx->lock);
1480 
1481 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482 	event->attach_state |= PERF_ATTACH_CONTEXT;
1483 
1484 	event->tstamp = perf_event_time(event);
1485 
1486 	/*
1487 	 * If we're a stand alone event or group leader, we go to the context
1488 	 * list, group events are kept attached to the group so that
1489 	 * perf_group_detach can, at all times, locate all siblings.
1490 	 */
1491 	if (event->group_leader == event) {
1492 		struct list_head *list;
1493 
1494 		event->group_caps = event->event_caps;
1495 
1496 		list = ctx_group_list(event, ctx);
1497 		list_add_tail(&event->group_entry, list);
1498 	}
1499 
1500 	list_update_cgroup_event(event, ctx, true);
1501 
1502 	list_add_rcu(&event->event_entry, &ctx->event_list);
1503 	ctx->nr_events++;
1504 	if (event->attr.inherit_stat)
1505 		ctx->nr_stat++;
1506 
1507 	ctx->generation++;
1508 }
1509 
1510 /*
1511  * Initialize event state based on the perf_event_attr::disabled.
1512  */
1513 static inline void perf_event__state_init(struct perf_event *event)
1514 {
1515 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516 					      PERF_EVENT_STATE_INACTIVE;
1517 }
1518 
1519 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1520 {
1521 	int entry = sizeof(u64); /* value */
1522 	int size = 0;
1523 	int nr = 1;
1524 
1525 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526 		size += sizeof(u64);
1527 
1528 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529 		size += sizeof(u64);
1530 
1531 	if (event->attr.read_format & PERF_FORMAT_ID)
1532 		entry += sizeof(u64);
1533 
1534 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1535 		nr += nr_siblings;
1536 		size += sizeof(u64);
1537 	}
1538 
1539 	size += entry * nr;
1540 	event->read_size = size;
1541 }
1542 
1543 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1544 {
1545 	struct perf_sample_data *data;
1546 	u16 size = 0;
1547 
1548 	if (sample_type & PERF_SAMPLE_IP)
1549 		size += sizeof(data->ip);
1550 
1551 	if (sample_type & PERF_SAMPLE_ADDR)
1552 		size += sizeof(data->addr);
1553 
1554 	if (sample_type & PERF_SAMPLE_PERIOD)
1555 		size += sizeof(data->period);
1556 
1557 	if (sample_type & PERF_SAMPLE_WEIGHT)
1558 		size += sizeof(data->weight);
1559 
1560 	if (sample_type & PERF_SAMPLE_READ)
1561 		size += event->read_size;
1562 
1563 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1564 		size += sizeof(data->data_src.val);
1565 
1566 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1567 		size += sizeof(data->txn);
1568 
1569 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570 		size += sizeof(data->phys_addr);
1571 
1572 	event->header_size = size;
1573 }
1574 
1575 /*
1576  * Called at perf_event creation and when events are attached/detached from a
1577  * group.
1578  */
1579 static void perf_event__header_size(struct perf_event *event)
1580 {
1581 	__perf_event_read_size(event,
1582 			       event->group_leader->nr_siblings);
1583 	__perf_event_header_size(event, event->attr.sample_type);
1584 }
1585 
1586 static void perf_event__id_header_size(struct perf_event *event)
1587 {
1588 	struct perf_sample_data *data;
1589 	u64 sample_type = event->attr.sample_type;
1590 	u16 size = 0;
1591 
1592 	if (sample_type & PERF_SAMPLE_TID)
1593 		size += sizeof(data->tid_entry);
1594 
1595 	if (sample_type & PERF_SAMPLE_TIME)
1596 		size += sizeof(data->time);
1597 
1598 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599 		size += sizeof(data->id);
1600 
1601 	if (sample_type & PERF_SAMPLE_ID)
1602 		size += sizeof(data->id);
1603 
1604 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1605 		size += sizeof(data->stream_id);
1606 
1607 	if (sample_type & PERF_SAMPLE_CPU)
1608 		size += sizeof(data->cpu_entry);
1609 
1610 	event->id_header_size = size;
1611 }
1612 
1613 static bool perf_event_validate_size(struct perf_event *event)
1614 {
1615 	/*
1616 	 * The values computed here will be over-written when we actually
1617 	 * attach the event.
1618 	 */
1619 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621 	perf_event__id_header_size(event);
1622 
1623 	/*
1624 	 * Sum the lot; should not exceed the 64k limit we have on records.
1625 	 * Conservative limit to allow for callchains and other variable fields.
1626 	 */
1627 	if (event->read_size + event->header_size +
1628 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629 		return false;
1630 
1631 	return true;
1632 }
1633 
1634 static void perf_group_attach(struct perf_event *event)
1635 {
1636 	struct perf_event *group_leader = event->group_leader, *pos;
1637 
1638 	lockdep_assert_held(&event->ctx->lock);
1639 
1640 	/*
1641 	 * We can have double attach due to group movement in perf_event_open.
1642 	 */
1643 	if (event->attach_state & PERF_ATTACH_GROUP)
1644 		return;
1645 
1646 	event->attach_state |= PERF_ATTACH_GROUP;
1647 
1648 	if (group_leader == event)
1649 		return;
1650 
1651 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652 
1653 	group_leader->group_caps &= event->event_caps;
1654 
1655 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656 	group_leader->nr_siblings++;
1657 
1658 	perf_event__header_size(group_leader);
1659 
1660 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661 		perf_event__header_size(pos);
1662 }
1663 
1664 /*
1665  * Remove a event from the lists for its context.
1666  * Must be called with ctx->mutex and ctx->lock held.
1667  */
1668 static void
1669 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1670 {
1671 	WARN_ON_ONCE(event->ctx != ctx);
1672 	lockdep_assert_held(&ctx->lock);
1673 
1674 	/*
1675 	 * We can have double detach due to exit/hot-unplug + close.
1676 	 */
1677 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1678 		return;
1679 
1680 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681 
1682 	list_update_cgroup_event(event, ctx, false);
1683 
1684 	ctx->nr_events--;
1685 	if (event->attr.inherit_stat)
1686 		ctx->nr_stat--;
1687 
1688 	list_del_rcu(&event->event_entry);
1689 
1690 	if (event->group_leader == event)
1691 		list_del_init(&event->group_entry);
1692 
1693 	/*
1694 	 * If event was in error state, then keep it
1695 	 * that way, otherwise bogus counts will be
1696 	 * returned on read(). The only way to get out
1697 	 * of error state is by explicit re-enabling
1698 	 * of the event
1699 	 */
1700 	if (event->state > PERF_EVENT_STATE_OFF)
1701 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1702 
1703 	ctx->generation++;
1704 }
1705 
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708 	struct perf_event *sibling, *tmp;
1709 	struct list_head *list = NULL;
1710 
1711 	lockdep_assert_held(&event->ctx->lock);
1712 
1713 	/*
1714 	 * We can have double detach due to exit/hot-unplug + close.
1715 	 */
1716 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 		return;
1718 
1719 	event->attach_state &= ~PERF_ATTACH_GROUP;
1720 
1721 	/*
1722 	 * If this is a sibling, remove it from its group.
1723 	 */
1724 	if (event->group_leader != event) {
1725 		list_del_init(&event->group_entry);
1726 		event->group_leader->nr_siblings--;
1727 		goto out;
1728 	}
1729 
1730 	if (!list_empty(&event->group_entry))
1731 		list = &event->group_entry;
1732 
1733 	/*
1734 	 * If this was a group event with sibling events then
1735 	 * upgrade the siblings to singleton events by adding them
1736 	 * to whatever list we are on.
1737 	 */
1738 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739 		if (list)
1740 			list_move_tail(&sibling->group_entry, list);
1741 		sibling->group_leader = sibling;
1742 
1743 		/* Inherit group flags from the previous leader */
1744 		sibling->group_caps = event->group_caps;
1745 
1746 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1747 	}
1748 
1749 out:
1750 	perf_event__header_size(event->group_leader);
1751 
1752 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 		perf_event__header_size(tmp);
1754 }
1755 
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758 	return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760 
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763 	struct pmu *pmu = event->pmu;
1764 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766 
1767 /*
1768  * Check whether we should attempt to schedule an event group based on
1769  * PMU-specific filtering. An event group can consist of HW and SW events,
1770  * potentially with a SW leader, so we must check all the filters, to
1771  * determine whether a group is schedulable:
1772  */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775 	struct perf_event *child;
1776 
1777 	if (!__pmu_filter_match(event))
1778 		return 0;
1779 
1780 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 		if (!__pmu_filter_match(child))
1782 			return 0;
1783 	}
1784 
1785 	return 1;
1786 }
1787 
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 	       perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794 
1795 static void
1796 event_sched_out(struct perf_event *event,
1797 		  struct perf_cpu_context *cpuctx,
1798 		  struct perf_event_context *ctx)
1799 {
1800 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1801 
1802 	WARN_ON_ONCE(event->ctx != ctx);
1803 	lockdep_assert_held(&ctx->lock);
1804 
1805 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1806 		return;
1807 
1808 	perf_pmu_disable(event->pmu);
1809 
1810 	event->pmu->del(event, 0);
1811 	event->oncpu = -1;
1812 
1813 	if (event->pending_disable) {
1814 		event->pending_disable = 0;
1815 		state = PERF_EVENT_STATE_OFF;
1816 	}
1817 	perf_event_set_state(event, state);
1818 
1819 	if (!is_software_event(event))
1820 		cpuctx->active_oncpu--;
1821 	if (!--ctx->nr_active)
1822 		perf_event_ctx_deactivate(ctx);
1823 	if (event->attr.freq && event->attr.sample_freq)
1824 		ctx->nr_freq--;
1825 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1826 		cpuctx->exclusive = 0;
1827 
1828 	perf_pmu_enable(event->pmu);
1829 }
1830 
1831 static void
1832 group_sched_out(struct perf_event *group_event,
1833 		struct perf_cpu_context *cpuctx,
1834 		struct perf_event_context *ctx)
1835 {
1836 	struct perf_event *event;
1837 
1838 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839 		return;
1840 
1841 	perf_pmu_disable(ctx->pmu);
1842 
1843 	event_sched_out(group_event, cpuctx, ctx);
1844 
1845 	/*
1846 	 * Schedule out siblings (if any):
1847 	 */
1848 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849 		event_sched_out(event, cpuctx, ctx);
1850 
1851 	perf_pmu_enable(ctx->pmu);
1852 
1853 	if (group_event->attr.exclusive)
1854 		cpuctx->exclusive = 0;
1855 }
1856 
1857 #define DETACH_GROUP	0x01UL
1858 
1859 /*
1860  * Cross CPU call to remove a performance event
1861  *
1862  * We disable the event on the hardware level first. After that we
1863  * remove it from the context list.
1864  */
1865 static void
1866 __perf_remove_from_context(struct perf_event *event,
1867 			   struct perf_cpu_context *cpuctx,
1868 			   struct perf_event_context *ctx,
1869 			   void *info)
1870 {
1871 	unsigned long flags = (unsigned long)info;
1872 
1873 	if (ctx->is_active & EVENT_TIME) {
1874 		update_context_time(ctx);
1875 		update_cgrp_time_from_cpuctx(cpuctx);
1876 	}
1877 
1878 	event_sched_out(event, cpuctx, ctx);
1879 	if (flags & DETACH_GROUP)
1880 		perf_group_detach(event);
1881 	list_del_event(event, ctx);
1882 
1883 	if (!ctx->nr_events && ctx->is_active) {
1884 		ctx->is_active = 0;
1885 		if (ctx->task) {
1886 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887 			cpuctx->task_ctx = NULL;
1888 		}
1889 	}
1890 }
1891 
1892 /*
1893  * Remove the event from a task's (or a CPU's) list of events.
1894  *
1895  * If event->ctx is a cloned context, callers must make sure that
1896  * every task struct that event->ctx->task could possibly point to
1897  * remains valid.  This is OK when called from perf_release since
1898  * that only calls us on the top-level context, which can't be a clone.
1899  * When called from perf_event_exit_task, it's OK because the
1900  * context has been detached from its task.
1901  */
1902 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1903 {
1904 	struct perf_event_context *ctx = event->ctx;
1905 
1906 	lockdep_assert_held(&ctx->mutex);
1907 
1908 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1909 
1910 	/*
1911 	 * The above event_function_call() can NO-OP when it hits
1912 	 * TASK_TOMBSTONE. In that case we must already have been detached
1913 	 * from the context (by perf_event_exit_event()) but the grouping
1914 	 * might still be in-tact.
1915 	 */
1916 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917 	if ((flags & DETACH_GROUP) &&
1918 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1919 		/*
1920 		 * Since in that case we cannot possibly be scheduled, simply
1921 		 * detach now.
1922 		 */
1923 		raw_spin_lock_irq(&ctx->lock);
1924 		perf_group_detach(event);
1925 		raw_spin_unlock_irq(&ctx->lock);
1926 	}
1927 }
1928 
1929 /*
1930  * Cross CPU call to disable a performance event
1931  */
1932 static void __perf_event_disable(struct perf_event *event,
1933 				 struct perf_cpu_context *cpuctx,
1934 				 struct perf_event_context *ctx,
1935 				 void *info)
1936 {
1937 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1938 		return;
1939 
1940 	if (ctx->is_active & EVENT_TIME) {
1941 		update_context_time(ctx);
1942 		update_cgrp_time_from_event(event);
1943 	}
1944 
1945 	if (event == event->group_leader)
1946 		group_sched_out(event, cpuctx, ctx);
1947 	else
1948 		event_sched_out(event, cpuctx, ctx);
1949 
1950 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1951 }
1952 
1953 /*
1954  * Disable a event.
1955  *
1956  * If event->ctx is a cloned context, callers must make sure that
1957  * every task struct that event->ctx->task could possibly point to
1958  * remains valid.  This condition is satisifed when called through
1959  * perf_event_for_each_child or perf_event_for_each because they
1960  * hold the top-level event's child_mutex, so any descendant that
1961  * goes to exit will block in perf_event_exit_event().
1962  *
1963  * When called from perf_pending_event it's OK because event->ctx
1964  * is the current context on this CPU and preemption is disabled,
1965  * hence we can't get into perf_event_task_sched_out for this context.
1966  */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969 	struct perf_event_context *ctx = event->ctx;
1970 
1971 	raw_spin_lock_irq(&ctx->lock);
1972 	if (event->state <= PERF_EVENT_STATE_OFF) {
1973 		raw_spin_unlock_irq(&ctx->lock);
1974 		return;
1975 	}
1976 	raw_spin_unlock_irq(&ctx->lock);
1977 
1978 	event_function_call(event, __perf_event_disable, NULL);
1979 }
1980 
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983 	event_function_local(event, __perf_event_disable, NULL);
1984 }
1985 
1986 /*
1987  * Strictly speaking kernel users cannot create groups and therefore this
1988  * interface does not need the perf_event_ctx_lock() magic.
1989  */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992 	struct perf_event_context *ctx;
1993 
1994 	ctx = perf_event_ctx_lock(event);
1995 	_perf_event_disable(event);
1996 	perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999 
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002 	event->pending_disable = 1;
2003 	irq_work_queue(&event->pending);
2004 }
2005 
2006 static void perf_set_shadow_time(struct perf_event *event,
2007 				 struct perf_event_context *ctx)
2008 {
2009 	/*
2010 	 * use the correct time source for the time snapshot
2011 	 *
2012 	 * We could get by without this by leveraging the
2013 	 * fact that to get to this function, the caller
2014 	 * has most likely already called update_context_time()
2015 	 * and update_cgrp_time_xx() and thus both timestamp
2016 	 * are identical (or very close). Given that tstamp is,
2017 	 * already adjusted for cgroup, we could say that:
2018 	 *    tstamp - ctx->timestamp
2019 	 * is equivalent to
2020 	 *    tstamp - cgrp->timestamp.
2021 	 *
2022 	 * Then, in perf_output_read(), the calculation would
2023 	 * work with no changes because:
2024 	 * - event is guaranteed scheduled in
2025 	 * - no scheduled out in between
2026 	 * - thus the timestamp would be the same
2027 	 *
2028 	 * But this is a bit hairy.
2029 	 *
2030 	 * So instead, we have an explicit cgroup call to remain
2031 	 * within the time time source all along. We believe it
2032 	 * is cleaner and simpler to understand.
2033 	 */
2034 	if (is_cgroup_event(event))
2035 		perf_cgroup_set_shadow_time(event, event->tstamp);
2036 	else
2037 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2038 }
2039 
2040 #define MAX_INTERRUPTS (~0ULL)
2041 
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044 
2045 static int
2046 event_sched_in(struct perf_event *event,
2047 		 struct perf_cpu_context *cpuctx,
2048 		 struct perf_event_context *ctx)
2049 {
2050 	int ret = 0;
2051 
2052 	lockdep_assert_held(&ctx->lock);
2053 
2054 	if (event->state <= PERF_EVENT_STATE_OFF)
2055 		return 0;
2056 
2057 	WRITE_ONCE(event->oncpu, smp_processor_id());
2058 	/*
2059 	 * Order event::oncpu write to happen before the ACTIVE state is
2060 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2061 	 * ->oncpu if it sees ACTIVE.
2062 	 */
2063 	smp_wmb();
2064 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2065 
2066 	/*
2067 	 * Unthrottle events, since we scheduled we might have missed several
2068 	 * ticks already, also for a heavily scheduling task there is little
2069 	 * guarantee it'll get a tick in a timely manner.
2070 	 */
2071 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 		perf_log_throttle(event, 1);
2073 		event->hw.interrupts = 0;
2074 	}
2075 
2076 	perf_pmu_disable(event->pmu);
2077 
2078 	perf_set_shadow_time(event, ctx);
2079 
2080 	perf_log_itrace_start(event);
2081 
2082 	if (event->pmu->add(event, PERF_EF_START)) {
2083 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2084 		event->oncpu = -1;
2085 		ret = -EAGAIN;
2086 		goto out;
2087 	}
2088 
2089 	if (!is_software_event(event))
2090 		cpuctx->active_oncpu++;
2091 	if (!ctx->nr_active++)
2092 		perf_event_ctx_activate(ctx);
2093 	if (event->attr.freq && event->attr.sample_freq)
2094 		ctx->nr_freq++;
2095 
2096 	if (event->attr.exclusive)
2097 		cpuctx->exclusive = 1;
2098 
2099 out:
2100 	perf_pmu_enable(event->pmu);
2101 
2102 	return ret;
2103 }
2104 
2105 static int
2106 group_sched_in(struct perf_event *group_event,
2107 	       struct perf_cpu_context *cpuctx,
2108 	       struct perf_event_context *ctx)
2109 {
2110 	struct perf_event *event, *partial_group = NULL;
2111 	struct pmu *pmu = ctx->pmu;
2112 
2113 	if (group_event->state == PERF_EVENT_STATE_OFF)
2114 		return 0;
2115 
2116 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2117 
2118 	if (event_sched_in(group_event, cpuctx, ctx)) {
2119 		pmu->cancel_txn(pmu);
2120 		perf_mux_hrtimer_restart(cpuctx);
2121 		return -EAGAIN;
2122 	}
2123 
2124 	/*
2125 	 * Schedule in siblings as one group (if any):
2126 	 */
2127 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2128 		if (event_sched_in(event, cpuctx, ctx)) {
2129 			partial_group = event;
2130 			goto group_error;
2131 		}
2132 	}
2133 
2134 	if (!pmu->commit_txn(pmu))
2135 		return 0;
2136 
2137 group_error:
2138 	/*
2139 	 * Groups can be scheduled in as one unit only, so undo any
2140 	 * partial group before returning:
2141 	 * The events up to the failed event are scheduled out normally.
2142 	 */
2143 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144 		if (event == partial_group)
2145 			break;
2146 
2147 		event_sched_out(event, cpuctx, ctx);
2148 	}
2149 	event_sched_out(group_event, cpuctx, ctx);
2150 
2151 	pmu->cancel_txn(pmu);
2152 
2153 	perf_mux_hrtimer_restart(cpuctx);
2154 
2155 	return -EAGAIN;
2156 }
2157 
2158 /*
2159  * Work out whether we can put this event group on the CPU now.
2160  */
2161 static int group_can_go_on(struct perf_event *event,
2162 			   struct perf_cpu_context *cpuctx,
2163 			   int can_add_hw)
2164 {
2165 	/*
2166 	 * Groups consisting entirely of software events can always go on.
2167 	 */
2168 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2169 		return 1;
2170 	/*
2171 	 * If an exclusive group is already on, no other hardware
2172 	 * events can go on.
2173 	 */
2174 	if (cpuctx->exclusive)
2175 		return 0;
2176 	/*
2177 	 * If this group is exclusive and there are already
2178 	 * events on the CPU, it can't go on.
2179 	 */
2180 	if (event->attr.exclusive && cpuctx->active_oncpu)
2181 		return 0;
2182 	/*
2183 	 * Otherwise, try to add it if all previous groups were able
2184 	 * to go on.
2185 	 */
2186 	return can_add_hw;
2187 }
2188 
2189 static void add_event_to_ctx(struct perf_event *event,
2190 			       struct perf_event_context *ctx)
2191 {
2192 	list_add_event(event, ctx);
2193 	perf_group_attach(event);
2194 }
2195 
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197 			  struct perf_cpu_context *cpuctx,
2198 			  enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201 	     struct perf_cpu_context *cpuctx,
2202 	     enum event_type_t event_type,
2203 	     struct task_struct *task);
2204 
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 			       struct perf_event_context *ctx,
2207 			       enum event_type_t event_type)
2208 {
2209 	if (!cpuctx->task_ctx)
2210 		return;
2211 
2212 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213 		return;
2214 
2215 	ctx_sched_out(ctx, cpuctx, event_type);
2216 }
2217 
2218 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219 				struct perf_event_context *ctx,
2220 				struct task_struct *task)
2221 {
2222 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223 	if (ctx)
2224 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226 	if (ctx)
2227 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2228 }
2229 
2230 /*
2231  * We want to maintain the following priority of scheduling:
2232  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233  *  - task pinned (EVENT_PINNED)
2234  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235  *  - task flexible (EVENT_FLEXIBLE).
2236  *
2237  * In order to avoid unscheduling and scheduling back in everything every
2238  * time an event is added, only do it for the groups of equal priority and
2239  * below.
2240  *
2241  * This can be called after a batch operation on task events, in which case
2242  * event_type is a bit mask of the types of events involved. For CPU events,
2243  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2244  */
2245 static void ctx_resched(struct perf_cpu_context *cpuctx,
2246 			struct perf_event_context *task_ctx,
2247 			enum event_type_t event_type)
2248 {
2249 	enum event_type_t ctx_event_type;
2250 	bool cpu_event = !!(event_type & EVENT_CPU);
2251 
2252 	/*
2253 	 * If pinned groups are involved, flexible groups also need to be
2254 	 * scheduled out.
2255 	 */
2256 	if (event_type & EVENT_PINNED)
2257 		event_type |= EVENT_FLEXIBLE;
2258 
2259 	ctx_event_type = event_type & EVENT_ALL;
2260 
2261 	perf_pmu_disable(cpuctx->ctx.pmu);
2262 	if (task_ctx)
2263 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2264 
2265 	/*
2266 	 * Decide which cpu ctx groups to schedule out based on the types
2267 	 * of events that caused rescheduling:
2268 	 *  - EVENT_CPU: schedule out corresponding groups;
2269 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2270 	 *  - otherwise, do nothing more.
2271 	 */
2272 	if (cpu_event)
2273 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2274 	else if (ctx_event_type & EVENT_PINNED)
2275 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2276 
2277 	perf_event_sched_in(cpuctx, task_ctx, current);
2278 	perf_pmu_enable(cpuctx->ctx.pmu);
2279 }
2280 
2281 /*
2282  * Cross CPU call to install and enable a performance event
2283  *
2284  * Very similar to remote_function() + event_function() but cannot assume that
2285  * things like ctx->is_active and cpuctx->task_ctx are set.
2286  */
2287 static int  __perf_install_in_context(void *info)
2288 {
2289 	struct perf_event *event = info;
2290 	struct perf_event_context *ctx = event->ctx;
2291 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2292 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2293 	bool reprogram = true;
2294 	int ret = 0;
2295 
2296 	raw_spin_lock(&cpuctx->ctx.lock);
2297 	if (ctx->task) {
2298 		raw_spin_lock(&ctx->lock);
2299 		task_ctx = ctx;
2300 
2301 		reprogram = (ctx->task == current);
2302 
2303 		/*
2304 		 * If the task is running, it must be running on this CPU,
2305 		 * otherwise we cannot reprogram things.
2306 		 *
2307 		 * If its not running, we don't care, ctx->lock will
2308 		 * serialize against it becoming runnable.
2309 		 */
2310 		if (task_curr(ctx->task) && !reprogram) {
2311 			ret = -ESRCH;
2312 			goto unlock;
2313 		}
2314 
2315 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2316 	} else if (task_ctx) {
2317 		raw_spin_lock(&task_ctx->lock);
2318 	}
2319 
2320 	if (reprogram) {
2321 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2322 		add_event_to_ctx(event, ctx);
2323 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2324 	} else {
2325 		add_event_to_ctx(event, ctx);
2326 	}
2327 
2328 unlock:
2329 	perf_ctx_unlock(cpuctx, task_ctx);
2330 
2331 	return ret;
2332 }
2333 
2334 /*
2335  * Attach a performance event to a context.
2336  *
2337  * Very similar to event_function_call, see comment there.
2338  */
2339 static void
2340 perf_install_in_context(struct perf_event_context *ctx,
2341 			struct perf_event *event,
2342 			int cpu)
2343 {
2344 	struct task_struct *task = READ_ONCE(ctx->task);
2345 
2346 	lockdep_assert_held(&ctx->mutex);
2347 
2348 	if (event->cpu != -1)
2349 		event->cpu = cpu;
2350 
2351 	/*
2352 	 * Ensures that if we can observe event->ctx, both the event and ctx
2353 	 * will be 'complete'. See perf_iterate_sb_cpu().
2354 	 */
2355 	smp_store_release(&event->ctx, ctx);
2356 
2357 	if (!task) {
2358 		cpu_function_call(cpu, __perf_install_in_context, event);
2359 		return;
2360 	}
2361 
2362 	/*
2363 	 * Should not happen, we validate the ctx is still alive before calling.
2364 	 */
2365 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2366 		return;
2367 
2368 	/*
2369 	 * Installing events is tricky because we cannot rely on ctx->is_active
2370 	 * to be set in case this is the nr_events 0 -> 1 transition.
2371 	 *
2372 	 * Instead we use task_curr(), which tells us if the task is running.
2373 	 * However, since we use task_curr() outside of rq::lock, we can race
2374 	 * against the actual state. This means the result can be wrong.
2375 	 *
2376 	 * If we get a false positive, we retry, this is harmless.
2377 	 *
2378 	 * If we get a false negative, things are complicated. If we are after
2379 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2380 	 * value must be correct. If we're before, it doesn't matter since
2381 	 * perf_event_context_sched_in() will program the counter.
2382 	 *
2383 	 * However, this hinges on the remote context switch having observed
2384 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2385 	 * ctx::lock in perf_event_context_sched_in().
2386 	 *
2387 	 * We do this by task_function_call(), if the IPI fails to hit the task
2388 	 * we know any future context switch of task must see the
2389 	 * perf_event_ctpx[] store.
2390 	 */
2391 
2392 	/*
2393 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2394 	 * task_cpu() load, such that if the IPI then does not find the task
2395 	 * running, a future context switch of that task must observe the
2396 	 * store.
2397 	 */
2398 	smp_mb();
2399 again:
2400 	if (!task_function_call(task, __perf_install_in_context, event))
2401 		return;
2402 
2403 	raw_spin_lock_irq(&ctx->lock);
2404 	task = ctx->task;
2405 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2406 		/*
2407 		 * Cannot happen because we already checked above (which also
2408 		 * cannot happen), and we hold ctx->mutex, which serializes us
2409 		 * against perf_event_exit_task_context().
2410 		 */
2411 		raw_spin_unlock_irq(&ctx->lock);
2412 		return;
2413 	}
2414 	/*
2415 	 * If the task is not running, ctx->lock will avoid it becoming so,
2416 	 * thus we can safely install the event.
2417 	 */
2418 	if (task_curr(task)) {
2419 		raw_spin_unlock_irq(&ctx->lock);
2420 		goto again;
2421 	}
2422 	add_event_to_ctx(event, ctx);
2423 	raw_spin_unlock_irq(&ctx->lock);
2424 }
2425 
2426 /*
2427  * Cross CPU call to enable a performance event
2428  */
2429 static void __perf_event_enable(struct perf_event *event,
2430 				struct perf_cpu_context *cpuctx,
2431 				struct perf_event_context *ctx,
2432 				void *info)
2433 {
2434 	struct perf_event *leader = event->group_leader;
2435 	struct perf_event_context *task_ctx;
2436 
2437 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2438 	    event->state <= PERF_EVENT_STATE_ERROR)
2439 		return;
2440 
2441 	if (ctx->is_active)
2442 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2443 
2444 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2445 
2446 	if (!ctx->is_active)
2447 		return;
2448 
2449 	if (!event_filter_match(event)) {
2450 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2451 		return;
2452 	}
2453 
2454 	/*
2455 	 * If the event is in a group and isn't the group leader,
2456 	 * then don't put it on unless the group is on.
2457 	 */
2458 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2459 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2460 		return;
2461 	}
2462 
2463 	task_ctx = cpuctx->task_ctx;
2464 	if (ctx->task)
2465 		WARN_ON_ONCE(task_ctx != ctx);
2466 
2467 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2468 }
2469 
2470 /*
2471  * Enable a event.
2472  *
2473  * If event->ctx is a cloned context, callers must make sure that
2474  * every task struct that event->ctx->task could possibly point to
2475  * remains valid.  This condition is satisfied when called through
2476  * perf_event_for_each_child or perf_event_for_each as described
2477  * for perf_event_disable.
2478  */
2479 static void _perf_event_enable(struct perf_event *event)
2480 {
2481 	struct perf_event_context *ctx = event->ctx;
2482 
2483 	raw_spin_lock_irq(&ctx->lock);
2484 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485 	    event->state <  PERF_EVENT_STATE_ERROR) {
2486 		raw_spin_unlock_irq(&ctx->lock);
2487 		return;
2488 	}
2489 
2490 	/*
2491 	 * If the event is in error state, clear that first.
2492 	 *
2493 	 * That way, if we see the event in error state below, we know that it
2494 	 * has gone back into error state, as distinct from the task having
2495 	 * been scheduled away before the cross-call arrived.
2496 	 */
2497 	if (event->state == PERF_EVENT_STATE_ERROR)
2498 		event->state = PERF_EVENT_STATE_OFF;
2499 	raw_spin_unlock_irq(&ctx->lock);
2500 
2501 	event_function_call(event, __perf_event_enable, NULL);
2502 }
2503 
2504 /*
2505  * See perf_event_disable();
2506  */
2507 void perf_event_enable(struct perf_event *event)
2508 {
2509 	struct perf_event_context *ctx;
2510 
2511 	ctx = perf_event_ctx_lock(event);
2512 	_perf_event_enable(event);
2513 	perf_event_ctx_unlock(event, ctx);
2514 }
2515 EXPORT_SYMBOL_GPL(perf_event_enable);
2516 
2517 struct stop_event_data {
2518 	struct perf_event	*event;
2519 	unsigned int		restart;
2520 };
2521 
2522 static int __perf_event_stop(void *info)
2523 {
2524 	struct stop_event_data *sd = info;
2525 	struct perf_event *event = sd->event;
2526 
2527 	/* if it's already INACTIVE, do nothing */
2528 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2529 		return 0;
2530 
2531 	/* matches smp_wmb() in event_sched_in() */
2532 	smp_rmb();
2533 
2534 	/*
2535 	 * There is a window with interrupts enabled before we get here,
2536 	 * so we need to check again lest we try to stop another CPU's event.
2537 	 */
2538 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2539 		return -EAGAIN;
2540 
2541 	event->pmu->stop(event, PERF_EF_UPDATE);
2542 
2543 	/*
2544 	 * May race with the actual stop (through perf_pmu_output_stop()),
2545 	 * but it is only used for events with AUX ring buffer, and such
2546 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2547 	 * see comments in perf_aux_output_begin().
2548 	 *
2549 	 * Since this is happening on a event-local CPU, no trace is lost
2550 	 * while restarting.
2551 	 */
2552 	if (sd->restart)
2553 		event->pmu->start(event, 0);
2554 
2555 	return 0;
2556 }
2557 
2558 static int perf_event_stop(struct perf_event *event, int restart)
2559 {
2560 	struct stop_event_data sd = {
2561 		.event		= event,
2562 		.restart	= restart,
2563 	};
2564 	int ret = 0;
2565 
2566 	do {
2567 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2568 			return 0;
2569 
2570 		/* matches smp_wmb() in event_sched_in() */
2571 		smp_rmb();
2572 
2573 		/*
2574 		 * We only want to restart ACTIVE events, so if the event goes
2575 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2576 		 * fall through with ret==-ENXIO.
2577 		 */
2578 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2579 					__perf_event_stop, &sd);
2580 	} while (ret == -EAGAIN);
2581 
2582 	return ret;
2583 }
2584 
2585 /*
2586  * In order to contain the amount of racy and tricky in the address filter
2587  * configuration management, it is a two part process:
2588  *
2589  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2590  *      we update the addresses of corresponding vmas in
2591  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2592  * (p2) when an event is scheduled in (pmu::add), it calls
2593  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2594  *      if the generation has changed since the previous call.
2595  *
2596  * If (p1) happens while the event is active, we restart it to force (p2).
2597  *
2598  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2599  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2600  *     ioctl;
2601  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2602  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2603  *     for reading;
2604  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2605  *     of exec.
2606  */
2607 void perf_event_addr_filters_sync(struct perf_event *event)
2608 {
2609 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2610 
2611 	if (!has_addr_filter(event))
2612 		return;
2613 
2614 	raw_spin_lock(&ifh->lock);
2615 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2616 		event->pmu->addr_filters_sync(event);
2617 		event->hw.addr_filters_gen = event->addr_filters_gen;
2618 	}
2619 	raw_spin_unlock(&ifh->lock);
2620 }
2621 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2622 
2623 static int _perf_event_refresh(struct perf_event *event, int refresh)
2624 {
2625 	/*
2626 	 * not supported on inherited events
2627 	 */
2628 	if (event->attr.inherit || !is_sampling_event(event))
2629 		return -EINVAL;
2630 
2631 	atomic_add(refresh, &event->event_limit);
2632 	_perf_event_enable(event);
2633 
2634 	return 0;
2635 }
2636 
2637 /*
2638  * See perf_event_disable()
2639  */
2640 int perf_event_refresh(struct perf_event *event, int refresh)
2641 {
2642 	struct perf_event_context *ctx;
2643 	int ret;
2644 
2645 	ctx = perf_event_ctx_lock(event);
2646 	ret = _perf_event_refresh(event, refresh);
2647 	perf_event_ctx_unlock(event, ctx);
2648 
2649 	return ret;
2650 }
2651 EXPORT_SYMBOL_GPL(perf_event_refresh);
2652 
2653 static void ctx_sched_out(struct perf_event_context *ctx,
2654 			  struct perf_cpu_context *cpuctx,
2655 			  enum event_type_t event_type)
2656 {
2657 	int is_active = ctx->is_active;
2658 	struct perf_event *event;
2659 
2660 	lockdep_assert_held(&ctx->lock);
2661 
2662 	if (likely(!ctx->nr_events)) {
2663 		/*
2664 		 * See __perf_remove_from_context().
2665 		 */
2666 		WARN_ON_ONCE(ctx->is_active);
2667 		if (ctx->task)
2668 			WARN_ON_ONCE(cpuctx->task_ctx);
2669 		return;
2670 	}
2671 
2672 	ctx->is_active &= ~event_type;
2673 	if (!(ctx->is_active & EVENT_ALL))
2674 		ctx->is_active = 0;
2675 
2676 	if (ctx->task) {
2677 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2678 		if (!ctx->is_active)
2679 			cpuctx->task_ctx = NULL;
2680 	}
2681 
2682 	/*
2683 	 * Always update time if it was set; not only when it changes.
2684 	 * Otherwise we can 'forget' to update time for any but the last
2685 	 * context we sched out. For example:
2686 	 *
2687 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2688 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2689 	 *
2690 	 * would only update time for the pinned events.
2691 	 */
2692 	if (is_active & EVENT_TIME) {
2693 		/* update (and stop) ctx time */
2694 		update_context_time(ctx);
2695 		update_cgrp_time_from_cpuctx(cpuctx);
2696 	}
2697 
2698 	is_active ^= ctx->is_active; /* changed bits */
2699 
2700 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2701 		return;
2702 
2703 	perf_pmu_disable(ctx->pmu);
2704 	if (is_active & EVENT_PINNED) {
2705 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2706 			group_sched_out(event, cpuctx, ctx);
2707 	}
2708 
2709 	if (is_active & EVENT_FLEXIBLE) {
2710 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2711 			group_sched_out(event, cpuctx, ctx);
2712 	}
2713 	perf_pmu_enable(ctx->pmu);
2714 }
2715 
2716 /*
2717  * Test whether two contexts are equivalent, i.e. whether they have both been
2718  * cloned from the same version of the same context.
