1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type, 578 struct task_struct *task); 579 580 static void update_context_time(struct perf_event_context *ctx); 581 static u64 perf_event_time(struct perf_event *event); 582 583 void __weak perf_event_print_debug(void) { } 584 585 static inline u64 perf_clock(void) 586 { 587 return local_clock(); 588 } 589 590 static inline u64 perf_event_clock(struct perf_event *event) 591 { 592 return event->clock(); 593 } 594 595 /* 596 * State based event timekeeping... 597 * 598 * The basic idea is to use event->state to determine which (if any) time 599 * fields to increment with the current delta. This means we only need to 600 * update timestamps when we change state or when they are explicitly requested 601 * (read). 602 * 603 * Event groups make things a little more complicated, but not terribly so. The 604 * rules for a group are that if the group leader is OFF the entire group is 605 * OFF, irrespecive of what the group member states are. This results in 606 * __perf_effective_state(). 607 * 608 * A futher ramification is that when a group leader flips between OFF and 609 * !OFF, we need to update all group member times. 610 * 611 * 612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 613 * need to make sure the relevant context time is updated before we try and 614 * update our timestamps. 615 */ 616 617 static __always_inline enum perf_event_state 618 __perf_effective_state(struct perf_event *event) 619 { 620 struct perf_event *leader = event->group_leader; 621 622 if (leader->state <= PERF_EVENT_STATE_OFF) 623 return leader->state; 624 625 return event->state; 626 } 627 628 static __always_inline void 629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 630 { 631 enum perf_event_state state = __perf_effective_state(event); 632 u64 delta = now - event->tstamp; 633 634 *enabled = event->total_time_enabled; 635 if (state >= PERF_EVENT_STATE_INACTIVE) 636 *enabled += delta; 637 638 *running = event->total_time_running; 639 if (state >= PERF_EVENT_STATE_ACTIVE) 640 *running += delta; 641 } 642 643 static void perf_event_update_time(struct perf_event *event) 644 { 645 u64 now = perf_event_time(event); 646 647 __perf_update_times(event, now, &event->total_time_enabled, 648 &event->total_time_running); 649 event->tstamp = now; 650 } 651 652 static void perf_event_update_sibling_time(struct perf_event *leader) 653 { 654 struct perf_event *sibling; 655 656 for_each_sibling_event(sibling, leader) 657 perf_event_update_time(sibling); 658 } 659 660 static void 661 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 662 { 663 if (event->state == state) 664 return; 665 666 perf_event_update_time(event); 667 /* 668 * If a group leader gets enabled/disabled all its siblings 669 * are affected too. 670 */ 671 if ((event->state < 0) ^ (state < 0)) 672 perf_event_update_sibling_time(event); 673 674 WRITE_ONCE(event->state, state); 675 } 676 677 #ifdef CONFIG_CGROUP_PERF 678 679 static inline bool 680 perf_cgroup_match(struct perf_event *event) 681 { 682 struct perf_event_context *ctx = event->ctx; 683 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 684 685 /* @event doesn't care about cgroup */ 686 if (!event->cgrp) 687 return true; 688 689 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 690 if (!cpuctx->cgrp) 691 return false; 692 693 /* 694 * Cgroup scoping is recursive. An event enabled for a cgroup is 695 * also enabled for all its descendant cgroups. If @cpuctx's 696 * cgroup is a descendant of @event's (the test covers identity 697 * case), it's a match. 698 */ 699 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 700 event->cgrp->css.cgroup); 701 } 702 703 static inline void perf_detach_cgroup(struct perf_event *event) 704 { 705 css_put(&event->cgrp->css); 706 event->cgrp = NULL; 707 } 708 709 static inline int is_cgroup_event(struct perf_event *event) 710 { 711 return event->cgrp != NULL; 712 } 713 714 static inline u64 perf_cgroup_event_time(struct perf_event *event) 715 { 716 struct perf_cgroup_info *t; 717 718 t = per_cpu_ptr(event->cgrp->info, event->cpu); 719 return t->time; 720 } 721 722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 723 { 724 struct perf_cgroup_info *info; 725 u64 now; 726 727 now = perf_clock(); 728 729 info = this_cpu_ptr(cgrp->info); 730 731 info->time += now - info->timestamp; 732 info->timestamp = now; 733 } 734 735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 736 { 737 struct perf_cgroup *cgrp = cpuctx->cgrp; 738 struct cgroup_subsys_state *css; 739 740 if (cgrp) { 741 for (css = &cgrp->css; css; css = css->parent) { 742 cgrp = container_of(css, struct perf_cgroup, css); 743 __update_cgrp_time(cgrp); 744 } 745 } 746 } 747 748 static inline void update_cgrp_time_from_event(struct perf_event *event) 749 { 750 struct perf_cgroup *cgrp; 751 752 /* 753 * ensure we access cgroup data only when needed and 754 * when we know the cgroup is pinned (css_get) 755 */ 756 if (!is_cgroup_event(event)) 757 return; 758 759 cgrp = perf_cgroup_from_task(current, event->ctx); 760 /* 761 * Do not update time when cgroup is not active 762 */ 763 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 764 __update_cgrp_time(event->cgrp); 765 } 766 767 static inline void 768 perf_cgroup_set_timestamp(struct task_struct *task, 769 struct perf_event_context *ctx) 770 { 771 struct perf_cgroup *cgrp; 772 struct perf_cgroup_info *info; 773 struct cgroup_subsys_state *css; 774 775 /* 776 * ctx->lock held by caller 777 * ensure we do not access cgroup data 778 * unless we have the cgroup pinned (css_get) 779 */ 780 if (!task || !ctx->nr_cgroups) 781 return; 782 783 cgrp = perf_cgroup_from_task(task, ctx); 784 785 for (css = &cgrp->css; css; css = css->parent) { 786 cgrp = container_of(css, struct perf_cgroup, css); 787 info = this_cpu_ptr(cgrp->info); 788 info->timestamp = ctx->timestamp; 789 } 790 } 791 792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 793 794 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 795 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 796 797 /* 798 * reschedule events based on the cgroup constraint of task. 799 * 800 * mode SWOUT : schedule out everything 801 * mode SWIN : schedule in based on cgroup for next 802 */ 803 static void perf_cgroup_switch(struct task_struct *task, int mode) 804 { 805 struct perf_cpu_context *cpuctx; 806 struct list_head *list; 807 unsigned long flags; 808 809 /* 810 * Disable interrupts and preemption to avoid this CPU's 811 * cgrp_cpuctx_entry to change under us. 812 */ 813 local_irq_save(flags); 814 815 list = this_cpu_ptr(&cgrp_cpuctx_list); 816 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 817 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 818 819 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 820 perf_pmu_disable(cpuctx->ctx.pmu); 821 822 if (mode & PERF_CGROUP_SWOUT) { 823 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 824 /* 825 * must not be done before ctxswout due 826 * to event_filter_match() in event_sched_out() 827 */ 828 cpuctx->cgrp = NULL; 829 } 830 831 if (mode & PERF_CGROUP_SWIN) { 832 WARN_ON_ONCE(cpuctx->cgrp); 833 /* 834 * set cgrp before ctxsw in to allow 835 * event_filter_match() to not have to pass 836 * task around 837 * we pass the cpuctx->ctx to perf_cgroup_from_task() 838 * because cgorup events are only per-cpu 839 */ 840 cpuctx->cgrp = perf_cgroup_from_task(task, 841 &cpuctx->ctx); 842 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 843 } 844 perf_pmu_enable(cpuctx->ctx.pmu); 845 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 846 } 847 848 local_irq_restore(flags); 849 } 850 851 static inline void perf_cgroup_sched_out(struct task_struct *task, 852 struct task_struct *next) 853 { 854 struct perf_cgroup *cgrp1; 855 struct perf_cgroup *cgrp2 = NULL; 856 857 rcu_read_lock(); 858 /* 859 * we come here when we know perf_cgroup_events > 0 860 * we do not need to pass the ctx here because we know 861 * we are holding the rcu lock 862 */ 863 cgrp1 = perf_cgroup_from_task(task, NULL); 864 cgrp2 = perf_cgroup_from_task(next, NULL); 865 866 /* 867 * only schedule out current cgroup events if we know 868 * that we are switching to a different cgroup. Otherwise, 869 * do no touch the cgroup events. 870 */ 871 if (cgrp1 != cgrp2) 872 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 873 874 rcu_read_unlock(); 875 } 876 877 static inline void perf_cgroup_sched_in(struct task_struct *prev, 878 struct task_struct *task) 879 { 880 struct perf_cgroup *cgrp1; 881 struct perf_cgroup *cgrp2 = NULL; 882 883 rcu_read_lock(); 884 /* 885 * we come here when we know perf_cgroup_events > 0 886 * we do not need to pass the ctx here because we know 887 * we are holding the rcu lock 888 */ 889 cgrp1 = perf_cgroup_from_task(task, NULL); 890 cgrp2 = perf_cgroup_from_task(prev, NULL); 891 892 /* 893 * only need to schedule in cgroup events if we are changing 894 * cgroup during ctxsw. Cgroup events were not scheduled 895 * out of ctxsw out if that was not the case. 896 */ 897 if (cgrp1 != cgrp2) 898 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 899 900 rcu_read_unlock(); 901 } 902 903 static int perf_cgroup_ensure_storage(struct perf_event *event, 904 struct cgroup_subsys_state *css) 905 { 906 struct perf_cpu_context *cpuctx; 907 struct perf_event **storage; 908 int cpu, heap_size, ret = 0; 909 910 /* 911 * Allow storage to have sufficent space for an iterator for each 912 * possibly nested cgroup plus an iterator for events with no cgroup. 913 */ 914 for (heap_size = 1; css; css = css->parent) 915 heap_size++; 916 917 for_each_possible_cpu(cpu) { 918 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 919 if (heap_size <= cpuctx->heap_size) 920 continue; 921 922 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 923 GFP_KERNEL, cpu_to_node(cpu)); 924 if (!storage) { 925 ret = -ENOMEM; 926 break; 927 } 928 929 raw_spin_lock_irq(&cpuctx->ctx.lock); 930 if (cpuctx->heap_size < heap_size) { 931 swap(cpuctx->heap, storage); 932 if (storage == cpuctx->heap_default) 933 storage = NULL; 934 cpuctx->heap_size = heap_size; 935 } 936 raw_spin_unlock_irq(&cpuctx->ctx.lock); 937 938 kfree(storage); 939 } 940 941 return ret; 942 } 943 944 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 945 struct perf_event_attr *attr, 946 struct perf_event *group_leader) 947 { 948 struct perf_cgroup *cgrp; 949 struct cgroup_subsys_state *css; 950 struct fd f = fdget(fd); 951 int ret = 0; 952 953 if (!f.file) 954 return -EBADF; 955 956 css = css_tryget_online_from_dir(f.file->f_path.dentry, 957 &perf_event_cgrp_subsys); 958 if (IS_ERR(css)) { 959 ret = PTR_ERR(css); 960 goto out; 961 } 962 963 ret = perf_cgroup_ensure_storage(event, css); 964 if (ret) 965 goto out; 966 967 cgrp = container_of(css, struct perf_cgroup, css); 968 event->cgrp = cgrp; 969 970 /* 971 * all events in a group must monitor 972 * the same cgroup because a task belongs 973 * to only one perf cgroup at a time 974 */ 975 if (group_leader && group_leader->cgrp != cgrp) { 976 perf_detach_cgroup(event); 977 ret = -EINVAL; 978 } 979 out: 980 fdput(f); 981 return ret; 982 } 983 984 static inline void 985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 986 { 987 struct perf_cgroup_info *t; 988 t = per_cpu_ptr(event->cgrp->info, event->cpu); 989 event->shadow_ctx_time = now - t->timestamp; 990 } 991 992 static inline void 993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 994 { 995 struct perf_cpu_context *cpuctx; 996 997 if (!is_cgroup_event(event)) 998 return; 999 1000 /* 1001 * Because cgroup events are always per-cpu events, 1002 * @ctx == &cpuctx->ctx. 1003 */ 1004 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1005 1006 /* 1007 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1008 * matching the event's cgroup, we must do this for every new event, 1009 * because if the first would mismatch, the second would not try again 1010 * and we would leave cpuctx->cgrp unset. 1011 */ 1012 if (ctx->is_active && !cpuctx->cgrp) { 1013 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1014 1015 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1016 cpuctx->cgrp = cgrp; 1017 } 1018 1019 if (ctx->nr_cgroups++) 1020 return; 1021 1022 list_add(&cpuctx->cgrp_cpuctx_entry, 1023 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1024 } 1025 1026 static inline void 1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1028 { 1029 struct perf_cpu_context *cpuctx; 1030 1031 if (!is_cgroup_event(event)) 1032 return; 1033 1034 /* 1035 * Because cgroup events are always per-cpu events, 1036 * @ctx == &cpuctx->ctx. 1037 */ 1038 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1039 1040 if (--ctx->nr_cgroups) 1041 return; 1042 1043 if (ctx->is_active && cpuctx->cgrp) 1044 cpuctx->cgrp = NULL; 1045 1046 list_del(&cpuctx->cgrp_cpuctx_entry); 1047 } 1048 1049 #else /* !CONFIG_CGROUP_PERF */ 1050 1051 static inline bool 1052 perf_cgroup_match(struct perf_event *event) 1053 { 1054 return true; 1055 } 1056 1057 static inline void perf_detach_cgroup(struct perf_event *event) 1058 {} 1059 1060 static inline int is_cgroup_event(struct perf_event *event) 1061 { 1062 return 0; 1063 } 1064 1065 static inline void update_cgrp_time_from_event(struct perf_event *event) 1066 { 1067 } 1068 1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1070 { 1071 } 1072 1073 static inline void perf_cgroup_sched_out(struct task_struct *task, 1074 struct task_struct *next) 1075 { 1076 } 1077 1078 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1079 struct task_struct *task) 1080 { 1081 } 1082 1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1084 struct perf_event_attr *attr, 1085 struct perf_event *group_leader) 1086 { 1087 return -EINVAL; 1088 } 1089 1090 static inline void 1091 perf_cgroup_set_timestamp(struct task_struct *task, 1092 struct perf_event_context *ctx) 1093 { 1094 } 1095 1096 static inline void 1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1098 { 1099 } 1100 1101 static inline void 1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1103 { 1104 } 1105 1106 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1107 { 1108 return 0; 1109 } 1110 1111 static inline void 1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1113 { 1114 } 1115 1116 static inline void 1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1118 { 1119 } 1120 #endif 1121 1122 /* 1123 * set default to be dependent on timer tick just 1124 * like original code 1125 */ 1126 #define PERF_CPU_HRTIMER (1000 / HZ) 1127 /* 1128 * function must be called with interrupts disabled 1129 */ 1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1131 { 1132 struct perf_cpu_context *cpuctx; 1133 bool rotations; 1134 1135 lockdep_assert_irqs_disabled(); 1136 1137 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1138 rotations = perf_rotate_context(cpuctx); 1139 1140 raw_spin_lock(&cpuctx->hrtimer_lock); 1141 if (rotations) 1142 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1143 else 1144 cpuctx->hrtimer_active = 0; 1145 raw_spin_unlock(&cpuctx->hrtimer_lock); 1146 1147 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1148 } 1149 1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1151 { 1152 struct hrtimer *timer = &cpuctx->hrtimer; 1153 struct pmu *pmu = cpuctx->ctx.pmu; 1154 u64 interval; 1155 1156 /* no multiplexing needed for SW PMU */ 1157 if (pmu->task_ctx_nr == perf_sw_context) 1158 return; 1159 1160 /* 1161 * check default is sane, if not set then force to 1162 * default interval (1/tick) 1163 */ 1164 interval = pmu->hrtimer_interval_ms; 1165 if (interval < 1) 1166 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1167 1168 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1169 1170 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1171 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1172 timer->function = perf_mux_hrtimer_handler; 1173 } 1174 1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1176 { 1177 struct hrtimer *timer = &cpuctx->hrtimer; 1178 struct pmu *pmu = cpuctx->ctx.pmu; 1179 unsigned long flags; 1180 1181 /* not for SW PMU */ 1182 if (pmu->task_ctx_nr == perf_sw_context) 1183 return 0; 1184 1185 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1186 if (!cpuctx->hrtimer_active) { 1187 cpuctx->hrtimer_active = 1; 1188 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1189 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1190 } 1191 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1192 1193 return 0; 1194 } 1195 1196 void perf_pmu_disable(struct pmu *pmu) 1197 { 1198 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1199 if (!(*count)++) 1200 pmu->pmu_disable(pmu); 1201 } 1202 1203 void perf_pmu_enable(struct pmu *pmu) 1204 { 1205 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1206 if (!--(*count)) 1207 pmu->pmu_enable(pmu); 1208 } 1209 1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1211 1212 /* 1213 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1214 * perf_event_task_tick() are fully serialized because they're strictly cpu 1215 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1216 * disabled, while perf_event_task_tick is called from IRQ context. 1217 */ 1218 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1219 { 1220 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1221 1222 lockdep_assert_irqs_disabled(); 1223 1224 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1225 1226 list_add(&ctx->active_ctx_list, head); 1227 } 1228 1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1230 { 1231 lockdep_assert_irqs_disabled(); 1232 1233 WARN_ON(list_empty(&ctx->active_ctx_list)); 1234 1235 list_del_init(&ctx->active_ctx_list); 1236 } 1237 1238 static void get_ctx(struct perf_event_context *ctx) 1239 { 1240 refcount_inc(&ctx->refcount); 1241 } 1242 1243 static void *alloc_task_ctx_data(struct pmu *pmu) 1244 { 1245 if (pmu->task_ctx_cache) 1246 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1247 1248 return NULL; 1249 } 1250 1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1252 { 1253 if (pmu->task_ctx_cache && task_ctx_data) 1254 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1255 } 1256 1257 static void free_ctx(struct rcu_head *head) 1258 { 1259 struct perf_event_context *ctx; 1260 1261 ctx = container_of(head, struct perf_event_context, rcu_head); 1262 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1263 kfree(ctx); 1264 } 1265 1266 static void put_ctx(struct perf_event_context *ctx) 1267 { 1268 if (refcount_dec_and_test(&ctx->refcount)) { 1269 if (ctx->parent_ctx) 1270 put_ctx(ctx->parent_ctx); 1271 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1272 put_task_struct(ctx->task); 1273 call_rcu(&ctx->rcu_head, free_ctx); 1274 } 1275 } 1276 1277 /* 1278 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1279 * perf_pmu_migrate_context() we need some magic. 