1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 /* 586 * State based event timekeeping... 587 * 588 * The basic idea is to use event->state to determine which (if any) time 589 * fields to increment with the current delta. This means we only need to 590 * update timestamps when we change state or when they are explicitly requested 591 * (read). 592 * 593 * Event groups make things a little more complicated, but not terribly so. The 594 * rules for a group are that if the group leader is OFF the entire group is 595 * OFF, irrespecive of what the group member states are. This results in 596 * __perf_effective_state(). 597 * 598 * A futher ramification is that when a group leader flips between OFF and 599 * !OFF, we need to update all group member times. 600 * 601 * 602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 603 * need to make sure the relevant context time is updated before we try and 604 * update our timestamps. 605 */ 606 607 static __always_inline enum perf_event_state 608 __perf_effective_state(struct perf_event *event) 609 { 610 struct perf_event *leader = event->group_leader; 611 612 if (leader->state <= PERF_EVENT_STATE_OFF) 613 return leader->state; 614 615 return event->state; 616 } 617 618 static __always_inline void 619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 620 { 621 enum perf_event_state state = __perf_effective_state(event); 622 u64 delta = now - event->tstamp; 623 624 *enabled = event->total_time_enabled; 625 if (state >= PERF_EVENT_STATE_INACTIVE) 626 *enabled += delta; 627 628 *running = event->total_time_running; 629 if (state >= PERF_EVENT_STATE_ACTIVE) 630 *running += delta; 631 } 632 633 static void perf_event_update_time(struct perf_event *event) 634 { 635 u64 now = perf_event_time(event); 636 637 __perf_update_times(event, now, &event->total_time_enabled, 638 &event->total_time_running); 639 event->tstamp = now; 640 } 641 642 static void perf_event_update_sibling_time(struct perf_event *leader) 643 { 644 struct perf_event *sibling; 645 646 list_for_each_entry(sibling, &leader->sibling_list, group_entry) 647 perf_event_update_time(sibling); 648 } 649 650 static void 651 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 652 { 653 if (event->state == state) 654 return; 655 656 perf_event_update_time(event); 657 /* 658 * If a group leader gets enabled/disabled all its siblings 659 * are affected too. 660 */ 661 if ((event->state < 0) ^ (state < 0)) 662 perf_event_update_sibling_time(event); 663 664 WRITE_ONCE(event->state, state); 665 } 666 667 #ifdef CONFIG_CGROUP_PERF 668 669 static inline bool 670 perf_cgroup_match(struct perf_event *event) 671 { 672 struct perf_event_context *ctx = event->ctx; 673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 674 675 /* @event doesn't care about cgroup */ 676 if (!event->cgrp) 677 return true; 678 679 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 680 if (!cpuctx->cgrp) 681 return false; 682 683 /* 684 * Cgroup scoping is recursive. An event enabled for a cgroup is 685 * also enabled for all its descendant cgroups. If @cpuctx's 686 * cgroup is a descendant of @event's (the test covers identity 687 * case), it's a match. 688 */ 689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 690 event->cgrp->css.cgroup); 691 } 692 693 static inline void perf_detach_cgroup(struct perf_event *event) 694 { 695 css_put(&event->cgrp->css); 696 event->cgrp = NULL; 697 } 698 699 static inline int is_cgroup_event(struct perf_event *event) 700 { 701 return event->cgrp != NULL; 702 } 703 704 static inline u64 perf_cgroup_event_time(struct perf_event *event) 705 { 706 struct perf_cgroup_info *t; 707 708 t = per_cpu_ptr(event->cgrp->info, event->cpu); 709 return t->time; 710 } 711 712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 713 { 714 struct perf_cgroup_info *info; 715 u64 now; 716 717 now = perf_clock(); 718 719 info = this_cpu_ptr(cgrp->info); 720 721 info->time += now - info->timestamp; 722 info->timestamp = now; 723 } 724 725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 726 { 727 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 728 if (cgrp_out) 729 __update_cgrp_time(cgrp_out); 730 } 731 732 static inline void update_cgrp_time_from_event(struct perf_event *event) 733 { 734 struct perf_cgroup *cgrp; 735 736 /* 737 * ensure we access cgroup data only when needed and 738 * when we know the cgroup is pinned (css_get) 739 */ 740 if (!is_cgroup_event(event)) 741 return; 742 743 cgrp = perf_cgroup_from_task(current, event->ctx); 744 /* 745 * Do not update time when cgroup is not active 746 */ 747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 748 __update_cgrp_time(event->cgrp); 749 } 750 751 static inline void 752 perf_cgroup_set_timestamp(struct task_struct *task, 753 struct perf_event_context *ctx) 754 { 755 struct perf_cgroup *cgrp; 756 struct perf_cgroup_info *info; 757 758 /* 759 * ctx->lock held by caller 760 * ensure we do not access cgroup data 761 * unless we have the cgroup pinned (css_get) 762 */ 763 if (!task || !ctx->nr_cgroups) 764 return; 765 766 cgrp = perf_cgroup_from_task(task, ctx); 767 info = this_cpu_ptr(cgrp->info); 768 info->timestamp = ctx->timestamp; 769 } 770 771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 772 773 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 774 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 775 776 /* 777 * reschedule events based on the cgroup constraint of task. 778 * 779 * mode SWOUT : schedule out everything 780 * mode SWIN : schedule in based on cgroup for next 781 */ 782 static void perf_cgroup_switch(struct task_struct *task, int mode) 783 { 784 struct perf_cpu_context *cpuctx; 785 struct list_head *list; 786 unsigned long flags; 787 788 /* 789 * Disable interrupts and preemption to avoid this CPU's 790 * cgrp_cpuctx_entry to change under us. 791 */ 792 local_irq_save(flags); 793 794 list = this_cpu_ptr(&cgrp_cpuctx_list); 795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 797 798 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 799 perf_pmu_disable(cpuctx->ctx.pmu); 800 801 if (mode & PERF_CGROUP_SWOUT) { 802 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 803 /* 804 * must not be done before ctxswout due 805 * to event_filter_match() in event_sched_out() 806 */ 807 cpuctx->cgrp = NULL; 808 } 809 810 if (mode & PERF_CGROUP_SWIN) { 811 WARN_ON_ONCE(cpuctx->cgrp); 812 /* 813 * set cgrp before ctxsw in to allow 814 * event_filter_match() to not have to pass 815 * task around 816 * we pass the cpuctx->ctx to perf_cgroup_from_task() 817 * because cgorup events are only per-cpu 818 */ 819 cpuctx->cgrp = perf_cgroup_from_task(task, 820 &cpuctx->ctx); 821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 822 } 823 perf_pmu_enable(cpuctx->ctx.pmu); 824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 825 } 826 827 local_irq_restore(flags); 828 } 829 830 static inline void perf_cgroup_sched_out(struct task_struct *task, 831 struct task_struct *next) 832 { 833 struct perf_cgroup *cgrp1; 834 struct perf_cgroup *cgrp2 = NULL; 835 836 rcu_read_lock(); 837 /* 838 * we come here when we know perf_cgroup_events > 0 839 * we do not need to pass the ctx here because we know 840 * we are holding the rcu lock 841 */ 842 cgrp1 = perf_cgroup_from_task(task, NULL); 843 cgrp2 = perf_cgroup_from_task(next, NULL); 844 845 /* 846 * only schedule out current cgroup events if we know 847 * that we are switching to a different cgroup. Otherwise, 848 * do no touch the cgroup events. 849 */ 850 if (cgrp1 != cgrp2) 851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 852 853 rcu_read_unlock(); 854 } 855 856 static inline void perf_cgroup_sched_in(struct task_struct *prev, 857 struct task_struct *task) 858 { 859 struct perf_cgroup *cgrp1; 860 struct perf_cgroup *cgrp2 = NULL; 861 862 rcu_read_lock(); 863 /* 864 * we come here when we know perf_cgroup_events > 0 865 * we do not need to pass the ctx here because we know 866 * we are holding the rcu lock 867 */ 868 cgrp1 = perf_cgroup_from_task(task, NULL); 869 cgrp2 = perf_cgroup_from_task(prev, NULL); 870 871 /* 872 * only need to schedule in cgroup events if we are changing 873 * cgroup during ctxsw. Cgroup events were not scheduled 874 * out of ctxsw out if that was not the case. 875 */ 876 if (cgrp1 != cgrp2) 877 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 878 879 rcu_read_unlock(); 880 } 881 882 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 883 struct perf_event_attr *attr, 884 struct perf_event *group_leader) 885 { 886 struct perf_cgroup *cgrp; 887 struct cgroup_subsys_state *css; 888 struct fd f = fdget(fd); 889 int ret = 0; 890 891 if (!f.file) 892 return -EBADF; 893 894 css = css_tryget_online_from_dir(f.file->f_path.dentry, 895 &perf_event_cgrp_subsys); 896 if (IS_ERR(css)) { 897 ret = PTR_ERR(css); 898 goto out; 899 } 900 901 cgrp = container_of(css, struct perf_cgroup, css); 902 event->cgrp = cgrp; 903 904 /* 905 * all events in a group must monitor 906 * the same cgroup because a task belongs 907 * to only one perf cgroup at a time 908 */ 909 if (group_leader && group_leader->cgrp != cgrp) { 910 perf_detach_cgroup(event); 911 ret = -EINVAL; 912 } 913 out: 914 fdput(f); 915 return ret; 916 } 917 918 static inline void 919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 920 { 921 struct perf_cgroup_info *t; 922 t = per_cpu_ptr(event->cgrp->info, event->cpu); 923 event->shadow_ctx_time = now - t->timestamp; 924 } 925 926 /* 927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 928 * cleared when last cgroup event is removed. 929 */ 930 static inline void 931 list_update_cgroup_event(struct perf_event *event, 932 struct perf_event_context *ctx, bool add) 933 { 934 struct perf_cpu_context *cpuctx; 935 struct list_head *cpuctx_entry; 936 937 if (!is_cgroup_event(event)) 938 return; 939 940 if (add && ctx->nr_cgroups++) 941 return; 942 else if (!add && --ctx->nr_cgroups) 943 return; 944 /* 945 * Because cgroup events are always per-cpu events, 946 * this will always be called from the right CPU. 947 */ 948 cpuctx = __get_cpu_context(ctx); 949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 951 if (add) { 952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 953 954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 956 cpuctx->cgrp = cgrp; 957 } else { 958 list_del(cpuctx_entry); 959 cpuctx->cgrp = NULL; 960 } 961 } 962 963 #else /* !CONFIG_CGROUP_PERF */ 964 965 static inline bool 966 perf_cgroup_match(struct perf_event *event) 967 { 968 return true; 969 } 970 971 static inline void perf_detach_cgroup(struct perf_event *event) 972 {} 973 974 static inline int is_cgroup_event(struct perf_event *event) 975 { 976 return 0; 977 } 978 979 static inline void update_cgrp_time_from_event(struct perf_event *event) 980 { 981 } 982 983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 984 { 985 } 986 987 static inline void perf_cgroup_sched_out(struct task_struct *task, 988 struct task_struct *next) 989 { 990 } 991 992 static inline void perf_cgroup_sched_in(struct task_struct *prev, 993 struct task_struct *task) 994 { 995 } 996 997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 998 struct perf_event_attr *attr, 999 struct perf_event *group_leader) 1000 { 1001 return -EINVAL; 1002 } 1003 1004 static inline void 1005 perf_cgroup_set_timestamp(struct task_struct *task, 1006 struct perf_event_context *ctx) 1007 { 1008 } 1009 1010 void 1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1012 { 1013 } 1014 1015 static inline void 1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1017 { 1018 } 1019 1020 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1021 { 1022 return 0; 1023 } 1024 1025 static inline void 1026 list_update_cgroup_event(struct perf_event *event, 1027 struct perf_event_context *ctx, bool add) 1028 { 1029 } 1030 1031 #endif 1032 1033 /* 1034 * set default to be dependent on timer tick just 1035 * like original code 1036 */ 1037 #define PERF_CPU_HRTIMER (1000 / HZ) 1038 /* 1039 * function must be called with interrupts disabled 1040 */ 1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1042 { 1043 struct perf_cpu_context *cpuctx; 1044 int rotations = 0; 1045 1046 lockdep_assert_irqs_disabled(); 1047 1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1049 rotations = perf_rotate_context(cpuctx); 1050 1051 raw_spin_lock(&cpuctx->hrtimer_lock); 1052 if (rotations) 1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1054 else 1055 cpuctx->hrtimer_active = 0; 1056 raw_spin_unlock(&cpuctx->hrtimer_lock); 1057 1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1059 } 1060 1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1062 { 1063 struct hrtimer *timer = &cpuctx->hrtimer; 1064 struct pmu *pmu = cpuctx->ctx.pmu; 1065 u64 interval; 1066 1067 /* no multiplexing needed for SW PMU */ 1068 if (pmu->task_ctx_nr == perf_sw_context) 1069 return; 1070 1071 /* 1072 * check default is sane, if not set then force to 1073 * default interval (1/tick) 1074 */ 1075 interval = pmu->hrtimer_interval_ms; 1076 if (interval < 1) 1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1078 1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1080 1081 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1083 timer->function = perf_mux_hrtimer_handler; 1084 } 1085 1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1087 { 1088 struct hrtimer *timer = &cpuctx->hrtimer; 1089 struct pmu *pmu = cpuctx->ctx.pmu; 1090 unsigned long flags; 1091 1092 /* not for SW PMU */ 1093 if (pmu->task_ctx_nr == perf_sw_context) 1094 return 0; 1095 1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1097 if (!cpuctx->hrtimer_active) { 1098 cpuctx->hrtimer_active = 1; 1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1101 } 1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1103 1104 return 0; 1105 } 1106 1107 void perf_pmu_disable(struct pmu *pmu) 1108 { 1109 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1110 if (!(*count)++) 1111 pmu->pmu_disable(pmu); 1112 } 1113 1114 void perf_pmu_enable(struct pmu *pmu) 1115 { 1116 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1117 if (!--(*count)) 1118 pmu->pmu_enable(pmu); 1119 } 1120 1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1122 1123 /* 1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1125 * perf_event_task_tick() are fully serialized because they're strictly cpu 1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1127 * disabled, while perf_event_task_tick is called from IRQ context. 1128 */ 1129 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1130 { 1131 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1132 1133 lockdep_assert_irqs_disabled(); 1134 1135 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1136 1137 list_add(&ctx->active_ctx_list, head); 1138 } 1139 1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1141 { 1142 lockdep_assert_irqs_disabled(); 1143 1144 WARN_ON(list_empty(&ctx->active_ctx_list)); 1145 1146 list_del_init(&ctx->active_ctx_list); 1147 } 1148 1149 static void get_ctx(struct perf_event_context *ctx) 1150 { 1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1152 } 1153 1154 static void free_ctx(struct rcu_head *head) 1155 { 1156 struct perf_event_context *ctx; 1157 1158 ctx = container_of(head, struct perf_event_context, rcu_head); 1159 kfree(ctx->task_ctx_data); 1160 kfree(ctx); 1161 } 1162 1163 static void put_ctx(struct perf_event_context *ctx) 1164 { 1165 if (atomic_dec_and_test(&ctx->refcount)) { 1166 if (ctx->parent_ctx) 1167 put_ctx(ctx->parent_ctx); 1168 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1169 put_task_struct(ctx->task); 1170 call_rcu(&ctx->rcu_head, free_ctx); 1171 } 1172 } 1173 1174 /* 1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1176 * perf_pmu_migrate_context() we need some magic. 1177 * 1178 * Those places that change perf_event::ctx will hold both 1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1180 * 1181 * Lock ordering is by mutex address. There are two other sites where 1182 * perf_event_context::mutex nests and those are: 1183 * 1184 * - perf_event_exit_task_context() [ child , 0 ] 1185 * perf_event_exit_event() 1186 * put_event() [ parent, 1 ] 1187 * 1188 * - perf_event_init_context() [ parent, 0 ] 1189 * inherit_task_group() 1190 * inherit_group() 1191 * inherit_event() 1192 * perf_event_alloc() 1193 * perf_init_event() 1194 * perf_try_init_event() [ child , 1 ] 1195 * 1196 * While it appears there is an obvious deadlock here -- the parent and child 1197 * nesting levels are inverted between the two. This is in fact safe because 1198 * life-time rules separate them. That is an exiting task cannot fork, and a 1199 * spawning task cannot (yet) exit. 1200 * 1201 * But remember that that these are parent<->child context relations, and 1202 * migration does not affect children, therefore these two orderings should not 1203 * interact. 1204 * 1205 * The change in perf_event::ctx does not affect children (as claimed above) 1206 * because the sys_perf_event_open() case will install a new event and break 1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1208 * concerned with cpuctx and that doesn't have children. 1209 * 1210 * The places that change perf_event::ctx will issue: 1211 * 1212 * perf_remove_from_context(); 1213 * synchronize_rcu(); 1214 * perf_install_in_context(); 1215 * 1216 * to affect the change. The remove_from_context() + synchronize_rcu() should 1217 * quiesce the event, after which we can install it in the new location. This 1218 * means that only external vectors (perf_fops, prctl) can perturb the event 1219 * while in transit. Therefore all such accessors should also acquire 1220 * perf_event_context::mutex to serialize against this. 1221 * 1222 * However; because event->ctx can change while we're waiting to acquire 1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1224 * function. 1225 * 1226 * Lock order: 1227 * cred_guard_mutex 1228 * task_struct::perf_event_mutex 1229 * perf_event_context::mutex 1230 * perf_event::child_mutex; 1231 * perf_event_context::lock 1232 * perf_event::mmap_mutex 1233 * mmap_sem 1234 * 1235 * cpu_hotplug_lock 1236 * pmus_lock 1237 * cpuctx->mutex / perf_event_context::mutex 1238 */ 1239 static struct perf_event_context * 1240 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1241 { 1242 struct perf_event_context *ctx; 1243 1244 again: 1245 rcu_read_lock(); 1246 ctx = READ_ONCE(event->ctx); 1247 if (!atomic_inc_not_zero(&ctx->refcount)) { 1248 rcu_read_unlock(); 1249 goto again; 1250 } 1251 rcu_read_unlock(); 1252 1253 mutex_lock_nested(&ctx->mutex, nesting); 1254 if (event->ctx != ctx) { 1255 mutex_unlock(&ctx->mutex); 1256 put_ctx(ctx); 1257 goto again; 1258 } 1259 1260 return ctx; 1261 } 1262 1263 static inline struct perf_event_context * 1264 perf_event_ctx_lock(struct perf_event *event) 1265 { 1266 return perf_event_ctx_lock_nested(event, 0); 1267 } 1268 1269 static void perf_event_ctx_unlock(struct perf_event *event, 1270 struct perf_event_context *ctx) 1271 { 1272 mutex_unlock(&ctx->mutex); 1273 put_ctx(ctx); 1274 } 1275 1276 /* 1277 * This must be done under the ctx->lock, such as to serialize against 1278 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1279 * calling scheduler related locks and ctx->lock nests inside those. 1280 */ 1281 static __must_check struct perf_event_context * 1282 unclone_ctx(struct perf_event_context *ctx) 1283 { 1284 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1285 1286 lockdep_assert_held(&ctx->lock); 1287 1288 if (parent_ctx) 1289 ctx->parent_ctx = NULL; 1290 ctx->generation++; 1291 1292 return parent_ctx; 1293 } 1294 1295 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1296 enum pid_type type) 1297 { 1298 u32 nr; 1299 /* 1300 * only top level events have the pid namespace they were created in 1301 */ 1302 if (event->parent) 1303 event = event->parent; 1304 1305 nr = __task_pid_nr_ns(p, type, event->ns); 1306 /* avoid -1 if it is idle thread or runs in another ns */ 1307 if (!nr && !pid_alive(p)) 1308 nr = -1; 1309 return nr; 1310 } 1311 1312 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1313 { 1314 return perf_event_pid_type(event, p, __PIDTYPE_TGID); 1315 } 1316 1317 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1318 { 1319 return perf_event_pid_type(event, p, PIDTYPE_PID); 1320 } 1321 1322 /* 1323 * If we inherit events we want to return the parent event id 1324 * to userspace. 1325 */ 1326 static u64 primary_event_id(struct perf_event *event) 1327 { 1328 u64 id = event->id; 1329 1330 if (event->parent) 1331 id = event->parent->id; 1332 1333 return id; 1334 } 1335 1336 /* 1337 * Get the perf_event_context for a task and lock it. 1338 * 1339 * This has to cope with with the fact that until it is locked, 1340 * the context could get moved to another task. 1341 */ 1342 static struct perf_event_context * 1343 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1344 { 1345 struct perf_event_context *ctx; 1346 1347 retry: 1348 /* 1349 * One of the few rules of preemptible RCU is that one cannot do 1350 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1351 * part of the read side critical section was irqs-enabled -- see 1352 * rcu_read_unlock_special(). 1353 * 1354 * Since ctx->lock nests under rq->lock we must ensure the entire read 1355 * side critical section has interrupts disabled. 1356 */ 1357 local_irq_save(*flags); 1358 rcu_read_lock(); 1359 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1360 if (ctx) { 1361 /* 1362 * If this context is a clone of another, it might 1363 * get swapped for another underneath us by 1364 * perf_event_task_sched_out, though the 1365 * rcu_read_lock() protects us from any context 1366 * getting freed. Lock the context and check if it 1367 * got swapped before we could get the lock, and retry 1368 * if so. If we locked the right context, then it 1369 * can't get swapped on us any more. 1370 */ 1371 raw_spin_lock(&ctx->lock); 1372 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1373 raw_spin_unlock(&ctx->lock); 1374 rcu_read_unlock(); 1375 local_irq_restore(*flags); 1376 goto retry; 1377 } 1378 1379 if (ctx->task == TASK_TOMBSTONE || 1380 !atomic_inc_not_zero(&ctx->refcount)) { 1381 raw_spin_unlock(&ctx->lock); 1382 ctx = NULL; 1383 } else { 1384 WARN_ON_ONCE(ctx->task != task); 1385 } 1386 } 1387 rcu_read_unlock(); 1388 if (!ctx) 1389 local_irq_restore(*flags); 1390 return ctx; 1391 } 1392 1393 /* 1394 * Get the context for a task and increment its pin_count so it 1395 * can't get swapped to another task. This also increments its 1396 * reference count so that the context can't get freed. 1397 */ 1398 static struct perf_event_context * 1399 perf_pin_task_context(struct task_struct *task, int ctxn) 1400 { 1401 struct perf_event_context *ctx; 1402 unsigned long flags; 1403 1404 ctx = perf_lock_task_context(task, ctxn, &flags); 1405 if (ctx) { 1406 ++ctx->pin_count; 1407 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1408 } 1409 return ctx; 1410 } 1411 1412 static void perf_unpin_context(struct perf_event_context *ctx) 1413 { 1414 unsigned long flags; 1415 1416 raw_spin_lock_irqsave(&ctx->lock, flags); 1417 --ctx->pin_count; 1418 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1419 } 1420 1421 /* 1422 * Update the record of the current time in a context. 1423 */ 1424 static void update_context_time(struct perf_event_context *ctx) 1425 { 1426 u64 now = perf_clock(); 1427 1428 ctx->time += now - ctx->timestamp; 1429 ctx->timestamp = now; 1430 } 1431 1432 static u64 perf_event_time(struct perf_event *event) 1433 { 1434 struct perf_event_context *ctx = event->ctx; 1435 1436 if (is_cgroup_event(event)) 1437 return perf_cgroup_event_time(event); 1438 1439 return ctx ? ctx->time : 0; 1440 } 1441 1442 static enum event_type_t get_event_type(struct perf_event *event) 1443 { 1444 struct perf_event_context *ctx = event->ctx; 1445 enum event_type_t event_type; 1446 1447 lockdep_assert_held(&ctx->lock); 1448 1449 /* 1450 * It's 'group type', really, because if our group leader is 1451 * pinned, so are we. 1452 */ 1453 if (event->group_leader != event) 1454 event = event->group_leader; 1455 1456 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1457 if (!ctx->task) 1458 event_type |= EVENT_CPU; 1459 1460 return event_type; 1461 } 1462 1463 static struct list_head * 1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1465 { 1466 if (event->attr.pinned) 1467 return &ctx->pinned_groups; 1468 else 1469 return &ctx->flexible_groups; 1470 } 1471 1472 /* 1473 * Add a event from the lists for its context. 1474 * Must be called with ctx->mutex and ctx->lock held. 1475 */ 1476 static void 1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1478 { 1479 lockdep_assert_held(&ctx->lock); 1480 1481 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1482 event->attach_state |= PERF_ATTACH_CONTEXT; 1483 1484 event->tstamp = perf_event_time(event); 1485 1486 /* 1487 * If we're a stand alone event or group leader, we go to the context 1488 * list, group events are kept attached to the group so that 1489 * perf_group_detach can, at all times, locate all siblings. 1490 */ 1491 if (event->group_leader == event) { 1492 struct list_head *list; 1493 1494 event->group_caps = event->event_caps; 1495 1496 list = ctx_group_list(event, ctx); 1497 list_add_tail(&event->group_entry, list); 1498 } 1499 1500 list_update_cgroup_event(event, ctx, true); 1501 1502 list_add_rcu(&event->event_entry, &ctx->event_list); 1503 ctx->nr_events++; 1504 if (event->attr.inherit_stat) 1505 ctx->nr_stat++; 1506 1507 ctx->generation++; 1508 } 1509 1510 /* 1511 * Initialize event state based on the perf_event_attr::disabled. 1512 */ 1513 static inline void perf_event__state_init(struct perf_event *event) 1514 { 1515 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1516 PERF_EVENT_STATE_INACTIVE; 1517 } 1518 1519 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1520 { 1521 int entry = sizeof(u64); /* value */ 1522 int size = 0; 1523 int nr = 1; 1524 1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1526 size += sizeof(u64); 1527 1528 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1529 size += sizeof(u64); 1530 1531 if (event->attr.read_format & PERF_FORMAT_ID) 1532 entry += sizeof(u64); 1533 1534 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1535 nr += nr_siblings; 1536 size += sizeof(u64); 1537 } 1538 1539 size += entry * nr; 1540 event->read_size = size; 1541 } 1542 1543 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1544 { 1545 struct perf_sample_data *data; 1546 u16 size = 0; 1547 1548 if (sample_type & PERF_SAMPLE_IP) 1549 size += sizeof(data->ip); 1550 1551 if (sample_type & PERF_SAMPLE_ADDR) 1552 size += sizeof(data->addr); 1553 1554 if (sample_type & PERF_SAMPLE_PERIOD) 1555 size += sizeof(data->period); 1556 1557 if (sample_type & PERF_SAMPLE_WEIGHT) 1558 size += sizeof(data->weight); 1559 1560 if (sample_type & PERF_SAMPLE_READ) 1561 size += event->read_size; 1562 1563 if (sample_type & PERF_SAMPLE_DATA_SRC) 1564 size += sizeof(data->data_src.val); 1565 1566 if (sample_type & PERF_SAMPLE_TRANSACTION) 1567 size += sizeof(data->txn); 1568 1569 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1570 size += sizeof(data->phys_addr); 1571 1572 event->header_size = size; 1573 } 1574 1575 /* 1576 * Called at perf_event creation and when events are attached/detached from a 1577 * group. 1578 */ 1579 static void perf_event__header_size(struct perf_event *event) 1580 { 1581 __perf_event_read_size(event, 1582 event->group_leader->nr_siblings); 1583 __perf_event_header_size(event, event->attr.sample_type); 1584 } 1585 1586 static void perf_event__id_header_size(struct perf_event *event) 1587 { 1588 struct perf_sample_data *data; 1589 u64 sample_type = event->attr.sample_type; 1590 u16 size = 0; 1591 1592 if (sample_type & PERF_SAMPLE_TID) 1593 size += sizeof(data->tid_entry); 1594 1595 if (sample_type & PERF_SAMPLE_TIME) 1596 size += sizeof(data->time); 1597 1598 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1599 size += sizeof(data->id); 1600 1601 if (sample_type & PERF_SAMPLE_ID) 1602 size += sizeof(data->id); 1603 1604 if (sample_type & PERF_SAMPLE_STREAM_ID) 1605 size += sizeof(data->stream_id); 1606 1607 if (sample_type & PERF_SAMPLE_CPU) 1608 size += sizeof(data->cpu_entry); 1609 1610 event->id_header_size = size; 1611 } 1612 1613 static bool perf_event_validate_size(struct perf_event *event) 1614 { 1615 /* 1616 * The values computed here will be over-written when we actually 1617 * attach the event. 1618 */ 1619 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1620 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1621 perf_event__id_header_size(event); 1622 1623 /* 1624 * Sum the lot; should not exceed the 64k limit we have on records. 1625 * Conservative limit to allow for callchains and other variable fields. 1626 */ 1627 if (event->read_size + event->header_size + 1628 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1629 return false; 1630 1631 return true; 1632 } 1633 1634 static void perf_group_attach(struct perf_event *event) 1635 { 1636 struct perf_event *group_leader = event->group_leader, *pos; 1637 1638 lockdep_assert_held(&event->ctx->lock); 1639 1640 /* 1641 * We can have double attach due to group movement in perf_event_open. 1642 */ 1643 if (event->attach_state & PERF_ATTACH_GROUP) 1644 return; 1645 1646 event->attach_state |= PERF_ATTACH_GROUP; 1647 1648 if (group_leader == event) 1649 return; 1650 1651 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1652 1653 group_leader->group_caps &= event->event_caps; 1654 1655 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1656 group_leader->nr_siblings++; 1657 1658 perf_event__header_size(group_leader); 1659 1660 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1661 perf_event__header_size(pos); 1662 } 1663 1664 /* 1665 * Remove a event from the lists for its context. 1666 * Must be called with ctx->mutex and ctx->lock held. 1667 */ 1668 static void 1669 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1670 { 1671 WARN_ON_ONCE(event->ctx != ctx); 1672 lockdep_assert_held(&ctx->lock); 1673 1674 /* 1675 * We can have double detach due to exit/hot-unplug + close. 1676 */ 1677 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1678 return; 1679 1680 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1681 1682 list_update_cgroup_event(event, ctx, false); 1683 1684 ctx->nr_events--; 1685 if (event->attr.inherit_stat) 1686 ctx->nr_stat--; 1687 1688 list_del_rcu(&event->event_entry); 1689 1690 if (event->group_leader == event) 1691 list_del_init(&event->group_entry); 1692 1693 /* 1694 * If event was in error state, then keep it 1695 * that way, otherwise bogus counts will be 1696 * returned on read(). The only way to get out 1697 * of error state is by explicit re-enabling 1698 * of the event 1699 */ 1700 if (event->state > PERF_EVENT_STATE_OFF) 1701 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1702 1703 ctx->generation++; 1704 } 1705 1706 static void perf_group_detach(struct perf_event *event) 1707 { 1708 struct perf_event *sibling, *tmp; 1709 struct list_head *list = NULL; 1710 1711 lockdep_assert_held(&event->ctx->lock); 1712 1713 /* 1714 * We can have double detach due to exit/hot-unplug + close. 1715 */ 1716 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1717 return; 1718 1719 event->attach_state &= ~PERF_ATTACH_GROUP; 1720 1721 /* 1722 * If this is a sibling, remove it from its group. 1723 */ 1724 if (event->group_leader != event) { 1725 list_del_init(&event->group_entry); 1726 event->group_leader->nr_siblings--; 1727 goto out; 1728 } 1729 1730 if (!list_empty(&event->group_entry)) 1731 list = &event->group_entry; 1732 1733 /* 1734 * If this was a group event with sibling events then 1735 * upgrade the siblings to singleton events by adding them 1736 * to whatever list we are on. 1737 */ 1738 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1739 if (list) 1740 list_move_tail(&sibling->group_entry, list); 1741 sibling->group_leader = sibling; 1742 1743 /* Inherit group flags from the previous leader */ 1744 sibling->group_caps = event->group_caps; 1745 1746 WARN_ON_ONCE(sibling->ctx != event->ctx); 1747 } 1748 1749 out: 1750 perf_event__header_size(event->group_leader); 1751 1752 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1753 perf_event__header_size(tmp); 1754 } 1755 1756 static bool is_orphaned_event(struct perf_event *event) 1757 { 1758 return event->state == PERF_EVENT_STATE_DEAD; 1759 } 1760 1761 static inline int __pmu_filter_match(struct perf_event *event) 1762 { 1763 struct pmu *pmu = event->pmu; 1764 return pmu->filter_match ? pmu->filter_match(event) : 1; 1765 } 1766 1767 /* 1768 * Check whether we should attempt to schedule an event group based on 1769 * PMU-specific filtering. An event group can consist of HW and SW events, 1770 * potentially with a SW leader, so we must check all the filters, to 1771 * determine whether a group is schedulable: 1772 */ 1773 static inline int pmu_filter_match(struct perf_event *event) 1774 { 1775 struct perf_event *child; 1776 1777 if (!__pmu_filter_match(event)) 1778 return 0; 1779 1780 list_for_each_entry(child, &event->sibling_list, group_entry) { 1781 if (!__pmu_filter_match(child)) 1782 return 0; 1783 } 1784 1785 return 1; 1786 } 1787 1788 static inline int 1789 event_filter_match(struct perf_event *event) 1790 { 1791 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1792 perf_cgroup_match(event) && pmu_filter_match(event); 1793 } 1794 1795 static void 1796 event_sched_out(struct perf_event *event, 1797 struct perf_cpu_context *cpuctx, 1798 struct perf_event_context *ctx) 1799 { 1800 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1801 1802 WARN_ON_ONCE(event->ctx != ctx); 1803 lockdep_assert_held(&ctx->lock); 1804 1805 if (event->state != PERF_EVENT_STATE_ACTIVE) 1806 return; 1807 1808 perf_pmu_disable(event->pmu); 1809 1810 event->pmu->del(event, 0); 1811 event->oncpu = -1; 1812 1813 if (event->pending_disable) { 1814 event->pending_disable = 0; 1815 state = PERF_EVENT_STATE_OFF; 1816 } 1817 perf_event_set_state(event, state); 1818 1819 if (!is_software_event(event)) 1820 cpuctx->active_oncpu--; 1821 if (!--ctx->nr_active) 1822 perf_event_ctx_deactivate(ctx); 1823 if (event->attr.freq && event->attr.sample_freq) 1824 ctx->nr_freq--; 1825 if (event->attr.exclusive || !cpuctx->active_oncpu) 1826 cpuctx->exclusive = 0; 1827 1828 perf_pmu_enable(event->pmu); 1829 } 1830 1831 static void 1832 group_sched_out(struct perf_event *group_event, 1833 struct perf_cpu_context *cpuctx, 1834 struct perf_event_context *ctx) 1835 { 1836 struct perf_event *event; 1837 1838 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 1839 return; 1840 1841 perf_pmu_disable(ctx->pmu); 1842 1843 event_sched_out(group_event, cpuctx, ctx); 1844 1845 /* 1846 * Schedule out siblings (if any): 1847 */ 1848 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1849 event_sched_out(event, cpuctx, ctx); 1850 1851 perf_pmu_enable(ctx->pmu); 1852 1853 if (group_event->attr.exclusive) 1854 cpuctx->exclusive = 0; 1855 } 1856 1857 #define DETACH_GROUP 0x01UL 1858 1859 /* 1860 * Cross CPU call to remove a performance event 1861 * 1862 * We disable the event on the hardware level first. After that we 1863 * remove it from the context list. 1864 */ 1865 static void 1866 __perf_remove_from_context(struct perf_event *event, 1867 struct perf_cpu_context *cpuctx, 1868 struct perf_event_context *ctx, 1869 void *info) 1870 { 1871 unsigned long flags = (unsigned long)info; 1872 1873 if (ctx->is_active & EVENT_TIME) { 1874 update_context_time(ctx); 1875 update_cgrp_time_from_cpuctx(cpuctx); 1876 } 1877 1878 event_sched_out(event, cpuctx, ctx); 1879 if (flags & DETACH_GROUP) 1880 perf_group_detach(event); 1881 list_del_event(event, ctx); 1882 1883 if (!ctx->nr_events && ctx->is_active) { 1884 ctx->is_active = 0; 1885 if (ctx->task) { 1886 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1887 cpuctx->task_ctx = NULL; 1888 } 1889 } 1890 } 1891 1892 /* 1893 * Remove the event from a task's (or a CPU's) list of events. 1894 * 1895 * If event->ctx is a cloned context, callers must make sure that 1896 * every task struct that event->ctx->task could possibly point to 1897 * remains valid. This is OK when called from perf_release since 1898 * that only calls us on the top-level context, which can't be a clone. 