2719  *
2720  * Equivalence is measured using a generation number in the context that is
2721  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2722  * and list_del_event().
2723  */
2724 static int context_equiv(struct perf_event_context *ctx1,
2725 			 struct perf_event_context *ctx2)
2726 {
2727 	lockdep_assert_held(&ctx1->lock);
2728 	lockdep_assert_held(&ctx2->lock);
2729 
2730 	/* Pinning disables the swap optimization */
2731 	if (ctx1->pin_count || ctx2->pin_count)
2732 		return 0;
2733 
2734 	/* If ctx1 is the parent of ctx2 */
2735 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2736 		return 1;
2737 
2738 	/* If ctx2 is the parent of ctx1 */
2739 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2740 		return 1;
2741 
2742 	/*
2743 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2744 	 * hierarchy, see perf_event_init_context().
2745 	 */
2746 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2747 			ctx1->parent_gen == ctx2->parent_gen)
2748 		return 1;
2749 
2750 	/* Unmatched */
2751 	return 0;
2752 }
2753 
2754 static void __perf_event_sync_stat(struct perf_event *event,
2755 				     struct perf_event *next_event)
2756 {
2757 	u64 value;
2758 
2759 	if (!event->attr.inherit_stat)
2760 		return;
2761 
2762 	/*
2763 	 * Update the event value, we cannot use perf_event_read()
2764 	 * because we're in the middle of a context switch and have IRQs
2765 	 * disabled, which upsets smp_call_function_single(), however
2766 	 * we know the event must be on the current CPU, therefore we
2767 	 * don't need to use it.
2768 	 */
2769 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2770 		event->pmu->read(event);
2771 
2772 	perf_event_update_time(event);
2773 
2774 	/*
2775 	 * In order to keep per-task stats reliable we need to flip the event
2776 	 * values when we flip the contexts.
2777 	 */
2778 	value = local64_read(&next_event->count);
2779 	value = local64_xchg(&event->count, value);
2780 	local64_set(&next_event->count, value);
2781 
2782 	swap(event->total_time_enabled, next_event->total_time_enabled);
2783 	swap(event->total_time_running, next_event->total_time_running);
2784 
2785 	/*
2786 	 * Since we swizzled the values, update the user visible data too.
2787 	 */
2788 	perf_event_update_userpage(event);
2789 	perf_event_update_userpage(next_event);
2790 }
2791 
2792 static void perf_event_sync_stat(struct perf_event_context *ctx,
2793 				   struct perf_event_context *next_ctx)
2794 {
2795 	struct perf_event *event, *next_event;
2796 
2797 	if (!ctx->nr_stat)
2798 		return;
2799 
2800 	update_context_time(ctx);
2801 
2802 	event = list_first_entry(&ctx->event_list,
2803 				   struct perf_event, event_entry);
2804 
2805 	next_event = list_first_entry(&next_ctx->event_list,
2806 					struct perf_event, event_entry);
2807 
2808 	while (&event->event_entry != &ctx->event_list &&
2809 	       &next_event->event_entry != &next_ctx->event_list) {
2810 
2811 		__perf_event_sync_stat(event, next_event);
2812 
2813 		event = list_next_entry(event, event_entry);
2814 		next_event = list_next_entry(next_event, event_entry);
2815 	}
2816 }
2817 
2818 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2819 					 struct task_struct *next)
2820 {
2821 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2822 	struct perf_event_context *next_ctx;
2823 	struct perf_event_context *parent, *next_parent;
2824 	struct perf_cpu_context *cpuctx;
2825 	int do_switch = 1;
2826 
2827 	if (likely(!ctx))
2828 		return;
2829 
2830 	cpuctx = __get_cpu_context(ctx);
2831 	if (!cpuctx->task_ctx)
2832 		return;
2833 
2834 	rcu_read_lock();
2835 	next_ctx = next->perf_event_ctxp[ctxn];
2836 	if (!next_ctx)
2837 		goto unlock;
2838 
2839 	parent = rcu_dereference(ctx->parent_ctx);
2840 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2841 
2842 	/* If neither context have a parent context; they cannot be clones. */
2843 	if (!parent && !next_parent)
2844 		goto unlock;
2845 
2846 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2847 		/*
2848 		 * Looks like the two contexts are clones, so we might be
2849 		 * able to optimize the context switch.  We lock both
2850 		 * contexts and check that they are clones under the
2851 		 * lock (including re-checking that neither has been
2852 		 * uncloned in the meantime).  It doesn't matter which
2853 		 * order we take the locks because no other cpu could
2854 		 * be trying to lock both of these tasks.
2855 		 */
2856 		raw_spin_lock(&ctx->lock);
2857 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2858 		if (context_equiv(ctx, next_ctx)) {
2859 			WRITE_ONCE(ctx->task, next);
2860 			WRITE_ONCE(next_ctx->task, task);
2861 
2862 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2863 
2864 			/*
2865 			 * RCU_INIT_POINTER here is safe because we've not
2866 			 * modified the ctx and the above modification of
2867 			 * ctx->task and ctx->task_ctx_data are immaterial
2868 			 * since those values are always verified under
2869 			 * ctx->lock which we're now holding.
2870 			 */
2871 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2872 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2873 
2874 			do_switch = 0;
2875 
2876 			perf_event_sync_stat(ctx, next_ctx);
2877 		}
2878 		raw_spin_unlock(&next_ctx->lock);
2879 		raw_spin_unlock(&ctx->lock);
2880 	}
2881 unlock:
2882 	rcu_read_unlock();
2883 
2884 	if (do_switch) {
2885 		raw_spin_lock(&ctx->lock);
2886 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2887 		raw_spin_unlock(&ctx->lock);
2888 	}
2889 }
2890 
2891 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2892 
2893 void perf_sched_cb_dec(struct pmu *pmu)
2894 {
2895 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2896 
2897 	this_cpu_dec(perf_sched_cb_usages);
2898 
2899 	if (!--cpuctx->sched_cb_usage)
2900 		list_del(&cpuctx->sched_cb_entry);
2901 }
2902 
2903 
2904 void perf_sched_cb_inc(struct pmu *pmu)
2905 {
2906 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2907 
2908 	if (!cpuctx->sched_cb_usage++)
2909 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2910 
2911 	this_cpu_inc(perf_sched_cb_usages);
2912 }
2913 
2914 /*
2915  * This function provides the context switch callback to the lower code
2916  * layer. It is invoked ONLY when the context switch callback is enabled.
2917  *
2918  * This callback is relevant even to per-cpu events; for example multi event
2919  * PEBS requires this to provide PID/TID information. This requires we flush
2920  * all queued PEBS records before we context switch to a new task.
2921  */
2922 static void perf_pmu_sched_task(struct task_struct *prev,
2923 				struct task_struct *next,
2924 				bool sched_in)
2925 {
2926 	struct perf_cpu_context *cpuctx;
2927 	struct pmu *pmu;
2928 
2929 	if (prev == next)
2930 		return;
2931 
2932 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2933 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2934 
2935 		if (WARN_ON_ONCE(!pmu->sched_task))
2936 			continue;
2937 
2938 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2939 		perf_pmu_disable(pmu);
2940 
2941 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2942 
2943 		perf_pmu_enable(pmu);
2944 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2945 	}
2946 }
2947 
2948 static void perf_event_switch(struct task_struct *task,
2949 			      struct task_struct *next_prev, bool sched_in);
2950 
2951 #define for_each_task_context_nr(ctxn)					\
2952 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2953 
2954 /*
2955  * Called from scheduler to remove the events of the current task,
2956  * with interrupts disabled.
2957  *
2958  * We stop each event and update the event value in event->count.
2959  *
2960  * This does not protect us against NMI, but disable()
2961  * sets the disabled bit in the control field of event _before_
2962  * accessing the event control register. If a NMI hits, then it will
2963  * not restart the event.
2964  */
2965 void __perf_event_task_sched_out(struct task_struct *task,
2966 				 struct task_struct *next)
2967 {
2968 	int ctxn;
2969 
2970 	if (__this_cpu_read(perf_sched_cb_usages))
2971 		perf_pmu_sched_task(task, next, false);
2972 
2973 	if (atomic_read(&nr_switch_events))
2974 		perf_event_switch(task, next, false);
2975 
2976 	for_each_task_context_nr(ctxn)
2977 		perf_event_context_sched_out(task, ctxn, next);
2978 
2979 	/*
2980 	 * if cgroup events exist on this CPU, then we need
2981 	 * to check if we have to switch out PMU state.
2982 	 * cgroup event are system-wide mode only
2983 	 */
2984 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2985 		perf_cgroup_sched_out(task, next);
2986 }
2987 
2988 /*
2989  * Called with IRQs disabled
2990  */
2991 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2992 			      enum event_type_t event_type)
2993 {
2994 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2995 }
2996 
2997 static void
2998 ctx_pinned_sched_in(struct perf_event_context *ctx,
2999 		    struct perf_cpu_context *cpuctx)
3000 {
3001 	struct perf_event *event;
3002 
3003 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3004 		if (event->state <= PERF_EVENT_STATE_OFF)
3005 			continue;
3006 		if (!event_filter_match(event))
3007 			continue;
3008 
3009 		if (group_can_go_on(event, cpuctx, 1))
3010 			group_sched_in(event, cpuctx, ctx);
3011 
3012 		/*
3013 		 * If this pinned group hasn't been scheduled,
3014 		 * put it in error state.
3015 		 */
3016 		if (event->state == PERF_EVENT_STATE_INACTIVE)
3017 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3018 	}
3019 }
3020 
3021 static void
3022 ctx_flexible_sched_in(struct perf_event_context *ctx,
3023 		      struct perf_cpu_context *cpuctx)
3024 {
3025 	struct perf_event *event;
3026 	int can_add_hw = 1;
3027 
3028 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3029 		/* Ignore events in OFF or ERROR state */
3030 		if (event->state <= PERF_EVENT_STATE_OFF)
3031 			continue;
3032 		/*
3033 		 * Listen to the 'cpu' scheduling filter constraint
3034 		 * of events:
3035 		 */
3036 		if (!event_filter_match(event))
3037 			continue;
3038 
3039 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3040 			if (group_sched_in(event, cpuctx, ctx))
3041 				can_add_hw = 0;
3042 		}
3043 	}
3044 }
3045 
3046 static void
3047 ctx_sched_in(struct perf_event_context *ctx,
3048 	     struct perf_cpu_context *cpuctx,
3049 	     enum event_type_t event_type,
3050 	     struct task_struct *task)
3051 {
3052 	int is_active = ctx->is_active;
3053 	u64 now;
3054 
3055 	lockdep_assert_held(&ctx->lock);
3056 
3057 	if (likely(!ctx->nr_events))
3058 		return;
3059 
3060 	ctx->is_active |= (event_type | EVENT_TIME);
3061 	if (ctx->task) {
3062 		if (!is_active)
3063 			cpuctx->task_ctx = ctx;
3064 		else
3065 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3066 	}
3067 
3068 	is_active ^= ctx->is_active; /* changed bits */
3069 
3070 	if (is_active & EVENT_TIME) {
3071 		/* start ctx time */
3072 		now = perf_clock();
3073 		ctx->timestamp = now;
3074 		perf_cgroup_set_timestamp(task, ctx);
3075 	}
3076 
3077 	/*
3078 	 * First go through the list and put on any pinned groups
3079 	 * in order to give them the best chance of going on.
3080 	 */
3081 	if (is_active & EVENT_PINNED)
3082 		ctx_pinned_sched_in(ctx, cpuctx);
3083 
3084 	/* Then walk through the lower prio flexible groups */
3085 	if (is_active & EVENT_FLEXIBLE)
3086 		ctx_flexible_sched_in(ctx, cpuctx);
3087 }
3088 
3089 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3090 			     enum event_type_t event_type,
3091 			     struct task_struct *task)
3092 {
3093 	struct perf_event_context *ctx = &cpuctx->ctx;
3094 
3095 	ctx_sched_in(ctx, cpuctx, event_type, task);
3096 }
3097 
3098 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3099 					struct task_struct *task)
3100 {
3101 	struct perf_cpu_context *cpuctx;
3102 
3103 	cpuctx = __get_cpu_context(ctx);
3104 	if (cpuctx->task_ctx == ctx)
3105 		return;
3106 
3107 	perf_ctx_lock(cpuctx, ctx);
3108 	/*
3109 	 * We must check ctx->nr_events while holding ctx->lock, such
3110 	 * that we serialize against perf_install_in_context().
3111 	 */
3112 	if (!ctx->nr_events)
3113 		goto unlock;
3114 
3115 	perf_pmu_disable(ctx->pmu);
3116 	/*
3117 	 * We want to keep the following priority order:
3118 	 * cpu pinned (that don't need to move), task pinned,
3119 	 * cpu flexible, task flexible.
3120 	 *
3121 	 * However, if task's ctx is not carrying any pinned
3122 	 * events, no need to flip the cpuctx's events around.
3123 	 */
3124 	if (!list_empty(&ctx->pinned_groups))
3125 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3126 	perf_event_sched_in(cpuctx, ctx, task);
3127 	perf_pmu_enable(ctx->pmu);
3128 
3129 unlock:
3130 	perf_ctx_unlock(cpuctx, ctx);
3131 }
3132 
3133 /*
3134  * Called from scheduler to add the events of the current task
3135  * with interrupts disabled.
3136  *
3137  * We restore the event value and then enable it.
3138  *
3139  * This does not protect us against NMI, but enable()
3140  * sets the enabled bit in the control field of event _before_
3141  * accessing the event control register. If a NMI hits, then it will
3142  * keep the event running.
3143  */
3144 void __perf_event_task_sched_in(struct task_struct *prev,
3145 				struct task_struct *task)
3146 {
3147 	struct perf_event_context *ctx;
3148 	int ctxn;
3149 
3150 	/*
3151 	 * If cgroup events exist on this CPU, then we need to check if we have
3152 	 * to switch in PMU state; cgroup event are system-wide mode only.
3153 	 *
3154 	 * Since cgroup events are CPU events, we must schedule these in before
3155 	 * we schedule in the task events.
3156 	 */
3157 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3158 		perf_cgroup_sched_in(prev, task);
3159 
3160 	for_each_task_context_nr(ctxn) {
3161 		ctx = task->perf_event_ctxp[ctxn];
3162 		if (likely(!ctx))
3163 			continue;
3164 
3165 		perf_event_context_sched_in(ctx, task);
3166 	}
3167 
3168 	if (atomic_read(&nr_switch_events))
3169 		perf_event_switch(task, prev, true);
3170 
3171 	if (__this_cpu_read(perf_sched_cb_usages))
3172 		perf_pmu_sched_task(prev, task, true);
3173 }
3174 
3175 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3176 {
3177 	u64 frequency = event->attr.sample_freq;
3178 	u64 sec = NSEC_PER_SEC;
3179 	u64 divisor, dividend;
3180 
3181 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3182 
3183 	count_fls = fls64(count);
3184 	nsec_fls = fls64(nsec);
3185 	frequency_fls = fls64(frequency);
3186 	sec_fls = 30;
3187 
3188 	/*
3189 	 * We got @count in @nsec, with a target of sample_freq HZ
3190 	 * the target period becomes:
3191 	 *
3192 	 *             @count * 10^9
3193 	 * period = -------------------
3194 	 *          @nsec * sample_freq
3195 	 *
3196 	 */
3197 
3198 	/*
3199 	 * Reduce accuracy by one bit such that @a and @b converge
3200 	 * to a similar magnitude.
3201 	 */
3202 #define REDUCE_FLS(a, b)		\
3203 do {					\
3204 	if (a##_fls > b##_fls) {	\
3205 		a >>= 1;		\
3206 		a##_fls--;		\
3207 	} else {			\
3208 		b >>= 1;		\
3209 		b##_fls--;		\
3210 	}				\
3211 } while (0)
3212 
3213 	/*
3214 	 * Reduce accuracy until either term fits in a u64, then proceed with
3215 	 * the other, so that finally we can do a u64/u64 division.
3216 	 */
3217 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3218 		REDUCE_FLS(nsec, frequency);
3219 		REDUCE_FLS(sec, count);
3220 	}
3221 
3222 	if (count_fls + sec_fls > 64) {
3223 		divisor = nsec * frequency;
3224 
3225 		while (count_fls + sec_fls > 64) {
3226 			REDUCE_FLS(count, sec);
3227 			divisor >>= 1;
3228 		}
3229 
3230 		dividend = count * sec;
3231 	} else {
3232 		dividend = count * sec;
3233 
3234 		while (nsec_fls + frequency_fls > 64) {
3235 			REDUCE_FLS(nsec, frequency);
3236 			dividend >>= 1;
3237 		}
3238 
3239 		divisor = nsec * frequency;
3240 	}
3241 
3242 	if (!divisor)
3243 		return dividend;
3244 
3245 	return div64_u64(dividend, divisor);
3246 }
3247 
3248 static DEFINE_PER_CPU(int, perf_throttled_count);
3249 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3250 
3251 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3252 {
3253 	struct hw_perf_event *hwc = &event->hw;
3254 	s64 period, sample_period;
3255 	s64 delta;
3256 
3257 	period = perf_calculate_period(event, nsec, count);
3258 
3259 	delta = (s64)(period - hwc->sample_period);
3260 	delta = (delta + 7) / 8; /* low pass filter */
3261 
3262 	sample_period = hwc->sample_period + delta;
3263 
3264 	if (!sample_period)
3265 		sample_period = 1;
3266 
3267 	hwc->sample_period = sample_period;
3268 
3269 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3270 		if (disable)
3271 			event->pmu->stop(event, PERF_EF_UPDATE);
3272 
3273 		local64_set(&hwc->period_left, 0);
3274 
3275 		if (disable)
3276 			event->pmu->start(event, PERF_EF_RELOAD);
3277 	}
3278 }
3279 
3280 /*
3281  * combine freq adjustment with unthrottling to avoid two passes over the
3282  * events. At the same time, make sure, having freq events does not change
3283  * the rate of unthrottling as that would introduce bias.
3284  */
3285 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3286 					   int needs_unthr)
3287 {
3288 	struct perf_event *event;
3289 	struct hw_perf_event *hwc;
3290 	u64 now, period = TICK_NSEC;
3291 	s64 delta;
3292 
3293 	/*
3294 	 * only need to iterate over all events iff:
3295 	 * - context have events in frequency mode (needs freq adjust)
3296 	 * - there are events to unthrottle on this cpu
3297 	 */
3298 	if (!(ctx->nr_freq || needs_unthr))
3299 		return;
3300 
3301 	raw_spin_lock(&ctx->lock);
3302 	perf_pmu_disable(ctx->pmu);
3303 
3304 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3305 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3306 			continue;
3307 
3308 		if (!event_filter_match(event))
3309 			continue;
3310 
3311 		perf_pmu_disable(event->pmu);
3312 
3313 		hwc = &event->hw;
3314 
3315 		if (hwc->interrupts == MAX_INTERRUPTS) {
3316 			hwc->interrupts = 0;
3317 			perf_log_throttle(event, 1);
3318 			event->pmu->start(event, 0);
3319 		}
3320 
3321 		if (!event->attr.freq || !event->attr.sample_freq)
3322 			goto next;
3323 
3324 		/*
3325 		 * stop the event and update event->count
3326 		 */
3327 		event->pmu->stop(event, PERF_EF_UPDATE);
3328 
3329 		now = local64_read(&event->count);
3330 		delta = now - hwc->freq_count_stamp;
3331 		hwc->freq_count_stamp = now;
3332 
3333 		/*
3334 		 * restart the event
3335 		 * reload only if value has changed
3336 		 * we have stopped the event so tell that
3337 		 * to perf_adjust_period() to avoid stopping it
3338 		 * twice.
3339 		 */
3340 		if (delta > 0)
3341 			perf_adjust_period(event, period, delta, false);
3342 
3343 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3344 	next:
3345 		perf_pmu_enable(event->pmu);
3346 	}
3347 
3348 	perf_pmu_enable(ctx->pmu);
3349 	raw_spin_unlock(&ctx->lock);
3350 }
3351 
3352 /*
3353  * Round-robin a context's events:
3354  */
3355 static void rotate_ctx(struct perf_event_context *ctx)
3356 {
3357 	/*
3358 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3359 	 * disabled by the inheritance code.
3360 	 */
3361 	if (!ctx->rotate_disable)
3362 		list_rotate_left(&ctx->flexible_groups);
3363 }
3364 
3365 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3366 {
3367 	struct perf_event_context *ctx = NULL;
3368 	int rotate = 0;
3369 
3370 	if (cpuctx->ctx.nr_events) {
3371 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3372 			rotate = 1;
3373 	}
3374 
3375 	ctx = cpuctx->task_ctx;
3376 	if (ctx && ctx->nr_events) {
3377 		if (ctx->nr_events != ctx->nr_active)
3378 			rotate = 1;
3379 	}
3380 
3381 	if (!rotate)
3382 		goto done;
3383 
3384 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3385 	perf_pmu_disable(cpuctx->ctx.pmu);
3386 
3387 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3388 	if (ctx)
3389 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3390 
3391 	rotate_ctx(&cpuctx->ctx);
3392 	if (ctx)
3393 		rotate_ctx(ctx);
3394 
3395 	perf_event_sched_in(cpuctx, ctx, current);
3396 
3397 	perf_pmu_enable(cpuctx->ctx.pmu);
3398 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3399 done:
3400 
3401 	return rotate;
3402 }
3403 
3404 void perf_event_task_tick(void)
3405 {
3406 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3407 	struct perf_event_context *ctx, *tmp;
3408 	int throttled;
3409 
3410 	lockdep_assert_irqs_disabled();
3411 
3412 	__this_cpu_inc(perf_throttled_seq);
3413 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3414 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3415 
3416 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3417 		perf_adjust_freq_unthr_context(ctx, throttled);
3418 }
3419 
3420 static int event_enable_on_exec(struct perf_event *event,
3421 				struct perf_event_context *ctx)
3422 {
3423 	if (!event->attr.enable_on_exec)
3424 		return 0;
3425 
3426 	event->attr.enable_on_exec = 0;
3427 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3428 		return 0;
3429 
3430 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3431 
3432 	return 1;
3433 }
3434 
3435 /*
3436  * Enable all of a task's events that have been marked enable-on-exec.
3437  * This expects task == current.
3438  */
3439 static void perf_event_enable_on_exec(int ctxn)
3440 {
3441 	struct perf_event_context *ctx, *clone_ctx = NULL;
3442 	enum event_type_t event_type = 0;
3443 	struct perf_cpu_context *cpuctx;
3444 	struct perf_event *event;
3445 	unsigned long flags;
3446 	int enabled = 0;
3447 
3448 	local_irq_save(flags);
3449 	ctx = current->perf_event_ctxp[ctxn];
3450 	if (!ctx || !ctx->nr_events)
3451 		goto out;
3452 
3453 	cpuctx = __get_cpu_context(ctx);
3454 	perf_ctx_lock(cpuctx, ctx);
3455 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3456 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3457 		enabled |= event_enable_on_exec(event, ctx);
3458 		event_type |= get_event_type(event);
3459 	}
3460 
3461 	/*
3462 	 * Unclone and reschedule this context if we enabled any event.
3463 	 */
3464 	if (enabled) {
3465 		clone_ctx = unclone_ctx(ctx);
3466 		ctx_resched(cpuctx, ctx, event_type);
3467 	} else {
3468 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3469 	}
3470 	perf_ctx_unlock(cpuctx, ctx);
3471 
3472 out:
3473 	local_irq_restore(flags);
3474 
3475 	if (clone_ctx)
3476 		put_ctx(clone_ctx);
3477 }
3478 
3479 struct perf_read_data {
3480 	struct perf_event *event;
3481 	bool group;
3482 	int ret;
3483 };
3484 
3485 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3486 {
3487 	u16 local_pkg, event_pkg;
3488 
3489 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3490 		int local_cpu = smp_processor_id();
3491 
3492 		event_pkg = topology_physical_package_id(event_cpu);
3493 		local_pkg = topology_physical_package_id(local_cpu);
3494 
3495 		if (event_pkg == local_pkg)
3496 			return local_cpu;
3497 	}
3498 
3499 	return event_cpu;
3500 }
3501 
3502 /*
3503  * Cross CPU call to read the hardware event
3504  */
3505 static void __perf_event_read(void *info)
3506 {
3507 	struct perf_read_data *data = info;
3508 	struct perf_event *sub, *event = data->event;
3509 	struct perf_event_context *ctx = event->ctx;
3510 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3511 	struct pmu *pmu = event->pmu;
3512 
3513 	/*
3514 	 * If this is a task context, we need to check whether it is
3515 	 * the current task context of this cpu.  If not it has been
3516 	 * scheduled out before the smp call arrived.  In that case
3517 	 * event->count would have been updated to a recent sample
3518 	 * when the event was scheduled out.
3519 	 */
3520 	if (ctx->task && cpuctx->task_ctx != ctx)
3521 		return;
3522 
3523 	raw_spin_lock(&ctx->lock);
3524 	if (ctx->is_active & EVENT_TIME) {
3525 		update_context_time(ctx);
3526 		update_cgrp_time_from_event(event);
3527 	}
3528 
3529 	perf_event_update_time(event);
3530 	if (data->group)
3531 		perf_event_update_sibling_time(event);
3532 
3533 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3534 		goto unlock;
3535 
3536 	if (!data->group) {
3537 		pmu->read(event);
3538 		data->ret = 0;
3539 		goto unlock;
3540 	}
3541 
3542 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3543 
3544 	pmu->read(event);
3545 
3546 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3547 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3548 			/*
3549 			 * Use sibling's PMU rather than @event's since
3550 			 * sibling could be on different (eg: software) PMU.
3551 			 */
3552 			sub->pmu->read(sub);
3553 		}
3554 	}
3555 
3556 	data->ret = pmu->commit_txn(pmu);
3557 
3558 unlock:
3559 	raw_spin_unlock(&ctx->lock);
3560 }
3561 
3562 static inline u64 perf_event_count(struct perf_event *event)
3563 {
3564 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3565 }
3566 
3567 /*
3568  * NMI-safe method to read a local event, that is an event that
3569  * is:
3570  *   - either for the current task, or for this CPU
3571  *   - does not have inherit set, for inherited task events
3572  *     will not be local and we cannot read them atomically
3573  *   - must not have a pmu::count method
3574  */
3575 int perf_event_read_local(struct perf_event *event, u64 *value,
3576 			  u64 *enabled, u64 *running)
3577 {
3578 	unsigned long flags;
3579 	int ret = 0;
3580 
3581 	/*
3582 	 * Disabling interrupts avoids all counter scheduling (context
3583 	 * switches, timer based rotation and IPIs).
3584 	 */
3585 	local_irq_save(flags);
3586 
3587 	/*
3588 	 * It must not be an event with inherit set, we cannot read
3589 	 * all child counters from atomic context.
3590 	 */
3591 	if (event->attr.inherit) {
3592 		ret = -EOPNOTSUPP;
3593 		goto out;
3594 	}
3595 
3596 	/* If this is a per-task event, it must be for current */
3597 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3598 	    event->hw.target != current) {
3599 		ret = -EINVAL;
3600 		goto out;
3601 	}
3602 
3603 	/* If this is a per-CPU event, it must be for this CPU */
3604 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3605 	    event->cpu != smp_processor_id()) {
3606 		ret = -EINVAL;
3607 		goto out;
3608 	}
3609 
3610 	/*
3611 	 * If the event is currently on this CPU, its either a per-task event,
3612 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3613 	 * oncpu == -1).
3614 	 */
3615 	if (event->oncpu == smp_processor_id())
3616 		event->pmu->read(event);
3617 
3618 	*value = local64_read(&event->count);
3619 	if (enabled || running) {
3620 		u64 now = event->shadow_ctx_time + perf_clock();
3621 		u64 __enabled, __running;
3622 
3623 		__perf_update_times(event, now, &__enabled, &__running);
3624 		if (enabled)
3625 			*enabled = __enabled;
3626 		if (running)
3627 			*running = __running;
3628 	}
3629 out:
3630 	local_irq_restore(flags);
3631 
3632 	return ret;
3633 }
3634 
3635 static int perf_event_read(struct perf_event *event, bool group)
3636 {
3637 	enum perf_event_state state = READ_ONCE(event->state);
3638 	int event_cpu, ret = 0;
3639 
3640 	/*
3641 	 * If event is enabled and currently active on a CPU, update the
3642 	 * value in the event structure:
3643 	 */
3644 again:
3645 	if (state == PERF_EVENT_STATE_ACTIVE) {
3646 		struct perf_read_data data;
3647 
3648 		/*
3649 		 * Orders the ->state and ->oncpu loads such that if we see
3650 		 * ACTIVE we must also see the right ->oncpu.
3651 		 *
3652 		 * Matches the smp_wmb() from event_sched_in().
3653 		 */
3654 		smp_rmb();
3655 
3656 		event_cpu = READ_ONCE(event->oncpu);
3657 		if ((unsigned)event_cpu >= nr_cpu_ids)
3658 			return 0;
3659 
3660 		data = (struct perf_read_data){
3661 			.event = event,
3662 			.group = group,
3663 			.ret = 0,
3664 		};
3665 
3666 		preempt_disable();
3667 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3668 
3669 		/*
3670 		 * Purposely ignore the smp_call_function_single() return
3671 		 * value.
3672 		 *
3673 		 * If event_cpu isn't a valid CPU it means the event got
3674 		 * scheduled out and that will have updated the event count.
3675 		 *
3676 		 * Therefore, either way, we'll have an up-to-date event count
3677 		 * after this.
3678 		 */
3679 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3680 		preempt_enable();
3681 		ret = data.ret;
3682 
3683 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
3684 		struct perf_event_context *ctx = event->ctx;
3685 		unsigned long flags;
3686 
3687 		raw_spin_lock_irqsave(&ctx->lock, flags);
3688 		state = event->state;
3689 		if (state != PERF_EVENT_STATE_INACTIVE) {
3690 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
3691 			goto again;
3692 		}
3693 
3694 		/*
3695 		 * May read while context is not active (e.g., thread is
3696 		 * blocked), in that case we cannot update context time
3697 		 */
3698 		if (ctx->is_active & EVENT_TIME) {
3699 			update_context_time(ctx);
3700 			update_cgrp_time_from_event(event);
3701 		}
3702 
3703 		perf_event_update_time(event);
3704 		if (group)
3705 			perf_event_update_sibling_time(event);
3706 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3707 	}
3708 
3709 	return ret;
3710 }
3711 
3712 /*
3713  * Initialize the perf_event context in a task_struct:
3714  */
3715 static void __perf_event_init_context(struct perf_event_context *ctx)
3716 {
3717 	raw_spin_lock_init(&ctx->lock);
3718 	mutex_init(&ctx->mutex);
3719 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3720 	INIT_LIST_HEAD(&ctx->pinned_groups);
3721 	INIT_LIST_HEAD(&ctx->flexible_groups);
3722 	INIT_LIST_HEAD(&ctx->event_list);
3723 	atomic_set(&ctx->refcount, 1);
3724 }
3725 
3726 static struct perf_event_context *
3727 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3728 {
3729 	struct perf_event_context *ctx;
3730 
3731 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3732 	if (!ctx)
3733 		return NULL;
3734 
3735 	__perf_event_init_context(ctx);
3736 	if (task) {
3737 		ctx->task = task;
3738 		get_task_struct(task);
3739 	}
3740 	ctx->pmu = pmu;
3741 
3742 	return ctx;
3743 }
3744 
3745 static struct task_struct *
3746 find_lively_task_by_vpid(pid_t vpid)
3747 {
3748 	struct task_struct *task;
3749 
3750 	rcu_read_lock();
3751 	if (!vpid)
3752 		task = current;
3753 	else
3754 		task = find_task_by_vpid(vpid);
3755 	if (task)
3756 		get_task_struct(task);
3757 	rcu_read_unlock();
3758 
3759 	if (!task)
3760 		return ERR_PTR(-ESRCH);
3761 
3762 	return task;
3763 }
3764 
3765 /*
3766  * Returns a matching context with refcount and pincount.
3767  */
3768 static struct perf_event_context *
3769 find_get_context(struct pmu *pmu, struct task_struct *task,
3770 		struct perf_event *event)
3771 {
3772 	struct perf_event_context *ctx, *clone_ctx = NULL;
3773 	struct perf_cpu_context *cpuctx;
3774 	void *task_ctx_data = NULL;
3775 	unsigned long flags;
3776 	int ctxn, err;
3777 	int cpu = event->cpu;
3778 
3779 	if (!task) {
3780 		/* Must be root to operate on a CPU event: */
3781 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3782 			return ERR_PTR(-EACCES);
3783 
3784 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3785 		ctx = &cpuctx->ctx;
3786 		get_ctx(ctx);
3787 		++ctx->pin_count;
3788 
3789 		return ctx;
3790 	}
3791 
3792 	err = -EINVAL;
3793 	ctxn = pmu->task_ctx_nr;
3794 	if (ctxn < 0)
3795 		goto errout;
3796 
3797 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3798 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3799 		if (!task_ctx_data) {
3800 			err = -ENOMEM;
3801 			goto errout;
3802 		}
3803 	}
3804 
3805 retry:
3806 	ctx = perf_lock_task_context(task, ctxn, &flags);
3807 	if (ctx) {
3808 		clone_ctx = unclone_ctx(ctx);
3809 		++ctx->pin_count;
3810 
3811 		if (task_ctx_data && !ctx->task_ctx_data) {
3812 			ctx->task_ctx_data = task_ctx_data;
3813 			task_ctx_data = NULL;
3814 		}
3815 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3816 
3817 		if (clone_ctx)
3818 			put_ctx(clone_ctx);
3819 	} else {
3820 		ctx = alloc_perf_context(pmu, task);
3821 		err = -ENOMEM;
3822 		if (!ctx)
3823 			goto errout;
3824 
3825 		if (task_ctx_data) {
3826 			ctx->task_ctx_data = task_ctx_data;
3827 			task_ctx_data = NULL;
3828 		}
3829 
3830 		err = 0;
3831 		mutex_lock(&task->perf_event_mutex);
3832 		/*
3833 		 * If it has already passed perf_event_exit_task().
3834 		 * we must see PF_EXITING, it takes this mutex too.
3835 		 */
3836 		if (task->flags & PF_EXITING)
3837 			err = -ESRCH;
3838 		else if (task->perf_event_ctxp[ctxn])
3839 			err = -EAGAIN;
3840 		else {
3841 			get_ctx(ctx);
3842 			++ctx->pin_count;
3843 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3844 		}
3845 		mutex_unlock(&task->perf_event_mutex);
3846 
3847 		if (unlikely(err)) {
3848 			put_ctx(ctx);
3849 
3850 			if (err == -EAGAIN)
3851 				goto retry;
3852 			goto errout;
3853 		}
3854 	}
3855 
3856 	kfree(task_ctx_data);
3857 	return ctx;
3858 
3859 errout:
3860 	kfree(task_ctx_data);
3861 	return ERR_PTR(err);
3862 }
3863 
3864 static void perf_event_free_filter(struct perf_event *event);
3865 static void perf_event_free_bpf_prog(struct perf_event *event);
3866 
3867 static void free_event_rcu(struct rcu_head *head)
3868 {
3869 	struct perf_event *event;
3870 
3871 	event = container_of(head, struct perf_event, rcu_head);
3872 	if (event->ns)
3873 		put_pid_ns(event->ns);
3874 	perf_event_free_filter(event);
3875 	kfree(event);
3876 }
3877 
3878 static void ring_buffer_attach(struct perf_event *event,
3879 			       struct ring_buffer *rb);
3880 
3881 static void detach_sb_event(struct perf_event *event)
3882 {
3883 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3884 
3885 	raw_spin_lock(&pel->lock);
3886 	list_del_rcu(&event->sb_list);
3887 	raw_spin_unlock(&pel->lock);
3888 }
3889 
3890 static bool is_sb_event(struct perf_event *event)
3891 {
3892 	struct perf_event_attr *attr = &event->attr;
3893 
3894 	if (event->parent)
3895 		return false;
3896 
3897 	if (event->attach_state & PERF_ATTACH_TASK)
3898 		return false;
3899 
3900 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3901 	    attr->comm || attr->comm_exec ||
3902 	    attr->task ||
3903 	    attr->context_switch)
3904 		return true;
3905 	return false;
3906 }
3907 
3908 static void unaccount_pmu_sb_event(struct perf_event *event)
3909 {
3910 	if (is_sb_event(event))
3911 		detach_sb_event(event);
3912 }
3913 
3914 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3915 {
3916 	if (event->parent)
3917 		return;
3918 
3919 	if (is_cgroup_event(event))
3920 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3921 }
3922 
3923 #ifdef CONFIG_NO_HZ_FULL
3924 static DEFINE_SPINLOCK(nr_freq_lock);
3925 #endif
3926 
3927 static void unaccount_freq_event_nohz(void)
3928 {
3929 #ifdef CONFIG_NO_HZ_FULL
3930 	spin_lock(&nr_freq_lock);
3931 	if (atomic_dec_and_test(&nr_freq_events))
3932 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3933 	spin_unlock(&nr_freq_lock);
3934 #endif
3935 }
3936 
3937 static void unaccount_freq_event(void)
3938 {
3939 	if (tick_nohz_full_enabled())
3940 		unaccount_freq_event_nohz();
3941 	else
3942 		atomic_dec(&nr_freq_events);
3943 }
3944 
3945 static void unaccount_event(struct perf_event *event)
3946 {
3947 	bool dec = false;
3948 
3949 	if (event->parent)
3950 		return;
3951 
3952 	if (event->attach_state & PERF_ATTACH_TASK)
3953 		dec = true;
3954 	if (event->attr.mmap || event->attr.mmap_data)
3955 		atomic_dec(&nr_mmap_events);
3956 	if (event->attr.comm)
3957 		atomic_dec(&nr_comm_events);
3958 	if (event->attr.namespaces)
3959 		atomic_dec(&nr_namespaces_events);
3960 	if (event->attr.task)
3961 		atomic_dec(&nr_task_events);
3962 	if (event->attr.freq)
3963 		unaccount_freq_event();
3964 	if (event->attr.context_switch) {
3965 		dec = true;
3966 		atomic_dec(&nr_switch_events);
3967 	}
3968 	if (is_cgroup_event(event))
3969 		dec = true;
3970 	if (has_branch_stack(event))
3971 		dec = true;
3972 
3973 	if (dec) {
3974 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3975 			schedule_delayed_work(&perf_sched_work, HZ);
3976 	}
3977 
3978 	unaccount_event_cpu(event, event->cpu);
3979 
3980 	unaccount_pmu_sb_event(event);
3981 }
3982 
3983 static void perf_sched_delayed(struct work_struct *work)
3984 {
3985 	mutex_lock(&perf_sched_mutex);
3986 	if (atomic_dec_and_test(&perf_sched_count))
3987 		static_branch_disable(&perf_sched_events);
3988 	mutex_unlock(&perf_sched_mutex);
3989 }
3990 
3991 /*
3992  * The following implement mutual exclusion of events on "exclusive" pmus
3993  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3994  * at a time, so we disallow creating events that might conflict, namely:
3995  *
3996  *  1) cpu-wide events in the presence of per-task events,
3997  *  2) per-task events in the presence of cpu-wide events,
3998  *  3) two matching events on the same context.