1280 * 1281 * Those places that change perf_event::ctx will hold both 1282 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1283 * 1284 * Lock ordering is by mutex address. There are two other sites where 1285 * perf_event_context::mutex nests and those are: 1286 * 1287 * - perf_event_exit_task_context() [ child , 0 ] 1288 * perf_event_exit_event() 1289 * put_event() [ parent, 1 ] 1290 * 1291 * - perf_event_init_context() [ parent, 0 ] 1292 * inherit_task_group() 1293 * inherit_group() 1294 * inherit_event() 1295 * perf_event_alloc() 1296 * perf_init_event() 1297 * perf_try_init_event() [ child , 1 ] 1298 * 1299 * While it appears there is an obvious deadlock here -- the parent and child 1300 * nesting levels are inverted between the two. This is in fact safe because 1301 * life-time rules separate them. That is an exiting task cannot fork, and a 1302 * spawning task cannot (yet) exit. 1303 * 1304 * But remember that these are parent<->child context relations, and 1305 * migration does not affect children, therefore these two orderings should not 1306 * interact. 1307 * 1308 * The change in perf_event::ctx does not affect children (as claimed above) 1309 * because the sys_perf_event_open() case will install a new event and break 1310 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1311 * concerned with cpuctx and that doesn't have children. 1312 * 1313 * The places that change perf_event::ctx will issue: 1314 * 1315 * perf_remove_from_context(); 1316 * synchronize_rcu(); 1317 * perf_install_in_context(); 1318 * 1319 * to affect the change. The remove_from_context() + synchronize_rcu() should 1320 * quiesce the event, after which we can install it in the new location. This 1321 * means that only external vectors (perf_fops, prctl) can perturb the event 1322 * while in transit. Therefore all such accessors should also acquire 1323 * perf_event_context::mutex to serialize against this. 1324 * 1325 * However; because event->ctx can change while we're waiting to acquire 1326 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1327 * function. 1328 * 1329 * Lock order: 1330 * exec_update_lock 1331 * task_struct::perf_event_mutex 1332 * perf_event_context::mutex 1333 * perf_event::child_mutex; 1334 * perf_event_context::lock 1335 * perf_event::mmap_mutex 1336 * mmap_lock 1337 * perf_addr_filters_head::lock 1338 * 1339 * cpu_hotplug_lock 1340 * pmus_lock 1341 * cpuctx->mutex / perf_event_context::mutex 1342 */ 1343 static struct perf_event_context * 1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1345 { 1346 struct perf_event_context *ctx; 1347 1348 again: 1349 rcu_read_lock(); 1350 ctx = READ_ONCE(event->ctx); 1351 if (!refcount_inc_not_zero(&ctx->refcount)) { 1352 rcu_read_unlock(); 1353 goto again; 1354 } 1355 rcu_read_unlock(); 1356 1357 mutex_lock_nested(&ctx->mutex, nesting); 1358 if (event->ctx != ctx) { 1359 mutex_unlock(&ctx->mutex); 1360 put_ctx(ctx); 1361 goto again; 1362 } 1363 1364 return ctx; 1365 } 1366 1367 static inline struct perf_event_context * 1368 perf_event_ctx_lock(struct perf_event *event) 1369 { 1370 return perf_event_ctx_lock_nested(event, 0); 1371 } 1372 1373 static void perf_event_ctx_unlock(struct perf_event *event, 1374 struct perf_event_context *ctx) 1375 { 1376 mutex_unlock(&ctx->mutex); 1377 put_ctx(ctx); 1378 } 1379 1380 /* 1381 * This must be done under the ctx->lock, such as to serialize against 1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1383 * calling scheduler related locks and ctx->lock nests inside those. 1384 */ 1385 static __must_check struct perf_event_context * 1386 unclone_ctx(struct perf_event_context *ctx) 1387 { 1388 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1389 1390 lockdep_assert_held(&ctx->lock); 1391 1392 if (parent_ctx) 1393 ctx->parent_ctx = NULL; 1394 ctx->generation++; 1395 1396 return parent_ctx; 1397 } 1398 1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1400 enum pid_type type) 1401 { 1402 u32 nr; 1403 /* 1404 * only top level events have the pid namespace they were created in 1405 */ 1406 if (event->parent) 1407 event = event->parent; 1408 1409 nr = __task_pid_nr_ns(p, type, event->ns); 1410 /* avoid -1 if it is idle thread or runs in another ns */ 1411 if (!nr && !pid_alive(p)) 1412 nr = -1; 1413 return nr; 1414 } 1415 1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1417 { 1418 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1419 } 1420 1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1422 { 1423 return perf_event_pid_type(event, p, PIDTYPE_PID); 1424 } 1425 1426 /* 1427 * If we inherit events we want to return the parent event id 1428 * to userspace. 1429 */ 1430 static u64 primary_event_id(struct perf_event *event) 1431 { 1432 u64 id = event->id; 1433 1434 if (event->parent) 1435 id = event->parent->id; 1436 1437 return id; 1438 } 1439 1440 /* 1441 * Get the perf_event_context for a task and lock it. 1442 * 1443 * This has to cope with the fact that until it is locked, 1444 * the context could get moved to another task. 1445 */ 1446 static struct perf_event_context * 1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1448 { 1449 struct perf_event_context *ctx; 1450 1451 retry: 1452 /* 1453 * One of the few rules of preemptible RCU is that one cannot do 1454 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1455 * part of the read side critical section was irqs-enabled -- see 1456 * rcu_read_unlock_special(). 1457 * 1458 * Since ctx->lock nests under rq->lock we must ensure the entire read 1459 * side critical section has interrupts disabled. 1460 */ 1461 local_irq_save(*flags); 1462 rcu_read_lock(); 1463 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1464 if (ctx) { 1465 /* 1466 * If this context is a clone of another, it might 1467 * get swapped for another underneath us by 1468 * perf_event_task_sched_out, though the 1469 * rcu_read_lock() protects us from any context 1470 * getting freed. Lock the context and check if it 1471 * got swapped before we could get the lock, and retry 1472 * if so. If we locked the right context, then it 1473 * can't get swapped on us any more. 1474 */ 1475 raw_spin_lock(&ctx->lock); 1476 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1477 raw_spin_unlock(&ctx->lock); 1478 rcu_read_unlock(); 1479 local_irq_restore(*flags); 1480 goto retry; 1481 } 1482 1483 if (ctx->task == TASK_TOMBSTONE || 1484 !refcount_inc_not_zero(&ctx->refcount)) { 1485 raw_spin_unlock(&ctx->lock); 1486 ctx = NULL; 1487 } else { 1488 WARN_ON_ONCE(ctx->task != task); 1489 } 1490 } 1491 rcu_read_unlock(); 1492 if (!ctx) 1493 local_irq_restore(*flags); 1494 return ctx; 1495 } 1496 1497 /* 1498 * Get the context for a task and increment its pin_count so it 1499 * can't get swapped to another task. This also increments its 1500 * reference count so that the context can't get freed. 1501 */ 1502 static struct perf_event_context * 1503 perf_pin_task_context(struct task_struct *task, int ctxn) 1504 { 1505 struct perf_event_context *ctx; 1506 unsigned long flags; 1507 1508 ctx = perf_lock_task_context(task, ctxn, &flags); 1509 if (ctx) { 1510 ++ctx->pin_count; 1511 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1512 } 1513 return ctx; 1514 } 1515 1516 static void perf_unpin_context(struct perf_event_context *ctx) 1517 { 1518 unsigned long flags; 1519 1520 raw_spin_lock_irqsave(&ctx->lock, flags); 1521 --ctx->pin_count; 1522 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1523 } 1524 1525 /* 1526 * Update the record of the current time in a context. 1527 */ 1528 static void update_context_time(struct perf_event_context *ctx) 1529 { 1530 u64 now = perf_clock(); 1531 1532 ctx->time += now - ctx->timestamp; 1533 ctx->timestamp = now; 1534 } 1535 1536 static u64 perf_event_time(struct perf_event *event) 1537 { 1538 struct perf_event_context *ctx = event->ctx; 1539 1540 if (is_cgroup_event(event)) 1541 return perf_cgroup_event_time(event); 1542 1543 return ctx ? ctx->time : 0; 1544 } 1545 1546 static enum event_type_t get_event_type(struct perf_event *event) 1547 { 1548 struct perf_event_context *ctx = event->ctx; 1549 enum event_type_t event_type; 1550 1551 lockdep_assert_held(&ctx->lock); 1552 1553 /* 1554 * It's 'group type', really, because if our group leader is 1555 * pinned, so are we. 1556 */ 1557 if (event->group_leader != event) 1558 event = event->group_leader; 1559 1560 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1561 if (!ctx->task) 1562 event_type |= EVENT_CPU; 1563 1564 return event_type; 1565 } 1566 1567 /* 1568 * Helper function to initialize event group nodes. 1569 */ 1570 static void init_event_group(struct perf_event *event) 1571 { 1572 RB_CLEAR_NODE(&event->group_node); 1573 event->group_index = 0; 1574 } 1575 1576 /* 1577 * Extract pinned or flexible groups from the context 1578 * based on event attrs bits. 1579 */ 1580 static struct perf_event_groups * 1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1582 { 1583 if (event->attr.pinned) 1584 return &ctx->pinned_groups; 1585 else 1586 return &ctx->flexible_groups; 1587 } 1588 1589 /* 1590 * Helper function to initializes perf_event_group trees. 1591 */ 1592 static void perf_event_groups_init(struct perf_event_groups *groups) 1593 { 1594 groups->tree = RB_ROOT; 1595 groups->index = 0; 1596 } 1597 1598 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1599 { 1600 struct cgroup *cgroup = NULL; 1601 1602 #ifdef CONFIG_CGROUP_PERF 1603 if (event->cgrp) 1604 cgroup = event->cgrp->css.cgroup; 1605 #endif 1606 1607 return cgroup; 1608 } 1609 1610 /* 1611 * Compare function for event groups; 1612 * 1613 * Implements complex key that first sorts by CPU and then by virtual index 1614 * which provides ordering when rotating groups for the same CPU. 1615 */ 1616 static __always_inline int 1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1618 const u64 left_group_index, const struct perf_event *right) 1619 { 1620 if (left_cpu < right->cpu) 1621 return -1; 1622 if (left_cpu > right->cpu) 1623 return 1; 1624 1625 #ifdef CONFIG_CGROUP_PERF 1626 { 1627 const struct cgroup *right_cgroup = event_cgroup(right); 1628 1629 if (left_cgroup != right_cgroup) { 1630 if (!left_cgroup) { 1631 /* 1632 * Left has no cgroup but right does, no 1633 * cgroups come first. 1634 */ 1635 return -1; 1636 } 1637 if (!right_cgroup) { 1638 /* 1639 * Right has no cgroup but left does, no 1640 * cgroups come first. 1641 */ 1642 return 1; 1643 } 1644 /* Two dissimilar cgroups, order by id. */ 1645 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1646 return -1; 1647 1648 return 1; 1649 } 1650 } 1651 #endif 1652 1653 if (left_group_index < right->group_index) 1654 return -1; 1655 if (left_group_index > right->group_index) 1656 return 1; 1657 1658 return 0; 1659 } 1660 1661 #define __node_2_pe(node) \ 1662 rb_entry((node), struct perf_event, group_node) 1663 1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1665 { 1666 struct perf_event *e = __node_2_pe(a); 1667 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1668 __node_2_pe(b)) < 0; 1669 } 1670 1671 struct __group_key { 1672 int cpu; 1673 struct cgroup *cgroup; 1674 }; 1675 1676 static inline int __group_cmp(const void *key, const struct rb_node *node) 1677 { 1678 const struct __group_key *a = key; 1679 const struct perf_event *b = __node_2_pe(node); 1680 1681 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1682 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1683 } 1684 1685 /* 1686 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1687 * key (see perf_event_groups_less). This places it last inside the CPU 1688 * subtree. 1689 */ 1690 static void 1691 perf_event_groups_insert(struct perf_event_groups *groups, 1692 struct perf_event *event) 1693 { 1694 event->group_index = ++groups->index; 1695 1696 rb_add(&event->group_node, &groups->tree, __group_less); 1697 } 1698 1699 /* 1700 * Helper function to insert event into the pinned or flexible groups. 1701 */ 1702 static void 1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1704 { 1705 struct perf_event_groups *groups; 1706 1707 groups = get_event_groups(event, ctx); 1708 perf_event_groups_insert(groups, event); 1709 } 1710 1711 /* 1712 * Delete a group from a tree. 1713 */ 1714 static void 1715 perf_event_groups_delete(struct perf_event_groups *groups, 1716 struct perf_event *event) 1717 { 1718 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1719 RB_EMPTY_ROOT(&groups->tree)); 1720 1721 rb_erase(&event->group_node, &groups->tree); 1722 init_event_group(event); 1723 } 1724 1725 /* 1726 * Helper function to delete event from its groups. 1727 */ 1728 static void 1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1730 { 1731 struct perf_event_groups *groups; 1732 1733 groups = get_event_groups(event, ctx); 1734 perf_event_groups_delete(groups, event); 1735 } 1736 1737 /* 1738 * Get the leftmost event in the cpu/cgroup subtree. 1739 */ 1740 static struct perf_event * 1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1742 struct cgroup *cgrp) 1743 { 1744 struct __group_key key = { 1745 .cpu = cpu, 1746 .cgroup = cgrp, 1747 }; 1748 struct rb_node *node; 1749 1750 node = rb_find_first(&key, &groups->tree, __group_cmp); 1751 if (node) 1752 return __node_2_pe(node); 1753 1754 return NULL; 1755 } 1756 1757 /* 1758 * Like rb_entry_next_safe() for the @cpu subtree. 1759 */ 1760 static struct perf_event * 1761 perf_event_groups_next(struct perf_event *event) 1762 { 1763 struct __group_key key = { 1764 .cpu = event->cpu, 1765 .cgroup = event_cgroup(event), 1766 }; 1767 struct rb_node *next; 1768 1769 next = rb_next_match(&key, &event->group_node, __group_cmp); 1770 if (next) 1771 return __node_2_pe(next); 1772 1773 return NULL; 1774 } 1775 1776 /* 1777 * Iterate through the whole groups tree. 1778 */ 1779 #define perf_event_groups_for_each(event, groups) \ 1780 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1781 typeof(*event), group_node); event; \ 1782 event = rb_entry_safe(rb_next(&event->group_node), \ 1783 typeof(*event), group_node)) 1784 1785 /* 1786 * Add an event from the lists for its context. 1787 * Must be called with ctx->mutex and ctx->lock held. 1788 */ 1789 static void 1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1791 { 1792 lockdep_assert_held(&ctx->lock); 1793 1794 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1795 event->attach_state |= PERF_ATTACH_CONTEXT; 1796 1797 event->tstamp = perf_event_time(event); 1798 1799 /* 1800 * If we're a stand alone event or group leader, we go to the context 1801 * list, group events are kept attached to the group so that 1802 * perf_group_detach can, at all times, locate all siblings. 1803 */ 1804 if (event->group_leader == event) { 1805 event->group_caps = event->event_caps; 1806 add_event_to_groups(event, ctx); 1807 } 1808 1809 list_add_rcu(&event->event_entry, &ctx->event_list); 1810 ctx->nr_events++; 1811 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1812 ctx->nr_user++; 1813 if (event->attr.inherit_stat) 1814 ctx->nr_stat++; 1815 1816 if (event->state > PERF_EVENT_STATE_OFF) 1817 perf_cgroup_event_enable(event, ctx); 1818 1819 ctx->generation++; 1820 } 1821 1822 /* 1823 * Initialize event state based on the perf_event_attr::disabled. 1824 */ 1825 static inline void perf_event__state_init(struct perf_event *event) 1826 { 1827 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1828 PERF_EVENT_STATE_INACTIVE; 1829 } 1830 1831 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1832 { 1833 int entry = sizeof(u64); /* value */ 1834 int size = 0; 1835 int nr = 1; 1836 1837 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1838 size += sizeof(u64); 1839 1840 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1841 size += sizeof(u64); 1842 1843 if (event->attr.read_format & PERF_FORMAT_ID) 1844 entry += sizeof(u64); 1845 1846 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1847 nr += nr_siblings; 1848 size += sizeof(u64); 1849 } 1850 1851 size += entry * nr; 1852 event->read_size = size; 1853 } 1854 1855 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1856 { 1857 struct perf_sample_data *data; 1858 u16 size = 0; 1859 1860 if (sample_type & PERF_SAMPLE_IP) 1861 size += sizeof(data->ip); 1862 1863 if (sample_type & PERF_SAMPLE_ADDR) 1864 size += sizeof(data->addr); 1865 1866 if (sample_type & PERF_SAMPLE_PERIOD) 1867 size += sizeof(data->period); 1868 1869 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1870 size += sizeof(data->weight.full); 1871 1872 if (sample_type & PERF_SAMPLE_READ) 1873 size += event->read_size; 1874 1875 if (sample_type & PERF_SAMPLE_DATA_SRC) 1876 size += sizeof(data->data_src.val); 1877 1878 if (sample_type & PERF_SAMPLE_TRANSACTION) 1879 size += sizeof(data->txn); 1880 1881 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1882 size += sizeof(data->phys_addr); 1883 1884 if (sample_type & PERF_SAMPLE_CGROUP) 1885 size += sizeof(data->cgroup); 1886 1887 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1888 size += sizeof(data->data_page_size); 1889 1890 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1891 size += sizeof(data->code_page_size); 1892 1893 event->header_size = size; 1894 } 1895 1896 /* 1897 * Called at perf_event creation and when events are attached/detached from a 1898 * group. 1899 */ 1900 static void perf_event__header_size(struct perf_event *event) 1901 { 1902 __perf_event_read_size(event, 1903 event->group_leader->nr_siblings); 1904 __perf_event_header_size(event, event->attr.sample_type); 1905 } 1906 1907 static void perf_event__id_header_size(struct perf_event *event) 1908 { 1909 struct perf_sample_data *data; 1910 u64 sample_type = event->attr.sample_type; 1911 u16 size = 0; 1912 1913 if (sample_type & PERF_SAMPLE_TID) 1914 size += sizeof(data->tid_entry); 1915 1916 if (sample_type & PERF_SAMPLE_TIME) 1917 size += sizeof(data->time); 1918 1919 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1920 size += sizeof(data->id); 1921 1922 if (sample_type & PERF_SAMPLE_ID) 1923 size += sizeof(data->id); 1924 1925 if (sample_type & PERF_SAMPLE_STREAM_ID) 1926 size += sizeof(data->stream_id); 1927 1928 if (sample_type & PERF_SAMPLE_CPU) 1929 size += sizeof(data->cpu_entry); 1930 1931 event->id_header_size = size; 1932 } 1933 1934 static bool perf_event_validate_size(struct perf_event *event) 1935 { 1936 /* 1937 * The values computed here will be over-written when we actually 1938 * attach the event. 1939 */ 1940 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1941 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1942 perf_event__id_header_size(event); 1943 1944 /* 1945 * Sum the lot; should not exceed the 64k limit we have on records. 1946 * Conservative limit to allow for callchains and other variable fields. 1947 */ 1948 if (event->read_size + event->header_size + 1949 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1950 return false; 1951 1952 return true; 1953 } 1954 1955 static void perf_group_attach(struct perf_event *event) 1956 { 1957 struct perf_event *group_leader = event->group_leader, *pos; 1958 1959 lockdep_assert_held(&event->ctx->lock); 1960 1961 /* 1962 * We can have double attach due to group movement in perf_event_open. 1963 */ 1964 if (event->attach_state & PERF_ATTACH_GROUP) 1965 return; 1966 1967 event->attach_state |= PERF_ATTACH_GROUP; 1968 1969 if (group_leader == event) 1970 return; 1971 1972 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1973 1974 group_leader->group_caps &= event->event_caps; 1975 1976 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1977 group_leader->nr_siblings++; 1978 1979 perf_event__header_size(group_leader); 1980 1981 for_each_sibling_event(pos, group_leader) 1982 perf_event__header_size(pos); 1983 } 1984 1985 /* 1986 * Remove an event from the lists for its context. 