1899 * When called from perf_event_exit_task, it's OK because the 1900 * context has been detached from its task. 1901 */ 1902 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1903 { 1904 struct perf_event_context *ctx = event->ctx; 1905 1906 lockdep_assert_held(&ctx->mutex); 1907 1908 event_function_call(event, __perf_remove_from_context, (void *)flags); 1909 1910 /* 1911 * The above event_function_call() can NO-OP when it hits 1912 * TASK_TOMBSTONE. In that case we must already have been detached 1913 * from the context (by perf_event_exit_event()) but the grouping 1914 * might still be in-tact. 1915 */ 1916 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1917 if ((flags & DETACH_GROUP) && 1918 (event->attach_state & PERF_ATTACH_GROUP)) { 1919 /* 1920 * Since in that case we cannot possibly be scheduled, simply 1921 * detach now. 1922 */ 1923 raw_spin_lock_irq(&ctx->lock); 1924 perf_group_detach(event); 1925 raw_spin_unlock_irq(&ctx->lock); 1926 } 1927 } 1928 1929 /* 1930 * Cross CPU call to disable a performance event 1931 */ 1932 static void __perf_event_disable(struct perf_event *event, 1933 struct perf_cpu_context *cpuctx, 1934 struct perf_event_context *ctx, 1935 void *info) 1936 { 1937 if (event->state < PERF_EVENT_STATE_INACTIVE) 1938 return; 1939 1940 if (ctx->is_active & EVENT_TIME) { 1941 update_context_time(ctx); 1942 update_cgrp_time_from_event(event); 1943 } 1944 1945 if (event == event->group_leader) 1946 group_sched_out(event, cpuctx, ctx); 1947 else 1948 event_sched_out(event, cpuctx, ctx); 1949 1950 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1951 } 1952 1953 /* 1954 * Disable a event. 1955 * 1956 * If event->ctx is a cloned context, callers must make sure that 1957 * every task struct that event->ctx->task could possibly point to 1958 * remains valid. This condition is satisifed when called through 1959 * perf_event_for_each_child or perf_event_for_each because they 1960 * hold the top-level event's child_mutex, so any descendant that 1961 * goes to exit will block in perf_event_exit_event(). 1962 * 1963 * When called from perf_pending_event it's OK because event->ctx 1964 * is the current context on this CPU and preemption is disabled, 1965 * hence we can't get into perf_event_task_sched_out for this context. 1966 */ 1967 static void _perf_event_disable(struct perf_event *event) 1968 { 1969 struct perf_event_context *ctx = event->ctx; 1970 1971 raw_spin_lock_irq(&ctx->lock); 1972 if (event->state <= PERF_EVENT_STATE_OFF) { 1973 raw_spin_unlock_irq(&ctx->lock); 1974 return; 1975 } 1976 raw_spin_unlock_irq(&ctx->lock); 1977 1978 event_function_call(event, __perf_event_disable, NULL); 1979 } 1980 1981 void perf_event_disable_local(struct perf_event *event) 1982 { 1983 event_function_local(event, __perf_event_disable, NULL); 1984 } 1985 1986 /* 1987 * Strictly speaking kernel users cannot create groups and therefore this 1988 * interface does not need the perf_event_ctx_lock() magic. 1989 */ 1990 void perf_event_disable(struct perf_event *event) 1991 { 1992 struct perf_event_context *ctx; 1993 1994 ctx = perf_event_ctx_lock(event); 1995 _perf_event_disable(event); 1996 perf_event_ctx_unlock(event, ctx); 1997 } 1998 EXPORT_SYMBOL_GPL(perf_event_disable); 1999 2000 void perf_event_disable_inatomic(struct perf_event *event) 2001 { 2002 event->pending_disable = 1; 2003 irq_work_queue(&event->pending); 2004 } 2005 2006 static void perf_set_shadow_time(struct perf_event *event, 2007 struct perf_event_context *ctx) 2008 { 2009 /* 2010 * use the correct time source for the time snapshot 2011 * 2012 * We could get by without this by leveraging the 2013 * fact that to get to this function, the caller 2014 * has most likely already called update_context_time() 2015 * and update_cgrp_time_xx() and thus both timestamp 2016 * are identical (or very close). Given that tstamp is, 2017 * already adjusted for cgroup, we could say that: 2018 * tstamp - ctx->timestamp 2019 * is equivalent to 2020 * tstamp - cgrp->timestamp. 2021 * 2022 * Then, in perf_output_read(), the calculation would 2023 * work with no changes because: 2024 * - event is guaranteed scheduled in 2025 * - no scheduled out in between 2026 * - thus the timestamp would be the same 2027 * 2028 * But this is a bit hairy. 2029 * 2030 * So instead, we have an explicit cgroup call to remain 2031 * within the time time source all along. We believe it 2032 * is cleaner and simpler to understand. 2033 */ 2034 if (is_cgroup_event(event)) 2035 perf_cgroup_set_shadow_time(event, event->tstamp); 2036 else 2037 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2038 } 2039 2040 #define MAX_INTERRUPTS (~0ULL) 2041 2042 static void perf_log_throttle(struct perf_event *event, int enable); 2043 static void perf_log_itrace_start(struct perf_event *event); 2044 2045 static int 2046 event_sched_in(struct perf_event *event, 2047 struct perf_cpu_context *cpuctx, 2048 struct perf_event_context *ctx) 2049 { 2050 int ret = 0; 2051 2052 lockdep_assert_held(&ctx->lock); 2053 2054 if (event->state <= PERF_EVENT_STATE_OFF) 2055 return 0; 2056 2057 WRITE_ONCE(event->oncpu, smp_processor_id()); 2058 /* 2059 * Order event::oncpu write to happen before the ACTIVE state is 2060 * visible. This allows perf_event_{stop,read}() to observe the correct 2061 * ->oncpu if it sees ACTIVE. 2062 */ 2063 smp_wmb(); 2064 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2065 2066 /* 2067 * Unthrottle events, since we scheduled we might have missed several 2068 * ticks already, also for a heavily scheduling task there is little 2069 * guarantee it'll get a tick in a timely manner. 2070 */ 2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2072 perf_log_throttle(event, 1); 2073 event->hw.interrupts = 0; 2074 } 2075 2076 perf_pmu_disable(event->pmu); 2077 2078 perf_set_shadow_time(event, ctx); 2079 2080 perf_log_itrace_start(event); 2081 2082 if (event->pmu->add(event, PERF_EF_START)) { 2083 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2084 event->oncpu = -1; 2085 ret = -EAGAIN; 2086 goto out; 2087 } 2088 2089 if (!is_software_event(event)) 2090 cpuctx->active_oncpu++; 2091 if (!ctx->nr_active++) 2092 perf_event_ctx_activate(ctx); 2093 if (event->attr.freq && event->attr.sample_freq) 2094 ctx->nr_freq++; 2095 2096 if (event->attr.exclusive) 2097 cpuctx->exclusive = 1; 2098 2099 out: 2100 perf_pmu_enable(event->pmu); 2101 2102 return ret; 2103 } 2104 2105 static int 2106 group_sched_in(struct perf_event *group_event, 2107 struct perf_cpu_context *cpuctx, 2108 struct perf_event_context *ctx) 2109 { 2110 struct perf_event *event, *partial_group = NULL; 2111 struct pmu *pmu = ctx->pmu; 2112 2113 if (group_event->state == PERF_EVENT_STATE_OFF) 2114 return 0; 2115 2116 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2117 2118 if (event_sched_in(group_event, cpuctx, ctx)) { 2119 pmu->cancel_txn(pmu); 2120 perf_mux_hrtimer_restart(cpuctx); 2121 return -EAGAIN; 2122 } 2123 2124 /* 2125 * Schedule in siblings as one group (if any): 2126 */ 2127 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2128 if (event_sched_in(event, cpuctx, ctx)) { 2129 partial_group = event; 2130 goto group_error; 2131 } 2132 } 2133 2134 if (!pmu->commit_txn(pmu)) 2135 return 0; 2136 2137 group_error: 2138 /* 2139 * Groups can be scheduled in as one unit only, so undo any 2140 * partial group before returning: 2141 * The events up to the failed event are scheduled out normally. 2142 */ 2143 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2144 if (event == partial_group) 2145 break; 2146 2147 event_sched_out(event, cpuctx, ctx); 2148 } 2149 event_sched_out(group_event, cpuctx, ctx); 2150 2151 pmu->cancel_txn(pmu); 2152 2153 perf_mux_hrtimer_restart(cpuctx); 2154 2155 return -EAGAIN; 2156 } 2157 2158 /* 2159 * Work out whether we can put this event group on the CPU now. 2160 */ 2161 static int group_can_go_on(struct perf_event *event, 2162 struct perf_cpu_context *cpuctx, 2163 int can_add_hw) 2164 { 2165 /* 2166 * Groups consisting entirely of software events can always go on. 2167 */ 2168 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2169 return 1; 2170 /* 2171 * If an exclusive group is already on, no other hardware 2172 * events can go on. 2173 */ 2174 if (cpuctx->exclusive) 2175 return 0; 2176 /* 2177 * If this group is exclusive and there are already 2178 * events on the CPU, it can't go on. 2179 */ 2180 if (event->attr.exclusive && cpuctx->active_oncpu) 2181 return 0; 2182 /* 2183 * Otherwise, try to add it if all previous groups were able 2184 * to go on. 2185 */ 2186 return can_add_hw; 2187 } 2188 2189 static void add_event_to_ctx(struct perf_event *event, 2190 struct perf_event_context *ctx) 2191 { 2192 list_add_event(event, ctx); 2193 perf_group_attach(event); 2194 } 2195 2196 static void ctx_sched_out(struct perf_event_context *ctx, 2197 struct perf_cpu_context *cpuctx, 2198 enum event_type_t event_type); 2199 static void 2200 ctx_sched_in(struct perf_event_context *ctx, 2201 struct perf_cpu_context *cpuctx, 2202 enum event_type_t event_type, 2203 struct task_struct *task); 2204 2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2206 struct perf_event_context *ctx, 2207 enum event_type_t event_type) 2208 { 2209 if (!cpuctx->task_ctx) 2210 return; 2211 2212 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2213 return; 2214 2215 ctx_sched_out(ctx, cpuctx, event_type); 2216 } 2217 2218 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2219 struct perf_event_context *ctx, 2220 struct task_struct *task) 2221 { 2222 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2223 if (ctx) 2224 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2225 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2226 if (ctx) 2227 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2228 } 2229 2230 /* 2231 * We want to maintain the following priority of scheduling: 2232 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2233 * - task pinned (EVENT_PINNED) 2234 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2235 * - task flexible (EVENT_FLEXIBLE). 2236 * 2237 * In order to avoid unscheduling and scheduling back in everything every 2238 * time an event is added, only do it for the groups of equal priority and 2239 * below. 2240 * 2241 * This can be called after a batch operation on task events, in which case 2242 * event_type is a bit mask of the types of events involved. For CPU events, 2243 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2244 */ 2245 static void ctx_resched(struct perf_cpu_context *cpuctx, 2246 struct perf_event_context *task_ctx, 2247 enum event_type_t event_type) 2248 { 2249 enum event_type_t ctx_event_type; 2250 bool cpu_event = !!(event_type & EVENT_CPU); 2251 2252 /* 2253 * If pinned groups are involved, flexible groups also need to be 2254 * scheduled out. 2255 */ 2256 if (event_type & EVENT_PINNED) 2257 event_type |= EVENT_FLEXIBLE; 2258 2259 ctx_event_type = event_type & EVENT_ALL; 2260 2261 perf_pmu_disable(cpuctx->ctx.pmu); 2262 if (task_ctx) 2263 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2264 2265 /* 2266 * Decide which cpu ctx groups to schedule out based on the types 2267 * of events that caused rescheduling: 2268 * - EVENT_CPU: schedule out corresponding groups; 2269 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2270 * - otherwise, do nothing more. 2271 */ 2272 if (cpu_event) 2273 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2274 else if (ctx_event_type & EVENT_PINNED) 2275 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2276 2277 perf_event_sched_in(cpuctx, task_ctx, current); 2278 perf_pmu_enable(cpuctx->ctx.pmu); 2279 } 2280 2281 /* 2282 * Cross CPU call to install and enable a performance event 2283 * 2284 * Very similar to remote_function() + event_function() but cannot assume that 2285 * things like ctx->is_active and cpuctx->task_ctx are set. 2286 */ 2287 static int __perf_install_in_context(void *info) 2288 { 2289 struct perf_event *event = info; 2290 struct perf_event_context *ctx = event->ctx; 2291 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2292 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2293 bool reprogram = true; 2294 int ret = 0; 2295 2296 raw_spin_lock(&cpuctx->ctx.lock); 2297 if (ctx->task) { 2298 raw_spin_lock(&ctx->lock); 2299 task_ctx = ctx; 2300 2301 reprogram = (ctx->task == current); 2302 2303 /* 2304 * If the task is running, it must be running on this CPU, 2305 * otherwise we cannot reprogram things. 2306 * 2307 * If its not running, we don't care, ctx->lock will 2308 * serialize against it becoming runnable. 2309 */ 2310 if (task_curr(ctx->task) && !reprogram) { 2311 ret = -ESRCH; 2312 goto unlock; 2313 } 2314 2315 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2316 } else if (task_ctx) { 2317 raw_spin_lock(&task_ctx->lock); 2318 } 2319 2320 if (reprogram) { 2321 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2322 add_event_to_ctx(event, ctx); 2323 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2324 } else { 2325 add_event_to_ctx(event, ctx); 2326 } 2327 2328 unlock: 2329 perf_ctx_unlock(cpuctx, task_ctx); 2330 2331 return ret; 2332 } 2333 2334 /* 2335 * Attach a performance event to a context. 2336 * 2337 * Very similar to event_function_call, see comment there. 2338 */ 2339 static void 2340 perf_install_in_context(struct perf_event_context *ctx, 2341 struct perf_event *event, 2342 int cpu) 2343 { 2344 struct task_struct *task = READ_ONCE(ctx->task); 2345 2346 lockdep_assert_held(&ctx->mutex); 2347 2348 if (event->cpu != -1) 2349 event->cpu = cpu; 2350 2351 /* 2352 * Ensures that if we can observe event->ctx, both the event and ctx 2353 * will be 'complete'. See perf_iterate_sb_cpu(). 2354 */ 2355 smp_store_release(&event->ctx, ctx); 2356 2357 if (!task) { 2358 cpu_function_call(cpu, __perf_install_in_context, event); 2359 return; 2360 } 2361 2362 /* 2363 * Should not happen, we validate the ctx is still alive before calling. 2364 */ 2365 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2366 return; 2367 2368 /* 2369 * Installing events is tricky because we cannot rely on ctx->is_active 2370 * to be set in case this is the nr_events 0 -> 1 transition. 2371 * 2372 * Instead we use task_curr(), which tells us if the task is running. 2373 * However, since we use task_curr() outside of rq::lock, we can race 2374 * against the actual state. This means the result can be wrong. 2375 * 2376 * If we get a false positive, we retry, this is harmless. 2377 * 2378 * If we get a false negative, things are complicated. If we are after 2379 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2380 * value must be correct. If we're before, it doesn't matter since 2381 * perf_event_context_sched_in() will program the counter. 2382 * 2383 * However, this hinges on the remote context switch having observed 2384 * our task->perf_event_ctxp[] store, such that it will in fact take 2385 * ctx::lock in perf_event_context_sched_in(). 2386 * 2387 * We do this by task_function_call(), if the IPI fails to hit the task 2388 * we know any future context switch of task must see the 2389 * perf_event_ctpx[] store. 2390 */ 2391 2392 /* 2393 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2394 * task_cpu() load, such that if the IPI then does not find the task 2395 * running, a future context switch of that task must observe the 2396 * store. 2397 */ 2398 smp_mb(); 2399 again: 2400 if (!task_function_call(task, __perf_install_in_context, event)) 2401 return; 2402 2403 raw_spin_lock_irq(&ctx->lock); 2404 task = ctx->task; 2405 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2406 /* 2407 * Cannot happen because we already checked above (which also 2408 * cannot happen), and we hold ctx->mutex, which serializes us 2409 * against perf_event_exit_task_context(). 2410 */ 2411 raw_spin_unlock_irq(&ctx->lock); 2412 return; 2413 } 2414 /* 2415 * If the task is not running, ctx->lock will avoid it becoming so, 2416 * thus we can safely install the event. 2417 */ 2418 if (task_curr(task)) { 2419 raw_spin_unlock_irq(&ctx->lock); 2420 goto again; 2421 } 2422 add_event_to_ctx(event, ctx); 2423 raw_spin_unlock_irq(&ctx->lock); 2424 } 2425 2426 /* 2427 * Cross CPU call to enable a performance event 2428 */ 2429 static void __perf_event_enable(struct perf_event *event, 2430 struct perf_cpu_context *cpuctx, 2431 struct perf_event_context *ctx, 2432 void *info) 2433 { 2434 struct perf_event *leader = event->group_leader; 2435 struct perf_event_context *task_ctx; 2436 2437 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2438 event->state <= PERF_EVENT_STATE_ERROR) 2439 return; 2440 2441 if (ctx->is_active) 2442 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2443 2444 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2445 2446 if (!ctx->is_active) 2447 return; 2448 2449 if (!event_filter_match(event)) { 2450 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2451 return; 2452 } 2453 2454 /* 2455 * If the event is in a group and isn't the group leader, 2456 * then don't put it on unless the group is on. 2457 */ 2458 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2459 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2460 return; 2461 } 2462 2463 task_ctx = cpuctx->task_ctx; 2464 if (ctx->task) 2465 WARN_ON_ONCE(task_ctx != ctx); 2466 2467 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2468 } 2469 2470 /* 2471 * Enable a event. 2472 * 2473 * If event->ctx is a cloned context, callers must make sure that 2474 * every task struct that event->ctx->task could possibly point to 2475 * remains valid. This condition is satisfied when called through 2476 * perf_event_for_each_child or perf_event_for_each as described 2477 * for perf_event_disable. 2478 */ 2479 static void _perf_event_enable(struct perf_event *event) 2480 { 2481 struct perf_event_context *ctx = event->ctx; 2482 2483 raw_spin_lock_irq(&ctx->lock); 2484 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2485 event->state < PERF_EVENT_STATE_ERROR) { 2486 raw_spin_unlock_irq(&ctx->lock); 2487 return; 2488 } 2489 2490 /* 2491 * If the event is in error state, clear that first. 2492 * 2493 * That way, if we see the event in error state below, we know that it 2494 * has gone back into error state, as distinct from the task having 2495 * been scheduled away before the cross-call arrived. 2496 */ 2497 if (event->state == PERF_EVENT_STATE_ERROR) 2498 event->state = PERF_EVENT_STATE_OFF; 2499 raw_spin_unlock_irq(&ctx->lock); 2500 2501 event_function_call(event, __perf_event_enable, NULL); 2502 } 2503 2504 /* 2505 * See perf_event_disable(); 2506 */ 2507 void perf_event_enable(struct perf_event *event) 2508 { 2509 struct perf_event_context *ctx; 2510 2511 ctx = perf_event_ctx_lock(event); 2512 _perf_event_enable(event); 2513 perf_event_ctx_unlock(event, ctx); 2514 } 2515 EXPORT_SYMBOL_GPL(perf_event_enable); 2516 2517 struct stop_event_data { 2518 struct perf_event *event; 2519 unsigned int restart; 2520 }; 2521 2522 static int __perf_event_stop(void *info) 2523 { 2524 struct stop_event_data *sd = info; 2525 struct perf_event *event = sd->event; 2526 2527 /* if it's already INACTIVE, do nothing */ 2528 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2529 return 0; 2530 2531 /* matches smp_wmb() in event_sched_in() */ 2532 smp_rmb(); 2533 2534 /* 2535 * There is a window with interrupts enabled before we get here, 2536 * so we need to check again lest we try to stop another CPU's event. 2537 */ 2538 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2539 return -EAGAIN; 2540 2541 event->pmu->stop(event, PERF_EF_UPDATE); 2542 2543 /* 2544 * May race with the actual stop (through perf_pmu_output_stop()), 2545 * but it is only used for events with AUX ring buffer, and such 2546 * events will refuse to restart because of rb::aux_mmap_count==0, 2547 * see comments in perf_aux_output_begin(). 2548 * 2549 * Since this is happening on a event-local CPU, no trace is lost 2550 * while restarting. 2551 */ 2552 if (sd->restart) 2553 event->pmu->start(event, 0); 2554 2555 return 0; 2556 } 2557 2558 static int perf_event_stop(struct perf_event *event, int restart) 2559 { 2560 struct stop_event_data sd = { 2561 .event = event, 2562 .restart = restart, 2563 }; 2564 int ret = 0; 2565 2566 do { 2567 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2568 return 0; 2569 2570 /* matches smp_wmb() in event_sched_in() */ 2571 smp_rmb(); 2572 2573 /* 2574 * We only want to restart ACTIVE events, so if the event goes 2575 * inactive here (event->oncpu==-1), there's nothing more to do; 2576 * fall through with ret==-ENXIO. 2577 */ 2578 ret = cpu_function_call(READ_ONCE(event->oncpu), 2579 __perf_event_stop, &sd); 2580 } while (ret == -EAGAIN); 2581 2582 return ret; 2583 } 2584 2585 /* 2586 * In order to contain the amount of racy and tricky in the address filter 2587 * configuration management, it is a two part process: 2588 * 2589 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2590 * we update the addresses of corresponding vmas in 2591 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2592 * (p2) when an event is scheduled in (pmu::add), it calls 2593 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2594 * if the generation has changed since the previous call. 2595 * 2596 * If (p1) happens while the event is active, we restart it to force (p2). 2597 * 2598 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2599 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2600 * ioctl; 2601 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2602 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2603 * for reading; 2604 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2605 * of exec. 2606 */ 2607 void perf_event_addr_filters_sync(struct perf_event *event) 2608 { 2609 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2610 2611 if (!has_addr_filter(event)) 2612 return; 2613 2614 raw_spin_lock(&ifh->lock); 2615 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2616 event->pmu->addr_filters_sync(event); 2617 event->hw.addr_filters_gen = event->addr_filters_gen; 2618 } 2619 raw_spin_unlock(&ifh->lock); 2620 } 2621 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2622 2623 static int _perf_event_refresh(struct perf_event *event, int refresh) 2624 { 2625 /* 2626 * not supported on inherited events 2627 */ 2628 if (event->attr.inherit || !is_sampling_event(event)) 2629 return -EINVAL; 2630 2631 atomic_add(refresh, &event->event_limit); 2632 _perf_event_enable(event); 2633 2634 return 0; 2635 } 2636 2637 /* 2638 * See perf_event_disable() 2639 */ 2640 int perf_event_refresh(struct perf_event *event, int refresh) 2641 { 2642 struct perf_event_context *ctx; 2643 int ret; 2644 2645 ctx = perf_event_ctx_lock(event); 2646 ret = _perf_event_refresh(event, refresh); 2647 perf_event_ctx_unlock(event, ctx); 2648 2649 return ret; 2650 } 2651 EXPORT_SYMBOL_GPL(perf_event_refresh); 2652 2653 static void ctx_sched_out(struct perf_event_context *ctx, 2654 struct perf_cpu_context *cpuctx, 2655 enum event_type_t event_type) 2656 { 2657 int is_active = ctx->is_active; 2658 struct perf_event *event; 2659 2660 lockdep_assert_held(&ctx->lock); 2661 2662 if (likely(!ctx->nr_events)) { 2663 /* 2664 * See __perf_remove_from_context(). 2665 */ 2666 WARN_ON_ONCE(ctx->is_active); 2667 if (ctx->task) 2668 WARN_ON_ONCE(cpuctx->task_ctx); 2669 return; 2670 } 2671 2672 ctx->is_active &= ~event_type; 2673 if (!(ctx->is_active & EVENT_ALL)) 2674 ctx->is_active = 0; 2675 2676 if (ctx->task) { 2677 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2678 if (!ctx->is_active) 2679 cpuctx->task_ctx = NULL; 2680 } 2681 2682 /* 2683 * Always update time if it was set; not only when it changes. 2684 * Otherwise we can 'forget' to update time for any but the last 2685 * context we sched out. For example: 2686 * 2687 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2688 * ctx_sched_out(.event_type = EVENT_PINNED) 2689 * 2690 * would only update time for the pinned events. 2691 */ 2692 if (is_active & EVENT_TIME) { 2693 /* update (and stop) ctx time */ 2694 update_context_time(ctx); 2695 update_cgrp_time_from_cpuctx(cpuctx); 2696 } 2697 2698 is_active ^= ctx->is_active; /* changed bits */ 2699 2700 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2701 return; 2702 2703 perf_pmu_disable(ctx->pmu); 2704 if (is_active & EVENT_PINNED) { 2705 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2706 group_sched_out(event, cpuctx, ctx); 2707 } 2708 2709 if (is_active & EVENT_FLEXIBLE) { 2710 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2711 group_sched_out(event, cpuctx, ctx); 2712 } 2713 perf_pmu_enable(ctx->pmu); 2714 } 2715 2716 /* 2717 * Test whether two contexts are equivalent, i.e. whether they have both been 2718 * cloned from the same version of the same context. 2719 * 2720 * Equivalence is measured using a generation number in the context that is 2721 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2722 * and list_del_event(). 2723 */ 2724 static int context_equiv(struct perf_event_context *ctx1, 2725 struct perf_event_context *ctx2) 2726 { 2727 lockdep_assert_held(&ctx1->lock); 2728 lockdep_assert_held(&ctx2->lock); 2729 2730 /* Pinning disables the swap optimization */ 2731 if (ctx1->pin_count || ctx2->pin_count) 2732 return 0; 2733 2734 /* If ctx1 is the parent of ctx2 */ 2735 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2736 return 1; 2737 2738 /* If ctx2 is the parent of ctx1 */ 2739 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2740 return 1; 2741 2742 /* 2743 * If ctx1 and ctx2 have the same parent; we flatten the parent 2744 * hierarchy, see perf_event_init_context(). 2745 */ 2746 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2747 ctx1->parent_gen == ctx2->parent_gen) 2748 return 1; 2749 2750 /* Unmatched */ 2751 return 0; 2752 } 2753 2754 static void __perf_event_sync_stat(struct perf_event *event, 2755 struct perf_event *next_event) 2756 { 2757 u64 value; 2758 2759 if (!event->attr.inherit_stat) 2760 return; 2761 2762 /* 2763 * Update the event value, we cannot use perf_event_read() 2764 * because we're in the middle of a context switch and have IRQs 2765 * disabled, which upsets smp_call_function_single(), however 2766 * we know the event must be on the current CPU, therefore we 2767 * don't need to use it. 2768 */ 2769 if (event->state == PERF_EVENT_STATE_ACTIVE) 2770 event->pmu->read(event); 2771 2772 perf_event_update_time(event); 2773 2774 /* 2775 * In order to keep per-task stats reliable we need to flip the event 2776 * values when we flip the contexts. 2777 */ 2778 value = local64_read(&next_event->count); 2779 value = local64_xchg(&event->count, value); 2780 local64_set(&next_event->count, value); 2781 2782 swap(event->total_time_enabled, next_event->total_time_enabled); 2783 swap(event->total_time_running, next_event->total_time_running); 2784 2785 /* 2786 * Since we swizzled the values, update the user visible data too. 2787 */ 2788 perf_event_update_userpage(event); 2789 perf_event_update_userpage(next_event); 2790 } 2791 2792 static void perf_event_sync_stat(struct perf_event_context *ctx, 2793 struct perf_event_context *next_ctx) 2794 { 2795 struct perf_event *event, *next_event; 2796 2797 if (!ctx->nr_stat) 2798 return; 2799 2800 update_context_time(ctx); 2801 2802 event = list_first_entry(&ctx->event_list, 2803 struct perf_event, event_entry); 2804 2805 next_event = list_first_entry(&next_ctx->event_list, 2806 struct perf_event, event_entry); 2807 2808 while (&event->event_entry != &ctx->event_list && 2809 &next_event->event_entry != &next_ctx->event_list) { 2810 2811 __perf_event_sync_stat(event, next_event); 2812 2813 event = list_next_entry(event, event_entry); 2814 next_event = list_next_entry(next_event, event_entry); 2815 } 2816 } 2817 2818 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2819 struct task_struct *next) 2820 { 2821 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2822 struct perf_event_context *next_ctx; 2823 struct perf_event_context *parent, *next_parent; 2824 struct perf_cpu_context *cpuctx; 2825 int do_switch = 1; 2826 2827 if (likely(!ctx)) 2828 return; 2829 2830 cpuctx = __get_cpu_context(ctx); 2831 if (!cpuctx->task_ctx) 2832 return; 2833 2834 rcu_read_lock(); 2835 next_ctx = next->perf_event_ctxp[ctxn]; 2836 if (!next_ctx) 2837 goto unlock; 2838 2839 parent = rcu_dereference(ctx->parent_ctx); 2840 next_parent = rcu_dereference(next_ctx->parent_ctx); 2841 2842 /* If neither context have a parent context; they cannot be clones. */ 2843 if (!parent && !next_parent) 2844 goto unlock; 2845 2846 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2847 /* 2848 * Looks like the two contexts are clones, so we might be 2849 * able to optimize the context switch. We lock both 2850 * contexts and check that they are clones under the 2851 * lock (including re-checking that neither has been 2852 * uncloned in the meantime). It doesn't matter which 2853 * order we take the locks because no other cpu could 2854 * be trying to lock both of these tasks. 2855 */ 2856 raw_spin_lock(&ctx->lock); 2857 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2858 if (context_equiv(ctx, next_ctx)) { 2859 WRITE_ONCE(ctx->task, next); 2860 WRITE_ONCE(next_ctx->task, task); 2861 2862 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2863 2864 /* 2865 * RCU_INIT_POINTER here is safe because we've not 2866 * modified the ctx and the above modification of 2867 * ctx->task and ctx->task_ctx_data are immaterial 2868 * since those values are always verified under 2869 * ctx->lock which we're now holding. 2870 */ 2871 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2872 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2873 2874 do_switch = 0; 2875 2876 perf_event_sync_stat(ctx, next_ctx); 2877 } 2878 raw_spin_unlock(&next_ctx->lock); 2879 raw_spin_unlock(&ctx->lock); 2880 } 2881 unlock: 2882 rcu_read_unlock(); 2883 2884 if (do_switch) { 2885 raw_spin_lock(&ctx->lock); 2886 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2887 raw_spin_unlock(&ctx->lock); 2888 } 2889 } 2890 2891 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2892 2893 void perf_sched_cb_dec(struct pmu *pmu) 2894 { 2895 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2896 2897 this_cpu_dec(perf_sched_cb_usages); 2898 2899 if (!--cpuctx->sched_cb_usage) 2900 list_del(&cpuctx->sched_cb_entry); 2901 } 2902 2903 2904 void perf_sched_cb_inc(struct pmu *pmu) 2905 { 2906 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2907 2908 if (!cpuctx->sched_cb_usage++) 2909 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2910 2911 this_cpu_inc(perf_sched_cb_usages); 2912 } 2913 2914 /* 2915 * This function provides the context switch callback to the lower code 2916 * layer. It is invoked ONLY when the context switch callback is enabled. 2917 * 2918 * This callback is relevant even to per-cpu events; for example multi event 2919 * PEBS requires this to provide PID/TID information. This requires we flush 2920 * all queued PEBS records before we context switch to a new task. 2921 */ 2922 static void perf_pmu_sched_task(struct task_struct *prev, 2923 struct task_struct *next, 2924 bool sched_in) 2925 { 2926 struct perf_cpu_context *cpuctx; 2927 struct pmu *pmu; 2928 2929 if (prev == next) 2930 return; 2931 2932 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2933 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 2934 2935 if (WARN_ON_ONCE(!pmu->sched_task)) 2936 continue; 2937 2938 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2939 perf_pmu_disable(pmu); 2940 2941 pmu->sched_task(cpuctx->task_ctx, sched_in); 2942 2943 perf_pmu_enable(pmu); 2944 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2945 } 2946 } 2947 2948 static void perf_event_switch(struct task_struct *task, 2949 struct task_struct *next_prev, bool sched_in); 2950 2951 #define for_each_task_context_nr(ctxn) \ 2952 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2953 2954 /* 2955 * Called from scheduler to remove the events of the current task, 2956 * with interrupts disabled. 2957 * 2958 * We stop each event and update the event value in event->count. 2959 * 2960 * This does not protect us against NMI, but disable() 2961 * sets the disabled bit in the control field of event _before_ 2962 * accessing the event control register. If a NMI hits, then it will 2963 * not restart the event. 2964 */ 2965 void __perf_event_task_sched_out(struct task_struct *task, 2966 struct task_struct *next) 2967 { 2968 int ctxn; 2969 2970 if (__this_cpu_read(perf_sched_cb_usages)) 2971 perf_pmu_sched_task(task, next, false); 2972 2973 if (atomic_read(&nr_switch_events)) 2974 perf_event_switch(task, next, false); 2975 2976 for_each_task_context_nr(ctxn) 2977 perf_event_context_sched_out(task, ctxn, next); 2978 2979 /* 2980 * if cgroup events exist on this CPU, then we need 2981 * to check if we have to switch out PMU state. 2982 * cgroup event are system-wide mode only 2983 */ 2984 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2985 perf_cgroup_sched_out(task, next); 2986 } 2987 2988 /* 2989 * Called with IRQs disabled 2990 */ 2991 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2992 enum event_type_t event_type) 2993 { 2994 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2995 } 2996 2997 static void 2998 ctx_pinned_sched_in(struct perf_event_context *ctx, 2999 struct perf_cpu_context *cpuctx) 3000 { 3001 struct perf_event *event; 3002 3003 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3004 if (event->state <= PERF_EVENT_STATE_OFF) 3005 continue; 3006 if (!event_filter_match(event)) 3007 continue; 3008 3009 if (group_can_go_on(event, cpuctx, 1)) 3010 group_sched_in(event, cpuctx, ctx); 3011 3012 /* 3013 * If this pinned group hasn't been scheduled, 3014 * put it in error state. 3015 */ 3016 if (event->state == PERF_EVENT_STATE_INACTIVE) 3017 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3018 } 3019 } 3020 3021 static void 3022 ctx_flexible_sched_in(struct perf_event_context *ctx, 3023 struct perf_cpu_context *cpuctx) 3024 { 3025 struct perf_event *event; 3026 int can_add_hw = 1; 3027 3028 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3029 /* Ignore events in OFF or ERROR state */ 3030 if (event->state <= PERF_EVENT_STATE_OFF) 3031 continue; 3032 /* 3033 * Listen to the 'cpu' scheduling filter constraint 3034 * of events: 3035 */ 3036 if (!event_filter_match(event)) 3037 continue; 3038 3039 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3040 if (group_sched_in(event, cpuctx, ctx)) 3041 can_add_hw = 0; 3042 } 3043 } 3044 } 3045 3046 static void 3047 ctx_sched_in(struct perf_event_context *ctx, 3048 struct perf_cpu_context *cpuctx, 3049 enum event_type_t event_type, 3050 struct task_struct *task) 3051 { 3052 int is_active = ctx->is_active; 3053 u64 now; 3054 3055 lockdep_assert_held(&ctx->lock); 3056 3057 if (likely(!ctx->nr_events)) 3058 return; 3059 3060 ctx->is_active |= (event_type | EVENT_TIME); 3061 if (ctx->task) { 3062 if (!is_active) 3063 cpuctx->task_ctx = ctx; 3064 else 3065 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3066 } 3067 3068 is_active ^= ctx->is_active; /* changed bits */ 3069 3070 if (is_active & EVENT_TIME) { 3071 /* start ctx time */ 3072 now = perf_clock(); 3073 ctx->timestamp = now; 3074 perf_cgroup_set_timestamp(task, ctx); 3075 } 3076 3077 /* 3078 * First go through the list and put on any pinned groups 3079 * in order to give them the best chance of going on. 3080 */ 3081 if (is_active & EVENT_PINNED) 3082 ctx_pinned_sched_in(ctx, cpuctx); 3083 3084 /* Then walk through the lower prio flexible groups */ 3085 if (is_active & EVENT_FLEXIBLE) 3086 ctx_flexible_sched_in(ctx, cpuctx); 3087 } 3088 3089 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3090 enum event_type_t event_type, 3091 struct task_struct *task) 3092 { 3093 struct perf_event_context *ctx = &cpuctx->ctx; 3094 3095 ctx_sched_in(ctx, cpuctx, event_type, task); 3096 } 3097 3098 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3099 struct task_struct *task) 3100 { 3101 struct perf_cpu_context *cpuctx; 3102 3103 cpuctx = __get_cpu_context(ctx); 3104 if (cpuctx->task_ctx == ctx) 3105 return; 3106 3107 perf_ctx_lock(cpuctx, ctx); 3108 /* 3109 * We must check ctx->nr_events while holding ctx->lock, such 3110 * that we serialize against perf_install_in_context(). 3111 */ 3112 if (!ctx->nr_events) 3113 goto unlock; 3114 3115 perf_pmu_disable(ctx->pmu); 3116 /* 3117 * We want to keep the following priority order: 3118 * cpu pinned (that don't need to move), task pinned, 3119 * cpu flexible, task flexible. 3120 * 3121 * However, if task's ctx is not carrying any pinned 3122 * events, no need to flip the cpuctx's events around. 