3999  *
4000  * The former two cases are handled in the allocation path (perf_event_alloc(),
4001  * _free_event()), the latter -- before the first perf_install_in_context().
4002  */
4003 static int exclusive_event_init(struct perf_event *event)
4004 {
4005 	struct pmu *pmu = event->pmu;
4006 
4007 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4008 		return 0;
4009 
4010 	/*
4011 	 * Prevent co-existence of per-task and cpu-wide events on the
4012 	 * same exclusive pmu.
4013 	 *
4014 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4015 	 * events on this "exclusive" pmu, positive means there are
4016 	 * per-task events.
4017 	 *
4018 	 * Since this is called in perf_event_alloc() path, event::ctx
4019 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4020 	 * to mean "per-task event", because unlike other attach states it
4021 	 * never gets cleared.
4022 	 */
4023 	if (event->attach_state & PERF_ATTACH_TASK) {
4024 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4025 			return -EBUSY;
4026 	} else {
4027 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4028 			return -EBUSY;
4029 	}
4030 
4031 	return 0;
4032 }
4033 
4034 static void exclusive_event_destroy(struct perf_event *event)
4035 {
4036 	struct pmu *pmu = event->pmu;
4037 
4038 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4039 		return;
4040 
4041 	/* see comment in exclusive_event_init() */
4042 	if (event->attach_state & PERF_ATTACH_TASK)
4043 		atomic_dec(&pmu->exclusive_cnt);
4044 	else
4045 		atomic_inc(&pmu->exclusive_cnt);
4046 }
4047 
4048 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4049 {
4050 	if ((e1->pmu == e2->pmu) &&
4051 	    (e1->cpu == e2->cpu ||
4052 	     e1->cpu == -1 ||
4053 	     e2->cpu == -1))
4054 		return true;
4055 	return false;
4056 }
4057 
4058 /* Called under the same ctx::mutex as perf_install_in_context() */
4059 static bool exclusive_event_installable(struct perf_event *event,
4060 					struct perf_event_context *ctx)
4061 {
4062 	struct perf_event *iter_event;
4063 	struct pmu *pmu = event->pmu;
4064 
4065 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4066 		return true;
4067 
4068 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4069 		if (exclusive_event_match(iter_event, event))
4070 			return false;
4071 	}
4072 
4073 	return true;
4074 }
4075 
4076 static void perf_addr_filters_splice(struct perf_event *event,
4077 				       struct list_head *head);
4078 
4079 static void _free_event(struct perf_event *event)
4080 {
4081 	irq_work_sync(&event->pending);
4082 
4083 	unaccount_event(event);
4084 
4085 	if (event->rb) {
4086 		/*
4087 		 * Can happen when we close an event with re-directed output.
4088 		 *
4089 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4090 		 * over us; possibly making our ring_buffer_put() the last.
4091 		 */
4092 		mutex_lock(&event->mmap_mutex);
4093 		ring_buffer_attach(event, NULL);
4094 		mutex_unlock(&event->mmap_mutex);
4095 	}
4096 
4097 	if (is_cgroup_event(event))
4098 		perf_detach_cgroup(event);
4099 
4100 	if (!event->parent) {
4101 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4102 			put_callchain_buffers();
4103 	}
4104 
4105 	perf_event_free_bpf_prog(event);
4106 	perf_addr_filters_splice(event, NULL);
4107 	kfree(event->addr_filters_offs);
4108 
4109 	if (event->destroy)
4110 		event->destroy(event);
4111 
4112 	if (event->ctx)
4113 		put_ctx(event->ctx);
4114 
4115 	exclusive_event_destroy(event);
4116 	module_put(event->pmu->module);
4117 
4118 	call_rcu(&event->rcu_head, free_event_rcu);
4119 }
4120 
4121 /*
4122  * Used to free events which have a known refcount of 1, such as in error paths
4123  * where the event isn't exposed yet and inherited events.
4124  */
4125 static void free_event(struct perf_event *event)
4126 {
4127 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4128 				"unexpected event refcount: %ld; ptr=%p\n",
4129 				atomic_long_read(&event->refcount), event)) {
4130 		/* leak to avoid use-after-free */
4131 		return;
4132 	}
4133 
4134 	_free_event(event);
4135 }
4136 
4137 /*
4138  * Remove user event from the owner task.
4139  */
4140 static void perf_remove_from_owner(struct perf_event *event)
4141 {
4142 	struct task_struct *owner;
4143 
4144 	rcu_read_lock();
4145 	/*
4146 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4147 	 * observe !owner it means the list deletion is complete and we can
4148 	 * indeed free this event, otherwise we need to serialize on
4149 	 * owner->perf_event_mutex.
4150 	 */
4151 	owner = READ_ONCE(event->owner);
4152 	if (owner) {
4153 		/*
4154 		 * Since delayed_put_task_struct() also drops the last
4155 		 * task reference we can safely take a new reference
4156 		 * while holding the rcu_read_lock().
4157 		 */
4158 		get_task_struct(owner);
4159 	}
4160 	rcu_read_unlock();
4161 
4162 	if (owner) {
4163 		/*
4164 		 * If we're here through perf_event_exit_task() we're already
4165 		 * holding ctx->mutex which would be an inversion wrt. the
4166 		 * normal lock order.
4167 		 *
4168 		 * However we can safely take this lock because its the child
4169 		 * ctx->mutex.
4170 		 */
4171 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4172 
4173 		/*
4174 		 * We have to re-check the event->owner field, if it is cleared
4175 		 * we raced with perf_event_exit_task(), acquiring the mutex
4176 		 * ensured they're done, and we can proceed with freeing the
4177 		 * event.
4178 		 */
4179 		if (event->owner) {
4180 			list_del_init(&event->owner_entry);
4181 			smp_store_release(&event->owner, NULL);
4182 		}
4183 		mutex_unlock(&owner->perf_event_mutex);
4184 		put_task_struct(owner);
4185 	}
4186 }
4187 
4188 static void put_event(struct perf_event *event)
4189 {
4190 	if (!atomic_long_dec_and_test(&event->refcount))
4191 		return;
4192 
4193 	_free_event(event);
4194 }
4195 
4196 /*
4197  * Kill an event dead; while event:refcount will preserve the event
4198  * object, it will not preserve its functionality. Once the last 'user'
4199  * gives up the object, we'll destroy the thing.
4200  */
4201 int perf_event_release_kernel(struct perf_event *event)
4202 {
4203 	struct perf_event_context *ctx = event->ctx;
4204 	struct perf_event *child, *tmp;
4205 	LIST_HEAD(free_list);
4206 
4207 	/*
4208 	 * If we got here through err_file: fput(event_file); we will not have
4209 	 * attached to a context yet.
4210 	 */
4211 	if (!ctx) {
4212 		WARN_ON_ONCE(event->attach_state &
4213 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4214 		goto no_ctx;
4215 	}
4216 
4217 	if (!is_kernel_event(event))
4218 		perf_remove_from_owner(event);
4219 
4220 	ctx = perf_event_ctx_lock(event);
4221 	WARN_ON_ONCE(ctx->parent_ctx);
4222 	perf_remove_from_context(event, DETACH_GROUP);
4223 
4224 	raw_spin_lock_irq(&ctx->lock);
4225 	/*
4226 	 * Mark this event as STATE_DEAD, there is no external reference to it
4227 	 * anymore.
4228 	 *
4229 	 * Anybody acquiring event->child_mutex after the below loop _must_
4230 	 * also see this, most importantly inherit_event() which will avoid
4231 	 * placing more children on the list.
4232 	 *
4233 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4234 	 * child events.
4235 	 */
4236 	event->state = PERF_EVENT_STATE_DEAD;
4237 	raw_spin_unlock_irq(&ctx->lock);
4238 
4239 	perf_event_ctx_unlock(event, ctx);
4240 
4241 again:
4242 	mutex_lock(&event->child_mutex);
4243 	list_for_each_entry(child, &event->child_list, child_list) {
4244 
4245 		/*
4246 		 * Cannot change, child events are not migrated, see the
4247 		 * comment with perf_event_ctx_lock_nested().
4248 		 */
4249 		ctx = READ_ONCE(child->ctx);
4250 		/*
4251 		 * Since child_mutex nests inside ctx::mutex, we must jump
4252 		 * through hoops. We start by grabbing a reference on the ctx.
4253 		 *
4254 		 * Since the event cannot get freed while we hold the
4255 		 * child_mutex, the context must also exist and have a !0
4256 		 * reference count.
4257 		 */
4258 		get_ctx(ctx);
4259 
4260 		/*
4261 		 * Now that we have a ctx ref, we can drop child_mutex, and
4262 		 * acquire ctx::mutex without fear of it going away. Then we
4263 		 * can re-acquire child_mutex.
4264 		 */
4265 		mutex_unlock(&event->child_mutex);
4266 		mutex_lock(&ctx->mutex);
4267 		mutex_lock(&event->child_mutex);
4268 
4269 		/*
4270 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4271 		 * state, if child is still the first entry, it didn't get freed
4272 		 * and we can continue doing so.
4273 		 */
4274 		tmp = list_first_entry_or_null(&event->child_list,
4275 					       struct perf_event, child_list);
4276 		if (tmp == child) {
4277 			perf_remove_from_context(child, DETACH_GROUP);
4278 			list_move(&child->child_list, &free_list);
4279 			/*
4280 			 * This matches the refcount bump in inherit_event();
4281 			 * this can't be the last reference.
4282 			 */
4283 			put_event(event);
4284 		}
4285 
4286 		mutex_unlock(&event->child_mutex);
4287 		mutex_unlock(&ctx->mutex);
4288 		put_ctx(ctx);
4289 		goto again;
4290 	}
4291 	mutex_unlock(&event->child_mutex);
4292 
4293 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4294 		list_del(&child->child_list);
4295 		free_event(child);
4296 	}
4297 
4298 no_ctx:
4299 	put_event(event); /* Must be the 'last' reference */
4300 	return 0;
4301 }
4302 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4303 
4304 /*
4305  * Called when the last reference to the file is gone.
4306  */
4307 static int perf_release(struct inode *inode, struct file *file)
4308 {
4309 	perf_event_release_kernel(file->private_data);
4310 	return 0;
4311 }
4312 
4313 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4314 {
4315 	struct perf_event *child;
4316 	u64 total = 0;
4317 
4318 	*enabled = 0;
4319 	*running = 0;
4320 
4321 	mutex_lock(&event->child_mutex);
4322 
4323 	(void)perf_event_read(event, false);
4324 	total += perf_event_count(event);
4325 
4326 	*enabled += event->total_time_enabled +
4327 			atomic64_read(&event->child_total_time_enabled);
4328 	*running += event->total_time_running +
4329 			atomic64_read(&event->child_total_time_running);
4330 
4331 	list_for_each_entry(child, &event->child_list, child_list) {
4332 		(void)perf_event_read(child, false);
4333 		total += perf_event_count(child);
4334 		*enabled += child->total_time_enabled;
4335 		*running += child->total_time_running;
4336 	}
4337 	mutex_unlock(&event->child_mutex);
4338 
4339 	return total;
4340 }
4341 
4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343 {
4344 	struct perf_event_context *ctx;
4345 	u64 count;
4346 
4347 	ctx = perf_event_ctx_lock(event);
4348 	count = __perf_event_read_value(event, enabled, running);
4349 	perf_event_ctx_unlock(event, ctx);
4350 
4351 	return count;
4352 }
4353 EXPORT_SYMBOL_GPL(perf_event_read_value);
4354 
4355 static int __perf_read_group_add(struct perf_event *leader,
4356 					u64 read_format, u64 *values)
4357 {
4358 	struct perf_event_context *ctx = leader->ctx;
4359 	struct perf_event *sub;
4360 	unsigned long flags;
4361 	int n = 1; /* skip @nr */
4362 	int ret;
4363 
4364 	ret = perf_event_read(leader, true);
4365 	if (ret)
4366 		return ret;
4367 
4368 	raw_spin_lock_irqsave(&ctx->lock, flags);
4369 
4370 	/*
4371 	 * Since we co-schedule groups, {enabled,running} times of siblings
4372 	 * will be identical to those of the leader, so we only publish one
4373 	 * set.
4374 	 */
4375 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4376 		values[n++] += leader->total_time_enabled +
4377 			atomic64_read(&leader->child_total_time_enabled);
4378 	}
4379 
4380 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4381 		values[n++] += leader->total_time_running +
4382 			atomic64_read(&leader->child_total_time_running);
4383 	}
4384 
4385 	/*
4386 	 * Write {count,id} tuples for every sibling.
4387 	 */
4388 	values[n++] += perf_event_count(leader);
4389 	if (read_format & PERF_FORMAT_ID)
4390 		values[n++] = primary_event_id(leader);
4391 
4392 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4393 		values[n++] += perf_event_count(sub);
4394 		if (read_format & PERF_FORMAT_ID)
4395 			values[n++] = primary_event_id(sub);
4396 	}
4397 
4398 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4399 	return 0;
4400 }
4401 
4402 static int perf_read_group(struct perf_event *event,
4403 				   u64 read_format, char __user *buf)
4404 {
4405 	struct perf_event *leader = event->group_leader, *child;
4406 	struct perf_event_context *ctx = leader->ctx;
4407 	int ret;
4408 	u64 *values;
4409 
4410 	lockdep_assert_held(&ctx->mutex);
4411 
4412 	values = kzalloc(event->read_size, GFP_KERNEL);
4413 	if (!values)
4414 		return -ENOMEM;
4415 
4416 	values[0] = 1 + leader->nr_siblings;
4417 
4418 	/*
4419 	 * By locking the child_mutex of the leader we effectively
4420 	 * lock the child list of all siblings.. XXX explain how.
4421 	 */
4422 	mutex_lock(&leader->child_mutex);
4423 
4424 	ret = __perf_read_group_add(leader, read_format, values);
4425 	if (ret)
4426 		goto unlock;
4427 
4428 	list_for_each_entry(child, &leader->child_list, child_list) {
4429 		ret = __perf_read_group_add(child, read_format, values);
4430 		if (ret)
4431 			goto unlock;
4432 	}
4433 
4434 	mutex_unlock(&leader->child_mutex);
4435 
4436 	ret = event->read_size;
4437 	if (copy_to_user(buf, values, event->read_size))
4438 		ret = -EFAULT;
4439 	goto out;
4440 
4441 unlock:
4442 	mutex_unlock(&leader->child_mutex);
4443 out:
4444 	kfree(values);
4445 	return ret;
4446 }
4447 
4448 static int perf_read_one(struct perf_event *event,
4449 				 u64 read_format, char __user *buf)
4450 {
4451 	u64 enabled, running;
4452 	u64 values[4];
4453 	int n = 0;
4454 
4455 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4456 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4457 		values[n++] = enabled;
4458 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4459 		values[n++] = running;
4460 	if (read_format & PERF_FORMAT_ID)
4461 		values[n++] = primary_event_id(event);
4462 
4463 	if (copy_to_user(buf, values, n * sizeof(u64)))
4464 		return -EFAULT;
4465 
4466 	return n * sizeof(u64);
4467 }
4468 
4469 static bool is_event_hup(struct perf_event *event)
4470 {
4471 	bool no_children;
4472 
4473 	if (event->state > PERF_EVENT_STATE_EXIT)
4474 		return false;
4475 
4476 	mutex_lock(&event->child_mutex);
4477 	no_children = list_empty(&event->child_list);
4478 	mutex_unlock(&event->child_mutex);
4479 	return no_children;
4480 }
4481 
4482 /*
4483  * Read the performance event - simple non blocking version for now
4484  */
4485 static ssize_t
4486 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4487 {
4488 	u64 read_format = event->attr.read_format;
4489 	int ret;
4490 
4491 	/*
4492 	 * Return end-of-file for a read on a event that is in
4493 	 * error state (i.e. because it was pinned but it couldn't be
4494 	 * scheduled on to the CPU at some point).
4495 	 */
4496 	if (event->state == PERF_EVENT_STATE_ERROR)
4497 		return 0;
4498 
4499 	if (count < event->read_size)
4500 		return -ENOSPC;
4501 
4502 	WARN_ON_ONCE(event->ctx->parent_ctx);
4503 	if (read_format & PERF_FORMAT_GROUP)
4504 		ret = perf_read_group(event, read_format, buf);
4505 	else
4506 		ret = perf_read_one(event, read_format, buf);
4507 
4508 	return ret;
4509 }
4510 
4511 static ssize_t
4512 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4513 {
4514 	struct perf_event *event = file->private_data;
4515 	struct perf_event_context *ctx;
4516 	int ret;
4517 
4518 	ctx = perf_event_ctx_lock(event);
4519 	ret = __perf_read(event, buf, count);
4520 	perf_event_ctx_unlock(event, ctx);
4521 
4522 	return ret;
4523 }
4524 
4525 static __poll_t perf_poll(struct file *file, poll_table *wait)
4526 {
4527 	struct perf_event *event = file->private_data;
4528 	struct ring_buffer *rb;
4529 	__poll_t events = EPOLLHUP;
4530 
4531 	poll_wait(file, &event->waitq, wait);
4532 
4533 	if (is_event_hup(event))
4534 		return events;
4535 
4536 	/*
4537 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4538 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4539 	 */
4540 	mutex_lock(&event->mmap_mutex);
4541 	rb = event->rb;
4542 	if (rb)
4543 		events = atomic_xchg(&rb->poll, 0);
4544 	mutex_unlock(&event->mmap_mutex);
4545 	return events;
4546 }
4547 
4548 static void _perf_event_reset(struct perf_event *event)
4549 {
4550 	(void)perf_event_read(event, false);
4551 	local64_set(&event->count, 0);
4552 	perf_event_update_userpage(event);
4553 }
4554 
4555 /*
4556  * Holding the top-level event's child_mutex means that any
4557  * descendant process that has inherited this event will block
4558  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4559  * task existence requirements of perf_event_enable/disable.
4560  */
4561 static void perf_event_for_each_child(struct perf_event *event,
4562 					void (*func)(struct perf_event *))
4563 {
4564 	struct perf_event *child;
4565 
4566 	WARN_ON_ONCE(event->ctx->parent_ctx);
4567 
4568 	mutex_lock(&event->child_mutex);
4569 	func(event);
4570 	list_for_each_entry(child, &event->child_list, child_list)
4571 		func(child);
4572 	mutex_unlock(&event->child_mutex);
4573 }
4574 
4575 static void perf_event_for_each(struct perf_event *event,
4576 				  void (*func)(struct perf_event *))
4577 {
4578 	struct perf_event_context *ctx = event->ctx;
4579 	struct perf_event *sibling;
4580 
4581 	lockdep_assert_held(&ctx->mutex);
4582 
4583 	event = event->group_leader;
4584 
4585 	perf_event_for_each_child(event, func);
4586 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4587 		perf_event_for_each_child(sibling, func);
4588 }
4589 
4590 static void __perf_event_period(struct perf_event *event,
4591 				struct perf_cpu_context *cpuctx,
4592 				struct perf_event_context *ctx,
4593 				void *info)
4594 {
4595 	u64 value = *((u64 *)info);
4596 	bool active;
4597 
4598 	if (event->attr.freq) {
4599 		event->attr.sample_freq = value;
4600 	} else {
4601 		event->attr.sample_period = value;
4602 		event->hw.sample_period = value;
4603 	}
4604 
4605 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4606 	if (active) {
4607 		perf_pmu_disable(ctx->pmu);
4608 		/*
4609 		 * We could be throttled; unthrottle now to avoid the tick
4610 		 * trying to unthrottle while we already re-started the event.
4611 		 */
4612 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4613 			event->hw.interrupts = 0;
4614 			perf_log_throttle(event, 1);
4615 		}
4616 		event->pmu->stop(event, PERF_EF_UPDATE);
4617 	}
4618 
4619 	local64_set(&event->hw.period_left, 0);
4620 
4621 	if (active) {
4622 		event->pmu->start(event, PERF_EF_RELOAD);
4623 		perf_pmu_enable(ctx->pmu);
4624 	}
4625 }
4626 
4627 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4628 {
4629 	u64 value;
4630 
4631 	if (!is_sampling_event(event))
4632 		return -EINVAL;
4633 
4634 	if (copy_from_user(&value, arg, sizeof(value)))
4635 		return -EFAULT;
4636 
4637 	if (!value)
4638 		return -EINVAL;
4639 
4640 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4641 		return -EINVAL;
4642 
4643 	event_function_call(event, __perf_event_period, &value);
4644 
4645 	return 0;
4646 }
4647 
4648 static const struct file_operations perf_fops;
4649 
4650 static inline int perf_fget_light(int fd, struct fd *p)
4651 {
4652 	struct fd f = fdget(fd);
4653 	if (!f.file)
4654 		return -EBADF;
4655 
4656 	if (f.file->f_op != &perf_fops) {
4657 		fdput(f);
4658 		return -EBADF;
4659 	}
4660 	*p = f;
4661 	return 0;
4662 }
4663 
4664 static int perf_event_set_output(struct perf_event *event,
4665 				 struct perf_event *output_event);
4666 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4667 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4668 
4669 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4670 {
4671 	void (*func)(struct perf_event *);
4672 	u32 flags = arg;
4673 
4674 	switch (cmd) {
4675 	case PERF_EVENT_IOC_ENABLE:
4676 		func = _perf_event_enable;
4677 		break;
4678 	case PERF_EVENT_IOC_DISABLE:
4679 		func = _perf_event_disable;
4680 		break;
4681 	case PERF_EVENT_IOC_RESET:
4682 		func = _perf_event_reset;
4683 		break;
4684 
4685 	case PERF_EVENT_IOC_REFRESH:
4686 		return _perf_event_refresh(event, arg);
4687 
4688 	case PERF_EVENT_IOC_PERIOD:
4689 		return perf_event_period(event, (u64 __user *)arg);
4690 
4691 	case PERF_EVENT_IOC_ID:
4692 	{
4693 		u64 id = primary_event_id(event);
4694 
4695 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4696 			return -EFAULT;
4697 		return 0;
4698 	}
4699 
4700 	case PERF_EVENT_IOC_SET_OUTPUT:
4701 	{
4702 		int ret;
4703 		if (arg != -1) {
4704 			struct perf_event *output_event;
4705 			struct fd output;
4706 			ret = perf_fget_light(arg, &output);
4707 			if (ret)
4708 				return ret;
4709 			output_event = output.file->private_data;
4710 			ret = perf_event_set_output(event, output_event);
4711 			fdput(output);
4712 		} else {
4713 			ret = perf_event_set_output(event, NULL);
4714 		}
4715 		return ret;
4716 	}
4717 
4718 	case PERF_EVENT_IOC_SET_FILTER:
4719 		return perf_event_set_filter(event, (void __user *)arg);
4720 
4721 	case PERF_EVENT_IOC_SET_BPF:
4722 		return perf_event_set_bpf_prog(event, arg);
4723 
4724 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4725 		struct ring_buffer *rb;
4726 
4727 		rcu_read_lock();
4728 		rb = rcu_dereference(event->rb);
4729 		if (!rb || !rb->nr_pages) {
4730 			rcu_read_unlock();
4731 			return -EINVAL;
4732 		}
4733 		rb_toggle_paused(rb, !!arg);
4734 		rcu_read_unlock();
4735 		return 0;
4736 	}
4737 
4738 	case PERF_EVENT_IOC_QUERY_BPF:
4739 		return perf_event_query_prog_array(event, (void __user *)arg);
4740 	default:
4741 		return -ENOTTY;
4742 	}
4743 
4744 	if (flags & PERF_IOC_FLAG_GROUP)
4745 		perf_event_for_each(event, func);
4746 	else
4747 		perf_event_for_each_child(event, func);
4748 
4749 	return 0;
4750 }
4751 
4752 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4753 {
4754 	struct perf_event *event = file->private_data;
4755 	struct perf_event_context *ctx;
4756 	long ret;
4757 
4758 	ctx = perf_event_ctx_lock(event);
4759 	ret = _perf_ioctl(event, cmd, arg);
4760 	perf_event_ctx_unlock(event, ctx);
4761 
4762 	return ret;
4763 }
4764 
4765 #ifdef CONFIG_COMPAT
4766 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4767 				unsigned long arg)
4768 {
4769 	switch (_IOC_NR(cmd)) {
4770 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4771 	case _IOC_NR(PERF_EVENT_IOC_ID):
4772 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4773 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4774 			cmd &= ~IOCSIZE_MASK;
4775 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4776 		}
4777 		break;
4778 	}
4779 	return perf_ioctl(file, cmd, arg);
4780 }
4781 #else
4782 # define perf_compat_ioctl NULL
4783 #endif
4784 
4785 int perf_event_task_enable(void)
4786 {
4787 	struct perf_event_context *ctx;
4788 	struct perf_event *event;
4789 
4790 	mutex_lock(&current->perf_event_mutex);
4791 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4792 		ctx = perf_event_ctx_lock(event);
4793 		perf_event_for_each_child(event, _perf_event_enable);
4794 		perf_event_ctx_unlock(event, ctx);
4795 	}
4796 	mutex_unlock(&current->perf_event_mutex);
4797 
4798 	return 0;
4799 }
4800 
4801 int perf_event_task_disable(void)
4802 {
4803 	struct perf_event_context *ctx;
4804 	struct perf_event *event;
4805 
4806 	mutex_lock(&current->perf_event_mutex);
4807 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4808 		ctx = perf_event_ctx_lock(event);
4809 		perf_event_for_each_child(event, _perf_event_disable);
4810 		perf_event_ctx_unlock(event, ctx);
4811 	}
4812 	mutex_unlock(&current->perf_event_mutex);
4813 
4814 	return 0;
4815 }
4816 
4817 static int perf_event_index(struct perf_event *event)
4818 {
4819 	if (event->hw.state & PERF_HES_STOPPED)
4820 		return 0;
4821 
4822 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4823 		return 0;
4824 
4825 	return event->pmu->event_idx(event);
4826 }
4827 
4828 static void calc_timer_values(struct perf_event *event,
4829 				u64 *now,
4830 				u64 *enabled,
4831 				u64 *running)
4832 {
4833 	u64 ctx_time;
4834 
4835 	*now = perf_clock();
4836 	ctx_time = event->shadow_ctx_time + *now;
4837 	__perf_update_times(event, ctx_time, enabled, running);
4838 }
4839 
4840 static void perf_event_init_userpage(struct perf_event *event)
4841 {
4842 	struct perf_event_mmap_page *userpg;
4843 	struct ring_buffer *rb;
4844 
4845 	rcu_read_lock();
4846 	rb = rcu_dereference(event->rb);
4847 	if (!rb)
4848 		goto unlock;
4849 
4850 	userpg = rb->user_page;
4851 
4852 	/* Allow new userspace to detect that bit 0 is deprecated */
4853 	userpg->cap_bit0_is_deprecated = 1;
4854 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4855 	userpg->data_offset = PAGE_SIZE;
4856 	userpg->data_size = perf_data_size(rb);
4857 
4858 unlock:
4859 	rcu_read_unlock();
4860 }
4861 
4862 void __weak arch_perf_update_userpage(
4863 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4864 {
4865 }
4866 
4867 /*
4868  * Callers need to ensure there can be no nesting of this function, otherwise
4869  * the seqlock logic goes bad. We can not serialize this because the arch
4870  * code calls this from NMI context.
4871  */
4872 void perf_event_update_userpage(struct perf_event *event)
4873 {
4874 	struct perf_event_mmap_page *userpg;
4875 	struct ring_buffer *rb;
4876 	u64 enabled, running, now;
4877 
4878 	rcu_read_lock();
4879 	rb = rcu_dereference(event->rb);
4880 	if (!rb)
4881 		goto unlock;
4882 
4883 	/*
4884 	 * compute total_time_enabled, total_time_running
4885 	 * based on snapshot values taken when the event
4886 	 * was last scheduled in.
4887 	 *
4888 	 * we cannot simply called update_context_time()
4889 	 * because of locking issue as we can be called in
4890 	 * NMI context
4891 	 */
4892 	calc_timer_values(event, &now, &enabled, &running);
4893 
4894 	userpg = rb->user_page;
4895 	/*
4896 	 * Disable preemption so as to not let the corresponding user-space
4897 	 * spin too long if we get preempted.
4898 	 */
4899 	preempt_disable();
4900 	++userpg->lock;
4901 	barrier();
4902 	userpg->index = perf_event_index(event);
4903 	userpg->offset = perf_event_count(event);
4904 	if (userpg->index)
4905 		userpg->offset -= local64_read(&event->hw.prev_count);
4906 
4907 	userpg->time_enabled = enabled +
4908 			atomic64_read(&event->child_total_time_enabled);
4909 
4910 	userpg->time_running = running +
4911 			atomic64_read(&event->child_total_time_running);
4912 
4913 	arch_perf_update_userpage(event, userpg, now);
4914 
4915 	barrier();
4916 	++userpg->lock;
4917 	preempt_enable();
4918 unlock:
4919 	rcu_read_unlock();
4920 }
4921 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
4922 
4923 static int perf_mmap_fault(struct vm_fault *vmf)
4924 {
4925 	struct perf_event *event = vmf->vma->vm_file->private_data;
4926 	struct ring_buffer *rb;
4927 	int ret = VM_FAULT_SIGBUS;
4928 
4929 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4930 		if (vmf->pgoff == 0)
4931 			ret = 0;
4932 		return ret;
4933 	}
4934 
4935 	rcu_read_lock();
4936 	rb = rcu_dereference(event->rb);
4937 	if (!rb)
4938 		goto unlock;
4939 
4940 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4941 		goto unlock;
4942 
4943 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4944 	if (!vmf->page)
4945 		goto unlock;
4946 
4947 	get_page(vmf->page);
4948 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4949 	vmf->page->index   = vmf->pgoff;
4950 
4951 	ret = 0;
4952 unlock:
4953 	rcu_read_unlock();
4954 
4955 	return ret;
4956 }
4957 
4958 static void ring_buffer_attach(struct perf_event *event,
4959 			       struct ring_buffer *rb)
4960 {
4961 	struct ring_buffer *old_rb = NULL;
4962 	unsigned long flags;
4963 
4964 	if (event->rb) {
4965 		/*
4966 		 * Should be impossible, we set this when removing
4967 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4968 		 */
4969 		WARN_ON_ONCE(event->rcu_pending);
4970 
4971 		old_rb = event->rb;
4972 		spin_lock_irqsave(&old_rb->event_lock, flags);
4973 		list_del_rcu(&event->rb_entry);
4974 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4975 
4976 		event->rcu_batches = get_state_synchronize_rcu();
4977 		event->rcu_pending = 1;
4978 	}
4979 
4980 	if (rb) {
4981 		if (event->rcu_pending) {
4982 			cond_synchronize_rcu(event->rcu_batches);
4983 			event->rcu_pending = 0;
4984 		}
4985 
4986 		spin_lock_irqsave(&rb->event_lock, flags);
4987 		list_add_rcu(&event->rb_entry, &rb->event_list);
4988 		spin_unlock_irqrestore(&rb->event_lock, flags);
4989 	}
4990 
4991 	/*
4992 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4993 	 * before swizzling the event::rb pointer; if it's getting
4994 	 * unmapped, its aux_mmap_count will be 0 and it won't
4995 	 * restart. See the comment in __perf_pmu_output_stop().
4996 	 *
4997 	 * Data will inevitably be lost when set_output is done in
4998 	 * mid-air, but then again, whoever does it like this is
4999 	 * not in for the data anyway.
5000 	 */
5001 	if (has_aux(event))
5002 		perf_event_stop(event, 0);
5003 
5004 	rcu_assign_pointer(event->rb, rb);
5005 
5006 	if (old_rb) {
5007 		ring_buffer_put(old_rb);
5008 		/*
5009 		 * Since we detached before setting the new rb, so that we
5010 		 * could attach the new rb, we could have missed a wakeup.
5011 		 * Provide it now.
5012 		 */
5013 		wake_up_all(&event->waitq);
5014 	}
5015 }
5016 
5017 static void ring_buffer_wakeup(struct perf_event *event)
5018 {
5019 	struct ring_buffer *rb;
5020 
5021 	rcu_read_lock();
5022 	rb = rcu_dereference(event->rb);
5023 	if (rb) {
5024 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5025 			wake_up_all(&event->waitq);
5026 	}
5027 	rcu_read_unlock();
5028 }
5029 
5030 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5031 {
5032 	struct ring_buffer *rb;
5033 
5034 	rcu_read_lock();
5035 	rb = rcu_dereference(event->rb);
5036 	if (rb) {
5037 		if (!atomic_inc_not_zero(&rb->refcount))
5038 			rb = NULL;
5039 	}
5040 	rcu_read_unlock();
5041 
5042 	return rb;
5043 }
5044 
5045 void ring_buffer_put(struct ring_buffer *rb)
5046 {
5047 	if (!atomic_dec_and_test(&rb->refcount))
5048 		return;
5049 
5050 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5051 
5052 	call_rcu(&rb->rcu_head, rb_free_rcu);
5053 }
5054 
5055 static void perf_mmap_open(struct vm_area_struct *vma)
5056 {
5057 	struct perf_event *event = vma->vm_file->private_data;
5058 
5059 	atomic_inc(&event->mmap_count);
5060 	atomic_inc(&event->rb->mmap_count);
5061 
5062 	if (vma->vm_pgoff)
5063 		atomic_inc(&event->rb->aux_mmap_count);
5064 
5065 	if (event->pmu->event_mapped)
5066 		event->pmu->event_mapped(event, vma->vm_mm);
5067 }
5068 
5069 static void perf_pmu_output_stop(struct perf_event *event);
5070 
5071 /*
5072  * A buffer can be mmap()ed multiple times; either directly through the same
5073  * event, or through other events by use of perf_event_set_output().
5074  *
5075  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5076  * the buffer here, where we still have a VM context. This means we need
5077  * to detach all events redirecting to us.
5078  */
5079 static void perf_mmap_close(struct vm_area_struct *vma)
5080 {
5081 	struct perf_event *event = vma->vm_file->private_data;
5082 
5083 	struct ring_buffer *rb = ring_buffer_get(event);
5084 	struct user_struct *mmap_user = rb->mmap_user;
5085 	int mmap_locked = rb->mmap_locked;
5086 	unsigned long size = perf_data_size(rb);
5087 
5088 	if (event->pmu->event_unmapped)
5089 		event->pmu->event_unmapped(event, vma->vm_mm);
5090 
5091 	/*
5092 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5093 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5094 	 * serialize with perf_mmap here.
5095 	 */
5096 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5097 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5098 		/*
5099 		 * Stop all AUX events that are writing to this buffer,
5100 		 * so that we can free its AUX pages and corresponding PMU
5101 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5102 		 * they won't start any more (see perf_aux_output_begin()).