1987 * Must be called with ctx->mutex and ctx->lock held. 1988 */ 1989 static void 1990 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1991 { 1992 WARN_ON_ONCE(event->ctx != ctx); 1993 lockdep_assert_held(&ctx->lock); 1994 1995 /* 1996 * We can have double detach due to exit/hot-unplug + close. 1997 */ 1998 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1999 return; 2000 2001 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2002 2003 ctx->nr_events--; 2004 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2005 ctx->nr_user--; 2006 if (event->attr.inherit_stat) 2007 ctx->nr_stat--; 2008 2009 list_del_rcu(&event->event_entry); 2010 2011 if (event->group_leader == event) 2012 del_event_from_groups(event, ctx); 2013 2014 /* 2015 * If event was in error state, then keep it 2016 * that way, otherwise bogus counts will be 2017 * returned on read(). The only way to get out 2018 * of error state is by explicit re-enabling 2019 * of the event 2020 */ 2021 if (event->state > PERF_EVENT_STATE_OFF) { 2022 perf_cgroup_event_disable(event, ctx); 2023 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2024 } 2025 2026 ctx->generation++; 2027 } 2028 2029 static int 2030 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2031 { 2032 if (!has_aux(aux_event)) 2033 return 0; 2034 2035 if (!event->pmu->aux_output_match) 2036 return 0; 2037 2038 return event->pmu->aux_output_match(aux_event); 2039 } 2040 2041 static void put_event(struct perf_event *event); 2042 static void event_sched_out(struct perf_event *event, 2043 struct perf_cpu_context *cpuctx, 2044 struct perf_event_context *ctx); 2045 2046 static void perf_put_aux_event(struct perf_event *event) 2047 { 2048 struct perf_event_context *ctx = event->ctx; 2049 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2050 struct perf_event *iter; 2051 2052 /* 2053 * If event uses aux_event tear down the link 2054 */ 2055 if (event->aux_event) { 2056 iter = event->aux_event; 2057 event->aux_event = NULL; 2058 put_event(iter); 2059 return; 2060 } 2061 2062 /* 2063 * If the event is an aux_event, tear down all links to 2064 * it from other events. 2065 */ 2066 for_each_sibling_event(iter, event->group_leader) { 2067 if (iter->aux_event != event) 2068 continue; 2069 2070 iter->aux_event = NULL; 2071 put_event(event); 2072 2073 /* 2074 * If it's ACTIVE, schedule it out and put it into ERROR 2075 * state so that we don't try to schedule it again. Note 2076 * that perf_event_enable() will clear the ERROR status. 2077 */ 2078 event_sched_out(iter, cpuctx, ctx); 2079 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2080 } 2081 } 2082 2083 static bool perf_need_aux_event(struct perf_event *event) 2084 { 2085 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2086 } 2087 2088 static int perf_get_aux_event(struct perf_event *event, 2089 struct perf_event *group_leader) 2090 { 2091 /* 2092 * Our group leader must be an aux event if we want to be 2093 * an aux_output. This way, the aux event will precede its 2094 * aux_output events in the group, and therefore will always 2095 * schedule first. 2096 */ 2097 if (!group_leader) 2098 return 0; 2099 2100 /* 2101 * aux_output and aux_sample_size are mutually exclusive. 2102 */ 2103 if (event->attr.aux_output && event->attr.aux_sample_size) 2104 return 0; 2105 2106 if (event->attr.aux_output && 2107 !perf_aux_output_match(event, group_leader)) 2108 return 0; 2109 2110 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2111 return 0; 2112 2113 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2114 return 0; 2115 2116 /* 2117 * Link aux_outputs to their aux event; this is undone in 2118 * perf_group_detach() by perf_put_aux_event(). When the 2119 * group in torn down, the aux_output events loose their 2120 * link to the aux_event and can't schedule any more. 2121 */ 2122 event->aux_event = group_leader; 2123 2124 return 1; 2125 } 2126 2127 static inline struct list_head *get_event_list(struct perf_event *event) 2128 { 2129 struct perf_event_context *ctx = event->ctx; 2130 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2131 } 2132 2133 /* 2134 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2135 * cannot exist on their own, schedule them out and move them into the ERROR 2136 * state. Also see _perf_event_enable(), it will not be able to recover 2137 * this ERROR state. 2138 */ 2139 static inline void perf_remove_sibling_event(struct perf_event *event) 2140 { 2141 struct perf_event_context *ctx = event->ctx; 2142 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2143 2144 event_sched_out(event, cpuctx, ctx); 2145 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2146 } 2147 2148 static void perf_group_detach(struct perf_event *event) 2149 { 2150 struct perf_event *leader = event->group_leader; 2151 struct perf_event *sibling, *tmp; 2152 struct perf_event_context *ctx = event->ctx; 2153 2154 lockdep_assert_held(&ctx->lock); 2155 2156 /* 2157 * We can have double detach due to exit/hot-unplug + close. 2158 */ 2159 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2160 return; 2161 2162 event->attach_state &= ~PERF_ATTACH_GROUP; 2163 2164 perf_put_aux_event(event); 2165 2166 /* 2167 * If this is a sibling, remove it from its group. 2168 */ 2169 if (leader != event) { 2170 list_del_init(&event->sibling_list); 2171 event->group_leader->nr_siblings--; 2172 goto out; 2173 } 2174 2175 /* 2176 * If this was a group event with sibling events then 2177 * upgrade the siblings to singleton events by adding them 2178 * to whatever list we are on. 2179 */ 2180 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2181 2182 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2183 perf_remove_sibling_event(sibling); 2184 2185 sibling->group_leader = sibling; 2186 list_del_init(&sibling->sibling_list); 2187 2188 /* Inherit group flags from the previous leader */ 2189 sibling->group_caps = event->group_caps; 2190 2191 if (!RB_EMPTY_NODE(&event->group_node)) { 2192 add_event_to_groups(sibling, event->ctx); 2193 2194 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2195 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2196 } 2197 2198 WARN_ON_ONCE(sibling->ctx != event->ctx); 2199 } 2200 2201 out: 2202 for_each_sibling_event(tmp, leader) 2203 perf_event__header_size(tmp); 2204 2205 perf_event__header_size(leader); 2206 } 2207 2208 static void sync_child_event(struct perf_event *child_event); 2209 2210 static void perf_child_detach(struct perf_event *event) 2211 { 2212 struct perf_event *parent_event = event->parent; 2213 2214 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2215 return; 2216 2217 event->attach_state &= ~PERF_ATTACH_CHILD; 2218 2219 if (WARN_ON_ONCE(!parent_event)) 2220 return; 2221 2222 lockdep_assert_held(&parent_event->child_mutex); 2223 2224 sync_child_event(event); 2225 list_del_init(&event->child_list); 2226 } 2227 2228 static bool is_orphaned_event(struct perf_event *event) 2229 { 2230 return event->state == PERF_EVENT_STATE_DEAD; 2231 } 2232 2233 static inline int __pmu_filter_match(struct perf_event *event) 2234 { 2235 struct pmu *pmu = event->pmu; 2236 return pmu->filter_match ? pmu->filter_match(event) : 1; 2237 } 2238 2239 /* 2240 * Check whether we should attempt to schedule an event group based on 2241 * PMU-specific filtering. An event group can consist of HW and SW events, 2242 * potentially with a SW leader, so we must check all the filters, to 2243 * determine whether a group is schedulable: 2244 */ 2245 static inline int pmu_filter_match(struct perf_event *event) 2246 { 2247 struct perf_event *sibling; 2248 2249 if (!__pmu_filter_match(event)) 2250 return 0; 2251 2252 for_each_sibling_event(sibling, event) { 2253 if (!__pmu_filter_match(sibling)) 2254 return 0; 2255 } 2256 2257 return 1; 2258 } 2259 2260 static inline int 2261 event_filter_match(struct perf_event *event) 2262 { 2263 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2264 perf_cgroup_match(event) && pmu_filter_match(event); 2265 } 2266 2267 static void 2268 event_sched_out(struct perf_event *event, 2269 struct perf_cpu_context *cpuctx, 2270 struct perf_event_context *ctx) 2271 { 2272 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2273 2274 WARN_ON_ONCE(event->ctx != ctx); 2275 lockdep_assert_held(&ctx->lock); 2276 2277 if (event->state != PERF_EVENT_STATE_ACTIVE) 2278 return; 2279 2280 /* 2281 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2282 * we can schedule events _OUT_ individually through things like 2283 * __perf_remove_from_context(). 2284 */ 2285 list_del_init(&event->active_list); 2286 2287 perf_pmu_disable(event->pmu); 2288 2289 event->pmu->del(event, 0); 2290 event->oncpu = -1; 2291 2292 if (READ_ONCE(event->pending_disable) >= 0) { 2293 WRITE_ONCE(event->pending_disable, -1); 2294 perf_cgroup_event_disable(event, ctx); 2295 state = PERF_EVENT_STATE_OFF; 2296 } 2297 perf_event_set_state(event, state); 2298 2299 if (!is_software_event(event)) 2300 cpuctx->active_oncpu--; 2301 if (!--ctx->nr_active) 2302 perf_event_ctx_deactivate(ctx); 2303 if (event->attr.freq && event->attr.sample_freq) 2304 ctx->nr_freq--; 2305 if (event->attr.exclusive || !cpuctx->active_oncpu) 2306 cpuctx->exclusive = 0; 2307 2308 perf_pmu_enable(event->pmu); 2309 } 2310 2311 static void 2312 group_sched_out(struct perf_event *group_event, 2313 struct perf_cpu_context *cpuctx, 2314 struct perf_event_context *ctx) 2315 { 2316 struct perf_event *event; 2317 2318 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2319 return; 2320 2321 perf_pmu_disable(ctx->pmu); 2322 2323 event_sched_out(group_event, cpuctx, ctx); 2324 2325 /* 2326 * Schedule out siblings (if any): 2327 */ 2328 for_each_sibling_event(event, group_event) 2329 event_sched_out(event, cpuctx, ctx); 2330 2331 perf_pmu_enable(ctx->pmu); 2332 } 2333 2334 #define DETACH_GROUP 0x01UL 2335 #define DETACH_CHILD 0x02UL 2336 2337 /* 2338 * Cross CPU call to remove a performance event 2339 * 2340 * We disable the event on the hardware level first. After that we 2341 * remove it from the context list. 2342 */ 2343 static void 2344 __perf_remove_from_context(struct perf_event *event, 2345 struct perf_cpu_context *cpuctx, 2346 struct perf_event_context *ctx, 2347 void *info) 2348 { 2349 unsigned long flags = (unsigned long)info; 2350 2351 if (ctx->is_active & EVENT_TIME) { 2352 update_context_time(ctx); 2353 update_cgrp_time_from_cpuctx(cpuctx); 2354 } 2355 2356 event_sched_out(event, cpuctx, ctx); 2357 if (flags & DETACH_GROUP) 2358 perf_group_detach(event); 2359 if (flags & DETACH_CHILD) 2360 perf_child_detach(event); 2361 list_del_event(event, ctx); 2362 2363 if (!ctx->nr_events && ctx->is_active) { 2364 ctx->is_active = 0; 2365 ctx->rotate_necessary = 0; 2366 if (ctx->task) { 2367 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2368 cpuctx->task_ctx = NULL; 2369 } 2370 } 2371 } 2372 2373 /* 2374 * Remove the event from a task's (or a CPU's) list of events. 2375 * 2376 * If event->ctx is a cloned context, callers must make sure that 2377 * every task struct that event->ctx->task could possibly point to 2378 * remains valid. This is OK when called from perf_release since 2379 * that only calls us on the top-level context, which can't be a clone. 2380 * When called from perf_event_exit_task, it's OK because the 2381 * context has been detached from its task. 2382 */ 2383 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2384 { 2385 struct perf_event_context *ctx = event->ctx; 2386 2387 lockdep_assert_held(&ctx->mutex); 2388 2389 /* 2390 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2391 * to work in the face of TASK_TOMBSTONE, unlike every other 2392 * event_function_call() user. 2393 */ 2394 raw_spin_lock_irq(&ctx->lock); 2395 if (!ctx->is_active) { 2396 __perf_remove_from_context(event, __get_cpu_context(ctx), 2397 ctx, (void *)flags); 2398 raw_spin_unlock_irq(&ctx->lock); 2399 return; 2400 } 2401 raw_spin_unlock_irq(&ctx->lock); 2402 2403 event_function_call(event, __perf_remove_from_context, (void *)flags); 2404 } 2405 2406 /* 2407 * Cross CPU call to disable a performance event 2408 */ 2409 static void __perf_event_disable(struct perf_event *event, 2410 struct perf_cpu_context *cpuctx, 2411 struct perf_event_context *ctx, 2412 void *info) 2413 { 2414 if (event->state < PERF_EVENT_STATE_INACTIVE) 2415 return; 2416 2417 if (ctx->is_active & EVENT_TIME) { 2418 update_context_time(ctx); 2419 update_cgrp_time_from_event(event); 2420 } 2421 2422 if (event == event->group_leader) 2423 group_sched_out(event, cpuctx, ctx); 2424 else 2425 event_sched_out(event, cpuctx, ctx); 2426 2427 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2428 perf_cgroup_event_disable(event, ctx); 2429 } 2430 2431 /* 2432 * Disable an event. 2433 * 2434 * If event->ctx is a cloned context, callers must make sure that 2435 * every task struct that event->ctx->task could possibly point to 2436 * remains valid. This condition is satisfied when called through 2437 * perf_event_for_each_child or perf_event_for_each because they 2438 * hold the top-level event's child_mutex, so any descendant that 2439 * goes to exit will block in perf_event_exit_event(). 2440 * 2441 * When called from perf_pending_event it's OK because event->ctx 2442 * is the current context on this CPU and preemption is disabled, 2443 * hence we can't get into perf_event_task_sched_out for this context. 2444 */ 2445 static void _perf_event_disable(struct perf_event *event) 2446 { 2447 struct perf_event_context *ctx = event->ctx; 2448 2449 raw_spin_lock_irq(&ctx->lock); 2450 if (event->state <= PERF_EVENT_STATE_OFF) { 2451 raw_spin_unlock_irq(&ctx->lock); 2452 return; 2453 } 2454 raw_spin_unlock_irq(&ctx->lock); 2455 2456 event_function_call(event, __perf_event_disable, NULL); 2457 } 2458 2459 void perf_event_disable_local(struct perf_event *event) 2460 { 2461 event_function_local(event, __perf_event_disable, NULL); 2462 } 2463 2464 /* 2465 * Strictly speaking kernel users cannot create groups and therefore this 2466 * interface does not need the perf_event_ctx_lock() magic. 2467 */ 2468 void perf_event_disable(struct perf_event *event) 2469 { 2470 struct perf_event_context *ctx; 2471 2472 ctx = perf_event_ctx_lock(event); 2473 _perf_event_disable(event); 2474 perf_event_ctx_unlock(event, ctx); 2475 } 2476 EXPORT_SYMBOL_GPL(perf_event_disable); 2477 2478 void perf_event_disable_inatomic(struct perf_event *event) 2479 { 2480 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2481 /* can fail, see perf_pending_event_disable() */ 2482 irq_work_queue(&event->pending); 2483 } 2484 2485 static void perf_set_shadow_time(struct perf_event *event, 2486 struct perf_event_context *ctx) 2487 { 2488 /* 2489 * use the correct time source for the time snapshot 2490 * 2491 * We could get by without this by leveraging the 2492 * fact that to get to this function, the caller 2493 * has most likely already called update_context_time() 2494 * and update_cgrp_time_xx() and thus both timestamp 2495 * are identical (or very close). Given that tstamp is, 2496 * already adjusted for cgroup, we could say that: 2497 * tstamp - ctx->timestamp 2498 * is equivalent to 2499 * tstamp - cgrp->timestamp. 2500 * 2501 * Then, in perf_output_read(), the calculation would 2502 * work with no changes because: 2503 * - event is guaranteed scheduled in 2504 * - no scheduled out in between 2505 * - thus the timestamp would be the same 2506 * 2507 * But this is a bit hairy. 2508 * 2509 * So instead, we have an explicit cgroup call to remain 2510 * within the time source all along. We believe it 2511 * is cleaner and simpler to understand. 2512 */ 2513 if (is_cgroup_event(event)) 2514 perf_cgroup_set_shadow_time(event, event->tstamp); 2515 else 2516 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2517 } 2518 2519 #define MAX_INTERRUPTS (~0ULL) 2520 2521 static void perf_log_throttle(struct perf_event *event, int enable); 2522 static void perf_log_itrace_start(struct perf_event *event); 2523 2524 static int 2525 event_sched_in(struct perf_event *event, 2526 struct perf_cpu_context *cpuctx, 2527 struct perf_event_context *ctx) 2528 { 2529 int ret = 0; 2530 2531 WARN_ON_ONCE(event->ctx != ctx); 2532 2533 lockdep_assert_held(&ctx->lock); 2534 2535 if (event->state <= PERF_EVENT_STATE_OFF) 2536 return 0; 2537 2538 WRITE_ONCE(event->oncpu, smp_processor_id()); 2539 /* 2540 * Order event::oncpu write to happen before the ACTIVE state is 2541 * visible. This allows perf_event_{stop,read}() to observe the correct 2542 * ->oncpu if it sees ACTIVE. 2543 */ 2544 smp_wmb(); 2545 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2546 2547 /* 2548 * Unthrottle events, since we scheduled we might have missed several 2549 * ticks already, also for a heavily scheduling task there is little 2550 * guarantee it'll get a tick in a timely manner. 2551 */ 2552 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2553 perf_log_throttle(event, 1); 2554 event->hw.interrupts = 0; 2555 } 2556 2557 perf_pmu_disable(event->pmu); 2558 2559 perf_set_shadow_time(event, ctx); 2560 2561 perf_log_itrace_start(event); 2562 2563 if (event->pmu->add(event, PERF_EF_START)) { 2564 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2565 event->oncpu = -1; 2566 ret = -EAGAIN; 2567 goto out; 2568 } 2569 2570 if (!is_software_event(event)) 2571 cpuctx->active_oncpu++; 2572 if (!ctx->nr_active++) 2573 perf_event_ctx_activate(ctx); 2574 if (event->attr.freq && event->attr.sample_freq) 2575 ctx->nr_freq++; 2576 2577 if (event->attr.exclusive) 2578 cpuctx->exclusive = 1; 2579 2580 out: 2581 perf_pmu_enable(event->pmu); 2582 2583 return ret; 2584 } 2585 2586 static int 2587 group_sched_in(struct perf_event *group_event, 2588 struct perf_cpu_context *cpuctx, 2589 struct perf_event_context *ctx) 2590 { 2591 struct perf_event *event, *partial_group = NULL; 2592 struct pmu *pmu = ctx->pmu; 2593 2594 if (group_event->state == PERF_EVENT_STATE_OFF) 2595 return 0; 2596 2597 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2598 2599 if (event_sched_in(group_event, cpuctx, ctx)) 2600 goto error; 2601 2602 /* 2603 * Schedule in siblings as one group (if any): 2604 */ 2605 for_each_sibling_event(event, group_event) { 2606 if (event_sched_in(event, cpuctx, ctx)) { 2607 partial_group = event; 2608 goto group_error; 2609 } 2610 } 2611 2612 if (!pmu->commit_txn(pmu)) 2613 return 0; 2614 2615 group_error: 2616 /* 2617 * Groups can be scheduled in as one unit only, so undo any 2618 * partial group before returning: 2619 * The events up to the failed event are scheduled out normally. 