3123 */ 3124 if (!list_empty(&ctx->pinned_groups)) 3125 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3126 perf_event_sched_in(cpuctx, ctx, task); 3127 perf_pmu_enable(ctx->pmu); 3128 3129 unlock: 3130 perf_ctx_unlock(cpuctx, ctx); 3131 } 3132 3133 /* 3134 * Called from scheduler to add the events of the current task 3135 * with interrupts disabled. 3136 * 3137 * We restore the event value and then enable it. 3138 * 3139 * This does not protect us against NMI, but enable() 3140 * sets the enabled bit in the control field of event _before_ 3141 * accessing the event control register. If a NMI hits, then it will 3142 * keep the event running. 3143 */ 3144 void __perf_event_task_sched_in(struct task_struct *prev, 3145 struct task_struct *task) 3146 { 3147 struct perf_event_context *ctx; 3148 int ctxn; 3149 3150 /* 3151 * If cgroup events exist on this CPU, then we need to check if we have 3152 * to switch in PMU state; cgroup event are system-wide mode only. 3153 * 3154 * Since cgroup events are CPU events, we must schedule these in before 3155 * we schedule in the task events. 3156 */ 3157 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3158 perf_cgroup_sched_in(prev, task); 3159 3160 for_each_task_context_nr(ctxn) { 3161 ctx = task->perf_event_ctxp[ctxn]; 3162 if (likely(!ctx)) 3163 continue; 3164 3165 perf_event_context_sched_in(ctx, task); 3166 } 3167 3168 if (atomic_read(&nr_switch_events)) 3169 perf_event_switch(task, prev, true); 3170 3171 if (__this_cpu_read(perf_sched_cb_usages)) 3172 perf_pmu_sched_task(prev, task, true); 3173 } 3174 3175 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3176 { 3177 u64 frequency = event->attr.sample_freq; 3178 u64 sec = NSEC_PER_SEC; 3179 u64 divisor, dividend; 3180 3181 int count_fls, nsec_fls, frequency_fls, sec_fls; 3182 3183 count_fls = fls64(count); 3184 nsec_fls = fls64(nsec); 3185 frequency_fls = fls64(frequency); 3186 sec_fls = 30; 3187 3188 /* 3189 * We got @count in @nsec, with a target of sample_freq HZ 3190 * the target period becomes: 3191 * 3192 * @count * 10^9 3193 * period = ------------------- 3194 * @nsec * sample_freq 3195 * 3196 */ 3197 3198 /* 3199 * Reduce accuracy by one bit such that @a and @b converge 3200 * to a similar magnitude. 3201 */ 3202 #define REDUCE_FLS(a, b) \ 3203 do { \ 3204 if (a##_fls > b##_fls) { \ 3205 a >>= 1; \ 3206 a##_fls--; \ 3207 } else { \ 3208 b >>= 1; \ 3209 b##_fls--; \ 3210 } \ 3211 } while (0) 3212 3213 /* 3214 * Reduce accuracy until either term fits in a u64, then proceed with 3215 * the other, so that finally we can do a u64/u64 division. 3216 */ 3217 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3218 REDUCE_FLS(nsec, frequency); 3219 REDUCE_FLS(sec, count); 3220 } 3221 3222 if (count_fls + sec_fls > 64) { 3223 divisor = nsec * frequency; 3224 3225 while (count_fls + sec_fls > 64) { 3226 REDUCE_FLS(count, sec); 3227 divisor >>= 1; 3228 } 3229 3230 dividend = count * sec; 3231 } else { 3232 dividend = count * sec; 3233 3234 while (nsec_fls + frequency_fls > 64) { 3235 REDUCE_FLS(nsec, frequency); 3236 dividend >>= 1; 3237 } 3238 3239 divisor = nsec * frequency; 3240 } 3241 3242 if (!divisor) 3243 return dividend; 3244 3245 return div64_u64(dividend, divisor); 3246 } 3247 3248 static DEFINE_PER_CPU(int, perf_throttled_count); 3249 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3250 3251 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3252 { 3253 struct hw_perf_event *hwc = &event->hw; 3254 s64 period, sample_period; 3255 s64 delta; 3256 3257 period = perf_calculate_period(event, nsec, count); 3258 3259 delta = (s64)(period - hwc->sample_period); 3260 delta = (delta + 7) / 8; /* low pass filter */ 3261 3262 sample_period = hwc->sample_period + delta; 3263 3264 if (!sample_period) 3265 sample_period = 1; 3266 3267 hwc->sample_period = sample_period; 3268 3269 if (local64_read(&hwc->period_left) > 8*sample_period) { 3270 if (disable) 3271 event->pmu->stop(event, PERF_EF_UPDATE); 3272 3273 local64_set(&hwc->period_left, 0); 3274 3275 if (disable) 3276 event->pmu->start(event, PERF_EF_RELOAD); 3277 } 3278 } 3279 3280 /* 3281 * combine freq adjustment with unthrottling to avoid two passes over the 3282 * events. At the same time, make sure, having freq events does not change 3283 * the rate of unthrottling as that would introduce bias. 3284 */ 3285 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3286 int needs_unthr) 3287 { 3288 struct perf_event *event; 3289 struct hw_perf_event *hwc; 3290 u64 now, period = TICK_NSEC; 3291 s64 delta; 3292 3293 /* 3294 * only need to iterate over all events iff: 3295 * - context have events in frequency mode (needs freq adjust) 3296 * - there are events to unthrottle on this cpu 3297 */ 3298 if (!(ctx->nr_freq || needs_unthr)) 3299 return; 3300 3301 raw_spin_lock(&ctx->lock); 3302 perf_pmu_disable(ctx->pmu); 3303 3304 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3305 if (event->state != PERF_EVENT_STATE_ACTIVE) 3306 continue; 3307 3308 if (!event_filter_match(event)) 3309 continue; 3310 3311 perf_pmu_disable(event->pmu); 3312 3313 hwc = &event->hw; 3314 3315 if (hwc->interrupts == MAX_INTERRUPTS) { 3316 hwc->interrupts = 0; 3317 perf_log_throttle(event, 1); 3318 event->pmu->start(event, 0); 3319 } 3320 3321 if (!event->attr.freq || !event->attr.sample_freq) 3322 goto next; 3323 3324 /* 3325 * stop the event and update event->count 3326 */ 3327 event->pmu->stop(event, PERF_EF_UPDATE); 3328 3329 now = local64_read(&event->count); 3330 delta = now - hwc->freq_count_stamp; 3331 hwc->freq_count_stamp = now; 3332 3333 /* 3334 * restart the event 3335 * reload only if value has changed 3336 * we have stopped the event so tell that 3337 * to perf_adjust_period() to avoid stopping it 3338 * twice. 3339 */ 3340 if (delta > 0) 3341 perf_adjust_period(event, period, delta, false); 3342 3343 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3344 next: 3345 perf_pmu_enable(event->pmu); 3346 } 3347 3348 perf_pmu_enable(ctx->pmu); 3349 raw_spin_unlock(&ctx->lock); 3350 } 3351 3352 /* 3353 * Round-robin a context's events: 3354 */ 3355 static void rotate_ctx(struct perf_event_context *ctx) 3356 { 3357 /* 3358 * Rotate the first entry last of non-pinned groups. Rotation might be 3359 * disabled by the inheritance code. 3360 */ 3361 if (!ctx->rotate_disable) 3362 list_rotate_left(&ctx->flexible_groups); 3363 } 3364 3365 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3366 { 3367 struct perf_event_context *ctx = NULL; 3368 int rotate = 0; 3369 3370 if (cpuctx->ctx.nr_events) { 3371 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3372 rotate = 1; 3373 } 3374 3375 ctx = cpuctx->task_ctx; 3376 if (ctx && ctx->nr_events) { 3377 if (ctx->nr_events != ctx->nr_active) 3378 rotate = 1; 3379 } 3380 3381 if (!rotate) 3382 goto done; 3383 3384 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3385 perf_pmu_disable(cpuctx->ctx.pmu); 3386 3387 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3388 if (ctx) 3389 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3390 3391 rotate_ctx(&cpuctx->ctx); 3392 if (ctx) 3393 rotate_ctx(ctx); 3394 3395 perf_event_sched_in(cpuctx, ctx, current); 3396 3397 perf_pmu_enable(cpuctx->ctx.pmu); 3398 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3399 done: 3400 3401 return rotate; 3402 } 3403 3404 void perf_event_task_tick(void) 3405 { 3406 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3407 struct perf_event_context *ctx, *tmp; 3408 int throttled; 3409 3410 lockdep_assert_irqs_disabled(); 3411 3412 __this_cpu_inc(perf_throttled_seq); 3413 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3414 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3415 3416 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3417 perf_adjust_freq_unthr_context(ctx, throttled); 3418 } 3419 3420 static int event_enable_on_exec(struct perf_event *event, 3421 struct perf_event_context *ctx) 3422 { 3423 if (!event->attr.enable_on_exec) 3424 return 0; 3425 3426 event->attr.enable_on_exec = 0; 3427 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3428 return 0; 3429 3430 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3431 3432 return 1; 3433 } 3434 3435 /* 3436 * Enable all of a task's events that have been marked enable-on-exec. 3437 * This expects task == current. 3438 */ 3439 static void perf_event_enable_on_exec(int ctxn) 3440 { 3441 struct perf_event_context *ctx, *clone_ctx = NULL; 3442 enum event_type_t event_type = 0; 3443 struct perf_cpu_context *cpuctx; 3444 struct perf_event *event; 3445 unsigned long flags; 3446 int enabled = 0; 3447 3448 local_irq_save(flags); 3449 ctx = current->perf_event_ctxp[ctxn]; 3450 if (!ctx || !ctx->nr_events) 3451 goto out; 3452 3453 cpuctx = __get_cpu_context(ctx); 3454 perf_ctx_lock(cpuctx, ctx); 3455 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3456 list_for_each_entry(event, &ctx->event_list, event_entry) { 3457 enabled |= event_enable_on_exec(event, ctx); 3458 event_type |= get_event_type(event); 3459 } 3460 3461 /* 3462 * Unclone and reschedule this context if we enabled any event. 3463 */ 3464 if (enabled) { 3465 clone_ctx = unclone_ctx(ctx); 3466 ctx_resched(cpuctx, ctx, event_type); 3467 } else { 3468 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3469 } 3470 perf_ctx_unlock(cpuctx, ctx); 3471 3472 out: 3473 local_irq_restore(flags); 3474 3475 if (clone_ctx) 3476 put_ctx(clone_ctx); 3477 } 3478 3479 struct perf_read_data { 3480 struct perf_event *event; 3481 bool group; 3482 int ret; 3483 }; 3484 3485 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3486 { 3487 u16 local_pkg, event_pkg; 3488 3489 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3490 int local_cpu = smp_processor_id(); 3491 3492 event_pkg = topology_physical_package_id(event_cpu); 3493 local_pkg = topology_physical_package_id(local_cpu); 3494 3495 if (event_pkg == local_pkg) 3496 return local_cpu; 3497 } 3498 3499 return event_cpu; 3500 } 3501 3502 /* 3503 * Cross CPU call to read the hardware event 3504 */ 3505 static void __perf_event_read(void *info) 3506 { 3507 struct perf_read_data *data = info; 3508 struct perf_event *sub, *event = data->event; 3509 struct perf_event_context *ctx = event->ctx; 3510 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3511 struct pmu *pmu = event->pmu; 3512 3513 /* 3514 * If this is a task context, we need to check whether it is 3515 * the current task context of this cpu. If not it has been 3516 * scheduled out before the smp call arrived. In that case 3517 * event->count would have been updated to a recent sample 3518 * when the event was scheduled out. 3519 */ 3520 if (ctx->task && cpuctx->task_ctx != ctx) 3521 return; 3522 3523 raw_spin_lock(&ctx->lock); 3524 if (ctx->is_active & EVENT_TIME) { 3525 update_context_time(ctx); 3526 update_cgrp_time_from_event(event); 3527 } 3528 3529 perf_event_update_time(event); 3530 if (data->group) 3531 perf_event_update_sibling_time(event); 3532 3533 if (event->state != PERF_EVENT_STATE_ACTIVE) 3534 goto unlock; 3535 3536 if (!data->group) { 3537 pmu->read(event); 3538 data->ret = 0; 3539 goto unlock; 3540 } 3541 3542 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3543 3544 pmu->read(event); 3545 3546 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3547 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3548 /* 3549 * Use sibling's PMU rather than @event's since 3550 * sibling could be on different (eg: software) PMU. 3551 */ 3552 sub->pmu->read(sub); 3553 } 3554 } 3555 3556 data->ret = pmu->commit_txn(pmu); 3557 3558 unlock: 3559 raw_spin_unlock(&ctx->lock); 3560 } 3561 3562 static inline u64 perf_event_count(struct perf_event *event) 3563 { 3564 return local64_read(&event->count) + atomic64_read(&event->child_count); 3565 } 3566 3567 /* 3568 * NMI-safe method to read a local event, that is an event that 3569 * is: 3570 * - either for the current task, or for this CPU 3571 * - does not have inherit set, for inherited task events 3572 * will not be local and we cannot read them atomically 3573 * - must not have a pmu::count method 3574 */ 3575 int perf_event_read_local(struct perf_event *event, u64 *value, 3576 u64 *enabled, u64 *running) 3577 { 3578 unsigned long flags; 3579 int ret = 0; 3580 3581 /* 3582 * Disabling interrupts avoids all counter scheduling (context 3583 * switches, timer based rotation and IPIs). 3584 */ 3585 local_irq_save(flags); 3586 3587 /* 3588 * It must not be an event with inherit set, we cannot read 3589 * all child counters from atomic context. 3590 */ 3591 if (event->attr.inherit) { 3592 ret = -EOPNOTSUPP; 3593 goto out; 3594 } 3595 3596 /* If this is a per-task event, it must be for current */ 3597 if ((event->attach_state & PERF_ATTACH_TASK) && 3598 event->hw.target != current) { 3599 ret = -EINVAL; 3600 goto out; 3601 } 3602 3603 /* If this is a per-CPU event, it must be for this CPU */ 3604 if (!(event->attach_state & PERF_ATTACH_TASK) && 3605 event->cpu != smp_processor_id()) { 3606 ret = -EINVAL; 3607 goto out; 3608 } 3609 3610 /* 3611 * If the event is currently on this CPU, its either a per-task event, 3612 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3613 * oncpu == -1). 3614 */ 3615 if (event->oncpu == smp_processor_id()) 3616 event->pmu->read(event); 3617 3618 *value = local64_read(&event->count); 3619 if (enabled || running) { 3620 u64 now = event->shadow_ctx_time + perf_clock(); 3621 u64 __enabled, __running; 3622 3623 __perf_update_times(event, now, &__enabled, &__running); 3624 if (enabled) 3625 *enabled = __enabled; 3626 if (running) 3627 *running = __running; 3628 } 3629 out: 3630 local_irq_restore(flags); 3631 3632 return ret; 3633 } 3634 3635 static int perf_event_read(struct perf_event *event, bool group) 3636 { 3637 enum perf_event_state state = READ_ONCE(event->state); 3638 int event_cpu, ret = 0; 3639 3640 /* 3641 * If event is enabled and currently active on a CPU, update the 3642 * value in the event structure: 3643 */ 3644 again: 3645 if (state == PERF_EVENT_STATE_ACTIVE) { 3646 struct perf_read_data data; 3647 3648 /* 3649 * Orders the ->state and ->oncpu loads such that if we see 3650 * ACTIVE we must also see the right ->oncpu. 3651 * 3652 * Matches the smp_wmb() from event_sched_in(). 3653 */ 3654 smp_rmb(); 3655 3656 event_cpu = READ_ONCE(event->oncpu); 3657 if ((unsigned)event_cpu >= nr_cpu_ids) 3658 return 0; 3659 3660 data = (struct perf_read_data){ 3661 .event = event, 3662 .group = group, 3663 .ret = 0, 3664 }; 3665 3666 preempt_disable(); 3667 event_cpu = __perf_event_read_cpu(event, event_cpu); 3668 3669 /* 3670 * Purposely ignore the smp_call_function_single() return 3671 * value. 3672 * 3673 * If event_cpu isn't a valid CPU it means the event got 3674 * scheduled out and that will have updated the event count. 3675 * 3676 * Therefore, either way, we'll have an up-to-date event count 3677 * after this. 3678 */ 3679 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3680 preempt_enable(); 3681 ret = data.ret; 3682 3683 } else if (state == PERF_EVENT_STATE_INACTIVE) { 3684 struct perf_event_context *ctx = event->ctx; 3685 unsigned long flags; 3686 3687 raw_spin_lock_irqsave(&ctx->lock, flags); 3688 state = event->state; 3689 if (state != PERF_EVENT_STATE_INACTIVE) { 3690 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3691 goto again; 3692 } 3693 3694 /* 3695 * May read while context is not active (e.g., thread is 3696 * blocked), in that case we cannot update context time 3697 */ 3698 if (ctx->is_active & EVENT_TIME) { 3699 update_context_time(ctx); 3700 update_cgrp_time_from_event(event); 3701 } 3702 3703 perf_event_update_time(event); 3704 if (group) 3705 perf_event_update_sibling_time(event); 3706 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3707 } 3708 3709 return ret; 3710 } 3711 3712 /* 3713 * Initialize the perf_event context in a task_struct: 3714 */ 3715 static void __perf_event_init_context(struct perf_event_context *ctx) 3716 { 3717 raw_spin_lock_init(&ctx->lock); 3718 mutex_init(&ctx->mutex); 3719 INIT_LIST_HEAD(&ctx->active_ctx_list); 3720 INIT_LIST_HEAD(&ctx->pinned_groups); 3721 INIT_LIST_HEAD(&ctx->flexible_groups); 3722 INIT_LIST_HEAD(&ctx->event_list); 3723 atomic_set(&ctx->refcount, 1); 3724 } 3725 3726 static struct perf_event_context * 3727 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3728 { 3729 struct perf_event_context *ctx; 3730 3731 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3732 if (!ctx) 3733 return NULL; 3734 3735 __perf_event_init_context(ctx); 3736 if (task) { 3737 ctx->task = task; 3738 get_task_struct(task); 3739 } 3740 ctx->pmu = pmu; 3741 3742 return ctx; 3743 } 3744 3745 static struct task_struct * 3746 find_lively_task_by_vpid(pid_t vpid) 3747 { 3748 struct task_struct *task; 3749 3750 rcu_read_lock(); 3751 if (!vpid) 3752 task = current; 3753 else 3754 task = find_task_by_vpid(vpid); 3755 if (task) 3756 get_task_struct(task); 3757 rcu_read_unlock(); 3758 3759 if (!task) 3760 return ERR_PTR(-ESRCH); 3761 3762 return task; 3763 } 3764 3765 /* 3766 * Returns a matching context with refcount and pincount. 3767 */ 3768 static struct perf_event_context * 3769 find_get_context(struct pmu *pmu, struct task_struct *task, 3770 struct perf_event *event) 3771 { 3772 struct perf_event_context *ctx, *clone_ctx = NULL; 3773 struct perf_cpu_context *cpuctx; 3774 void *task_ctx_data = NULL; 3775 unsigned long flags; 3776 int ctxn, err; 3777 int cpu = event->cpu; 3778 3779 if (!task) { 3780 /* Must be root to operate on a CPU event: */ 3781 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3782 return ERR_PTR(-EACCES); 3783 3784 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3785 ctx = &cpuctx->ctx; 3786 get_ctx(ctx); 3787 ++ctx->pin_count; 3788 3789 return ctx; 3790 } 3791 3792 err = -EINVAL; 3793 ctxn = pmu->task_ctx_nr; 3794 if (ctxn < 0) 3795 goto errout; 3796 3797 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3798 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3799 if (!task_ctx_data) { 3800 err = -ENOMEM; 3801 goto errout; 3802 } 3803 } 3804 3805 retry: 3806 ctx = perf_lock_task_context(task, ctxn, &flags); 3807 if (ctx) { 3808 clone_ctx = unclone_ctx(ctx); 3809 ++ctx->pin_count; 3810 3811 if (task_ctx_data && !ctx->task_ctx_data) { 3812 ctx->task_ctx_data = task_ctx_data; 3813 task_ctx_data = NULL; 3814 } 3815 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3816 3817 if (clone_ctx) 3818 put_ctx(clone_ctx); 3819 } else { 3820 ctx = alloc_perf_context(pmu, task); 3821 err = -ENOMEM; 3822 if (!ctx) 3823 goto errout; 3824 3825 if (task_ctx_data) { 3826 ctx->task_ctx_data = task_ctx_data; 3827 task_ctx_data = NULL; 3828 } 3829 3830 err = 0; 3831 mutex_lock(&task->perf_event_mutex); 3832 /* 3833 * If it has already passed perf_event_exit_task(). 3834 * we must see PF_EXITING, it takes this mutex too. 3835 */ 3836 if (task->flags & PF_EXITING) 3837 err = -ESRCH; 3838 else if (task->perf_event_ctxp[ctxn]) 3839 err = -EAGAIN; 3840 else { 3841 get_ctx(ctx); 3842 ++ctx->pin_count; 3843 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3844 } 3845 mutex_unlock(&task->perf_event_mutex); 3846 3847 if (unlikely(err)) { 3848 put_ctx(ctx); 3849 3850 if (err == -EAGAIN) 3851 goto retry; 3852 goto errout; 3853 } 3854 } 3855 3856 kfree(task_ctx_data); 3857 return ctx; 3858 3859 errout: 3860 kfree(task_ctx_data); 3861 return ERR_PTR(err); 3862 } 3863 3864 static void perf_event_free_filter(struct perf_event *event); 3865 static void perf_event_free_bpf_prog(struct perf_event *event); 3866 3867 static void free_event_rcu(struct rcu_head *head) 3868 { 3869 struct perf_event *event; 3870 3871 event = container_of(head, struct perf_event, rcu_head); 3872 if (event->ns) 3873 put_pid_ns(event->ns); 3874 perf_event_free_filter(event); 3875 kfree(event); 3876 } 3877 3878 static void ring_buffer_attach(struct perf_event *event, 3879 struct ring_buffer *rb); 3880 3881 static void detach_sb_event(struct perf_event *event) 3882 { 3883 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3884 3885 raw_spin_lock(&pel->lock); 3886 list_del_rcu(&event->sb_list); 3887 raw_spin_unlock(&pel->lock); 3888 } 3889 3890 static bool is_sb_event(struct perf_event *event) 3891 { 3892 struct perf_event_attr *attr = &event->attr; 3893 3894 if (event->parent) 3895 return false; 3896 3897 if (event->attach_state & PERF_ATTACH_TASK) 3898 return false; 3899 3900 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3901 attr->comm || attr->comm_exec || 3902 attr->task || 3903 attr->context_switch) 3904 return true; 3905 return false; 3906 } 3907 3908 static void unaccount_pmu_sb_event(struct perf_event *event) 3909 { 3910 if (is_sb_event(event)) 3911 detach_sb_event(event); 3912 } 3913 3914 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3915 { 3916 if (event->parent) 3917 return; 3918 3919 if (is_cgroup_event(event)) 3920 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3921 } 3922 3923 #ifdef CONFIG_NO_HZ_FULL 3924 static DEFINE_SPINLOCK(nr_freq_lock); 3925 #endif 3926 3927 static void unaccount_freq_event_nohz(void) 3928 { 3929 #ifdef CONFIG_NO_HZ_FULL 3930 spin_lock(&nr_freq_lock); 3931 if (atomic_dec_and_test(&nr_freq_events)) 3932 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3933 spin_unlock(&nr_freq_lock); 3934 #endif 3935 } 3936 3937 static void unaccount_freq_event(void) 3938 { 3939 if (tick_nohz_full_enabled()) 3940 unaccount_freq_event_nohz(); 3941 else 3942 atomic_dec(&nr_freq_events); 3943 } 3944 3945 static void unaccount_event(struct perf_event *event) 3946 { 3947 bool dec = false; 3948 3949 if (event->parent) 3950 return; 3951 3952 if (event->attach_state & PERF_ATTACH_TASK) 3953 dec = true; 3954 if (event->attr.mmap || event->attr.mmap_data) 3955 atomic_dec(&nr_mmap_events); 3956 if (event->attr.comm) 3957 atomic_dec(&nr_comm_events); 3958 if (event->attr.namespaces) 3959 atomic_dec(&nr_namespaces_events); 3960 if (event->attr.task) 3961 atomic_dec(&nr_task_events); 3962 if (event->attr.freq) 3963 unaccount_freq_event(); 3964 if (event->attr.context_switch) { 3965 dec = true; 3966 atomic_dec(&nr_switch_events); 3967 } 3968 if (is_cgroup_event(event)) 3969 dec = true; 3970 if (has_branch_stack(event)) 3971 dec = true; 3972 3973 if (dec) { 3974 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3975 schedule_delayed_work(&perf_sched_work, HZ); 3976 } 3977 3978 unaccount_event_cpu(event, event->cpu); 3979 3980 unaccount_pmu_sb_event(event); 3981 } 3982 3983 static void perf_sched_delayed(struct work_struct *work) 3984 { 3985 mutex_lock(&perf_sched_mutex); 3986 if (atomic_dec_and_test(&perf_sched_count)) 3987 static_branch_disable(&perf_sched_events); 3988 mutex_unlock(&perf_sched_mutex); 3989 } 3990 3991 /* 3992 * The following implement mutual exclusion of events on "exclusive" pmus 3993 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3994 * at a time, so we disallow creating events that might conflict, namely: 3995 * 3996 * 1) cpu-wide events in the presence of per-task events, 3997 * 2) per-task events in the presence of cpu-wide events, 3998 * 3) two matching events on the same context. 3999 * 4000 * The former two cases are handled in the allocation path (perf_event_alloc(), 4001 * _free_event()), the latter -- before the first perf_install_in_context(). 4002 */ 4003 static int exclusive_event_init(struct perf_event *event) 4004 { 4005 struct pmu *pmu = event->pmu; 4006 4007 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4008 return 0; 4009 4010 /* 4011 * Prevent co-existence of per-task and cpu-wide events on the 4012 * same exclusive pmu. 4013 * 4014 * Negative pmu::exclusive_cnt means there are cpu-wide 4015 * events on this "exclusive" pmu, positive means there are 4016 * per-task events. 4017 * 4018 * Since this is called in perf_event_alloc() path, event::ctx 4019 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4020 * to mean "per-task event", because unlike other attach states it 4021 * never gets cleared. 4022 */ 4023 if (event->attach_state & PERF_ATTACH_TASK) { 4024 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4025 return -EBUSY; 4026 } else { 4027 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4028 return -EBUSY; 4029 } 4030 4031 return 0; 4032 } 4033 4034 static void exclusive_event_destroy(struct perf_event *event) 4035 { 4036 struct pmu *pmu = event->pmu; 4037 4038 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4039 return; 4040 4041 /* see comment in exclusive_event_init() */ 4042 if (event->attach_state & PERF_ATTACH_TASK) 4043 atomic_dec(&pmu->exclusive_cnt); 4044 else 4045 atomic_inc(&pmu->exclusive_cnt); 4046 } 4047 4048 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4049 { 4050 if ((e1->pmu == e2->pmu) && 4051 (e1->cpu == e2->cpu || 4052 e1->cpu == -1 || 4053 e2->cpu == -1)) 4054 return true; 4055 return false; 4056 } 4057 4058 /* Called under the same ctx::mutex as perf_install_in_context() */ 4059 static bool exclusive_event_installable(struct perf_event *event, 4060 struct perf_event_context *ctx) 4061 { 4062 struct perf_event *iter_event; 4063 struct pmu *pmu = event->pmu; 4064 4065 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4066 return true; 4067 4068 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4069 if (exclusive_event_match(iter_event, event)) 4070 return false; 4071 } 4072 4073 return true; 4074 } 4075 4076 static void perf_addr_filters_splice(struct perf_event *event, 4077 struct list_head *head); 4078 4079 static void _free_event(struct perf_event *event) 4080 { 4081 irq_work_sync(&event->pending); 4082 4083 unaccount_event(event); 4084 4085 if (event->rb) { 4086 /* 4087 * Can happen when we close an event with re-directed output. 4088 * 4089 * Since we have a 0 refcount, perf_mmap_close() will skip 4090 * over us; possibly making our ring_buffer_put() the last. 4091 */ 4092 mutex_lock(&event->mmap_mutex); 4093 ring_buffer_attach(event, NULL); 4094 mutex_unlock(&event->mmap_mutex); 4095 } 4096 4097 if (is_cgroup_event(event)) 4098 perf_detach_cgroup(event); 4099 4100 if (!event->parent) { 4101 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4102 put_callchain_buffers(); 4103 } 4104 4105 perf_event_free_bpf_prog(event); 4106 perf_addr_filters_splice(event, NULL); 4107 kfree(event->addr_filters_offs); 4108 4109 if (event->destroy) 4110 event->destroy(event); 4111 4112 if (event->ctx) 4113 put_ctx(event->ctx); 4114 4115 exclusive_event_destroy(event); 4116 module_put(event->pmu->module); 4117 4118 call_rcu(&event->rcu_head, free_event_rcu); 4119 } 4120 4121 /* 4122 * Used to free events which have a known refcount of 1, such as in error paths 4123 * where the event isn't exposed yet and inherited events. 4124 */ 4125 static void free_event(struct perf_event *event) 4126 { 4127 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4128 "unexpected event refcount: %ld; ptr=%p\n", 4129 atomic_long_read(&event->refcount), event)) { 4130 /* leak to avoid use-after-free */ 4131 return; 4132 } 4133 4134 _free_event(event); 4135 } 4136 4137 /* 4138 * Remove user event from the owner task. 4139 */ 4140 static void perf_remove_from_owner(struct perf_event *event) 4141 { 4142 struct task_struct *owner; 4143 4144 rcu_read_lock(); 4145 /* 4146 * Matches the smp_store_release() in perf_event_exit_task(). If we 4147 * observe !owner it means the list deletion is complete and we can 4148 * indeed free this event, otherwise we need to serialize on 4149 * owner->perf_event_mutex. 4150 */ 4151 owner = READ_ONCE(event->owner); 4152 if (owner) { 4153 /* 4154 * Since delayed_put_task_struct() also drops the last 4155 * task reference we can safely take a new reference 4156 * while holding the rcu_read_lock(). 4157 */ 4158 get_task_struct(owner); 4159 } 4160 rcu_read_unlock(); 4161 4162 if (owner) { 4163 /* 4164 * If we're here through perf_event_exit_task() we're already 4165 * holding ctx->mutex which would be an inversion wrt. the 4166 * normal lock order. 4167 * 4168 * However we can safely take this lock because its the child 4169 * ctx->mutex. 4170 */ 4171 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4172 4173 /* 4174 * We have to re-check the event->owner field, if it is cleared 4175 * we raced with perf_event_exit_task(), acquiring the mutex 4176 * ensured they're done, and we can proceed with freeing the 4177 * event. 4178 */ 4179 if (event->owner) { 4180 list_del_init(&event->owner_entry); 4181 smp_store_release(&event->owner, NULL); 4182 } 4183 mutex_unlock(&owner->perf_event_mutex); 4184 put_task_struct(owner); 4185 } 4186 } 4187 4188 static void put_event(struct perf_event *event) 4189 { 4190 if (!atomic_long_dec_and_test(&event->refcount)) 4191 return; 4192 4193 _free_event(event); 4194 } 4195 4196 /* 4197 * Kill an event dead; while event:refcount will preserve the event 4198 * object, it will not preserve its functionality. Once the last 'user' 4199 * gives up the object, we'll destroy the thing. 4200 */ 4201 int perf_event_release_kernel(struct perf_event *event) 4202 { 4203 struct perf_event_context *ctx = event->ctx; 4204 struct perf_event *child, *tmp; 4205 LIST_HEAD(free_list); 4206 4207 /* 4208 * If we got here through err_file: fput(event_file); we will not have 4209 * attached to a context yet. 4210 */ 4211 if (!ctx) { 4212 WARN_ON_ONCE(event->attach_state & 4213 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4214 goto no_ctx; 4215 } 4216 4217 if (!is_kernel_event(event)) 4218 perf_remove_from_owner(event); 4219 4220 ctx = perf_event_ctx_lock(event); 4221 WARN_ON_ONCE(ctx->parent_ctx); 4222 perf_remove_from_context(event, DETACH_GROUP); 4223 4224 raw_spin_lock_irq(&ctx->lock); 4225 /* 4226 * Mark this event as STATE_DEAD, there is no external reference to it 4227 * anymore. 4228 * 4229 * Anybody acquiring event->child_mutex after the below loop _must_ 4230 * also see this, most importantly inherit_event() which will avoid 4231 * placing more children on the list. 4232 * 4233 * Thus this guarantees that we will in fact observe and kill _ALL_ 4234 * child events. 4235 */ 4236 event->state = PERF_EVENT_STATE_DEAD; 4237 raw_spin_unlock_irq(&ctx->lock); 4238 4239 perf_event_ctx_unlock(event, ctx); 4240 4241 again: 4242 mutex_lock(&event->child_mutex); 4243 list_for_each_entry(child, &event->child_list, child_list) { 4244 4245 /* 4246 * Cannot change, child events are not migrated, see the 4247 * comment with perf_event_ctx_lock_nested(). 4248 */ 4249 ctx = READ_ONCE(child->ctx); 4250 /* 4251 * Since child_mutex nests inside ctx::mutex, we must jump 4252 * through hoops. We start by grabbing a reference on the ctx. 4253 * 4254 * Since the event cannot get freed while we hold the 4255 * child_mutex, the context must also exist and have a !0 4256 * reference count. 4257 */ 4258 get_ctx(ctx); 4259 4260 /* 4261 * Now that we have a ctx ref, we can drop child_mutex, and 4262 * acquire ctx::mutex without fear of it going away. Then we 4263 * can re-acquire child_mutex. 4264 */ 4265 mutex_unlock(&event->child_mutex); 4266 mutex_lock(&ctx->mutex); 4267 mutex_lock(&event->child_mutex); 4268 4269 /* 4270 * Now that we hold ctx::mutex and child_mutex, revalidate our 4271 * state, if child is still the first entry, it didn't get freed 4272 * and we can continue doing so. 4273 */ 4274 tmp = list_first_entry_or_null(&event->child_list, 4275 struct perf_event, child_list); 4276 if (tmp == child) { 4277 perf_remove_from_context(child, DETACH_GROUP); 4278 list_move(&child->child_list, &free_list); 4279 /* 4280 * This matches the refcount bump in inherit_event(); 4281 * this can't be the last reference. 4282 */ 4283 put_event(event); 4284 } 4285 4286 mutex_unlock(&event->child_mutex); 4287 mutex_unlock(&ctx->mutex); 4288 put_ctx(ctx); 4289 goto again; 4290 } 4291 mutex_unlock(&event->child_mutex); 4292 4293 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4294 list_del(&child->child_list); 4295 free_event(child); 4296 } 4297 4298 no_ctx: 4299 put_event(event); /* Must be the 'last' reference */ 4300 return 0; 4301 } 4302 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4303 4304 /* 4305 * Called when the last reference to the file is gone. 4306 */ 4307 static int perf_release(struct inode *inode, struct file *file) 4308 { 4309 perf_event_release_kernel(file->private_data); 4310 return 0; 4311 } 4312 4313 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4314 { 4315 struct perf_event *child; 4316 u64 total = 0; 4317 4318 *enabled = 0; 4319 *running = 0; 4320 4321 mutex_lock(&event->child_mutex); 4322 4323 (void)perf_event_read(event, false); 4324 total += perf_event_count(event); 4325 4326 *enabled += event->total_time_enabled + 4327 atomic64_read(&event->child_total_time_enabled); 4328 *running += event->total_time_running + 4329 atomic64_read(&event->child_total_time_running); 4330 4331 list_for_each_entry(child, &event->child_list, child_list) { 4332 (void)perf_event_read(child, false); 4333 total += perf_event_count(child); 4334 *enabled += child->total_time_enabled; 4335 *running += child->total_time_running; 4336 } 4337 mutex_unlock(&event->child_mutex); 4338 4339 return total; 4340 } 4341 4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4343 { 4344 struct perf_event_context *ctx; 4345 u64 count; 4346 4347 ctx = perf_event_ctx_lock(event); 4348 count = __perf_event_read_value(event, enabled, running); 4349 perf_event_ctx_unlock(event, ctx); 4350 4351 return count; 4352 } 4353 EXPORT_SYMBOL_GPL(perf_event_read_value); 4354 4355 static int __perf_read_group_add(struct perf_event *leader, 4356 u64 read_format, u64 *values) 4357 { 4358 struct perf_event_context *ctx = leader->ctx; 4359 struct perf_event *sub; 4360 unsigned long flags; 4361 int n = 1; /* skip @nr */ 4362 int ret; 4363 4364 ret = perf_event_read(leader, true); 4365 if (ret) 4366 return ret; 4367 4368 raw_spin_lock_irqsave(&ctx->lock, flags); 4369 4370 /* 4371 * Since we co-schedule groups, {enabled,running} times of siblings 4372 * will be identical to those of the leader, so we only publish one 4373 * set. 4374 */ 4375 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4376 values[n++] += leader->total_time_enabled + 4377 atomic64_read(&leader->child_total_time_enabled); 4378 } 4379 4380 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4381 values[n++] += leader->total_time_running + 4382 atomic64_read(&leader->child_total_time_running); 4383 } 4384 4385 /* 4386 * Write {count,id} tuples for every sibling. 4387 */ 4388 values[n++] += perf_event_count(leader); 4389 if (read_format & PERF_FORMAT_ID) 4390 values[n++] = primary_event_id(leader); 4391 4392 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4393 values[n++] += perf_event_count(sub); 4394 if (read_format & PERF_FORMAT_ID) 4395 values[n++] = primary_event_id(sub); 4396 } 4397 4398 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4399 return 0; 4400 } 4401 4402 static int perf_read_group(struct perf_event *event, 4403 u64 read_format, char __user *buf) 4404 { 4405 struct perf_event *leader = event->group_leader, *child; 4406 struct perf_event_context *ctx = leader->ctx; 4407 int ret; 4408 u64 *values; 4409 4410 lockdep_assert_held(&ctx->mutex); 4411 4412 values = kzalloc(event->read_size, GFP_KERNEL); 4413 if (!values) 4414 return -ENOMEM; 4415 4416 values[0] = 1 + leader->nr_siblings; 4417 4418 /* 4419 * By locking the child_mutex of the leader we effectively 4420 * lock the child list of all siblings.. XXX explain how. 4421 */ 4422 mutex_lock(&leader->child_mutex); 4423 4424 ret = __perf_read_group_add(leader, read_format, values); 4425 if (ret) 4426 goto unlock; 4427 4428 list_for_each_entry(child, &leader->child_list, child_list) { 4429 ret = __perf_read_group_add(child, read_format, values); 4430 if (ret) 4431 goto unlock; 4432 } 4433 4434 mutex_unlock(&leader->child_mutex); 4435 4436 ret = event->read_size; 4437 if (copy_to_user(buf, values, event->read_size)) 4438 ret = -EFAULT; 4439 goto out; 4440 4441 unlock: 4442 mutex_unlock(&leader->child_mutex); 4443 out: 4444 kfree(values); 4445 return ret; 4446 } 4447 4448 static int perf_read_one(struct perf_event *event, 4449 u64 read_format, char __user *buf) 4450 { 4451 u64 enabled, running; 4452 u64 values[4]; 4453 int n = 0; 4454 4455 values[n++] = __perf_event_read_value(event, &enabled, &running); 4456 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4457 values[n++] = enabled; 4458 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4459 values[n++] = running; 4460 if (read_format & PERF_FORMAT_ID) 4461 values[n++] = primary_event_id(event); 4462 4463 if (copy_to_user(buf, values, n * sizeof(u64))) 4464 return -EFAULT; 4465 4466 return n * sizeof(u64); 4467 } 4468 4469 static bool is_event_hup(struct perf_event *event) 4470 { 4471 bool no_children; 4472 4473 if (event->state > PERF_EVENT_STATE_EXIT) 4474 return false; 4475 4476 mutex_lock(&event->child_mutex); 4477 no_children = list_empty(&event->child_list); 4478 mutex_unlock(&event->child_mutex); 4479 return no_children; 4480 } 4481 4482 /* 4483 * Read the performance event - simple non blocking version for now 4484 */ 4485 static ssize_t 4486 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4487 { 4488 u64 read_format = event->attr.read_format; 4489 int ret; 4490 4491 /* 4492 * Return end-of-file for a read on a event that is in 4493 * error state (i.e. because it was pinned but it couldn't be 4494 * scheduled on to the CPU at some point). 