5103 		 */
5104 		perf_pmu_output_stop(event);
5105 
5106 		/* now it's safe to free the pages */
5107 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5108 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5109 
5110 		/* this has to be the last one */
5111 		rb_free_aux(rb);
5112 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5113 
5114 		mutex_unlock(&event->mmap_mutex);
5115 	}
5116 
5117 	atomic_dec(&rb->mmap_count);
5118 
5119 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5120 		goto out_put;
5121 
5122 	ring_buffer_attach(event, NULL);
5123 	mutex_unlock(&event->mmap_mutex);
5124 
5125 	/* If there's still other mmap()s of this buffer, we're done. */
5126 	if (atomic_read(&rb->mmap_count))
5127 		goto out_put;
5128 
5129 	/*
5130 	 * No other mmap()s, detach from all other events that might redirect
5131 	 * into the now unreachable buffer. Somewhat complicated by the
5132 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5133 	 */
5134 again:
5135 	rcu_read_lock();
5136 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5137 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5138 			/*
5139 			 * This event is en-route to free_event() which will
5140 			 * detach it and remove it from the list.
5141 			 */
5142 			continue;
5143 		}
5144 		rcu_read_unlock();
5145 
5146 		mutex_lock(&event->mmap_mutex);
5147 		/*
5148 		 * Check we didn't race with perf_event_set_output() which can
5149 		 * swizzle the rb from under us while we were waiting to
5150 		 * acquire mmap_mutex.
5151 		 *
5152 		 * If we find a different rb; ignore this event, a next
5153 		 * iteration will no longer find it on the list. We have to
5154 		 * still restart the iteration to make sure we're not now
5155 		 * iterating the wrong list.
5156 		 */
5157 		if (event->rb == rb)
5158 			ring_buffer_attach(event, NULL);
5159 
5160 		mutex_unlock(&event->mmap_mutex);
5161 		put_event(event);
5162 
5163 		/*
5164 		 * Restart the iteration; either we're on the wrong list or
5165 		 * destroyed its integrity by doing a deletion.
5166 		 */
5167 		goto again;
5168 	}
5169 	rcu_read_unlock();
5170 
5171 	/*
5172 	 * It could be there's still a few 0-ref events on the list; they'll
5173 	 * get cleaned up by free_event() -- they'll also still have their
5174 	 * ref on the rb and will free it whenever they are done with it.
5175 	 *
5176 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5177 	 * undo the VM accounting.
5178 	 */
5179 
5180 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5181 	vma->vm_mm->pinned_vm -= mmap_locked;
5182 	free_uid(mmap_user);
5183 
5184 out_put:
5185 	ring_buffer_put(rb); /* could be last */
5186 }
5187 
5188 static const struct vm_operations_struct perf_mmap_vmops = {
5189 	.open		= perf_mmap_open,
5190 	.close		= perf_mmap_close, /* non mergable */
5191 	.fault		= perf_mmap_fault,
5192 	.page_mkwrite	= perf_mmap_fault,
5193 };
5194 
5195 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5196 {
5197 	struct perf_event *event = file->private_data;
5198 	unsigned long user_locked, user_lock_limit;
5199 	struct user_struct *user = current_user();
5200 	unsigned long locked, lock_limit;
5201 	struct ring_buffer *rb = NULL;
5202 	unsigned long vma_size;
5203 	unsigned long nr_pages;
5204 	long user_extra = 0, extra = 0;
5205 	int ret = 0, flags = 0;
5206 
5207 	/*
5208 	 * Don't allow mmap() of inherited per-task counters. This would
5209 	 * create a performance issue due to all children writing to the
5210 	 * same rb.
5211 	 */
5212 	if (event->cpu == -1 && event->attr.inherit)
5213 		return -EINVAL;
5214 
5215 	if (!(vma->vm_flags & VM_SHARED))
5216 		return -EINVAL;
5217 
5218 	vma_size = vma->vm_end - vma->vm_start;
5219 
5220 	if (vma->vm_pgoff == 0) {
5221 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5222 	} else {
5223 		/*
5224 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5225 		 * mapped, all subsequent mappings should have the same size
5226 		 * and offset. Must be above the normal perf buffer.
5227 		 */
5228 		u64 aux_offset, aux_size;
5229 
5230 		if (!event->rb)
5231 			return -EINVAL;
5232 
5233 		nr_pages = vma_size / PAGE_SIZE;
5234 
5235 		mutex_lock(&event->mmap_mutex);
5236 		ret = -EINVAL;
5237 
5238 		rb = event->rb;
5239 		if (!rb)
5240 			goto aux_unlock;
5241 
5242 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5243 		aux_size = READ_ONCE(rb->user_page->aux_size);
5244 
5245 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5246 			goto aux_unlock;
5247 
5248 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5249 			goto aux_unlock;
5250 
5251 		/* already mapped with a different offset */
5252 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5253 			goto aux_unlock;
5254 
5255 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5256 			goto aux_unlock;
5257 
5258 		/* already mapped with a different size */
5259 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5260 			goto aux_unlock;
5261 
5262 		if (!is_power_of_2(nr_pages))
5263 			goto aux_unlock;
5264 
5265 		if (!atomic_inc_not_zero(&rb->mmap_count))
5266 			goto aux_unlock;
5267 
5268 		if (rb_has_aux(rb)) {
5269 			atomic_inc(&rb->aux_mmap_count);
5270 			ret = 0;
5271 			goto unlock;
5272 		}
5273 
5274 		atomic_set(&rb->aux_mmap_count, 1);
5275 		user_extra = nr_pages;
5276 
5277 		goto accounting;
5278 	}
5279 
5280 	/*
5281 	 * If we have rb pages ensure they're a power-of-two number, so we
5282 	 * can do bitmasks instead of modulo.
5283 	 */
5284 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5285 		return -EINVAL;
5286 
5287 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5288 		return -EINVAL;
5289 
5290 	WARN_ON_ONCE(event->ctx->parent_ctx);
5291 again:
5292 	mutex_lock(&event->mmap_mutex);
5293 	if (event->rb) {
5294 		if (event->rb->nr_pages != nr_pages) {
5295 			ret = -EINVAL;
5296 			goto unlock;
5297 		}
5298 
5299 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5300 			/*
5301 			 * Raced against perf_mmap_close() through
5302 			 * perf_event_set_output(). Try again, hope for better
5303 			 * luck.
5304 			 */
5305 			mutex_unlock(&event->mmap_mutex);
5306 			goto again;
5307 		}
5308 
5309 		goto unlock;
5310 	}
5311 
5312 	user_extra = nr_pages + 1;
5313 
5314 accounting:
5315 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5316 
5317 	/*
5318 	 * Increase the limit linearly with more CPUs:
5319 	 */
5320 	user_lock_limit *= num_online_cpus();
5321 
5322 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5323 
5324 	if (user_locked > user_lock_limit)
5325 		extra = user_locked - user_lock_limit;
5326 
5327 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5328 	lock_limit >>= PAGE_SHIFT;
5329 	locked = vma->vm_mm->pinned_vm + extra;
5330 
5331 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5332 		!capable(CAP_IPC_LOCK)) {
5333 		ret = -EPERM;
5334 		goto unlock;
5335 	}
5336 
5337 	WARN_ON(!rb && event->rb);
5338 
5339 	if (vma->vm_flags & VM_WRITE)
5340 		flags |= RING_BUFFER_WRITABLE;
5341 
5342 	if (!rb) {
5343 		rb = rb_alloc(nr_pages,
5344 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5345 			      event->cpu, flags);
5346 
5347 		if (!rb) {
5348 			ret = -ENOMEM;
5349 			goto unlock;
5350 		}
5351 
5352 		atomic_set(&rb->mmap_count, 1);
5353 		rb->mmap_user = get_current_user();
5354 		rb->mmap_locked = extra;
5355 
5356 		ring_buffer_attach(event, rb);
5357 
5358 		perf_event_init_userpage(event);
5359 		perf_event_update_userpage(event);
5360 	} else {
5361 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5362 				   event->attr.aux_watermark, flags);
5363 		if (!ret)
5364 			rb->aux_mmap_locked = extra;
5365 	}
5366 
5367 unlock:
5368 	if (!ret) {
5369 		atomic_long_add(user_extra, &user->locked_vm);
5370 		vma->vm_mm->pinned_vm += extra;
5371 
5372 		atomic_inc(&event->mmap_count);
5373 	} else if (rb) {
5374 		atomic_dec(&rb->mmap_count);
5375 	}
5376 aux_unlock:
5377 	mutex_unlock(&event->mmap_mutex);
5378 
5379 	/*
5380 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5381 	 * vma.
5382 	 */
5383 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5384 	vma->vm_ops = &perf_mmap_vmops;
5385 
5386 	if (event->pmu->event_mapped)
5387 		event->pmu->event_mapped(event, vma->vm_mm);
5388 
5389 	return ret;
5390 }
5391 
5392 static int perf_fasync(int fd, struct file *filp, int on)
5393 {
5394 	struct inode *inode = file_inode(filp);
5395 	struct perf_event *event = filp->private_data;
5396 	int retval;
5397 
5398 	inode_lock(inode);
5399 	retval = fasync_helper(fd, filp, on, &event->fasync);
5400 	inode_unlock(inode);
5401 
5402 	if (retval < 0)
5403 		return retval;
5404 
5405 	return 0;
5406 }
5407 
5408 static const struct file_operations perf_fops = {
5409 	.llseek			= no_llseek,
5410 	.release		= perf_release,
5411 	.read			= perf_read,
5412 	.poll			= perf_poll,
5413 	.unlocked_ioctl		= perf_ioctl,
5414 	.compat_ioctl		= perf_compat_ioctl,
5415 	.mmap			= perf_mmap,
5416 	.fasync			= perf_fasync,
5417 };
5418 
5419 /*
5420  * Perf event wakeup
5421  *
5422  * If there's data, ensure we set the poll() state and publish everything
5423  * to user-space before waking everybody up.
5424  */
5425 
5426 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5427 {
5428 	/* only the parent has fasync state */
5429 	if (event->parent)
5430 		event = event->parent;
5431 	return &event->fasync;
5432 }
5433 
5434 void perf_event_wakeup(struct perf_event *event)
5435 {
5436 	ring_buffer_wakeup(event);
5437 
5438 	if (event->pending_kill) {
5439 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5440 		event->pending_kill = 0;
5441 	}
5442 }
5443 
5444 static void perf_pending_event(struct irq_work *entry)
5445 {
5446 	struct perf_event *event = container_of(entry,
5447 			struct perf_event, pending);
5448 	int rctx;
5449 
5450 	rctx = perf_swevent_get_recursion_context();
5451 	/*
5452 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5453 	 * and we won't recurse 'further'.
5454 	 */
5455 
5456 	if (event->pending_disable) {
5457 		event->pending_disable = 0;
5458 		perf_event_disable_local(event);
5459 	}
5460 
5461 	if (event->pending_wakeup) {
5462 		event->pending_wakeup = 0;
5463 		perf_event_wakeup(event);
5464 	}
5465 
5466 	if (rctx >= 0)
5467 		perf_swevent_put_recursion_context(rctx);
5468 }
5469 
5470 /*
5471  * We assume there is only KVM supporting the callbacks.
5472  * Later on, we might change it to a list if there is
5473  * another virtualization implementation supporting the callbacks.
5474  */
5475 struct perf_guest_info_callbacks *perf_guest_cbs;
5476 
5477 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5478 {
5479 	perf_guest_cbs = cbs;
5480 	return 0;
5481 }
5482 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5483 
5484 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5485 {
5486 	perf_guest_cbs = NULL;
5487 	return 0;
5488 }
5489 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5490 
5491 static void
5492 perf_output_sample_regs(struct perf_output_handle *handle,
5493 			struct pt_regs *regs, u64 mask)
5494 {
5495 	int bit;
5496 	DECLARE_BITMAP(_mask, 64);
5497 
5498 	bitmap_from_u64(_mask, mask);
5499 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5500 		u64 val;
5501 
5502 		val = perf_reg_value(regs, bit);
5503 		perf_output_put(handle, val);
5504 	}
5505 }
5506 
5507 static void perf_sample_regs_user(struct perf_regs *regs_user,
5508 				  struct pt_regs *regs,
5509 				  struct pt_regs *regs_user_copy)
5510 {
5511 	if (user_mode(regs)) {
5512 		regs_user->abi = perf_reg_abi(current);
5513 		regs_user->regs = regs;
5514 	} else if (current->mm) {
5515 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5516 	} else {
5517 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5518 		regs_user->regs = NULL;
5519 	}
5520 }
5521 
5522 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5523 				  struct pt_regs *regs)
5524 {
5525 	regs_intr->regs = regs;
5526 	regs_intr->abi  = perf_reg_abi(current);
5527 }
5528 
5529 
5530 /*
5531  * Get remaining task size from user stack pointer.
5532  *
5533  * It'd be better to take stack vma map and limit this more
5534  * precisly, but there's no way to get it safely under interrupt,
5535  * so using TASK_SIZE as limit.
5536  */
5537 static u64 perf_ustack_task_size(struct pt_regs *regs)
5538 {
5539 	unsigned long addr = perf_user_stack_pointer(regs);
5540 
5541 	if (!addr || addr >= TASK_SIZE)
5542 		return 0;
5543 
5544 	return TASK_SIZE - addr;
5545 }
5546 
5547 static u16
5548 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5549 			struct pt_regs *regs)
5550 {
5551 	u64 task_size;
5552 
5553 	/* No regs, no stack pointer, no dump. */
5554 	if (!regs)
5555 		return 0;
5556 
5557 	/*
5558 	 * Check if we fit in with the requested stack size into the:
5559 	 * - TASK_SIZE
5560 	 *   If we don't, we limit the size to the TASK_SIZE.
5561 	 *
5562 	 * - remaining sample size
5563 	 *   If we don't, we customize the stack size to
5564 	 *   fit in to the remaining sample size.
5565 	 */
5566 
5567 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5568 	stack_size = min(stack_size, (u16) task_size);
5569 
5570 	/* Current header size plus static size and dynamic size. */
5571 	header_size += 2 * sizeof(u64);
5572 
5573 	/* Do we fit in with the current stack dump size? */
5574 	if ((u16) (header_size + stack_size) < header_size) {
5575 		/*
5576 		 * If we overflow the maximum size for the sample,
5577 		 * we customize the stack dump size to fit in.
5578 		 */
5579 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5580 		stack_size = round_up(stack_size, sizeof(u64));
5581 	}
5582 
5583 	return stack_size;
5584 }
5585 
5586 static void
5587 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5588 			  struct pt_regs *regs)
5589 {
5590 	/* Case of a kernel thread, nothing to dump */
5591 	if (!regs) {
5592 		u64 size = 0;
5593 		perf_output_put(handle, size);
5594 	} else {
5595 		unsigned long sp;
5596 		unsigned int rem;
5597 		u64 dyn_size;
5598 
5599 		/*
5600 		 * We dump:
5601 		 * static size
5602 		 *   - the size requested by user or the best one we can fit
5603 		 *     in to the sample max size
5604 		 * data
5605 		 *   - user stack dump data
5606 		 * dynamic size
5607 		 *   - the actual dumped size
5608 		 */
5609 
5610 		/* Static size. */
5611 		perf_output_put(handle, dump_size);
5612 
5613 		/* Data. */
5614 		sp = perf_user_stack_pointer(regs);
5615 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5616 		dyn_size = dump_size - rem;
5617 
5618 		perf_output_skip(handle, rem);
5619 
5620 		/* Dynamic size. */
5621 		perf_output_put(handle, dyn_size);
5622 	}
5623 }
5624 
5625 static void __perf_event_header__init_id(struct perf_event_header *header,
5626 					 struct perf_sample_data *data,
5627 					 struct perf_event *event)
5628 {
5629 	u64 sample_type = event->attr.sample_type;
5630 
5631 	data->type = sample_type;
5632 	header->size += event->id_header_size;
5633 
5634 	if (sample_type & PERF_SAMPLE_TID) {
5635 		/* namespace issues */
5636 		data->tid_entry.pid = perf_event_pid(event, current);
5637 		data->tid_entry.tid = perf_event_tid(event, current);
5638 	}
5639 
5640 	if (sample_type & PERF_SAMPLE_TIME)
5641 		data->time = perf_event_clock(event);
5642 
5643 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5644 		data->id = primary_event_id(event);
5645 
5646 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5647 		data->stream_id = event->id;
5648 
5649 	if (sample_type & PERF_SAMPLE_CPU) {
5650 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5651 		data->cpu_entry.reserved = 0;
5652 	}
5653 }
5654 
5655 void perf_event_header__init_id(struct perf_event_header *header,
5656 				struct perf_sample_data *data,
5657 				struct perf_event *event)
5658 {
5659 	if (event->attr.sample_id_all)
5660 		__perf_event_header__init_id(header, data, event);
5661 }
5662 
5663 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5664 					   struct perf_sample_data *data)
5665 {
5666 	u64 sample_type = data->type;
5667 
5668 	if (sample_type & PERF_SAMPLE_TID)
5669 		perf_output_put(handle, data->tid_entry);
5670 
5671 	if (sample_type & PERF_SAMPLE_TIME)
5672 		perf_output_put(handle, data->time);
5673 
5674 	if (sample_type & PERF_SAMPLE_ID)
5675 		perf_output_put(handle, data->id);
5676 
5677 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5678 		perf_output_put(handle, data->stream_id);
5679 
5680 	if (sample_type & PERF_SAMPLE_CPU)
5681 		perf_output_put(handle, data->cpu_entry);
5682 
5683 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5684 		perf_output_put(handle, data->id);
5685 }
5686 
5687 void perf_event__output_id_sample(struct perf_event *event,
5688 				  struct perf_output_handle *handle,
5689 				  struct perf_sample_data *sample)
5690 {
5691 	if (event->attr.sample_id_all)
5692 		__perf_event__output_id_sample(handle, sample);
5693 }
5694 
5695 static void perf_output_read_one(struct perf_output_handle *handle,
5696 				 struct perf_event *event,
5697 				 u64 enabled, u64 running)
5698 {
5699 	u64 read_format = event->attr.read_format;
5700 	u64 values[4];
5701 	int n = 0;
5702 
5703 	values[n++] = perf_event_count(event);
5704 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5705 		values[n++] = enabled +
5706 			atomic64_read(&event->child_total_time_enabled);
5707 	}
5708 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5709 		values[n++] = running +
5710 			atomic64_read(&event->child_total_time_running);
5711 	}
5712 	if (read_format & PERF_FORMAT_ID)
5713 		values[n++] = primary_event_id(event);
5714 
5715 	__output_copy(handle, values, n * sizeof(u64));
5716 }
5717 
5718 static void perf_output_read_group(struct perf_output_handle *handle,
5719 			    struct perf_event *event,
5720 			    u64 enabled, u64 running)
5721 {
5722 	struct perf_event *leader = event->group_leader, *sub;
5723 	u64 read_format = event->attr.read_format;
5724 	u64 values[5];
5725 	int n = 0;
5726 
5727 	values[n++] = 1 + leader->nr_siblings;
5728 
5729 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5730 		values[n++] = enabled;
5731 
5732 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5733 		values[n++] = running;
5734 
5735 	if (leader != event)
5736 		leader->pmu->read(leader);
5737 
5738 	values[n++] = perf_event_count(leader);
5739 	if (read_format & PERF_FORMAT_ID)
5740 		values[n++] = primary_event_id(leader);
5741 
5742 	__output_copy(handle, values, n * sizeof(u64));
5743 
5744 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5745 		n = 0;
5746 
5747 		if ((sub != event) &&
5748 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5749 			sub->pmu->read(sub);
5750 
5751 		values[n++] = perf_event_count(sub);
5752 		if (read_format & PERF_FORMAT_ID)
5753 			values[n++] = primary_event_id(sub);
5754 
5755 		__output_copy(handle, values, n * sizeof(u64));
5756 	}
5757 }
5758 
5759 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5760 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5761 
5762 /*
5763  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5764  *
5765  * The problem is that its both hard and excessively expensive to iterate the
5766  * child list, not to mention that its impossible to IPI the children running
5767  * on another CPU, from interrupt/NMI context.
5768  */
5769 static void perf_output_read(struct perf_output_handle *handle,
5770 			     struct perf_event *event)
5771 {
5772 	u64 enabled = 0, running = 0, now;
5773 	u64 read_format = event->attr.read_format;
5774 
5775 	/*
5776 	 * compute total_time_enabled, total_time_running
5777 	 * based on snapshot values taken when the event
5778 	 * was last scheduled in.
5779 	 *
5780 	 * we cannot simply called update_context_time()
5781 	 * because of locking issue as we are called in
5782 	 * NMI context
5783 	 */
5784 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5785 		calc_timer_values(event, &now, &enabled, &running);
5786 
5787 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5788 		perf_output_read_group(handle, event, enabled, running);
5789 	else
5790 		perf_output_read_one(handle, event, enabled, running);
5791 }
5792 
5793 void perf_output_sample(struct perf_output_handle *handle,
5794 			struct perf_event_header *header,
5795 			struct perf_sample_data *data,
5796 			struct perf_event *event)
5797 {
5798 	u64 sample_type = data->type;
5799 
5800 	perf_output_put(handle, *header);
5801 
5802 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5803 		perf_output_put(handle, data->id);
5804 
5805 	if (sample_type & PERF_SAMPLE_IP)
5806 		perf_output_put(handle, data->ip);
5807 
5808 	if (sample_type & PERF_SAMPLE_TID)
5809 		perf_output_put(handle, data->tid_entry);
5810 
5811 	if (sample_type & PERF_SAMPLE_TIME)
5812 		perf_output_put(handle, data->time);
5813 
5814 	if (sample_type & PERF_SAMPLE_ADDR)
5815 		perf_output_put(handle, data->addr);
5816 
5817 	if (sample_type & PERF_SAMPLE_ID)
5818 		perf_output_put(handle, data->id);
5819 
5820 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5821 		perf_output_put(handle, data->stream_id);
5822 
5823 	if (sample_type & PERF_SAMPLE_CPU)
5824 		perf_output_put(handle, data->cpu_entry);
5825 
5826 	if (sample_type & PERF_SAMPLE_PERIOD)
5827 		perf_output_put(handle, data->period);
5828 
5829 	if (sample_type & PERF_SAMPLE_READ)
5830 		perf_output_read(handle, event);
5831 
5832 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5833 		int size = 1;
5834 
5835 		size += data->callchain->nr;
5836 		size *= sizeof(u64);
5837 		__output_copy(handle, data->callchain, size);
5838 	}
5839 
5840 	if (sample_type & PERF_SAMPLE_RAW) {
5841 		struct perf_raw_record *raw = data->raw;
5842 
5843 		if (raw) {
5844 			struct perf_raw_frag *frag = &raw->frag;
5845 
5846 			perf_output_put(handle, raw->size);
5847 			do {
5848 				if (frag->copy) {
5849 					__output_custom(handle, frag->copy,
5850 							frag->data, frag->size);
5851 				} else {
5852 					__output_copy(handle, frag->data,
5853 						      frag->size);
5854 				}
5855 				if (perf_raw_frag_last(frag))
5856 					break;
5857 				frag = frag->next;
5858 			} while (1);
5859 			if (frag->pad)
5860 				__output_skip(handle, NULL, frag->pad);
5861 		} else {
5862 			struct {
5863 				u32	size;
5864 				u32	data;
5865 			} raw = {
5866 				.size = sizeof(u32),
5867 				.data = 0,
5868 			};
5869 			perf_output_put(handle, raw);
5870 		}
5871 	}
5872 
5873 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5874 		if (data->br_stack) {
5875 			size_t size;
5876 
5877 			size = data->br_stack->nr
5878 			     * sizeof(struct perf_branch_entry);
5879 
5880 			perf_output_put(handle, data->br_stack->nr);
5881 			perf_output_copy(handle, data->br_stack->entries, size);
5882 		} else {
5883 			/*
5884 			 * we always store at least the value of nr
5885 			 */
5886 			u64 nr = 0;
5887 			perf_output_put(handle, nr);
5888 		}
5889 	}
5890 
5891 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5892 		u64 abi = data->regs_user.abi;
5893 
5894 		/*
5895 		 * If there are no regs to dump, notice it through
5896 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5897 		 */
5898 		perf_output_put(handle, abi);
5899 
5900 		if (abi) {
5901 			u64 mask = event->attr.sample_regs_user;
5902 			perf_output_sample_regs(handle,
5903 						data->regs_user.regs,
5904 						mask);
5905 		}
5906 	}
5907 
5908 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5909 		perf_output_sample_ustack(handle,
5910 					  data->stack_user_size,
5911 					  data->regs_user.regs);
5912 	}
5913 
5914 	if (sample_type & PERF_SAMPLE_WEIGHT)
5915 		perf_output_put(handle, data->weight);
5916 
5917 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5918 		perf_output_put(handle, data->data_src.val);
5919 
5920 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5921 		perf_output_put(handle, data->txn);
5922 
5923 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5924 		u64 abi = data->regs_intr.abi;
5925 		/*
5926 		 * If there are no regs to dump, notice it through
5927 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5928 		 */
5929 		perf_output_put(handle, abi);
5930 
5931 		if (abi) {
5932 			u64 mask = event->attr.sample_regs_intr;
5933 
5934 			perf_output_sample_regs(handle,
5935 						data->regs_intr.regs,
5936 						mask);
5937 		}
5938 	}
5939 
5940 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5941 		perf_output_put(handle, data->phys_addr);
5942 
5943 	if (!event->attr.watermark) {
5944 		int wakeup_events = event->attr.wakeup_events;
5945 
5946 		if (wakeup_events) {
5947 			struct ring_buffer *rb = handle->rb;
5948 			int events = local_inc_return(&rb->events);
5949 
5950 			if (events >= wakeup_events) {
5951 				local_sub(wakeup_events, &rb->events);
5952 				local_inc(&rb->wakeup);
5953 			}
5954 		}
5955 	}
5956 }
5957 
5958 static u64 perf_virt_to_phys(u64 virt)
5959 {
5960 	u64 phys_addr = 0;
5961 	struct page *p = NULL;
5962 
5963 	if (!virt)
5964 		return 0;
5965 
5966 	if (virt >= TASK_SIZE) {
5967 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
5968 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
5969 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
5970 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5971 	} else {
5972 		/*
5973 		 * Walking the pages tables for user address.
5974 		 * Interrupts are disabled, so it prevents any tear down
5975 		 * of the page tables.
5976 		 * Try IRQ-safe __get_user_pages_fast first.
5977 		 * If failed, leave phys_addr as 0.
5978 		 */
5979 		if ((current->mm != NULL) &&
5980 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5981 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5982 
5983 		if (p)
5984 			put_page(p);
5985 	}
5986 
5987 	return phys_addr;
5988 }
5989 
5990 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
5991 
5992 static struct perf_callchain_entry *
5993 perf_callchain(struct perf_event *event, struct pt_regs *regs)
5994 {
5995 	bool kernel = !event->attr.exclude_callchain_kernel;
5996 	bool user   = !event->attr.exclude_callchain_user;
5997 	/* Disallow cross-task user callchains. */
5998 	bool crosstask = event->ctx->task && event->ctx->task != current;
5999 	const u32 max_stack = event->attr.sample_max_stack;
6000 	struct perf_callchain_entry *callchain;
6001 
6002 	if (!kernel && !user)
6003 		return &__empty_callchain;
6004 
6005 	callchain = get_perf_callchain(regs, 0, kernel, user,
6006 				       max_stack, crosstask, true);
6007 	return callchain ?: &__empty_callchain;
6008 }
6009 
6010 void perf_prepare_sample(struct perf_event_header *header,
6011 			 struct perf_sample_data *data,
6012 			 struct perf_event *event,
6013 			 struct pt_regs *regs)
6014 {
6015 	u64 sample_type = event->attr.sample_type;
6016 
6017 	header->type = PERF_RECORD_SAMPLE;
6018 	header->size = sizeof(*header) + event->header_size;
6019 
6020 	header->misc = 0;
6021 	header->misc |= perf_misc_flags(regs);
6022 
6023 	__perf_event_header__init_id(header, data, event);
6024 
6025 	if (sample_type & PERF_SAMPLE_IP)
6026 		data->ip = perf_instruction_pointer(regs);
6027 
6028 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6029 		int size = 1;
6030 
6031 		data->callchain = perf_callchain(event, regs);
6032 		size += data->callchain->nr;
6033 
6034 		header->size += size * sizeof(u64);
6035 	}
6036 
6037 	if (sample_type & PERF_SAMPLE_RAW) {
6038 		struct perf_raw_record *raw = data->raw;
6039 		int size;
6040 
6041 		if (raw) {
6042 			struct perf_raw_frag *frag = &raw->frag;
6043 			u32 sum = 0;
6044 
6045 			do {
6046 				sum += frag->size;
6047 				if (perf_raw_frag_last(frag))
6048 					break;
6049 				frag = frag->next;
6050 			} while (1);
6051 
6052 			size = round_up(sum + sizeof(u32), sizeof(u64));
6053 			raw->size = size - sizeof(u32);
6054 			frag->pad = raw->size - sum;
6055 		} else {
6056 			size = sizeof(u64);
6057 		}
6058 
6059 		header->size += size;
6060 	}
6061 
6062 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6063 		int size = sizeof(u64); /* nr */
6064 		if (data->br_stack) {
6065 			size += data->br_stack->nr
6066 			      * sizeof(struct perf_branch_entry);
6067 		}
6068 		header->size += size;
6069 	}
6070 
6071 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6072 		perf_sample_regs_user(&data->regs_user, regs,
6073 				      &data->regs_user_copy);
6074 
6075 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6076 		/* regs dump ABI info */
6077 		int size = sizeof(u64);
6078 
6079 		if (data->regs_user.regs) {
6080 			u64 mask = event->attr.sample_regs_user;
6081 			size += hweight64(mask) * sizeof(u64);
6082 		}
6083 
6084 		header->size += size;
6085 	}
6086 
6087 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6088 		/*
6089 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6090 		 * processed as the last one or have additional check added
6091 		 * in case new sample type is added, because we could eat
6092 		 * up the rest of the sample size.
6093 		 */
6094 		u16 stack_size = event->attr.sample_stack_user;
6095 		u16 size = sizeof(u64);
6096 
6097 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6098 						     data->regs_user.regs);
6099 
6100 		/*
6101 		 * If there is something to dump, add space for the dump
6102 		 * itself and for the field that tells the dynamic size,
6103 		 * which is how many have been actually dumped.
6104 		 */
6105 		if (stack_size)
6106 			size += sizeof(u64) + stack_size;
6107 
6108 		data->stack_user_size = stack_size;
6109 		header->size += size;
6110 	}
6111 
6112 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6113 		/* regs dump ABI info */
6114 		int size = sizeof(u64);
6115 
6116 		perf_sample_regs_intr(&data->regs_intr, regs);
6117 
6118 		if (data->regs_intr.regs) {
6119 			u64 mask = event->attr.sample_regs_intr;
6120 
6121 			size += hweight64(mask) * sizeof(u64);
6122 		}
6123 
6124 		header->size += size;
6125 	}
6126 
6127 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6128 		data->phys_addr = perf_virt_to_phys(data->addr);
6129 }
6130 
6131 static void __always_inline
6132 __perf_event_output(struct perf_event *event,
6133 		    struct perf_sample_data *data,
6134 		    struct pt_regs *regs,
6135 		    int (*output_begin)(struct perf_output_handle *,
6136 					struct perf_event *,
6137 					unsigned int))
6138 {
6139 	struct perf_output_handle handle;
6140 	struct perf_event_header header;
6141 
6142 	/* protect the callchain buffers */
6143 	rcu_read_lock();
6144 
6145 	perf_prepare_sample(&header, data, event, regs);
6146 
6147 	if (output_begin(&handle, event, header.size))
6148 		goto exit;
6149 
6150 	perf_output_sample(&handle, &header, data, event);
6151 
6152 	perf_output_end(&handle);
6153 
6154 exit:
6155 	rcu_read_unlock();
6156 }
6157 
6158 void
6159 perf_event_output_forward(struct perf_event *event,
6160 			 struct perf_sample_data *data,
6161 			 struct pt_regs *regs)
6162 {
6163 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6164 }
6165 
6166 void
6167 perf_event_output_backward(struct perf_event *event,
6168 			   struct perf_sample_data *data,
6169 			   struct pt_regs *regs)
6170 {
6171 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6172 }
6173 
6174 void
6175 perf_event_output(struct perf_event *event,
6176 		  struct perf_sample_data *data,
6177 		  struct pt_regs *regs)
6178 {
6179 	__perf_event_output(event, data, regs, perf_output_begin);
6180 }
6181 
6182 /*
6183  * read event_id
6184  */
6185 
6186 struct perf_read_event {
6187 	struct perf_event_header	header;
6188 
6189 	u32				pid;
6190 	u32				tid;
6191 };
6192 
6193 static void
6194 perf_event_read_event(struct perf_event *event,
6195 			struct task_struct *task)
6196 {
6197 	struct perf_output_handle handle;
6198 	struct perf_sample_data sample;
6199 	struct perf_read_event read_event = {
6200 		.header = {
6201 			.type = PERF_RECORD_READ,
6202 			.misc = 0,
6203 			.size = sizeof(read_event) + event->read_size,
6204 		},
6205 		.pid = perf_event_pid(event, task),
6206 		.tid = perf_event_tid(event, task),
6207 	};
6208 	int ret;
6209 
6210 	perf_event_header__init_id(&read_event.header, &sample, event);
6211 	ret = perf_output_begin(&handle, event, read_event.header.size);
6212 	if (ret)
6213 		return;
6214 
6215 	perf_output_put(&handle, read_event);
6216 	perf_output_read(&handle, event);
6217 	perf_event__output_id_sample(event, &handle, &sample);
6218 
6219 	perf_output_end(&handle);
6220 }
6221 
6222 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6223 
6224 static void
6225 perf_iterate_ctx(struct perf_event_context *ctx,
6226 		   perf_iterate_f output,
6227 		   void *data, bool all)
6228 {
6229 	struct perf_event *event;
6230 
6231 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6232 		if (!all) {
6233 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6234 				continue;
6235 			if (!event_filter_match(event))
6236 				continue;
6237 		}
6238 
6239 		output(event, data);
6240 	}
6241 }
6242 
6243 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6244 {
6245 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6246 	struct perf_event *event;
6247 
6248 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6249 		/*
6250 		 * Skip events that are not fully formed yet; ensure that
6251 		 * if we observe event->ctx, both event and ctx will be
6252 		 * complete enough. See perf_install_in_context().
6253 		 */
6254 		if (!smp_load_acquire(&event->ctx))
6255 			continue;
6256 
6257 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6258 			continue;
6259 		if (!event_filter_match(event))
6260 			continue;
6261 		output(event, data);
6262 	}
6263 }
6264 
6265 /*
6266  * Iterate all events that need to receive side-band events.
6267  *
6268  * For new callers; ensure that account_pmu_sb_event() includes
6269  * your event, otherwise it might not get delivered.
6270  */
6271 static void
6272 perf_iterate_sb(perf_iterate_f output, void *data,
6273 	       struct perf_event_context *task_ctx)
6274 {
6275 	struct perf_event_context *ctx;
6276 	int ctxn;
6277 
6278 	rcu_read_lock();
6279 	preempt_disable();
6280 
6281 	/*
6282 	 * If we have task_ctx != NULL we only notify the task context itself.
6283 	 * The task_ctx is set only for EXIT events before releasing task
6284 	 * context.
6285 	 */
6286 	if (task_ctx) {
6287 		perf_iterate_ctx(task_ctx, output, data, false);
6288 		goto done;
6289 	}
6290 
6291 	perf_iterate_sb_cpu(output, data);
6292 
6293 	for_each_task_context_nr(ctxn) {
6294 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6295 		if (ctx)
6296 			perf_iterate_ctx(ctx, output, data, false);
6297 	}
6298 done:
6299 	preempt_enable();
6300 	rcu_read_unlock();
6301 }
6302 
6303 /*
6304  * Clear all file-based filters at exec, they'll have to be
6305  * re-instated when/if these objects are mmapped again.