2620 */ 2621 for_each_sibling_event(event, group_event) { 2622 if (event == partial_group) 2623 break; 2624 2625 event_sched_out(event, cpuctx, ctx); 2626 } 2627 event_sched_out(group_event, cpuctx, ctx); 2628 2629 error: 2630 pmu->cancel_txn(pmu); 2631 return -EAGAIN; 2632 } 2633 2634 /* 2635 * Work out whether we can put this event group on the CPU now. 2636 */ 2637 static int group_can_go_on(struct perf_event *event, 2638 struct perf_cpu_context *cpuctx, 2639 int can_add_hw) 2640 { 2641 /* 2642 * Groups consisting entirely of software events can always go on. 2643 */ 2644 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2645 return 1; 2646 /* 2647 * If an exclusive group is already on, no other hardware 2648 * events can go on. 2649 */ 2650 if (cpuctx->exclusive) 2651 return 0; 2652 /* 2653 * If this group is exclusive and there are already 2654 * events on the CPU, it can't go on. 2655 */ 2656 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2657 return 0; 2658 /* 2659 * Otherwise, try to add it if all previous groups were able 2660 * to go on. 2661 */ 2662 return can_add_hw; 2663 } 2664 2665 static void add_event_to_ctx(struct perf_event *event, 2666 struct perf_event_context *ctx) 2667 { 2668 list_add_event(event, ctx); 2669 perf_group_attach(event); 2670 } 2671 2672 static void ctx_sched_out(struct perf_event_context *ctx, 2673 struct perf_cpu_context *cpuctx, 2674 enum event_type_t event_type); 2675 static void 2676 ctx_sched_in(struct perf_event_context *ctx, 2677 struct perf_cpu_context *cpuctx, 2678 enum event_type_t event_type, 2679 struct task_struct *task); 2680 2681 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2682 struct perf_event_context *ctx, 2683 enum event_type_t event_type) 2684 { 2685 if (!cpuctx->task_ctx) 2686 return; 2687 2688 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2689 return; 2690 2691 ctx_sched_out(ctx, cpuctx, event_type); 2692 } 2693 2694 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2695 struct perf_event_context *ctx, 2696 struct task_struct *task) 2697 { 2698 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2699 if (ctx) 2700 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2701 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2702 if (ctx) 2703 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2704 } 2705 2706 /* 2707 * We want to maintain the following priority of scheduling: 2708 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2709 * - task pinned (EVENT_PINNED) 2710 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2711 * - task flexible (EVENT_FLEXIBLE). 2712 * 2713 * In order to avoid unscheduling and scheduling back in everything every 2714 * time an event is added, only do it for the groups of equal priority and 2715 * below. 2716 * 2717 * This can be called after a batch operation on task events, in which case 2718 * event_type is a bit mask of the types of events involved. For CPU events, 2719 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2720 */ 2721 static void ctx_resched(struct perf_cpu_context *cpuctx, 2722 struct perf_event_context *task_ctx, 2723 enum event_type_t event_type) 2724 { 2725 enum event_type_t ctx_event_type; 2726 bool cpu_event = !!(event_type & EVENT_CPU); 2727 2728 /* 2729 * If pinned groups are involved, flexible groups also need to be 2730 * scheduled out. 2731 */ 2732 if (event_type & EVENT_PINNED) 2733 event_type |= EVENT_FLEXIBLE; 2734 2735 ctx_event_type = event_type & EVENT_ALL; 2736 2737 perf_pmu_disable(cpuctx->ctx.pmu); 2738 if (task_ctx) 2739 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2740 2741 /* 2742 * Decide which cpu ctx groups to schedule out based on the types 2743 * of events that caused rescheduling: 2744 * - EVENT_CPU: schedule out corresponding groups; 2745 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2746 * - otherwise, do nothing more. 2747 */ 2748 if (cpu_event) 2749 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2750 else if (ctx_event_type & EVENT_PINNED) 2751 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2752 2753 perf_event_sched_in(cpuctx, task_ctx, current); 2754 perf_pmu_enable(cpuctx->ctx.pmu); 2755 } 2756 2757 void perf_pmu_resched(struct pmu *pmu) 2758 { 2759 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2760 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2761 2762 perf_ctx_lock(cpuctx, task_ctx); 2763 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2764 perf_ctx_unlock(cpuctx, task_ctx); 2765 } 2766 2767 /* 2768 * Cross CPU call to install and enable a performance event 2769 * 2770 * Very similar to remote_function() + event_function() but cannot assume that 2771 * things like ctx->is_active and cpuctx->task_ctx are set. 2772 */ 2773 static int __perf_install_in_context(void *info) 2774 { 2775 struct perf_event *event = info; 2776 struct perf_event_context *ctx = event->ctx; 2777 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2778 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2779 bool reprogram = true; 2780 int ret = 0; 2781 2782 raw_spin_lock(&cpuctx->ctx.lock); 2783 if (ctx->task) { 2784 raw_spin_lock(&ctx->lock); 2785 task_ctx = ctx; 2786 2787 reprogram = (ctx->task == current); 2788 2789 /* 2790 * If the task is running, it must be running on this CPU, 2791 * otherwise we cannot reprogram things. 2792 * 2793 * If its not running, we don't care, ctx->lock will 2794 * serialize against it becoming runnable. 2795 */ 2796 if (task_curr(ctx->task) && !reprogram) { 2797 ret = -ESRCH; 2798 goto unlock; 2799 } 2800 2801 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2802 } else if (task_ctx) { 2803 raw_spin_lock(&task_ctx->lock); 2804 } 2805 2806 #ifdef CONFIG_CGROUP_PERF 2807 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2808 /* 2809 * If the current cgroup doesn't match the event's 2810 * cgroup, we should not try to schedule it. 2811 */ 2812 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2813 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2814 event->cgrp->css.cgroup); 2815 } 2816 #endif 2817 2818 if (reprogram) { 2819 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2820 add_event_to_ctx(event, ctx); 2821 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2822 } else { 2823 add_event_to_ctx(event, ctx); 2824 } 2825 2826 unlock: 2827 perf_ctx_unlock(cpuctx, task_ctx); 2828 2829 return ret; 2830 } 2831 2832 static bool exclusive_event_installable(struct perf_event *event, 2833 struct perf_event_context *ctx); 2834 2835 /* 2836 * Attach a performance event to a context. 2837 * 2838 * Very similar to event_function_call, see comment there. 2839 */ 2840 static void 2841 perf_install_in_context(struct perf_event_context *ctx, 2842 struct perf_event *event, 2843 int cpu) 2844 { 2845 struct task_struct *task = READ_ONCE(ctx->task); 2846 2847 lockdep_assert_held(&ctx->mutex); 2848 2849 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2850 2851 if (event->cpu != -1) 2852 event->cpu = cpu; 2853 2854 /* 2855 * Ensures that if we can observe event->ctx, both the event and ctx 2856 * will be 'complete'. See perf_iterate_sb_cpu(). 2857 */ 2858 smp_store_release(&event->ctx, ctx); 2859 2860 /* 2861 * perf_event_attr::disabled events will not run and can be initialized 2862 * without IPI. Except when this is the first event for the context, in 2863 * that case we need the magic of the IPI to set ctx->is_active. 2864 * 2865 * The IOC_ENABLE that is sure to follow the creation of a disabled 2866 * event will issue the IPI and reprogram the hardware. 2867 */ 2868 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2869 raw_spin_lock_irq(&ctx->lock); 2870 if (ctx->task == TASK_TOMBSTONE) { 2871 raw_spin_unlock_irq(&ctx->lock); 2872 return; 2873 } 2874 add_event_to_ctx(event, ctx); 2875 raw_spin_unlock_irq(&ctx->lock); 2876 return; 2877 } 2878 2879 if (!task) { 2880 cpu_function_call(cpu, __perf_install_in_context, event); 2881 return; 2882 } 2883 2884 /* 2885 * Should not happen, we validate the ctx is still alive before calling. 2886 */ 2887 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2888 return; 2889 2890 /* 2891 * Installing events is tricky because we cannot rely on ctx->is_active 2892 * to be set in case this is the nr_events 0 -> 1 transition. 2893 * 2894 * Instead we use task_curr(), which tells us if the task is running. 2895 * However, since we use task_curr() outside of rq::lock, we can race 2896 * against the actual state. This means the result can be wrong. 2897 * 2898 * If we get a false positive, we retry, this is harmless. 2899 * 2900 * If we get a false negative, things are complicated. If we are after 2901 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2902 * value must be correct. If we're before, it doesn't matter since 2903 * perf_event_context_sched_in() will program the counter. 2904 * 2905 * However, this hinges on the remote context switch having observed 2906 * our task->perf_event_ctxp[] store, such that it will in fact take 2907 * ctx::lock in perf_event_context_sched_in(). 2908 * 2909 * We do this by task_function_call(), if the IPI fails to hit the task 2910 * we know any future context switch of task must see the 2911 * perf_event_ctpx[] store. 2912 */ 2913 2914 /* 2915 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2916 * task_cpu() load, such that if the IPI then does not find the task 2917 * running, a future context switch of that task must observe the 2918 * store. 2919 */ 2920 smp_mb(); 2921 again: 2922 if (!task_function_call(task, __perf_install_in_context, event)) 2923 return; 2924 2925 raw_spin_lock_irq(&ctx->lock); 2926 task = ctx->task; 2927 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2928 /* 2929 * Cannot happen because we already checked above (which also 2930 * cannot happen), and we hold ctx->mutex, which serializes us 2931 * against perf_event_exit_task_context(). 2932 */ 2933 raw_spin_unlock_irq(&ctx->lock); 2934 return; 2935 } 2936 /* 2937 * If the task is not running, ctx->lock will avoid it becoming so, 2938 * thus we can safely install the event. 2939 */ 2940 if (task_curr(task)) { 2941 raw_spin_unlock_irq(&ctx->lock); 2942 goto again; 2943 } 2944 add_event_to_ctx(event, ctx); 2945 raw_spin_unlock_irq(&ctx->lock); 2946 } 2947 2948 /* 2949 * Cross CPU call to enable a performance event 2950 */ 2951 static void __perf_event_enable(struct perf_event *event, 2952 struct perf_cpu_context *cpuctx, 2953 struct perf_event_context *ctx, 2954 void *info) 2955 { 2956 struct perf_event *leader = event->group_leader; 2957 struct perf_event_context *task_ctx; 2958 2959 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2960 event->state <= PERF_EVENT_STATE_ERROR) 2961 return; 2962 2963 if (ctx->is_active) 2964 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2965 2966 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2967 perf_cgroup_event_enable(event, ctx); 2968 2969 if (!ctx->is_active) 2970 return; 2971 2972 if (!event_filter_match(event)) { 2973 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2974 return; 2975 } 2976 2977 /* 2978 * If the event is in a group and isn't the group leader, 2979 * then don't put it on unless the group is on. 2980 */ 2981 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2982 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2983 return; 2984 } 2985 2986 task_ctx = cpuctx->task_ctx; 2987 if (ctx->task) 2988 WARN_ON_ONCE(task_ctx != ctx); 2989 2990 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2991 } 2992 2993 /* 2994 * Enable an event. 2995 * 2996 * If event->ctx is a cloned context, callers must make sure that 2997 * every task struct that event->ctx->task could possibly point to 2998 * remains valid. This condition is satisfied when called through 2999 * perf_event_for_each_child or perf_event_for_each as described 3000 * for perf_event_disable. 3001 */ 3002 static void _perf_event_enable(struct perf_event *event) 3003 { 3004 struct perf_event_context *ctx = event->ctx; 3005 3006 raw_spin_lock_irq(&ctx->lock); 3007 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3008 event->state < PERF_EVENT_STATE_ERROR) { 3009 out: 3010 raw_spin_unlock_irq(&ctx->lock); 3011 return; 3012 } 3013 3014 /* 3015 * If the event is in error state, clear that first. 3016 * 3017 * That way, if we see the event in error state below, we know that it 3018 * has gone back into error state, as distinct from the task having 3019 * been scheduled away before the cross-call arrived. 3020 */ 3021 if (event->state == PERF_EVENT_STATE_ERROR) { 3022 /* 3023 * Detached SIBLING events cannot leave ERROR state. 3024 */ 3025 if (event->event_caps & PERF_EV_CAP_SIBLING && 3026 event->group_leader == event) 3027 goto out; 3028 3029 event->state = PERF_EVENT_STATE_OFF; 3030 } 3031 raw_spin_unlock_irq(&ctx->lock); 3032 3033 event_function_call(event, __perf_event_enable, NULL); 3034 } 3035 3036 /* 3037 * See perf_event_disable(); 3038 */ 3039 void perf_event_enable(struct perf_event *event) 3040 { 3041 struct perf_event_context *ctx; 3042 3043 ctx = perf_event_ctx_lock(event); 3044 _perf_event_enable(event); 3045 perf_event_ctx_unlock(event, ctx); 3046 } 3047 EXPORT_SYMBOL_GPL(perf_event_enable); 3048 3049 struct stop_event_data { 3050 struct perf_event *event; 3051 unsigned int restart; 3052 }; 3053 3054 static int __perf_event_stop(void *info) 3055 { 3056 struct stop_event_data *sd = info; 3057 struct perf_event *event = sd->event; 3058 3059 /* if it's already INACTIVE, do nothing */ 3060 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3061 return 0; 3062 3063 /* matches smp_wmb() in event_sched_in() */ 3064 smp_rmb(); 3065 3066 /* 3067 * There is a window with interrupts enabled before we get here, 3068 * so we need to check again lest we try to stop another CPU's event. 3069 */ 3070 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3071 return -EAGAIN; 3072 3073 event->pmu->stop(event, PERF_EF_UPDATE); 3074 3075 /* 3076 * May race with the actual stop (through perf_pmu_output_stop()), 3077 * but it is only used for events with AUX ring buffer, and such 3078 * events will refuse to restart because of rb::aux_mmap_count==0, 3079 * see comments in perf_aux_output_begin(). 3080 * 3081 * Since this is happening on an event-local CPU, no trace is lost 3082 * while restarting. 3083 */ 3084 if (sd->restart) 3085 event->pmu->start(event, 0); 3086 3087 return 0; 3088 } 3089 3090 static int perf_event_stop(struct perf_event *event, int restart) 3091 { 3092 struct stop_event_data sd = { 3093 .event = event, 3094 .restart = restart, 3095 }; 3096 int ret = 0; 3097 3098 do { 3099 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3100 return 0; 3101 3102 /* matches smp_wmb() in event_sched_in() */ 3103 smp_rmb(); 3104 3105 /* 3106 * We only want to restart ACTIVE events, so if the event goes 3107 * inactive here (event->oncpu==-1), there's nothing more to do; 3108 * fall through with ret==-ENXIO. 3109 */ 3110 ret = cpu_function_call(READ_ONCE(event->oncpu), 3111 __perf_event_stop, &sd); 3112 } while (ret == -EAGAIN); 3113 3114 return ret; 3115 } 3116 3117 /* 3118 * In order to contain the amount of racy and tricky in the address filter 3119 * configuration management, it is a two part process: 3120 * 3121 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3122 * we update the addresses of corresponding vmas in 3123 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3124 * (p2) when an event is scheduled in (pmu::add), it calls 3125 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3126 * if the generation has changed since the previous call. 3127 * 3128 * If (p1) happens while the event is active, we restart it to force (p2). 3129 * 3130 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3131 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3132 * ioctl; 3133 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3134 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3135 * for reading; 3136 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3137 * of exec. 3138 */ 3139 void perf_event_addr_filters_sync(struct perf_event *event) 3140 { 3141 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3142 3143 if (!has_addr_filter(event)) 3144 return; 3145 3146 raw_spin_lock(&ifh->lock); 3147 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3148 event->pmu->addr_filters_sync(event); 3149 event->hw.addr_filters_gen = event->addr_filters_gen; 3150 } 3151 raw_spin_unlock(&ifh->lock); 3152 } 3153 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3154 3155 static int _perf_event_refresh(struct perf_event *event, int refresh) 3156 { 3157 /* 3158 * not supported on inherited events 3159 */ 3160 if (event->attr.inherit || !is_sampling_event(event)) 3161 return -EINVAL; 3162 3163 atomic_add(refresh, &event->event_limit); 3164 _perf_event_enable(event); 3165 3166 return 0; 3167 } 3168 3169 /* 3170 * See perf_event_disable() 3171 */ 3172 int perf_event_refresh(struct perf_event *event, int refresh) 3173 { 3174 struct perf_event_context *ctx; 3175 int ret; 3176 3177 ctx = perf_event_ctx_lock(event); 3178 ret = _perf_event_refresh(event, refresh); 3179 perf_event_ctx_unlock(event, ctx); 3180 3181 return ret; 3182 } 3183 EXPORT_SYMBOL_GPL(perf_event_refresh); 3184 3185 static int perf_event_modify_breakpoint(struct perf_event *bp, 3186 struct perf_event_attr *attr) 3187 { 3188 int err; 3189 3190 _perf_event_disable(bp); 3191 3192 err = modify_user_hw_breakpoint_check(bp, attr, true); 3193 3194 if (!bp->attr.disabled) 3195 _perf_event_enable(bp); 3196 3197 return err; 3198 } 3199 3200 static int perf_event_modify_attr(struct perf_event *event, 3201 struct perf_event_attr *attr) 3202 { 3203 int (*func)(struct perf_event *, struct perf_event_attr *); 3204 struct perf_event *child; 3205 int err; 3206 3207 if (event->attr.type != attr->type) 3208 return -EINVAL; 3209 3210 switch (event->attr.type) { 3211 case PERF_TYPE_BREAKPOINT: 3212 func = perf_event_modify_breakpoint; 3213 break; 3214 default: 3215 /* Place holder for future additions. */ 3216 return -EOPNOTSUPP; 3217 } 3218 3219 WARN_ON_ONCE(event->ctx->parent_ctx); 3220 3221 mutex_lock(&event->child_mutex); 3222 err = func(event, attr); 3223 if (err) 3224 goto out; 3225 list_for_each_entry(child, &event->child_list, child_list) { 3226 err = func(child, attr); 3227 if (err) 3228 goto out; 3229 } 3230 out: 3231 mutex_unlock(&event->child_mutex); 3232 return err; 3233 } 3234 3235 static void ctx_sched_out(struct perf_event_context *ctx, 3236 struct perf_cpu_context *cpuctx, 3237 enum event_type_t event_type) 3238 { 3239 struct perf_event *event, *tmp; 3240 int is_active = ctx->is_active; 3241 3242 lockdep_assert_held(&ctx->lock); 3243 3244 if (likely(!ctx->nr_events)) { 3245 /* 3246 * See __perf_remove_from_context(). 3247 */ 3248 WARN_ON_ONCE(ctx->is_active); 3249 if (ctx->task) 3250 WARN_ON_ONCE(cpuctx->task_ctx); 3251 return; 3252 } 3253 3254 ctx->is_active &= ~event_type; 3255 if (!(ctx->is_active & EVENT_ALL)) 3256 ctx->is_active = 0; 3257 3258 if (ctx->task) { 3259 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3260 if (!ctx->is_active) 3261 cpuctx->task_ctx = NULL; 3262 } 3263 3264 /* 3265 * Always update time if it was set; not only when it changes. 