4495 */ 4496 if (event->state == PERF_EVENT_STATE_ERROR) 4497 return 0; 4498 4499 if (count < event->read_size) 4500 return -ENOSPC; 4501 4502 WARN_ON_ONCE(event->ctx->parent_ctx); 4503 if (read_format & PERF_FORMAT_GROUP) 4504 ret = perf_read_group(event, read_format, buf); 4505 else 4506 ret = perf_read_one(event, read_format, buf); 4507 4508 return ret; 4509 } 4510 4511 static ssize_t 4512 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4513 { 4514 struct perf_event *event = file->private_data; 4515 struct perf_event_context *ctx; 4516 int ret; 4517 4518 ctx = perf_event_ctx_lock(event); 4519 ret = __perf_read(event, buf, count); 4520 perf_event_ctx_unlock(event, ctx); 4521 4522 return ret; 4523 } 4524 4525 static __poll_t perf_poll(struct file *file, poll_table *wait) 4526 { 4527 struct perf_event *event = file->private_data; 4528 struct ring_buffer *rb; 4529 __poll_t events = EPOLLHUP; 4530 4531 poll_wait(file, &event->waitq, wait); 4532 4533 if (is_event_hup(event)) 4534 return events; 4535 4536 /* 4537 * Pin the event->rb by taking event->mmap_mutex; otherwise 4538 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4539 */ 4540 mutex_lock(&event->mmap_mutex); 4541 rb = event->rb; 4542 if (rb) 4543 events = atomic_xchg(&rb->poll, 0); 4544 mutex_unlock(&event->mmap_mutex); 4545 return events; 4546 } 4547 4548 static void _perf_event_reset(struct perf_event *event) 4549 { 4550 (void)perf_event_read(event, false); 4551 local64_set(&event->count, 0); 4552 perf_event_update_userpage(event); 4553 } 4554 4555 /* 4556 * Holding the top-level event's child_mutex means that any 4557 * descendant process that has inherited this event will block 4558 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4559 * task existence requirements of perf_event_enable/disable. 4560 */ 4561 static void perf_event_for_each_child(struct perf_event *event, 4562 void (*func)(struct perf_event *)) 4563 { 4564 struct perf_event *child; 4565 4566 WARN_ON_ONCE(event->ctx->parent_ctx); 4567 4568 mutex_lock(&event->child_mutex); 4569 func(event); 4570 list_for_each_entry(child, &event->child_list, child_list) 4571 func(child); 4572 mutex_unlock(&event->child_mutex); 4573 } 4574 4575 static void perf_event_for_each(struct perf_event *event, 4576 void (*func)(struct perf_event *)) 4577 { 4578 struct perf_event_context *ctx = event->ctx; 4579 struct perf_event *sibling; 4580 4581 lockdep_assert_held(&ctx->mutex); 4582 4583 event = event->group_leader; 4584 4585 perf_event_for_each_child(event, func); 4586 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4587 perf_event_for_each_child(sibling, func); 4588 } 4589 4590 static void __perf_event_period(struct perf_event *event, 4591 struct perf_cpu_context *cpuctx, 4592 struct perf_event_context *ctx, 4593 void *info) 4594 { 4595 u64 value = *((u64 *)info); 4596 bool active; 4597 4598 if (event->attr.freq) { 4599 event->attr.sample_freq = value; 4600 } else { 4601 event->attr.sample_period = value; 4602 event->hw.sample_period = value; 4603 } 4604 4605 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4606 if (active) { 4607 perf_pmu_disable(ctx->pmu); 4608 /* 4609 * We could be throttled; unthrottle now to avoid the tick 4610 * trying to unthrottle while we already re-started the event. 4611 */ 4612 if (event->hw.interrupts == MAX_INTERRUPTS) { 4613 event->hw.interrupts = 0; 4614 perf_log_throttle(event, 1); 4615 } 4616 event->pmu->stop(event, PERF_EF_UPDATE); 4617 } 4618 4619 local64_set(&event->hw.period_left, 0); 4620 4621 if (active) { 4622 event->pmu->start(event, PERF_EF_RELOAD); 4623 perf_pmu_enable(ctx->pmu); 4624 } 4625 } 4626 4627 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4628 { 4629 u64 value; 4630 4631 if (!is_sampling_event(event)) 4632 return -EINVAL; 4633 4634 if (copy_from_user(&value, arg, sizeof(value))) 4635 return -EFAULT; 4636 4637 if (!value) 4638 return -EINVAL; 4639 4640 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4641 return -EINVAL; 4642 4643 event_function_call(event, __perf_event_period, &value); 4644 4645 return 0; 4646 } 4647 4648 static const struct file_operations perf_fops; 4649 4650 static inline int perf_fget_light(int fd, struct fd *p) 4651 { 4652 struct fd f = fdget(fd); 4653 if (!f.file) 4654 return -EBADF; 4655 4656 if (f.file->f_op != &perf_fops) { 4657 fdput(f); 4658 return -EBADF; 4659 } 4660 *p = f; 4661 return 0; 4662 } 4663 4664 static int perf_event_set_output(struct perf_event *event, 4665 struct perf_event *output_event); 4666 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4667 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4668 4669 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4670 { 4671 void (*func)(struct perf_event *); 4672 u32 flags = arg; 4673 4674 switch (cmd) { 4675 case PERF_EVENT_IOC_ENABLE: 4676 func = _perf_event_enable; 4677 break; 4678 case PERF_EVENT_IOC_DISABLE: 4679 func = _perf_event_disable; 4680 break; 4681 case PERF_EVENT_IOC_RESET: 4682 func = _perf_event_reset; 4683 break; 4684 4685 case PERF_EVENT_IOC_REFRESH: 4686 return _perf_event_refresh(event, arg); 4687 4688 case PERF_EVENT_IOC_PERIOD: 4689 return perf_event_period(event, (u64 __user *)arg); 4690 4691 case PERF_EVENT_IOC_ID: 4692 { 4693 u64 id = primary_event_id(event); 4694 4695 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4696 return -EFAULT; 4697 return 0; 4698 } 4699 4700 case PERF_EVENT_IOC_SET_OUTPUT: 4701 { 4702 int ret; 4703 if (arg != -1) { 4704 struct perf_event *output_event; 4705 struct fd output; 4706 ret = perf_fget_light(arg, &output); 4707 if (ret) 4708 return ret; 4709 output_event = output.file->private_data; 4710 ret = perf_event_set_output(event, output_event); 4711 fdput(output); 4712 } else { 4713 ret = perf_event_set_output(event, NULL); 4714 } 4715 return ret; 4716 } 4717 4718 case PERF_EVENT_IOC_SET_FILTER: 4719 return perf_event_set_filter(event, (void __user *)arg); 4720 4721 case PERF_EVENT_IOC_SET_BPF: 4722 return perf_event_set_bpf_prog(event, arg); 4723 4724 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4725 struct ring_buffer *rb; 4726 4727 rcu_read_lock(); 4728 rb = rcu_dereference(event->rb); 4729 if (!rb || !rb->nr_pages) { 4730 rcu_read_unlock(); 4731 return -EINVAL; 4732 } 4733 rb_toggle_paused(rb, !!arg); 4734 rcu_read_unlock(); 4735 return 0; 4736 } 4737 4738 case PERF_EVENT_IOC_QUERY_BPF: 4739 return perf_event_query_prog_array(event, (void __user *)arg); 4740 default: 4741 return -ENOTTY; 4742 } 4743 4744 if (flags & PERF_IOC_FLAG_GROUP) 4745 perf_event_for_each(event, func); 4746 else 4747 perf_event_for_each_child(event, func); 4748 4749 return 0; 4750 } 4751 4752 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4753 { 4754 struct perf_event *event = file->private_data; 4755 struct perf_event_context *ctx; 4756 long ret; 4757 4758 ctx = perf_event_ctx_lock(event); 4759 ret = _perf_ioctl(event, cmd, arg); 4760 perf_event_ctx_unlock(event, ctx); 4761 4762 return ret; 4763 } 4764 4765 #ifdef CONFIG_COMPAT 4766 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4767 unsigned long arg) 4768 { 4769 switch (_IOC_NR(cmd)) { 4770 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4771 case _IOC_NR(PERF_EVENT_IOC_ID): 4772 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4773 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4774 cmd &= ~IOCSIZE_MASK; 4775 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4776 } 4777 break; 4778 } 4779 return perf_ioctl(file, cmd, arg); 4780 } 4781 #else 4782 # define perf_compat_ioctl NULL 4783 #endif 4784 4785 int perf_event_task_enable(void) 4786 { 4787 struct perf_event_context *ctx; 4788 struct perf_event *event; 4789 4790 mutex_lock(¤t->perf_event_mutex); 4791 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4792 ctx = perf_event_ctx_lock(event); 4793 perf_event_for_each_child(event, _perf_event_enable); 4794 perf_event_ctx_unlock(event, ctx); 4795 } 4796 mutex_unlock(¤t->perf_event_mutex); 4797 4798 return 0; 4799 } 4800 4801 int perf_event_task_disable(void) 4802 { 4803 struct perf_event_context *ctx; 4804 struct perf_event *event; 4805 4806 mutex_lock(¤t->perf_event_mutex); 4807 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4808 ctx = perf_event_ctx_lock(event); 4809 perf_event_for_each_child(event, _perf_event_disable); 4810 perf_event_ctx_unlock(event, ctx); 4811 } 4812 mutex_unlock(¤t->perf_event_mutex); 4813 4814 return 0; 4815 } 4816 4817 static int perf_event_index(struct perf_event *event) 4818 { 4819 if (event->hw.state & PERF_HES_STOPPED) 4820 return 0; 4821 4822 if (event->state != PERF_EVENT_STATE_ACTIVE) 4823 return 0; 4824 4825 return event->pmu->event_idx(event); 4826 } 4827 4828 static void calc_timer_values(struct perf_event *event, 4829 u64 *now, 4830 u64 *enabled, 4831 u64 *running) 4832 { 4833 u64 ctx_time; 4834 4835 *now = perf_clock(); 4836 ctx_time = event->shadow_ctx_time + *now; 4837 __perf_update_times(event, ctx_time, enabled, running); 4838 } 4839 4840 static void perf_event_init_userpage(struct perf_event *event) 4841 { 4842 struct perf_event_mmap_page *userpg; 4843 struct ring_buffer *rb; 4844 4845 rcu_read_lock(); 4846 rb = rcu_dereference(event->rb); 4847 if (!rb) 4848 goto unlock; 4849 4850 userpg = rb->user_page; 4851 4852 /* Allow new userspace to detect that bit 0 is deprecated */ 4853 userpg->cap_bit0_is_deprecated = 1; 4854 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4855 userpg->data_offset = PAGE_SIZE; 4856 userpg->data_size = perf_data_size(rb); 4857 4858 unlock: 4859 rcu_read_unlock(); 4860 } 4861 4862 void __weak arch_perf_update_userpage( 4863 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4864 { 4865 } 4866 4867 /* 4868 * Callers need to ensure there can be no nesting of this function, otherwise 4869 * the seqlock logic goes bad. We can not serialize this because the arch 4870 * code calls this from NMI context. 4871 */ 4872 void perf_event_update_userpage(struct perf_event *event) 4873 { 4874 struct perf_event_mmap_page *userpg; 4875 struct ring_buffer *rb; 4876 u64 enabled, running, now; 4877 4878 rcu_read_lock(); 4879 rb = rcu_dereference(event->rb); 4880 if (!rb) 4881 goto unlock; 4882 4883 /* 4884 * compute total_time_enabled, total_time_running 4885 * based on snapshot values taken when the event 4886 * was last scheduled in. 4887 * 4888 * we cannot simply called update_context_time() 4889 * because of locking issue as we can be called in 4890 * NMI context 4891 */ 4892 calc_timer_values(event, &now, &enabled, &running); 4893 4894 userpg = rb->user_page; 4895 /* 4896 * Disable preemption so as to not let the corresponding user-space 4897 * spin too long if we get preempted. 4898 */ 4899 preempt_disable(); 4900 ++userpg->lock; 4901 barrier(); 4902 userpg->index = perf_event_index(event); 4903 userpg->offset = perf_event_count(event); 4904 if (userpg->index) 4905 userpg->offset -= local64_read(&event->hw.prev_count); 4906 4907 userpg->time_enabled = enabled + 4908 atomic64_read(&event->child_total_time_enabled); 4909 4910 userpg->time_running = running + 4911 atomic64_read(&event->child_total_time_running); 4912 4913 arch_perf_update_userpage(event, userpg, now); 4914 4915 barrier(); 4916 ++userpg->lock; 4917 preempt_enable(); 4918 unlock: 4919 rcu_read_unlock(); 4920 } 4921 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 4922 4923 static int perf_mmap_fault(struct vm_fault *vmf) 4924 { 4925 struct perf_event *event = vmf->vma->vm_file->private_data; 4926 struct ring_buffer *rb; 4927 int ret = VM_FAULT_SIGBUS; 4928 4929 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4930 if (vmf->pgoff == 0) 4931 ret = 0; 4932 return ret; 4933 } 4934 4935 rcu_read_lock(); 4936 rb = rcu_dereference(event->rb); 4937 if (!rb) 4938 goto unlock; 4939 4940 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4941 goto unlock; 4942 4943 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4944 if (!vmf->page) 4945 goto unlock; 4946 4947 get_page(vmf->page); 4948 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 4949 vmf->page->index = vmf->pgoff; 4950 4951 ret = 0; 4952 unlock: 4953 rcu_read_unlock(); 4954 4955 return ret; 4956 } 4957 4958 static void ring_buffer_attach(struct perf_event *event, 4959 struct ring_buffer *rb) 4960 { 4961 struct ring_buffer *old_rb = NULL; 4962 unsigned long flags; 4963 4964 if (event->rb) { 4965 /* 4966 * Should be impossible, we set this when removing 4967 * event->rb_entry and wait/clear when adding event->rb_entry. 4968 */ 4969 WARN_ON_ONCE(event->rcu_pending); 4970 4971 old_rb = event->rb; 4972 spin_lock_irqsave(&old_rb->event_lock, flags); 4973 list_del_rcu(&event->rb_entry); 4974 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4975 4976 event->rcu_batches = get_state_synchronize_rcu(); 4977 event->rcu_pending = 1; 4978 } 4979 4980 if (rb) { 4981 if (event->rcu_pending) { 4982 cond_synchronize_rcu(event->rcu_batches); 4983 event->rcu_pending = 0; 4984 } 4985 4986 spin_lock_irqsave(&rb->event_lock, flags); 4987 list_add_rcu(&event->rb_entry, &rb->event_list); 4988 spin_unlock_irqrestore(&rb->event_lock, flags); 4989 } 4990 4991 /* 4992 * Avoid racing with perf_mmap_close(AUX): stop the event 4993 * before swizzling the event::rb pointer; if it's getting 4994 * unmapped, its aux_mmap_count will be 0 and it won't 4995 * restart. See the comment in __perf_pmu_output_stop(). 4996 * 4997 * Data will inevitably be lost when set_output is done in 4998 * mid-air, but then again, whoever does it like this is 4999 * not in for the data anyway. 5000 */ 5001 if (has_aux(event)) 5002 perf_event_stop(event, 0); 5003 5004 rcu_assign_pointer(event->rb, rb); 5005 5006 if (old_rb) { 5007 ring_buffer_put(old_rb); 5008 /* 5009 * Since we detached before setting the new rb, so that we 5010 * could attach the new rb, we could have missed a wakeup. 5011 * Provide it now. 5012 */ 5013 wake_up_all(&event->waitq); 5014 } 5015 } 5016 5017 static void ring_buffer_wakeup(struct perf_event *event) 5018 { 5019 struct ring_buffer *rb; 5020 5021 rcu_read_lock(); 5022 rb = rcu_dereference(event->rb); 5023 if (rb) { 5024 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5025 wake_up_all(&event->waitq); 5026 } 5027 rcu_read_unlock(); 5028 } 5029 5030 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5031 { 5032 struct ring_buffer *rb; 5033 5034 rcu_read_lock(); 5035 rb = rcu_dereference(event->rb); 5036 if (rb) { 5037 if (!atomic_inc_not_zero(&rb->refcount)) 5038 rb = NULL; 5039 } 5040 rcu_read_unlock(); 5041 5042 return rb; 5043 } 5044 5045 void ring_buffer_put(struct ring_buffer *rb) 5046 { 5047 if (!atomic_dec_and_test(&rb->refcount)) 5048 return; 5049 5050 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5051 5052 call_rcu(&rb->rcu_head, rb_free_rcu); 5053 } 5054 5055 static void perf_mmap_open(struct vm_area_struct *vma) 5056 { 5057 struct perf_event *event = vma->vm_file->private_data; 5058 5059 atomic_inc(&event->mmap_count); 5060 atomic_inc(&event->rb->mmap_count); 5061 5062 if (vma->vm_pgoff) 5063 atomic_inc(&event->rb->aux_mmap_count); 5064 5065 if (event->pmu->event_mapped) 5066 event->pmu->event_mapped(event, vma->vm_mm); 5067 } 5068 5069 static void perf_pmu_output_stop(struct perf_event *event); 5070 5071 /* 5072 * A buffer can be mmap()ed multiple times; either directly through the same 5073 * event, or through other events by use of perf_event_set_output(). 5074 * 5075 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5076 * the buffer here, where we still have a VM context. This means we need 5077 * to detach all events redirecting to us. 5078 */ 5079 static void perf_mmap_close(struct vm_area_struct *vma) 5080 { 5081 struct perf_event *event = vma->vm_file->private_data; 5082 5083 struct ring_buffer *rb = ring_buffer_get(event); 5084 struct user_struct *mmap_user = rb->mmap_user; 5085 int mmap_locked = rb->mmap_locked; 5086 unsigned long size = perf_data_size(rb); 5087 5088 if (event->pmu->event_unmapped) 5089 event->pmu->event_unmapped(event, vma->vm_mm); 5090 5091 /* 5092 * rb->aux_mmap_count will always drop before rb->mmap_count and 5093 * event->mmap_count, so it is ok to use event->mmap_mutex to 5094 * serialize with perf_mmap here. 5095 */ 5096 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5097 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5098 /* 5099 * Stop all AUX events that are writing to this buffer, 5100 * so that we can free its AUX pages and corresponding PMU 5101 * data. Note that after rb::aux_mmap_count dropped to zero, 5102 * they won't start any more (see perf_aux_output_begin()). 5103 */ 5104 perf_pmu_output_stop(event); 5105 5106 /* now it's safe to free the pages */ 5107 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5108 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5109 5110 /* this has to be the last one */ 5111 rb_free_aux(rb); 5112 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5113 5114 mutex_unlock(&event->mmap_mutex); 5115 } 5116 5117 atomic_dec(&rb->mmap_count); 5118 5119 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5120 goto out_put; 5121 5122 ring_buffer_attach(event, NULL); 5123 mutex_unlock(&event->mmap_mutex); 5124 5125 /* If there's still other mmap()s of this buffer, we're done. */ 5126 if (atomic_read(&rb->mmap_count)) 5127 goto out_put; 5128 5129 /* 5130 * No other mmap()s, detach from all other events that might redirect 5131 * into the now unreachable buffer. Somewhat complicated by the 5132 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5133 */ 5134 again: 5135 rcu_read_lock(); 5136 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5137 if (!atomic_long_inc_not_zero(&event->refcount)) { 5138 /* 5139 * This event is en-route to free_event() which will 5140 * detach it and remove it from the list. 5141 */ 5142 continue; 5143 } 5144 rcu_read_unlock(); 5145 5146 mutex_lock(&event->mmap_mutex); 5147 /* 5148 * Check we didn't race with perf_event_set_output() which can 5149 * swizzle the rb from under us while we were waiting to 5150 * acquire mmap_mutex. 5151 * 5152 * If we find a different rb; ignore this event, a next 5153 * iteration will no longer find it on the list. We have to 5154 * still restart the iteration to make sure we're not now 5155 * iterating the wrong list. 5156 */ 5157 if (event->rb == rb) 5158 ring_buffer_attach(event, NULL); 5159 5160 mutex_unlock(&event->mmap_mutex); 5161 put_event(event); 5162 5163 /* 5164 * Restart the iteration; either we're on the wrong list or 5165 * destroyed its integrity by doing a deletion. 5166 */ 5167 goto again; 5168 } 5169 rcu_read_unlock(); 5170 5171 /* 5172 * It could be there's still a few 0-ref events on the list; they'll 5173 * get cleaned up by free_event() -- they'll also still have their 5174 * ref on the rb and will free it whenever they are done with it. 5175 * 5176 * Aside from that, this buffer is 'fully' detached and unmapped, 5177 * undo the VM accounting. 5178 */ 5179 5180 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5181 vma->vm_mm->pinned_vm -= mmap_locked; 5182 free_uid(mmap_user); 5183 5184 out_put: 5185 ring_buffer_put(rb); /* could be last */ 5186 } 5187 5188 static const struct vm_operations_struct perf_mmap_vmops = { 5189 .open = perf_mmap_open, 5190 .close = perf_mmap_close, /* non mergable */ 5191 .fault = perf_mmap_fault, 5192 .page_mkwrite = perf_mmap_fault, 5193 }; 5194 5195 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5196 { 5197 struct perf_event *event = file->private_data; 5198 unsigned long user_locked, user_lock_limit; 5199 struct user_struct *user = current_user(); 5200 unsigned long locked, lock_limit; 5201 struct ring_buffer *rb = NULL; 5202 unsigned long vma_size; 5203 unsigned long nr_pages; 5204 long user_extra = 0, extra = 0; 5205 int ret = 0, flags = 0; 5206 5207 /* 5208 * Don't allow mmap() of inherited per-task counters. This would 5209 * create a performance issue due to all children writing to the 5210 * same rb. 5211 */ 5212 if (event->cpu == -1 && event->attr.inherit) 5213 return -EINVAL; 5214 5215 if (!(vma->vm_flags & VM_SHARED)) 5216 return -EINVAL; 5217 5218 vma_size = vma->vm_end - vma->vm_start; 5219 5220 if (vma->vm_pgoff == 0) { 5221 nr_pages = (vma_size / PAGE_SIZE) - 1; 5222 } else { 5223 /* 5224 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5225 * mapped, all subsequent mappings should have the same size 5226 * and offset. Must be above the normal perf buffer. 5227 */ 5228 u64 aux_offset, aux_size; 5229 5230 if (!event->rb) 5231 return -EINVAL; 5232 5233 nr_pages = vma_size / PAGE_SIZE; 5234 5235 mutex_lock(&event->mmap_mutex); 5236 ret = -EINVAL; 5237 5238 rb = event->rb; 5239 if (!rb) 5240 goto aux_unlock; 5241 5242 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5243 aux_size = READ_ONCE(rb->user_page->aux_size); 5244 5245 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5246 goto aux_unlock; 5247 5248 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5249 goto aux_unlock; 5250 5251 /* already mapped with a different offset */ 5252 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5253 goto aux_unlock; 5254 5255 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5256 goto aux_unlock; 5257 5258 /* already mapped with a different size */ 5259 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5260 goto aux_unlock; 5261 5262 if (!is_power_of_2(nr_pages)) 5263 goto aux_unlock; 5264 5265 if (!atomic_inc_not_zero(&rb->mmap_count)) 5266 goto aux_unlock; 5267 5268 if (rb_has_aux(rb)) { 5269 atomic_inc(&rb->aux_mmap_count); 5270 ret = 0; 5271 goto unlock; 5272 } 5273 5274 atomic_set(&rb->aux_mmap_count, 1); 5275 user_extra = nr_pages; 5276 5277 goto accounting; 5278 } 5279 5280 /* 5281 * If we have rb pages ensure they're a power-of-two number, so we 5282 * can do bitmasks instead of modulo. 5283 */ 5284 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5285 return -EINVAL; 5286 5287 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5288 return -EINVAL; 5289 5290 WARN_ON_ONCE(event->ctx->parent_ctx); 5291 again: 5292 mutex_lock(&event->mmap_mutex); 5293 if (event->rb) { 5294 if (event->rb->nr_pages != nr_pages) { 5295 ret = -EINVAL; 5296 goto unlock; 5297 } 5298 5299 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5300 /* 5301 * Raced against perf_mmap_close() through 5302 * perf_event_set_output(). Try again, hope for better 5303 * luck. 5304 */ 5305 mutex_unlock(&event->mmap_mutex); 5306 goto again; 5307 } 5308 5309 goto unlock; 5310 } 5311 5312 user_extra = nr_pages + 1; 5313 5314 accounting: 5315 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5316 5317 /* 5318 * Increase the limit linearly with more CPUs: 5319 */ 5320 user_lock_limit *= num_online_cpus(); 5321 5322 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5323 5324 if (user_locked > user_lock_limit) 5325 extra = user_locked - user_lock_limit; 5326 5327 lock_limit = rlimit(RLIMIT_MEMLOCK); 5328 lock_limit >>= PAGE_SHIFT; 5329 locked = vma->vm_mm->pinned_vm + extra; 5330 5331 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5332 !capable(CAP_IPC_LOCK)) { 5333 ret = -EPERM; 5334 goto unlock; 5335 } 5336 5337 WARN_ON(!rb && event->rb); 5338 5339 if (vma->vm_flags & VM_WRITE) 5340 flags |= RING_BUFFER_WRITABLE; 5341 5342 if (!rb) { 5343 rb = rb_alloc(nr_pages, 5344 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5345 event->cpu, flags); 5346 5347 if (!rb) { 5348 ret = -ENOMEM; 5349 goto unlock; 5350 } 5351 5352 atomic_set(&rb->mmap_count, 1); 5353 rb->mmap_user = get_current_user(); 5354 rb->mmap_locked = extra; 5355 5356 ring_buffer_attach(event, rb); 5357 5358 perf_event_init_userpage(event); 5359 perf_event_update_userpage(event); 5360 } else { 5361 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5362 event->attr.aux_watermark, flags); 5363 if (!ret) 5364 rb->aux_mmap_locked = extra; 5365 } 5366 5367 unlock: 5368 if (!ret) { 5369 atomic_long_add(user_extra, &user->locked_vm); 5370 vma->vm_mm->pinned_vm += extra; 5371 5372 atomic_inc(&event->mmap_count); 5373 } else if (rb) { 5374 atomic_dec(&rb->mmap_count); 5375 } 5376 aux_unlock: 5377 mutex_unlock(&event->mmap_mutex); 5378 5379 /* 5380 * Since pinned accounting is per vm we cannot allow fork() to copy our 5381 * vma. 5382 */ 5383 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5384 vma->vm_ops = &perf_mmap_vmops; 5385 5386 if (event->pmu->event_mapped) 5387 event->pmu->event_mapped(event, vma->vm_mm); 5388 5389 return ret; 5390 } 5391 5392 static int perf_fasync(int fd, struct file *filp, int on) 5393 { 5394 struct inode *inode = file_inode(filp); 5395 struct perf_event *event = filp->private_data; 5396 int retval; 5397 5398 inode_lock(inode); 5399 retval = fasync_helper(fd, filp, on, &event->fasync); 5400 inode_unlock(inode); 5401 5402 if (retval < 0) 5403 return retval; 5404 5405 return 0; 5406 } 5407 5408 static const struct file_operations perf_fops = { 5409 .llseek = no_llseek, 5410 .release = perf_release, 5411 .read = perf_read, 5412 .poll = perf_poll, 5413 .unlocked_ioctl = perf_ioctl, 5414 .compat_ioctl = perf_compat_ioctl, 5415 .mmap = perf_mmap, 5416 .fasync = perf_fasync, 5417 }; 5418 5419 /* 5420 * Perf event wakeup 5421 * 5422 * If there's data, ensure we set the poll() state and publish everything 5423 * to user-space before waking everybody up. 5424 */ 5425 5426 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5427 { 5428 /* only the parent has fasync state */ 5429 if (event->parent) 5430 event = event->parent; 5431 return &event->fasync; 5432 } 5433 5434 void perf_event_wakeup(struct perf_event *event) 5435 { 5436 ring_buffer_wakeup(event); 5437 5438 if (event->pending_kill) { 5439 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5440 event->pending_kill = 0; 5441 } 5442 } 5443 5444 static void perf_pending_event(struct irq_work *entry) 5445 { 5446 struct perf_event *event = container_of(entry, 5447 struct perf_event, pending); 5448 int rctx; 5449 5450 rctx = perf_swevent_get_recursion_context(); 5451 /* 5452 * If we 'fail' here, that's OK, it means recursion is already disabled 5453 * and we won't recurse 'further'. 5454 */ 5455 5456 if (event->pending_disable) { 5457 event->pending_disable = 0; 5458 perf_event_disable_local(event); 5459 } 5460 5461 if (event->pending_wakeup) { 5462 event->pending_wakeup = 0; 5463 perf_event_wakeup(event); 5464 } 5465 5466 if (rctx >= 0) 5467 perf_swevent_put_recursion_context(rctx); 5468 } 5469 5470 /* 5471 * We assume there is only KVM supporting the callbacks. 5472 * Later on, we might change it to a list if there is 5473 * another virtualization implementation supporting the callbacks. 5474 */ 5475 struct perf_guest_info_callbacks *perf_guest_cbs; 5476 5477 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5478 { 5479 perf_guest_cbs = cbs; 5480 return 0; 5481 } 5482 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5483 5484 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5485 { 5486 perf_guest_cbs = NULL; 5487 return 0; 5488 } 5489 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5490 5491 static void 5492 perf_output_sample_regs(struct perf_output_handle *handle, 5493 struct pt_regs *regs, u64 mask) 5494 { 5495 int bit; 5496 DECLARE_BITMAP(_mask, 64); 5497 5498 bitmap_from_u64(_mask, mask); 5499 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5500 u64 val; 5501 5502 val = perf_reg_value(regs, bit); 5503 perf_output_put(handle, val); 5504 } 5505 } 5506 5507 static void perf_sample_regs_user(struct perf_regs *regs_user, 5508 struct pt_regs *regs, 5509 struct pt_regs *regs_user_copy) 5510 { 5511 if (user_mode(regs)) { 5512 regs_user->abi = perf_reg_abi(current); 5513 regs_user->regs = regs; 5514 } else if (current->mm) { 5515 perf_get_regs_user(regs_user, regs, regs_user_copy); 5516 } else { 5517 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5518 regs_user->regs = NULL; 5519 } 5520 } 5521 5522 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5523 struct pt_regs *regs) 5524 { 5525 regs_intr->regs = regs; 5526 regs_intr->abi = perf_reg_abi(current); 5527 } 5528 5529 5530 /* 5531 * Get remaining task size from user stack pointer. 5532 * 5533 * It'd be better to take stack vma map and limit this more 5534 * precisly, but there's no way to get it safely under interrupt, 5535 * so using TASK_SIZE as limit. 5536 */ 5537 static u64 perf_ustack_task_size(struct pt_regs *regs) 5538 { 5539 unsigned long addr = perf_user_stack_pointer(regs); 5540 5541 if (!addr || addr >= TASK_SIZE) 5542 return 0; 5543 5544 return TASK_SIZE - addr; 5545 } 5546 5547 static u16 5548 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5549 struct pt_regs *regs) 5550 { 5551 u64 task_size; 5552 5553 /* No regs, no stack pointer, no dump. */ 5554 if (!regs) 5555 return 0; 5556 5557 /* 5558 * Check if we fit in with the requested stack size into the: 5559 * - TASK_SIZE 5560 * If we don't, we limit the size to the TASK_SIZE. 5561 * 5562 * - remaining sample size 5563 * If we don't, we customize the stack size to 5564 * fit in to the remaining sample size. 5565 */ 5566 5567 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5568 stack_size = min(stack_size, (u16) task_size); 5569 5570 /* Current header size plus static size and dynamic size. */ 5571 header_size += 2 * sizeof(u64); 5572 5573 /* Do we fit in with the current stack dump size? */ 5574 if ((u16) (header_size + stack_size) < header_size) { 5575 /* 5576 * If we overflow the maximum size for the sample, 5577 * we customize the stack dump size to fit in. 5578 */ 5579 stack_size = USHRT_MAX - header_size - sizeof(u64); 5580 stack_size = round_up(stack_size, sizeof(u64)); 5581 } 5582 5583 return stack_size; 5584 } 5585 5586 static void 5587 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5588 struct pt_regs *regs) 5589 { 5590 /* Case of a kernel thread, nothing to dump */ 5591 if (!regs) { 5592 u64 size = 0; 5593 perf_output_put(handle, size); 5594 } else { 5595 unsigned long sp; 5596 unsigned int rem; 5597 u64 dyn_size; 5598 5599 /* 5600 * We dump: 5601 * static size 5602 * - the size requested by user or the best one we can fit 5603 * in to the sample max size 5604 * data 5605 * - user stack dump data 5606 * dynamic size 5607 * - the actual dumped size 5608 */ 5609 5610 /* Static size. */ 5611 perf_output_put(handle, dump_size); 5612 5613 /* Data. */ 5614 sp = perf_user_stack_pointer(regs); 5615 rem = __output_copy_user(handle, (void *) sp, dump_size); 5616 dyn_size = dump_size - rem; 5617 5618 perf_output_skip(handle, rem); 5619 5620 /* Dynamic size. */ 5621 perf_output_put(handle, dyn_size); 5622 } 5623 } 5624 5625 static void __perf_event_header__init_id(struct perf_event_header *header, 5626 struct perf_sample_data *data, 5627 struct perf_event *event) 5628 { 5629 u64 sample_type = event->attr.sample_type; 5630 5631 data->type = sample_type; 5632 header->size += event->id_header_size; 5633 5634 if (sample_type & PERF_SAMPLE_TID) { 5635 /* namespace issues */ 5636 data->tid_entry.pid = perf_event_pid(event, current); 5637 data->tid_entry.tid = perf_event_tid(event, current); 5638 } 5639 5640 if (sample_type & PERF_SAMPLE_TIME) 5641 data->time = perf_event_clock(event); 5642 5643 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5644 data->id = primary_event_id(event); 5645 5646 if (sample_type & PERF_SAMPLE_STREAM_ID) 5647 data->stream_id = event->id; 5648 5649 if (sample_type & PERF_SAMPLE_CPU) { 5650 data->cpu_entry.cpu = raw_smp_processor_id(); 5651 data->cpu_entry.reserved = 0; 5652 } 5653 } 5654 5655 void perf_event_header__init_id(struct perf_event_header *header, 5656 struct perf_sample_data *data, 5657 struct perf_event *event) 5658 { 5659 if (event->attr.sample_id_all) 5660 __perf_event_header__init_id(header, data, event); 5661 } 5662 5663 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5664 struct perf_sample_data *data) 5665 { 5666 u64 sample_type = data->type; 5667 5668 if (sample_type & PERF_SAMPLE_TID) 5669 perf_output_put(handle, data->tid_entry); 5670 5671 if (sample_type & PERF_SAMPLE_TIME) 5672 perf_output_put(handle, data->time); 5673 5674 if (sample_type & PERF_SAMPLE_ID) 5675 perf_output_put(handle, data->id); 5676 5677 if (sample_type & PERF_SAMPLE_STREAM_ID) 5678 perf_output_put(handle, data->stream_id); 5679 5680 if (sample_type & PERF_SAMPLE_CPU) 5681 perf_output_put(handle, data->cpu_entry); 5682 5683 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5684 perf_output_put(handle, data->id); 5685 } 5686 5687 void perf_event__output_id_sample(struct perf_event *event, 5688 struct perf_output_handle *handle, 5689 struct perf_sample_data *sample) 5690 { 5691 if (event->attr.sample_id_all) 5692 __perf_event__output_id_sample(handle, sample); 5693 } 5694 5695 static void perf_output_read_one(struct perf_output_handle *handle, 5696 struct perf_event *event, 5697 u64 enabled, u64 running) 5698 { 5699 u64 read_format = event->attr.read_format; 5700 u64 values[4]; 5701 int n = 0; 5702 5703 values[n++] = perf_event_count(event); 5704 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5705 values[n++] = enabled + 5706 atomic64_read(&event->child_total_time_enabled); 5707 } 5708 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5709 values[n++] = running + 5710 atomic64_read(&event->child_total_time_running); 5711 } 5712 if (read_format & PERF_FORMAT_ID) 5713 values[n++] = primary_event_id(event); 5714 5715 __output_copy(handle, values, n * sizeof(u64)); 5716 } 5717 5718 static void perf_output_read_group(struct perf_output_handle *handle, 5719 struct perf_event *event, 5720 u64 enabled, u64 running) 5721 { 5722 struct perf_event *leader = event->group_leader, *sub; 5723 u64 read_format = event->attr.read_format; 5724 u64 values[5]; 5725 int n = 0; 5726 5727 values[n++] = 1 + leader->nr_siblings; 5728 5729 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5730 values[n++] = enabled; 5731 5732 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5733 values[n++] = running; 5734 5735 if (leader != event) 5736 leader->pmu->read(leader); 5737 5738 values[n++] = perf_event_count(leader); 5739 if (read_format & PERF_FORMAT_ID) 5740 values[n++] = primary_event_id(leader); 5741 5742 __output_copy(handle, values, n * sizeof(u64)); 5743 5744 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5745 n = 0; 5746 5747 if ((sub != event) && 5748 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5749 sub->pmu->read(sub); 5750 5751 values[n++] = perf_event_count(sub); 5752 if (read_format & PERF_FORMAT_ID) 5753 values[n++] = primary_event_id(sub); 5754 5755 __output_copy(handle, values, n * sizeof(u64)); 5756 } 5757 } 5758 5759 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5760 PERF_FORMAT_TOTAL_TIME_RUNNING) 5761 5762 /* 5763 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 5764 * 5765 * The problem is that its both hard and excessively expensive to iterate the 5766 * child list, not to mention that its impossible to IPI the children running 5767 * on another CPU, from interrupt/NMI context. 