6306  */
6307 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6308 {
6309 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6310 	struct perf_addr_filter *filter;
6311 	unsigned int restart = 0, count = 0;
6312 	unsigned long flags;
6313 
6314 	if (!has_addr_filter(event))
6315 		return;
6316 
6317 	raw_spin_lock_irqsave(&ifh->lock, flags);
6318 	list_for_each_entry(filter, &ifh->list, entry) {
6319 		if (filter->inode) {
6320 			event->addr_filters_offs[count] = 0;
6321 			restart++;
6322 		}
6323 
6324 		count++;
6325 	}
6326 
6327 	if (restart)
6328 		event->addr_filters_gen++;
6329 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6330 
6331 	if (restart)
6332 		perf_event_stop(event, 1);
6333 }
6334 
6335 void perf_event_exec(void)
6336 {
6337 	struct perf_event_context *ctx;
6338 	int ctxn;
6339 
6340 	rcu_read_lock();
6341 	for_each_task_context_nr(ctxn) {
6342 		ctx = current->perf_event_ctxp[ctxn];
6343 		if (!ctx)
6344 			continue;
6345 
6346 		perf_event_enable_on_exec(ctxn);
6347 
6348 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6349 				   true);
6350 	}
6351 	rcu_read_unlock();
6352 }
6353 
6354 struct remote_output {
6355 	struct ring_buffer	*rb;
6356 	int			err;
6357 };
6358 
6359 static void __perf_event_output_stop(struct perf_event *event, void *data)
6360 {
6361 	struct perf_event *parent = event->parent;
6362 	struct remote_output *ro = data;
6363 	struct ring_buffer *rb = ro->rb;
6364 	struct stop_event_data sd = {
6365 		.event	= event,
6366 	};
6367 
6368 	if (!has_aux(event))
6369 		return;
6370 
6371 	if (!parent)
6372 		parent = event;
6373 
6374 	/*
6375 	 * In case of inheritance, it will be the parent that links to the
6376 	 * ring-buffer, but it will be the child that's actually using it.
6377 	 *
6378 	 * We are using event::rb to determine if the event should be stopped,
6379 	 * however this may race with ring_buffer_attach() (through set_output),
6380 	 * which will make us skip the event that actually needs to be stopped.
6381 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6382 	 * its rb pointer.
6383 	 */
6384 	if (rcu_dereference(parent->rb) == rb)
6385 		ro->err = __perf_event_stop(&sd);
6386 }
6387 
6388 static int __perf_pmu_output_stop(void *info)
6389 {
6390 	struct perf_event *event = info;
6391 	struct pmu *pmu = event->pmu;
6392 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6393 	struct remote_output ro = {
6394 		.rb	= event->rb,
6395 	};
6396 
6397 	rcu_read_lock();
6398 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6399 	if (cpuctx->task_ctx)
6400 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6401 				   &ro, false);
6402 	rcu_read_unlock();
6403 
6404 	return ro.err;
6405 }
6406 
6407 static void perf_pmu_output_stop(struct perf_event *event)
6408 {
6409 	struct perf_event *iter;
6410 	int err, cpu;
6411 
6412 restart:
6413 	rcu_read_lock();
6414 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6415 		/*
6416 		 * For per-CPU events, we need to make sure that neither they
6417 		 * nor their children are running; for cpu==-1 events it's
6418 		 * sufficient to stop the event itself if it's active, since
6419 		 * it can't have children.
6420 		 */
6421 		cpu = iter->cpu;
6422 		if (cpu == -1)
6423 			cpu = READ_ONCE(iter->oncpu);
6424 
6425 		if (cpu == -1)
6426 			continue;
6427 
6428 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6429 		if (err == -EAGAIN) {
6430 			rcu_read_unlock();
6431 			goto restart;
6432 		}
6433 	}
6434 	rcu_read_unlock();
6435 }
6436 
6437 /*
6438  * task tracking -- fork/exit
6439  *
6440  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6441  */
6442 
6443 struct perf_task_event {
6444 	struct task_struct		*task;
6445 	struct perf_event_context	*task_ctx;
6446 
6447 	struct {
6448 		struct perf_event_header	header;
6449 
6450 		u32				pid;
6451 		u32				ppid;
6452 		u32				tid;
6453 		u32				ptid;
6454 		u64				time;
6455 	} event_id;
6456 };
6457 
6458 static int perf_event_task_match(struct perf_event *event)
6459 {
6460 	return event->attr.comm  || event->attr.mmap ||
6461 	       event->attr.mmap2 || event->attr.mmap_data ||
6462 	       event->attr.task;
6463 }
6464 
6465 static void perf_event_task_output(struct perf_event *event,
6466 				   void *data)
6467 {
6468 	struct perf_task_event *task_event = data;
6469 	struct perf_output_handle handle;
6470 	struct perf_sample_data	sample;
6471 	struct task_struct *task = task_event->task;
6472 	int ret, size = task_event->event_id.header.size;
6473 
6474 	if (!perf_event_task_match(event))
6475 		return;
6476 
6477 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6478 
6479 	ret = perf_output_begin(&handle, event,
6480 				task_event->event_id.header.size);
6481 	if (ret)
6482 		goto out;
6483 
6484 	task_event->event_id.pid = perf_event_pid(event, task);
6485 	task_event->event_id.ppid = perf_event_pid(event, current);
6486 
6487 	task_event->event_id.tid = perf_event_tid(event, task);
6488 	task_event->event_id.ptid = perf_event_tid(event, current);
6489 
6490 	task_event->event_id.time = perf_event_clock(event);
6491 
6492 	perf_output_put(&handle, task_event->event_id);
6493 
6494 	perf_event__output_id_sample(event, &handle, &sample);
6495 
6496 	perf_output_end(&handle);
6497 out:
6498 	task_event->event_id.header.size = size;
6499 }
6500 
6501 static void perf_event_task(struct task_struct *task,
6502 			      struct perf_event_context *task_ctx,
6503 			      int new)
6504 {
6505 	struct perf_task_event task_event;
6506 
6507 	if (!atomic_read(&nr_comm_events) &&
6508 	    !atomic_read(&nr_mmap_events) &&
6509 	    !atomic_read(&nr_task_events))
6510 		return;
6511 
6512 	task_event = (struct perf_task_event){
6513 		.task	  = task,
6514 		.task_ctx = task_ctx,
6515 		.event_id    = {
6516 			.header = {
6517 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6518 				.misc = 0,
6519 				.size = sizeof(task_event.event_id),
6520 			},
6521 			/* .pid  */
6522 			/* .ppid */
6523 			/* .tid  */
6524 			/* .ptid */
6525 			/* .time */
6526 		},
6527 	};
6528 
6529 	perf_iterate_sb(perf_event_task_output,
6530 		       &task_event,
6531 		       task_ctx);
6532 }
6533 
6534 void perf_event_fork(struct task_struct *task)
6535 {
6536 	perf_event_task(task, NULL, 1);
6537 	perf_event_namespaces(task);
6538 }
6539 
6540 /*
6541  * comm tracking
6542  */
6543 
6544 struct perf_comm_event {
6545 	struct task_struct	*task;
6546 	char			*comm;
6547 	int			comm_size;
6548 
6549 	struct {
6550 		struct perf_event_header	header;
6551 
6552 		u32				pid;
6553 		u32				tid;
6554 	} event_id;
6555 };
6556 
6557 static int perf_event_comm_match(struct perf_event *event)
6558 {
6559 	return event->attr.comm;
6560 }
6561 
6562 static void perf_event_comm_output(struct perf_event *event,
6563 				   void *data)
6564 {
6565 	struct perf_comm_event *comm_event = data;
6566 	struct perf_output_handle handle;
6567 	struct perf_sample_data sample;
6568 	int size = comm_event->event_id.header.size;
6569 	int ret;
6570 
6571 	if (!perf_event_comm_match(event))
6572 		return;
6573 
6574 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6575 	ret = perf_output_begin(&handle, event,
6576 				comm_event->event_id.header.size);
6577 
6578 	if (ret)
6579 		goto out;
6580 
6581 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6582 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6583 
6584 	perf_output_put(&handle, comm_event->event_id);
6585 	__output_copy(&handle, comm_event->comm,
6586 				   comm_event->comm_size);
6587 
6588 	perf_event__output_id_sample(event, &handle, &sample);
6589 
6590 	perf_output_end(&handle);
6591 out:
6592 	comm_event->event_id.header.size = size;
6593 }
6594 
6595 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6596 {
6597 	char comm[TASK_COMM_LEN];
6598 	unsigned int size;
6599 
6600 	memset(comm, 0, sizeof(comm));
6601 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6602 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6603 
6604 	comm_event->comm = comm;
6605 	comm_event->comm_size = size;
6606 
6607 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6608 
6609 	perf_iterate_sb(perf_event_comm_output,
6610 		       comm_event,
6611 		       NULL);
6612 }
6613 
6614 void perf_event_comm(struct task_struct *task, bool exec)
6615 {
6616 	struct perf_comm_event comm_event;
6617 
6618 	if (!atomic_read(&nr_comm_events))
6619 		return;
6620 
6621 	comm_event = (struct perf_comm_event){
6622 		.task	= task,
6623 		/* .comm      */
6624 		/* .comm_size */
6625 		.event_id  = {
6626 			.header = {
6627 				.type = PERF_RECORD_COMM,
6628 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6629 				/* .size */
6630 			},
6631 			/* .pid */
6632 			/* .tid */
6633 		},
6634 	};
6635 
6636 	perf_event_comm_event(&comm_event);
6637 }
6638 
6639 /*
6640  * namespaces tracking
6641  */
6642 
6643 struct perf_namespaces_event {
6644 	struct task_struct		*task;
6645 
6646 	struct {
6647 		struct perf_event_header	header;
6648 
6649 		u32				pid;
6650 		u32				tid;
6651 		u64				nr_namespaces;
6652 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6653 	} event_id;
6654 };
6655 
6656 static int perf_event_namespaces_match(struct perf_event *event)
6657 {
6658 	return event->attr.namespaces;
6659 }
6660 
6661 static void perf_event_namespaces_output(struct perf_event *event,
6662 					 void *data)
6663 {
6664 	struct perf_namespaces_event *namespaces_event = data;
6665 	struct perf_output_handle handle;
6666 	struct perf_sample_data sample;
6667 	u16 header_size = namespaces_event->event_id.header.size;
6668 	int ret;
6669 
6670 	if (!perf_event_namespaces_match(event))
6671 		return;
6672 
6673 	perf_event_header__init_id(&namespaces_event->event_id.header,
6674 				   &sample, event);
6675 	ret = perf_output_begin(&handle, event,
6676 				namespaces_event->event_id.header.size);
6677 	if (ret)
6678 		goto out;
6679 
6680 	namespaces_event->event_id.pid = perf_event_pid(event,
6681 							namespaces_event->task);
6682 	namespaces_event->event_id.tid = perf_event_tid(event,
6683 							namespaces_event->task);
6684 
6685 	perf_output_put(&handle, namespaces_event->event_id);
6686 
6687 	perf_event__output_id_sample(event, &handle, &sample);
6688 
6689 	perf_output_end(&handle);
6690 out:
6691 	namespaces_event->event_id.header.size = header_size;
6692 }
6693 
6694 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6695 				   struct task_struct *task,
6696 				   const struct proc_ns_operations *ns_ops)
6697 {
6698 	struct path ns_path;
6699 	struct inode *ns_inode;
6700 	void *error;
6701 
6702 	error = ns_get_path(&ns_path, task, ns_ops);
6703 	if (!error) {
6704 		ns_inode = ns_path.dentry->d_inode;
6705 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6706 		ns_link_info->ino = ns_inode->i_ino;
6707 		path_put(&ns_path);
6708 	}
6709 }
6710 
6711 void perf_event_namespaces(struct task_struct *task)
6712 {
6713 	struct perf_namespaces_event namespaces_event;
6714 	struct perf_ns_link_info *ns_link_info;
6715 
6716 	if (!atomic_read(&nr_namespaces_events))
6717 		return;
6718 
6719 	namespaces_event = (struct perf_namespaces_event){
6720 		.task	= task,
6721 		.event_id  = {
6722 			.header = {
6723 				.type = PERF_RECORD_NAMESPACES,
6724 				.misc = 0,
6725 				.size = sizeof(namespaces_event.event_id),
6726 			},
6727 			/* .pid */
6728 			/* .tid */
6729 			.nr_namespaces = NR_NAMESPACES,
6730 			/* .link_info[NR_NAMESPACES] */
6731 		},
6732 	};
6733 
6734 	ns_link_info = namespaces_event.event_id.link_info;
6735 
6736 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6737 			       task, &mntns_operations);
6738 
6739 #ifdef CONFIG_USER_NS
6740 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6741 			       task, &userns_operations);
6742 #endif
6743 #ifdef CONFIG_NET_NS
6744 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6745 			       task, &netns_operations);
6746 #endif
6747 #ifdef CONFIG_UTS_NS
6748 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6749 			       task, &utsns_operations);
6750 #endif
6751 #ifdef CONFIG_IPC_NS
6752 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6753 			       task, &ipcns_operations);
6754 #endif
6755 #ifdef CONFIG_PID_NS
6756 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6757 			       task, &pidns_operations);
6758 #endif
6759 #ifdef CONFIG_CGROUPS
6760 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6761 			       task, &cgroupns_operations);
6762 #endif
6763 
6764 	perf_iterate_sb(perf_event_namespaces_output,
6765 			&namespaces_event,
6766 			NULL);
6767 }
6768 
6769 /*
6770  * mmap tracking
6771  */
6772 
6773 struct perf_mmap_event {
6774 	struct vm_area_struct	*vma;
6775 
6776 	const char		*file_name;
6777 	int			file_size;
6778 	int			maj, min;
6779 	u64			ino;
6780 	u64			ino_generation;
6781 	u32			prot, flags;
6782 
6783 	struct {
6784 		struct perf_event_header	header;
6785 
6786 		u32				pid;
6787 		u32				tid;
6788 		u64				start;
6789 		u64				len;
6790 		u64				pgoff;
6791 	} event_id;
6792 };
6793 
6794 static int perf_event_mmap_match(struct perf_event *event,
6795 				 void *data)
6796 {
6797 	struct perf_mmap_event *mmap_event = data;
6798 	struct vm_area_struct *vma = mmap_event->vma;
6799 	int executable = vma->vm_flags & VM_EXEC;
6800 
6801 	return (!executable && event->attr.mmap_data) ||
6802 	       (executable && (event->attr.mmap || event->attr.mmap2));
6803 }
6804 
6805 static void perf_event_mmap_output(struct perf_event *event,
6806 				   void *data)
6807 {
6808 	struct perf_mmap_event *mmap_event = data;
6809 	struct perf_output_handle handle;
6810 	struct perf_sample_data sample;
6811 	int size = mmap_event->event_id.header.size;
6812 	int ret;
6813 
6814 	if (!perf_event_mmap_match(event, data))
6815 		return;
6816 
6817 	if (event->attr.mmap2) {
6818 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6819 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6820 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6821 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6822 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6823 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6824 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6825 	}
6826 
6827 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6828 	ret = perf_output_begin(&handle, event,
6829 				mmap_event->event_id.header.size);
6830 	if (ret)
6831 		goto out;
6832 
6833 	mmap_event->event_id.pid = perf_event_pid(event, current);
6834 	mmap_event->event_id.tid = perf_event_tid(event, current);
6835 
6836 	perf_output_put(&handle, mmap_event->event_id);
6837 
6838 	if (event->attr.mmap2) {
6839 		perf_output_put(&handle, mmap_event->maj);
6840 		perf_output_put(&handle, mmap_event->min);
6841 		perf_output_put(&handle, mmap_event->ino);
6842 		perf_output_put(&handle, mmap_event->ino_generation);
6843 		perf_output_put(&handle, mmap_event->prot);
6844 		perf_output_put(&handle, mmap_event->flags);
6845 	}
6846 
6847 	__output_copy(&handle, mmap_event->file_name,
6848 				   mmap_event->file_size);
6849 
6850 	perf_event__output_id_sample(event, &handle, &sample);
6851 
6852 	perf_output_end(&handle);
6853 out:
6854 	mmap_event->event_id.header.size = size;
6855 }
6856 
6857 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6858 {
6859 	struct vm_area_struct *vma = mmap_event->vma;
6860 	struct file *file = vma->vm_file;
6861 	int maj = 0, min = 0;
6862 	u64 ino = 0, gen = 0;
6863 	u32 prot = 0, flags = 0;
6864 	unsigned int size;
6865 	char tmp[16];
6866 	char *buf = NULL;
6867 	char *name;
6868 
6869 	if (vma->vm_flags & VM_READ)
6870 		prot |= PROT_READ;
6871 	if (vma->vm_flags & VM_WRITE)
6872 		prot |= PROT_WRITE;
6873 	if (vma->vm_flags & VM_EXEC)
6874 		prot |= PROT_EXEC;
6875 
6876 	if (vma->vm_flags & VM_MAYSHARE)
6877 		flags = MAP_SHARED;
6878 	else
6879 		flags = MAP_PRIVATE;
6880 
6881 	if (vma->vm_flags & VM_DENYWRITE)
6882 		flags |= MAP_DENYWRITE;
6883 	if (vma->vm_flags & VM_MAYEXEC)
6884 		flags |= MAP_EXECUTABLE;
6885 	if (vma->vm_flags & VM_LOCKED)
6886 		flags |= MAP_LOCKED;
6887 	if (vma->vm_flags & VM_HUGETLB)
6888 		flags |= MAP_HUGETLB;
6889 
6890 	if (file) {
6891 		struct inode *inode;
6892 		dev_t dev;
6893 
6894 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6895 		if (!buf) {
6896 			name = "//enomem";
6897 			goto cpy_name;
6898 		}
6899 		/*
6900 		 * d_path() works from the end of the rb backwards, so we
6901 		 * need to add enough zero bytes after the string to handle
6902 		 * the 64bit alignment we do later.
6903 		 */
6904 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6905 		if (IS_ERR(name)) {
6906 			name = "//toolong";
6907 			goto cpy_name;
6908 		}
6909 		inode = file_inode(vma->vm_file);
6910 		dev = inode->i_sb->s_dev;
6911 		ino = inode->i_ino;
6912 		gen = inode->i_generation;
6913 		maj = MAJOR(dev);
6914 		min = MINOR(dev);
6915 
6916 		goto got_name;
6917 	} else {
6918 		if (vma->vm_ops && vma->vm_ops->name) {
6919 			name = (char *) vma->vm_ops->name(vma);
6920 			if (name)
6921 				goto cpy_name;
6922 		}
6923 
6924 		name = (char *)arch_vma_name(vma);
6925 		if (name)
6926 			goto cpy_name;
6927 
6928 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6929 				vma->vm_end >= vma->vm_mm->brk) {
6930 			name = "[heap]";
6931 			goto cpy_name;
6932 		}
6933 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6934 				vma->vm_end >= vma->vm_mm->start_stack) {
6935 			name = "[stack]";
6936 			goto cpy_name;
6937 		}
6938 
6939 		name = "//anon";
6940 		goto cpy_name;
6941 	}
6942 
6943 cpy_name:
6944 	strlcpy(tmp, name, sizeof(tmp));
6945 	name = tmp;
6946 got_name:
6947 	/*
6948 	 * Since our buffer works in 8 byte units we need to align our string
6949 	 * size to a multiple of 8. However, we must guarantee the tail end is
6950 	 * zero'd out to avoid leaking random bits to userspace.
6951 	 */
6952 	size = strlen(name)+1;
6953 	while (!IS_ALIGNED(size, sizeof(u64)))
6954 		name[size++] = '\0';
6955 
6956 	mmap_event->file_name = name;
6957 	mmap_event->file_size = size;
6958 	mmap_event->maj = maj;
6959 	mmap_event->min = min;
6960 	mmap_event->ino = ino;
6961 	mmap_event->ino_generation = gen;
6962 	mmap_event->prot = prot;
6963 	mmap_event->flags = flags;
6964 
6965 	if (!(vma->vm_flags & VM_EXEC))
6966 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6967 
6968 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6969 
6970 	perf_iterate_sb(perf_event_mmap_output,
6971 		       mmap_event,
6972 		       NULL);
6973 
6974 	kfree(buf);
6975 }
6976 
6977 /*
6978  * Check whether inode and address range match filter criteria.
6979  */
6980 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6981 				     struct file *file, unsigned long offset,
6982 				     unsigned long size)
6983 {
6984 	if (filter->inode != file_inode(file))
6985 		return false;
6986 
6987 	if (filter->offset > offset + size)
6988 		return false;
6989 
6990 	if (filter->offset + filter->size < offset)
6991 		return false;
6992 
6993 	return true;
6994 }
6995 
6996 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6997 {
6998 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6999 	struct vm_area_struct *vma = data;
7000 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7001 	struct file *file = vma->vm_file;
7002 	struct perf_addr_filter *filter;
7003 	unsigned int restart = 0, count = 0;
7004 
7005 	if (!has_addr_filter(event))
7006 		return;
7007 
7008 	if (!file)
7009 		return;
7010 
7011 	raw_spin_lock_irqsave(&ifh->lock, flags);
7012 	list_for_each_entry(filter, &ifh->list, entry) {
7013 		if (perf_addr_filter_match(filter, file, off,
7014 					     vma->vm_end - vma->vm_start)) {
7015 			event->addr_filters_offs[count] = vma->vm_start;
7016 			restart++;
7017 		}
7018 
7019 		count++;
7020 	}
7021 
7022 	if (restart)
7023 		event->addr_filters_gen++;
7024 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7025 
7026 	if (restart)
7027 		perf_event_stop(event, 1);
7028 }
7029 
7030 /*
7031  * Adjust all task's events' filters to the new vma
7032  */
7033 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7034 {
7035 	struct perf_event_context *ctx;
7036 	int ctxn;
7037 
7038 	/*
7039 	 * Data tracing isn't supported yet and as such there is no need
7040 	 * to keep track of anything that isn't related to executable code:
7041 	 */
7042 	if (!(vma->vm_flags & VM_EXEC))
7043 		return;
7044 
7045 	rcu_read_lock();
7046 	for_each_task_context_nr(ctxn) {
7047 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7048 		if (!ctx)
7049 			continue;
7050 
7051 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7052 	}
7053 	rcu_read_unlock();
7054 }
7055 
7056 void perf_event_mmap(struct vm_area_struct *vma)
7057 {
7058 	struct perf_mmap_event mmap_event;
7059 
7060 	if (!atomic_read(&nr_mmap_events))
7061 		return;
7062 
7063 	mmap_event = (struct perf_mmap_event){
7064 		.vma	= vma,
7065 		/* .file_name */
7066 		/* .file_size */
7067 		.event_id  = {
7068 			.header = {
7069 				.type = PERF_RECORD_MMAP,
7070 				.misc = PERF_RECORD_MISC_USER,
7071 				/* .size */
7072 			},
7073 			/* .pid */
7074 			/* .tid */
7075 			.start  = vma->vm_start,
7076 			.len    = vma->vm_end - vma->vm_start,
7077 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7078 		},
7079 		/* .maj (attr_mmap2 only) */
7080 		/* .min (attr_mmap2 only) */
7081 		/* .ino (attr_mmap2 only) */
7082 		/* .ino_generation (attr_mmap2 only) */
7083 		/* .prot (attr_mmap2 only) */
7084 		/* .flags (attr_mmap2 only) */
7085 	};
7086 
7087 	perf_addr_filters_adjust(vma);
7088 	perf_event_mmap_event(&mmap_event);
7089 }
7090 
7091 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7092 			  unsigned long size, u64 flags)
7093 {
7094 	struct perf_output_handle handle;
7095 	struct perf_sample_data sample;
7096 	struct perf_aux_event {
7097 		struct perf_event_header	header;
7098 		u64				offset;
7099 		u64				size;
7100 		u64				flags;
7101 	} rec = {
7102 		.header = {
7103 			.type = PERF_RECORD_AUX,
7104 			.misc = 0,
7105 			.size = sizeof(rec),
7106 		},
7107 		.offset		= head,
7108 		.size		= size,
7109 		.flags		= flags,
7110 	};
7111 	int ret;
7112 
7113 	perf_event_header__init_id(&rec.header, &sample, event);
7114 	ret = perf_output_begin(&handle, event, rec.header.size);
7115 
7116 	if (ret)
7117 		return;
7118 
7119 	perf_output_put(&handle, rec);
7120 	perf_event__output_id_sample(event, &handle, &sample);
7121 
7122 	perf_output_end(&handle);
7123 }
7124 
7125 /*
7126  * Lost/dropped samples logging
7127  */
7128 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7129 {
7130 	struct perf_output_handle handle;
7131 	struct perf_sample_data sample;
7132 	int ret;
7133 
7134 	struct {
7135 		struct perf_event_header	header;
7136 		u64				lost;
7137 	} lost_samples_event = {
7138 		.header = {
7139 			.type = PERF_RECORD_LOST_SAMPLES,
7140 			.misc = 0,
7141 			.size = sizeof(lost_samples_event),
7142 		},
7143 		.lost		= lost,
7144 	};
7145 
7146 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7147 
7148 	ret = perf_output_begin(&handle, event,
7149 				lost_samples_event.header.size);
7150 	if (ret)
7151 		return;
7152 
7153 	perf_output_put(&handle, lost_samples_event);
7154 	perf_event__output_id_sample(event, &handle, &sample);
7155 	perf_output_end(&handle);
7156 }
7157 
7158 /*
7159  * context_switch tracking
7160  */
7161 
7162 struct perf_switch_event {
7163 	struct task_struct	*task;
7164 	struct task_struct	*next_prev;
7165 
7166 	struct {
7167 		struct perf_event_header	header;
7168 		u32				next_prev_pid;
7169 		u32				next_prev_tid;
7170 	} event_id;
7171 };
7172 
7173 static int perf_event_switch_match(struct perf_event *event)
7174 {
7175 	return event->attr.context_switch;
7176 }
7177 
7178 static void perf_event_switch_output(struct perf_event *event, void *data)
7179 {
7180 	struct perf_switch_event *se = data;
7181 	struct perf_output_handle handle;
7182 	struct perf_sample_data sample;
7183 	int ret;
7184 
7185 	if (!perf_event_switch_match(event))
7186 		return;
7187 
7188 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7189 	if (event->ctx->task) {
7190 		se->event_id.header.type = PERF_RECORD_SWITCH;
7191 		se->event_id.header.size = sizeof(se->event_id.header);
7192 	} else {
7193 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7194 		se->event_id.header.size = sizeof(se->event_id);
7195 		se->event_id.next_prev_pid =
7196 					perf_event_pid(event, se->next_prev);
7197 		se->event_id.next_prev_tid =
7198 					perf_event_tid(event, se->next_prev);
7199 	}
7200 
7201 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7202 
7203 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7204 	if (ret)
7205 		return;
7206 
7207 	if (event->ctx->task)
7208 		perf_output_put(&handle, se->event_id.header);
7209 	else
7210 		perf_output_put(&handle, se->event_id);
7211 
7212 	perf_event__output_id_sample(event, &handle, &sample);
7213 
7214 	perf_output_end(&handle);
7215 }
7216 
7217 static void perf_event_switch(struct task_struct *task,
7218 			      struct task_struct *next_prev, bool sched_in)
7219 {
7220 	struct perf_switch_event switch_event;
7221 
7222 	/* N.B. caller checks nr_switch_events != 0 */
7223 
7224 	switch_event = (struct perf_switch_event){
7225 		.task		= task,
7226 		.next_prev	= next_prev,
7227 		.event_id	= {
7228 			.header = {
7229 				/* .type */
7230 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7231 				/* .size */
7232 			},
7233 			/* .next_prev_pid */
7234 			/* .next_prev_tid */
7235 		},
7236 	};
7237 
7238 	perf_iterate_sb(perf_event_switch_output,
7239 		       &switch_event,
7240 		       NULL);
7241 }
7242 
7243 /*
7244  * IRQ throttle logging
7245  */
7246 
7247 static void perf_log_throttle(struct perf_event *event, int enable)
7248 {
7249 	struct perf_output_handle handle;
7250 	struct perf_sample_data sample;
7251 	int ret;
7252 
7253 	struct {
7254 		struct perf_event_header	header;
7255 		u64				time;
7256 		u64				id;
7257 		u64				stream_id;
7258 	} throttle_event = {
7259 		.header = {
7260 			.type = PERF_RECORD_THROTTLE,
7261 			.misc = 0,
7262 			.size = sizeof(throttle_event),
7263 		},
7264 		.time		= perf_event_clock(event),
7265 		.id		= primary_event_id(event),
7266 		.stream_id	= event->id,
7267 	};
7268 
7269 	if (enable)
7270 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7271 
7272 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7273 
7274 	ret = perf_output_begin(&handle, event,
7275 				throttle_event.header.size);
7276 	if (ret)
7277 		return;
7278 
7279 	perf_output_put(&handle, throttle_event);
7280 	perf_event__output_id_sample(event, &handle, &sample);
7281 	perf_output_end(&handle);
7282 }
7283 
7284 void perf_event_itrace_started(struct perf_event *event)
7285 {
7286 	event->attach_state |= PERF_ATTACH_ITRACE;
7287 }
7288 
7289 static void perf_log_itrace_start(struct perf_event *event)
7290 {
7291 	struct perf_output_handle handle;
7292 	struct perf_sample_data sample;
7293 	struct perf_aux_event {
7294 		struct perf_event_header        header;
7295 		u32				pid;
7296 		u32				tid;
7297 	} rec;
7298 	int ret;
7299 
7300 	if (event->parent)
7301 		event = event->parent;
7302 
7303 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7304 	    event->attach_state & PERF_ATTACH_ITRACE)
7305 		return;
7306 
7307 	rec.header.type	= PERF_RECORD_ITRACE_START;
7308 	rec.header.misc	= 0;
7309 	rec.header.size	= sizeof(rec);
7310 	rec.pid	= perf_event_pid(event, current);
7311 	rec.tid	= perf_event_tid(event, current);
7312 
7313 	perf_event_header__init_id(&rec.header, &sample, event);
7314 	ret = perf_output_begin(&handle, event, rec.header.size);
7315 
7316 	if (ret)
7317 		return;
7318 
7319 	perf_output_put(&handle, rec);
7320 	perf_event__output_id_sample(event, &handle, &sample);
7321 
7322 	perf_output_end(&handle);
7323 }
7324 
7325 static int
7326 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7327 {
7328 	struct hw_perf_event *hwc = &event->hw;
7329 	int ret = 0;
7330 	u64 seq;
7331 
7332 	seq = __this_cpu_read(perf_throttled_seq);
7333 	if (seq != hwc->interrupts_seq) {
7334 		hwc->interrupts_seq = seq;
7335 		hwc->interrupts = 1;
7336 	} else {
7337 		hwc->interrupts++;
7338 		if (unlikely(throttle
7339 			     && hwc->interrupts >= max_samples_per_tick)) {
7340 			__this_cpu_inc(perf_throttled_count);
7341 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7342 			hwc->interrupts = MAX_INTERRUPTS;
7343 			perf_log_throttle(event, 0);
7344 			ret = 1;
7345 		}
7346 	}
7347 
7348 	if (event->attr.freq) {
7349 		u64 now = perf_clock();
7350 		s64 delta = now - hwc->freq_time_stamp;
7351 
7352 		hwc->freq_time_stamp = now;
7353 
7354 		if (delta > 0 && delta < 2*TICK_NSEC)
7355 			perf_adjust_period(event, delta, hwc->last_period, true);
7356 	}
7357 
7358 	return ret;
7359 }
7360 
7361 int perf_event_account_interrupt(struct perf_event *event)
7362 {
7363 	return __perf_event_account_interrupt(event, 1);
7364 }
7365 
7366 /*
7367  * Generic event overflow handling, sampling.
7368  */
7369 
7370 static int __perf_event_overflow(struct perf_event *event,
7371 				   int throttle, struct perf_sample_data *data,
7372 				   struct pt_regs *regs)
7373 {
7374 	int events = atomic_read(&event->event_limit);
7375 	int ret = 0;
7376 
7377 	/*
7378 	 * Non-sampling counters might still use the PMI to fold short
7379 	 * hardware counters, ignore those.
7380 	 */
7381 	if (unlikely(!is_sampling_event(event)))
7382 		return 0;
7383 
7384 	ret = __perf_event_account_interrupt(event, throttle);
7385 
7386 	/*
7387 	 * XXX event_limit might not quite work as expected on inherited
7388 	 * events
7389 	 */
7390 
7391 	event->pending_kill = POLL_IN;
7392 	if (events && atomic_dec_and_test(&event->event_limit)) {
7393 		ret = 1;
7394 		event->pending_kill = POLL_HUP;
7395 
7396 		perf_event_disable_inatomic(event);
7397 	}
7398 
7399 	READ_ONCE(event->overflow_handler)(event, data, regs);
7400 
7401 	if (*perf_event_fasync(event) && event->pending_kill) {
7402 		event->pending_wakeup = 1;
7403 		irq_work_queue(&event->pending);
7404 	}
7405 
7406 	return ret;
7407 }
7408 
7409 int perf_event_overflow(struct perf_event *event,
7410 			  struct perf_sample_data *data,
7411 			  struct pt_regs *regs)
7412 {
7413 	return __perf_event_overflow(event, 1, data, regs);
7414 }
7415 
7416 /*
7417  * Generic software event infrastructure
7418  */
7419 
7420 struct swevent_htable {
7421 	struct swevent_hlist		*swevent_hlist;
7422 	struct mutex			hlist_mutex;
7423 	int				hlist_refcount;
7424 
7425 	/* Recursion avoidance in each contexts */
7426 	int				recursion[PERF_NR_CONTEXTS];
7427 };
7428 
7429 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7430 
7431 /*
7432  * We directly increment event->count and keep a second value in
7433  * event->hw.period_left to count intervals. This period event
7434  * is kept in the range [-sample_period, 0] so that we can use the
7435  * sign as trigger.
7436  */
7437 
7438 u64 perf_swevent_set_period(struct perf_event *event)
7439 {
7440 	struct hw_perf_event *hwc = &event->hw;
7441 	u64 period = hwc->last_period;
7442 	u64 nr, offset;
7443 	s64 old, val;
7444 
7445 	hwc->last_period = hwc->sample_period;
7446 
7447 again:
7448 	old = val = local64_read(&hwc->period_left);
7449 	if (val < 0)
7450 		return 0;
7451 
7452 	nr = div64_u64(period + val, period);
7453 	offset = nr * period;
7454 	val -= offset;
7455 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7456 		goto again;
7457 
7458 	return nr;
7459 }
7460 
7461 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7462 				    struct perf_sample_data *data,
7463 				    struct pt_regs *regs)
7464 {
7465 	struct hw_perf_event *hwc = &event->hw;
7466 	int throttle = 0;
7467 
7468 	if (!overflow)
7469 		overflow = perf_swevent_set_period(event);
7470 
7471 	if (hwc->interrupts == MAX_INTERRUPTS)
7472 		return;
7473 
7474 	for (; overflow; overflow--) {
7475 		if (__perf_event_overflow(event, throttle,
7476 					    data, regs)) {
7477 			/*
7478 			 * We inhibit the overflow from happening when
7479 			 * hwc->interrupts == MAX_INTERRUPTS.
7480 			 */
7481 			break;
7482 		}
7483 		throttle = 1;
7484 	}
7485 }
7486 
7487 static void perf_swevent_event(struct perf_event *event, u64 nr,
7488 			       struct perf_sample_data *data,
7489 			       struct pt_regs *regs)
7490 {
7491 	struct hw_perf_event *hwc = &event->hw;
7492 
7493 	local64_add(nr, &event->count);
7494 
7495 	if (!regs)
7496 		return;
7497 
7498 	if (!is_sampling_event(event))
7499 		return;
7500 
7501 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7502 		data->period = nr;
7503 		return perf_swevent_overflow(event, 1, data, regs);
7504 	} else
7505 		data->period = event->hw.last_period;
7506 
7507 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7508 		return perf_swevent_overflow(event, 1, data, regs);
7509 
7510 	if (local64_add_negative(nr, &hwc->period_left))
7511 		return;
7512 
7513 	perf_swevent_overflow(event, 0, data, regs);
7514 }
7515 
7516 static int perf_exclude_event(struct perf_event *event,
7517 			      struct pt_regs *regs)
7518 {
7519 	if (event->hw.state & PERF_HES_STOPPED)
7520 		return 1;
7521 
7522 	if (regs) {
7523 		if (event->attr.exclude_user && user_mode(regs))
7524 			return 1;
7525 
7526 		if (event->attr.exclude_kernel && !user_mode(regs))
7527 			return 1;
7528 	}
7529 
7530 	return 0;
7531 }
7532 
7533 static int perf_swevent_match(struct perf_event *event,
7534 				enum perf_type_id type,
7535 				u32 event_id,
7536 				struct perf_sample_data *data,
7537 				struct pt_regs *regs)
7538 {
7539 	if (event->attr.type != type)
7540 		return 0;
7541 
7542 	if (event->attr.config != event_id)
7543 		return 0;
7544 
7545 	if (perf_exclude_event(event, regs))
7546 		return 0;
7547 
7548 	return 1;
7549 }
7550 
7551 static inline u64 swevent_hash(u64 type, u32 event_id)
7552 {
7553 	u64 val = event_id | (type << 32);
7554 
7555 	return hash_64(val, SWEVENT_HLIST_BITS);
7556 }
7557 
7558 static inline struct hlist_head *
7559 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7560 {
7561 	u64 hash = swevent_hash(type, event_id);
7562 
7563 	return &hlist->heads[hash];
7564 }
7565 
7566 /* For the read side: events when they trigger */
7567 static inline struct hlist_head *
7568 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7569 {
7570 	struct swevent_hlist *hlist;
7571 
7572 	hlist = rcu_dereference(swhash->swevent_hlist);
7573 	if (!hlist)
7574 		return NULL;
7575 
7576 	return __find_swevent_head(hlist, type, event_id);
7577 }
7578 
7579 /* For the event head insertion and removal in the hlist */
7580 static inline struct hlist_head *
7581 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7582 {
7583 	struct swevent_hlist *hlist;
7584 	u32 event_id = event->attr.config;
7585 	u64 type = event->attr.type;
7586 
7587 	/*
7588 	 * Event scheduling is always serialized against hlist allocation
7589 	 * and release. Which makes the protected version suitable here.