3266 * Otherwise we can 'forget' to update time for any but the last 3267 * context we sched out. For example: 3268 * 3269 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3270 * ctx_sched_out(.event_type = EVENT_PINNED) 3271 * 3272 * would only update time for the pinned events. 3273 */ 3274 if (is_active & EVENT_TIME) { 3275 /* update (and stop) ctx time */ 3276 update_context_time(ctx); 3277 update_cgrp_time_from_cpuctx(cpuctx); 3278 } 3279 3280 is_active ^= ctx->is_active; /* changed bits */ 3281 3282 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3283 return; 3284 3285 perf_pmu_disable(ctx->pmu); 3286 if (is_active & EVENT_PINNED) { 3287 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3288 group_sched_out(event, cpuctx, ctx); 3289 } 3290 3291 if (is_active & EVENT_FLEXIBLE) { 3292 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3293 group_sched_out(event, cpuctx, ctx); 3294 3295 /* 3296 * Since we cleared EVENT_FLEXIBLE, also clear 3297 * rotate_necessary, is will be reset by 3298 * ctx_flexible_sched_in() when needed. 3299 */ 3300 ctx->rotate_necessary = 0; 3301 } 3302 perf_pmu_enable(ctx->pmu); 3303 } 3304 3305 /* 3306 * Test whether two contexts are equivalent, i.e. whether they have both been 3307 * cloned from the same version of the same context. 3308 * 3309 * Equivalence is measured using a generation number in the context that is 3310 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3311 * and list_del_event(). 3312 */ 3313 static int context_equiv(struct perf_event_context *ctx1, 3314 struct perf_event_context *ctx2) 3315 { 3316 lockdep_assert_held(&ctx1->lock); 3317 lockdep_assert_held(&ctx2->lock); 3318 3319 /* Pinning disables the swap optimization */ 3320 if (ctx1->pin_count || ctx2->pin_count) 3321 return 0; 3322 3323 /* If ctx1 is the parent of ctx2 */ 3324 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3325 return 1; 3326 3327 /* If ctx2 is the parent of ctx1 */ 3328 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3329 return 1; 3330 3331 /* 3332 * If ctx1 and ctx2 have the same parent; we flatten the parent 3333 * hierarchy, see perf_event_init_context(). 3334 */ 3335 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3336 ctx1->parent_gen == ctx2->parent_gen) 3337 return 1; 3338 3339 /* Unmatched */ 3340 return 0; 3341 } 3342 3343 static void __perf_event_sync_stat(struct perf_event *event, 3344 struct perf_event *next_event) 3345 { 3346 u64 value; 3347 3348 if (!event->attr.inherit_stat) 3349 return; 3350 3351 /* 3352 * Update the event value, we cannot use perf_event_read() 3353 * because we're in the middle of a context switch and have IRQs 3354 * disabled, which upsets smp_call_function_single(), however 3355 * we know the event must be on the current CPU, therefore we 3356 * don't need to use it. 3357 */ 3358 if (event->state == PERF_EVENT_STATE_ACTIVE) 3359 event->pmu->read(event); 3360 3361 perf_event_update_time(event); 3362 3363 /* 3364 * In order to keep per-task stats reliable we need to flip the event 3365 * values when we flip the contexts. 3366 */ 3367 value = local64_read(&next_event->count); 3368 value = local64_xchg(&event->count, value); 3369 local64_set(&next_event->count, value); 3370 3371 swap(event->total_time_enabled, next_event->total_time_enabled); 3372 swap(event->total_time_running, next_event->total_time_running); 3373 3374 /* 3375 * Since we swizzled the values, update the user visible data too. 3376 */ 3377 perf_event_update_userpage(event); 3378 perf_event_update_userpage(next_event); 3379 } 3380 3381 static void perf_event_sync_stat(struct perf_event_context *ctx, 3382 struct perf_event_context *next_ctx) 3383 { 3384 struct perf_event *event, *next_event; 3385 3386 if (!ctx->nr_stat) 3387 return; 3388 3389 update_context_time(ctx); 3390 3391 event = list_first_entry(&ctx->event_list, 3392 struct perf_event, event_entry); 3393 3394 next_event = list_first_entry(&next_ctx->event_list, 3395 struct perf_event, event_entry); 3396 3397 while (&event->event_entry != &ctx->event_list && 3398 &next_event->event_entry != &next_ctx->event_list) { 3399 3400 __perf_event_sync_stat(event, next_event); 3401 3402 event = list_next_entry(event, event_entry); 3403 next_event = list_next_entry(next_event, event_entry); 3404 } 3405 } 3406 3407 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3408 struct task_struct *next) 3409 { 3410 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3411 struct perf_event_context *next_ctx; 3412 struct perf_event_context *parent, *next_parent; 3413 struct perf_cpu_context *cpuctx; 3414 int do_switch = 1; 3415 struct pmu *pmu; 3416 3417 if (likely(!ctx)) 3418 return; 3419 3420 pmu = ctx->pmu; 3421 cpuctx = __get_cpu_context(ctx); 3422 if (!cpuctx->task_ctx) 3423 return; 3424 3425 rcu_read_lock(); 3426 next_ctx = next->perf_event_ctxp[ctxn]; 3427 if (!next_ctx) 3428 goto unlock; 3429 3430 parent = rcu_dereference(ctx->parent_ctx); 3431 next_parent = rcu_dereference(next_ctx->parent_ctx); 3432 3433 /* If neither context have a parent context; they cannot be clones. */ 3434 if (!parent && !next_parent) 3435 goto unlock; 3436 3437 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3438 /* 3439 * Looks like the two contexts are clones, so we might be 3440 * able to optimize the context switch. We lock both 3441 * contexts and check that they are clones under the 3442 * lock (including re-checking that neither has been 3443 * uncloned in the meantime). It doesn't matter which 3444 * order we take the locks because no other cpu could 3445 * be trying to lock both of these tasks. 3446 */ 3447 raw_spin_lock(&ctx->lock); 3448 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3449 if (context_equiv(ctx, next_ctx)) { 3450 3451 WRITE_ONCE(ctx->task, next); 3452 WRITE_ONCE(next_ctx->task, task); 3453 3454 perf_pmu_disable(pmu); 3455 3456 if (cpuctx->sched_cb_usage && pmu->sched_task) 3457 pmu->sched_task(ctx, false); 3458 3459 /* 3460 * PMU specific parts of task perf context can require 3461 * additional synchronization. As an example of such 3462 * synchronization see implementation details of Intel 3463 * LBR call stack data profiling; 3464 */ 3465 if (pmu->swap_task_ctx) 3466 pmu->swap_task_ctx(ctx, next_ctx); 3467 else 3468 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3469 3470 perf_pmu_enable(pmu); 3471 3472 /* 3473 * RCU_INIT_POINTER here is safe because we've not 3474 * modified the ctx and the above modification of 3475 * ctx->task and ctx->task_ctx_data are immaterial 3476 * since those values are always verified under 3477 * ctx->lock which we're now holding. 3478 */ 3479 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3480 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3481 3482 do_switch = 0; 3483 3484 perf_event_sync_stat(ctx, next_ctx); 3485 } 3486 raw_spin_unlock(&next_ctx->lock); 3487 raw_spin_unlock(&ctx->lock); 3488 } 3489 unlock: 3490 rcu_read_unlock(); 3491 3492 if (do_switch) { 3493 raw_spin_lock(&ctx->lock); 3494 perf_pmu_disable(pmu); 3495 3496 if (cpuctx->sched_cb_usage && pmu->sched_task) 3497 pmu->sched_task(ctx, false); 3498 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3499 3500 perf_pmu_enable(pmu); 3501 raw_spin_unlock(&ctx->lock); 3502 } 3503 } 3504 3505 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3506 3507 void perf_sched_cb_dec(struct pmu *pmu) 3508 { 3509 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3510 3511 this_cpu_dec(perf_sched_cb_usages); 3512 3513 if (!--cpuctx->sched_cb_usage) 3514 list_del(&cpuctx->sched_cb_entry); 3515 } 3516 3517 3518 void perf_sched_cb_inc(struct pmu *pmu) 3519 { 3520 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3521 3522 if (!cpuctx->sched_cb_usage++) 3523 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3524 3525 this_cpu_inc(perf_sched_cb_usages); 3526 } 3527 3528 /* 3529 * This function provides the context switch callback to the lower code 3530 * layer. It is invoked ONLY when the context switch callback is enabled. 3531 * 3532 * This callback is relevant even to per-cpu events; for example multi event 3533 * PEBS requires this to provide PID/TID information. This requires we flush 3534 * all queued PEBS records before we context switch to a new task. 3535 */ 3536 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3537 { 3538 struct pmu *pmu; 3539 3540 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3541 3542 if (WARN_ON_ONCE(!pmu->sched_task)) 3543 return; 3544 3545 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3546 perf_pmu_disable(pmu); 3547 3548 pmu->sched_task(cpuctx->task_ctx, sched_in); 3549 3550 perf_pmu_enable(pmu); 3551 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3552 } 3553 3554 static void perf_pmu_sched_task(struct task_struct *prev, 3555 struct task_struct *next, 3556 bool sched_in) 3557 { 3558 struct perf_cpu_context *cpuctx; 3559 3560 if (prev == next) 3561 return; 3562 3563 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3564 /* will be handled in perf_event_context_sched_in/out */ 3565 if (cpuctx->task_ctx) 3566 continue; 3567 3568 __perf_pmu_sched_task(cpuctx, sched_in); 3569 } 3570 } 3571 3572 static void perf_event_switch(struct task_struct *task, 3573 struct task_struct *next_prev, bool sched_in); 3574 3575 #define for_each_task_context_nr(ctxn) \ 3576 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3577 3578 /* 3579 * Called from scheduler to remove the events of the current task, 3580 * with interrupts disabled. 3581 * 3582 * We stop each event and update the event value in event->count. 3583 * 3584 * This does not protect us against NMI, but disable() 3585 * sets the disabled bit in the control field of event _before_ 3586 * accessing the event control register. If a NMI hits, then it will 3587 * not restart the event. 3588 */ 3589 void __perf_event_task_sched_out(struct task_struct *task, 3590 struct task_struct *next) 3591 { 3592 int ctxn; 3593 3594 if (__this_cpu_read(perf_sched_cb_usages)) 3595 perf_pmu_sched_task(task, next, false); 3596 3597 if (atomic_read(&nr_switch_events)) 3598 perf_event_switch(task, next, false); 3599 3600 for_each_task_context_nr(ctxn) 3601 perf_event_context_sched_out(task, ctxn, next); 3602 3603 /* 3604 * if cgroup events exist on this CPU, then we need 3605 * to check if we have to switch out PMU state. 3606 * cgroup event are system-wide mode only 3607 */ 3608 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3609 perf_cgroup_sched_out(task, next); 3610 } 3611 3612 /* 3613 * Called with IRQs disabled 3614 */ 3615 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3616 enum event_type_t event_type) 3617 { 3618 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3619 } 3620 3621 static bool perf_less_group_idx(const void *l, const void *r) 3622 { 3623 const struct perf_event *le = *(const struct perf_event **)l; 3624 const struct perf_event *re = *(const struct perf_event **)r; 3625 3626 return le->group_index < re->group_index; 3627 } 3628 3629 static void swap_ptr(void *l, void *r) 3630 { 3631 void **lp = l, **rp = r; 3632 3633 swap(*lp, *rp); 3634 } 3635 3636 static const struct min_heap_callbacks perf_min_heap = { 3637 .elem_size = sizeof(struct perf_event *), 3638 .less = perf_less_group_idx, 3639 .swp = swap_ptr, 3640 }; 3641 3642 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3643 { 3644 struct perf_event **itrs = heap->data; 3645 3646 if (event) { 3647 itrs[heap->nr] = event; 3648 heap->nr++; 3649 } 3650 } 3651 3652 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3653 struct perf_event_groups *groups, int cpu, 3654 int (*func)(struct perf_event *, void *), 3655 void *data) 3656 { 3657 #ifdef CONFIG_CGROUP_PERF 3658 struct cgroup_subsys_state *css = NULL; 3659 #endif 3660 /* Space for per CPU and/or any CPU event iterators. */ 3661 struct perf_event *itrs[2]; 3662 struct min_heap event_heap; 3663 struct perf_event **evt; 3664 int ret; 3665 3666 if (cpuctx) { 3667 event_heap = (struct min_heap){ 3668 .data = cpuctx->heap, 3669 .nr = 0, 3670 .size = cpuctx->heap_size, 3671 }; 3672 3673 lockdep_assert_held(&cpuctx->ctx.lock); 3674 3675 #ifdef CONFIG_CGROUP_PERF 3676 if (cpuctx->cgrp) 3677 css = &cpuctx->cgrp->css; 3678 #endif 3679 } else { 3680 event_heap = (struct min_heap){ 3681 .data = itrs, 3682 .nr = 0, 3683 .size = ARRAY_SIZE(itrs), 3684 }; 3685 /* Events not within a CPU context may be on any CPU. */ 3686 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3687 } 3688 evt = event_heap.data; 3689 3690 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3691 3692 #ifdef CONFIG_CGROUP_PERF 3693 for (; css; css = css->parent) 3694 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3695 #endif 3696 3697 min_heapify_all(&event_heap, &perf_min_heap); 3698 3699 while (event_heap.nr) { 3700 ret = func(*evt, data); 3701 if (ret) 3702 return ret; 3703 3704 *evt = perf_event_groups_next(*evt); 3705 if (*evt) 3706 min_heapify(&event_heap, 0, &perf_min_heap); 3707 else 3708 min_heap_pop(&event_heap, &perf_min_heap); 3709 } 3710 3711 return 0; 3712 } 3713 3714 static inline bool event_update_userpage(struct perf_event *event) 3715 { 3716 if (likely(!atomic_read(&event->mmap_count))) 3717 return false; 3718 3719 perf_event_update_time(event); 3720 perf_set_shadow_time(event, event->ctx); 3721 perf_event_update_userpage(event); 3722 3723 return true; 3724 } 3725 3726 static inline void group_update_userpage(struct perf_event *group_event) 3727 { 3728 struct perf_event *event; 3729 3730 if (!event_update_userpage(group_event)) 3731 return; 3732 3733 for_each_sibling_event(event, group_event) 3734 event_update_userpage(event); 3735 } 3736 3737 static int merge_sched_in(struct perf_event *event, void *data) 3738 { 3739 struct perf_event_context *ctx = event->ctx; 3740 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3741 int *can_add_hw = data; 3742 3743 if (event->state <= PERF_EVENT_STATE_OFF) 3744 return 0; 3745 3746 if (!event_filter_match(event)) 3747 return 0; 3748 3749 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3750 if (!group_sched_in(event, cpuctx, ctx)) 3751 list_add_tail(&event->active_list, get_event_list(event)); 3752 } 3753 3754 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3755 *can_add_hw = 0; 3756 if (event->attr.pinned) { 3757 perf_cgroup_event_disable(event, ctx); 3758 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3759 } else { 3760 ctx->rotate_necessary = 1; 3761 perf_mux_hrtimer_restart(cpuctx); 3762 group_update_userpage(event); 3763 } 3764 } 3765 3766 return 0; 3767 } 3768 3769 static void 3770 ctx_pinned_sched_in(struct perf_event_context *ctx, 3771 struct perf_cpu_context *cpuctx) 3772 { 3773 int can_add_hw = 1; 3774 3775 if (ctx != &cpuctx->ctx) 3776 cpuctx = NULL; 3777 3778 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3779 smp_processor_id(), 3780 merge_sched_in, &can_add_hw); 3781 } 3782 3783 static void 3784 ctx_flexible_sched_in(struct perf_event_context *ctx, 3785 struct perf_cpu_context *cpuctx) 3786 { 3787 int can_add_hw = 1; 3788 3789 if (ctx != &cpuctx->ctx) 3790 cpuctx = NULL; 3791 3792 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3793 smp_processor_id(), 3794 merge_sched_in, &can_add_hw); 3795 } 3796 3797 static void 3798 ctx_sched_in(struct perf_event_context *ctx, 3799 struct perf_cpu_context *cpuctx, 3800 enum event_type_t event_type, 3801 struct task_struct *task) 3802 { 3803 int is_active = ctx->is_active; 3804 u64 now; 3805 3806 lockdep_assert_held(&ctx->lock); 3807 3808 if (likely(!ctx->nr_events)) 3809 return; 3810 3811 ctx->is_active |= (event_type | EVENT_TIME); 3812 if (ctx->task) { 3813 if (!is_active) 3814 cpuctx->task_ctx = ctx; 3815 else 3816 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3817 } 3818 3819 is_active ^= ctx->is_active; /* changed bits */ 3820 3821 if (is_active & EVENT_TIME) { 3822 /* start ctx time */ 3823 now = perf_clock(); 3824 ctx->timestamp = now; 3825 perf_cgroup_set_timestamp(task, ctx); 3826 } 3827 3828 /* 3829 * First go through the list and put on any pinned groups 3830 * in order to give them the best chance of going on. 3831 */ 3832 if (is_active & EVENT_PINNED) 3833 ctx_pinned_sched_in(ctx, cpuctx); 3834 3835 /* Then walk through the lower prio flexible groups */ 3836 if (is_active & EVENT_FLEXIBLE) 3837 ctx_flexible_sched_in(ctx, cpuctx); 3838 } 3839 3840 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3841 enum event_type_t event_type, 3842 struct task_struct *task) 3843 { 3844 struct perf_event_context *ctx = &cpuctx->ctx; 3845 3846 ctx_sched_in(ctx, cpuctx, event_type, task); 3847 } 3848 3849 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3850 struct task_struct *task) 3851 { 3852 struct perf_cpu_context *cpuctx; 3853 struct pmu *pmu; 3854 3855 cpuctx = __get_cpu_context(ctx); 3856 3857 /* 3858 * HACK: for HETEROGENEOUS the task context might have switched to a 3859 * different PMU, force (re)set the context, 3860 */ 3861 pmu = ctx->pmu = cpuctx->ctx.pmu; 3862 3863 if (cpuctx->task_ctx == ctx) { 3864 if (cpuctx->sched_cb_usage) 3865 __perf_pmu_sched_task(cpuctx, true); 3866 return; 3867 } 3868 3869 perf_ctx_lock(cpuctx, ctx); 3870 /* 3871 * We must check ctx->nr_events while holding ctx->lock, such 3872 * that we serialize against perf_install_in_context(). 3873 */ 3874 if (!ctx->nr_events) 3875 goto unlock; 3876 3877 perf_pmu_disable(pmu); 3878 /* 3879 * We want to keep the following priority order: 3880 * cpu pinned (that don't need to move), task pinned, 3881 * cpu flexible, task flexible. 3882 * 3883 * However, if task's ctx is not carrying any pinned 3884 * events, no need to flip the cpuctx's events around. 3885 */ 3886 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3887 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3888 perf_event_sched_in(cpuctx, ctx, task); 3889 3890 if (cpuctx->sched_cb_usage && pmu->sched_task) 3891 pmu->sched_task(cpuctx->task_ctx, true); 3892 3893 perf_pmu_enable(pmu); 3894 3895 unlock: 3896 perf_ctx_unlock(cpuctx, ctx); 3897 } 3898 3899 /* 3900 * Called from scheduler to add the events of the current task 3901 * with interrupts disabled. 3902 * 3903 * We restore the event value and then enable it. 3904 * 3905 * This does not protect us against NMI, but enable() 3906 * sets the enabled bit in the control field of event _before_ 3907 * accessing the event control register. If a NMI hits, then it will 3908 * keep the event running. 3909 */ 3910 void __perf_event_task_sched_in(struct task_struct *prev, 3911 struct task_struct *task) 3912 { 3913 struct perf_event_context *ctx; 3914 int ctxn; 3915 3916 /* 3917 * If cgroup events exist on this CPU, then we need to check if we have 3918 * to switch in PMU state; cgroup event are system-wide mode only. 3919 * 3920 * Since cgroup events are CPU events, we must schedule these in before 3921 * we schedule in the task events. 