5768 */ 5769 static void perf_output_read(struct perf_output_handle *handle, 5770 struct perf_event *event) 5771 { 5772 u64 enabled = 0, running = 0, now; 5773 u64 read_format = event->attr.read_format; 5774 5775 /* 5776 * compute total_time_enabled, total_time_running 5777 * based on snapshot values taken when the event 5778 * was last scheduled in. 5779 * 5780 * we cannot simply called update_context_time() 5781 * because of locking issue as we are called in 5782 * NMI context 5783 */ 5784 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5785 calc_timer_values(event, &now, &enabled, &running); 5786 5787 if (event->attr.read_format & PERF_FORMAT_GROUP) 5788 perf_output_read_group(handle, event, enabled, running); 5789 else 5790 perf_output_read_one(handle, event, enabled, running); 5791 } 5792 5793 void perf_output_sample(struct perf_output_handle *handle, 5794 struct perf_event_header *header, 5795 struct perf_sample_data *data, 5796 struct perf_event *event) 5797 { 5798 u64 sample_type = data->type; 5799 5800 perf_output_put(handle, *header); 5801 5802 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5803 perf_output_put(handle, data->id); 5804 5805 if (sample_type & PERF_SAMPLE_IP) 5806 perf_output_put(handle, data->ip); 5807 5808 if (sample_type & PERF_SAMPLE_TID) 5809 perf_output_put(handle, data->tid_entry); 5810 5811 if (sample_type & PERF_SAMPLE_TIME) 5812 perf_output_put(handle, data->time); 5813 5814 if (sample_type & PERF_SAMPLE_ADDR) 5815 perf_output_put(handle, data->addr); 5816 5817 if (sample_type & PERF_SAMPLE_ID) 5818 perf_output_put(handle, data->id); 5819 5820 if (sample_type & PERF_SAMPLE_STREAM_ID) 5821 perf_output_put(handle, data->stream_id); 5822 5823 if (sample_type & PERF_SAMPLE_CPU) 5824 perf_output_put(handle, data->cpu_entry); 5825 5826 if (sample_type & PERF_SAMPLE_PERIOD) 5827 perf_output_put(handle, data->period); 5828 5829 if (sample_type & PERF_SAMPLE_READ) 5830 perf_output_read(handle, event); 5831 5832 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5833 int size = 1; 5834 5835 size += data->callchain->nr; 5836 size *= sizeof(u64); 5837 __output_copy(handle, data->callchain, size); 5838 } 5839 5840 if (sample_type & PERF_SAMPLE_RAW) { 5841 struct perf_raw_record *raw = data->raw; 5842 5843 if (raw) { 5844 struct perf_raw_frag *frag = &raw->frag; 5845 5846 perf_output_put(handle, raw->size); 5847 do { 5848 if (frag->copy) { 5849 __output_custom(handle, frag->copy, 5850 frag->data, frag->size); 5851 } else { 5852 __output_copy(handle, frag->data, 5853 frag->size); 5854 } 5855 if (perf_raw_frag_last(frag)) 5856 break; 5857 frag = frag->next; 5858 } while (1); 5859 if (frag->pad) 5860 __output_skip(handle, NULL, frag->pad); 5861 } else { 5862 struct { 5863 u32 size; 5864 u32 data; 5865 } raw = { 5866 .size = sizeof(u32), 5867 .data = 0, 5868 }; 5869 perf_output_put(handle, raw); 5870 } 5871 } 5872 5873 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5874 if (data->br_stack) { 5875 size_t size; 5876 5877 size = data->br_stack->nr 5878 * sizeof(struct perf_branch_entry); 5879 5880 perf_output_put(handle, data->br_stack->nr); 5881 perf_output_copy(handle, data->br_stack->entries, size); 5882 } else { 5883 /* 5884 * we always store at least the value of nr 5885 */ 5886 u64 nr = 0; 5887 perf_output_put(handle, nr); 5888 } 5889 } 5890 5891 if (sample_type & PERF_SAMPLE_REGS_USER) { 5892 u64 abi = data->regs_user.abi; 5893 5894 /* 5895 * If there are no regs to dump, notice it through 5896 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5897 */ 5898 perf_output_put(handle, abi); 5899 5900 if (abi) { 5901 u64 mask = event->attr.sample_regs_user; 5902 perf_output_sample_regs(handle, 5903 data->regs_user.regs, 5904 mask); 5905 } 5906 } 5907 5908 if (sample_type & PERF_SAMPLE_STACK_USER) { 5909 perf_output_sample_ustack(handle, 5910 data->stack_user_size, 5911 data->regs_user.regs); 5912 } 5913 5914 if (sample_type & PERF_SAMPLE_WEIGHT) 5915 perf_output_put(handle, data->weight); 5916 5917 if (sample_type & PERF_SAMPLE_DATA_SRC) 5918 perf_output_put(handle, data->data_src.val); 5919 5920 if (sample_type & PERF_SAMPLE_TRANSACTION) 5921 perf_output_put(handle, data->txn); 5922 5923 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5924 u64 abi = data->regs_intr.abi; 5925 /* 5926 * If there are no regs to dump, notice it through 5927 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5928 */ 5929 perf_output_put(handle, abi); 5930 5931 if (abi) { 5932 u64 mask = event->attr.sample_regs_intr; 5933 5934 perf_output_sample_regs(handle, 5935 data->regs_intr.regs, 5936 mask); 5937 } 5938 } 5939 5940 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 5941 perf_output_put(handle, data->phys_addr); 5942 5943 if (!event->attr.watermark) { 5944 int wakeup_events = event->attr.wakeup_events; 5945 5946 if (wakeup_events) { 5947 struct ring_buffer *rb = handle->rb; 5948 int events = local_inc_return(&rb->events); 5949 5950 if (events >= wakeup_events) { 5951 local_sub(wakeup_events, &rb->events); 5952 local_inc(&rb->wakeup); 5953 } 5954 } 5955 } 5956 } 5957 5958 static u64 perf_virt_to_phys(u64 virt) 5959 { 5960 u64 phys_addr = 0; 5961 struct page *p = NULL; 5962 5963 if (!virt) 5964 return 0; 5965 5966 if (virt >= TASK_SIZE) { 5967 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 5968 if (virt_addr_valid((void *)(uintptr_t)virt) && 5969 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 5970 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 5971 } else { 5972 /* 5973 * Walking the pages tables for user address. 5974 * Interrupts are disabled, so it prevents any tear down 5975 * of the page tables. 5976 * Try IRQ-safe __get_user_pages_fast first. 5977 * If failed, leave phys_addr as 0. 5978 */ 5979 if ((current->mm != NULL) && 5980 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 5981 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 5982 5983 if (p) 5984 put_page(p); 5985 } 5986 5987 return phys_addr; 5988 } 5989 5990 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 5991 5992 static struct perf_callchain_entry * 5993 perf_callchain(struct perf_event *event, struct pt_regs *regs) 5994 { 5995 bool kernel = !event->attr.exclude_callchain_kernel; 5996 bool user = !event->attr.exclude_callchain_user; 5997 /* Disallow cross-task user callchains. */ 5998 bool crosstask = event->ctx->task && event->ctx->task != current; 5999 const u32 max_stack = event->attr.sample_max_stack; 6000 struct perf_callchain_entry *callchain; 6001 6002 if (!kernel && !user) 6003 return &__empty_callchain; 6004 6005 callchain = get_perf_callchain(regs, 0, kernel, user, 6006 max_stack, crosstask, true); 6007 return callchain ?: &__empty_callchain; 6008 } 6009 6010 void perf_prepare_sample(struct perf_event_header *header, 6011 struct perf_sample_data *data, 6012 struct perf_event *event, 6013 struct pt_regs *regs) 6014 { 6015 u64 sample_type = event->attr.sample_type; 6016 6017 header->type = PERF_RECORD_SAMPLE; 6018 header->size = sizeof(*header) + event->header_size; 6019 6020 header->misc = 0; 6021 header->misc |= perf_misc_flags(regs); 6022 6023 __perf_event_header__init_id(header, data, event); 6024 6025 if (sample_type & PERF_SAMPLE_IP) 6026 data->ip = perf_instruction_pointer(regs); 6027 6028 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6029 int size = 1; 6030 6031 data->callchain = perf_callchain(event, regs); 6032 size += data->callchain->nr; 6033 6034 header->size += size * sizeof(u64); 6035 } 6036 6037 if (sample_type & PERF_SAMPLE_RAW) { 6038 struct perf_raw_record *raw = data->raw; 6039 int size; 6040 6041 if (raw) { 6042 struct perf_raw_frag *frag = &raw->frag; 6043 u32 sum = 0; 6044 6045 do { 6046 sum += frag->size; 6047 if (perf_raw_frag_last(frag)) 6048 break; 6049 frag = frag->next; 6050 } while (1); 6051 6052 size = round_up(sum + sizeof(u32), sizeof(u64)); 6053 raw->size = size - sizeof(u32); 6054 frag->pad = raw->size - sum; 6055 } else { 6056 size = sizeof(u64); 6057 } 6058 6059 header->size += size; 6060 } 6061 6062 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6063 int size = sizeof(u64); /* nr */ 6064 if (data->br_stack) { 6065 size += data->br_stack->nr 6066 * sizeof(struct perf_branch_entry); 6067 } 6068 header->size += size; 6069 } 6070 6071 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6072 perf_sample_regs_user(&data->regs_user, regs, 6073 &data->regs_user_copy); 6074 6075 if (sample_type & PERF_SAMPLE_REGS_USER) { 6076 /* regs dump ABI info */ 6077 int size = sizeof(u64); 6078 6079 if (data->regs_user.regs) { 6080 u64 mask = event->attr.sample_regs_user; 6081 size += hweight64(mask) * sizeof(u64); 6082 } 6083 6084 header->size += size; 6085 } 6086 6087 if (sample_type & PERF_SAMPLE_STACK_USER) { 6088 /* 6089 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6090 * processed as the last one or have additional check added 6091 * in case new sample type is added, because we could eat 6092 * up the rest of the sample size. 6093 */ 6094 u16 stack_size = event->attr.sample_stack_user; 6095 u16 size = sizeof(u64); 6096 6097 stack_size = perf_sample_ustack_size(stack_size, header->size, 6098 data->regs_user.regs); 6099 6100 /* 6101 * If there is something to dump, add space for the dump 6102 * itself and for the field that tells the dynamic size, 6103 * which is how many have been actually dumped. 6104 */ 6105 if (stack_size) 6106 size += sizeof(u64) + stack_size; 6107 6108 data->stack_user_size = stack_size; 6109 header->size += size; 6110 } 6111 6112 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6113 /* regs dump ABI info */ 6114 int size = sizeof(u64); 6115 6116 perf_sample_regs_intr(&data->regs_intr, regs); 6117 6118 if (data->regs_intr.regs) { 6119 u64 mask = event->attr.sample_regs_intr; 6120 6121 size += hweight64(mask) * sizeof(u64); 6122 } 6123 6124 header->size += size; 6125 } 6126 6127 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6128 data->phys_addr = perf_virt_to_phys(data->addr); 6129 } 6130 6131 static void __always_inline 6132 __perf_event_output(struct perf_event *event, 6133 struct perf_sample_data *data, 6134 struct pt_regs *regs, 6135 int (*output_begin)(struct perf_output_handle *, 6136 struct perf_event *, 6137 unsigned int)) 6138 { 6139 struct perf_output_handle handle; 6140 struct perf_event_header header; 6141 6142 /* protect the callchain buffers */ 6143 rcu_read_lock(); 6144 6145 perf_prepare_sample(&header, data, event, regs); 6146 6147 if (output_begin(&handle, event, header.size)) 6148 goto exit; 6149 6150 perf_output_sample(&handle, &header, data, event); 6151 6152 perf_output_end(&handle); 6153 6154 exit: 6155 rcu_read_unlock(); 6156 } 6157 6158 void 6159 perf_event_output_forward(struct perf_event *event, 6160 struct perf_sample_data *data, 6161 struct pt_regs *regs) 6162 { 6163 __perf_event_output(event, data, regs, perf_output_begin_forward); 6164 } 6165 6166 void 6167 perf_event_output_backward(struct perf_event *event, 6168 struct perf_sample_data *data, 6169 struct pt_regs *regs) 6170 { 6171 __perf_event_output(event, data, regs, perf_output_begin_backward); 6172 } 6173 6174 void 6175 perf_event_output(struct perf_event *event, 6176 struct perf_sample_data *data, 6177 struct pt_regs *regs) 6178 { 6179 __perf_event_output(event, data, regs, perf_output_begin); 6180 } 6181 6182 /* 6183 * read event_id 6184 */ 6185 6186 struct perf_read_event { 6187 struct perf_event_header header; 6188 6189 u32 pid; 6190 u32 tid; 6191 }; 6192 6193 static void 6194 perf_event_read_event(struct perf_event *event, 6195 struct task_struct *task) 6196 { 6197 struct perf_output_handle handle; 6198 struct perf_sample_data sample; 6199 struct perf_read_event read_event = { 6200 .header = { 6201 .type = PERF_RECORD_READ, 6202 .misc = 0, 6203 .size = sizeof(read_event) + event->read_size, 6204 }, 6205 .pid = perf_event_pid(event, task), 6206 .tid = perf_event_tid(event, task), 6207 }; 6208 int ret; 6209 6210 perf_event_header__init_id(&read_event.header, &sample, event); 6211 ret = perf_output_begin(&handle, event, read_event.header.size); 6212 if (ret) 6213 return; 6214 6215 perf_output_put(&handle, read_event); 6216 perf_output_read(&handle, event); 6217 perf_event__output_id_sample(event, &handle, &sample); 6218 6219 perf_output_end(&handle); 6220 } 6221 6222 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6223 6224 static void 6225 perf_iterate_ctx(struct perf_event_context *ctx, 6226 perf_iterate_f output, 6227 void *data, bool all) 6228 { 6229 struct perf_event *event; 6230 6231 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6232 if (!all) { 6233 if (event->state < PERF_EVENT_STATE_INACTIVE) 6234 continue; 6235 if (!event_filter_match(event)) 6236 continue; 6237 } 6238 6239 output(event, data); 6240 } 6241 } 6242 6243 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6244 { 6245 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6246 struct perf_event *event; 6247 6248 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6249 /* 6250 * Skip events that are not fully formed yet; ensure that 6251 * if we observe event->ctx, both event and ctx will be 6252 * complete enough. See perf_install_in_context(). 6253 */ 6254 if (!smp_load_acquire(&event->ctx)) 6255 continue; 6256 6257 if (event->state < PERF_EVENT_STATE_INACTIVE) 6258 continue; 6259 if (!event_filter_match(event)) 6260 continue; 6261 output(event, data); 6262 } 6263 } 6264 6265 /* 6266 * Iterate all events that need to receive side-band events. 6267 * 6268 * For new callers; ensure that account_pmu_sb_event() includes 6269 * your event, otherwise it might not get delivered. 6270 */ 6271 static void 6272 perf_iterate_sb(perf_iterate_f output, void *data, 6273 struct perf_event_context *task_ctx) 6274 { 6275 struct perf_event_context *ctx; 6276 int ctxn; 6277 6278 rcu_read_lock(); 6279 preempt_disable(); 6280 6281 /* 6282 * If we have task_ctx != NULL we only notify the task context itself. 6283 * The task_ctx is set only for EXIT events before releasing task 6284 * context. 6285 */ 6286 if (task_ctx) { 6287 perf_iterate_ctx(task_ctx, output, data, false); 6288 goto done; 6289 } 6290 6291 perf_iterate_sb_cpu(output, data); 6292 6293 for_each_task_context_nr(ctxn) { 6294 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6295 if (ctx) 6296 perf_iterate_ctx(ctx, output, data, false); 6297 } 6298 done: 6299 preempt_enable(); 6300 rcu_read_unlock(); 6301 } 6302 6303 /* 6304 * Clear all file-based filters at exec, they'll have to be 6305 * re-instated when/if these objects are mmapped again. 6306 */ 6307 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6308 { 6309 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6310 struct perf_addr_filter *filter; 6311 unsigned int restart = 0, count = 0; 6312 unsigned long flags; 6313 6314 if (!has_addr_filter(event)) 6315 return; 6316 6317 raw_spin_lock_irqsave(&ifh->lock, flags); 6318 list_for_each_entry(filter, &ifh->list, entry) { 6319 if (filter->inode) { 6320 event->addr_filters_offs[count] = 0; 6321 restart++; 6322 } 6323 6324 count++; 6325 } 6326 6327 if (restart) 6328 event->addr_filters_gen++; 6329 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6330 6331 if (restart) 6332 perf_event_stop(event, 1); 6333 } 6334 6335 void perf_event_exec(void) 6336 { 6337 struct perf_event_context *ctx; 6338 int ctxn; 6339 6340 rcu_read_lock(); 6341 for_each_task_context_nr(ctxn) { 6342 ctx = current->perf_event_ctxp[ctxn]; 6343 if (!ctx) 6344 continue; 6345 6346 perf_event_enable_on_exec(ctxn); 6347 6348 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6349 true); 6350 } 6351 rcu_read_unlock(); 6352 } 6353 6354 struct remote_output { 6355 struct ring_buffer *rb; 6356 int err; 6357 }; 6358 6359 static void __perf_event_output_stop(struct perf_event *event, void *data) 6360 { 6361 struct perf_event *parent = event->parent; 6362 struct remote_output *ro = data; 6363 struct ring_buffer *rb = ro->rb; 6364 struct stop_event_data sd = { 6365 .event = event, 6366 }; 6367 6368 if (!has_aux(event)) 6369 return; 6370 6371 if (!parent) 6372 parent = event; 6373 6374 /* 6375 * In case of inheritance, it will be the parent that links to the 6376 * ring-buffer, but it will be the child that's actually using it. 6377 * 6378 * We are using event::rb to determine if the event should be stopped, 6379 * however this may race with ring_buffer_attach() (through set_output), 6380 * which will make us skip the event that actually needs to be stopped. 6381 * So ring_buffer_attach() has to stop an aux event before re-assigning 6382 * its rb pointer. 6383 */ 6384 if (rcu_dereference(parent->rb) == rb) 6385 ro->err = __perf_event_stop(&sd); 6386 } 6387 6388 static int __perf_pmu_output_stop(void *info) 6389 { 6390 struct perf_event *event = info; 6391 struct pmu *pmu = event->pmu; 6392 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6393 struct remote_output ro = { 6394 .rb = event->rb, 6395 }; 6396 6397 rcu_read_lock(); 6398 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6399 if (cpuctx->task_ctx) 6400 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6401 &ro, false); 6402 rcu_read_unlock(); 6403 6404 return ro.err; 6405 } 6406 6407 static void perf_pmu_output_stop(struct perf_event *event) 6408 { 6409 struct perf_event *iter; 6410 int err, cpu; 6411 6412 restart: 6413 rcu_read_lock(); 6414 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6415 /* 6416 * For per-CPU events, we need to make sure that neither they 6417 * nor their children are running; for cpu==-1 events it's 6418 * sufficient to stop the event itself if it's active, since 6419 * it can't have children. 6420 */ 6421 cpu = iter->cpu; 6422 if (cpu == -1) 6423 cpu = READ_ONCE(iter->oncpu); 6424 6425 if (cpu == -1) 6426 continue; 6427 6428 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6429 if (err == -EAGAIN) { 6430 rcu_read_unlock(); 6431 goto restart; 6432 } 6433 } 6434 rcu_read_unlock(); 6435 } 6436 6437 /* 6438 * task tracking -- fork/exit 6439 * 6440 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6441 */ 6442 6443 struct perf_task_event { 6444 struct task_struct *task; 6445 struct perf_event_context *task_ctx; 6446 6447 struct { 6448 struct perf_event_header header; 6449 6450 u32 pid; 6451 u32 ppid; 6452 u32 tid; 6453 u32 ptid; 6454 u64 time; 6455 } event_id; 6456 }; 6457 6458 static int perf_event_task_match(struct perf_event *event) 6459 { 6460 return event->attr.comm || event->attr.mmap || 6461 event->attr.mmap2 || event->attr.mmap_data || 6462 event->attr.task; 6463 } 6464 6465 static void perf_event_task_output(struct perf_event *event, 6466 void *data) 6467 { 6468 struct perf_task_event *task_event = data; 6469 struct perf_output_handle handle; 6470 struct perf_sample_data sample; 6471 struct task_struct *task = task_event->task; 6472 int ret, size = task_event->event_id.header.size; 6473 6474 if (!perf_event_task_match(event)) 6475 return; 6476 6477 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6478 6479 ret = perf_output_begin(&handle, event, 6480 task_event->event_id.header.size); 6481 if (ret) 6482 goto out; 6483 6484 task_event->event_id.pid = perf_event_pid(event, task); 6485 task_event->event_id.ppid = perf_event_pid(event, current); 6486 6487 task_event->event_id.tid = perf_event_tid(event, task); 6488 task_event->event_id.ptid = perf_event_tid(event, current); 6489 6490 task_event->event_id.time = perf_event_clock(event); 6491 6492 perf_output_put(&handle, task_event->event_id); 6493 6494 perf_event__output_id_sample(event, &handle, &sample); 6495 6496 perf_output_end(&handle); 6497 out: 6498 task_event->event_id.header.size = size; 6499 } 6500 6501 static void perf_event_task(struct task_struct *task, 6502 struct perf_event_context *task_ctx, 6503 int new) 6504 { 6505 struct perf_task_event task_event; 6506 6507 if (!atomic_read(&nr_comm_events) && 6508 !atomic_read(&nr_mmap_events) && 6509 !atomic_read(&nr_task_events)) 6510 return; 6511 6512 task_event = (struct perf_task_event){ 6513 .task = task, 6514 .task_ctx = task_ctx, 6515 .event_id = { 6516 .header = { 6517 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6518 .misc = 0, 6519 .size = sizeof(task_event.event_id), 6520 }, 6521 /* .pid */ 6522 /* .ppid */ 6523 /* .tid */ 6524 /* .ptid */ 6525 /* .time */ 6526 }, 6527 }; 6528 6529 perf_iterate_sb(perf_event_task_output, 6530 &task_event, 6531 task_ctx); 6532 } 6533 6534 void perf_event_fork(struct task_struct *task) 6535 { 6536 perf_event_task(task, NULL, 1); 6537 perf_event_namespaces(task); 6538 } 6539 6540 /* 6541 * comm tracking 6542 */ 6543 6544 struct perf_comm_event { 6545 struct task_struct *task; 6546 char *comm; 6547 int comm_size; 6548 6549 struct { 6550 struct perf_event_header header; 6551 6552 u32 pid; 6553 u32 tid; 6554 } event_id; 6555 }; 6556 6557 static int perf_event_comm_match(struct perf_event *event) 6558 { 6559 return event->attr.comm; 6560 } 6561 6562 static void perf_event_comm_output(struct perf_event *event, 6563 void *data) 6564 { 6565 struct perf_comm_event *comm_event = data; 6566 struct perf_output_handle handle; 6567 struct perf_sample_data sample; 6568 int size = comm_event->event_id.header.size; 6569 int ret; 6570 6571 if (!perf_event_comm_match(event)) 6572 return; 6573 6574 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6575 ret = perf_output_begin(&handle, event, 6576 comm_event->event_id.header.size); 6577 6578 if (ret) 6579 goto out; 6580 6581 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6582 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6583 6584 perf_output_put(&handle, comm_event->event_id); 6585 __output_copy(&handle, comm_event->comm, 6586 comm_event->comm_size); 6587 6588 perf_event__output_id_sample(event, &handle, &sample); 6589 6590 perf_output_end(&handle); 6591 out: 6592 comm_event->event_id.header.size = size; 6593 } 6594 6595 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6596 { 6597 char comm[TASK_COMM_LEN]; 6598 unsigned int size; 6599 6600 memset(comm, 0, sizeof(comm)); 6601 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6602 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6603 6604 comm_event->comm = comm; 6605 comm_event->comm_size = size; 6606 6607 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6608 6609 perf_iterate_sb(perf_event_comm_output, 6610 comm_event, 6611 NULL); 6612 } 6613 6614 void perf_event_comm(struct task_struct *task, bool exec) 6615 { 6616 struct perf_comm_event comm_event; 6617 6618 if (!atomic_read(&nr_comm_events)) 6619 return; 6620 6621 comm_event = (struct perf_comm_event){ 6622 .task = task, 6623 /* .comm */ 6624 /* .comm_size */ 6625 .event_id = { 6626 .header = { 6627 .type = PERF_RECORD_COMM, 6628 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6629 /* .size */ 6630 }, 6631 /* .pid */ 6632 /* .tid */ 6633 }, 6634 }; 6635 6636 perf_event_comm_event(&comm_event); 6637 } 6638 6639 /* 6640 * namespaces tracking 6641 */ 6642 6643 struct perf_namespaces_event { 6644 struct task_struct *task; 6645 6646 struct { 6647 struct perf_event_header header; 6648 6649 u32 pid; 6650 u32 tid; 6651 u64 nr_namespaces; 6652 struct perf_ns_link_info link_info[NR_NAMESPACES]; 6653 } event_id; 6654 }; 6655 6656 static int perf_event_namespaces_match(struct perf_event *event) 6657 { 6658 return event->attr.namespaces; 6659 } 6660 6661 static void perf_event_namespaces_output(struct perf_event *event, 6662 void *data) 6663 { 6664 struct perf_namespaces_event *namespaces_event = data; 6665 struct perf_output_handle handle; 6666 struct perf_sample_data sample; 6667 u16 header_size = namespaces_event->event_id.header.size; 6668 int ret; 6669 6670 if (!perf_event_namespaces_match(event)) 6671 return; 6672 6673 perf_event_header__init_id(&namespaces_event->event_id.header, 6674 &sample, event); 6675 ret = perf_output_begin(&handle, event, 6676 namespaces_event->event_id.header.size); 6677 if (ret) 6678 goto out; 6679 6680 namespaces_event->event_id.pid = perf_event_pid(event, 6681 namespaces_event->task); 6682 namespaces_event->event_id.tid = perf_event_tid(event, 6683 namespaces_event->task); 6684 6685 perf_output_put(&handle, namespaces_event->event_id); 6686 6687 perf_event__output_id_sample(event, &handle, &sample); 6688 6689 perf_output_end(&handle); 6690 out: 6691 namespaces_event->event_id.header.size = header_size; 6692 } 6693 6694 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 6695 struct task_struct *task, 6696 const struct proc_ns_operations *ns_ops) 6697 { 6698 struct path ns_path; 6699 struct inode *ns_inode; 6700 void *error; 6701 6702 error = ns_get_path(&ns_path, task, ns_ops); 6703 if (!error) { 6704 ns_inode = ns_path.dentry->d_inode; 6705 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 6706 ns_link_info->ino = ns_inode->i_ino; 6707 path_put(&ns_path); 6708 } 6709 } 6710 6711 void perf_event_namespaces(struct task_struct *task) 6712 { 6713 struct perf_namespaces_event namespaces_event; 6714 struct perf_ns_link_info *ns_link_info; 6715 6716 if (!atomic_read(&nr_namespaces_events)) 6717 return; 6718 6719 namespaces_event = (struct perf_namespaces_event){ 6720 .task = task, 6721 .event_id = { 6722 .header = { 6723 .type = PERF_RECORD_NAMESPACES, 6724 .misc = 0, 6725 .size = sizeof(namespaces_event.event_id), 6726 }, 6727 /* .pid */ 6728 /* .tid */ 6729 .nr_namespaces = NR_NAMESPACES, 6730 /* .link_info[NR_NAMESPACES] */ 6731 }, 6732 }; 6733 6734 ns_link_info = namespaces_event.event_id.link_info; 6735 6736 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 6737 task, &mntns_operations); 6738 6739 #ifdef CONFIG_USER_NS 6740 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 6741 task, &userns_operations); 6742 #endif 6743 #ifdef CONFIG_NET_NS 6744 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 6745 task, &netns_operations); 6746 #endif 6747 #ifdef CONFIG_UTS_NS 6748 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 6749 task, &utsns_operations); 6750 #endif 6751 #ifdef CONFIG_IPC_NS 6752 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 6753 task, &ipcns_operations); 6754 #endif 6755 #ifdef CONFIG_PID_NS 6756 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 6757 task, &pidns_operations); 6758 #endif 6759 #ifdef CONFIG_CGROUPS 6760 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 6761 task, &cgroupns_operations); 6762 #endif 6763 6764 perf_iterate_sb(perf_event_namespaces_output, 6765 &namespaces_event, 6766 NULL); 6767 } 6768 6769 /* 6770 * mmap tracking 6771 */ 6772 6773 struct perf_mmap_event { 6774 struct vm_area_struct *vma; 6775 6776 const char *file_name; 6777 int file_size; 6778 int maj, min; 6779 u64 ino; 6780 u64 ino_generation; 6781 u32 prot, flags; 6782 6783 struct { 6784 struct perf_event_header header; 6785 6786 u32 pid; 6787 u32 tid; 6788 u64 start; 6789 u64 len; 6790 u64 pgoff; 6791 } event_id; 6792 }; 6793 6794 static int perf_event_mmap_match(struct perf_event *event, 6795 void *data) 6796 { 6797 struct perf_mmap_event *mmap_event = data; 6798 struct vm_area_struct *vma = mmap_event->vma; 6799 int executable = vma->vm_flags & VM_EXEC; 6800 6801 return (!executable && event->attr.mmap_data) || 6802 (executable && (event->attr.mmap || event->attr.mmap2)); 6803 } 6804 6805 static void perf_event_mmap_output(struct perf_event *event, 6806 void *data) 6807 { 6808 struct perf_mmap_event *mmap_event = data; 6809 struct perf_output_handle handle; 6810 struct perf_sample_data sample; 6811 int size = mmap_event->event_id.header.size; 6812 int ret; 6813 6814 if (!perf_event_mmap_match(event, data)) 6815 return; 6816 6817 if (event->attr.mmap2) { 6818 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6819 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6820 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6821 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6822 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6823 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6824 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6825 } 6826 6827 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6828 ret = perf_output_begin(&handle, event, 6829 mmap_event->event_id.header.size); 6830 if (ret) 6831 goto out; 6832 6833 mmap_event->event_id.pid = perf_event_pid(event, current); 6834 mmap_event->event_id.tid = perf_event_tid(event, current); 6835 6836 perf_output_put(&handle, mmap_event->event_id); 6837 6838 if (event->attr.mmap2) { 6839 perf_output_put(&handle, mmap_event->maj); 6840 perf_output_put(&handle, mmap_event->min); 6841 perf_output_put(&handle, mmap_event->ino); 6842 perf_output_put(&handle, mmap_event->ino_generation); 6843 perf_output_put(&handle, mmap_event->prot); 6844 perf_output_put(&handle, mmap_event->flags); 6845 } 6846 6847 __output_copy(&handle, mmap_event->file_name, 6848 mmap_event->file_size); 6849 6850 perf_event__output_id_sample(event, &handle, &sample); 6851 6852 perf_output_end(&handle); 6853 out: 6854 mmap_event->event_id.header.size = size; 6855 } 6856 6857 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6858 { 6859 struct vm_area_struct *vma = mmap_event->vma; 6860 struct file *file = vma->vm_file; 6861 int maj = 0, min = 0; 6862 u64 ino = 0, gen = 0; 6863 u32 prot = 0, flags = 0; 6864 unsigned int size; 6865 char tmp[16]; 6866 char *buf = NULL; 6867 char *name; 6868 6869 if (vma->vm_flags & VM_READ) 6870 prot |= PROT_READ; 6871 if (vma->vm_flags & VM_WRITE) 6872 prot |= PROT_WRITE; 6873 if (vma->vm_flags & VM_EXEC) 6874 prot |= PROT_EXEC; 6875 6876 if (vma->vm_flags & VM_MAYSHARE) 6877 flags = MAP_SHARED; 6878 else 6879 flags = MAP_PRIVATE; 6880 6881 if (vma->vm_flags & VM_DENYWRITE) 6882 flags |= MAP_DENYWRITE; 6883 if (vma->vm_flags & VM_MAYEXEC) 6884 flags |= MAP_EXECUTABLE; 6885 if (vma->vm_flags & VM_LOCKED) 6886 flags |= MAP_LOCKED; 6887 if (vma->vm_flags & VM_HUGETLB) 6888 flags |= MAP_HUGETLB; 6889 6890 if (file) { 6891 struct inode *inode; 6892 dev_t dev; 6893 6894 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6895 if (!buf) { 6896 name = "//enomem"; 6897 goto cpy_name; 6898 } 6899 /* 6900 * d_path() works from the end of the rb backwards, so we 6901 * need to add enough zero bytes after the string to handle 6902 * the 64bit alignment we do later. 6903 */ 6904 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6905 if (IS_ERR(name)) { 6906 name = "//toolong"; 6907 goto cpy_name; 6908 } 6909 inode = file_inode(vma->vm_file); 6910 dev = inode->i_sb->s_dev; 6911 ino = inode->i_ino; 6912 gen = inode->i_generation; 6913 maj = MAJOR(dev); 6914 min = MINOR(dev); 6915 6916 goto got_name; 6917 } else { 6918 if (vma->vm_ops && vma->vm_ops->name) { 6919 name = (char *) vma->vm_ops->name(vma); 6920 if (name) 6921 goto cpy_name; 6922 } 6923 6924 name = (char *)arch_vma_name(vma); 6925 if (name) 6926 goto cpy_name; 6927 6928 if (vma->vm_start <= vma->vm_mm->start_brk && 6929 vma->vm_end >= vma->vm_mm->brk) { 6930 name = "[heap]"; 6931 goto cpy_name; 6932 } 6933 if (vma->vm_start <= vma->vm_mm->start_stack && 6934 vma->vm_end >= vma->vm_mm->start_stack) { 6935 name = "[stack]"; 6936 goto cpy_name; 6937 } 6938 6939 name = "//anon"; 6940 goto cpy_name; 6941 } 6942 6943 cpy_name: 6944 strlcpy(tmp, name, sizeof(tmp)); 6945 name = tmp; 6946 got_name: 6947 /* 6948 * Since our buffer works in 8 byte units we need to align our string 6949 * size to a multiple of 8. However, we must guarantee the tail end is 6950 * zero'd out to avoid leaking random bits to userspace. 6951 */ 6952 size = strlen(name)+1; 6953 while (!IS_ALIGNED(size, sizeof(u64))) 6954 name[size++] = '\0'; 6955 6956 mmap_event->file_name = name; 6957 mmap_event->file_size = size; 6958 mmap_event->maj = maj; 6959 mmap_event->min = min; 6960 mmap_event->ino = ino; 6961 mmap_event->ino_generation = gen; 6962 mmap_event->prot = prot; 6963 mmap_event->flags = flags; 6964 6965 if (!(vma->vm_flags & VM_EXEC)) 6966 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6967 6968 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6969 6970 perf_iterate_sb(perf_event_mmap_output, 6971 mmap_event, 6972 NULL); 6973 6974 kfree(buf); 6975 } 6976 6977 /* 6978 * Check whether inode and address range match filter criteria. 6979 */ 6980 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6981 struct file *file, unsigned long offset, 6982 unsigned long size) 6983 { 6984 if (filter->inode != file_inode(file)) 6985 return false; 6986 6987 if (filter->offset > offset + size) 6988 return false; 6989 6990 if (filter->offset + filter->size < offset) 6991 return false; 6992 6993 return true; 6994 } 6995 6996 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6997 { 6998 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6999 struct vm_area_struct *vma = data; 7000 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7001 struct file *file = vma->vm_file; 7002 struct perf_addr_filter *filter; 7003 unsigned int restart = 0, count = 0; 7004 7005 if (!has_addr_filter(event)) 7006 return; 7007 7008 if (!file) 7009 return; 7010 7011 raw_spin_lock_irqsave(&ifh->lock, flags); 7012 list_for_each_entry(filter, &ifh->list, entry) { 7013 if (perf_addr_filter_match(filter, file, off, 7014 vma->vm_end - vma->vm_start)) { 7015 event->addr_filters_offs[count] = vma->vm_start; 7016 restart++; 7017 } 7018 7019 count++; 7020 } 7021 7022 if (restart) 7023 event->addr_filters_gen++; 7024 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7025 7026 if (restart) 7027 perf_event_stop(event, 1); 7028 } 7029 7030 /* 7031 * Adjust all task's events' filters to the new vma 7032 */ 7033 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7034 { 7035 struct perf_event_context *ctx; 7036 int ctxn; 7037 7038 /* 7039 * Data tracing isn't supported yet and as such there is no need 7040 * to keep track of anything that isn't related to executable code: 7041 */ 7042 if (!