7590 	 * The context lock guarantees that.
7591 	 */
7592 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7593 					  lockdep_is_held(&event->ctx->lock));
7594 	if (!hlist)
7595 		return NULL;
7596 
7597 	return __find_swevent_head(hlist, type, event_id);
7598 }
7599 
7600 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7601 				    u64 nr,
7602 				    struct perf_sample_data *data,
7603 				    struct pt_regs *regs)
7604 {
7605 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7606 	struct perf_event *event;
7607 	struct hlist_head *head;
7608 
7609 	rcu_read_lock();
7610 	head = find_swevent_head_rcu(swhash, type, event_id);
7611 	if (!head)
7612 		goto end;
7613 
7614 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7615 		if (perf_swevent_match(event, type, event_id, data, regs))
7616 			perf_swevent_event(event, nr, data, regs);
7617 	}
7618 end:
7619 	rcu_read_unlock();
7620 }
7621 
7622 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7623 
7624 int perf_swevent_get_recursion_context(void)
7625 {
7626 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7627 
7628 	return get_recursion_context(swhash->recursion);
7629 }
7630 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7631 
7632 void perf_swevent_put_recursion_context(int rctx)
7633 {
7634 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7635 
7636 	put_recursion_context(swhash->recursion, rctx);
7637 }
7638 
7639 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7640 {
7641 	struct perf_sample_data data;
7642 
7643 	if (WARN_ON_ONCE(!regs))
7644 		return;
7645 
7646 	perf_sample_data_init(&data, addr, 0);
7647 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7648 }
7649 
7650 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7651 {
7652 	int rctx;
7653 
7654 	preempt_disable_notrace();
7655 	rctx = perf_swevent_get_recursion_context();
7656 	if (unlikely(rctx < 0))
7657 		goto fail;
7658 
7659 	___perf_sw_event(event_id, nr, regs, addr);
7660 
7661 	perf_swevent_put_recursion_context(rctx);
7662 fail:
7663 	preempt_enable_notrace();
7664 }
7665 
7666 static void perf_swevent_read(struct perf_event *event)
7667 {
7668 }
7669 
7670 static int perf_swevent_add(struct perf_event *event, int flags)
7671 {
7672 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7673 	struct hw_perf_event *hwc = &event->hw;
7674 	struct hlist_head *head;
7675 
7676 	if (is_sampling_event(event)) {
7677 		hwc->last_period = hwc->sample_period;
7678 		perf_swevent_set_period(event);
7679 	}
7680 
7681 	hwc->state = !(flags & PERF_EF_START);
7682 
7683 	head = find_swevent_head(swhash, event);
7684 	if (WARN_ON_ONCE(!head))
7685 		return -EINVAL;
7686 
7687 	hlist_add_head_rcu(&event->hlist_entry, head);
7688 	perf_event_update_userpage(event);
7689 
7690 	return 0;
7691 }
7692 
7693 static void perf_swevent_del(struct perf_event *event, int flags)
7694 {
7695 	hlist_del_rcu(&event->hlist_entry);
7696 }
7697 
7698 static void perf_swevent_start(struct perf_event *event, int flags)
7699 {
7700 	event->hw.state = 0;
7701 }
7702 
7703 static void perf_swevent_stop(struct perf_event *event, int flags)
7704 {
7705 	event->hw.state = PERF_HES_STOPPED;
7706 }
7707 
7708 /* Deref the hlist from the update side */
7709 static inline struct swevent_hlist *
7710 swevent_hlist_deref(struct swevent_htable *swhash)
7711 {
7712 	return rcu_dereference_protected(swhash->swevent_hlist,
7713 					 lockdep_is_held(&swhash->hlist_mutex));
7714 }
7715 
7716 static void swevent_hlist_release(struct swevent_htable *swhash)
7717 {
7718 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7719 
7720 	if (!hlist)
7721 		return;
7722 
7723 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7724 	kfree_rcu(hlist, rcu_head);
7725 }
7726 
7727 static void swevent_hlist_put_cpu(int cpu)
7728 {
7729 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7730 
7731 	mutex_lock(&swhash->hlist_mutex);
7732 
7733 	if (!--swhash->hlist_refcount)
7734 		swevent_hlist_release(swhash);
7735 
7736 	mutex_unlock(&swhash->hlist_mutex);
7737 }
7738 
7739 static void swevent_hlist_put(void)
7740 {
7741 	int cpu;
7742 
7743 	for_each_possible_cpu(cpu)
7744 		swevent_hlist_put_cpu(cpu);
7745 }
7746 
7747 static int swevent_hlist_get_cpu(int cpu)
7748 {
7749 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7750 	int err = 0;
7751 
7752 	mutex_lock(&swhash->hlist_mutex);
7753 	if (!swevent_hlist_deref(swhash) &&
7754 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7755 		struct swevent_hlist *hlist;
7756 
7757 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7758 		if (!hlist) {
7759 			err = -ENOMEM;
7760 			goto exit;
7761 		}
7762 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7763 	}
7764 	swhash->hlist_refcount++;
7765 exit:
7766 	mutex_unlock(&swhash->hlist_mutex);
7767 
7768 	return err;
7769 }
7770 
7771 static int swevent_hlist_get(void)
7772 {
7773 	int err, cpu, failed_cpu;
7774 
7775 	mutex_lock(&pmus_lock);
7776 	for_each_possible_cpu(cpu) {
7777 		err = swevent_hlist_get_cpu(cpu);
7778 		if (err) {
7779 			failed_cpu = cpu;
7780 			goto fail;
7781 		}
7782 	}
7783 	mutex_unlock(&pmus_lock);
7784 	return 0;
7785 fail:
7786 	for_each_possible_cpu(cpu) {
7787 		if (cpu == failed_cpu)
7788 			break;
7789 		swevent_hlist_put_cpu(cpu);
7790 	}
7791 	mutex_unlock(&pmus_lock);
7792 	return err;
7793 }
7794 
7795 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7796 
7797 static void sw_perf_event_destroy(struct perf_event *event)
7798 {
7799 	u64 event_id = event->attr.config;
7800 
7801 	WARN_ON(event->parent);
7802 
7803 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7804 	swevent_hlist_put();
7805 }
7806 
7807 static int perf_swevent_init(struct perf_event *event)
7808 {
7809 	u64 event_id = event->attr.config;
7810 
7811 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7812 		return -ENOENT;
7813 
7814 	/*
7815 	 * no branch sampling for software events
7816 	 */
7817 	if (has_branch_stack(event))
7818 		return -EOPNOTSUPP;
7819 
7820 	switch (event_id) {
7821 	case PERF_COUNT_SW_CPU_CLOCK:
7822 	case PERF_COUNT_SW_TASK_CLOCK:
7823 		return -ENOENT;
7824 
7825 	default:
7826 		break;
7827 	}
7828 
7829 	if (event_id >= PERF_COUNT_SW_MAX)
7830 		return -ENOENT;
7831 
7832 	if (!event->parent) {
7833 		int err;
7834 
7835 		err = swevent_hlist_get();
7836 		if (err)
7837 			return err;
7838 
7839 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7840 		event->destroy = sw_perf_event_destroy;
7841 	}
7842 
7843 	return 0;
7844 }
7845 
7846 static struct pmu perf_swevent = {
7847 	.task_ctx_nr	= perf_sw_context,
7848 
7849 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7850 
7851 	.event_init	= perf_swevent_init,
7852 	.add		= perf_swevent_add,
7853 	.del		= perf_swevent_del,
7854 	.start		= perf_swevent_start,
7855 	.stop		= perf_swevent_stop,
7856 	.read		= perf_swevent_read,
7857 };
7858 
7859 #ifdef CONFIG_EVENT_TRACING
7860 
7861 static int perf_tp_filter_match(struct perf_event *event,
7862 				struct perf_sample_data *data)
7863 {
7864 	void *record = data->raw->frag.data;
7865 
7866 	/* only top level events have filters set */
7867 	if (event->parent)
7868 		event = event->parent;
7869 
7870 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7871 		return 1;
7872 	return 0;
7873 }
7874 
7875 static int perf_tp_event_match(struct perf_event *event,
7876 				struct perf_sample_data *data,
7877 				struct pt_regs *regs)
7878 {
7879 	if (event->hw.state & PERF_HES_STOPPED)
7880 		return 0;
7881 	/*
7882 	 * All tracepoints are from kernel-space.
7883 	 */
7884 	if (event->attr.exclude_kernel)
7885 		return 0;
7886 
7887 	if (!perf_tp_filter_match(event, data))
7888 		return 0;
7889 
7890 	return 1;
7891 }
7892 
7893 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7894 			       struct trace_event_call *call, u64 count,
7895 			       struct pt_regs *regs, struct hlist_head *head,
7896 			       struct task_struct *task)
7897 {
7898 	if (bpf_prog_array_valid(call)) {
7899 		*(struct pt_regs **)raw_data = regs;
7900 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7901 			perf_swevent_put_recursion_context(rctx);
7902 			return;
7903 		}
7904 	}
7905 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7906 		      rctx, task);
7907 }
7908 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7909 
7910 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7911 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7912 		   struct task_struct *task)
7913 {
7914 	struct perf_sample_data data;
7915 	struct perf_event *event;
7916 
7917 	struct perf_raw_record raw = {
7918 		.frag = {
7919 			.size = entry_size,
7920 			.data = record,
7921 		},
7922 	};
7923 
7924 	perf_sample_data_init(&data, 0, 0);
7925 	data.raw = &raw;
7926 
7927 	perf_trace_buf_update(record, event_type);
7928 
7929 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7930 		if (perf_tp_event_match(event, &data, regs))
7931 			perf_swevent_event(event, count, &data, regs);
7932 	}
7933 
7934 	/*
7935 	 * If we got specified a target task, also iterate its context and
7936 	 * deliver this event there too.
7937 	 */
7938 	if (task && task != current) {
7939 		struct perf_event_context *ctx;
7940 		struct trace_entry *entry = record;
7941 
7942 		rcu_read_lock();
7943 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7944 		if (!ctx)
7945 			goto unlock;
7946 
7947 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7948 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7949 				continue;
7950 			if (event->attr.config != entry->type)
7951 				continue;
7952 			if (perf_tp_event_match(event, &data, regs))
7953 				perf_swevent_event(event, count, &data, regs);
7954 		}
7955 unlock:
7956 		rcu_read_unlock();
7957 	}
7958 
7959 	perf_swevent_put_recursion_context(rctx);
7960 }
7961 EXPORT_SYMBOL_GPL(perf_tp_event);
7962 
7963 static void tp_perf_event_destroy(struct perf_event *event)
7964 {
7965 	perf_trace_destroy(event);
7966 }
7967 
7968 static int perf_tp_event_init(struct perf_event *event)
7969 {
7970 	int err;
7971 
7972 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7973 		return -ENOENT;
7974 
7975 	/*
7976 	 * no branch sampling for tracepoint events
7977 	 */
7978 	if (has_branch_stack(event))
7979 		return -EOPNOTSUPP;
7980 
7981 	err = perf_trace_init(event);
7982 	if (err)
7983 		return err;
7984 
7985 	event->destroy = tp_perf_event_destroy;
7986 
7987 	return 0;
7988 }
7989 
7990 static struct pmu perf_tracepoint = {
7991 	.task_ctx_nr	= perf_sw_context,
7992 
7993 	.event_init	= perf_tp_event_init,
7994 	.add		= perf_trace_add,
7995 	.del		= perf_trace_del,
7996 	.start		= perf_swevent_start,
7997 	.stop		= perf_swevent_stop,
7998 	.read		= perf_swevent_read,
7999 };
8000 
8001 static inline void perf_tp_register(void)
8002 {
8003 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8004 }
8005 
8006 static void perf_event_free_filter(struct perf_event *event)
8007 {
8008 	ftrace_profile_free_filter(event);
8009 }
8010 
8011 #ifdef CONFIG_BPF_SYSCALL
8012 static void bpf_overflow_handler(struct perf_event *event,
8013 				 struct perf_sample_data *data,
8014 				 struct pt_regs *regs)
8015 {
8016 	struct bpf_perf_event_data_kern ctx = {
8017 		.data = data,
8018 		.event = event,
8019 	};
8020 	int ret = 0;
8021 
8022 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8023 	preempt_disable();
8024 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8025 		goto out;
8026 	rcu_read_lock();
8027 	ret = BPF_PROG_RUN(event->prog, &ctx);
8028 	rcu_read_unlock();
8029 out:
8030 	__this_cpu_dec(bpf_prog_active);
8031 	preempt_enable();
8032 	if (!ret)
8033 		return;
8034 
8035 	event->orig_overflow_handler(event, data, regs);
8036 }
8037 
8038 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8039 {
8040 	struct bpf_prog *prog;
8041 
8042 	if (event->overflow_handler_context)
8043 		/* hw breakpoint or kernel counter */
8044 		return -EINVAL;
8045 
8046 	if (event->prog)
8047 		return -EEXIST;
8048 
8049 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8050 	if (IS_ERR(prog))
8051 		return PTR_ERR(prog);
8052 
8053 	event->prog = prog;
8054 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8055 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8056 	return 0;
8057 }
8058 
8059 static void perf_event_free_bpf_handler(struct perf_event *event)
8060 {
8061 	struct bpf_prog *prog = event->prog;
8062 
8063 	if (!prog)
8064 		return;
8065 
8066 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8067 	event->prog = NULL;
8068 	bpf_prog_put(prog);
8069 }
8070 #else
8071 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8072 {
8073 	return -EOPNOTSUPP;
8074 }
8075 static void perf_event_free_bpf_handler(struct perf_event *event)
8076 {
8077 }
8078 #endif
8079 
8080 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8081 {
8082 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8083 	struct bpf_prog *prog;
8084 	int ret;
8085 
8086 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8087 		return perf_event_set_bpf_handler(event, prog_fd);
8088 
8089 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8090 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8091 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8092 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8093 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8094 		return -EINVAL;
8095 
8096 	prog = bpf_prog_get(prog_fd);
8097 	if (IS_ERR(prog))
8098 		return PTR_ERR(prog);
8099 
8100 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8101 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8102 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8103 		/* valid fd, but invalid bpf program type */
8104 		bpf_prog_put(prog);
8105 		return -EINVAL;
8106 	}
8107 
8108 	/* Kprobe override only works for kprobes, not uprobes. */
8109 	if (prog->kprobe_override &&
8110 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8111 		bpf_prog_put(prog);
8112 		return -EINVAL;
8113 	}
8114 
8115 	if (is_tracepoint || is_syscall_tp) {
8116 		int off = trace_event_get_offsets(event->tp_event);
8117 
8118 		if (prog->aux->max_ctx_offset > off) {
8119 			bpf_prog_put(prog);
8120 			return -EACCES;
8121 		}
8122 	}
8123 
8124 	ret = perf_event_attach_bpf_prog(event, prog);
8125 	if (ret)
8126 		bpf_prog_put(prog);
8127 	return ret;
8128 }
8129 
8130 static void perf_event_free_bpf_prog(struct perf_event *event)
8131 {
8132 	if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8133 		perf_event_free_bpf_handler(event);
8134 		return;
8135 	}
8136 	perf_event_detach_bpf_prog(event);
8137 }
8138 
8139 #else
8140 
8141 static inline void perf_tp_register(void)
8142 {
8143 }
8144 
8145 static void perf_event_free_filter(struct perf_event *event)
8146 {
8147 }
8148 
8149 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8150 {
8151 	return -ENOENT;
8152 }
8153 
8154 static void perf_event_free_bpf_prog(struct perf_event *event)
8155 {
8156 }
8157 #endif /* CONFIG_EVENT_TRACING */
8158 
8159 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8160 void perf_bp_event(struct perf_event *bp, void *data)
8161 {
8162 	struct perf_sample_data sample;
8163 	struct pt_regs *regs = data;
8164 
8165 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8166 
8167 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8168 		perf_swevent_event(bp, 1, &sample, regs);
8169 }
8170 #endif
8171 
8172 /*
8173  * Allocate a new address filter
8174  */
8175 static struct perf_addr_filter *
8176 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8177 {
8178 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8179 	struct perf_addr_filter *filter;
8180 
8181 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8182 	if (!filter)
8183 		return NULL;
8184 
8185 	INIT_LIST_HEAD(&filter->entry);
8186 	list_add_tail(&filter->entry, filters);
8187 
8188 	return filter;
8189 }
8190 
8191 static void free_filters_list(struct list_head *filters)
8192 {
8193 	struct perf_addr_filter *filter, *iter;
8194 
8195 	list_for_each_entry_safe(filter, iter, filters, entry) {
8196 		if (filter->inode)
8197 			iput(filter->inode);
8198 		list_del(&filter->entry);
8199 		kfree(filter);
8200 	}
8201 }
8202 
8203 /*
8204  * Free existing address filters and optionally install new ones
8205  */
8206 static void perf_addr_filters_splice(struct perf_event *event,
8207 				     struct list_head *head)
8208 {
8209 	unsigned long flags;
8210 	LIST_HEAD(list);
8211 
8212 	if (!has_addr_filter(event))
8213 		return;
8214 
8215 	/* don't bother with children, they don't have their own filters */
8216 	if (event->parent)
8217 		return;
8218 
8219 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8220 
8221 	list_splice_init(&event->addr_filters.list, &list);
8222 	if (head)
8223 		list_splice(head, &event->addr_filters.list);
8224 
8225 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8226 
8227 	free_filters_list(&list);
8228 }
8229 
8230 /*
8231  * Scan through mm's vmas and see if one of them matches the
8232  * @filter; if so, adjust filter's address range.
8233  * Called with mm::mmap_sem down for reading.
8234  */
8235 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8236 					    struct mm_struct *mm)
8237 {
8238 	struct vm_area_struct *vma;
8239 
8240 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8241 		struct file *file = vma->vm_file;
8242 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8243 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8244 
8245 		if (!file)
8246 			continue;
8247 
8248 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8249 			continue;
8250 
8251 		return vma->vm_start;
8252 	}
8253 
8254 	return 0;
8255 }
8256 
8257 /*
8258  * Update event's address range filters based on the
8259  * task's existing mappings, if any.
8260  */
8261 static void perf_event_addr_filters_apply(struct perf_event *event)
8262 {
8263 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8264 	struct task_struct *task = READ_ONCE(event->ctx->task);
8265 	struct perf_addr_filter *filter;
8266 	struct mm_struct *mm = NULL;
8267 	unsigned int count = 0;
8268 	unsigned long flags;
8269 
8270 	/*
8271 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8272 	 * will stop on the parent's child_mutex that our caller is also holding
8273 	 */
8274 	if (task == TASK_TOMBSTONE)
8275 		return;
8276 
8277 	if (!ifh->nr_file_filters)
8278 		return;
8279 
8280 	mm = get_task_mm(event->ctx->task);
8281 	if (!mm)
8282 		goto restart;
8283 
8284 	down_read(&mm->mmap_sem);
8285 
8286 	raw_spin_lock_irqsave(&ifh->lock, flags);
8287 	list_for_each_entry(filter, &ifh->list, entry) {
8288 		event->addr_filters_offs[count] = 0;
8289 
8290 		/*
8291 		 * Adjust base offset if the filter is associated to a binary
8292 		 * that needs to be mapped:
8293 		 */
8294 		if (filter->inode)
8295 			event->addr_filters_offs[count] =
8296 				perf_addr_filter_apply(filter, mm);
8297 
8298 		count++;
8299 	}
8300 
8301 	event->addr_filters_gen++;
8302 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8303 
8304 	up_read(&mm->mmap_sem);
8305 
8306 	mmput(mm);
8307 
8308 restart:
8309 	perf_event_stop(event, 1);
8310 }
8311 
8312 /*
8313  * Address range filtering: limiting the data to certain
8314  * instruction address ranges. Filters are ioctl()ed to us from
8315  * userspace as ascii strings.
8316  *
8317  * Filter string format:
8318  *
8319  * ACTION RANGE_SPEC
8320  * where ACTION is one of the
8321  *  * "filter": limit the trace to this region
8322  *  * "start": start tracing from this address
8323  *  * "stop": stop tracing at this address/region;
8324  * RANGE_SPEC is
8325  *  * for kernel addresses: <start address>[/<size>]
8326  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8327  *
8328  * if <size> is not specified, the range is treated as a single address.
8329  */
8330 enum {
8331 	IF_ACT_NONE = -1,
8332 	IF_ACT_FILTER,
8333 	IF_ACT_START,
8334 	IF_ACT_STOP,
8335 	IF_SRC_FILE,
8336 	IF_SRC_KERNEL,
8337 	IF_SRC_FILEADDR,
8338 	IF_SRC_KERNELADDR,
8339 };
8340 
8341 enum {
8342 	IF_STATE_ACTION = 0,
8343 	IF_STATE_SOURCE,
8344 	IF_STATE_END,
8345 };
8346 
8347 static const match_table_t if_tokens = {
8348 	{ IF_ACT_FILTER,	"filter" },
8349 	{ IF_ACT_START,		"start" },
8350 	{ IF_ACT_STOP,		"stop" },
8351 	{ IF_SRC_FILE,		"%u/%u@%s" },
8352 	{ IF_SRC_KERNEL,	"%u/%u" },
8353 	{ IF_SRC_FILEADDR,	"%u@%s" },
8354 	{ IF_SRC_KERNELADDR,	"%u" },
8355 	{ IF_ACT_NONE,		NULL },
8356 };
8357 
8358 /*
8359  * Address filter string parser
8360  */
8361 static int
8362 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8363 			     struct list_head *filters)
8364 {
8365 	struct perf_addr_filter *filter = NULL;
8366 	char *start, *orig, *filename = NULL;
8367 	struct path path;
8368 	substring_t args[MAX_OPT_ARGS];
8369 	int state = IF_STATE_ACTION, token;
8370 	unsigned int kernel = 0;
8371 	int ret = -EINVAL;
8372 
8373 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8374 	if (!fstr)
8375 		return -ENOMEM;
8376 
8377 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8378 		ret = -EINVAL;
8379 
8380 		if (!*start)
8381 			continue;
8382 
8383 		/* filter definition begins */
8384 		if (state == IF_STATE_ACTION) {
8385 			filter = perf_addr_filter_new(event, filters);
8386 			if (!filter)
8387 				goto fail;
8388 		}
8389 
8390 		token = match_token(start, if_tokens, args);
8391 		switch (token) {
8392 		case IF_ACT_FILTER:
8393 		case IF_ACT_START:
8394 			filter->filter = 1;
8395 
8396 		case IF_ACT_STOP:
8397 			if (state != IF_STATE_ACTION)
8398 				goto fail;
8399 
8400 			state = IF_STATE_SOURCE;
8401 			break;
8402 
8403 		case IF_SRC_KERNELADDR:
8404 		case IF_SRC_KERNEL:
8405 			kernel = 1;
8406 
8407 		case IF_SRC_FILEADDR:
8408 		case IF_SRC_FILE:
8409 			if (state != IF_STATE_SOURCE)
8410 				goto fail;
8411 
8412 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8413 				filter->range = 1;
8414 
8415 			*args[0].to = 0;
8416 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8417 			if (ret)
8418 				goto fail;
8419 
8420 			if (filter->range) {
8421 				*args[1].to = 0;
8422 				ret = kstrtoul(args[1].from, 0, &filter->size);
8423 				if (ret)
8424 					goto fail;
8425 			}
8426 
8427 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8428 				int fpos = filter->range ? 2 : 1;
8429 
8430 				filename = match_strdup(&args[fpos]);
8431 				if (!filename) {
8432 					ret = -ENOMEM;
8433 					goto fail;
8434 				}
8435 			}
8436 
8437 			state = IF_STATE_END;
8438 			break;
8439 
8440 		default:
8441 			goto fail;
8442 		}
8443 
8444 		/*
8445 		 * Filter definition is fully parsed, validate and install it.
8446 		 * Make sure that it doesn't contradict itself or the event's
8447 		 * attribute.
8448 		 */
8449 		if (state == IF_STATE_END) {
8450 			ret = -EINVAL;
8451 			if (kernel && event->attr.exclude_kernel)
8452 				goto fail;
8453 
8454 			if (!kernel) {
8455 				if (!filename)
8456 					goto fail;
8457 
8458 				/*
8459 				 * For now, we only support file-based filters
8460 				 * in per-task events; doing so for CPU-wide
8461 				 * events requires additional context switching
8462 				 * trickery, since same object code will be
8463 				 * mapped at different virtual addresses in
8464 				 * different processes.
8465 				 */
8466 				ret = -EOPNOTSUPP;
8467 				if (!event->ctx->task)
8468 					goto fail_free_name;
8469 
8470 				/* look up the path and grab its inode */
8471 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8472 				if (ret)
8473 					goto fail_free_name;
8474 
8475 				filter->inode = igrab(d_inode(path.dentry));
8476 				path_put(&path);
8477 				kfree(filename);
8478 				filename = NULL;
8479 
8480 				ret = -EINVAL;
8481 				if (!filter->inode ||
8482 				    !S_ISREG(filter->inode->i_mode))
8483 					/* free_filters_list() will iput() */
8484 					goto fail;
8485 
8486 				event->addr_filters.nr_file_filters++;
8487 			}
8488 
8489 			/* ready to consume more filters */
8490 			state = IF_STATE_ACTION;
8491 			filter = NULL;
8492 		}
8493 	}
8494 
8495 	if (state != IF_STATE_ACTION)
8496 		goto fail;
8497 
8498 	kfree(orig);
8499 
8500 	return 0;
8501 
8502 fail_free_name:
8503 	kfree(filename);
8504 fail:
8505 	free_filters_list(filters);
8506 	kfree(orig);
8507 
8508 	return ret;
8509 }
8510 
8511 static int
8512 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8513 {
8514 	LIST_HEAD(filters);
8515 	int ret;
8516 
8517 	/*
8518 	 * Since this is called in perf_ioctl() path, we're already holding
8519 	 * ctx::mutex.
8520 	 */
8521 	lockdep_assert_held(&event->ctx->mutex);
8522 
8523 	if (WARN_ON_ONCE(event->parent))
8524 		return -EINVAL;
8525 
8526 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8527 	if (ret)
8528 		goto fail_clear_files;
8529 
8530 	ret = event->pmu->addr_filters_validate(&filters);
8531 	if (ret)
8532 		goto fail_free_filters;
8533 
8534 	/* remove existing filters, if any */
8535 	perf_addr_filters_splice(event, &filters);
8536 
8537 	/* install new filters */
8538 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8539 
8540 	return ret;
8541 
8542 fail_free_filters:
8543 	free_filters_list(&filters);
8544 
8545 fail_clear_files:
8546 	event->addr_filters.nr_file_filters = 0;
8547 
8548 	return ret;
8549 }
8550 
8551 static int
8552 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8553 {
8554 	struct perf_event_context *ctx = event->ctx;
8555 	int ret;
8556 
8557 	/*
8558 	 * Beware, here be dragons!!
8559 	 *
8560 	 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8561 	 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8562 	 * perf_event_ctx_lock() we already have a reference on ctx.
8563 	 *
8564 	 * This can result in event getting moved to a different ctx, but that
8565 	 * does not affect the tracepoint state.
8566 	 */
8567 	mutex_unlock(&ctx->mutex);
8568 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8569 	mutex_lock(&ctx->mutex);
8570 
8571 	return ret;
8572 }
8573 
8574 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8575 {
8576 	char *filter_str;
8577 	int ret = -EINVAL;
8578 
8579 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8580 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8581 	    !has_addr_filter(event))
8582 		return -EINVAL;
8583 
8584 	filter_str = strndup_user(arg, PAGE_SIZE);
8585 	if (IS_ERR(filter_str))
8586 		return PTR_ERR(filter_str);
8587 
8588 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8589 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8590 		ret = perf_tracepoint_set_filter(event, filter_str);
8591 	else if (has_addr_filter(event))
8592 		ret = perf_event_set_addr_filter(event, filter_str);
8593 
8594 	kfree(filter_str);
8595 	return ret;
8596 }
8597 
8598 /*
8599  * hrtimer based swevent callback
8600  */
8601 
8602 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8603 {
8604 	enum hrtimer_restart ret = HRTIMER_RESTART;
8605 	struct perf_sample_data data;
8606 	struct pt_regs *regs;
8607 	struct perf_event *event;
8608 	u64 period;
8609 
8610 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8611 
8612 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8613 		return HRTIMER_NORESTART;
8614 
8615 	event->pmu->read(event);
8616 
8617 	perf_sample_data_init(&data, 0, event->hw.last_period);
8618 	regs = get_irq_regs();
8619 
8620 	if (regs && !perf_exclude_event(event, regs)) {
8621 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8622 			if (__perf_event_overflow(event, 1, &data, regs))
8623 				ret = HRTIMER_NORESTART;
8624 	}
8625 
8626 	period = max_t(u64, 10000, event->hw.sample_period);
8627 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8628 
8629 	return ret;
8630 }
8631 
8632 static void perf_swevent_start_hrtimer(struct perf_event *event)
8633 {
8634 	struct hw_perf_event *hwc = &event->hw;
8635 	s64 period;
8636 
8637 	if (!is_sampling_event(event))
8638 		return;
8639 
8640 	period = local64_read(&hwc->period_left);
8641 	if (period) {
8642 		if (period < 0)
8643 			period = 10000;
8644 
8645 		local64_set(&hwc->period_left, 0);
8646 	} else {
8647 		period = max_t(u64, 10000, hwc->sample_period);
8648 	}
8649 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8650 		      HRTIMER_MODE_REL_PINNED);
8651 }
8652 
8653 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8654 {
8655 	struct hw_perf_event *hwc = &event->hw;
8656 
8657 	if (is_sampling_event(event)) {
8658 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8659 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8660 
8661 		hrtimer_cancel(&hwc->hrtimer);
8662 	}
8663 }
8664 
8665 static void perf_swevent_init_hrtimer(struct perf_event *event)
8666 {
8667 	struct hw_perf_event *hwc = &event->hw;
8668 
8669 	if (!is_sampling_event(event))
8670 		return;
8671 
8672 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8673 	hwc->hrtimer.function = perf_swevent_hrtimer;
8674 
8675 	/*
8676 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8677 	 * mapping and avoid the whole period adjust feedback stuff.
8678 	 */
8679 	if (event->attr.freq) {
8680 		long freq = event->attr.sample_freq;
8681 
8682 		event->attr.sample_period = NSEC_PER_SEC / freq;
8683 		hwc->sample_period = event->attr.sample_period;
8684 		local64_set(&hwc->period_left, hwc->sample_period);
8685 		hwc->last_period = hwc->sample_period;
8686 		event->attr.freq = 0;
8687 	}
8688 }
8689 
8690 /*
8691  * Software event: cpu wall time clock
8692  */
8693 
8694 static void cpu_clock_event_update(struct perf_event *event)
8695 {
8696 	s64 prev;
8697 	u64 now;
8698 
8699 	now = local_clock();
8700 	prev = local64_xchg(&event->hw.prev_count, now);
8701 	local64_add(now - prev, &event->count);
8702 }
8703 
8704 static void cpu_clock_event_start(struct perf_event *event, int flags)
8705 {
8706 	local64_set(&event->hw.prev_count, local_clock());
8707 	perf_swevent_start_hrtimer(event);
8708 }
8709 
8710 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8711 {
8712 	perf_swevent_cancel_hrtimer(event);
8713 	cpu_clock_event_update(event);
8714 }
8715 
8716 static int cpu_clock_event_add(struct perf_event *event, int flags)
8717 {
8718 	if (flags & PERF_EF_START)
8719 		cpu_clock_event_start(event, flags);
8720 	perf_event_update_userpage(event);
8721 
8722 	return 0;
8723 }
8724 
8725 static void cpu_clock_event_del(struct perf_event *event, int flags)
8726 {
8727 	cpu_clock_event_stop(event, flags);
8728 }
8729 
8730 static void cpu_clock_event_read(struct perf_event *event)
8731 {
8732 	cpu_clock_event_update(event);
8733 }
8734 
8735 static int cpu_clock_event_init(struct perf_event *event)
8736 {
8737 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8738 		return -ENOENT;
8739 
8740 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8741 		return -ENOENT;
8742 
8743 	/*
8744 	 * no branch sampling for software events
8745 	 */
8746 	if (has_branch_stack(event))
8747 		return -EOPNOTSUPP;
8748 
8749 	perf_swevent_init_hrtimer(event);
8750 
8751 	return 0;
8752 }
8753 
8754 static struct pmu perf_cpu_clock = {
8755 	.task_ctx_nr	= perf_sw_context,
8756 
8757 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8758 
8759 	.event_init	= cpu_clock_event_init,
8760 	.add		= cpu_clock_event_add,
8761 	.del		= cpu_clock_event_del,
8762 	.start		= cpu_clock_event_start,
8763 	.stop		= cpu_clock_event_stop,
8764 	.read		= cpu_clock_event_read,
8765 };
8766 
8767 /*
8768  * Software event: task time clock
8769  */
8770 
8771 static void task_clock_event_update(struct perf_event *event, u64 now)
8772 {
8773 	u64 prev;
8774 	s64 delta;
8775 
8776 	prev = local64_xchg(&event->hw.prev_count, now);
8777 	delta = now - prev;
8778 	local64_add(delta, &event->count);
8779 }
8780 
8781 static void task_clock_event_start(struct perf_event *event, int flags)
8782 {
8783 	local64_set(&event->hw.prev_count, event->ctx->time);
8784 	perf_swevent_start_hrtimer(event);
8785 }
8786 
8787 static void task_clock_event_stop(struct perf_event *event, int flags)
8788 {
8789 	perf_swevent_cancel_hrtimer(event);
8790 	task_clock_event_update(event, event->ctx->time);
8791 }
8792 
8793 static int task_clock_event_add(struct perf_event *event, int flags)
8794 {
8795 	if (flags & PERF_EF_START)
8796 		task_clock_event_start(event, flags);
8797 	perf_event_update_userpage(event);
8798 
8799 	return 0;
8800 }
8801 
8802 static void task_clock_event_del(struct perf_event *event, int flags)
8803 {
8804 	task_clock_event_stop(event, PERF_EF_UPDATE);
8805 }
8806 
8807 static void task_clock_event_read(struct perf_event *event)
8808 {
8809 	u64 now = perf_clock();
8810 	u64 delta = now - event->ctx->timestamp;
8811 	u64 time = event->ctx->time + delta;
8812 
8813 	task_clock_event_update(event, time);
8814 }
8815 
8816 static int task_clock_event_init(struct perf_event *event)
8817 {
8818 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8819 		return -ENOENT;
8820 
8821 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8822 		return -ENOENT;
8823 
8824 	/*
8825 	 * no branch sampling for software events
8826 	 */
8827 	if (has_branch_stack(event))
8828 		return -EOPNOTSUPP;
8829 
8830 	perf_swevent_init_hrtimer(event);
8831 
8832 	return 0;
8833 }
8834 
8835 static struct pmu perf_task_clock = {
8836 	.task_ctx_nr	= perf_sw_context,
8837 
8838 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8839 
8840 	.event_init	= task_clock_event_init,
8841 	.add		= task_clock_event_add,
8842 	.del		= task_clock_event_del,
8843 	.start		= task_clock_event_start,
8844 	.stop		= task_clock_event_stop,
8845 	.read		= task_clock_event_read,
8846 };
8847 
8848 static void perf_pmu_nop_void(struct pmu *pmu)
8849 {
8850 }
8851 
8852 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8853 {
8854 }
8855 
8856 static int perf_pmu_nop_int(struct pmu *pmu)
8857 {
8858 	return 0;
8859 }
8860 
8861 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8862 
8863 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8864 {
8865 	__this_cpu_write(nop_txn_flags, flags);
8866 
8867 	if (flags & ~PERF_PMU_TXN_ADD)
8868 		return;
8869 
8870 	perf_pmu_disable(pmu);
8871 }
8872 
8873 static int perf_pmu_commit_txn(struct pmu *pmu)
8874 {
8875 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8876 
8877 	__this_cpu_write(nop_txn_flags, 0);
8878 
8879 	if (flags & ~PERF_PMU_TXN_ADD)
8880 		return 0;
8881 
8882 	perf_pmu_enable(pmu);
8883 	return 0;
8884 }
8885 
8886 static void perf_pmu_cancel_txn(struct pmu *pmu)
8887 {
8888 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8889 
8890 	__this_cpu_write(nop_txn_flags, 0);
8891 
8892 	if (flags & ~PERF_PMU_TXN_ADD)
8893 		return;
8894 
8895 	perf_pmu_enable(pmu);
8896 }
8897 
8898 static int perf_event_idx_default(struct perf_event *event)
8899 {
8900 	return 0;
8901 }
8902 
8903 /*
8904  * Ensures all contexts with the same task_ctx_nr have the same
8905  * pmu_cpu_context too.