3922 */ 3923 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3924 perf_cgroup_sched_in(prev, task); 3925 3926 for_each_task_context_nr(ctxn) { 3927 ctx = task->perf_event_ctxp[ctxn]; 3928 if (likely(!ctx)) 3929 continue; 3930 3931 perf_event_context_sched_in(ctx, task); 3932 } 3933 3934 if (atomic_read(&nr_switch_events)) 3935 perf_event_switch(task, prev, true); 3936 3937 if (__this_cpu_read(perf_sched_cb_usages)) 3938 perf_pmu_sched_task(prev, task, true); 3939 } 3940 3941 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3942 { 3943 u64 frequency = event->attr.sample_freq; 3944 u64 sec = NSEC_PER_SEC; 3945 u64 divisor, dividend; 3946 3947 int count_fls, nsec_fls, frequency_fls, sec_fls; 3948 3949 count_fls = fls64(count); 3950 nsec_fls = fls64(nsec); 3951 frequency_fls = fls64(frequency); 3952 sec_fls = 30; 3953 3954 /* 3955 * We got @count in @nsec, with a target of sample_freq HZ 3956 * the target period becomes: 3957 * 3958 * @count * 10^9 3959 * period = ------------------- 3960 * @nsec * sample_freq 3961 * 3962 */ 3963 3964 /* 3965 * Reduce accuracy by one bit such that @a and @b converge 3966 * to a similar magnitude. 3967 */ 3968 #define REDUCE_FLS(a, b) \ 3969 do { \ 3970 if (a##_fls > b##_fls) { \ 3971 a >>= 1; \ 3972 a##_fls--; \ 3973 } else { \ 3974 b >>= 1; \ 3975 b##_fls--; \ 3976 } \ 3977 } while (0) 3978 3979 /* 3980 * Reduce accuracy until either term fits in a u64, then proceed with 3981 * the other, so that finally we can do a u64/u64 division. 3982 */ 3983 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3984 REDUCE_FLS(nsec, frequency); 3985 REDUCE_FLS(sec, count); 3986 } 3987 3988 if (count_fls + sec_fls > 64) { 3989 divisor = nsec * frequency; 3990 3991 while (count_fls + sec_fls > 64) { 3992 REDUCE_FLS(count, sec); 3993 divisor >>= 1; 3994 } 3995 3996 dividend = count * sec; 3997 } else { 3998 dividend = count * sec; 3999 4000 while (nsec_fls + frequency_fls > 64) { 4001 REDUCE_FLS(nsec, frequency); 4002 dividend >>= 1; 4003 } 4004 4005 divisor = nsec * frequency; 4006 } 4007 4008 if (!divisor) 4009 return dividend; 4010 4011 return div64_u64(dividend, divisor); 4012 } 4013 4014 static DEFINE_PER_CPU(int, perf_throttled_count); 4015 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4016 4017 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4018 { 4019 struct hw_perf_event *hwc = &event->hw; 4020 s64 period, sample_period; 4021 s64 delta; 4022 4023 period = perf_calculate_period(event, nsec, count); 4024 4025 delta = (s64)(period - hwc->sample_period); 4026 delta = (delta + 7) / 8; /* low pass filter */ 4027 4028 sample_period = hwc->sample_period + delta; 4029 4030 if (!sample_period) 4031 sample_period = 1; 4032 4033 hwc->sample_period = sample_period; 4034 4035 if (local64_read(&hwc->period_left) > 8*sample_period) { 4036 if (disable) 4037 event->pmu->stop(event, PERF_EF_UPDATE); 4038 4039 local64_set(&hwc->period_left, 0); 4040 4041 if (disable) 4042 event->pmu->start(event, PERF_EF_RELOAD); 4043 } 4044 } 4045 4046 /* 4047 * combine freq adjustment with unthrottling to avoid two passes over the 4048 * events. At the same time, make sure, having freq events does not change 4049 * the rate of unthrottling as that would introduce bias. 4050 */ 4051 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4052 int needs_unthr) 4053 { 4054 struct perf_event *event; 4055 struct hw_perf_event *hwc; 4056 u64 now, period = TICK_NSEC; 4057 s64 delta; 4058 4059 /* 4060 * only need to iterate over all events iff: 4061 * - context have events in frequency mode (needs freq adjust) 4062 * - there are events to unthrottle on this cpu 4063 */ 4064 if (!(ctx->nr_freq || needs_unthr)) 4065 return; 4066 4067 raw_spin_lock(&ctx->lock); 4068 perf_pmu_disable(ctx->pmu); 4069 4070 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4071 if (event->state != PERF_EVENT_STATE_ACTIVE) 4072 continue; 4073 4074 if (!event_filter_match(event)) 4075 continue; 4076 4077 perf_pmu_disable(event->pmu); 4078 4079 hwc = &event->hw; 4080 4081 if (hwc->interrupts == MAX_INTERRUPTS) { 4082 hwc->interrupts = 0; 4083 perf_log_throttle(event, 1); 4084 event->pmu->start(event, 0); 4085 } 4086 4087 if (!event->attr.freq || !event->attr.sample_freq) 4088 goto next; 4089 4090 /* 4091 * stop the event and update event->count 4092 */ 4093 event->pmu->stop(event, PERF_EF_UPDATE); 4094 4095 now = local64_read(&event->count); 4096 delta = now - hwc->freq_count_stamp; 4097 hwc->freq_count_stamp = now; 4098 4099 /* 4100 * restart the event 4101 * reload only if value has changed 4102 * we have stopped the event so tell that 4103 * to perf_adjust_period() to avoid stopping it 4104 * twice. 4105 */ 4106 if (delta > 0) 4107 perf_adjust_period(event, period, delta, false); 4108 4109 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4110 next: 4111 perf_pmu_enable(event->pmu); 4112 } 4113 4114 perf_pmu_enable(ctx->pmu); 4115 raw_spin_unlock(&ctx->lock); 4116 } 4117 4118 /* 4119 * Move @event to the tail of the @ctx's elegible events. 4120 */ 4121 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4122 { 4123 /* 4124 * Rotate the first entry last of non-pinned groups. Rotation might be 4125 * disabled by the inheritance code. 4126 */ 4127 if (ctx->rotate_disable) 4128 return; 4129 4130 perf_event_groups_delete(&ctx->flexible_groups, event); 4131 perf_event_groups_insert(&ctx->flexible_groups, event); 4132 } 4133 4134 /* pick an event from the flexible_groups to rotate */ 4135 static inline struct perf_event * 4136 ctx_event_to_rotate(struct perf_event_context *ctx) 4137 { 4138 struct perf_event *event; 4139 4140 /* pick the first active flexible event */ 4141 event = list_first_entry_or_null(&ctx->flexible_active, 4142 struct perf_event, active_list); 4143 4144 /* if no active flexible event, pick the first event */ 4145 if (!event) { 4146 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4147 typeof(*event), group_node); 4148 } 4149 4150 /* 4151 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4152 * finds there are unschedulable events, it will set it again. 4153 */ 4154 ctx->rotate_necessary = 0; 4155 4156 return event; 4157 } 4158 4159 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4160 { 4161 struct perf_event *cpu_event = NULL, *task_event = NULL; 4162 struct perf_event_context *task_ctx = NULL; 4163 int cpu_rotate, task_rotate; 4164 4165 /* 4166 * Since we run this from IRQ context, nobody can install new 4167 * events, thus the event count values are stable. 4168 */ 4169 4170 cpu_rotate = cpuctx->ctx.rotate_necessary; 4171 task_ctx = cpuctx->task_ctx; 4172 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4173 4174 if (!(cpu_rotate || task_rotate)) 4175 return false; 4176 4177 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4178 perf_pmu_disable(cpuctx->ctx.pmu); 4179 4180 if (task_rotate) 4181 task_event = ctx_event_to_rotate(task_ctx); 4182 if (cpu_rotate) 4183 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4184 4185 /* 4186 * As per the order given at ctx_resched() first 'pop' task flexible 4187 * and then, if needed CPU flexible. 4188 */ 4189 if (task_event || (task_ctx && cpu_event)) 4190 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4191 if (cpu_event) 4192 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4193 4194 if (task_event) 4195 rotate_ctx(task_ctx, task_event); 4196 if (cpu_event) 4197 rotate_ctx(&cpuctx->ctx, cpu_event); 4198 4199 perf_event_sched_in(cpuctx, task_ctx, current); 4200 4201 perf_pmu_enable(cpuctx->ctx.pmu); 4202 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4203 4204 return true; 4205 } 4206 4207 void perf_event_task_tick(void) 4208 { 4209 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4210 struct perf_event_context *ctx, *tmp; 4211 int throttled; 4212 4213 lockdep_assert_irqs_disabled(); 4214 4215 __this_cpu_inc(perf_throttled_seq); 4216 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4217 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4218 4219 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4220 perf_adjust_freq_unthr_context(ctx, throttled); 4221 } 4222 4223 static int event_enable_on_exec(struct perf_event *event, 4224 struct perf_event_context *ctx) 4225 { 4226 if (!event->attr.enable_on_exec) 4227 return 0; 4228 4229 event->attr.enable_on_exec = 0; 4230 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4231 return 0; 4232 4233 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4234 4235 return 1; 4236 } 4237 4238 /* 4239 * Enable all of a task's events that have been marked enable-on-exec. 4240 * This expects task == current. 4241 */ 4242 static void perf_event_enable_on_exec(int ctxn) 4243 { 4244 struct perf_event_context *ctx, *clone_ctx = NULL; 4245 enum event_type_t event_type = 0; 4246 struct perf_cpu_context *cpuctx; 4247 struct perf_event *event; 4248 unsigned long flags; 4249 int enabled = 0; 4250 4251 local_irq_save(flags); 4252 ctx = current->perf_event_ctxp[ctxn]; 4253 if (!ctx || !ctx->nr_events) 4254 goto out; 4255 4256 cpuctx = __get_cpu_context(ctx); 4257 perf_ctx_lock(cpuctx, ctx); 4258 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4259 list_for_each_entry(event, &ctx->event_list, event_entry) { 4260 enabled |= event_enable_on_exec(event, ctx); 4261 event_type |= get_event_type(event); 4262 } 4263 4264 /* 4265 * Unclone and reschedule this context if we enabled any event. 4266 */ 4267 if (enabled) { 4268 clone_ctx = unclone_ctx(ctx); 4269 ctx_resched(cpuctx, ctx, event_type); 4270 } else { 4271 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4272 } 4273 perf_ctx_unlock(cpuctx, ctx); 4274 4275 out: 4276 local_irq_restore(flags); 4277 4278 if (clone_ctx) 4279 put_ctx(clone_ctx); 4280 } 4281 4282 static void perf_remove_from_owner(struct perf_event *event); 4283 static void perf_event_exit_event(struct perf_event *event, 4284 struct perf_event_context *ctx); 4285 4286 /* 4287 * Removes all events from the current task that have been marked 4288 * remove-on-exec, and feeds their values back to parent events. 4289 */ 4290 static void perf_event_remove_on_exec(int ctxn) 4291 { 4292 struct perf_event_context *ctx, *clone_ctx = NULL; 4293 struct perf_event *event, *next; 4294 LIST_HEAD(free_list); 4295 unsigned long flags; 4296 bool modified = false; 4297 4298 ctx = perf_pin_task_context(current, ctxn); 4299 if (!ctx) 4300 return; 4301 4302 mutex_lock(&ctx->mutex); 4303 4304 if (WARN_ON_ONCE(ctx->task != current)) 4305 goto unlock; 4306 4307 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4308 if (!event->attr.remove_on_exec) 4309 continue; 4310 4311 if (!is_kernel_event(event)) 4312 perf_remove_from_owner(event); 4313 4314 modified = true; 4315 4316 perf_event_exit_event(event, ctx); 4317 } 4318 4319 raw_spin_lock_irqsave(&ctx->lock, flags); 4320 if (modified) 4321 clone_ctx = unclone_ctx(ctx); 4322 --ctx->pin_count; 4323 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4324 4325 unlock: 4326 mutex_unlock(&ctx->mutex); 4327 4328 put_ctx(ctx); 4329 if (clone_ctx) 4330 put_ctx(clone_ctx); 4331 } 4332 4333 struct perf_read_data { 4334 struct perf_event *event; 4335 bool group; 4336 int ret; 4337 }; 4338 4339 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4340 { 4341 u16 local_pkg, event_pkg; 4342 4343 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4344 int local_cpu = smp_processor_id(); 4345 4346 event_pkg = topology_physical_package_id(event_cpu); 4347 local_pkg = topology_physical_package_id(local_cpu); 4348 4349 if (event_pkg == local_pkg) 4350 return local_cpu; 4351 } 4352 4353 return event_cpu; 4354 } 4355 4356 /* 4357 * Cross CPU call to read the hardware event 4358 */ 4359 static void __perf_event_read(void *info) 4360 { 4361 struct perf_read_data *data = info; 4362 struct perf_event *sub, *event = data->event; 4363 struct perf_event_context *ctx = event->ctx; 4364 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4365 struct pmu *pmu = event->pmu; 4366 4367 /* 4368 * If this is a task context, we need to check whether it is 4369 * the current task context of this cpu. If not it has been 4370 * scheduled out before the smp call arrived. In that case 4371 * event->count would have been updated to a recent sample 4372 * when the event was scheduled out. 4373 */ 4374 if (ctx->task && cpuctx->task_ctx != ctx) 4375 return; 4376 4377 raw_spin_lock(&ctx->lock); 4378 if (ctx->is_active & EVENT_TIME) { 4379 update_context_time(ctx); 4380 update_cgrp_time_from_event(event); 4381 } 4382 4383 perf_event_update_time(event); 4384 if (data->group) 4385 perf_event_update_sibling_time(event); 4386 4387 if (event->state != PERF_EVENT_STATE_ACTIVE) 4388 goto unlock; 4389 4390 if (!data->group) { 4391 pmu->read(event); 4392 data->ret = 0; 4393 goto unlock; 4394 } 4395 4396 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4397 4398 pmu->read(event); 4399 4400 for_each_sibling_event(sub, event) { 4401 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4402 /* 4403 * Use sibling's PMU rather than @event's since 4404 * sibling could be on different (eg: software) PMU. 4405 */ 4406 sub->pmu->read(sub); 4407 } 4408 } 4409 4410 data->ret = pmu->commit_txn(pmu); 4411 4412 unlock: 4413 raw_spin_unlock(&ctx->lock); 4414 } 4415 4416 static inline u64 perf_event_count(struct perf_event *event) 4417 { 4418 return local64_read(&event->count) + atomic64_read(&event->child_count); 4419 } 4420 4421 /* 4422 * NMI-safe method to read a local event, that is an event that 4423 * is: 4424 * - either for the current task, or for this CPU 4425 * - does not have inherit set, for inherited task events 4426 * will not be local and we cannot read them atomically 4427 * - must not have a pmu::count method 4428 */ 4429 int perf_event_read_local(struct perf_event *event, u64 *value, 4430 u64 *enabled, u64 *running) 4431 { 4432 unsigned long flags; 4433 int ret = 0; 4434 4435 /* 4436 * Disabling interrupts avoids all counter scheduling (context 4437 * switches, timer based rotation and IPIs). 4438 */ 4439 local_irq_save(flags); 4440 4441 /* 4442 * It must not be an event with inherit set, we cannot read 4443 * all child counters from atomic context. 4444 */ 4445 if (event->attr.inherit) { 4446 ret = -EOPNOTSUPP; 4447 goto out; 4448 } 4449 4450 /* If this is a per-task event, it must be for current */ 4451 if ((event->attach_state & PERF_ATTACH_TASK) && 4452 event->hw.target != current) { 4453 ret = -EINVAL; 4454 goto out; 4455 } 4456 4457 /* If this is a per-CPU event, it must be for this CPU */ 4458 if (!(event->attach_state & PERF_ATTACH_TASK) && 4459 event->cpu != smp_processor_id()) { 4460 ret = -EINVAL; 4461 goto out; 4462 } 4463 4464 /* If this is a pinned event it must be running on this CPU */ 4465 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4466 ret = -EBUSY; 4467 goto out; 4468 } 4469 4470 /* 4471 * If the event is currently on this CPU, its either a per-task event, 4472 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4473 * oncpu == -1). 4474 */ 4475 if (event->oncpu == smp_processor_id()) 4476 event->pmu->read(event); 4477 4478 *value = local64_read(&event->count); 4479 if (enabled || running) { 4480 u64 now = event->shadow_ctx_time + perf_clock(); 4481 u64 __enabled, __running; 4482 4483 __perf_update_times(event, now, &__enabled, &__running); 4484 if (enabled) 4485 *enabled = __enabled; 4486 if (running) 4487 *running = __running; 4488 } 4489 out: 4490 local_irq_restore(flags); 4491 4492 return ret; 4493 } 4494 4495 static int perf_event_read(struct perf_event *event, bool group) 4496 { 4497 enum perf_event_state state = READ_ONCE(event->state); 4498 int event_cpu, ret = 0; 4499 4500 /* 4501 * If event is enabled and currently active on a CPU, update the 4502 * value in the event structure: 4503 */ 4504 again: 4505 if (state == PERF_EVENT_STATE_ACTIVE) { 4506 struct perf_read_data data; 4507 4508 /* 4509 * Orders the ->state and ->oncpu loads such that if we see 4510 * ACTIVE we must also see the right ->oncpu. 4511 * 4512 * Matches the smp_wmb() from event_sched_in(). 4513 */ 4514 smp_rmb(); 4515 4516 event_cpu = READ_ONCE(event->oncpu); 4517 if ((unsigned)event_cpu >= nr_cpu_ids) 4518 return 0; 4519 4520 data = (struct perf_read_data){ 4521 .event = event, 4522 .group = group, 4523 .ret = 0, 4524 }; 4525 4526 preempt_disable(); 4527 event_cpu = __perf_event_read_cpu(event, event_cpu); 4528 4529 /* 4530 * Purposely ignore the smp_call_function_single() return 4531 * value. 4532 * 4533 * If event_cpu isn't a valid CPU it means the event got 4534 * scheduled out and that will have updated the event count. 4535 * 4536 * Therefore, either way, we'll have an up-to-date event count 4537 * after this. 4538 */ 4539 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4540 preempt_enable(); 4541 ret = data.ret; 4542 4543 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4544 struct perf_event_context *ctx = event->ctx; 4545 unsigned long flags; 4546 4547 raw_spin_lock_irqsave(&ctx->lock, flags); 4548 state = event->state; 4549 if (state != PERF_EVENT_STATE_INACTIVE) { 4550 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4551 goto again; 4552 } 4553 4554 /* 4555 * May read while context is not active (e.g., thread is 4556 * blocked), in that case we cannot update context time 4557 */ 4558 if (ctx->is_active & EVENT_TIME) { 4559 update_context_time(ctx); 4560 update_cgrp_time_from_event(event); 4561 } 4562 4563 perf_event_update_time(event); 4564 if (group) 4565 perf_event_update_sibling_time(event); 4566 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4567 } 4568 4569 return ret; 4570 } 4571 4572 /* 4573 * Initialize the perf_event context in a task_struct: 4574 */ 4575 static void __perf_event_init_context(struct perf_event_context *ctx) 4576 { 4577 raw_spin_lock_init(&ctx->lock); 4578 mutex_init(&ctx->mutex); 4579 INIT_LIST_HEAD(&ctx->active_ctx_list); 4580 perf_event_groups_init(&ctx->pinned_groups); 4581 perf_event_groups_init(&ctx->flexible_groups); 4582 INIT_LIST_HEAD(&ctx->event_list); 4583 INIT_LIST_HEAD(&ctx->pinned_active); 4584 INIT_LIST_HEAD(&ctx->flexible_active); 4585 refcount_set(&ctx->refcount, 1); 4586 } 4587 4588 static struct perf_event_context * 4589 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4590 { 4591 struct perf_event_context *ctx; 4592 4593 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4594 if (!ctx) 4595 return NULL; 4596 4597 __perf_event_init_context(ctx); 4598 if (task) 4599 ctx->task = get_task_struct(task); 4600 ctx->pmu = pmu; 4601 4602 return ctx; 4603 } 4604 4605 static struct task_struct * 4606 find_lively_task_by_vpid(pid_t vpid) 4607 { 4608 struct task_struct *task; 4609 4610 rcu_read_lock(); 4611 if (!vpid) 4612 task = current; 4613 else 4614 task = find_task_by_vpid(vpid); 4615 if (task) 4616 get_task_struct(task); 4617 rcu_read_unlock(); 4618 4619 if (!task) 4620 return ERR_PTR(-ESRCH); 4621 4622 return task; 4623 } 4624 4625 /* 4626 * Returns a matching context with refcount and pincount. 