(vma->vm_flags & VM_EXEC)) 7043 return; 7044 7045 rcu_read_lock(); 7046 for_each_task_context_nr(ctxn) { 7047 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7048 if (!ctx) 7049 continue; 7050 7051 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7052 } 7053 rcu_read_unlock(); 7054 } 7055 7056 void perf_event_mmap(struct vm_area_struct *vma) 7057 { 7058 struct perf_mmap_event mmap_event; 7059 7060 if (!atomic_read(&nr_mmap_events)) 7061 return; 7062 7063 mmap_event = (struct perf_mmap_event){ 7064 .vma = vma, 7065 /* .file_name */ 7066 /* .file_size */ 7067 .event_id = { 7068 .header = { 7069 .type = PERF_RECORD_MMAP, 7070 .misc = PERF_RECORD_MISC_USER, 7071 /* .size */ 7072 }, 7073 /* .pid */ 7074 /* .tid */ 7075 .start = vma->vm_start, 7076 .len = vma->vm_end - vma->vm_start, 7077 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7078 }, 7079 /* .maj (attr_mmap2 only) */ 7080 /* .min (attr_mmap2 only) */ 7081 /* .ino (attr_mmap2 only) */ 7082 /* .ino_generation (attr_mmap2 only) */ 7083 /* .prot (attr_mmap2 only) */ 7084 /* .flags (attr_mmap2 only) */ 7085 }; 7086 7087 perf_addr_filters_adjust(vma); 7088 perf_event_mmap_event(&mmap_event); 7089 } 7090 7091 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7092 unsigned long size, u64 flags) 7093 { 7094 struct perf_output_handle handle; 7095 struct perf_sample_data sample; 7096 struct perf_aux_event { 7097 struct perf_event_header header; 7098 u64 offset; 7099 u64 size; 7100 u64 flags; 7101 } rec = { 7102 .header = { 7103 .type = PERF_RECORD_AUX, 7104 .misc = 0, 7105 .size = sizeof(rec), 7106 }, 7107 .offset = head, 7108 .size = size, 7109 .flags = flags, 7110 }; 7111 int ret; 7112 7113 perf_event_header__init_id(&rec.header, &sample, event); 7114 ret = perf_output_begin(&handle, event, rec.header.size); 7115 7116 if (ret) 7117 return; 7118 7119 perf_output_put(&handle, rec); 7120 perf_event__output_id_sample(event, &handle, &sample); 7121 7122 perf_output_end(&handle); 7123 } 7124 7125 /* 7126 * Lost/dropped samples logging 7127 */ 7128 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7129 { 7130 struct perf_output_handle handle; 7131 struct perf_sample_data sample; 7132 int ret; 7133 7134 struct { 7135 struct perf_event_header header; 7136 u64 lost; 7137 } lost_samples_event = { 7138 .header = { 7139 .type = PERF_RECORD_LOST_SAMPLES, 7140 .misc = 0, 7141 .size = sizeof(lost_samples_event), 7142 }, 7143 .lost = lost, 7144 }; 7145 7146 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7147 7148 ret = perf_output_begin(&handle, event, 7149 lost_samples_event.header.size); 7150 if (ret) 7151 return; 7152 7153 perf_output_put(&handle, lost_samples_event); 7154 perf_event__output_id_sample(event, &handle, &sample); 7155 perf_output_end(&handle); 7156 } 7157 7158 /* 7159 * context_switch tracking 7160 */ 7161 7162 struct perf_switch_event { 7163 struct task_struct *task; 7164 struct task_struct *next_prev; 7165 7166 struct { 7167 struct perf_event_header header; 7168 u32 next_prev_pid; 7169 u32 next_prev_tid; 7170 } event_id; 7171 }; 7172 7173 static int perf_event_switch_match(struct perf_event *event) 7174 { 7175 return event->attr.context_switch; 7176 } 7177 7178 static void perf_event_switch_output(struct perf_event *event, void *data) 7179 { 7180 struct perf_switch_event *se = data; 7181 struct perf_output_handle handle; 7182 struct perf_sample_data sample; 7183 int ret; 7184 7185 if (!perf_event_switch_match(event)) 7186 return; 7187 7188 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7189 if (event->ctx->task) { 7190 se->event_id.header.type = PERF_RECORD_SWITCH; 7191 se->event_id.header.size = sizeof(se->event_id.header); 7192 } else { 7193 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7194 se->event_id.header.size = sizeof(se->event_id); 7195 se->event_id.next_prev_pid = 7196 perf_event_pid(event, se->next_prev); 7197 se->event_id.next_prev_tid = 7198 perf_event_tid(event, se->next_prev); 7199 } 7200 7201 perf_event_header__init_id(&se->event_id.header, &sample, event); 7202 7203 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7204 if (ret) 7205 return; 7206 7207 if (event->ctx->task) 7208 perf_output_put(&handle, se->event_id.header); 7209 else 7210 perf_output_put(&handle, se->event_id); 7211 7212 perf_event__output_id_sample(event, &handle, &sample); 7213 7214 perf_output_end(&handle); 7215 } 7216 7217 static void perf_event_switch(struct task_struct *task, 7218 struct task_struct *next_prev, bool sched_in) 7219 { 7220 struct perf_switch_event switch_event; 7221 7222 /* N.B. caller checks nr_switch_events != 0 */ 7223 7224 switch_event = (struct perf_switch_event){ 7225 .task = task, 7226 .next_prev = next_prev, 7227 .event_id = { 7228 .header = { 7229 /* .type */ 7230 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7231 /* .size */ 7232 }, 7233 /* .next_prev_pid */ 7234 /* .next_prev_tid */ 7235 }, 7236 }; 7237 7238 perf_iterate_sb(perf_event_switch_output, 7239 &switch_event, 7240 NULL); 7241 } 7242 7243 /* 7244 * IRQ throttle logging 7245 */ 7246 7247 static void perf_log_throttle(struct perf_event *event, int enable) 7248 { 7249 struct perf_output_handle handle; 7250 struct perf_sample_data sample; 7251 int ret; 7252 7253 struct { 7254 struct perf_event_header header; 7255 u64 time; 7256 u64 id; 7257 u64 stream_id; 7258 } throttle_event = { 7259 .header = { 7260 .type = PERF_RECORD_THROTTLE, 7261 .misc = 0, 7262 .size = sizeof(throttle_event), 7263 }, 7264 .time = perf_event_clock(event), 7265 .id = primary_event_id(event), 7266 .stream_id = event->id, 7267 }; 7268 7269 if (enable) 7270 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7271 7272 perf_event_header__init_id(&throttle_event.header, &sample, event); 7273 7274 ret = perf_output_begin(&handle, event, 7275 throttle_event.header.size); 7276 if (ret) 7277 return; 7278 7279 perf_output_put(&handle, throttle_event); 7280 perf_event__output_id_sample(event, &handle, &sample); 7281 perf_output_end(&handle); 7282 } 7283 7284 void perf_event_itrace_started(struct perf_event *event) 7285 { 7286 event->attach_state |= PERF_ATTACH_ITRACE; 7287 } 7288 7289 static void perf_log_itrace_start(struct perf_event *event) 7290 { 7291 struct perf_output_handle handle; 7292 struct perf_sample_data sample; 7293 struct perf_aux_event { 7294 struct perf_event_header header; 7295 u32 pid; 7296 u32 tid; 7297 } rec; 7298 int ret; 7299 7300 if (event->parent) 7301 event = event->parent; 7302 7303 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7304 event->attach_state & PERF_ATTACH_ITRACE) 7305 return; 7306 7307 rec.header.type = PERF_RECORD_ITRACE_START; 7308 rec.header.misc = 0; 7309 rec.header.size = sizeof(rec); 7310 rec.pid = perf_event_pid(event, current); 7311 rec.tid = perf_event_tid(event, current); 7312 7313 perf_event_header__init_id(&rec.header, &sample, event); 7314 ret = perf_output_begin(&handle, event, rec.header.size); 7315 7316 if (ret) 7317 return; 7318 7319 perf_output_put(&handle, rec); 7320 perf_event__output_id_sample(event, &handle, &sample); 7321 7322 perf_output_end(&handle); 7323 } 7324 7325 static int 7326 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7327 { 7328 struct hw_perf_event *hwc = &event->hw; 7329 int ret = 0; 7330 u64 seq; 7331 7332 seq = __this_cpu_read(perf_throttled_seq); 7333 if (seq != hwc->interrupts_seq) { 7334 hwc->interrupts_seq = seq; 7335 hwc->interrupts = 1; 7336 } else { 7337 hwc->interrupts++; 7338 if (unlikely(throttle 7339 && hwc->interrupts >= max_samples_per_tick)) { 7340 __this_cpu_inc(perf_throttled_count); 7341 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7342 hwc->interrupts = MAX_INTERRUPTS; 7343 perf_log_throttle(event, 0); 7344 ret = 1; 7345 } 7346 } 7347 7348 if (event->attr.freq) { 7349 u64 now = perf_clock(); 7350 s64 delta = now - hwc->freq_time_stamp; 7351 7352 hwc->freq_time_stamp = now; 7353 7354 if (delta > 0 && delta < 2*TICK_NSEC) 7355 perf_adjust_period(event, delta, hwc->last_period, true); 7356 } 7357 7358 return ret; 7359 } 7360 7361 int perf_event_account_interrupt(struct perf_event *event) 7362 { 7363 return __perf_event_account_interrupt(event, 1); 7364 } 7365 7366 /* 7367 * Generic event overflow handling, sampling. 7368 */ 7369 7370 static int __perf_event_overflow(struct perf_event *event, 7371 int throttle, struct perf_sample_data *data, 7372 struct pt_regs *regs) 7373 { 7374 int events = atomic_read(&event->event_limit); 7375 int ret = 0; 7376 7377 /* 7378 * Non-sampling counters might still use the PMI to fold short 7379 * hardware counters, ignore those. 7380 */ 7381 if (unlikely(!is_sampling_event(event))) 7382 return 0; 7383 7384 ret = __perf_event_account_interrupt(event, throttle); 7385 7386 /* 7387 * XXX event_limit might not quite work as expected on inherited 7388 * events 7389 */ 7390 7391 event->pending_kill = POLL_IN; 7392 if (events && atomic_dec_and_test(&event->event_limit)) { 7393 ret = 1; 7394 event->pending_kill = POLL_HUP; 7395 7396 perf_event_disable_inatomic(event); 7397 } 7398 7399 READ_ONCE(event->overflow_handler)(event, data, regs); 7400 7401 if (*perf_event_fasync(event) && event->pending_kill) { 7402 event->pending_wakeup = 1; 7403 irq_work_queue(&event->pending); 7404 } 7405 7406 return ret; 7407 } 7408 7409 int perf_event_overflow(struct perf_event *event, 7410 struct perf_sample_data *data, 7411 struct pt_regs *regs) 7412 { 7413 return __perf_event_overflow(event, 1, data, regs); 7414 } 7415 7416 /* 7417 * Generic software event infrastructure 7418 */ 7419 7420 struct swevent_htable { 7421 struct swevent_hlist *swevent_hlist; 7422 struct mutex hlist_mutex; 7423 int hlist_refcount; 7424 7425 /* Recursion avoidance in each contexts */ 7426 int recursion[PERF_NR_CONTEXTS]; 7427 }; 7428 7429 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7430 7431 /* 7432 * We directly increment event->count and keep a second value in 7433 * event->hw.period_left to count intervals. This period event 7434 * is kept in the range [-sample_period, 0] so that we can use the 7435 * sign as trigger. 7436 */ 7437 7438 u64 perf_swevent_set_period(struct perf_event *event) 7439 { 7440 struct hw_perf_event *hwc = &event->hw; 7441 u64 period = hwc->last_period; 7442 u64 nr, offset; 7443 s64 old, val; 7444 7445 hwc->last_period = hwc->sample_period; 7446 7447 again: 7448 old = val = local64_read(&hwc->period_left); 7449 if (val < 0) 7450 return 0; 7451 7452 nr = div64_u64(period + val, period); 7453 offset = nr * period; 7454 val -= offset; 7455 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7456 goto again; 7457 7458 return nr; 7459 } 7460 7461 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7462 struct perf_sample_data *data, 7463 struct pt_regs *regs) 7464 { 7465 struct hw_perf_event *hwc = &event->hw; 7466 int throttle = 0; 7467 7468 if (!overflow) 7469 overflow = perf_swevent_set_period(event); 7470 7471 if (hwc->interrupts == MAX_INTERRUPTS) 7472 return; 7473 7474 for (; overflow; overflow--) { 7475 if (__perf_event_overflow(event, throttle, 7476 data, regs)) { 7477 /* 7478 * We inhibit the overflow from happening when 7479 * hwc->interrupts == MAX_INTERRUPTS. 7480 */ 7481 break; 7482 } 7483 throttle = 1; 7484 } 7485 } 7486 7487 static void perf_swevent_event(struct perf_event *event, u64 nr, 7488 struct perf_sample_data *data, 7489 struct pt_regs *regs) 7490 { 7491 struct hw_perf_event *hwc = &event->hw; 7492 7493 local64_add(nr, &event->count); 7494 7495 if (!regs) 7496 return; 7497 7498 if (!is_sampling_event(event)) 7499 return; 7500 7501 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7502 data->period = nr; 7503 return perf_swevent_overflow(event, 1, data, regs); 7504 } else 7505 data->period = event->hw.last_period; 7506 7507 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7508 return perf_swevent_overflow(event, 1, data, regs); 7509 7510 if (local64_add_negative(nr, &hwc->period_left)) 7511 return; 7512 7513 perf_swevent_overflow(event, 0, data, regs); 7514 } 7515 7516 static int perf_exclude_event(struct perf_event *event, 7517 struct pt_regs *regs) 7518 { 7519 if (event->hw.state & PERF_HES_STOPPED) 7520 return 1; 7521 7522 if (regs) { 7523 if (event->attr.exclude_user && user_mode(regs)) 7524 return 1; 7525 7526 if (event->attr.exclude_kernel && !user_mode(regs)) 7527 return 1; 7528 } 7529 7530 return 0; 7531 } 7532 7533 static int perf_swevent_match(struct perf_event *event, 7534 enum perf_type_id type, 7535 u32 event_id, 7536 struct perf_sample_data *data, 7537 struct pt_regs *regs) 7538 { 7539 if (event->attr.type != type) 7540 return 0; 7541 7542 if (event->attr.config != event_id) 7543 return 0; 7544 7545 if (perf_exclude_event(event, regs)) 7546 return 0; 7547 7548 return 1; 7549 } 7550 7551 static inline u64 swevent_hash(u64 type, u32 event_id) 7552 { 7553 u64 val = event_id | (type << 32); 7554 7555 return hash_64(val, SWEVENT_HLIST_BITS); 7556 } 7557 7558 static inline struct hlist_head * 7559 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7560 { 7561 u64 hash = swevent_hash(type, event_id); 7562 7563 return &hlist->heads[hash]; 7564 } 7565 7566 /* For the read side: events when they trigger */ 7567 static inline struct hlist_head * 7568 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7569 { 7570 struct swevent_hlist *hlist; 7571 7572 hlist = rcu_dereference(swhash->swevent_hlist); 7573 if (!hlist) 7574 return NULL; 7575 7576 return __find_swevent_head(hlist, type, event_id); 7577 } 7578 7579 /* For the event head insertion and removal in the hlist */ 7580 static inline struct hlist_head * 7581 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7582 { 7583 struct swevent_hlist *hlist; 7584 u32 event_id = event->attr.config; 7585 u64 type = event->attr.type; 7586 7587 /* 7588 * Event scheduling is always serialized against hlist allocation 7589 * and release. Which makes the protected version suitable here. 7590 * The context lock guarantees that. 7591 */ 7592 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7593 lockdep_is_held(&event->ctx->lock)); 7594 if (!hlist) 7595 return NULL; 7596 7597 return __find_swevent_head(hlist, type, event_id); 7598 } 7599 7600 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7601 u64 nr, 7602 struct perf_sample_data *data, 7603 struct pt_regs *regs) 7604 { 7605 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7606 struct perf_event *event; 7607 struct hlist_head *head; 7608 7609 rcu_read_lock(); 7610 head = find_swevent_head_rcu(swhash, type, event_id); 7611 if (!head) 7612 goto end; 7613 7614 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7615 if (perf_swevent_match(event, type, event_id, data, regs)) 7616 perf_swevent_event(event, nr, data, regs); 7617 } 7618 end: 7619 rcu_read_unlock(); 7620 } 7621 7622 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7623 7624 int perf_swevent_get_recursion_context(void) 7625 { 7626 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7627 7628 return get_recursion_context(swhash->recursion); 7629 } 7630 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7631 7632 void perf_swevent_put_recursion_context(int rctx) 7633 { 7634 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7635 7636 put_recursion_context(swhash->recursion, rctx); 7637 } 7638 7639 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7640 { 7641 struct perf_sample_data data; 7642 7643 if (WARN_ON_ONCE(!regs)) 7644 return; 7645 7646 perf_sample_data_init(&data, addr, 0); 7647 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7648 } 7649 7650 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7651 { 7652 int rctx; 7653 7654 preempt_disable_notrace(); 7655 rctx = perf_swevent_get_recursion_context(); 7656 if (unlikely(rctx < 0)) 7657 goto fail; 7658 7659 ___perf_sw_event(event_id, nr, regs, addr); 7660 7661 perf_swevent_put_recursion_context(rctx); 7662 fail: 7663 preempt_enable_notrace(); 7664 } 7665 7666 static void perf_swevent_read(struct perf_event *event) 7667 { 7668 } 7669 7670 static int perf_swevent_add(struct perf_event *event, int flags) 7671 { 7672 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7673 struct hw_perf_event *hwc = &event->hw; 7674 struct hlist_head *head; 7675 7676 if (is_sampling_event(event)) { 7677 hwc->last_period = hwc->sample_period; 7678 perf_swevent_set_period(event); 7679 } 7680 7681 hwc->state = !(flags & PERF_EF_START); 7682 7683 head = find_swevent_head(swhash, event); 7684 if (WARN_ON_ONCE(!head)) 7685 return -EINVAL; 7686 7687 hlist_add_head_rcu(&event->hlist_entry, head); 7688 perf_event_update_userpage(event); 7689 7690 return 0; 7691 } 7692 7693 static void perf_swevent_del(struct perf_event *event, int flags) 7694 { 7695 hlist_del_rcu(&event->hlist_entry); 7696 } 7697 7698 static void perf_swevent_start(struct perf_event *event, int flags) 7699 { 7700 event->hw.state = 0; 7701 } 7702 7703 static void perf_swevent_stop(struct perf_event *event, int flags) 7704 { 7705 event->hw.state = PERF_HES_STOPPED; 7706 } 7707 7708 /* Deref the hlist from the update side */ 7709 static inline struct swevent_hlist * 7710 swevent_hlist_deref(struct swevent_htable *swhash) 7711 { 7712 return rcu_dereference_protected(swhash->swevent_hlist, 7713 lockdep_is_held(&swhash->hlist_mutex)); 7714 } 7715 7716 static void swevent_hlist_release(struct swevent_htable *swhash) 7717 { 7718 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7719 7720 if (!hlist) 7721 return; 7722 7723 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7724 kfree_rcu(hlist, rcu_head); 7725 } 7726 7727 static void swevent_hlist_put_cpu(int cpu) 7728 { 7729 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7730 7731 mutex_lock(&swhash->hlist_mutex); 7732 7733 if (!--swhash->hlist_refcount) 7734 swevent_hlist_release(swhash); 7735 7736 mutex_unlock(&swhash->hlist_mutex); 7737 } 7738 7739 static void swevent_hlist_put(void) 7740 { 7741 int cpu; 7742 7743 for_each_possible_cpu(cpu) 7744 swevent_hlist_put_cpu(cpu); 7745 } 7746 7747 static int swevent_hlist_get_cpu(int cpu) 7748 { 7749 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7750 int err = 0; 7751 7752 mutex_lock(&swhash->hlist_mutex); 7753 if (!swevent_hlist_deref(swhash) && 7754 cpumask_test_cpu(cpu, perf_online_mask)) { 7755 struct swevent_hlist *hlist; 7756 7757 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7758 if (!hlist) { 7759 err = -ENOMEM; 7760 goto exit; 7761 } 7762 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7763 } 7764 swhash->hlist_refcount++; 7765 exit: 7766 mutex_unlock(&swhash->hlist_mutex); 7767 7768 return err; 7769 } 7770 7771 static int swevent_hlist_get(void) 7772 { 7773 int err, cpu, failed_cpu; 7774 7775 mutex_lock(&pmus_lock); 7776 for_each_possible_cpu(cpu) { 7777 err = swevent_hlist_get_cpu(cpu); 7778 if (err) { 7779 failed_cpu = cpu; 7780 goto fail; 7781 } 7782 } 7783 mutex_unlock(&pmus_lock); 7784 return 0; 7785 fail: 7786 for_each_possible_cpu(cpu) { 7787 if (cpu == failed_cpu) 7788 break; 7789 swevent_hlist_put_cpu(cpu); 7790 } 7791 mutex_unlock(&pmus_lock); 7792 return err; 7793 } 7794 7795 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7796 7797 static void sw_perf_event_destroy(struct perf_event *event) 7798 { 7799 u64 event_id = event->attr.config; 7800 7801 WARN_ON(event->parent); 7802 7803 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7804 swevent_hlist_put(); 7805 } 7806 7807 static int perf_swevent_init(struct perf_event *event) 7808 { 7809 u64 event_id = event->attr.config; 7810 7811 if (event->attr.type != PERF_TYPE_SOFTWARE) 7812 return -ENOENT; 7813 7814 /* 7815 * no branch sampling for software events 7816 */ 7817 if (has_branch_stack(event)) 7818 return -EOPNOTSUPP; 7819 7820 switch (event_id) { 7821 case PERF_COUNT_SW_CPU_CLOCK: 7822 case PERF_COUNT_SW_TASK_CLOCK: 7823 return -ENOENT; 7824 7825 default: 7826 break; 7827 } 7828 7829 if (event_id >= PERF_COUNT_SW_MAX) 7830 return -ENOENT; 7831 7832 if (!event->parent) { 7833 int err; 7834 7835 err = swevent_hlist_get(); 7836 if (err) 7837 return err; 7838 7839 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7840 event->destroy = sw_perf_event_destroy; 7841 } 7842 7843 return 0; 7844 } 7845 7846 static struct pmu perf_swevent = { 7847 .task_ctx_nr = perf_sw_context, 7848 7849 .capabilities = PERF_PMU_CAP_NO_NMI, 7850 7851 .event_init = perf_swevent_init, 7852 .add = perf_swevent_add, 7853 .del = perf_swevent_del, 7854 .start = perf_swevent_start, 7855 .stop = perf_swevent_stop, 7856 .read = perf_swevent_read, 7857 }; 7858 7859 #ifdef CONFIG_EVENT_TRACING 7860 7861 static int perf_tp_filter_match(struct perf_event *event, 7862 struct perf_sample_data *data) 7863 { 7864 void *record = data->raw->frag.data; 7865 7866 /* only top level events have filters set */ 7867 if (event->parent) 7868 event = event->parent; 7869 7870 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7871 return 1; 7872 return 0; 7873 } 7874 7875 static int perf_tp_event_match(struct perf_event *event, 7876 struct perf_sample_data *data, 7877 struct pt_regs *regs) 7878 { 7879 if (event->hw.state & PERF_HES_STOPPED) 7880 return 0; 7881 /* 7882 * All tracepoints are from kernel-space. 7883 */ 7884 if (event->attr.exclude_kernel) 7885 return 0; 7886 7887 if (!perf_tp_filter_match(event, data)) 7888 return 0; 7889 7890 return 1; 7891 } 7892 7893 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7894 struct trace_event_call *call, u64 count, 7895 struct pt_regs *regs, struct hlist_head *head, 7896 struct task_struct *task) 7897 { 7898 if (bpf_prog_array_valid(call)) { 7899 *(struct pt_regs **)raw_data = regs; 7900 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 7901 perf_swevent_put_recursion_context(rctx); 7902 return; 7903 } 7904 } 7905 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7906 rctx, task); 7907 } 7908 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7909 7910 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7911 struct pt_regs *regs, struct hlist_head *head, int rctx, 7912 struct task_struct *task) 7913 { 7914 struct perf_sample_data data; 7915 struct perf_event *event; 7916 7917 struct perf_raw_record raw = { 7918 .frag = { 7919 .size = entry_size, 7920 .data = record, 7921 }, 7922 }; 7923 7924 perf_sample_data_init(&data, 0, 0); 7925 data.raw = &raw; 7926 7927 perf_trace_buf_update(record, event_type); 7928 7929 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7930 if (perf_tp_event_match(event, &data, regs)) 7931 perf_swevent_event(event, count, &data, regs); 7932 } 7933 7934 /* 7935 * If we got specified a target task, also iterate its context and 7936 * deliver this event there too. 7937 */ 7938 if (task && task != current) { 7939 struct perf_event_context *ctx; 7940 struct trace_entry *entry = record; 7941 7942 rcu_read_lock(); 7943 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7944 if (!ctx) 7945 goto unlock; 7946 7947 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7948 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7949 continue; 7950 if (event->attr.config != entry->type) 7951 continue; 7952 if (perf_tp_event_match(event, &data, regs)) 7953 perf_swevent_event(event, count, &data, regs); 7954 } 7955 unlock: 7956 rcu_read_unlock(); 7957 } 7958 7959 perf_swevent_put_recursion_context(rctx); 7960 } 7961 EXPORT_SYMBOL_GPL(perf_tp_event); 7962 7963 static void tp_perf_event_destroy(struct perf_event *event) 7964 { 7965 perf_trace_destroy(event); 7966 } 7967 7968 static int perf_tp_event_init(struct perf_event *event) 7969 { 7970 int err; 7971 7972 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7973 return -ENOENT; 7974 7975 /* 7976 * no branch sampling for tracepoint events 7977 */ 7978 if (has_branch_stack(event)) 7979 return -EOPNOTSUPP; 7980 7981 err = perf_trace_init(event); 7982 if (err) 7983 return err; 7984 7985 event->destroy = tp_perf_event_destroy; 7986 7987 return 0; 7988 } 7989 7990 static struct pmu perf_tracepoint = { 7991 .task_ctx_nr = perf_sw_context, 7992 7993 .event_init = perf_tp_event_init, 7994 .add = perf_trace_add, 7995 .del = perf_trace_del, 7996 .start = perf_swevent_start, 7997 .stop = perf_swevent_stop, 7998 .read = perf_swevent_read, 7999 }; 8000 8001 static inline void perf_tp_register(void) 8002 { 8003 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8004 } 8005 8006 static void perf_event_free_filter(struct perf_event *event) 8007 { 8008 ftrace_profile_free_filter(event); 8009 } 8010 8011 #ifdef CONFIG_BPF_SYSCALL 8012 static void bpf_overflow_handler(struct perf_event *event, 8013 struct perf_sample_data *data, 8014 struct pt_regs *regs) 8015 { 8016 struct bpf_perf_event_data_kern ctx = { 8017 .data = data, 8018 .event = event, 8019 }; 8020 int ret = 0; 8021 8022 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8023 preempt_disable(); 8024 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8025 goto out; 8026 rcu_read_lock(); 8027 ret = BPF_PROG_RUN(event->prog, &ctx); 8028 rcu_read_unlock(); 8029 out: 8030 __this_cpu_dec(bpf_prog_active); 8031 preempt_enable(); 8032 if (!ret) 8033 return; 8034 8035 event->orig_overflow_handler(event, data, regs); 8036 } 8037 8038 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8039 { 8040 struct bpf_prog *prog; 8041 8042 if (event->overflow_handler_context) 8043 /* hw breakpoint or kernel counter */ 8044 return -EINVAL; 8045 8046 if (event->prog) 8047 return -EEXIST; 8048 8049 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8050 if (IS_ERR(prog)) 8051 return PTR_ERR(prog); 8052 8053 event->prog = prog; 8054 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8055 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8056 return 0; 8057 } 8058 8059 static void perf_event_free_bpf_handler(struct perf_event *event) 8060 { 8061 struct bpf_prog *prog = event->prog; 8062 8063 if (!prog) 8064 return; 8065 8066 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8067 event->prog = NULL; 8068 bpf_prog_put(prog); 8069 } 8070 #else 8071 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8072 { 8073 return -EOPNOTSUPP; 8074 } 8075 static void perf_event_free_bpf_handler(struct perf_event *event) 8076 { 8077 } 8078 #endif 8079 8080 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8081 { 8082 bool is_kprobe, is_tracepoint, is_syscall_tp; 8083 struct bpf_prog *prog; 8084 int ret; 8085 8086 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8087 return perf_event_set_bpf_handler(event, prog_fd); 8088 8089 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8090 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8091 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8092 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8093 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8094 return -EINVAL; 8095 8096 prog = bpf_prog_get(prog_fd); 8097 if (IS_ERR(prog)) 8098 return PTR_ERR(prog); 8099 8100 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8101 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8102 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8103 /* valid fd, but invalid bpf program type */ 8104 bpf_prog_put(prog); 8105 return -EINVAL; 8106 } 8107 8108 /* Kprobe override only works for kprobes, not uprobes. */ 8109 if (prog->kprobe_override && 8110 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8111 bpf_prog_put(prog); 8112 return -EINVAL; 8113 } 8114 8115 if (is_tracepoint || is_syscall_tp) { 8116 int off = trace_event_get_offsets(event->tp_event); 8117 8118 if (prog->aux->max_ctx_offset > off) { 8119 bpf_prog_put(prog); 8120 return -EACCES; 8121 } 8122 } 8123 8124 ret = perf_event_attach_bpf_prog(event, prog); 8125 if (ret) 8126 bpf_prog_put(prog); 8127 return ret; 8128 } 8129 8130 static void perf_event_free_bpf_prog(struct perf_event *event) 8131 { 8132 if (event->attr.type != PERF_TYPE_TRACEPOINT) { 8133 perf_event_free_bpf_handler(event); 8134 return; 8135 } 8136 perf_event_detach_bpf_prog(event); 8137 } 8138 8139 #else 8140 8141 static inline void perf_tp_register(void) 8142 { 8143 } 8144 8145 static void perf_event_free_filter(struct perf_event *event) 8146 { 8147 } 8148 8149 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8150 { 8151 return -ENOENT; 8152 } 8153 8154 static void perf_event_free_bpf_prog(struct perf_event *event) 8155 { 8156 } 8157 #endif /* CONFIG_EVENT_TRACING */ 8158 8159 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8160 void perf_bp_event(struct perf_event *bp, void *data) 8161 { 8162 struct perf_sample_data sample; 8163 struct pt_regs *regs = data; 8164 8165 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8166 8167 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8168 perf_swevent_event(bp, 1, &sample, regs); 8169 } 8170 #endif 8171 8172 /* 8173 * Allocate a new address filter 8174 */ 8175 static struct perf_addr_filter * 8176 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8177 { 8178 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8179 struct perf_addr_filter *filter; 8180 8181 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8182 if (!filter) 8183 return NULL; 8184 8185 INIT_LIST_HEAD(&filter->entry); 8186 list_add_tail(&filter->entry, filters); 8187 8188 return filter; 8189 } 8190 8191 static void free_filters_list(struct list_head *filters) 8192 { 8193 struct perf_addr_filter *filter, *iter; 8194 8195 list_for_each_entry_safe(filter, iter, filters, entry) { 8196 if (filter->inode) 8197 iput(filter->inode); 8198 list_del(&filter->entry); 8199 kfree(filter); 8200 } 8201 } 8202 8203 /* 8204 * Free existing address filters and optionally install new ones 8205 */ 8206 static void perf_addr_filters_splice(struct perf_event *event, 8207 struct list_head *head) 8208 { 8209 unsigned long flags; 8210 LIST_HEAD(list); 8211 8212 if (!has_addr_filter(event)) 8213 return; 8214 8215 /* don't bother with children, they don't have their own filters */ 8216 if (event->parent) 8217 return; 8218 8219 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8220 8221 list_splice_init(&event->addr_filters.list, &list); 8222 if (head) 8223 list_splice(head, &event->addr_filters.list); 8224 8225 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8226 8227 free_filters_list(&list); 8228 } 8229 8230 /* 8231 * Scan through mm's vmas and see if one of them matches the 8232 * @filter; if so, adjust filter's address range. 8233 * Called with mm::mmap_sem down for reading. 8234 */ 8235 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8236 struct mm_struct *mm) 8237 { 8238 struct vm_area_struct *vma; 8239 8240 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8241 struct file *file = vma->vm_file; 8242 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8243 unsigned long vma_size = vma->vm_end - vma->vm_start; 8244 8245 if (!file) 8246 continue; 8247 8248 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8249 continue; 8250 8251 return vma->vm_start; 8252 } 8253 8254 return 0; 8255 } 8256 8257 /* 8258 * Update event's address range filters based on the 8259 * task's existing mappings, if any. 8260 */ 8261 static void perf_event_addr_filters_apply(struct perf_event *event) 8262 { 8263 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8264 struct task_struct *task = READ_ONCE(event->ctx->task); 8265 struct perf_addr_filter *filter; 8266 struct mm_struct *mm = NULL; 8267 unsigned int count = 0; 8268 unsigned long flags; 8269 8270 /* 8271 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8272 * will stop on the parent's child_mutex that our caller is also holding 8273 */ 8274 if (task == TASK_TOMBSTONE) 8275 return; 8276 8277 if (!ifh->nr_file_filters) 8278 return; 8279 8280 mm = get_task_mm(event->ctx->task); 8281 if (!mm) 8282 goto restart; 8283 8284 down_read(&mm->mmap_sem); 8285 8286 raw_spin_lock_irqsave(&ifh->lock, flags); 8287 list_for_each_entry(filter, &ifh->list, entry) { 8288 event->addr_filters_offs[count] = 0; 8289 8290 /* 8291 * Adjust base offset if the filter is associated to a binary 8292 * that needs to be mapped: 8293 */ 8294 if (filter->inode) 8295 event->addr_filters_offs[count] = 8296 perf_addr_filter_apply(filter, mm); 8297 8298 count++; 8299 } 8300 8301 event->addr_filters_gen++; 8302 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8303 8304 up_read(&mm->mmap_sem); 8305 8306 mmput(mm); 8307 8308 restart: 8309 perf_event_stop(event, 1); 8310 } 8311 8312 /* 8313 * Address range filtering: limiting the data to certain 8314 * instruction address ranges. Filters are ioctl()ed to us from 8315 * userspace as ascii strings. 8316 * 8317 * Filter string format: 8318 * 8319 * ACTION RANGE_SPEC 8320 * where ACTION is one of the 8321 * * "filter": limit the trace to this region 8322 * * "start": start tracing from this address 8323 * * "stop": stop tracing at this address/region; 8324 * RANGE_SPEC is 8325 * * for kernel addresses: <start address>[/<size>] 8326 * * for object files: <start address>[/<size>]@</path/to/object/file> 8327 * 8328 * if <size> is not specified, the range is treated as a single address. 8329 */ 8330 enum { 8331 IF_ACT_NONE = -1, 8332 IF_ACT_FILTER, 8333 IF_ACT_START, 8334 IF_ACT_STOP, 8335 IF_SRC_FILE, 8336 IF_SRC_KERNEL, 8337 IF_SRC_FILEADDR, 8338 IF_SRC_KERNELADDR, 8339 }; 8340 8341 enum { 8342 IF_STATE_ACTION = 0, 8343 IF_STATE_SOURCE, 8344 IF_STATE_END, 8345 }; 8346 8347 static const match_table_t if_tokens = { 8348 { IF_ACT_FILTER, "filter" }, 8349 { IF_ACT_START, "start" }, 8350 { IF_ACT_STOP, "stop" }, 8351 { IF_SRC_FILE, "%u/%u@%s" }, 8352 { IF_SRC_KERNEL, "%u/%u" }, 8353 { IF_SRC_FILEADDR, "%u@%s" }, 8354 { IF_SRC_KERNELADDR, "%u" }, 8355 { IF_ACT_NONE, NULL }, 8356 }; 8357 8358 /* 8359 * Address filter string parser 8360 */ 8361 static int 8362 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8363 struct list_head *filters) 8364 { 8365 struct perf_addr_filter *filter = NULL; 8366 char *start, *orig, *filename = NULL; 8367 struct path path; 8368 substring_t args[MAX_OPT_ARGS]; 8369 int state = IF_STATE_ACTION, token; 8370 unsigned int kernel = 0; 8371 int ret = -EINVAL; 8372 8373 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8374 if (!fstr) 8375 return -ENOMEM; 8376 8377 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8378 ret = -EINVAL; 8379 8380 if (!*start) 8381 continue; 8382 8383 /* filter definition begins */ 8384 if (state == IF_STATE_ACTION) { 8385 filter = perf_addr_filter_new(event, filters); 8386 if (!filter) 8387 goto fail; 8388 } 8389 8390 token = match_token(start, if_tokens, args); 8391 switch (token) { 8392 case IF_ACT_FILTER: 8393 case IF_ACT_START: 8394 filter->filter = 1; 8395 8396 case IF_ACT_STOP: 8397 if (state != IF_STATE_ACTION) 8398 goto fail; 8399 8400 state = IF_STATE_SOURCE; 8401 break; 8402 8403 case IF_SRC_KERNELADDR: 8404 case IF_SRC_KERNEL: 8405 kernel = 1; 8406 8407 case IF_SRC_FILEADDR: 8408 case IF_SRC_FILE: 8409 if (state != IF_STATE_SOURCE) 8410 goto fail; 8411 8412 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8413 filter->range = 1; 8414 8415 *args[0].to = 0; 8416 ret = kstrtoul(args[0].from, 0, &filter->offset); 8417 if (ret) 8418 goto fail; 8419 8420 if (filter->range) { 8421 *args[1].to = 0; 8422 ret = kstrtoul(args[1].from, 0, &filter->size); 8423 if (ret) 8424 goto fail; 8425 } 8426 8427 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8428 int fpos = filter->range ? 2 : 1; 8429 8430 filename = match_strdup(&args[fpos]); 8431 if (!filename) { 8432 ret = -ENOMEM; 8433 goto fail; 8434 } 8435 } 8436 8437 state = IF_STATE_END; 8438 break; 8439 8440 default: 8441 goto fail; 8442 } 8443 8444 /* 8445 * Filter definition is fully parsed, validate and install it. 8446 * Make sure that it doesn't contradict itself or the event's 8447 * attribute. 8448 */ 8449 if (state == IF_STATE_END) { 8450 ret = -EINVAL; 8451 if (kernel && event->attr.exclude_kernel) 8452 goto fail; 8453 8454 if (!kernel) { 8455 if (!filename) 8456 goto fail; 8457 8458 /* 8459 * For now, we only support file-based filters 8460 * in per-task events; doing so for CPU-wide 8461 * events requires additional context switching 8462 * trickery, since same object code will be 8463 * mapped at different virtual addresses in 8464 * different processes. 8465 */ 8466 ret = -EOPNOTSUPP; 8467 if (!event->ctx->task) 8468 goto fail_free_name; 8469 8470 /* look up the path and grab its inode */ 8471 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8472 if (ret) 8473 goto fail_free_name; 8474 8475 filter->inode = igrab(d_inode(path.dentry)); 8476 path_put(&path); 8477 kfree(filename); 8478 filename = NULL; 8479 8480 ret = -EINVAL; 8481 if (!filter->inode || 8482 !S_ISREG(filter->inode->i_mode)) 8483 /* free_filters_list() will iput() */ 8484 goto fail; 8485 8486 event->addr_filters.nr_file_filters++; 8487 } 8488 8489 /* ready to consume more filters */ 8490 state = IF_STATE_ACTION; 8491 filter = NULL; 8492 } 8493 } 8494 8495 if (state != IF_STATE_ACTION) 8496 goto fail; 8497 8498 kfree(orig); 8499 8500 return 0; 8501 8502 fail_free_name: 8503 kfree(filename); 8504 fail: 8505 free_filters_list(filters); 8506 kfree(orig); 8507 8508 return ret; 8509 } 8510 8511 static int 8512 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8513 { 8514 LIST_HEAD(filters); 8515 int ret; 8516 8517 /* 8518 * Since this is called in perf_ioctl() path, we're already holding 8519 * ctx::mutex. 8520 */ 8521 lockdep_assert_held(&event->ctx->mutex); 8522 8523 if (WARN_ON_ONCE(event->parent)) 8524 return -EINVAL; 8525 8526 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8527 if (ret) 8528 goto fail_clear_files; 8529 8530 ret = event->pmu->addr_filters_validate(&filters); 8531 if (ret) 8532 goto fail_free_filters; 8533 8534 /* remove existing filters, if any */ 8535 perf_addr_filters_splice(event, &filters); 8536 8537 /* install new filters */ 8538 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8539 8540 return ret; 8541 8542 fail_free_filters: 8543 free_filters_list(&filters); 8544 8545 fail_clear_files: 8546 event->addr_filters.nr_file_filters = 0; 8547 8548 return ret; 8549 } 8550 8551 static int 8552 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str) 8553 { 8554 struct perf_event_context *ctx = event->ctx; 8555 int ret; 8556 8557 /* 8558 * Beware, here be dragons!! 8559 * 8560 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint 8561 * stuff does not actually need it. So temporarily drop ctx->mutex. As per 8562 * perf_event_ctx_lock() we already have a reference on ctx. 8563 * 8564 * This can result in event getting moved to a different ctx, but that 8565 * does not affect the tracepoint state. 8566 */ 8567 mutex_unlock(&ctx->mutex); 8568 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 8569 mutex_lock(&ctx->mutex); 8570 8571 return ret; 8572 } 8573 8574 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8575 { 8576 char *filter_str; 8577 int ret = -EINVAL; 8578 8579 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8580 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8581 !has_addr_filter(event)) 8582 return -EINVAL; 8583 8584 filter_str = strndup_user(arg, PAGE_SIZE); 8585 if (IS_ERR(filter_str)) 8586 return PTR_ERR(filter_str); 8587 8588 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8589 event->attr.type == PERF_TYPE_TRACEPOINT) 8590 ret = perf_tracepoint_set_filter(event, filter_str); 8591 else if (has_addr_filter(event)) 8592 ret = perf_event_set_addr_filter(event, filter_str); 8593 8594 kfree(filter_str); 8595 return ret; 8596 } 8597 8598 /* 8599 * hrtimer based swevent callback 8600 */ 8601 8602 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8603 { 8604 enum hrtimer_restart ret = HRTIMER_RESTART; 8605 struct perf_sample_data data; 8606 struct pt_regs *regs; 8607 struct perf_event *event; 8608 u64 period; 8609 8610 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8611 8612 if (event->state != PERF_EVENT_STATE_ACTIVE) 8613 return HRTIMER_NORESTART; 8614 8615 event->pmu->read(event); 8616 8617 perf_sample_data_init(&data, 0, event->hw.last_period); 8618 regs = get_irq_regs(); 8619 8620 if (regs && !perf_exclude_event(event, regs)) { 8621 if (!