8906  */
8907 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8908 {
8909 	struct pmu *pmu;
8910 
8911 	if (ctxn < 0)
8912 		return NULL;
8913 
8914 	list_for_each_entry(pmu, &pmus, entry) {
8915 		if (pmu->task_ctx_nr == ctxn)
8916 			return pmu->pmu_cpu_context;
8917 	}
8918 
8919 	return NULL;
8920 }
8921 
8922 static void free_pmu_context(struct pmu *pmu)
8923 {
8924 	/*
8925 	 * Static contexts such as perf_sw_context have a global lifetime
8926 	 * and may be shared between different PMUs. Avoid freeing them
8927 	 * when a single PMU is going away.
8928 	 */
8929 	if (pmu->task_ctx_nr > perf_invalid_context)
8930 		return;
8931 
8932 	mutex_lock(&pmus_lock);
8933 	free_percpu(pmu->pmu_cpu_context);
8934 	mutex_unlock(&pmus_lock);
8935 }
8936 
8937 /*
8938  * Let userspace know that this PMU supports address range filtering:
8939  */
8940 static ssize_t nr_addr_filters_show(struct device *dev,
8941 				    struct device_attribute *attr,
8942 				    char *page)
8943 {
8944 	struct pmu *pmu = dev_get_drvdata(dev);
8945 
8946 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8947 }
8948 DEVICE_ATTR_RO(nr_addr_filters);
8949 
8950 static struct idr pmu_idr;
8951 
8952 static ssize_t
8953 type_show(struct device *dev, struct device_attribute *attr, char *page)
8954 {
8955 	struct pmu *pmu = dev_get_drvdata(dev);
8956 
8957 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8958 }
8959 static DEVICE_ATTR_RO(type);
8960 
8961 static ssize_t
8962 perf_event_mux_interval_ms_show(struct device *dev,
8963 				struct device_attribute *attr,
8964 				char *page)
8965 {
8966 	struct pmu *pmu = dev_get_drvdata(dev);
8967 
8968 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8969 }
8970 
8971 static DEFINE_MUTEX(mux_interval_mutex);
8972 
8973 static ssize_t
8974 perf_event_mux_interval_ms_store(struct device *dev,
8975 				 struct device_attribute *attr,
8976 				 const char *buf, size_t count)
8977 {
8978 	struct pmu *pmu = dev_get_drvdata(dev);
8979 	int timer, cpu, ret;
8980 
8981 	ret = kstrtoint(buf, 0, &timer);
8982 	if (ret)
8983 		return ret;
8984 
8985 	if (timer < 1)
8986 		return -EINVAL;
8987 
8988 	/* same value, noting to do */
8989 	if (timer == pmu->hrtimer_interval_ms)
8990 		return count;
8991 
8992 	mutex_lock(&mux_interval_mutex);
8993 	pmu->hrtimer_interval_ms = timer;
8994 
8995 	/* update all cpuctx for this PMU */
8996 	cpus_read_lock();
8997 	for_each_online_cpu(cpu) {
8998 		struct perf_cpu_context *cpuctx;
8999 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9000 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9001 
9002 		cpu_function_call(cpu,
9003 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9004 	}
9005 	cpus_read_unlock();
9006 	mutex_unlock(&mux_interval_mutex);
9007 
9008 	return count;
9009 }
9010 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9011 
9012 static struct attribute *pmu_dev_attrs[] = {
9013 	&dev_attr_type.attr,
9014 	&dev_attr_perf_event_mux_interval_ms.attr,
9015 	NULL,
9016 };
9017 ATTRIBUTE_GROUPS(pmu_dev);
9018 
9019 static int pmu_bus_running;
9020 static struct bus_type pmu_bus = {
9021 	.name		= "event_source",
9022 	.dev_groups	= pmu_dev_groups,
9023 };
9024 
9025 static void pmu_dev_release(struct device *dev)
9026 {
9027 	kfree(dev);
9028 }
9029 
9030 static int pmu_dev_alloc(struct pmu *pmu)
9031 {
9032 	int ret = -ENOMEM;
9033 
9034 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9035 	if (!pmu->dev)
9036 		goto out;
9037 
9038 	pmu->dev->groups = pmu->attr_groups;
9039 	device_initialize(pmu->dev);
9040 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9041 	if (ret)
9042 		goto free_dev;
9043 
9044 	dev_set_drvdata(pmu->dev, pmu);
9045 	pmu->dev->bus = &pmu_bus;
9046 	pmu->dev->release = pmu_dev_release;
9047 	ret = device_add(pmu->dev);
9048 	if (ret)
9049 		goto free_dev;
9050 
9051 	/* For PMUs with address filters, throw in an extra attribute: */
9052 	if (pmu->nr_addr_filters)
9053 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9054 
9055 	if (ret)
9056 		goto del_dev;
9057 
9058 out:
9059 	return ret;
9060 
9061 del_dev:
9062 	device_del(pmu->dev);
9063 
9064 free_dev:
9065 	put_device(pmu->dev);
9066 	goto out;
9067 }
9068 
9069 static struct lock_class_key cpuctx_mutex;
9070 static struct lock_class_key cpuctx_lock;
9071 
9072 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9073 {
9074 	int cpu, ret;
9075 
9076 	mutex_lock(&pmus_lock);
9077 	ret = -ENOMEM;
9078 	pmu->pmu_disable_count = alloc_percpu(int);
9079 	if (!pmu->pmu_disable_count)
9080 		goto unlock;
9081 
9082 	pmu->type = -1;
9083 	if (!name)
9084 		goto skip_type;
9085 	pmu->name = name;
9086 
9087 	if (type < 0) {
9088 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9089 		if (type < 0) {
9090 			ret = type;
9091 			goto free_pdc;
9092 		}
9093 	}
9094 	pmu->type = type;
9095 
9096 	if (pmu_bus_running) {
9097 		ret = pmu_dev_alloc(pmu);
9098 		if (ret)
9099 			goto free_idr;
9100 	}
9101 
9102 skip_type:
9103 	if (pmu->task_ctx_nr == perf_hw_context) {
9104 		static int hw_context_taken = 0;
9105 
9106 		/*
9107 		 * Other than systems with heterogeneous CPUs, it never makes
9108 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9109 		 * uncore must use perf_invalid_context.
9110 		 */
9111 		if (WARN_ON_ONCE(hw_context_taken &&
9112 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9113 			pmu->task_ctx_nr = perf_invalid_context;
9114 
9115 		hw_context_taken = 1;
9116 	}
9117 
9118 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9119 	if (pmu->pmu_cpu_context)
9120 		goto got_cpu_context;
9121 
9122 	ret = -ENOMEM;
9123 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9124 	if (!pmu->pmu_cpu_context)
9125 		goto free_dev;
9126 
9127 	for_each_possible_cpu(cpu) {
9128 		struct perf_cpu_context *cpuctx;
9129 
9130 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9131 		__perf_event_init_context(&cpuctx->ctx);
9132 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9133 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9134 		cpuctx->ctx.pmu = pmu;
9135 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9136 
9137 		__perf_mux_hrtimer_init(cpuctx, cpu);
9138 	}
9139 
9140 got_cpu_context:
9141 	if (!pmu->start_txn) {
9142 		if (pmu->pmu_enable) {
9143 			/*
9144 			 * If we have pmu_enable/pmu_disable calls, install
9145 			 * transaction stubs that use that to try and batch
9146 			 * hardware accesses.
9147 			 */
9148 			pmu->start_txn  = perf_pmu_start_txn;
9149 			pmu->commit_txn = perf_pmu_commit_txn;
9150 			pmu->cancel_txn = perf_pmu_cancel_txn;
9151 		} else {
9152 			pmu->start_txn  = perf_pmu_nop_txn;
9153 			pmu->commit_txn = perf_pmu_nop_int;
9154 			pmu->cancel_txn = perf_pmu_nop_void;
9155 		}
9156 	}
9157 
9158 	if (!pmu->pmu_enable) {
9159 		pmu->pmu_enable  = perf_pmu_nop_void;
9160 		pmu->pmu_disable = perf_pmu_nop_void;
9161 	}
9162 
9163 	if (!pmu->event_idx)
9164 		pmu->event_idx = perf_event_idx_default;
9165 
9166 	list_add_rcu(&pmu->entry, &pmus);
9167 	atomic_set(&pmu->exclusive_cnt, 0);
9168 	ret = 0;
9169 unlock:
9170 	mutex_unlock(&pmus_lock);
9171 
9172 	return ret;
9173 
9174 free_dev:
9175 	device_del(pmu->dev);
9176 	put_device(pmu->dev);
9177 
9178 free_idr:
9179 	if (pmu->type >= PERF_TYPE_MAX)
9180 		idr_remove(&pmu_idr, pmu->type);
9181 
9182 free_pdc:
9183 	free_percpu(pmu->pmu_disable_count);
9184 	goto unlock;
9185 }
9186 EXPORT_SYMBOL_GPL(perf_pmu_register);
9187 
9188 void perf_pmu_unregister(struct pmu *pmu)
9189 {
9190 	int remove_device;
9191 
9192 	mutex_lock(&pmus_lock);
9193 	remove_device = pmu_bus_running;
9194 	list_del_rcu(&pmu->entry);
9195 	mutex_unlock(&pmus_lock);
9196 
9197 	/*
9198 	 * We dereference the pmu list under both SRCU and regular RCU, so
9199 	 * synchronize against both of those.
9200 	 */
9201 	synchronize_srcu(&pmus_srcu);
9202 	synchronize_rcu();
9203 
9204 	free_percpu(pmu->pmu_disable_count);
9205 	if (pmu->type >= PERF_TYPE_MAX)
9206 		idr_remove(&pmu_idr, pmu->type);
9207 	if (remove_device) {
9208 		if (pmu->nr_addr_filters)
9209 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9210 		device_del(pmu->dev);
9211 		put_device(pmu->dev);
9212 	}
9213 	free_pmu_context(pmu);
9214 }
9215 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9216 
9217 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9218 {
9219 	struct perf_event_context *ctx = NULL;
9220 	int ret;
9221 
9222 	if (!try_module_get(pmu->module))
9223 		return -ENODEV;
9224 
9225 	/*
9226 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9227 	 * for example, validate if the group fits on the PMU. Therefore,
9228 	 * if this is a sibling event, acquire the ctx->mutex to protect
9229 	 * the sibling_list.
9230 	 */
9231 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9232 		/*
9233 		 * This ctx->mutex can nest when we're called through
9234 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9235 		 */
9236 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9237 						 SINGLE_DEPTH_NESTING);
9238 		BUG_ON(!ctx);
9239 	}
9240 
9241 	event->pmu = pmu;
9242 	ret = pmu->event_init(event);
9243 
9244 	if (ctx)
9245 		perf_event_ctx_unlock(event->group_leader, ctx);
9246 
9247 	if (ret)
9248 		module_put(pmu->module);
9249 
9250 	return ret;
9251 }
9252 
9253 static struct pmu *perf_init_event(struct perf_event *event)
9254 {
9255 	struct pmu *pmu;
9256 	int idx;
9257 	int ret;
9258 
9259 	idx = srcu_read_lock(&pmus_srcu);
9260 
9261 	/* Try parent's PMU first: */
9262 	if (event->parent && event->parent->pmu) {
9263 		pmu = event->parent->pmu;
9264 		ret = perf_try_init_event(pmu, event);
9265 		if (!ret)
9266 			goto unlock;
9267 	}
9268 
9269 	rcu_read_lock();
9270 	pmu = idr_find(&pmu_idr, event->attr.type);
9271 	rcu_read_unlock();
9272 	if (pmu) {
9273 		ret = perf_try_init_event(pmu, event);
9274 		if (ret)
9275 			pmu = ERR_PTR(ret);
9276 		goto unlock;
9277 	}
9278 
9279 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9280 		ret = perf_try_init_event(pmu, event);
9281 		if (!ret)
9282 			goto unlock;
9283 
9284 		if (ret != -ENOENT) {
9285 			pmu = ERR_PTR(ret);
9286 			goto unlock;
9287 		}
9288 	}
9289 	pmu = ERR_PTR(-ENOENT);
9290 unlock:
9291 	srcu_read_unlock(&pmus_srcu, idx);
9292 
9293 	return pmu;
9294 }
9295 
9296 static void attach_sb_event(struct perf_event *event)
9297 {
9298 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9299 
9300 	raw_spin_lock(&pel->lock);
9301 	list_add_rcu(&event->sb_list, &pel->list);
9302 	raw_spin_unlock(&pel->lock);
9303 }
9304 
9305 /*
9306  * We keep a list of all !task (and therefore per-cpu) events
9307  * that need to receive side-band records.
9308  *
9309  * This avoids having to scan all the various PMU per-cpu contexts
9310  * looking for them.
9311  */
9312 static void account_pmu_sb_event(struct perf_event *event)
9313 {
9314 	if (is_sb_event(event))
9315 		attach_sb_event(event);
9316 }
9317 
9318 static void account_event_cpu(struct perf_event *event, int cpu)
9319 {
9320 	if (event->parent)
9321 		return;
9322 
9323 	if (is_cgroup_event(event))
9324 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9325 }
9326 
9327 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9328 static void account_freq_event_nohz(void)
9329 {
9330 #ifdef CONFIG_NO_HZ_FULL
9331 	/* Lock so we don't race with concurrent unaccount */
9332 	spin_lock(&nr_freq_lock);
9333 	if (atomic_inc_return(&nr_freq_events) == 1)
9334 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9335 	spin_unlock(&nr_freq_lock);
9336 #endif
9337 }
9338 
9339 static void account_freq_event(void)
9340 {
9341 	if (tick_nohz_full_enabled())
9342 		account_freq_event_nohz();
9343 	else
9344 		atomic_inc(&nr_freq_events);
9345 }
9346 
9347 
9348 static void account_event(struct perf_event *event)
9349 {
9350 	bool inc = false;
9351 
9352 	if (event->parent)
9353 		return;
9354 
9355 	if (event->attach_state & PERF_ATTACH_TASK)
9356 		inc = true;
9357 	if (event->attr.mmap || event->attr.mmap_data)
9358 		atomic_inc(&nr_mmap_events);
9359 	if (event->attr.comm)
9360 		atomic_inc(&nr_comm_events);
9361 	if (event->attr.namespaces)
9362 		atomic_inc(&nr_namespaces_events);
9363 	if (event->attr.task)
9364 		atomic_inc(&nr_task_events);
9365 	if (event->attr.freq)
9366 		account_freq_event();
9367 	if (event->attr.context_switch) {
9368 		atomic_inc(&nr_switch_events);
9369 		inc = true;
9370 	}
9371 	if (has_branch_stack(event))
9372 		inc = true;
9373 	if (is_cgroup_event(event))
9374 		inc = true;
9375 
9376 	if (inc) {
9377 		/*
9378 		 * We need the mutex here because static_branch_enable()
9379 		 * must complete *before* the perf_sched_count increment
9380 		 * becomes visible.
9381 		 */
9382 		if (atomic_inc_not_zero(&perf_sched_count))
9383 			goto enabled;
9384 
9385 		mutex_lock(&perf_sched_mutex);
9386 		if (!atomic_read(&perf_sched_count)) {
9387 			static_branch_enable(&perf_sched_events);
9388 			/*
9389 			 * Guarantee that all CPUs observe they key change and
9390 			 * call the perf scheduling hooks before proceeding to
9391 			 * install events that need them.
9392 			 */
9393 			synchronize_sched();
9394 		}
9395 		/*
9396 		 * Now that we have waited for the sync_sched(), allow further
9397 		 * increments to by-pass the mutex.
9398 		 */
9399 		atomic_inc(&perf_sched_count);
9400 		mutex_unlock(&perf_sched_mutex);
9401 	}
9402 enabled:
9403 
9404 	account_event_cpu(event, event->cpu);
9405 
9406 	account_pmu_sb_event(event);
9407 }
9408 
9409 /*
9410  * Allocate and initialize a event structure
9411  */
9412 static struct perf_event *
9413 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9414 		 struct task_struct *task,
9415 		 struct perf_event *group_leader,
9416 		 struct perf_event *parent_event,
9417 		 perf_overflow_handler_t overflow_handler,
9418 		 void *context, int cgroup_fd)
9419 {
9420 	struct pmu *pmu;
9421 	struct perf_event *event;
9422 	struct hw_perf_event *hwc;
9423 	long err = -EINVAL;
9424 
9425 	if ((unsigned)cpu >= nr_cpu_ids) {
9426 		if (!task || cpu != -1)
9427 			return ERR_PTR(-EINVAL);
9428 	}
9429 
9430 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9431 	if (!event)
9432 		return ERR_PTR(-ENOMEM);
9433 
9434 	/*
9435 	 * Single events are their own group leaders, with an
9436 	 * empty sibling list:
9437 	 */
9438 	if (!group_leader)
9439 		group_leader = event;
9440 
9441 	mutex_init(&event->child_mutex);
9442 	INIT_LIST_HEAD(&event->child_list);
9443 
9444 	INIT_LIST_HEAD(&event->group_entry);
9445 	INIT_LIST_HEAD(&event->event_entry);
9446 	INIT_LIST_HEAD(&event->sibling_list);
9447 	INIT_LIST_HEAD(&event->rb_entry);
9448 	INIT_LIST_HEAD(&event->active_entry);
9449 	INIT_LIST_HEAD(&event->addr_filters.list);
9450 	INIT_HLIST_NODE(&event->hlist_entry);
9451 
9452 
9453 	init_waitqueue_head(&event->waitq);
9454 	init_irq_work(&event->pending, perf_pending_event);
9455 
9456 	mutex_init(&event->mmap_mutex);
9457 	raw_spin_lock_init(&event->addr_filters.lock);
9458 
9459 	atomic_long_set(&event->refcount, 1);
9460 	event->cpu		= cpu;
9461 	event->attr		= *attr;
9462 	event->group_leader	= group_leader;
9463 	event->pmu		= NULL;
9464 	event->oncpu		= -1;
9465 
9466 	event->parent		= parent_event;
9467 
9468 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9469 	event->id		= atomic64_inc_return(&perf_event_id);
9470 
9471 	event->state		= PERF_EVENT_STATE_INACTIVE;
9472 
9473 	if (task) {
9474 		event->attach_state = PERF_ATTACH_TASK;
9475 		/*
9476 		 * XXX pmu::event_init needs to know what task to account to
9477 		 * and we cannot use the ctx information because we need the
9478 		 * pmu before we get a ctx.
9479 		 */
9480 		event->hw.target = task;
9481 	}
9482 
9483 	event->clock = &local_clock;
9484 	if (parent_event)
9485 		event->clock = parent_event->clock;
9486 
9487 	if (!overflow_handler && parent_event) {
9488 		overflow_handler = parent_event->overflow_handler;
9489 		context = parent_event->overflow_handler_context;
9490 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9491 		if (overflow_handler == bpf_overflow_handler) {
9492 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9493 
9494 			if (IS_ERR(prog)) {
9495 				err = PTR_ERR(prog);
9496 				goto err_ns;
9497 			}
9498 			event->prog = prog;
9499 			event->orig_overflow_handler =
9500 				parent_event->orig_overflow_handler;
9501 		}
9502 #endif
9503 	}
9504 
9505 	if (overflow_handler) {
9506 		event->overflow_handler	= overflow_handler;
9507 		event->overflow_handler_context = context;
9508 	} else if (is_write_backward(event)){
9509 		event->overflow_handler = perf_event_output_backward;
9510 		event->overflow_handler_context = NULL;
9511 	} else {
9512 		event->overflow_handler = perf_event_output_forward;
9513 		event->overflow_handler_context = NULL;
9514 	}
9515 
9516 	perf_event__state_init(event);
9517 
9518 	pmu = NULL;
9519 
9520 	hwc = &event->hw;
9521 	hwc->sample_period = attr->sample_period;
9522 	if (attr->freq && attr->sample_freq)
9523 		hwc->sample_period = 1;
9524 	hwc->last_period = hwc->sample_period;
9525 
9526 	local64_set(&hwc->period_left, hwc->sample_period);
9527 
9528 	/*
9529 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9530 	 * See perf_output_read().
9531 	 */
9532 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9533 		goto err_ns;
9534 
9535 	if (!has_branch_stack(event))
9536 		event->attr.branch_sample_type = 0;
9537 
9538 	if (cgroup_fd != -1) {
9539 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9540 		if (err)
9541 			goto err_ns;
9542 	}
9543 
9544 	pmu = perf_init_event(event);
9545 	if (IS_ERR(pmu)) {
9546 		err = PTR_ERR(pmu);
9547 		goto err_ns;
9548 	}
9549 
9550 	err = exclusive_event_init(event);
9551 	if (err)
9552 		goto err_pmu;
9553 
9554 	if (has_addr_filter(event)) {
9555 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9556 						   sizeof(unsigned long),
9557 						   GFP_KERNEL);
9558 		if (!event->addr_filters_offs) {
9559 			err = -ENOMEM;
9560 			goto err_per_task;
9561 		}
9562 
9563 		/* force hw sync on the address filters */
9564 		event->addr_filters_gen = 1;
9565 	}
9566 
9567 	if (!event->parent) {
9568 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9569 			err = get_callchain_buffers(attr->sample_max_stack);
9570 			if (err)
9571 				goto err_addr_filters;
9572 		}
9573 	}
9574 
9575 	/* symmetric to unaccount_event() in _free_event() */
9576 	account_event(event);
9577 
9578 	return event;
9579 
9580 err_addr_filters:
9581 	kfree(event->addr_filters_offs);
9582 
9583 err_per_task:
9584 	exclusive_event_destroy(event);
9585 
9586 err_pmu:
9587 	if (event->destroy)
9588 		event->destroy(event);
9589 	module_put(pmu->module);
9590 err_ns:
9591 	if (is_cgroup_event(event))
9592 		perf_detach_cgroup(event);
9593 	if (event->ns)
9594 		put_pid_ns(event->ns);
9595 	kfree(event);
9596 
9597 	return ERR_PTR(err);
9598 }
9599 
9600 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9601 			  struct perf_event_attr *attr)
9602 {
9603 	u32 size;
9604 	int ret;
9605 
9606 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9607 		return -EFAULT;
9608 
9609 	/*
9610 	 * zero the full structure, so that a short copy will be nice.
9611 	 */
9612 	memset(attr, 0, sizeof(*attr));
9613 
9614 	ret = get_user(size, &uattr->size);
9615 	if (ret)
9616 		return ret;
9617 
9618 	if (size > PAGE_SIZE)	/* silly large */
9619 		goto err_size;
9620 
9621 	if (!size)		/* abi compat */
9622 		size = PERF_ATTR_SIZE_VER0;
9623 
9624 	if (size < PERF_ATTR_SIZE_VER0)
9625 		goto err_size;
9626 
9627 	/*
9628 	 * If we're handed a bigger struct than we know of,
9629 	 * ensure all the unknown bits are 0 - i.e. new
9630 	 * user-space does not rely on any kernel feature
9631 	 * extensions we dont know about yet.
9632 	 */
9633 	if (size > sizeof(*attr)) {
9634 		unsigned char __user *addr;
9635 		unsigned char __user *end;
9636 		unsigned char val;
9637 
9638 		addr = (void __user *)uattr + sizeof(*attr);
9639 		end  = (void __user *)uattr + size;
9640 
9641 		for (; addr < end; addr++) {
9642 			ret = get_user(val, addr);
9643 			if (ret)
9644 				return ret;
9645 			if (val)
9646 				goto err_size;
9647 		}
9648 		size = sizeof(*attr);
9649 	}
9650 
9651 	ret = copy_from_user(attr, uattr, size);
9652 	if (ret)
9653 		return -EFAULT;
9654 
9655 	attr->size = size;
9656 
9657 	if (attr->__reserved_1)
9658 		return -EINVAL;
9659 
9660 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9661 		return -EINVAL;
9662 
9663 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9664 		return -EINVAL;
9665 
9666 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9667 		u64 mask = attr->branch_sample_type;
9668 
9669 		/* only using defined bits */
9670 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9671 			return -EINVAL;
9672 
9673 		/* at least one branch bit must be set */
9674 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9675 			return -EINVAL;
9676 
9677 		/* propagate priv level, when not set for branch */
9678 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9679 
9680 			/* exclude_kernel checked on syscall entry */
9681 			if (!attr->exclude_kernel)
9682 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9683 
9684 			if (!attr->exclude_user)
9685 				mask |= PERF_SAMPLE_BRANCH_USER;
9686 
9687 			if (!attr->exclude_hv)
9688 				mask |= PERF_SAMPLE_BRANCH_HV;
9689 			/*
9690 			 * adjust user setting (for HW filter setup)
9691 			 */
9692 			attr->branch_sample_type = mask;
9693 		}
9694 		/* privileged levels capture (kernel, hv): check permissions */
9695 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9696 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9697 			return -EACCES;
9698 	}
9699 
9700 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9701 		ret = perf_reg_validate(attr->sample_regs_user);
9702 		if (ret)
9703 			return ret;
9704 	}
9705 
9706 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9707 		if (!arch_perf_have_user_stack_dump())
9708 			return -ENOSYS;
9709 
9710 		/*
9711 		 * We have __u32 type for the size, but so far
9712 		 * we can only use __u16 as maximum due to the
9713 		 * __u16 sample size limit.
9714 		 */
9715 		if (attr->sample_stack_user >= USHRT_MAX)
9716 			ret = -EINVAL;
9717 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9718 			ret = -EINVAL;
9719 	}
9720 
9721 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9722 		ret = perf_reg_validate(attr->sample_regs_intr);
9723 out:
9724 	return ret;
9725 
9726 err_size:
9727 	put_user(sizeof(*attr), &uattr->size);
9728 	ret = -E2BIG;
9729 	goto out;
9730 }
9731 
9732 static int
9733 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9734 {
9735 	struct ring_buffer *rb = NULL;
9736 	int ret = -EINVAL;
9737 
9738 	if (!output_event)
9739 		goto set;
9740 
9741 	/* don't allow circular references */
9742 	if (event == output_event)
9743 		goto out;
9744 
9745 	/*
9746 	 * Don't allow cross-cpu buffers
9747 	 */
9748 	if (output_event->cpu != event->cpu)
9749 		goto out;
9750 
9751 	/*
9752 	 * If its not a per-cpu rb, it must be the same task.
9753 	 */
9754 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9755 		goto out;
9756 
9757 	/*
9758 	 * Mixing clocks in the same buffer is trouble you don't need.
9759 	 */
9760 	if (output_event->clock != event->clock)
9761 		goto out;
9762 
9763 	/*
9764 	 * Either writing ring buffer from beginning or from end.
9765 	 * Mixing is not allowed.
9766 	 */
9767 	if (is_write_backward(output_event) != is_write_backward(event))
9768 		goto out;
9769 
9770 	/*
9771 	 * If both events generate aux data, they must be on the same PMU
9772 	 */
9773 	if (has_aux(event) && has_aux(output_event) &&
9774 	    event->pmu != output_event->pmu)
9775 		goto out;
9776 
9777 set:
9778 	mutex_lock(&event->mmap_mutex);
9779 	/* Can't redirect output if we've got an active mmap() */
9780 	if (atomic_read(&event->mmap_count))
9781 		goto unlock;
9782 
9783 	if (output_event) {
9784 		/* get the rb we want to redirect to */
9785 		rb = ring_buffer_get(output_event);
9786 		if (!rb)
9787 			goto unlock;
9788 	}
9789 
9790 	ring_buffer_attach(event, rb);
9791 
9792 	ret = 0;
9793 unlock:
9794 	mutex_unlock(&event->mmap_mutex);
9795 
9796 out:
9797 	return ret;
9798 }
9799 
9800 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9801 {
9802 	if (b < a)
9803 		swap(a, b);
9804 
9805 	mutex_lock(a);
9806 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9807 }
9808 
9809 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9810 {
9811 	bool nmi_safe = false;
9812 
9813 	switch (clk_id) {
9814 	case CLOCK_MONOTONIC:
9815 		event->clock = &ktime_get_mono_fast_ns;
9816 		nmi_safe = true;
9817 		break;
9818 
9819 	case CLOCK_MONOTONIC_RAW:
9820 		event->clock = &ktime_get_raw_fast_ns;
9821 		nmi_safe = true;
9822 		break;
9823 
9824 	case CLOCK_REALTIME:
9825 		event->clock = &ktime_get_real_ns;
9826 		break;
9827 
9828 	case CLOCK_BOOTTIME:
9829 		event->clock = &ktime_get_boot_ns;
9830 		break;
9831 
9832 	case CLOCK_TAI:
9833 		event->clock = &ktime_get_tai_ns;
9834 		break;
9835 
9836 	default:
9837 		return -EINVAL;
9838 	}
9839 
9840 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9841 		return -EINVAL;
9842 
9843 	return 0;
9844 }
9845 
9846 /*
9847  * Variation on perf_event_ctx_lock_nested(), except we take two context
9848  * mutexes.
9849  */
9850 static struct perf_event_context *
9851 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9852 			     struct perf_event_context *ctx)
9853 {
9854 	struct perf_event_context *gctx;
9855 
9856 again:
9857 	rcu_read_lock();
9858 	gctx = READ_ONCE(group_leader->ctx);
9859 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9860 		rcu_read_unlock();
9861 		goto again;
9862 	}
9863 	rcu_read_unlock();
9864 
9865 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9866 
9867 	if (group_leader->ctx != gctx) {
9868 		mutex_unlock(&ctx->mutex);
9869 		mutex_unlock(&gctx->mutex);
9870 		put_ctx(gctx);
9871 		goto again;
9872 	}
9873 
9874 	return gctx;
9875 }
9876 
9877 /**
9878  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9879  *
9880  * @attr_uptr:	event_id type attributes for monitoring/sampling
9881  * @pid:		target pid
9882  * @cpu:		target cpu
9883  * @group_fd:		group leader event fd
9884  */
9885 SYSCALL_DEFINE5(perf_event_open,
9886 		struct perf_event_attr __user *, attr_uptr,
9887 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9888 {
9889 	struct perf_event *group_leader = NULL, *output_event = NULL;
9890 	struct perf_event *event, *sibling;
9891 	struct perf_event_attr attr;
9892 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9893 	struct file *event_file = NULL;
9894 	struct fd group = {NULL, 0};
9895 	struct task_struct *task = NULL;
9896 	struct pmu *pmu;
9897 	int event_fd;
9898 	int move_group = 0;
9899 	int err;
9900 	int f_flags = O_RDWR;
9901 	int cgroup_fd = -1;
9902 
9903 	/* for future expandability... */
9904 	if (flags & ~PERF_FLAG_ALL)
9905 		return -EINVAL;
9906 
9907 	err = perf_copy_attr(attr_uptr, &attr);
9908 	if (err)
9909 		return err;
9910 
9911 	if (!attr.exclude_kernel) {
9912 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9913 			return -EACCES;
9914 	}
9915 
9916 	if (attr.namespaces) {
9917 		if (!capable(CAP_SYS_ADMIN))
9918 			return -EACCES;
9919 	}
9920 
9921 	if (attr.freq) {
9922 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9923 			return -EINVAL;
9924 	} else {
9925 		if (attr.sample_period & (1ULL << 63))
9926 			return -EINVAL;
9927 	}
9928 
9929 	/* Only privileged users can get physical addresses */
9930 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9931 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9932 		return -EACCES;
9933 
9934 	if (!attr.sample_max_stack)
9935 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9936 
9937 	/*
9938 	 * In cgroup mode, the pid argument is used to pass the fd
9939 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9940 	 * designates the cpu on which to monitor threads from that
9941 	 * cgroup.
9942 	 */
9943 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9944 		return -EINVAL;
9945 
9946 	if (flags & PERF_FLAG_FD_CLOEXEC)
9947 		f_flags |= O_CLOEXEC;
9948 
9949 	event_fd = get_unused_fd_flags(f_flags);
9950 	if (event_fd < 0)
9951 		return event_fd;
9952 
9953 	if (group_fd != -1) {
9954 		err = perf_fget_light(group_fd, &group);
9955 		if (err)
9956 			goto err_fd;
9957 		group_leader = group.file->private_data;
9958 		if (flags & PERF_FLAG_FD_OUTPUT)
9959 			output_event = group_leader;
9960 		if (flags & PERF_FLAG_FD_NO_GROUP)
9961 			group_leader = NULL;
9962 	}
9963 
9964 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9965 		task = find_lively_task_by_vpid(pid);
9966 		if (IS_ERR(task)) {
9967 			err = PTR_ERR(task);
9968 			goto err_group_fd;
9969 		}
9970 	}
9971 
9972 	if (task && group_leader &&
9973 	    group_leader->attr.inherit != attr.inherit) {
9974 		err = -EINVAL;
9975 		goto err_task;
9976 	}
9977 
9978 	if (task) {
9979 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9980 		if (err)
9981 			goto err_task;
9982 
9983 		/*
9984 		 * Reuse ptrace permission checks for now.
9985 		 *
9986 		 * We must hold cred_guard_mutex across this and any potential
9987 		 * perf_install_in_context() call for this new event to
9988 		 * serialize against exec() altering our credentials (and the
9989 		 * perf_event_exit_task() that could imply).
9990 		 */
9991 		err = -EACCES;
9992 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9993 			goto err_cred;
9994 	}
9995 
9996 	if (flags & PERF_FLAG_PID_CGROUP)
9997 		cgroup_fd = pid;
9998 
9999 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10000 				 NULL, NULL, cgroup_fd);
10001 	if (IS_ERR(event)) {
10002 		err = PTR_ERR(event);
10003 		goto err_cred;
10004 	}
10005 
10006 	if (is_sampling_event(event)) {
10007 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10008 			err = -EOPNOTSUPP;
10009 			goto err_alloc;
10010 		}
10011 	}
10012 
10013 	/*
10014 	 * Special case software events and allow them to be part of
10015 	 * any hardware group.
10016 	 */
10017 	pmu = event->pmu;
10018 
10019 	if (attr.use_clockid) {
10020 		err = perf_event_set_clock(event, attr.clockid);
10021 		if (err)
10022 			goto err_alloc;
10023 	}
10024 
10025 	if (pmu->task_ctx_nr == perf_sw_context)
10026 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10027 
10028 	if (group_leader &&
10029 	    (is_software_event(event) != is_software_event(group_leader))) {
10030 		if (is_software_event(event)) {
10031 			/*
10032 			 * If event and group_leader are not both a software
10033 			 * event, and event is, then group leader is not.
10034 			 *
10035 			 * Allow the addition of software events to !software
10036 			 * groups, this is safe because software events never
10037 			 * fail to schedule.
10038 			 */
10039 			pmu = group_leader->pmu;
10040 		} else if (is_software_event(group_leader) &&
10041 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10042 			/*
10043 			 * In case the group is a pure software group, and we
10044 			 * try to add a hardware event, move the whole group to
10045 			 * the hardware context.
10046 			 */
10047 			move_group = 1;
10048 		}
10049 	}
10050 
10051 	/*
10052 	 * Get the target context (task or percpu):
10053 	 */
10054 	ctx = find_get_context(pmu, task, event);
10055 	if (IS_ERR(ctx)) {
10056 		err = PTR_ERR(ctx);
10057 		goto err_alloc;
10058 	}
10059 
10060 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10061 		err = -EBUSY;
10062 		goto err_context;
10063 	}
10064 
10065 	/*
10066 	 * Look up the group leader (we will attach this event to it):
10067 	 */
10068 	if (group_leader) {
10069 		err = -EINVAL;
10070 
10071 		/*
10072 		 * Do not allow a recursive hierarchy (this new sibling
10073 		 * becoming part of another group-sibling):
10074 		 */
10075 		if (group_leader->group_leader != group_leader)
10076 			goto err_context;
10077 
10078 		/* All events in a group should have the same clock */
10079 		if (group_leader->clock != event->clock)
10080 			goto err_context;
10081 
10082 		/*
10083 		 * Make sure we're both events for the same CPU;
10084 		 * grouping events for different CPUs is broken; since
10085 		 * you can never concurrently schedule them anyhow.
10086 		 */
10087 		if (group_leader->cpu != event->cpu)
10088 			goto err_context;
10089 
10090 		/*
10091 		 * Make sure we're both on the same task, or both
10092 		 * per-CPU events.
10093 		 */
10094 		if (group_leader->ctx->task != ctx->task)
10095 			goto err_context;
10096 
10097 		/*
10098 		 * Do not allow to attach to a group in a different task
10099 		 * or CPU context. If we're moving SW events, we'll fix
10100 		 * this up later, so allow that.
10101 		 */
10102 		if (!move_group && group_leader->ctx != ctx)
10103 			goto err_context;
10104 
10105 		/*
10106 		 * Only a group leader can be exclusive or pinned
10107 		 */
10108 		if (attr.exclusive || attr.pinned)
10109 			goto err_context;
10110 	}
10111 
10112 	if (output_event) {
10113 		err = perf_event_set_output(event, output_event);
10114 		if (err)
10115 			goto err_context;
10116 	}
10117 
10118 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10119 					f_flags);
10120 	if (IS_ERR(event_file)) {
10121 		err = PTR_ERR(event_file);
10122 		event_file = NULL;
10123 		goto err_context;
10124 	}
10125 
10126 	if (move_group) {
10127 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10128 
10129 		if (gctx->task == TASK_TOMBSTONE) {
10130 			err = -ESRCH;
10131 			goto err_locked;
10132 		}
10133 
10134 		/*
10135 		 * Check if we raced against another sys_perf_event_open() call
10136 		 * moving the software group underneath us.