4627 */ 4628 static struct perf_event_context * 4629 find_get_context(struct pmu *pmu, struct task_struct *task, 4630 struct perf_event *event) 4631 { 4632 struct perf_event_context *ctx, *clone_ctx = NULL; 4633 struct perf_cpu_context *cpuctx; 4634 void *task_ctx_data = NULL; 4635 unsigned long flags; 4636 int ctxn, err; 4637 int cpu = event->cpu; 4638 4639 if (!task) { 4640 /* Must be root to operate on a CPU event: */ 4641 err = perf_allow_cpu(&event->attr); 4642 if (err) 4643 return ERR_PTR(err); 4644 4645 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4646 ctx = &cpuctx->ctx; 4647 get_ctx(ctx); 4648 raw_spin_lock_irqsave(&ctx->lock, flags); 4649 ++ctx->pin_count; 4650 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4651 4652 return ctx; 4653 } 4654 4655 err = -EINVAL; 4656 ctxn = pmu->task_ctx_nr; 4657 if (ctxn < 0) 4658 goto errout; 4659 4660 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4661 task_ctx_data = alloc_task_ctx_data(pmu); 4662 if (!task_ctx_data) { 4663 err = -ENOMEM; 4664 goto errout; 4665 } 4666 } 4667 4668 retry: 4669 ctx = perf_lock_task_context(task, ctxn, &flags); 4670 if (ctx) { 4671 clone_ctx = unclone_ctx(ctx); 4672 ++ctx->pin_count; 4673 4674 if (task_ctx_data && !ctx->task_ctx_data) { 4675 ctx->task_ctx_data = task_ctx_data; 4676 task_ctx_data = NULL; 4677 } 4678 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4679 4680 if (clone_ctx) 4681 put_ctx(clone_ctx); 4682 } else { 4683 ctx = alloc_perf_context(pmu, task); 4684 err = -ENOMEM; 4685 if (!ctx) 4686 goto errout; 4687 4688 if (task_ctx_data) { 4689 ctx->task_ctx_data = task_ctx_data; 4690 task_ctx_data = NULL; 4691 } 4692 4693 err = 0; 4694 mutex_lock(&task->perf_event_mutex); 4695 /* 4696 * If it has already passed perf_event_exit_task(). 4697 * we must see PF_EXITING, it takes this mutex too. 4698 */ 4699 if (task->flags & PF_EXITING) 4700 err = -ESRCH; 4701 else if (task->perf_event_ctxp[ctxn]) 4702 err = -EAGAIN; 4703 else { 4704 get_ctx(ctx); 4705 ++ctx->pin_count; 4706 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4707 } 4708 mutex_unlock(&task->perf_event_mutex); 4709 4710 if (unlikely(err)) { 4711 put_ctx(ctx); 4712 4713 if (err == -EAGAIN) 4714 goto retry; 4715 goto errout; 4716 } 4717 } 4718 4719 free_task_ctx_data(pmu, task_ctx_data); 4720 return ctx; 4721 4722 errout: 4723 free_task_ctx_data(pmu, task_ctx_data); 4724 return ERR_PTR(err); 4725 } 4726 4727 static void perf_event_free_filter(struct perf_event *event); 4728 4729 static void free_event_rcu(struct rcu_head *head) 4730 { 4731 struct perf_event *event; 4732 4733 event = container_of(head, struct perf_event, rcu_head); 4734 if (event->ns) 4735 put_pid_ns(event->ns); 4736 perf_event_free_filter(event); 4737 kmem_cache_free(perf_event_cache, event); 4738 } 4739 4740 static void ring_buffer_attach(struct perf_event *event, 4741 struct perf_buffer *rb); 4742 4743 static void detach_sb_event(struct perf_event *event) 4744 { 4745 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4746 4747 raw_spin_lock(&pel->lock); 4748 list_del_rcu(&event->sb_list); 4749 raw_spin_unlock(&pel->lock); 4750 } 4751 4752 static bool is_sb_event(struct perf_event *event) 4753 { 4754 struct perf_event_attr *attr = &event->attr; 4755 4756 if (event->parent) 4757 return false; 4758 4759 if (event->attach_state & PERF_ATTACH_TASK) 4760 return false; 4761 4762 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4763 attr->comm || attr->comm_exec || 4764 attr->task || attr->ksymbol || 4765 attr->context_switch || attr->text_poke || 4766 attr->bpf_event) 4767 return true; 4768 return false; 4769 } 4770 4771 static void unaccount_pmu_sb_event(struct perf_event *event) 4772 { 4773 if (is_sb_event(event)) 4774 detach_sb_event(event); 4775 } 4776 4777 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4778 { 4779 if (event->parent) 4780 return; 4781 4782 if (is_cgroup_event(event)) 4783 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4784 } 4785 4786 #ifdef CONFIG_NO_HZ_FULL 4787 static DEFINE_SPINLOCK(nr_freq_lock); 4788 #endif 4789 4790 static void unaccount_freq_event_nohz(void) 4791 { 4792 #ifdef CONFIG_NO_HZ_FULL 4793 spin_lock(&nr_freq_lock); 4794 if (atomic_dec_and_test(&nr_freq_events)) 4795 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4796 spin_unlock(&nr_freq_lock); 4797 #endif 4798 } 4799 4800 static void unaccount_freq_event(void) 4801 { 4802 if (tick_nohz_full_enabled()) 4803 unaccount_freq_event_nohz(); 4804 else 4805 atomic_dec(&nr_freq_events); 4806 } 4807 4808 static void unaccount_event(struct perf_event *event) 4809 { 4810 bool dec = false; 4811 4812 if (event->parent) 4813 return; 4814 4815 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4816 dec = true; 4817 if (event->attr.mmap || event->attr.mmap_data) 4818 atomic_dec(&nr_mmap_events); 4819 if (event->attr.build_id) 4820 atomic_dec(&nr_build_id_events); 4821 if (event->attr.comm) 4822 atomic_dec(&nr_comm_events); 4823 if (event->attr.namespaces) 4824 atomic_dec(&nr_namespaces_events); 4825 if (event->attr.cgroup) 4826 atomic_dec(&nr_cgroup_events); 4827 if (event->attr.task) 4828 atomic_dec(&nr_task_events); 4829 if (event->attr.freq) 4830 unaccount_freq_event(); 4831 if (event->attr.context_switch) { 4832 dec = true; 4833 atomic_dec(&nr_switch_events); 4834 } 4835 if (is_cgroup_event(event)) 4836 dec = true; 4837 if (has_branch_stack(event)) 4838 dec = true; 4839 if (event->attr.ksymbol) 4840 atomic_dec(&nr_ksymbol_events); 4841 if (event->attr.bpf_event) 4842 atomic_dec(&nr_bpf_events); 4843 if (event->attr.text_poke) 4844 atomic_dec(&nr_text_poke_events); 4845 4846 if (dec) { 4847 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4848 schedule_delayed_work(&perf_sched_work, HZ); 4849 } 4850 4851 unaccount_event_cpu(event, event->cpu); 4852 4853 unaccount_pmu_sb_event(event); 4854 } 4855 4856 static void perf_sched_delayed(struct work_struct *work) 4857 { 4858 mutex_lock(&perf_sched_mutex); 4859 if (atomic_dec_and_test(&perf_sched_count)) 4860 static_branch_disable(&perf_sched_events); 4861 mutex_unlock(&perf_sched_mutex); 4862 } 4863 4864 /* 4865 * The following implement mutual exclusion of events on "exclusive" pmus 4866 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4867 * at a time, so we disallow creating events that might conflict, namely: 4868 * 4869 * 1) cpu-wide events in the presence of per-task events, 4870 * 2) per-task events in the presence of cpu-wide events, 4871 * 3) two matching events on the same context. 4872 * 4873 * The former two cases are handled in the allocation path (perf_event_alloc(), 4874 * _free_event()), the latter -- before the first perf_install_in_context(). 4875 */ 4876 static int exclusive_event_init(struct perf_event *event) 4877 { 4878 struct pmu *pmu = event->pmu; 4879 4880 if (!is_exclusive_pmu(pmu)) 4881 return 0; 4882 4883 /* 4884 * Prevent co-existence of per-task and cpu-wide events on the 4885 * same exclusive pmu. 4886 * 4887 * Negative pmu::exclusive_cnt means there are cpu-wide 4888 * events on this "exclusive" pmu, positive means there are 4889 * per-task events. 4890 * 4891 * Since this is called in perf_event_alloc() path, event::ctx 4892 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4893 * to mean "per-task event", because unlike other attach states it 4894 * never gets cleared. 4895 */ 4896 if (event->attach_state & PERF_ATTACH_TASK) { 4897 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4898 return -EBUSY; 4899 } else { 4900 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4901 return -EBUSY; 4902 } 4903 4904 return 0; 4905 } 4906 4907 static void exclusive_event_destroy(struct perf_event *event) 4908 { 4909 struct pmu *pmu = event->pmu; 4910 4911 if (!is_exclusive_pmu(pmu)) 4912 return; 4913 4914 /* see comment in exclusive_event_init() */ 4915 if (event->attach_state & PERF_ATTACH_TASK) 4916 atomic_dec(&pmu->exclusive_cnt); 4917 else 4918 atomic_inc(&pmu->exclusive_cnt); 4919 } 4920 4921 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4922 { 4923 if ((e1->pmu == e2->pmu) && 4924 (e1->cpu == e2->cpu || 4925 e1->cpu == -1 || 4926 e2->cpu == -1)) 4927 return true; 4928 return false; 4929 } 4930 4931 static bool exclusive_event_installable(struct perf_event *event, 4932 struct perf_event_context *ctx) 4933 { 4934 struct perf_event *iter_event; 4935 struct pmu *pmu = event->pmu; 4936 4937 lockdep_assert_held(&ctx->mutex); 4938 4939 if (!is_exclusive_pmu(pmu)) 4940 return true; 4941 4942 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4943 if (exclusive_event_match(iter_event, event)) 4944 return false; 4945 } 4946 4947 return true; 4948 } 4949 4950 static void perf_addr_filters_splice(struct perf_event *event, 4951 struct list_head *head); 4952 4953 static void _free_event(struct perf_event *event) 4954 { 4955 irq_work_sync(&event->pending); 4956 4957 unaccount_event(event); 4958 4959 security_perf_event_free(event); 4960 4961 if (event->rb) { 4962 /* 4963 * Can happen when we close an event with re-directed output. 4964 * 4965 * Since we have a 0 refcount, perf_mmap_close() will skip 4966 * over us; possibly making our ring_buffer_put() the last. 4967 */ 4968 mutex_lock(&event->mmap_mutex); 4969 ring_buffer_attach(event, NULL); 4970 mutex_unlock(&event->mmap_mutex); 4971 } 4972 4973 if (is_cgroup_event(event)) 4974 perf_detach_cgroup(event); 4975 4976 if (!event->parent) { 4977 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4978 put_callchain_buffers(); 4979 } 4980 4981 perf_event_free_bpf_prog(event); 4982 perf_addr_filters_splice(event, NULL); 4983 kfree(event->addr_filter_ranges); 4984 4985 if (event->destroy) 4986 event->destroy(event); 4987 4988 /* 4989 * Must be after ->destroy(), due to uprobe_perf_close() using 4990 * hw.target. 4991 */ 4992 if (event->hw.target) 4993 put_task_struct(event->hw.target); 4994 4995 /* 4996 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4997 * all task references must be cleaned up. 4998 */ 4999 if (event->ctx) 5000 put_ctx(event->ctx); 5001 5002 exclusive_event_destroy(event); 5003 module_put(event->pmu->module); 5004 5005 call_rcu(&event->rcu_head, free_event_rcu); 5006 } 5007 5008 /* 5009 * Used to free events which have a known refcount of 1, such as in error paths 5010 * where the event isn't exposed yet and inherited events. 5011 */ 5012 static void free_event(struct perf_event *event) 5013 { 5014 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5015 "unexpected event refcount: %ld; ptr=%p\n", 5016 atomic_long_read(&event->refcount), event)) { 5017 /* leak to avoid use-after-free */ 5018 return; 5019 } 5020 5021 _free_event(event); 5022 } 5023 5024 /* 5025 * Remove user event from the owner task. 5026 */ 5027 static void perf_remove_from_owner(struct perf_event *event) 5028 { 5029 struct task_struct *owner; 5030 5031 rcu_read_lock(); 5032 /* 5033 * Matches the smp_store_release() in perf_event_exit_task(). If we 5034 * observe !owner it means the list deletion is complete and we can 5035 * indeed free this event, otherwise we need to serialize on 5036 * owner->perf_event_mutex. 5037 */ 5038 owner = READ_ONCE(event->owner); 5039 if (owner) { 5040 /* 5041 * Since delayed_put_task_struct() also drops the last 5042 * task reference we can safely take a new reference 5043 * while holding the rcu_read_lock(). 5044 */ 5045 get_task_struct(owner); 5046 } 5047 rcu_read_unlock(); 5048 5049 if (owner) { 5050 /* 5051 * If we're here through perf_event_exit_task() we're already 5052 * holding ctx->mutex which would be an inversion wrt. the 5053 * normal lock order. 5054 * 5055 * However we can safely take this lock because its the child 5056 * ctx->mutex. 5057 */ 5058 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5059 5060 /* 5061 * We have to re-check the event->owner field, if it is cleared 5062 * we raced with perf_event_exit_task(), acquiring the mutex 5063 * ensured they're done, and we can proceed with freeing the 5064 * event. 5065 */ 5066 if (event->owner) { 5067 list_del_init(&event->owner_entry); 5068 smp_store_release(&event->owner, NULL); 5069 } 5070 mutex_unlock(&owner->perf_event_mutex); 5071 put_task_struct(owner); 5072 } 5073 } 5074 5075 static void put_event(struct perf_event *event) 5076 { 5077 if (!atomic_long_dec_and_test(&event->refcount)) 5078 return; 5079 5080 _free_event(event); 5081 } 5082 5083 /* 5084 * Kill an event dead; while event:refcount will preserve the event 5085 * object, it will not preserve its functionality. Once the last 'user' 5086 * gives up the object, we'll destroy the thing. 5087 */ 5088 int perf_event_release_kernel(struct perf_event *event) 5089 { 5090 struct perf_event_context *ctx = event->ctx; 5091 struct perf_event *child, *tmp; 5092 LIST_HEAD(free_list); 5093 5094 /* 5095 * If we got here through err_file: fput(event_file); we will not have 5096 * attached to a context yet. 5097 */ 5098 if (!ctx) { 5099 WARN_ON_ONCE(event->attach_state & 5100 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5101 goto no_ctx; 5102 } 5103 5104 if (!is_kernel_event(event)) 5105 perf_remove_from_owner(event); 5106 5107 ctx = perf_event_ctx_lock(event); 5108 WARN_ON_ONCE(ctx->parent_ctx); 5109 perf_remove_from_context(event, DETACH_GROUP); 5110 5111 raw_spin_lock_irq(&ctx->lock); 5112 /* 5113 * Mark this event as STATE_DEAD, there is no external reference to it 5114 * anymore. 5115 * 5116 * Anybody acquiring event->child_mutex after the below loop _must_ 5117 * also see this, most importantly inherit_event() which will avoid 5118 * placing more children on the list. 5119 * 5120 * Thus this guarantees that we will in fact observe and kill _ALL_ 5121 * child events. 5122 */ 5123 event->state = PERF_EVENT_STATE_DEAD; 5124 raw_spin_unlock_irq(&ctx->lock); 5125 5126 perf_event_ctx_unlock(event, ctx); 5127 5128 again: 5129 mutex_lock(&event->child_mutex); 5130 list_for_each_entry(child, &event->child_list, child_list) { 5131 5132 /* 5133 * Cannot change, child events are not migrated, see the 5134 * comment with perf_event_ctx_lock_nested(). 5135 */ 5136 ctx = READ_ONCE(child->ctx); 5137 /* 5138 * Since child_mutex nests inside ctx::mutex, we must jump 5139 * through hoops. We start by grabbing a reference on the ctx. 5140 * 5141 * Since the event cannot get freed while we hold the 5142 * child_mutex, the context must also exist and have a !0 5143 * reference count. 5144 */ 5145 get_ctx(ctx); 5146 5147 /* 5148 * Now that we have a ctx ref, we can drop child_mutex, and 5149 * acquire ctx::mutex without fear of it going away. Then we 5150 * can re-acquire child_mutex. 5151 */ 5152 mutex_unlock(&event->child_mutex); 5153 mutex_lock(&ctx->mutex); 5154 mutex_lock(&event->child_mutex); 5155 5156 /* 5157 * Now that we hold ctx::mutex and child_mutex, revalidate our 5158 * state, if child is still the first entry, it didn't get freed 5159 * and we can continue doing so. 5160 */ 5161 tmp = list_first_entry_or_null(&event->child_list, 5162 struct perf_event, child_list); 5163 if (tmp == child) { 5164 perf_remove_from_context(child, DETACH_GROUP); 5165 list_move(&child->child_list, &free_list); 5166 /* 5167 * This matches the refcount bump in inherit_event(); 5168 * this can't be the last reference. 5169 */ 5170 put_event(event); 5171 } 5172 5173 mutex_unlock(&event->child_mutex); 5174 mutex_unlock(&ctx->mutex); 5175 put_ctx(ctx); 5176 goto again; 5177 } 5178 mutex_unlock(&event->child_mutex); 5179 5180 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5181 void *var = &child->ctx->refcount; 5182 5183 list_del(&child->child_list); 5184 free_event(child); 5185 5186 /* 5187 * Wake any perf_event_free_task() waiting for this event to be 5188 * freed. 5189 */ 5190 smp_mb(); /* pairs with wait_var_event() */ 5191 wake_up_var(var); 5192 } 5193 5194 no_ctx: 5195 put_event(event); /* Must be the 'last' reference */ 5196 return 0; 5197 } 5198 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5199 5200 /* 5201 * Called when the last reference to the file is gone. 5202 */ 5203 static int perf_release(struct inode *inode, struct file *file) 5204 { 5205 perf_event_release_kernel(file->private_data); 5206 return 0; 5207 } 5208 5209 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5210 { 5211 struct perf_event *child; 5212 u64 total = 0; 5213 5214 *enabled = 0; 5215 *running = 0; 5216 5217 mutex_lock(&event->child_mutex); 5218 5219 (void)perf_event_read(event, false); 5220 total += perf_event_count(event); 5221 5222 *enabled += event->total_time_enabled + 5223 atomic64_read(&event->child_total_time_enabled); 5224 *running += event->total_time_running + 5225 atomic64_read(&event->child_total_time_running); 5226 5227 list_for_each_entry(child, &event->child_list, child_list) { 5228 (void)perf_event_read(child, false); 5229 total += perf_event_count(child); 5230 *enabled += child->total_time_enabled; 5231 *running += child->total_time_running; 5232 } 5233 mutex_unlock(&event->child_mutex); 5234 5235 return total; 5236 } 5237 5238 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5239 { 5240 struct perf_event_context *ctx; 5241 u64 count; 5242 5243 ctx = perf_event_ctx_lock(event); 5244 count = __perf_event_read_value(event, enabled, running); 5245 perf_event_ctx_unlock(event, ctx); 5246 5247 return count; 5248 } 5249 EXPORT_SYMBOL_GPL(perf_event_read_value); 5250 5251 static int __perf_read_group_add(struct perf_event *leader, 5252 u64 read_format, u64 *values) 5253 { 5254 struct perf_event_context *ctx = leader->ctx; 5255 struct perf_event *sub; 5256 unsigned long flags; 5257 int n = 1; /* skip @nr */ 5258 int ret; 5259 5260 ret = perf_event_read(leader, true); 5261 if (ret) 5262 return ret; 5263 5264 raw_spin_lock_irqsave(&ctx->lock, flags); 5265 5266 /* 5267 * Since we co-schedule groups, {enabled,running} times of siblings 5268 * will be identical to those of the leader, so we only publish one 5269 * set. 5270 */ 5271 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5272 values[n++] += leader->total_time_enabled + 5273 atomic64_read(&leader->child_total_time_enabled); 5274 } 5275 5276 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5277 values[n++] += leader->total_time_running + 5278 atomic64_read(&leader->child_total_time_running); 5279 } 5280 5281 /* 5282 * Write {count,id} tuples for every sibling. 