(event->attr.exclude_idle && is_idle_task(current))) 8622 if (__perf_event_overflow(event, 1, &data, regs)) 8623 ret = HRTIMER_NORESTART; 8624 } 8625 8626 period = max_t(u64, 10000, event->hw.sample_period); 8627 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8628 8629 return ret; 8630 } 8631 8632 static void perf_swevent_start_hrtimer(struct perf_event *event) 8633 { 8634 struct hw_perf_event *hwc = &event->hw; 8635 s64 period; 8636 8637 if (!is_sampling_event(event)) 8638 return; 8639 8640 period = local64_read(&hwc->period_left); 8641 if (period) { 8642 if (period < 0) 8643 period = 10000; 8644 8645 local64_set(&hwc->period_left, 0); 8646 } else { 8647 period = max_t(u64, 10000, hwc->sample_period); 8648 } 8649 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8650 HRTIMER_MODE_REL_PINNED); 8651 } 8652 8653 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8654 { 8655 struct hw_perf_event *hwc = &event->hw; 8656 8657 if (is_sampling_event(event)) { 8658 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8659 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8660 8661 hrtimer_cancel(&hwc->hrtimer); 8662 } 8663 } 8664 8665 static void perf_swevent_init_hrtimer(struct perf_event *event) 8666 { 8667 struct hw_perf_event *hwc = &event->hw; 8668 8669 if (!is_sampling_event(event)) 8670 return; 8671 8672 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8673 hwc->hrtimer.function = perf_swevent_hrtimer; 8674 8675 /* 8676 * Since hrtimers have a fixed rate, we can do a static freq->period 8677 * mapping and avoid the whole period adjust feedback stuff. 8678 */ 8679 if (event->attr.freq) { 8680 long freq = event->attr.sample_freq; 8681 8682 event->attr.sample_period = NSEC_PER_SEC / freq; 8683 hwc->sample_period = event->attr.sample_period; 8684 local64_set(&hwc->period_left, hwc->sample_period); 8685 hwc->last_period = hwc->sample_period; 8686 event->attr.freq = 0; 8687 } 8688 } 8689 8690 /* 8691 * Software event: cpu wall time clock 8692 */ 8693 8694 static void cpu_clock_event_update(struct perf_event *event) 8695 { 8696 s64 prev; 8697 u64 now; 8698 8699 now = local_clock(); 8700 prev = local64_xchg(&event->hw.prev_count, now); 8701 local64_add(now - prev, &event->count); 8702 } 8703 8704 static void cpu_clock_event_start(struct perf_event *event, int flags) 8705 { 8706 local64_set(&event->hw.prev_count, local_clock()); 8707 perf_swevent_start_hrtimer(event); 8708 } 8709 8710 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8711 { 8712 perf_swevent_cancel_hrtimer(event); 8713 cpu_clock_event_update(event); 8714 } 8715 8716 static int cpu_clock_event_add(struct perf_event *event, int flags) 8717 { 8718 if (flags & PERF_EF_START) 8719 cpu_clock_event_start(event, flags); 8720 perf_event_update_userpage(event); 8721 8722 return 0; 8723 } 8724 8725 static void cpu_clock_event_del(struct perf_event *event, int flags) 8726 { 8727 cpu_clock_event_stop(event, flags); 8728 } 8729 8730 static void cpu_clock_event_read(struct perf_event *event) 8731 { 8732 cpu_clock_event_update(event); 8733 } 8734 8735 static int cpu_clock_event_init(struct perf_event *event) 8736 { 8737 if (event->attr.type != PERF_TYPE_SOFTWARE) 8738 return -ENOENT; 8739 8740 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8741 return -ENOENT; 8742 8743 /* 8744 * no branch sampling for software events 8745 */ 8746 if (has_branch_stack(event)) 8747 return -EOPNOTSUPP; 8748 8749 perf_swevent_init_hrtimer(event); 8750 8751 return 0; 8752 } 8753 8754 static struct pmu perf_cpu_clock = { 8755 .task_ctx_nr = perf_sw_context, 8756 8757 .capabilities = PERF_PMU_CAP_NO_NMI, 8758 8759 .event_init = cpu_clock_event_init, 8760 .add = cpu_clock_event_add, 8761 .del = cpu_clock_event_del, 8762 .start = cpu_clock_event_start, 8763 .stop = cpu_clock_event_stop, 8764 .read = cpu_clock_event_read, 8765 }; 8766 8767 /* 8768 * Software event: task time clock 8769 */ 8770 8771 static void task_clock_event_update(struct perf_event *event, u64 now) 8772 { 8773 u64 prev; 8774 s64 delta; 8775 8776 prev = local64_xchg(&event->hw.prev_count, now); 8777 delta = now - prev; 8778 local64_add(delta, &event->count); 8779 } 8780 8781 static void task_clock_event_start(struct perf_event *event, int flags) 8782 { 8783 local64_set(&event->hw.prev_count, event->ctx->time); 8784 perf_swevent_start_hrtimer(event); 8785 } 8786 8787 static void task_clock_event_stop(struct perf_event *event, int flags) 8788 { 8789 perf_swevent_cancel_hrtimer(event); 8790 task_clock_event_update(event, event->ctx->time); 8791 } 8792 8793 static int task_clock_event_add(struct perf_event *event, int flags) 8794 { 8795 if (flags & PERF_EF_START) 8796 task_clock_event_start(event, flags); 8797 perf_event_update_userpage(event); 8798 8799 return 0; 8800 } 8801 8802 static void task_clock_event_del(struct perf_event *event, int flags) 8803 { 8804 task_clock_event_stop(event, PERF_EF_UPDATE); 8805 } 8806 8807 static void task_clock_event_read(struct perf_event *event) 8808 { 8809 u64 now = perf_clock(); 8810 u64 delta = now - event->ctx->timestamp; 8811 u64 time = event->ctx->time + delta; 8812 8813 task_clock_event_update(event, time); 8814 } 8815 8816 static int task_clock_event_init(struct perf_event *event) 8817 { 8818 if (event->attr.type != PERF_TYPE_SOFTWARE) 8819 return -ENOENT; 8820 8821 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8822 return -ENOENT; 8823 8824 /* 8825 * no branch sampling for software events 8826 */ 8827 if (has_branch_stack(event)) 8828 return -EOPNOTSUPP; 8829 8830 perf_swevent_init_hrtimer(event); 8831 8832 return 0; 8833 } 8834 8835 static struct pmu perf_task_clock = { 8836 .task_ctx_nr = perf_sw_context, 8837 8838 .capabilities = PERF_PMU_CAP_NO_NMI, 8839 8840 .event_init = task_clock_event_init, 8841 .add = task_clock_event_add, 8842 .del = task_clock_event_del, 8843 .start = task_clock_event_start, 8844 .stop = task_clock_event_stop, 8845 .read = task_clock_event_read, 8846 }; 8847 8848 static void perf_pmu_nop_void(struct pmu *pmu) 8849 { 8850 } 8851 8852 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8853 { 8854 } 8855 8856 static int perf_pmu_nop_int(struct pmu *pmu) 8857 { 8858 return 0; 8859 } 8860 8861 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8862 8863 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8864 { 8865 __this_cpu_write(nop_txn_flags, flags); 8866 8867 if (flags & ~PERF_PMU_TXN_ADD) 8868 return; 8869 8870 perf_pmu_disable(pmu); 8871 } 8872 8873 static int perf_pmu_commit_txn(struct pmu *pmu) 8874 { 8875 unsigned int flags = __this_cpu_read(nop_txn_flags); 8876 8877 __this_cpu_write(nop_txn_flags, 0); 8878 8879 if (flags & ~PERF_PMU_TXN_ADD) 8880 return 0; 8881 8882 perf_pmu_enable(pmu); 8883 return 0; 8884 } 8885 8886 static void perf_pmu_cancel_txn(struct pmu *pmu) 8887 { 8888 unsigned int flags = __this_cpu_read(nop_txn_flags); 8889 8890 __this_cpu_write(nop_txn_flags, 0); 8891 8892 if (flags & ~PERF_PMU_TXN_ADD) 8893 return; 8894 8895 perf_pmu_enable(pmu); 8896 } 8897 8898 static int perf_event_idx_default(struct perf_event *event) 8899 { 8900 return 0; 8901 } 8902 8903 /* 8904 * Ensures all contexts with the same task_ctx_nr have the same 8905 * pmu_cpu_context too. 8906 */ 8907 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8908 { 8909 struct pmu *pmu; 8910 8911 if (ctxn < 0) 8912 return NULL; 8913 8914 list_for_each_entry(pmu, &pmus, entry) { 8915 if (pmu->task_ctx_nr == ctxn) 8916 return pmu->pmu_cpu_context; 8917 } 8918 8919 return NULL; 8920 } 8921 8922 static void free_pmu_context(struct pmu *pmu) 8923 { 8924 /* 8925 * Static contexts such as perf_sw_context have a global lifetime 8926 * and may be shared between different PMUs. Avoid freeing them 8927 * when a single PMU is going away. 8928 */ 8929 if (pmu->task_ctx_nr > perf_invalid_context) 8930 return; 8931 8932 mutex_lock(&pmus_lock); 8933 free_percpu(pmu->pmu_cpu_context); 8934 mutex_unlock(&pmus_lock); 8935 } 8936 8937 /* 8938 * Let userspace know that this PMU supports address range filtering: 8939 */ 8940 static ssize_t nr_addr_filters_show(struct device *dev, 8941 struct device_attribute *attr, 8942 char *page) 8943 { 8944 struct pmu *pmu = dev_get_drvdata(dev); 8945 8946 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8947 } 8948 DEVICE_ATTR_RO(nr_addr_filters); 8949 8950 static struct idr pmu_idr; 8951 8952 static ssize_t 8953 type_show(struct device *dev, struct device_attribute *attr, char *page) 8954 { 8955 struct pmu *pmu = dev_get_drvdata(dev); 8956 8957 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8958 } 8959 static DEVICE_ATTR_RO(type); 8960 8961 static ssize_t 8962 perf_event_mux_interval_ms_show(struct device *dev, 8963 struct device_attribute *attr, 8964 char *page) 8965 { 8966 struct pmu *pmu = dev_get_drvdata(dev); 8967 8968 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8969 } 8970 8971 static DEFINE_MUTEX(mux_interval_mutex); 8972 8973 static ssize_t 8974 perf_event_mux_interval_ms_store(struct device *dev, 8975 struct device_attribute *attr, 8976 const char *buf, size_t count) 8977 { 8978 struct pmu *pmu = dev_get_drvdata(dev); 8979 int timer, cpu, ret; 8980 8981 ret = kstrtoint(buf, 0, &timer); 8982 if (ret) 8983 return ret; 8984 8985 if (timer < 1) 8986 return -EINVAL; 8987 8988 /* same value, noting to do */ 8989 if (timer == pmu->hrtimer_interval_ms) 8990 return count; 8991 8992 mutex_lock(&mux_interval_mutex); 8993 pmu->hrtimer_interval_ms = timer; 8994 8995 /* update all cpuctx for this PMU */ 8996 cpus_read_lock(); 8997 for_each_online_cpu(cpu) { 8998 struct perf_cpu_context *cpuctx; 8999 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9000 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9001 9002 cpu_function_call(cpu, 9003 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9004 } 9005 cpus_read_unlock(); 9006 mutex_unlock(&mux_interval_mutex); 9007 9008 return count; 9009 } 9010 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9011 9012 static struct attribute *pmu_dev_attrs[] = { 9013 &dev_attr_type.attr, 9014 &dev_attr_perf_event_mux_interval_ms.attr, 9015 NULL, 9016 }; 9017 ATTRIBUTE_GROUPS(pmu_dev); 9018 9019 static int pmu_bus_running; 9020 static struct bus_type pmu_bus = { 9021 .name = "event_source", 9022 .dev_groups = pmu_dev_groups, 9023 }; 9024 9025 static void pmu_dev_release(struct device *dev) 9026 { 9027 kfree(dev); 9028 } 9029 9030 static int pmu_dev_alloc(struct pmu *pmu) 9031 { 9032 int ret = -ENOMEM; 9033 9034 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9035 if (!pmu->dev) 9036 goto out; 9037 9038 pmu->dev->groups = pmu->attr_groups; 9039 device_initialize(pmu->dev); 9040 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9041 if (ret) 9042 goto free_dev; 9043 9044 dev_set_drvdata(pmu->dev, pmu); 9045 pmu->dev->bus = &pmu_bus; 9046 pmu->dev->release = pmu_dev_release; 9047 ret = device_add(pmu->dev); 9048 if (ret) 9049 goto free_dev; 9050 9051 /* For PMUs with address filters, throw in an extra attribute: */ 9052 if (pmu->nr_addr_filters) 9053 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9054 9055 if (ret) 9056 goto del_dev; 9057 9058 out: 9059 return ret; 9060 9061 del_dev: 9062 device_del(pmu->dev); 9063 9064 free_dev: 9065 put_device(pmu->dev); 9066 goto out; 9067 } 9068 9069 static struct lock_class_key cpuctx_mutex; 9070 static struct lock_class_key cpuctx_lock; 9071 9072 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9073 { 9074 int cpu, ret; 9075 9076 mutex_lock(&pmus_lock); 9077 ret = -ENOMEM; 9078 pmu->pmu_disable_count = alloc_percpu(int); 9079 if (!pmu->pmu_disable_count) 9080 goto unlock; 9081 9082 pmu->type = -1; 9083 if (!name) 9084 goto skip_type; 9085 pmu->name = name; 9086 9087 if (type < 0) { 9088 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9089 if (type < 0) { 9090 ret = type; 9091 goto free_pdc; 9092 } 9093 } 9094 pmu->type = type; 9095 9096 if (pmu_bus_running) { 9097 ret = pmu_dev_alloc(pmu); 9098 if (ret) 9099 goto free_idr; 9100 } 9101 9102 skip_type: 9103 if (pmu->task_ctx_nr == perf_hw_context) { 9104 static int hw_context_taken = 0; 9105 9106 /* 9107 * Other than systems with heterogeneous CPUs, it never makes 9108 * sense for two PMUs to share perf_hw_context. PMUs which are 9109 * uncore must use perf_invalid_context. 9110 */ 9111 if (WARN_ON_ONCE(hw_context_taken && 9112 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9113 pmu->task_ctx_nr = perf_invalid_context; 9114 9115 hw_context_taken = 1; 9116 } 9117 9118 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9119 if (pmu->pmu_cpu_context) 9120 goto got_cpu_context; 9121 9122 ret = -ENOMEM; 9123 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9124 if (!pmu->pmu_cpu_context) 9125 goto free_dev; 9126 9127 for_each_possible_cpu(cpu) { 9128 struct perf_cpu_context *cpuctx; 9129 9130 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9131 __perf_event_init_context(&cpuctx->ctx); 9132 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9133 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9134 cpuctx->ctx.pmu = pmu; 9135 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9136 9137 __perf_mux_hrtimer_init(cpuctx, cpu); 9138 } 9139 9140 got_cpu_context: 9141 if (!pmu->start_txn) { 9142 if (pmu->pmu_enable) { 9143 /* 9144 * If we have pmu_enable/pmu_disable calls, install 9145 * transaction stubs that use that to try and batch 9146 * hardware accesses. 9147 */ 9148 pmu->start_txn = perf_pmu_start_txn; 9149 pmu->commit_txn = perf_pmu_commit_txn; 9150 pmu->cancel_txn = perf_pmu_cancel_txn; 9151 } else { 9152 pmu->start_txn = perf_pmu_nop_txn; 9153 pmu->commit_txn = perf_pmu_nop_int; 9154 pmu->cancel_txn = perf_pmu_nop_void; 9155 } 9156 } 9157 9158 if (!pmu->pmu_enable) { 9159 pmu->pmu_enable = perf_pmu_nop_void; 9160 pmu->pmu_disable = perf_pmu_nop_void; 9161 } 9162 9163 if (!pmu->event_idx) 9164 pmu->event_idx = perf_event_idx_default; 9165 9166 list_add_rcu(&pmu->entry, &pmus); 9167 atomic_set(&pmu->exclusive_cnt, 0); 9168 ret = 0; 9169 unlock: 9170 mutex_unlock(&pmus_lock); 9171 9172 return ret; 9173 9174 free_dev: 9175 device_del(pmu->dev); 9176 put_device(pmu->dev); 9177 9178 free_idr: 9179 if (pmu->type >= PERF_TYPE_MAX) 9180 idr_remove(&pmu_idr, pmu->type); 9181 9182 free_pdc: 9183 free_percpu(pmu->pmu_disable_count); 9184 goto unlock; 9185 } 9186 EXPORT_SYMBOL_GPL(perf_pmu_register); 9187 9188 void perf_pmu_unregister(struct pmu *pmu) 9189 { 9190 int remove_device; 9191 9192 mutex_lock(&pmus_lock); 9193 remove_device = pmu_bus_running; 9194 list_del_rcu(&pmu->entry); 9195 mutex_unlock(&pmus_lock); 9196 9197 /* 9198 * We dereference the pmu list under both SRCU and regular RCU, so 9199 * synchronize against both of those. 9200 */ 9201 synchronize_srcu(&pmus_srcu); 9202 synchronize_rcu(); 9203 9204 free_percpu(pmu->pmu_disable_count); 9205 if (pmu->type >= PERF_TYPE_MAX) 9206 idr_remove(&pmu_idr, pmu->type); 9207 if (remove_device) { 9208 if (pmu->nr_addr_filters) 9209 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9210 device_del(pmu->dev); 9211 put_device(pmu->dev); 9212 } 9213 free_pmu_context(pmu); 9214 } 9215 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9216 9217 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9218 { 9219 struct perf_event_context *ctx = NULL; 9220 int ret; 9221 9222 if (!try_module_get(pmu->module)) 9223 return -ENODEV; 9224 9225 /* 9226 * A number of pmu->event_init() methods iterate the sibling_list to, 9227 * for example, validate if the group fits on the PMU. Therefore, 9228 * if this is a sibling event, acquire the ctx->mutex to protect 9229 * the sibling_list. 9230 */ 9231 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 9232 /* 9233 * This ctx->mutex can nest when we're called through 9234 * inheritance. See the perf_event_ctx_lock_nested() comment. 9235 */ 9236 ctx = perf_event_ctx_lock_nested(event->group_leader, 9237 SINGLE_DEPTH_NESTING); 9238 BUG_ON(!ctx); 9239 } 9240 9241 event->pmu = pmu; 9242 ret = pmu->event_init(event); 9243 9244 if (ctx) 9245 perf_event_ctx_unlock(event->group_leader, ctx); 9246 9247 if (ret) 9248 module_put(pmu->module); 9249 9250 return ret; 9251 } 9252 9253 static struct pmu *perf_init_event(struct perf_event *event) 9254 { 9255 struct pmu *pmu; 9256 int idx; 9257 int ret; 9258 9259 idx = srcu_read_lock(&pmus_srcu); 9260 9261 /* Try parent's PMU first: */ 9262 if (event->parent && event->parent->pmu) { 9263 pmu = event->parent->pmu; 9264 ret = perf_try_init_event(pmu, event); 9265 if (!ret) 9266 goto unlock; 9267 } 9268 9269 rcu_read_lock(); 9270 pmu = idr_find(&pmu_idr, event->attr.type); 9271 rcu_read_unlock(); 9272 if (pmu) { 9273 ret = perf_try_init_event(pmu, event); 9274 if (ret) 9275 pmu = ERR_PTR(ret); 9276 goto unlock; 9277 } 9278 9279 list_for_each_entry_rcu(pmu, &pmus, entry) { 9280 ret = perf_try_init_event(pmu, event); 9281 if (!ret) 9282 goto unlock; 9283 9284 if (ret != -ENOENT) { 9285 pmu = ERR_PTR(ret); 9286 goto unlock; 9287 } 9288 } 9289 pmu = ERR_PTR(-ENOENT); 9290 unlock: 9291 srcu_read_unlock(&pmus_srcu, idx); 9292 9293 return pmu; 9294 } 9295 9296 static void attach_sb_event(struct perf_event *event) 9297 { 9298 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9299 9300 raw_spin_lock(&pel->lock); 9301 list_add_rcu(&event->sb_list, &pel->list); 9302 raw_spin_unlock(&pel->lock); 9303 } 9304 9305 /* 9306 * We keep a list of all !task (and therefore per-cpu) events 9307 * that need to receive side-band records. 9308 * 9309 * This avoids having to scan all the various PMU per-cpu contexts 9310 * looking for them. 9311 */ 9312 static void account_pmu_sb_event(struct perf_event *event) 9313 { 9314 if (is_sb_event(event)) 9315 attach_sb_event(event); 9316 } 9317 9318 static void account_event_cpu(struct perf_event *event, int cpu) 9319 { 9320 if (event->parent) 9321 return; 9322 9323 if (is_cgroup_event(event)) 9324 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9325 } 9326 9327 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9328 static void account_freq_event_nohz(void) 9329 { 9330 #ifdef CONFIG_NO_HZ_FULL 9331 /* Lock so we don't race with concurrent unaccount */ 9332 spin_lock(&nr_freq_lock); 9333 if (atomic_inc_return(&nr_freq_events) == 1) 9334 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9335 spin_unlock(&nr_freq_lock); 9336 #endif 9337 } 9338 9339 static void account_freq_event(void) 9340 { 9341 if (tick_nohz_full_enabled()) 9342 account_freq_event_nohz(); 9343 else 9344 atomic_inc(&nr_freq_events); 9345 } 9346 9347 9348 static void account_event(struct perf_event *event) 9349 { 9350 bool inc = false; 9351 9352 if (event->parent) 9353 return; 9354 9355 if (event->attach_state & PERF_ATTACH_TASK) 9356 inc = true; 9357 if (event->attr.mmap || event->attr.mmap_data) 9358 atomic_inc(&nr_mmap_events); 9359 if (event->attr.comm) 9360 atomic_inc(&nr_comm_events); 9361 if (event->attr.namespaces) 9362 atomic_inc(&nr_namespaces_events); 9363 if (event->attr.task) 9364 atomic_inc(&nr_task_events); 9365 if (event->attr.freq) 9366 account_freq_event(); 9367 if (event->attr.context_switch) { 9368 atomic_inc(&nr_switch_events); 9369 inc = true; 9370 } 9371 if (has_branch_stack(event)) 9372 inc = true; 9373 if (is_cgroup_event(event)) 9374 inc = true; 9375 9376 if (inc) { 9377 /* 9378 * We need the mutex here because static_branch_enable() 9379 * must complete *before* the perf_sched_count increment 9380 * becomes visible. 9381 */ 9382 if (atomic_inc_not_zero(&perf_sched_count)) 9383 goto enabled; 9384 9385 mutex_lock(&perf_sched_mutex); 9386 if (!atomic_read(&perf_sched_count)) { 9387 static_branch_enable(&perf_sched_events); 9388 /* 9389 * Guarantee that all CPUs observe they key change and 9390 * call the perf scheduling hooks before proceeding to 9391 * install events that need them. 9392 */ 9393 synchronize_sched(); 9394 } 9395 /* 9396 * Now that we have waited for the sync_sched(), allow further 9397 * increments to by-pass the mutex. 9398 */ 9399 atomic_inc(&perf_sched_count); 9400 mutex_unlock(&perf_sched_mutex); 9401 } 9402 enabled: 9403 9404 account_event_cpu(event, event->cpu); 9405 9406 account_pmu_sb_event(event); 9407 } 9408 9409 /* 9410 * Allocate and initialize a event structure 9411 */ 9412 static struct perf_event * 9413 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9414 struct task_struct *task, 9415 struct perf_event *group_leader, 9416 struct perf_event *parent_event, 9417 perf_overflow_handler_t overflow_handler, 9418 void *context, int cgroup_fd) 9419 { 9420 struct pmu *pmu; 9421 struct perf_event *event; 9422 struct hw_perf_event *hwc; 9423 long err = -EINVAL; 9424 9425 if ((unsigned)cpu >= nr_cpu_ids) { 9426 if (!task || cpu != -1) 9427 return ERR_PTR(-EINVAL); 9428 } 9429 9430 event = kzalloc(sizeof(*event), GFP_KERNEL); 9431 if (!event) 9432 return ERR_PTR(-ENOMEM); 9433 9434 /* 9435 * Single events are their own group leaders, with an 9436 * empty sibling list: 9437 */ 9438 if (!group_leader) 9439 group_leader = event; 9440 9441 mutex_init(&event->child_mutex); 9442 INIT_LIST_HEAD(&event->child_list); 9443 9444 INIT_LIST_HEAD(&event->group_entry); 9445 INIT_LIST_HEAD(&event->event_entry); 9446 INIT_LIST_HEAD(&event->sibling_list); 9447 INIT_LIST_HEAD(&event->rb_entry); 9448 INIT_LIST_HEAD(&event->active_entry); 9449 INIT_LIST_HEAD(&event->addr_filters.list); 9450 INIT_HLIST_NODE(&event->hlist_entry); 9451 9452 9453 init_waitqueue_head(&event->waitq); 9454 init_irq_work(&event->pending, perf_pending_event); 9455 9456 mutex_init(&event->mmap_mutex); 9457 raw_spin_lock_init(&event->addr_filters.lock); 9458 9459 atomic_long_set(&event->refcount, 1); 9460 event->cpu = cpu; 9461 event->attr = *attr; 9462 event->group_leader = group_leader; 9463 event->pmu = NULL; 9464 event->oncpu = -1; 9465 9466 event->parent = parent_event; 9467 9468 event->ns = get_pid_ns(task_active_pid_ns(current)); 9469 event->id = atomic64_inc_return(&perf_event_id); 9470 9471 event->state = PERF_EVENT_STATE_INACTIVE; 9472 9473 if (task) { 9474 event->attach_state = PERF_ATTACH_TASK; 9475 /* 9476 * XXX pmu::event_init needs to know what task to account to 9477 * and we cannot use the ctx information because we need the 9478 * pmu before we get a ctx. 9479 */ 9480 event->hw.target = task; 9481 } 9482 9483 event->clock = &local_clock; 9484 if (parent_event) 9485 event->clock = parent_event->clock; 9486 9487 if (!overflow_handler && parent_event) { 9488 overflow_handler = parent_event->overflow_handler; 9489 context = parent_event->overflow_handler_context; 9490 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9491 if (overflow_handler == bpf_overflow_handler) { 9492 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9493 9494 if (IS_ERR(prog)) { 9495 err = PTR_ERR(prog); 9496 goto err_ns; 9497 } 9498 event->prog = prog; 9499 event->orig_overflow_handler = 9500 parent_event->orig_overflow_handler; 9501 } 9502 #endif 9503 } 9504 9505 if (overflow_handler) { 9506 event->overflow_handler = overflow_handler; 9507 event->overflow_handler_context = context; 9508 } else if (is_write_backward(event)){ 9509 event->overflow_handler = perf_event_output_backward; 9510 event->overflow_handler_context = NULL; 9511 } else { 9512 event->overflow_handler = perf_event_output_forward; 9513 event->overflow_handler_context = NULL; 9514 } 9515 9516 perf_event__state_init(event); 9517 9518 pmu = NULL; 9519 9520 hwc = &event->hw; 9521 hwc->sample_period = attr->sample_period; 9522 if (attr->freq && attr->sample_freq) 9523 hwc->sample_period = 1; 9524 hwc->last_period = hwc->sample_period; 9525 9526 local64_set(&hwc->period_left, hwc->sample_period); 9527 9528 /* 9529 * We currently do not support PERF_SAMPLE_READ on inherited events. 9530 * See perf_output_read(). 9531 */ 9532 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 9533 goto err_ns; 9534 9535 if (!has_branch_stack(event)) 9536 event->attr.branch_sample_type = 0; 9537 9538 if (cgroup_fd != -1) { 9539 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9540 if (err) 9541 goto err_ns; 9542 } 9543 9544 pmu = perf_init_event(event); 9545 if (IS_ERR(pmu)) { 9546 err = PTR_ERR(pmu); 9547 goto err_ns; 9548 } 9549 9550 err = exclusive_event_init(event); 9551 if (err) 9552 goto err_pmu; 9553 9554 if (has_addr_filter(event)) { 9555 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9556 sizeof(unsigned long), 9557 GFP_KERNEL); 9558 if (!event->addr_filters_offs) { 9559 err = -ENOMEM; 9560 goto err_per_task; 9561 } 9562 9563 /* force hw sync on the address filters */ 9564 event->addr_filters_gen = 1; 9565 } 9566 9567 if (!event->parent) { 9568 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9569 err = get_callchain_buffers(attr->sample_max_stack); 9570 if (err) 9571 goto err_addr_filters; 9572 } 9573 } 9574 9575 /* symmetric to unaccount_event() in _free_event() */ 9576 account_event(event); 9577 9578 return event; 9579 9580 err_addr_filters: 9581 kfree(event->addr_filters_offs); 9582 9583 err_per_task: 9584 exclusive_event_destroy(event); 9585 9586 err_pmu: 9587 if (event->destroy) 9588 event->destroy(event); 9589 module_put(pmu->module); 9590 err_ns: 9591 if (is_cgroup_event(event)) 9592 perf_detach_cgroup(event); 9593 if (event->ns) 9594 put_pid_ns(event->ns); 9595 kfree(event); 9596 9597 return ERR_PTR(err); 9598 } 9599 9600 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9601 struct perf_event_attr *attr) 9602 { 9603 u32 size; 9604 int ret; 9605 9606 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9607 return -EFAULT; 9608 9609 /* 9610 * zero the full structure, so that a short copy will be nice. 9611 */ 9612 memset(attr, 0, sizeof(*attr)); 9613 9614 ret = get_user(size, &uattr->size); 9615 if (ret) 9616 return ret; 9617 9618 if (size > PAGE_SIZE) /* silly large */ 9619 goto err_size; 9620 9621 if (!size) /* abi compat */ 9622 size = PERF_ATTR_SIZE_VER0; 9623 9624 if (size < PERF_ATTR_SIZE_VER0) 9625 goto err_size; 9626 9627 /* 9628 * If we're handed a bigger struct than we know of, 9629 * ensure all the unknown bits are 0 - i.e. new 9630 * user-space does not rely on any kernel feature 9631 * extensions we dont know about yet. 9632 */ 9633 if (size > sizeof(*attr)) { 9634 unsigned char __user *addr; 9635 unsigned char __user *end; 9636 unsigned char val; 9637 9638 addr = (void __user *)uattr + sizeof(*attr); 9639 end = (void __user *)uattr + size; 9640 9641 for (; addr < end; addr++) { 9642 ret = get_user(val, addr); 9643 if (ret) 9644 return ret; 9645 if (val) 9646 goto err_size; 9647 } 9648 size = sizeof(*attr); 9649 } 9650 9651 ret = copy_from_user(attr, uattr, size); 9652 if (ret) 9653 return -EFAULT; 9654 9655 attr->size = size; 9656 9657 if (attr->__reserved_1) 9658 return -EINVAL; 9659 9660 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9661 return -EINVAL; 9662 9663 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9664 return -EINVAL; 9665 9666 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9667 u64 mask = attr->branch_sample_type; 9668 9669 /* only using defined bits */ 9670 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9671 return -EINVAL; 9672 9673 /* at least one branch bit must be set */ 9674 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9675 return -EINVAL; 9676 9677 /* propagate priv level, when not set for branch */ 9678 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9679 9680 /* exclude_kernel checked on syscall entry */ 9681 if (!attr->exclude_kernel) 9682 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9683 9684 if (!attr->exclude_user) 9685 mask |= PERF_SAMPLE_BRANCH_USER; 9686 9687 if (!attr->exclude_hv) 9688 mask |= PERF_SAMPLE_BRANCH_HV; 9689 /* 9690 * adjust user setting (for HW filter setup) 9691 */ 9692 attr->branch_sample_type = mask; 9693 } 9694 /* privileged levels capture (kernel, hv): check permissions */ 9695 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9696 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9697 return -EACCES; 9698 } 9699 9700 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9701 ret = perf_reg_validate(attr->sample_regs_user); 9702 if (ret) 9703 return ret; 9704 } 9705 9706 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9707 if (!arch_perf_have_user_stack_dump()) 9708 return -ENOSYS; 9709 9710 /* 9711 * We have __u32 type for the size, but so far 9712 * we can only use __u16 as maximum due to the 9713 * __u16 sample size limit. 9714 */ 9715 if (attr->sample_stack_user >= USHRT_MAX) 9716 ret = -EINVAL; 9717 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9718 ret = -EINVAL; 9719 } 9720 9721 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9722 ret = perf_reg_validate(attr->sample_regs_intr); 9723 out: 9724 return ret; 9725 9726 err_size: 9727 put_user(sizeof(*attr), &uattr->size); 9728 ret = -E2BIG; 9729 goto out; 9730 } 9731 9732 static int 9733 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9734 { 9735 struct ring_buffer *rb = NULL; 9736 int ret = -EINVAL; 9737 9738 if (!output_event) 9739 goto set; 9740 9741 /* don't allow circular references */ 9742 if (event == output_event) 9743 goto out; 9744 9745 /* 9746 * Don't allow cross-cpu buffers 9747 */ 9748 if (output_event->cpu != event->cpu) 9749 goto out; 9750 9751 /* 9752 * If its not a per-cpu rb, it must be the same task. 9753 */ 9754 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9755 goto out; 9756 9757 /* 9758 * Mixing clocks in the same buffer is trouble you don't need. 9759 */ 9760 if (output_event->clock != event->clock) 9761 goto out; 9762 9763 /* 9764 * Either writing ring buffer from beginning or from end. 9765 * Mixing is not allowed. 9766 */ 9767 if (is_write_backward(output_event) != is_write_backward(event)) 9768 goto out; 9769 9770 /* 9771 * If both events generate aux data, they must be on the same PMU 9772 */ 9773 if (has_aux(event) && has_aux(output_event) && 9774 event->pmu != output_event->pmu) 9775 goto out; 9776 9777 set: 9778 mutex_lock(&event->mmap_mutex); 9779 /* Can't redirect output if we've got an active mmap() */ 9780 if (atomic_read(&event->mmap_count)) 9781 goto unlock; 9782 9783 if (output_event) { 9784 /* get the rb we want to redirect to */ 9785 rb = ring_buffer_get(output_event); 9786 if (!rb) 9787 goto unlock; 9788 } 9789 9790 ring_buffer_attach(event, rb); 9791 9792 ret = 0; 9793 unlock: 9794 mutex_unlock(&event->mmap_mutex); 9795 9796 out: 9797 return ret; 9798 } 9799 9800 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9801 { 9802 if (b < a) 9803 swap(a, b); 9804 9805 mutex_lock(a); 9806 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9807 } 9808 9809 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9810 { 9811 bool nmi_safe = false; 9812 9813 switch (clk_id) { 9814 case CLOCK_MONOTONIC: 9815 event->clock = &ktime_get_mono_fast_ns; 9816 nmi_safe = true; 9817 break; 9818 9819 case CLOCK_MONOTONIC_RAW: 9820 event->clock = &ktime_get_raw_fast_ns; 9821 nmi_safe = true; 9822 break; 9823 9824 case CLOCK_REALTIME: 9825 event->clock = &ktime_get_real_ns; 9826 break; 9827 9828 case CLOCK_BOOTTIME: 9829 event->clock = &ktime_get_boot_ns; 9830 break; 9831 9832 case CLOCK_TAI: 9833 event->clock = &ktime_get_tai_ns; 9834 break; 9835 9836 default: 9837 return -EINVAL; 9838 } 9839 9840 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9841 return -EINVAL; 9842 9843 return 0; 9844 } 9845 9846 /* 9847 * Variation on perf_event_ctx_lock_nested(), except we take two context 9848 * mutexes. 9849 */ 9850 static struct perf_event_context * 9851 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9852 struct perf_event_context *ctx) 9853 { 9854 struct perf_event_context *gctx; 9855 9856 again: 9857 rcu_read_lock(); 9858 gctx = READ_ONCE(group_leader->ctx); 9859 if (!atomic_inc_not_zero(&gctx->refcount)) { 9860 rcu_read_unlock(); 9861 goto again; 9862 } 9863 rcu_read_unlock(); 9864 9865 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9866 9867 if (group_leader->ctx != gctx) { 9868 mutex_unlock(&ctx->mutex); 9869 mutex_unlock(&gctx->mutex); 9870 put_ctx(gctx); 9871 goto again; 9872 } 9873 9874 return gctx; 9875 } 9876 9877 /** 9878 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9879 * 9880 * @attr_uptr: event_id type attributes for monitoring/sampling 9881 * @pid: target pid 9882 * @cpu: target cpu 9883 * @group_fd: group leader event fd 9884 */ 9885 SYSCALL_DEFINE5(perf_event_open, 9886 struct perf_event_attr __user *, attr_uptr, 9887 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9888 { 9889 struct perf_event *group_leader = NULL, *output_event = NULL; 9890 struct perf_event *event, *sibling; 9891 struct perf_event_attr attr; 9892 struct perf_event_context *ctx, *uninitialized_var(gctx); 9893 struct file *event_file = NULL; 9894 struct fd group = {NULL, 0}; 9895 struct task_struct *task = NULL; 9896 struct pmu *pmu; 9897 int event_fd; 9898 int move_group = 0; 9899 int err; 9900 int f_flags = O_RDWR; 9901 int cgroup_fd = -1; 9902 9903 /* for future expandability... */ 9904 if (flags & ~PERF_FLAG_ALL) 9905 return -EINVAL; 9906 9907 err = perf_copy_attr(attr_uptr, &attr); 9908 if (err) 9909 return err; 9910 9911 if (!attr.exclude_kernel) { 9912 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9913 return -EACCES; 9914 } 9915 9916 if (attr.namespaces) { 9917 if (!capable(CAP_SYS_ADMIN)) 9918 return -EACCES; 9919 } 9920 9921 if (attr.freq) { 9922 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9923 return -EINVAL; 9924 } else { 9925 if (attr.sample_period & (1ULL << 63)) 9926 return -EINVAL; 9927 } 9928 9929 /* Only privileged users can get physical addresses */ 9930 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 9931 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9932 return -EACCES; 9933 9934 if (!attr.sample_max_stack) 9935 attr.sample_max_stack = sysctl_perf_event_max_stack; 9936 9937 /* 9938 * In cgroup mode, the pid argument is used to pass the fd 9939 * opened to the cgroup directory in cgroupfs. The cpu argument 9940 * designates the cpu on which to monitor threads from that 9941 * cgroup. 9942 */ 9943 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9944 return -EINVAL; 9945 9946 if (flags & PERF_FLAG_FD_CLOEXEC) 9947 f_flags |= O_CLOEXEC; 9948 9949 event_fd = get_unused_fd_flags(f_flags); 9950 if (event_fd < 0) 9951 return event_fd; 9952 9953 if (group_fd != -1) { 9954 err = perf_fget_light(group_fd, &group); 9955 if (err) 9956 goto err_fd; 9957 group_leader = group.file->private_data; 9958 if (flags & PERF_FLAG_FD_OUTPUT) 9959 output_event = group_leader; 9960 if (flags & PERF_FLAG_FD_NO_GROUP) 9961 group_leader = NULL; 9962 } 9963 9964 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9965 task = find_lively_task_by_vpid(pid); 9966 if (IS_ERR(task)) { 9967 err = PTR_ERR(task); 9968 goto err_group_fd; 9969 } 9970 } 9971 9972 if (task && group_leader && 9973 group_leader->attr.inherit != attr.inherit) { 9974 err = -EINVAL; 9975 goto err_task; 9976 } 9977 9978 if (task) { 9979 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9980 if (err) 9981 goto err_task; 9982 9983 /* 9984 * Reuse ptrace permission checks for now. 9985 * 9986 * We must hold cred_guard_mutex across this and any potential 9987 * perf_install_in_context() call for this new event to 9988 * serialize against exec() altering our credentials (and the 9989 * perf_event_exit_task() that could imply). 9990 */ 9991 err = -EACCES; 9992 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9993 goto err_cred; 9994 } 9995 9996 if (flags & PERF_FLAG_PID_CGROUP) 9997 cgroup_fd = pid; 9998 9999 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10000 NULL, NULL, cgroup_fd); 10001 if (IS_ERR(event)) { 10002 err = PTR_ERR(event); 10003 goto err_cred; 10004 } 10005 10006 if (is_sampling_event(event)) { 10007 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10008 err = -EOPNOTSUPP; 10009 goto err_alloc; 10010 } 10011 } 10012 10013 /* 10014 * Special case software events and allow them to be part of 10015 * any hardware group. 10016 */ 10017 pmu = event->pmu; 10018 10019 if (attr.use_clockid) { 10020 err = perf_event_set_clock(event, attr.clockid); 10021 if (err) 10022 goto err_alloc; 10023 } 10024 10025 if (pmu->task_ctx_nr == perf_sw_context) 10026 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10027 10028 if (group_leader && 10029 (is_software_event(event) != is_software_event(group_leader))) { 10030 if (is_software_event(event)) { 10031 /* 10032 * If event and group_leader are not both a software 10033 * event, and event is, then group leader is not. 10034 * 10035 * Allow the addition of software events to !software 10036 * groups, this is safe because software events never 10037 * fail to schedule. 10038 */ 10039 pmu = group_leader->pmu; 10040 } else if (is_software_event(group_leader) && 10041 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10042 /* 10043 * In case the group is a pure software group, and we 10044 * try to add a hardware event, move the whole group to 10045 * the hardware context. 