10137 		 */
10138 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10139 			/*
10140 			 * If someone moved the group out from under us, check
10141 			 * if this new event wound up on the same ctx, if so
10142 			 * its the regular !move_group case, otherwise fail.
10143 			 */
10144 			if (gctx != ctx) {
10145 				err = -EINVAL;
10146 				goto err_locked;
10147 			} else {
10148 				perf_event_ctx_unlock(group_leader, gctx);
10149 				move_group = 0;
10150 			}
10151 		}
10152 	} else {
10153 		mutex_lock(&ctx->mutex);
10154 	}
10155 
10156 	if (ctx->task == TASK_TOMBSTONE) {
10157 		err = -ESRCH;
10158 		goto err_locked;
10159 	}
10160 
10161 	if (!perf_event_validate_size(event)) {
10162 		err = -E2BIG;
10163 		goto err_locked;
10164 	}
10165 
10166 	if (!task) {
10167 		/*
10168 		 * Check if the @cpu we're creating an event for is online.
10169 		 *
10170 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10171 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10172 		 */
10173 		struct perf_cpu_context *cpuctx =
10174 			container_of(ctx, struct perf_cpu_context, ctx);
10175 
10176 		if (!cpuctx->online) {
10177 			err = -ENODEV;
10178 			goto err_locked;
10179 		}
10180 	}
10181 
10182 
10183 	/*
10184 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10185 	 * because we need to serialize with concurrent event creation.
10186 	 */
10187 	if (!exclusive_event_installable(event, ctx)) {
10188 		/* exclusive and group stuff are assumed mutually exclusive */
10189 		WARN_ON_ONCE(move_group);
10190 
10191 		err = -EBUSY;
10192 		goto err_locked;
10193 	}
10194 
10195 	WARN_ON_ONCE(ctx->parent_ctx);
10196 
10197 	/*
10198 	 * This is the point on no return; we cannot fail hereafter. This is
10199 	 * where we start modifying current state.
10200 	 */
10201 
10202 	if (move_group) {
10203 		/*
10204 		 * See perf_event_ctx_lock() for comments on the details
10205 		 * of swizzling perf_event::ctx.
10206 		 */
10207 		perf_remove_from_context(group_leader, 0);
10208 		put_ctx(gctx);
10209 
10210 		list_for_each_entry(sibling, &group_leader->sibling_list,
10211 				    group_entry) {
10212 			perf_remove_from_context(sibling, 0);
10213 			put_ctx(gctx);
10214 		}
10215 
10216 		/*
10217 		 * Wait for everybody to stop referencing the events through
10218 		 * the old lists, before installing it on new lists.
10219 		 */
10220 		synchronize_rcu();
10221 
10222 		/*
10223 		 * Install the group siblings before the group leader.
10224 		 *
10225 		 * Because a group leader will try and install the entire group
10226 		 * (through the sibling list, which is still in-tact), we can
10227 		 * end up with siblings installed in the wrong context.
10228 		 *
10229 		 * By installing siblings first we NO-OP because they're not
10230 		 * reachable through the group lists.
10231 		 */
10232 		list_for_each_entry(sibling, &group_leader->sibling_list,
10233 				    group_entry) {
10234 			perf_event__state_init(sibling);
10235 			perf_install_in_context(ctx, sibling, sibling->cpu);
10236 			get_ctx(ctx);
10237 		}
10238 
10239 		/*
10240 		 * Removing from the context ends up with disabled
10241 		 * event. What we want here is event in the initial
10242 		 * startup state, ready to be add into new context.
10243 		 */
10244 		perf_event__state_init(group_leader);
10245 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10246 		get_ctx(ctx);
10247 	}
10248 
10249 	/*
10250 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10251 	 * that we're serialized against further additions and before
10252 	 * perf_install_in_context() which is the point the event is active and
10253 	 * can use these values.
10254 	 */
10255 	perf_event__header_size(event);
10256 	perf_event__id_header_size(event);
10257 
10258 	event->owner = current;
10259 
10260 	perf_install_in_context(ctx, event, event->cpu);
10261 	perf_unpin_context(ctx);
10262 
10263 	if (move_group)
10264 		perf_event_ctx_unlock(group_leader, gctx);
10265 	mutex_unlock(&ctx->mutex);
10266 
10267 	if (task) {
10268 		mutex_unlock(&task->signal->cred_guard_mutex);
10269 		put_task_struct(task);
10270 	}
10271 
10272 	mutex_lock(&current->perf_event_mutex);
10273 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10274 	mutex_unlock(&current->perf_event_mutex);
10275 
10276 	/*
10277 	 * Drop the reference on the group_event after placing the
10278 	 * new event on the sibling_list. This ensures destruction
10279 	 * of the group leader will find the pointer to itself in
10280 	 * perf_group_detach().
10281 	 */
10282 	fdput(group);
10283 	fd_install(event_fd, event_file);
10284 	return event_fd;
10285 
10286 err_locked:
10287 	if (move_group)
10288 		perf_event_ctx_unlock(group_leader, gctx);
10289 	mutex_unlock(&ctx->mutex);
10290 /* err_file: */
10291 	fput(event_file);
10292 err_context:
10293 	perf_unpin_context(ctx);
10294 	put_ctx(ctx);
10295 err_alloc:
10296 	/*
10297 	 * If event_file is set, the fput() above will have called ->release()
10298 	 * and that will take care of freeing the event.
10299 	 */
10300 	if (!event_file)
10301 		free_event(event);
10302 err_cred:
10303 	if (task)
10304 		mutex_unlock(&task->signal->cred_guard_mutex);
10305 err_task:
10306 	if (task)
10307 		put_task_struct(task);
10308 err_group_fd:
10309 	fdput(group);
10310 err_fd:
10311 	put_unused_fd(event_fd);
10312 	return err;
10313 }
10314 
10315 /**
10316  * perf_event_create_kernel_counter
10317  *
10318  * @attr: attributes of the counter to create
10319  * @cpu: cpu in which the counter is bound
10320  * @task: task to profile (NULL for percpu)
10321  */
10322 struct perf_event *
10323 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10324 				 struct task_struct *task,
10325 				 perf_overflow_handler_t overflow_handler,
10326 				 void *context)
10327 {
10328 	struct perf_event_context *ctx;
10329 	struct perf_event *event;
10330 	int err;
10331 
10332 	/*
10333 	 * Get the target context (task or percpu):
10334 	 */
10335 
10336 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10337 				 overflow_handler, context, -1);
10338 	if (IS_ERR(event)) {
10339 		err = PTR_ERR(event);
10340 		goto err;
10341 	}
10342 
10343 	/* Mark owner so we could distinguish it from user events. */
10344 	event->owner = TASK_TOMBSTONE;
10345 
10346 	ctx = find_get_context(event->pmu, task, event);
10347 	if (IS_ERR(ctx)) {
10348 		err = PTR_ERR(ctx);
10349 		goto err_free;
10350 	}
10351 
10352 	WARN_ON_ONCE(ctx->parent_ctx);
10353 	mutex_lock(&ctx->mutex);
10354 	if (ctx->task == TASK_TOMBSTONE) {
10355 		err = -ESRCH;
10356 		goto err_unlock;
10357 	}
10358 
10359 	if (!task) {
10360 		/*
10361 		 * Check if the @cpu we're creating an event for is online.
10362 		 *
10363 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10364 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10365 		 */
10366 		struct perf_cpu_context *cpuctx =
10367 			container_of(ctx, struct perf_cpu_context, ctx);
10368 		if (!cpuctx->online) {
10369 			err = -ENODEV;
10370 			goto err_unlock;
10371 		}
10372 	}
10373 
10374 	if (!exclusive_event_installable(event, ctx)) {
10375 		err = -EBUSY;
10376 		goto err_unlock;
10377 	}
10378 
10379 	perf_install_in_context(ctx, event, cpu);
10380 	perf_unpin_context(ctx);
10381 	mutex_unlock(&ctx->mutex);
10382 
10383 	return event;
10384 
10385 err_unlock:
10386 	mutex_unlock(&ctx->mutex);
10387 	perf_unpin_context(ctx);
10388 	put_ctx(ctx);
10389 err_free:
10390 	free_event(event);
10391 err:
10392 	return ERR_PTR(err);
10393 }
10394 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10395 
10396 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10397 {
10398 	struct perf_event_context *src_ctx;
10399 	struct perf_event_context *dst_ctx;
10400 	struct perf_event *event, *tmp;
10401 	LIST_HEAD(events);
10402 
10403 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10404 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10405 
10406 	/*
10407 	 * See perf_event_ctx_lock() for comments on the details
10408 	 * of swizzling perf_event::ctx.
10409 	 */
10410 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10411 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10412 				 event_entry) {
10413 		perf_remove_from_context(event, 0);
10414 		unaccount_event_cpu(event, src_cpu);
10415 		put_ctx(src_ctx);
10416 		list_add(&event->migrate_entry, &events);
10417 	}
10418 
10419 	/*
10420 	 * Wait for the events to quiesce before re-instating them.
10421 	 */
10422 	synchronize_rcu();
10423 
10424 	/*
10425 	 * Re-instate events in 2 passes.
10426 	 *
10427 	 * Skip over group leaders and only install siblings on this first
10428 	 * pass, siblings will not get enabled without a leader, however a
10429 	 * leader will enable its siblings, even if those are still on the old
10430 	 * context.
10431 	 */
10432 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10433 		if (event->group_leader == event)
10434 			continue;
10435 
10436 		list_del(&event->migrate_entry);
10437 		if (event->state >= PERF_EVENT_STATE_OFF)
10438 			event->state = PERF_EVENT_STATE_INACTIVE;
10439 		account_event_cpu(event, dst_cpu);
10440 		perf_install_in_context(dst_ctx, event, dst_cpu);
10441 		get_ctx(dst_ctx);
10442 	}
10443 
10444 	/*
10445 	 * Once all the siblings are setup properly, install the group leaders
10446 	 * to make it go.
10447 	 */
10448 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10449 		list_del(&event->migrate_entry);
10450 		if (event->state >= PERF_EVENT_STATE_OFF)
10451 			event->state = PERF_EVENT_STATE_INACTIVE;
10452 		account_event_cpu(event, dst_cpu);
10453 		perf_install_in_context(dst_ctx, event, dst_cpu);
10454 		get_ctx(dst_ctx);
10455 	}
10456 	mutex_unlock(&dst_ctx->mutex);
10457 	mutex_unlock(&src_ctx->mutex);
10458 }
10459 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10460 
10461 static void sync_child_event(struct perf_event *child_event,
10462 			       struct task_struct *child)
10463 {
10464 	struct perf_event *parent_event = child_event->parent;
10465 	u64 child_val;
10466 
10467 	if (child_event->attr.inherit_stat)
10468 		perf_event_read_event(child_event, child);
10469 
10470 	child_val = perf_event_count(child_event);
10471 
10472 	/*
10473 	 * Add back the child's count to the parent's count:
10474 	 */
10475 	atomic64_add(child_val, &parent_event->child_count);
10476 	atomic64_add(child_event->total_time_enabled,
10477 		     &parent_event->child_total_time_enabled);
10478 	atomic64_add(child_event->total_time_running,
10479 		     &parent_event->child_total_time_running);
10480 }
10481 
10482 static void
10483 perf_event_exit_event(struct perf_event *child_event,
10484 		      struct perf_event_context *child_ctx,
10485 		      struct task_struct *child)
10486 {
10487 	struct perf_event *parent_event = child_event->parent;
10488 
10489 	/*
10490 	 * Do not destroy the 'original' grouping; because of the context
10491 	 * switch optimization the original events could've ended up in a
10492 	 * random child task.
10493 	 *
10494 	 * If we were to destroy the original group, all group related
10495 	 * operations would cease to function properly after this random
10496 	 * child dies.
10497 	 *
10498 	 * Do destroy all inherited groups, we don't care about those
10499 	 * and being thorough is better.
10500 	 */
10501 	raw_spin_lock_irq(&child_ctx->lock);
10502 	WARN_ON_ONCE(child_ctx->is_active);
10503 
10504 	if (parent_event)
10505 		perf_group_detach(child_event);
10506 	list_del_event(child_event, child_ctx);
10507 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10508 	raw_spin_unlock_irq(&child_ctx->lock);
10509 
10510 	/*
10511 	 * Parent events are governed by their filedesc, retain them.
10512 	 */
10513 	if (!parent_event) {
10514 		perf_event_wakeup(child_event);
10515 		return;
10516 	}
10517 	/*
10518 	 * Child events can be cleaned up.
10519 	 */
10520 
10521 	sync_child_event(child_event, child);
10522 
10523 	/*
10524 	 * Remove this event from the parent's list
10525 	 */
10526 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10527 	mutex_lock(&parent_event->child_mutex);
10528 	list_del_init(&child_event->child_list);
10529 	mutex_unlock(&parent_event->child_mutex);
10530 
10531 	/*
10532 	 * Kick perf_poll() for is_event_hup().
10533 	 */
10534 	perf_event_wakeup(parent_event);
10535 	free_event(child_event);
10536 	put_event(parent_event);
10537 }
10538 
10539 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10540 {
10541 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10542 	struct perf_event *child_event, *next;
10543 
10544 	WARN_ON_ONCE(child != current);
10545 
10546 	child_ctx = perf_pin_task_context(child, ctxn);
10547 	if (!child_ctx)
10548 		return;
10549 
10550 	/*
10551 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10552 	 * ctx::mutex over the entire thing. This serializes against almost
10553 	 * everything that wants to access the ctx.
10554 	 *
10555 	 * The exception is sys_perf_event_open() /
10556 	 * perf_event_create_kernel_count() which does find_get_context()
10557 	 * without ctx::mutex (it cannot because of the move_group double mutex
10558 	 * lock thing). See the comments in perf_install_in_context().
10559 	 */
10560 	mutex_lock(&child_ctx->mutex);
10561 
10562 	/*
10563 	 * In a single ctx::lock section, de-schedule the events and detach the
10564 	 * context from the task such that we cannot ever get it scheduled back
10565 	 * in.
10566 	 */
10567 	raw_spin_lock_irq(&child_ctx->lock);
10568 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10569 
10570 	/*
10571 	 * Now that the context is inactive, destroy the task <-> ctx relation
10572 	 * and mark the context dead.
10573 	 */
10574 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10575 	put_ctx(child_ctx); /* cannot be last */
10576 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10577 	put_task_struct(current); /* cannot be last */
10578 
10579 	clone_ctx = unclone_ctx(child_ctx);
10580 	raw_spin_unlock_irq(&child_ctx->lock);
10581 
10582 	if (clone_ctx)
10583 		put_ctx(clone_ctx);
10584 
10585 	/*
10586 	 * Report the task dead after unscheduling the events so that we
10587 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10588 	 * get a few PERF_RECORD_READ events.
10589 	 */
10590 	perf_event_task(child, child_ctx, 0);
10591 
10592 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10593 		perf_event_exit_event(child_event, child_ctx, child);
10594 
10595 	mutex_unlock(&child_ctx->mutex);
10596 
10597 	put_ctx(child_ctx);
10598 }
10599 
10600 /*
10601  * When a child task exits, feed back event values to parent events.
10602  *
10603  * Can be called with cred_guard_mutex held when called from
10604  * install_exec_creds().
10605  */
10606 void perf_event_exit_task(struct task_struct *child)
10607 {
10608 	struct perf_event *event, *tmp;
10609 	int ctxn;
10610 
10611 	mutex_lock(&child->perf_event_mutex);
10612 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10613 				 owner_entry) {
10614 		list_del_init(&event->owner_entry);
10615 
10616 		/*
10617 		 * Ensure the list deletion is visible before we clear
10618 		 * the owner, closes a race against perf_release() where
10619 		 * we need to serialize on the owner->perf_event_mutex.
10620 		 */
10621 		smp_store_release(&event->owner, NULL);
10622 	}
10623 	mutex_unlock(&child->perf_event_mutex);
10624 
10625 	for_each_task_context_nr(ctxn)
10626 		perf_event_exit_task_context(child, ctxn);
10627 
10628 	/*
10629 	 * The perf_event_exit_task_context calls perf_event_task
10630 	 * with child's task_ctx, which generates EXIT events for
10631 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10632 	 * At this point we need to send EXIT events to cpu contexts.
10633 	 */
10634 	perf_event_task(child, NULL, 0);
10635 }
10636 
10637 static void perf_free_event(struct perf_event *event,
10638 			    struct perf_event_context *ctx)
10639 {
10640 	struct perf_event *parent = event->parent;
10641 
10642 	if (WARN_ON_ONCE(!parent))
10643 		return;
10644 
10645 	mutex_lock(&parent->child_mutex);
10646 	list_del_init(&event->child_list);
10647 	mutex_unlock(&parent->child_mutex);
10648 
10649 	put_event(parent);
10650 
10651 	raw_spin_lock_irq(&ctx->lock);
10652 	perf_group_detach(event);
10653 	list_del_event(event, ctx);
10654 	raw_spin_unlock_irq(&ctx->lock);
10655 	free_event(event);
10656 }
10657 
10658 /*
10659  * Free an unexposed, unused context as created by inheritance by
10660  * perf_event_init_task below, used by fork() in case of fail.
10661  *
10662  * Not all locks are strictly required, but take them anyway to be nice and
10663  * help out with the lockdep assertions.
10664  */
10665 void perf_event_free_task(struct task_struct *task)
10666 {
10667 	struct perf_event_context *ctx;
10668 	struct perf_event *event, *tmp;
10669 	int ctxn;
10670 
10671 	for_each_task_context_nr(ctxn) {
10672 		ctx = task->perf_event_ctxp[ctxn];
10673 		if (!ctx)
10674 			continue;
10675 
10676 		mutex_lock(&ctx->mutex);
10677 		raw_spin_lock_irq(&ctx->lock);
10678 		/*
10679 		 * Destroy the task <-> ctx relation and mark the context dead.
10680 		 *
10681 		 * This is important because even though the task hasn't been
10682 		 * exposed yet the context has been (through child_list).
10683 		 */
10684 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10685 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10686 		put_task_struct(task); /* cannot be last */
10687 		raw_spin_unlock_irq(&ctx->lock);
10688 
10689 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10690 			perf_free_event(event, ctx);
10691 
10692 		mutex_unlock(&ctx->mutex);
10693 		put_ctx(ctx);
10694 	}
10695 }
10696 
10697 void perf_event_delayed_put(struct task_struct *task)
10698 {
10699 	int ctxn;
10700 
10701 	for_each_task_context_nr(ctxn)
10702 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10703 }
10704 
10705 struct file *perf_event_get(unsigned int fd)
10706 {
10707 	struct file *file;
10708 
10709 	file = fget_raw(fd);
10710 	if (!file)
10711 		return ERR_PTR(-EBADF);
10712 
10713 	if (file->f_op != &perf_fops) {
10714 		fput(file);
10715 		return ERR_PTR(-EBADF);
10716 	}
10717 
10718 	return file;
10719 }
10720 
10721 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10722 {
10723 	if (!event)
10724 		return ERR_PTR(-EINVAL);
10725 
10726 	return &event->attr;
10727 }
10728 
10729 /*
10730  * Inherit a event from parent task to child task.
10731  *
10732  * Returns:
10733  *  - valid pointer on success
10734  *  - NULL for orphaned events
10735  *  - IS_ERR() on error
10736  */
10737 static struct perf_event *
10738 inherit_event(struct perf_event *parent_event,
10739 	      struct task_struct *parent,
10740 	      struct perf_event_context *parent_ctx,
10741 	      struct task_struct *child,
10742 	      struct perf_event *group_leader,
10743 	      struct perf_event_context *child_ctx)
10744 {
10745 	enum perf_event_state parent_state = parent_event->state;
10746 	struct perf_event *child_event;
10747 	unsigned long flags;
10748 
10749 	/*
10750 	 * Instead of creating recursive hierarchies of events,
10751 	 * we link inherited events back to the original parent,
10752 	 * which has a filp for sure, which we use as the reference
10753 	 * count:
10754 	 */
10755 	if (parent_event->parent)
10756 		parent_event = parent_event->parent;
10757 
10758 	child_event = perf_event_alloc(&parent_event->attr,
10759 					   parent_event->cpu,
10760 					   child,
10761 					   group_leader, parent_event,
10762 					   NULL, NULL, -1);
10763 	if (IS_ERR(child_event))
10764 		return child_event;
10765 
10766 
10767 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
10768 	    !child_ctx->task_ctx_data) {
10769 		struct pmu *pmu = child_event->pmu;
10770 
10771 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
10772 						   GFP_KERNEL);
10773 		if (!child_ctx->task_ctx_data) {
10774 			free_event(child_event);
10775 			return NULL;
10776 		}
10777 	}
10778 
10779 	/*
10780 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10781 	 * must be under the same lock in order to serialize against
10782 	 * perf_event_release_kernel(), such that either we must observe
10783 	 * is_orphaned_event() or they will observe us on the child_list.
10784 	 */
10785 	mutex_lock(&parent_event->child_mutex);
10786 	if (is_orphaned_event(parent_event) ||
10787 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10788 		mutex_unlock(&parent_event->child_mutex);
10789 		/* task_ctx_data is freed with child_ctx */
10790 		free_event(child_event);
10791 		return NULL;
10792 	}
10793 
10794 	get_ctx(child_ctx);
10795 
10796 	/*
10797 	 * Make the child state follow the state of the parent event,
10798 	 * not its attr.disabled bit.  We hold the parent's mutex,
10799 	 * so we won't race with perf_event_{en, dis}able_family.
10800 	 */
10801 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10802 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10803 	else
10804 		child_event->state = PERF_EVENT_STATE_OFF;
10805 
10806 	if (parent_event->attr.freq) {
10807 		u64 sample_period = parent_event->hw.sample_period;
10808 		struct hw_perf_event *hwc = &child_event->hw;
10809 
10810 		hwc->sample_period = sample_period;
10811 		hwc->last_period   = sample_period;
10812 
10813 		local64_set(&hwc->period_left, sample_period);
10814 	}
10815 
10816 	child_event->ctx = child_ctx;
10817 	child_event->overflow_handler = parent_event->overflow_handler;
10818 	child_event->overflow_handler_context
10819 		= parent_event->overflow_handler_context;
10820 
10821 	/*
10822 	 * Precalculate sample_data sizes
10823 	 */
10824 	perf_event__header_size(child_event);
10825 	perf_event__id_header_size(child_event);
10826 
10827 	/*
10828 	 * Link it up in the child's context:
10829 	 */
10830 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10831 	add_event_to_ctx(child_event, child_ctx);
10832 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10833 
10834 	/*
10835 	 * Link this into the parent event's child list
10836 	 */
10837 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10838 	mutex_unlock(&parent_event->child_mutex);
10839 
10840 	return child_event;
10841 }
10842 
10843 /*
10844  * Inherits an event group.
10845  *
10846  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10847  * This matches with perf_event_release_kernel() removing all child events.
10848  *
10849  * Returns:
10850  *  - 0 on success
10851  *  - <0 on error
10852  */
10853 static int inherit_group(struct perf_event *parent_event,
10854 	      struct task_struct *parent,
10855 	      struct perf_event_context *parent_ctx,
10856 	      struct task_struct *child,
10857 	      struct perf_event_context *child_ctx)
10858 {
10859 	struct perf_event *leader;
10860 	struct perf_event *sub;
10861 	struct perf_event *child_ctr;
10862 
10863 	leader = inherit_event(parent_event, parent, parent_ctx,
10864 				 child, NULL, child_ctx);
10865 	if (IS_ERR(leader))
10866 		return PTR_ERR(leader);
10867 	/*
10868 	 * @leader can be NULL here because of is_orphaned_event(). In this
10869 	 * case inherit_event() will create individual events, similar to what
10870 	 * perf_group_detach() would do anyway.
10871 	 */
10872 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10873 		child_ctr = inherit_event(sub, parent, parent_ctx,
10874 					    child, leader, child_ctx);
10875 		if (IS_ERR(child_ctr))
10876 			return PTR_ERR(child_ctr);
10877 	}
10878 	return 0;
10879 }
10880 
10881 /*
10882  * Creates the child task context and tries to inherit the event-group.
10883  *
10884  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10885  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10886  * consistent with perf_event_release_kernel() removing all child events.
10887  *
10888  * Returns:
10889  *  - 0 on success
10890  *  - <0 on error
10891  */
10892 static int
10893 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10894 		   struct perf_event_context *parent_ctx,
10895 		   struct task_struct *child, int ctxn,
10896 		   int *inherited_all)
10897 {
10898 	int ret;
10899 	struct perf_event_context *child_ctx;
10900 
10901 	if (!event->attr.inherit) {
10902 		*inherited_all = 0;
10903 		return 0;
10904 	}
10905 
10906 	child_ctx = child->perf_event_ctxp[ctxn];
10907 	if (!child_ctx) {
10908 		/*
10909 		 * This is executed from the parent task context, so
10910 		 * inherit events that have been marked for cloning.
10911 		 * First allocate and initialize a context for the
10912 		 * child.
10913 		 */
10914 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10915 		if (!child_ctx)
10916 			return -ENOMEM;
10917 
10918 		child->perf_event_ctxp[ctxn] = child_ctx;
10919 	}
10920 
10921 	ret = inherit_group(event, parent, parent_ctx,
10922 			    child, child_ctx);
10923 
10924 	if (ret)
10925 		*inherited_all = 0;
10926 
10927 	return ret;
10928 }
10929 
10930 /*
10931  * Initialize the perf_event context in task_struct
10932  */
10933 static int perf_event_init_context(struct task_struct *child, int ctxn)
10934 {
10935 	struct perf_event_context *child_ctx, *parent_ctx;
10936 	struct perf_event_context *cloned_ctx;
10937 	struct perf_event *event;
10938 	struct task_struct *parent = current;
10939 	int inherited_all = 1;
10940 	unsigned long flags;
10941 	int ret = 0;
10942 
10943 	if (likely(!parent->perf_event_ctxp[ctxn]))
10944 		return 0;
10945 
10946 	/*
10947 	 * If the parent's context is a clone, pin it so it won't get
10948 	 * swapped under us.
10949 	 */
10950 	parent_ctx = perf_pin_task_context(parent, ctxn);
10951 	if (!parent_ctx)
10952 		return 0;
10953 
10954 	/*
10955 	 * No need to check if parent_ctx != NULL here; since we saw
10956 	 * it non-NULL earlier, the only reason for it to become NULL
10957 	 * is if we exit, and since we're currently in the middle of
10958 	 * a fork we can't be exiting at the same time.
10959 	 */
10960 
10961 	/*
10962 	 * Lock the parent list. No need to lock the child - not PID
10963 	 * hashed yet and not running, so nobody can access it.
10964 	 */
10965 	mutex_lock(&parent_ctx->mutex);
10966 
10967 	/*
10968 	 * We dont have to disable NMIs - we are only looking at
10969 	 * the list, not manipulating it:
10970 	 */
10971 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10972 		ret = inherit_task_group(event, parent, parent_ctx,
10973 					 child, ctxn, &inherited_all);
10974 		if (ret)
10975 			goto out_unlock;
10976 	}
10977 
10978 	/*
10979 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10980 	 * to allocations, but we need to prevent rotation because
10981 	 * rotate_ctx() will change the list from interrupt context.
10982 	 */
10983 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10984 	parent_ctx->rotate_disable = 1;
10985 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10986 
10987 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10988 		ret = inherit_task_group(event, parent, parent_ctx,
10989 					 child, ctxn, &inherited_all);
10990 		if (ret)
10991 			goto out_unlock;
10992 	}
10993 
10994 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10995 	parent_ctx->rotate_disable = 0;
10996 
10997 	child_ctx = child->perf_event_ctxp[ctxn];
10998 
10999 	if (child_ctx && inherited_all) {
11000 		/*
11001 		 * Mark the child context as a clone of the parent
11002 		 * context, or of whatever the parent is a clone of.
11003 		 *
11004 		 * Note that if the parent is a clone, the holding of
11005 		 * parent_ctx->lock avoids it from being uncloned.
11006 		 */
11007 		cloned_ctx = parent_ctx->parent_ctx;
11008 		if (cloned_ctx) {
11009 			child_ctx->parent_ctx = cloned_ctx;
11010 			child_ctx->parent_gen = parent_ctx->parent_gen;
11011 		} else {
11012 			child_ctx->parent_ctx = parent_ctx;
11013 			child_ctx->parent_gen = parent_ctx->generation;
11014 		}
11015 		get_ctx(child_ctx->parent_ctx);
11016 	}
11017 
11018 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11019 out_unlock:
11020 	mutex_unlock(&parent_ctx->mutex);
11021 
11022 	perf_unpin_context(parent_ctx);
11023 	put_ctx(parent_ctx);
11024 
11025 	return ret;
11026 }
11027 
11028 /*
11029  * Initialize the perf_event context in task_struct
11030  */
11031 int perf_event_init_task(struct task_struct *child)
11032 {
11033 	int ctxn, ret;
11034 
11035 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11036 	mutex_init(&child->perf_event_mutex);
11037 	INIT_LIST_HEAD(&child->perf_event_list);
11038 
11039 	for_each_task_context_nr(ctxn) {
11040 		ret = perf_event_init_context(child, ctxn);
11041 		if (ret) {
11042 			perf_event_free_task(child);
11043 			return ret;
11044 		}
11045 	}
11046 
11047 	return 0;
11048 }
11049 
11050 static void __init perf_event_init_all_cpus(void)
11051 {
11052 	struct swevent_htable *swhash;
11053 	int cpu;
11054 
11055 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11056 
11057 	for_each_possible_cpu(cpu) {
11058 		swhash = &per_cpu(swevent_htable, cpu);
11059 		mutex_init(&swhash->hlist_mutex);
11060 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11061 
11062 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11063 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11064 
11065 #ifdef CONFIG_CGROUP_PERF
11066 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11067 #endif
11068 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11069 	}
11070 }
11071 
11072 void perf_swevent_init_cpu(unsigned int cpu)
11073 {
11074 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11075 
11076 	mutex_lock(&swhash->hlist_mutex);
11077 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11078 		struct swevent_hlist *hlist;
11079 
11080 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11081 		WARN_ON(!hlist);
11082 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11083 	}
11084 	mutex_unlock(&swhash->hlist_mutex);
11085 }
11086 
11087 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11088 static void __perf_event_exit_context(void *__info)
11089 {
11090 	struct perf_event_context *ctx = __info;
11091 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11092 	struct perf_event *event;
11093 
11094 	raw_spin_lock(&ctx->lock);
11095 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11096 	list_for_each_entry(event, &ctx->event_list, event_entry)
11097 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11098 	raw_spin_unlock(&ctx->lock);
11099 }
11100 
11101 static void perf_event_exit_cpu_context(int cpu)
11102 {
11103 	struct perf_cpu_context *cpuctx;
11104 	struct perf_event_context *ctx;
11105 	struct pmu *pmu;
11106 
11107 	mutex_lock(&pmus_lock);
11108 	list_for_each_entry(pmu, &pmus, entry) {
11109 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11110 		ctx = &cpuctx->ctx;
11111 
11112 		mutex_lock(&ctx->mutex);
11113 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11114 		cpuctx->online = 0;
11115 		mutex_unlock(&ctx->mutex);
11116 	}
11117 	cpumask_clear_cpu(cpu, perf_online_mask);
11118 	mutex_unlock(&pmus_lock);
11119 }
11120 #else
11121 
11122 static void perf_event_exit_cpu_context(int cpu) { }
11123 
11124 #endif
11125 
11126 int perf_event_init_cpu(unsigned int cpu)
11127 {
11128 	struct perf_cpu_context *cpuctx;
11129 	struct perf_event_context *ctx;
11130 	struct pmu *pmu;
11131 
11132 	perf_swevent_init_cpu(cpu);
11133 
11134 	mutex_lock(&pmus_lock);
11135 	cpumask_set_cpu(cpu, perf_online_mask);
11136 	list_for_each_entry(pmu, &pmus, entry) {
11137 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11138 		ctx = &cpuctx->ctx;
11139 
11140 		mutex_lock(&ctx->mutex);
11141 		cpuctx->online = 1;
11142 		mutex_unlock(&ctx->mutex);
11143 	}
11144 	mutex_unlock(&pmus_lock);
11145 
11146 	return 0;
11147 }
11148 
11149 int perf_event_exit_cpu(unsigned int cpu)
11150 {
11151 	perf_event_exit_cpu_context(cpu);
11152 	return 0;
11153 }
11154 
11155 static int
11156 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11157 {
11158 	int cpu;
11159 
11160 	for_each_online_cpu(cpu)
11161 		perf_event_exit_cpu(cpu);
11162 
11163 	return NOTIFY_OK;
11164 }
11165 
11166 /*
11167  * Run the perf reboot notifier at the very last possible moment so that
11168  * the generic watchdog code runs as long as possible.
11169  */
11170 static struct notifier_block perf_reboot_notifier = {
11171 	.notifier_call = perf_reboot,
11172 	.priority = INT_MIN,
11173 };
11174 
11175 void __init perf_event_init(void)
11176 {
11177 	int ret;
11178 
11179 	idr_init(&pmu_idr);
11180 
11181 	perf_event_init_all_cpus();
11182 	init_srcu_struct(&pmus_srcu);
11183 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11184 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11185 	perf_pmu_register(&perf_task_clock, NULL, -1);
11186 	perf_tp_register();
11187 	perf_event_init_cpu(smp_processor_id());
11188 	register_reboot_notifier(&perf_reboot_notifier);
11189 
11190 	ret = init_hw_breakpoint();
11191 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11192 
11193 	/*
11194 	 * Build time assertion that we keep the data_head at the intended
11195 	 * location.  IOW, validation we got the __reserved[] size right.
11196 	 */
11197 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11198 		     != 1024);
11199 }
11200 
11201 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11202 			      char *page)
11203 {
11204 	struct perf_pmu_events_attr *pmu_attr =
11205 		container_of(attr, struct perf_pmu_events_attr, attr);
11206 
11207 	if (pmu_attr->event_str)
11208 		return sprintf(page, "%s\n", pmu_attr->event_str);
11209 
11210 	return 0;
11211 }
11212 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11213 
11214 static int __init perf_event_sysfs_init(void)
11215 {
11216 	struct pmu *pmu;
11217 	int ret;
11218 
11219 	mutex_lock(&pmus_lock);
11220 
11221 	ret = bus_register(&pmu_bus);
11222 	if (ret)
11223 		goto unlock;
11224 
11225 	list_for_each_entry(pmu, &pmus, entry) {
11226 		if (!pmu->name || pmu->type < 0)
11227 			continue;
11228 
11229 		ret = pmu_dev_alloc(pmu);
11230 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11231 	}
11232 	pmu_bus_running = 1;
11233 	ret = 0;
11234 
11235 unlock:
11236 	mutex_unlock(&pmus_lock);
11237 
11238 	return ret;
11239 }
11240 device_initcall(perf_event_sysfs_init);
11241 
11242 #ifdef CONFIG_CGROUP_PERF
11243 static struct cgroup_subsys_state *
11244 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11245 {
11246 	struct perf_cgroup *jc;
11247 
11248 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11249 	if (!jc)
11250 		return ERR_PTR(-ENOMEM);
11251 
11252 	jc->info = alloc_percpu(struct perf_cgroup_info);
11253 	if (!jc->info) {
11254 		kfree(jc);
11255 		return ERR_PTR(-ENOMEM);
11256 	}
11257 
11258 	return &jc->css;
11259 }
11260 
11261 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11262 {
11263 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11264 
11265 	free_percpu(jc->info);
11266 	kfree(jc);
11267 }
11268 
11269 static int __perf_cgroup_move(void *info)
11270 {
11271 	struct task_struct *task = info;
11272 	rcu_read_lock();
11273 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11274 	rcu_read_unlock();
11275 	return 0;
11276 }
11277 
11278 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11279 {
11280 	struct task_struct *task;
11281 	struct cgroup_subsys_state *css;
11282 
11283 	cgroup_taskset_for_each(task, css, tset)
11284 		task_function_call(task, __perf_cgroup_move, task);
11285 }
11286 
11287 struct cgroup_subsys perf_event_cgrp_subsys = {
11288 	.css_alloc	= perf_cgroup_css_alloc,
11289 	.css_free	= perf_cgroup_css_free,
11290 	.attach		= perf_cgroup_attach,
11291 	/*
11292 	 * Implicitly enable on dfl hierarchy so that perf events can
11293 	 * always be filtered by cgroup2 path as long as perf_event
11294 	 * controller is not mounted on a legacy hierarchy.
11295 	 */
11296 	.implicit_on_dfl = true,
11297 	.threaded	= true,
11298 };
11299 #endif /* CONFIG_CGROUP_PERF */
11300