10046 */ 10047 move_group = 1; 10048 } 10049 } 10050 10051 /* 10052 * Get the target context (task or percpu): 10053 */ 10054 ctx = find_get_context(pmu, task, event); 10055 if (IS_ERR(ctx)) { 10056 err = PTR_ERR(ctx); 10057 goto err_alloc; 10058 } 10059 10060 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10061 err = -EBUSY; 10062 goto err_context; 10063 } 10064 10065 /* 10066 * Look up the group leader (we will attach this event to it): 10067 */ 10068 if (group_leader) { 10069 err = -EINVAL; 10070 10071 /* 10072 * Do not allow a recursive hierarchy (this new sibling 10073 * becoming part of another group-sibling): 10074 */ 10075 if (group_leader->group_leader != group_leader) 10076 goto err_context; 10077 10078 /* All events in a group should have the same clock */ 10079 if (group_leader->clock != event->clock) 10080 goto err_context; 10081 10082 /* 10083 * Make sure we're both events for the same CPU; 10084 * grouping events for different CPUs is broken; since 10085 * you can never concurrently schedule them anyhow. 10086 */ 10087 if (group_leader->cpu != event->cpu) 10088 goto err_context; 10089 10090 /* 10091 * Make sure we're both on the same task, or both 10092 * per-CPU events. 10093 */ 10094 if (group_leader->ctx->task != ctx->task) 10095 goto err_context; 10096 10097 /* 10098 * Do not allow to attach to a group in a different task 10099 * or CPU context. If we're moving SW events, we'll fix 10100 * this up later, so allow that. 10101 */ 10102 if (!move_group && group_leader->ctx != ctx) 10103 goto err_context; 10104 10105 /* 10106 * Only a group leader can be exclusive or pinned 10107 */ 10108 if (attr.exclusive || attr.pinned) 10109 goto err_context; 10110 } 10111 10112 if (output_event) { 10113 err = perf_event_set_output(event, output_event); 10114 if (err) 10115 goto err_context; 10116 } 10117 10118 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10119 f_flags); 10120 if (IS_ERR(event_file)) { 10121 err = PTR_ERR(event_file); 10122 event_file = NULL; 10123 goto err_context; 10124 } 10125 10126 if (move_group) { 10127 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10128 10129 if (gctx->task == TASK_TOMBSTONE) { 10130 err = -ESRCH; 10131 goto err_locked; 10132 } 10133 10134 /* 10135 * Check if we raced against another sys_perf_event_open() call 10136 * moving the software group underneath us. 10137 */ 10138 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10139 /* 10140 * If someone moved the group out from under us, check 10141 * if this new event wound up on the same ctx, if so 10142 * its the regular !move_group case, otherwise fail. 10143 */ 10144 if (gctx != ctx) { 10145 err = -EINVAL; 10146 goto err_locked; 10147 } else { 10148 perf_event_ctx_unlock(group_leader, gctx); 10149 move_group = 0; 10150 } 10151 } 10152 } else { 10153 mutex_lock(&ctx->mutex); 10154 } 10155 10156 if (ctx->task == TASK_TOMBSTONE) { 10157 err = -ESRCH; 10158 goto err_locked; 10159 } 10160 10161 if (!perf_event_validate_size(event)) { 10162 err = -E2BIG; 10163 goto err_locked; 10164 } 10165 10166 if (!task) { 10167 /* 10168 * Check if the @cpu we're creating an event for is online. 10169 * 10170 * We use the perf_cpu_context::ctx::mutex to serialize against 10171 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10172 */ 10173 struct perf_cpu_context *cpuctx = 10174 container_of(ctx, struct perf_cpu_context, ctx); 10175 10176 if (!cpuctx->online) { 10177 err = -ENODEV; 10178 goto err_locked; 10179 } 10180 } 10181 10182 10183 /* 10184 * Must be under the same ctx::mutex as perf_install_in_context(), 10185 * because we need to serialize with concurrent event creation. 10186 */ 10187 if (!exclusive_event_installable(event, ctx)) { 10188 /* exclusive and group stuff are assumed mutually exclusive */ 10189 WARN_ON_ONCE(move_group); 10190 10191 err = -EBUSY; 10192 goto err_locked; 10193 } 10194 10195 WARN_ON_ONCE(ctx->parent_ctx); 10196 10197 /* 10198 * This is the point on no return; we cannot fail hereafter. This is 10199 * where we start modifying current state. 10200 */ 10201 10202 if (move_group) { 10203 /* 10204 * See perf_event_ctx_lock() for comments on the details 10205 * of swizzling perf_event::ctx. 10206 */ 10207 perf_remove_from_context(group_leader, 0); 10208 put_ctx(gctx); 10209 10210 list_for_each_entry(sibling, &group_leader->sibling_list, 10211 group_entry) { 10212 perf_remove_from_context(sibling, 0); 10213 put_ctx(gctx); 10214 } 10215 10216 /* 10217 * Wait for everybody to stop referencing the events through 10218 * the old lists, before installing it on new lists. 10219 */ 10220 synchronize_rcu(); 10221 10222 /* 10223 * Install the group siblings before the group leader. 10224 * 10225 * Because a group leader will try and install the entire group 10226 * (through the sibling list, which is still in-tact), we can 10227 * end up with siblings installed in the wrong context. 10228 * 10229 * By installing siblings first we NO-OP because they're not 10230 * reachable through the group lists. 10231 */ 10232 list_for_each_entry(sibling, &group_leader->sibling_list, 10233 group_entry) { 10234 perf_event__state_init(sibling); 10235 perf_install_in_context(ctx, sibling, sibling->cpu); 10236 get_ctx(ctx); 10237 } 10238 10239 /* 10240 * Removing from the context ends up with disabled 10241 * event. What we want here is event in the initial 10242 * startup state, ready to be add into new context. 10243 */ 10244 perf_event__state_init(group_leader); 10245 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10246 get_ctx(ctx); 10247 } 10248 10249 /* 10250 * Precalculate sample_data sizes; do while holding ctx::mutex such 10251 * that we're serialized against further additions and before 10252 * perf_install_in_context() which is the point the event is active and 10253 * can use these values. 10254 */ 10255 perf_event__header_size(event); 10256 perf_event__id_header_size(event); 10257 10258 event->owner = current; 10259 10260 perf_install_in_context(ctx, event, event->cpu); 10261 perf_unpin_context(ctx); 10262 10263 if (move_group) 10264 perf_event_ctx_unlock(group_leader, gctx); 10265 mutex_unlock(&ctx->mutex); 10266 10267 if (task) { 10268 mutex_unlock(&task->signal->cred_guard_mutex); 10269 put_task_struct(task); 10270 } 10271 10272 mutex_lock(¤t->perf_event_mutex); 10273 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10274 mutex_unlock(¤t->perf_event_mutex); 10275 10276 /* 10277 * Drop the reference on the group_event after placing the 10278 * new event on the sibling_list. This ensures destruction 10279 * of the group leader will find the pointer to itself in 10280 * perf_group_detach(). 10281 */ 10282 fdput(group); 10283 fd_install(event_fd, event_file); 10284 return event_fd; 10285 10286 err_locked: 10287 if (move_group) 10288 perf_event_ctx_unlock(group_leader, gctx); 10289 mutex_unlock(&ctx->mutex); 10290 /* err_file: */ 10291 fput(event_file); 10292 err_context: 10293 perf_unpin_context(ctx); 10294 put_ctx(ctx); 10295 err_alloc: 10296 /* 10297 * If event_file is set, the fput() above will have called ->release() 10298 * and that will take care of freeing the event. 10299 */ 10300 if (!event_file) 10301 free_event(event); 10302 err_cred: 10303 if (task) 10304 mutex_unlock(&task->signal->cred_guard_mutex); 10305 err_task: 10306 if (task) 10307 put_task_struct(task); 10308 err_group_fd: 10309 fdput(group); 10310 err_fd: 10311 put_unused_fd(event_fd); 10312 return err; 10313 } 10314 10315 /** 10316 * perf_event_create_kernel_counter 10317 * 10318 * @attr: attributes of the counter to create 10319 * @cpu: cpu in which the counter is bound 10320 * @task: task to profile (NULL for percpu) 10321 */ 10322 struct perf_event * 10323 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10324 struct task_struct *task, 10325 perf_overflow_handler_t overflow_handler, 10326 void *context) 10327 { 10328 struct perf_event_context *ctx; 10329 struct perf_event *event; 10330 int err; 10331 10332 /* 10333 * Get the target context (task or percpu): 10334 */ 10335 10336 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10337 overflow_handler, context, -1); 10338 if (IS_ERR(event)) { 10339 err = PTR_ERR(event); 10340 goto err; 10341 } 10342 10343 /* Mark owner so we could distinguish it from user events. */ 10344 event->owner = TASK_TOMBSTONE; 10345 10346 ctx = find_get_context(event->pmu, task, event); 10347 if (IS_ERR(ctx)) { 10348 err = PTR_ERR(ctx); 10349 goto err_free; 10350 } 10351 10352 WARN_ON_ONCE(ctx->parent_ctx); 10353 mutex_lock(&ctx->mutex); 10354 if (ctx->task == TASK_TOMBSTONE) { 10355 err = -ESRCH; 10356 goto err_unlock; 10357 } 10358 10359 if (!task) { 10360 /* 10361 * Check if the @cpu we're creating an event for is online. 10362 * 10363 * We use the perf_cpu_context::ctx::mutex to serialize against 10364 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10365 */ 10366 struct perf_cpu_context *cpuctx = 10367 container_of(ctx, struct perf_cpu_context, ctx); 10368 if (!cpuctx->online) { 10369 err = -ENODEV; 10370 goto err_unlock; 10371 } 10372 } 10373 10374 if (!exclusive_event_installable(event, ctx)) { 10375 err = -EBUSY; 10376 goto err_unlock; 10377 } 10378 10379 perf_install_in_context(ctx, event, cpu); 10380 perf_unpin_context(ctx); 10381 mutex_unlock(&ctx->mutex); 10382 10383 return event; 10384 10385 err_unlock: 10386 mutex_unlock(&ctx->mutex); 10387 perf_unpin_context(ctx); 10388 put_ctx(ctx); 10389 err_free: 10390 free_event(event); 10391 err: 10392 return ERR_PTR(err); 10393 } 10394 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10395 10396 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10397 { 10398 struct perf_event_context *src_ctx; 10399 struct perf_event_context *dst_ctx; 10400 struct perf_event *event, *tmp; 10401 LIST_HEAD(events); 10402 10403 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10404 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10405 10406 /* 10407 * See perf_event_ctx_lock() for comments on the details 10408 * of swizzling perf_event::ctx. 10409 */ 10410 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10411 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10412 event_entry) { 10413 perf_remove_from_context(event, 0); 10414 unaccount_event_cpu(event, src_cpu); 10415 put_ctx(src_ctx); 10416 list_add(&event->migrate_entry, &events); 10417 } 10418 10419 /* 10420 * Wait for the events to quiesce before re-instating them. 10421 */ 10422 synchronize_rcu(); 10423 10424 /* 10425 * Re-instate events in 2 passes. 10426 * 10427 * Skip over group leaders and only install siblings on this first 10428 * pass, siblings will not get enabled without a leader, however a 10429 * leader will enable its siblings, even if those are still on the old 10430 * context. 10431 */ 10432 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10433 if (event->group_leader == event) 10434 continue; 10435 10436 list_del(&event->migrate_entry); 10437 if (event->state >= PERF_EVENT_STATE_OFF) 10438 event->state = PERF_EVENT_STATE_INACTIVE; 10439 account_event_cpu(event, dst_cpu); 10440 perf_install_in_context(dst_ctx, event, dst_cpu); 10441 get_ctx(dst_ctx); 10442 } 10443 10444 /* 10445 * Once all the siblings are setup properly, install the group leaders 10446 * to make it go. 10447 */ 10448 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10449 list_del(&event->migrate_entry); 10450 if (event->state >= PERF_EVENT_STATE_OFF) 10451 event->state = PERF_EVENT_STATE_INACTIVE; 10452 account_event_cpu(event, dst_cpu); 10453 perf_install_in_context(dst_ctx, event, dst_cpu); 10454 get_ctx(dst_ctx); 10455 } 10456 mutex_unlock(&dst_ctx->mutex); 10457 mutex_unlock(&src_ctx->mutex); 10458 } 10459 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10460 10461 static void sync_child_event(struct perf_event *child_event, 10462 struct task_struct *child) 10463 { 10464 struct perf_event *parent_event = child_event->parent; 10465 u64 child_val; 10466 10467 if (child_event->attr.inherit_stat) 10468 perf_event_read_event(child_event, child); 10469 10470 child_val = perf_event_count(child_event); 10471 10472 /* 10473 * Add back the child's count to the parent's count: 10474 */ 10475 atomic64_add(child_val, &parent_event->child_count); 10476 atomic64_add(child_event->total_time_enabled, 10477 &parent_event->child_total_time_enabled); 10478 atomic64_add(child_event->total_time_running, 10479 &parent_event->child_total_time_running); 10480 } 10481 10482 static void 10483 perf_event_exit_event(struct perf_event *child_event, 10484 struct perf_event_context *child_ctx, 10485 struct task_struct *child) 10486 { 10487 struct perf_event *parent_event = child_event->parent; 10488 10489 /* 10490 * Do not destroy the 'original' grouping; because of the context 10491 * switch optimization the original events could've ended up in a 10492 * random child task. 10493 * 10494 * If we were to destroy the original group, all group related 10495 * operations would cease to function properly after this random 10496 * child dies. 10497 * 10498 * Do destroy all inherited groups, we don't care about those 10499 * and being thorough is better. 10500 */ 10501 raw_spin_lock_irq(&child_ctx->lock); 10502 WARN_ON_ONCE(child_ctx->is_active); 10503 10504 if (parent_event) 10505 perf_group_detach(child_event); 10506 list_del_event(child_event, child_ctx); 10507 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 10508 raw_spin_unlock_irq(&child_ctx->lock); 10509 10510 /* 10511 * Parent events are governed by their filedesc, retain them. 10512 */ 10513 if (!parent_event) { 10514 perf_event_wakeup(child_event); 10515 return; 10516 } 10517 /* 10518 * Child events can be cleaned up. 10519 */ 10520 10521 sync_child_event(child_event, child); 10522 10523 /* 10524 * Remove this event from the parent's list 10525 */ 10526 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10527 mutex_lock(&parent_event->child_mutex); 10528 list_del_init(&child_event->child_list); 10529 mutex_unlock(&parent_event->child_mutex); 10530 10531 /* 10532 * Kick perf_poll() for is_event_hup(). 10533 */ 10534 perf_event_wakeup(parent_event); 10535 free_event(child_event); 10536 put_event(parent_event); 10537 } 10538 10539 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10540 { 10541 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10542 struct perf_event *child_event, *next; 10543 10544 WARN_ON_ONCE(child != current); 10545 10546 child_ctx = perf_pin_task_context(child, ctxn); 10547 if (!child_ctx) 10548 return; 10549 10550 /* 10551 * In order to reduce the amount of tricky in ctx tear-down, we hold 10552 * ctx::mutex over the entire thing. This serializes against almost 10553 * everything that wants to access the ctx. 10554 * 10555 * The exception is sys_perf_event_open() / 10556 * perf_event_create_kernel_count() which does find_get_context() 10557 * without ctx::mutex (it cannot because of the move_group double mutex 10558 * lock thing). See the comments in perf_install_in_context(). 10559 */ 10560 mutex_lock(&child_ctx->mutex); 10561 10562 /* 10563 * In a single ctx::lock section, de-schedule the events and detach the 10564 * context from the task such that we cannot ever get it scheduled back 10565 * in. 10566 */ 10567 raw_spin_lock_irq(&child_ctx->lock); 10568 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10569 10570 /* 10571 * Now that the context is inactive, destroy the task <-> ctx relation 10572 * and mark the context dead. 10573 */ 10574 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10575 put_ctx(child_ctx); /* cannot be last */ 10576 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10577 put_task_struct(current); /* cannot be last */ 10578 10579 clone_ctx = unclone_ctx(child_ctx); 10580 raw_spin_unlock_irq(&child_ctx->lock); 10581 10582 if (clone_ctx) 10583 put_ctx(clone_ctx); 10584 10585 /* 10586 * Report the task dead after unscheduling the events so that we 10587 * won't get any samples after PERF_RECORD_EXIT. We can however still 10588 * get a few PERF_RECORD_READ events. 10589 */ 10590 perf_event_task(child, child_ctx, 0); 10591 10592 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10593 perf_event_exit_event(child_event, child_ctx, child); 10594 10595 mutex_unlock(&child_ctx->mutex); 10596 10597 put_ctx(child_ctx); 10598 } 10599 10600 /* 10601 * When a child task exits, feed back event values to parent events. 10602 * 10603 * Can be called with cred_guard_mutex held when called from 10604 * install_exec_creds(). 10605 */ 10606 void perf_event_exit_task(struct task_struct *child) 10607 { 10608 struct perf_event *event, *tmp; 10609 int ctxn; 10610 10611 mutex_lock(&child->perf_event_mutex); 10612 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10613 owner_entry) { 10614 list_del_init(&event->owner_entry); 10615 10616 /* 10617 * Ensure the list deletion is visible before we clear 10618 * the owner, closes a race against perf_release() where 10619 * we need to serialize on the owner->perf_event_mutex. 10620 */ 10621 smp_store_release(&event->owner, NULL); 10622 } 10623 mutex_unlock(&child->perf_event_mutex); 10624 10625 for_each_task_context_nr(ctxn) 10626 perf_event_exit_task_context(child, ctxn); 10627 10628 /* 10629 * The perf_event_exit_task_context calls perf_event_task 10630 * with child's task_ctx, which generates EXIT events for 10631 * child contexts and sets child->perf_event_ctxp[] to NULL. 10632 * At this point we need to send EXIT events to cpu contexts. 10633 */ 10634 perf_event_task(child, NULL, 0); 10635 } 10636 10637 static void perf_free_event(struct perf_event *event, 10638 struct perf_event_context *ctx) 10639 { 10640 struct perf_event *parent = event->parent; 10641 10642 if (WARN_ON_ONCE(!parent)) 10643 return; 10644 10645 mutex_lock(&parent->child_mutex); 10646 list_del_init(&event->child_list); 10647 mutex_unlock(&parent->child_mutex); 10648 10649 put_event(parent); 10650 10651 raw_spin_lock_irq(&ctx->lock); 10652 perf_group_detach(event); 10653 list_del_event(event, ctx); 10654 raw_spin_unlock_irq(&ctx->lock); 10655 free_event(event); 10656 } 10657 10658 /* 10659 * Free an unexposed, unused context as created by inheritance by 10660 * perf_event_init_task below, used by fork() in case of fail. 10661 * 10662 * Not all locks are strictly required, but take them anyway to be nice and 10663 * help out with the lockdep assertions. 10664 */ 10665 void perf_event_free_task(struct task_struct *task) 10666 { 10667 struct perf_event_context *ctx; 10668 struct perf_event *event, *tmp; 10669 int ctxn; 10670 10671 for_each_task_context_nr(ctxn) { 10672 ctx = task->perf_event_ctxp[ctxn]; 10673 if (!ctx) 10674 continue; 10675 10676 mutex_lock(&ctx->mutex); 10677 raw_spin_lock_irq(&ctx->lock); 10678 /* 10679 * Destroy the task <-> ctx relation and mark the context dead. 10680 * 10681 * This is important because even though the task hasn't been 10682 * exposed yet the context has been (through child_list). 10683 */ 10684 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10685 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10686 put_task_struct(task); /* cannot be last */ 10687 raw_spin_unlock_irq(&ctx->lock); 10688 10689 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10690 perf_free_event(event, ctx); 10691 10692 mutex_unlock(&ctx->mutex); 10693 put_ctx(ctx); 10694 } 10695 } 10696 10697 void perf_event_delayed_put(struct task_struct *task) 10698 { 10699 int ctxn; 10700 10701 for_each_task_context_nr(ctxn) 10702 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10703 } 10704 10705 struct file *perf_event_get(unsigned int fd) 10706 { 10707 struct file *file; 10708 10709 file = fget_raw(fd); 10710 if (!file) 10711 return ERR_PTR(-EBADF); 10712 10713 if (file->f_op != &perf_fops) { 10714 fput(file); 10715 return ERR_PTR(-EBADF); 10716 } 10717 10718 return file; 10719 } 10720 10721 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10722 { 10723 if (!event) 10724 return ERR_PTR(-EINVAL); 10725 10726 return &event->attr; 10727 } 10728 10729 /* 10730 * Inherit a event from parent task to child task. 10731 * 10732 * Returns: 10733 * - valid pointer on success 10734 * - NULL for orphaned events 10735 * - IS_ERR() on error 10736 */ 10737 static struct perf_event * 10738 inherit_event(struct perf_event *parent_event, 10739 struct task_struct *parent, 10740 struct perf_event_context *parent_ctx, 10741 struct task_struct *child, 10742 struct perf_event *group_leader, 10743 struct perf_event_context *child_ctx) 10744 { 10745 enum perf_event_state parent_state = parent_event->state; 10746 struct perf_event *child_event; 10747 unsigned long flags; 10748 10749 /* 10750 * Instead of creating recursive hierarchies of events, 10751 * we link inherited events back to the original parent, 10752 * which has a filp for sure, which we use as the reference 10753 * count: 10754 */ 10755 if (parent_event->parent) 10756 parent_event = parent_event->parent; 10757 10758 child_event = perf_event_alloc(&parent_event->attr, 10759 parent_event->cpu, 10760 child, 10761 group_leader, parent_event, 10762 NULL, NULL, -1); 10763 if (IS_ERR(child_event)) 10764 return child_event; 10765 10766 10767 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 10768 !child_ctx->task_ctx_data) { 10769 struct pmu *pmu = child_event->pmu; 10770 10771 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 10772 GFP_KERNEL); 10773 if (!child_ctx->task_ctx_data) { 10774 free_event(child_event); 10775 return NULL; 10776 } 10777 } 10778 10779 /* 10780 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10781 * must be under the same lock in order to serialize against 10782 * perf_event_release_kernel(), such that either we must observe 10783 * is_orphaned_event() or they will observe us on the child_list. 10784 */ 10785 mutex_lock(&parent_event->child_mutex); 10786 if (is_orphaned_event(parent_event) || 10787 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10788 mutex_unlock(&parent_event->child_mutex); 10789 /* task_ctx_data is freed with child_ctx */ 10790 free_event(child_event); 10791 return NULL; 10792 } 10793 10794 get_ctx(child_ctx); 10795 10796 /* 10797 * Make the child state follow the state of the parent event, 10798 * not its attr.disabled bit. We hold the parent's mutex, 10799 * so we won't race with perf_event_{en, dis}able_family. 10800 */ 10801 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10802 child_event->state = PERF_EVENT_STATE_INACTIVE; 10803 else 10804 child_event->state = PERF_EVENT_STATE_OFF; 10805 10806 if (parent_event->attr.freq) { 10807 u64 sample_period = parent_event->hw.sample_period; 10808 struct hw_perf_event *hwc = &child_event->hw; 10809 10810 hwc->sample_period = sample_period; 10811 hwc->last_period = sample_period; 10812 10813 local64_set(&hwc->period_left, sample_period); 10814 } 10815 10816 child_event->ctx = child_ctx; 10817 child_event->overflow_handler = parent_event->overflow_handler; 10818 child_event->overflow_handler_context 10819 = parent_event->overflow_handler_context; 10820 10821 /* 10822 * Precalculate sample_data sizes 10823 */ 10824 perf_event__header_size(child_event); 10825 perf_event__id_header_size(child_event); 10826 10827 /* 10828 * Link it up in the child's context: 10829 */ 10830 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10831 add_event_to_ctx(child_event, child_ctx); 10832 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10833 10834 /* 10835 * Link this into the parent event's child list 10836 */ 10837 list_add_tail(&child_event->child_list, &parent_event->child_list); 10838 mutex_unlock(&parent_event->child_mutex); 10839 10840 return child_event; 10841 } 10842 10843 /* 10844 * Inherits an event group. 10845 * 10846 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10847 * This matches with perf_event_release_kernel() removing all child events. 10848 * 10849 * Returns: 10850 * - 0 on success 10851 * - <0 on error 10852 */ 10853 static int inherit_group(struct perf_event *parent_event, 10854 struct task_struct *parent, 10855 struct perf_event_context *parent_ctx, 10856 struct task_struct *child, 10857 struct perf_event_context *child_ctx) 10858 { 10859 struct perf_event *leader; 10860 struct perf_event *sub; 10861 struct perf_event *child_ctr; 10862 10863 leader = inherit_event(parent_event, parent, parent_ctx, 10864 child, NULL, child_ctx); 10865 if (IS_ERR(leader)) 10866 return PTR_ERR(leader); 10867 /* 10868 * @leader can be NULL here because of is_orphaned_event(). In this 10869 * case inherit_event() will create individual events, similar to what 10870 * perf_group_detach() would do anyway. 10871 */ 10872 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10873 child_ctr = inherit_event(sub, parent, parent_ctx, 10874 child, leader, child_ctx); 10875 if (IS_ERR(child_ctr)) 10876 return PTR_ERR(child_ctr); 10877 } 10878 return 0; 10879 } 10880 10881 /* 10882 * Creates the child task context and tries to inherit the event-group. 10883 * 10884 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10885 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10886 * consistent with perf_event_release_kernel() removing all child events. 10887 * 10888 * Returns: 10889 * - 0 on success 10890 * - <0 on error 10891 */ 10892 static int 10893 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10894 struct perf_event_context *parent_ctx, 10895 struct task_struct *child, int ctxn, 10896 int *inherited_all) 10897 { 10898 int ret; 10899 struct perf_event_context *child_ctx; 10900 10901 if (!event->attr.inherit) { 10902 *inherited_all = 0; 10903 return 0; 10904 } 10905 10906 child_ctx = child->perf_event_ctxp[ctxn]; 10907 if (!child_ctx) { 10908 /* 10909 * This is executed from the parent task context, so 10910 * inherit events that have been marked for cloning. 10911 * First allocate and initialize a context for the 10912 * child. 10913 */ 10914 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10915 if (!child_ctx) 10916 return -ENOMEM; 10917 10918 child->perf_event_ctxp[ctxn] = child_ctx; 10919 } 10920 10921 ret = inherit_group(event, parent, parent_ctx, 10922 child, child_ctx); 10923 10924 if (ret) 10925 *inherited_all = 0; 10926 10927 return ret; 10928 } 10929 10930 /* 10931 * Initialize the perf_event context in task_struct 10932 */ 10933 static int perf_event_init_context(struct task_struct *child, int ctxn) 10934 { 10935 struct perf_event_context *child_ctx, *parent_ctx; 10936 struct perf_event_context *cloned_ctx; 10937 struct perf_event *event; 10938 struct task_struct *parent = current; 10939 int inherited_all = 1; 10940 unsigned long flags; 10941 int ret = 0; 10942 10943 if (likely(!parent->perf_event_ctxp[ctxn])) 10944 return 0; 10945 10946 /* 10947 * If the parent's context is a clone, pin it so it won't get 10948 * swapped under us. 10949 */ 10950 parent_ctx = perf_pin_task_context(parent, ctxn); 10951 if (!parent_ctx) 10952 return 0; 10953 10954 /* 10955 * No need to check if parent_ctx != NULL here; since we saw 10956 * it non-NULL earlier, the only reason for it to become NULL 10957 * is if we exit, and since we're currently in the middle of 10958 * a fork we can't be exiting at the same time. 10959 */ 10960 10961 /* 10962 * Lock the parent list. No need to lock the child - not PID 10963 * hashed yet and not running, so nobody can access it. 10964 */ 10965 mutex_lock(&parent_ctx->mutex); 10966 10967 /* 10968 * We dont have to disable NMIs - we are only looking at 10969 * the list, not manipulating it: 10970 */ 10971 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10972 ret = inherit_task_group(event, parent, parent_ctx, 10973 child, ctxn, &inherited_all); 10974 if (ret) 10975 goto out_unlock; 10976 } 10977 10978 /* 10979 * We can't hold ctx->lock when iterating the ->flexible_group list due 10980 * to allocations, but we need to prevent rotation because 10981 * rotate_ctx() will change the list from interrupt context. 10982 */ 10983 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10984 parent_ctx->rotate_disable = 1; 10985 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10986 10987 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10988 ret = inherit_task_group(event, parent, parent_ctx, 10989 child, ctxn, &inherited_all); 10990 if (ret) 10991 goto out_unlock; 10992 } 10993 10994 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10995 parent_ctx->rotate_disable = 0; 10996 10997 child_ctx = child->perf_event_ctxp[ctxn]; 10998 10999 if (child_ctx && inherited_all) { 11000 /* 11001 * Mark the child context as a clone of the parent 11002 * context, or of whatever the parent is a clone of. 11003 * 11004 * Note that if the parent is a clone, the holding of 11005 * parent_ctx->lock avoids it from being uncloned. 11006 */ 11007 cloned_ctx = parent_ctx->parent_ctx; 11008 if (cloned_ctx) { 11009 child_ctx->parent_ctx = cloned_ctx; 11010 child_ctx->parent_gen = parent_ctx->parent_gen; 11011 } else { 11012 child_ctx->parent_ctx = parent_ctx; 11013 child_ctx->parent_gen = parent_ctx->generation; 11014 } 11015 get_ctx(child_ctx->parent_ctx); 11016 } 11017 11018 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11019 out_unlock: 11020 mutex_unlock(&parent_ctx->mutex); 11021 11022 perf_unpin_context(parent_ctx); 11023 put_ctx(parent_ctx); 11024 11025 return ret; 11026 } 11027 11028 /* 11029 * Initialize the perf_event context in task_struct 11030 */ 11031 int perf_event_init_task(struct task_struct *child) 11032 { 11033 int ctxn, ret; 11034 11035 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11036 mutex_init(&child->perf_event_mutex); 11037 INIT_LIST_HEAD(&child->perf_event_list); 11038 11039 for_each_task_context_nr(ctxn) { 11040 ret = perf_event_init_context(child, ctxn); 11041 if (ret) { 11042 perf_event_free_task(child); 11043 return ret; 11044 } 11045 } 11046 11047 return 0; 11048 } 11049 11050 static void __init perf_event_init_all_cpus(void) 11051 { 11052 struct swevent_htable *swhash; 11053 int cpu; 11054 11055 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11056 11057 for_each_possible_cpu(cpu) { 11058 swhash = &per_cpu(swevent_htable, cpu); 11059 mutex_init(&swhash->hlist_mutex); 11060 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11061 11062 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11063 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11064 11065 #ifdef CONFIG_CGROUP_PERF 11066 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11067 #endif 11068 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11069 } 11070 } 11071 11072 void perf_swevent_init_cpu(unsigned int cpu) 11073 { 11074 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11075 11076 mutex_lock(&swhash->hlist_mutex); 11077 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11078 struct swevent_hlist *hlist; 11079 11080 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11081 WARN_ON(!hlist); 11082 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11083 } 11084 mutex_unlock(&swhash->hlist_mutex); 11085 } 11086 11087 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11088 static void __perf_event_exit_context(void *__info) 11089 { 11090 struct perf_event_context *ctx = __info; 11091 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11092 struct perf_event *event; 11093 11094 raw_spin_lock(&ctx->lock); 11095 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11096 list_for_each_entry(event, &ctx->event_list, event_entry) 11097 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11098 raw_spin_unlock(&ctx->lock); 11099 } 11100 11101 static void perf_event_exit_cpu_context(int cpu) 11102 { 11103 struct perf_cpu_context *cpuctx; 11104 struct perf_event_context *ctx; 11105 struct pmu *pmu; 11106 11107 mutex_lock(&pmus_lock); 11108 list_for_each_entry(pmu, &pmus, entry) { 11109 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11110 ctx = &cpuctx->ctx; 11111 11112 mutex_lock(&ctx->mutex); 11113 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11114 cpuctx->online = 0; 11115 mutex_unlock(&ctx->mutex); 11116 } 11117 cpumask_clear_cpu(cpu, perf_online_mask); 11118 mutex_unlock(&pmus_lock); 11119 } 11120 #else 11121 11122 static void perf_event_exit_cpu_context(int cpu) { } 11123 11124 #endif 11125 11126 int perf_event_init_cpu(unsigned int cpu) 11127 { 11128 struct perf_cpu_context *cpuctx; 11129 struct perf_event_context *ctx; 11130 struct pmu *pmu; 11131 11132 perf_swevent_init_cpu(cpu); 11133 11134 mutex_lock(&pmus_lock); 11135 cpumask_set_cpu(cpu, perf_online_mask); 11136 list_for_each_entry(pmu, &pmus, entry) { 11137 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11138 ctx = &cpuctx->ctx; 11139 11140 mutex_lock(&ctx->mutex); 11141 cpuctx->online = 1; 11142 mutex_unlock(&ctx->mutex); 11143 } 11144 mutex_unlock(&pmus_lock); 11145 11146 return 0; 11147 } 11148 11149 int perf_event_exit_cpu(unsigned int cpu) 11150 { 11151 perf_event_exit_cpu_context(cpu); 11152 return 0; 11153 } 11154 11155 static int 11156 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11157 { 11158 int cpu; 11159 11160 for_each_online_cpu(cpu) 11161 perf_event_exit_cpu(cpu); 11162 11163 return NOTIFY_OK; 11164 } 11165 11166 /* 11167 * Run the perf reboot notifier at the very last possible moment so that 11168 * the generic watchdog code runs as long as possible. 11169 */ 11170 static struct notifier_block perf_reboot_notifier = { 11171 .notifier_call = perf_reboot, 11172 .priority = INT_MIN, 11173 }; 11174 11175 void __init perf_event_init(void) 11176 { 11177 int ret; 11178 11179 idr_init(&pmu_idr); 11180 11181 perf_event_init_all_cpus(); 11182 init_srcu_struct(&pmus_srcu); 11183 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11184 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11185 perf_pmu_register(&perf_task_clock, NULL, -1); 11186 perf_tp_register(); 11187 perf_event_init_cpu(smp_processor_id()); 11188 register_reboot_notifier(&perf_reboot_notifier); 11189 11190 ret = init_hw_breakpoint(); 11191 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11192 11193 /* 11194 * Build time assertion that we keep the data_head at the intended 11195 * location. IOW, validation we got the __reserved[] size right. 11196 */ 11197 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11198 != 1024); 11199 } 11200 11201 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11202 char *page) 11203 { 11204 struct perf_pmu_events_attr *pmu_attr = 11205 container_of(attr, struct perf_pmu_events_attr, attr); 11206 11207 if (pmu_attr->event_str) 11208 return sprintf(page, "%s\n", pmu_attr->event_str); 11209 11210 return 0; 11211 } 11212 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11213 11214 static int __init perf_event_sysfs_init(void) 11215 { 11216 struct pmu *pmu; 11217 int ret; 11218 11219 mutex_lock(&pmus_lock); 11220 11221 ret = bus_register(&pmu_bus); 11222 if (ret) 11223 goto unlock; 11224 11225 list_for_each_entry(pmu, &pmus, entry) { 11226 if (!pmu->name || pmu->type < 0) 11227 continue; 11228 11229 ret = pmu_dev_alloc(pmu); 11230 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11231 } 11232 pmu_bus_running = 1; 11233 ret = 0; 11234 11235 unlock: 11236 mutex_unlock(&pmus_lock); 11237 11238 return ret; 11239 } 11240 device_initcall(perf_event_sysfs_init); 11241 11242 #ifdef CONFIG_CGROUP_PERF 11243 static struct cgroup_subsys_state * 11244 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11245 { 11246 struct perf_cgroup *jc; 11247 11248 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11249 if (!jc) 11250 return ERR_PTR(-ENOMEM); 11251 11252 jc->info = alloc_percpu(struct perf_cgroup_info); 11253 if (!jc->info) { 11254 kfree(jc); 11255 return ERR_PTR(-ENOMEM); 11256 } 11257 11258 return &jc->css; 11259 } 11260 11261 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11262 { 11263 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11264 11265 free_percpu(jc->info); 11266 kfree(jc); 11267 } 11268 11269 static int __perf_cgroup_move(void *info) 11270 { 11271 struct task_struct *task = info; 11272 rcu_read_lock(); 11273 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11274 rcu_read_unlock(); 11275 return 0; 11276 } 11277 11278 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11279 { 11280 struct task_struct *task; 11281 struct cgroup_subsys_state *css; 11282 11283 cgroup_taskset_for_each(task, css, tset) 11284 task_function_call(task, __perf_cgroup_move, task); 11285 } 11286 11287 struct cgroup_subsys perf_event_cgrp_subsys = { 11288 .css_alloc = perf_cgroup_css_alloc, 11289 .css_free = perf_cgroup_css_free, 11290 .attach = perf_cgroup_attach, 11291 /* 11292 * Implicitly enable on dfl hierarchy so that perf events can 11293 * always be filtered by cgroup2 path as long as perf_event 11294 * controller is not mounted on a legacy hierarchy. 11295 */ 11296 .implicit_on_dfl = true, 11297 .threaded = true, 11298 }; 11299 #endif /* CONFIG_CGROUP_PERF */ 11300