5283 */ 5284 values[n++] += perf_event_count(leader); 5285 if (read_format & PERF_FORMAT_ID) 5286 values[n++] = primary_event_id(leader); 5287 5288 for_each_sibling_event(sub, leader) { 5289 values[n++] += perf_event_count(sub); 5290 if (read_format & PERF_FORMAT_ID) 5291 values[n++] = primary_event_id(sub); 5292 } 5293 5294 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5295 return 0; 5296 } 5297 5298 static int perf_read_group(struct perf_event *event, 5299 u64 read_format, char __user *buf) 5300 { 5301 struct perf_event *leader = event->group_leader, *child; 5302 struct perf_event_context *ctx = leader->ctx; 5303 int ret; 5304 u64 *values; 5305 5306 lockdep_assert_held(&ctx->mutex); 5307 5308 values = kzalloc(event->read_size, GFP_KERNEL); 5309 if (!values) 5310 return -ENOMEM; 5311 5312 values[0] = 1 + leader->nr_siblings; 5313 5314 /* 5315 * By locking the child_mutex of the leader we effectively 5316 * lock the child list of all siblings.. XXX explain how. 5317 */ 5318 mutex_lock(&leader->child_mutex); 5319 5320 ret = __perf_read_group_add(leader, read_format, values); 5321 if (ret) 5322 goto unlock; 5323 5324 list_for_each_entry(child, &leader->child_list, child_list) { 5325 ret = __perf_read_group_add(child, read_format, values); 5326 if (ret) 5327 goto unlock; 5328 } 5329 5330 mutex_unlock(&leader->child_mutex); 5331 5332 ret = event->read_size; 5333 if (copy_to_user(buf, values, event->read_size)) 5334 ret = -EFAULT; 5335 goto out; 5336 5337 unlock: 5338 mutex_unlock(&leader->child_mutex); 5339 out: 5340 kfree(values); 5341 return ret; 5342 } 5343 5344 static int perf_read_one(struct perf_event *event, 5345 u64 read_format, char __user *buf) 5346 { 5347 u64 enabled, running; 5348 u64 values[4]; 5349 int n = 0; 5350 5351 values[n++] = __perf_event_read_value(event, &enabled, &running); 5352 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5353 values[n++] = enabled; 5354 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5355 values[n++] = running; 5356 if (read_format & PERF_FORMAT_ID) 5357 values[n++] = primary_event_id(event); 5358 5359 if (copy_to_user(buf, values, n * sizeof(u64))) 5360 return -EFAULT; 5361 5362 return n * sizeof(u64); 5363 } 5364 5365 static bool is_event_hup(struct perf_event *event) 5366 { 5367 bool no_children; 5368 5369 if (event->state > PERF_EVENT_STATE_EXIT) 5370 return false; 5371 5372 mutex_lock(&event->child_mutex); 5373 no_children = list_empty(&event->child_list); 5374 mutex_unlock(&event->child_mutex); 5375 return no_children; 5376 } 5377 5378 /* 5379 * Read the performance event - simple non blocking version for now 5380 */ 5381 static ssize_t 5382 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5383 { 5384 u64 read_format = event->attr.read_format; 5385 int ret; 5386 5387 /* 5388 * Return end-of-file for a read on an event that is in 5389 * error state (i.e. because it was pinned but it couldn't be 5390 * scheduled on to the CPU at some point). 5391 */ 5392 if (event->state == PERF_EVENT_STATE_ERROR) 5393 return 0; 5394 5395 if (count < event->read_size) 5396 return -ENOSPC; 5397 5398 WARN_ON_ONCE(event->ctx->parent_ctx); 5399 if (read_format & PERF_FORMAT_GROUP) 5400 ret = perf_read_group(event, read_format, buf); 5401 else 5402 ret = perf_read_one(event, read_format, buf); 5403 5404 return ret; 5405 } 5406 5407 static ssize_t 5408 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5409 { 5410 struct perf_event *event = file->private_data; 5411 struct perf_event_context *ctx; 5412 int ret; 5413 5414 ret = security_perf_event_read(event); 5415 if (ret) 5416 return ret; 5417 5418 ctx = perf_event_ctx_lock(event); 5419 ret = __perf_read(event, buf, count); 5420 perf_event_ctx_unlock(event, ctx); 5421 5422 return ret; 5423 } 5424 5425 static __poll_t perf_poll(struct file *file, poll_table *wait) 5426 { 5427 struct perf_event *event = file->private_data; 5428 struct perf_buffer *rb; 5429 __poll_t events = EPOLLHUP; 5430 5431 poll_wait(file, &event->waitq, wait); 5432 5433 if (is_event_hup(event)) 5434 return events; 5435 5436 /* 5437 * Pin the event->rb by taking event->mmap_mutex; otherwise 5438 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5439 */ 5440 mutex_lock(&event->mmap_mutex); 5441 rb = event->rb; 5442 if (rb) 5443 events = atomic_xchg(&rb->poll, 0); 5444 mutex_unlock(&event->mmap_mutex); 5445 return events; 5446 } 5447 5448 static void _perf_event_reset(struct perf_event *event) 5449 { 5450 (void)perf_event_read(event, false); 5451 local64_set(&event->count, 0); 5452 perf_event_update_userpage(event); 5453 } 5454 5455 /* Assume it's not an event with inherit set. */ 5456 u64 perf_event_pause(struct perf_event *event, bool reset) 5457 { 5458 struct perf_event_context *ctx; 5459 u64 count; 5460 5461 ctx = perf_event_ctx_lock(event); 5462 WARN_ON_ONCE(event->attr.inherit); 5463 _perf_event_disable(event); 5464 count = local64_read(&event->count); 5465 if (reset) 5466 local64_set(&event->count, 0); 5467 perf_event_ctx_unlock(event, ctx); 5468 5469 return count; 5470 } 5471 EXPORT_SYMBOL_GPL(perf_event_pause); 5472 5473 /* 5474 * Holding the top-level event's child_mutex means that any 5475 * descendant process that has inherited this event will block 5476 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5477 * task existence requirements of perf_event_enable/disable. 5478 */ 5479 static void perf_event_for_each_child(struct perf_event *event, 5480 void (*func)(struct perf_event *)) 5481 { 5482 struct perf_event *child; 5483 5484 WARN_ON_ONCE(event->ctx->parent_ctx); 5485 5486 mutex_lock(&event->child_mutex); 5487 func(event); 5488 list_for_each_entry(child, &event->child_list, child_list) 5489 func(child); 5490 mutex_unlock(&event->child_mutex); 5491 } 5492 5493 static void perf_event_for_each(struct perf_event *event, 5494 void (*func)(struct perf_event *)) 5495 { 5496 struct perf_event_context *ctx = event->ctx; 5497 struct perf_event *sibling; 5498 5499 lockdep_assert_held(&ctx->mutex); 5500 5501 event = event->group_leader; 5502 5503 perf_event_for_each_child(event, func); 5504 for_each_sibling_event(sibling, event) 5505 perf_event_for_each_child(sibling, func); 5506 } 5507 5508 static void __perf_event_period(struct perf_event *event, 5509 struct perf_cpu_context *cpuctx, 5510 struct perf_event_context *ctx, 5511 void *info) 5512 { 5513 u64 value = *((u64 *)info); 5514 bool active; 5515 5516 if (event->attr.freq) { 5517 event->attr.sample_freq = value; 5518 } else { 5519 event->attr.sample_period = value; 5520 event->hw.sample_period = value; 5521 } 5522 5523 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5524 if (active) { 5525 perf_pmu_disable(ctx->pmu); 5526 /* 5527 * We could be throttled; unthrottle now to avoid the tick 5528 * trying to unthrottle while we already re-started the event. 5529 */ 5530 if (event->hw.interrupts == MAX_INTERRUPTS) { 5531 event->hw.interrupts = 0; 5532 perf_log_throttle(event, 1); 5533 } 5534 event->pmu->stop(event, PERF_EF_UPDATE); 5535 } 5536 5537 local64_set(&event->hw.period_left, 0); 5538 5539 if (active) { 5540 event->pmu->start(event, PERF_EF_RELOAD); 5541 perf_pmu_enable(ctx->pmu); 5542 } 5543 } 5544 5545 static int perf_event_check_period(struct perf_event *event, u64 value) 5546 { 5547 return event->pmu->check_period(event, value); 5548 } 5549 5550 static int _perf_event_period(struct perf_event *event, u64 value) 5551 { 5552 if (!is_sampling_event(event)) 5553 return -EINVAL; 5554 5555 if (!value) 5556 return -EINVAL; 5557 5558 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5559 return -EINVAL; 5560 5561 if (perf_event_check_period(event, value)) 5562 return -EINVAL; 5563 5564 if (!event->attr.freq && (value & (1ULL << 63))) 5565 return -EINVAL; 5566 5567 event_function_call(event, __perf_event_period, &value); 5568 5569 return 0; 5570 } 5571 5572 int perf_event_period(struct perf_event *event, u64 value) 5573 { 5574 struct perf_event_context *ctx; 5575 int ret; 5576 5577 ctx = perf_event_ctx_lock(event); 5578 ret = _perf_event_period(event, value); 5579 perf_event_ctx_unlock(event, ctx); 5580 5581 return ret; 5582 } 5583 EXPORT_SYMBOL_GPL(perf_event_period); 5584 5585 static const struct file_operations perf_fops; 5586 5587 static inline int perf_fget_light(int fd, struct fd *p) 5588 { 5589 struct fd f = fdget(fd); 5590 if (!f.file) 5591 return -EBADF; 5592 5593 if (f.file->f_op != &perf_fops) { 5594 fdput(f); 5595 return -EBADF; 5596 } 5597 *p = f; 5598 return 0; 5599 } 5600 5601 static int perf_event_set_output(struct perf_event *event, 5602 struct perf_event *output_event); 5603 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5604 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5605 struct perf_event_attr *attr); 5606 5607 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5608 { 5609 void (*func)(struct perf_event *); 5610 u32 flags = arg; 5611 5612 switch (cmd) { 5613 case PERF_EVENT_IOC_ENABLE: 5614 func = _perf_event_enable; 5615 break; 5616 case PERF_EVENT_IOC_DISABLE: 5617 func = _perf_event_disable; 5618 break; 5619 case PERF_EVENT_IOC_RESET: 5620 func = _perf_event_reset; 5621 break; 5622 5623 case PERF_EVENT_IOC_REFRESH: 5624 return _perf_event_refresh(event, arg); 5625 5626 case PERF_EVENT_IOC_PERIOD: 5627 { 5628 u64 value; 5629 5630 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5631 return -EFAULT; 5632 5633 return _perf_event_period(event, value); 5634 } 5635 case PERF_EVENT_IOC_ID: 5636 { 5637 u64 id = primary_event_id(event); 5638 5639 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5640 return -EFAULT; 5641 return 0; 5642 } 5643 5644 case PERF_EVENT_IOC_SET_OUTPUT: 5645 { 5646 int ret; 5647 if (arg != -1) { 5648 struct perf_event *output_event; 5649 struct fd output; 5650 ret = perf_fget_light(arg, &output); 5651 if (ret) 5652 return ret; 5653 output_event = output.file->private_data; 5654 ret = perf_event_set_output(event, output_event); 5655 fdput(output); 5656 } else { 5657 ret = perf_event_set_output(event, NULL); 5658 } 5659 return ret; 5660 } 5661 5662 case PERF_EVENT_IOC_SET_FILTER: 5663 return perf_event_set_filter(event, (void __user *)arg); 5664 5665 case PERF_EVENT_IOC_SET_BPF: 5666 { 5667 struct bpf_prog *prog; 5668 int err; 5669 5670 prog = bpf_prog_get(arg); 5671 if (IS_ERR(prog)) 5672 return PTR_ERR(prog); 5673 5674 err = perf_event_set_bpf_prog(event, prog, 0); 5675 if (err) { 5676 bpf_prog_put(prog); 5677 return err; 5678 } 5679 5680 return 0; 5681 } 5682 5683 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5684 struct perf_buffer *rb; 5685 5686 rcu_read_lock(); 5687 rb = rcu_dereference(event->rb); 5688 if (!rb || !rb->nr_pages) { 5689 rcu_read_unlock(); 5690 return -EINVAL; 5691 } 5692 rb_toggle_paused(rb, !!arg); 5693 rcu_read_unlock(); 5694 return 0; 5695 } 5696 5697 case PERF_EVENT_IOC_QUERY_BPF: 5698 return perf_event_query_prog_array(event, (void __user *)arg); 5699 5700 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5701 struct perf_event_attr new_attr; 5702 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5703 &new_attr); 5704 5705 if (err) 5706 return err; 5707 5708 return perf_event_modify_attr(event, &new_attr); 5709 } 5710 default: 5711 return -ENOTTY; 5712 } 5713 5714 if (flags & PERF_IOC_FLAG_GROUP) 5715 perf_event_for_each(event, func); 5716 else 5717 perf_event_for_each_child(event, func); 5718 5719 return 0; 5720 } 5721 5722 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5723 { 5724 struct perf_event *event = file->private_data; 5725 struct perf_event_context *ctx; 5726 long ret; 5727 5728 /* Treat ioctl like writes as it is likely a mutating operation. */ 5729 ret = security_perf_event_write(event); 5730 if (ret) 5731 return ret; 5732 5733 ctx = perf_event_ctx_lock(event); 5734 ret = _perf_ioctl(event, cmd, arg); 5735 perf_event_ctx_unlock(event, ctx); 5736 5737 return ret; 5738 } 5739 5740 #ifdef CONFIG_COMPAT 5741 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5742 unsigned long arg) 5743 { 5744 switch (_IOC_NR(cmd)) { 5745 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5746 case _IOC_NR(PERF_EVENT_IOC_ID): 5747 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5748 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5749 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5750 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5751 cmd &= ~IOCSIZE_MASK; 5752 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5753 } 5754 break; 5755 } 5756 return perf_ioctl(file, cmd, arg); 5757 } 5758 #else 5759 # define perf_compat_ioctl NULL 5760 #endif 5761 5762 int perf_event_task_enable(void) 5763 { 5764 struct perf_event_context *ctx; 5765 struct perf_event *event; 5766 5767 mutex_lock(¤t->perf_event_mutex); 5768 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5769 ctx = perf_event_ctx_lock(event); 5770 perf_event_for_each_child(event, _perf_event_enable); 5771 perf_event_ctx_unlock(event, ctx); 5772 } 5773 mutex_unlock(¤t->perf_event_mutex); 5774 5775 return 0; 5776 } 5777 5778 int perf_event_task_disable(void) 5779 { 5780 struct perf_event_context *ctx; 5781 struct perf_event *event; 5782 5783 mutex_lock(¤t->perf_event_mutex); 5784 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5785 ctx = perf_event_ctx_lock(event); 5786 perf_event_for_each_child(event, _perf_event_disable); 5787 perf_event_ctx_unlock(event, ctx); 5788 } 5789 mutex_unlock(¤t->perf_event_mutex); 5790 5791 return 0; 5792 } 5793 5794 static int perf_event_index(struct perf_event *event) 5795 { 5796 if (event->hw.state & PERF_HES_STOPPED) 5797 return 0; 5798 5799 if (event->state != PERF_EVENT_STATE_ACTIVE) 5800 return 0; 5801 5802 return event->pmu->event_idx(event); 5803 } 5804 5805 static void calc_timer_values(struct perf_event *event, 5806 u64 *now, 5807 u64 *enabled, 5808 u64 *running) 5809 { 5810 u64 ctx_time; 5811 5812 *now = perf_clock(); 5813 ctx_time = event->shadow_ctx_time + *now; 5814 __perf_update_times(event, ctx_time, enabled, running); 5815 } 5816 5817 static void perf_event_init_userpage(struct perf_event *event) 5818 { 5819 struct perf_event_mmap_page *userpg; 5820 struct perf_buffer *rb; 5821 5822 rcu_read_lock(); 5823 rb = rcu_dereference(event->rb); 5824 if (!rb) 5825 goto unlock; 5826 5827 userpg = rb->user_page; 5828 5829 /* Allow new userspace to detect that bit 0 is deprecated */ 5830 userpg->cap_bit0_is_deprecated = 1; 5831 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5832 userpg->data_offset = PAGE_SIZE; 5833 userpg->data_size = perf_data_size(rb); 5834 5835 unlock: 5836 rcu_read_unlock(); 5837 } 5838 5839 void __weak arch_perf_update_userpage( 5840 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5841 { 5842 } 5843 5844 /* 5845 * Callers need to ensure there can be no nesting of this function, otherwise 5846 * the seqlock logic goes bad. We can not serialize this because the arch 5847 * code calls this from NMI context. 5848 */ 5849 void perf_event_update_userpage(struct perf_event *event) 5850 { 5851 struct perf_event_mmap_page *userpg; 5852 struct perf_buffer *rb; 5853 u64 enabled, running, now; 5854 5855 rcu_read_lock(); 5856 rb = rcu_dereference(event->rb); 5857 if (!rb) 5858 goto unlock; 5859 5860 /* 5861 * compute total_time_enabled, total_time_running 5862 * based on snapshot values taken when the event 5863 * was last scheduled in. 5864 * 5865 * we cannot simply called update_context_time() 5866 * because of locking issue as we can be called in 5867 * NMI context 5868 */ 5869 calc_timer_values(event, &now, &enabled, &running); 5870 5871 userpg = rb->user_page; 5872 /* 5873 * Disable preemption to guarantee consistent time stamps are stored to 5874 * the user page. 5875 */ 5876 preempt_disable(); 5877 ++userpg->lock; 5878 barrier(); 5879 userpg->index = perf_event_index(event); 5880 userpg->offset = perf_event_count(event); 5881 if (userpg->index) 5882 userpg->offset -= local64_read(&event->hw.prev_count); 5883 5884 userpg->time_enabled = enabled + 5885 atomic64_read(&event->child_total_time_enabled); 5886 5887 userpg->time_running = running + 5888 atomic64_read(&event->child_total_time_running); 5889 5890 arch_perf_update_userpage(event, userpg, now); 5891 5892 barrier(); 5893 ++userpg->lock; 5894 preempt_enable(); 5895 unlock: 5896 rcu_read_unlock(); 5897 } 5898 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5899 5900 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5901 { 5902 struct perf_event *event = vmf->vma->vm_file->private_data; 5903 struct perf_buffer *rb; 5904 vm_fault_t ret = VM_FAULT_SIGBUS; 5905 5906 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5907 if (vmf->pgoff == 0) 5908 ret = 0; 5909 return ret; 5910 } 5911 5912 rcu_read_lock(); 5913 rb = rcu_dereference(event->rb); 5914 if (!rb) 5915 goto unlock; 5916 5917 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5918 goto unlock; 5919 5920 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5921 if (!vmf->page) 5922 goto unlock; 5923 5924 get_page(vmf->page); 5925 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5926 vmf->page->index = vmf->pgoff; 5927 5928 ret = 0; 5929 unlock: 5930 rcu_read_unlock(); 5931 5932 return ret; 5933 } 5934 5935 static void ring_buffer_attach(struct perf_event *event, 5936 struct perf_buffer *rb) 5937 { 5938 struct perf_buffer *old_rb = NULL; 5939 unsigned long flags; 5940 5941 if (event->rb) { 5942 /* 5943 * Should be impossible, we set this when removing 5944 * event->rb_entry and wait/clear when adding event->rb_entry. 5945 */ 5946 WARN_ON_ONCE(event->rcu_pending); 5947 5948 old_rb = event->rb; 5949 spin_lock_irqsave(&old_rb->event_lock, flags); 5950 list_del_rcu(&event->rb_entry); 5951 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5952 5953 event->rcu_batches = get_state_synchronize_rcu(); 5954 event->rcu_pending = 1; 5955 } 5956 5957 if (rb) { 5958 if (event->rcu_pending) { 5959 cond_synchronize_rcu(event->rcu_batches); 5960 event->rcu_pending = 0; 5961 } 5962 5963 spin_lock_irqsave(&rb->event_lock, flags); 5964 list_add_rcu(&event->rb_entry, &rb->event_list); 5965 spin_unlock_irqrestore(&rb->event_lock, flags); 5966 } 5967 5968 /* 5969 * Avoid racing with perf_mmap_close(AUX): stop the event 5970 * before swizzling the event::rb pointer; if it's getting 5971 * unmapped, its aux_mmap_count will be 0 and it won't 5972 * restart. See the comment in __perf_pmu_output_stop(). 5973 * 5974 * Data will inevitably be lost when set_output is done in 5975 * mid-air, but then again, whoever does it like this is 5976 * not in for the data anyway. 5977 */ 5978 if (has_aux(event)) 5979 perf_event_stop(event, 0); 5980 5981 rcu_assign_pointer(event->rb, rb); 5982 5983 if (old_rb) { 5984 ring_buffer_put(old_rb); 5985 /* 5986 * Since we detached before setting the new rb, so that we 5987 * could attach the new rb, we could have missed a wakeup. 5988 * Provide it now. 5989 */ 5990 wake_up_all(&event->waitq); 5991 } 5992 } 5993 5994 static void ring_buffer_wakeup(struct perf_event *event) 5995 { 5996 struct perf_buffer *rb; 5997 5998 rcu_read_lock(); 5999 rb = rcu_dereference(event->rb); 6000 if (rb) { 6001 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6002 wake_up_all(&event->waitq); 6003 } 6004 rcu_read_unlock(); 6005 } 6006 6007 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6008 { 6009 struct perf_buffer *rb; 6010 6011 rcu_read_lock(); 6012 rb = rcu_dereference(event->rb); 6013 if (rb) { 6014 if (!refcount_inc_not_zero(&rb->refcount)) 6015 rb = NULL; 6016 } 6017 rcu_read_unlock(); 6018 6019 return rb; 6020 } 6021 6022 void ring_buffer_put(struct perf_buffer *rb) 6023 { 6024 if (!refcount_dec_and_test(&rb->refcount)) 6025 return; 6026 6027 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6028 6029 call_rcu(&rb->rcu_head, rb_free_rcu); 6030 } 6031 6032 static void perf_mmap_open(struct vm_area_struct *vma) 6033 { 6034 struct perf_event *event = vma->vm_file->private_data; 6035 6036 atomic_inc(&event->mmap_count); 6037 atomic_inc(&event->rb->mmap_count); 6038 6039 if (vma->vm_pgoff) 6040 atomic_inc(&event->rb->aux_mmap_count); 6041 6042 if (event->pmu->event_mapped) 6043 event->pmu->event_mapped(event, vma->vm_mm); 6044 } 6045 6046 static void perf_pmu_output_stop(struct perf_event *event); 6047 6048 /* 6049 * A buffer can be mmap()ed multiple times; either directly through the same 6050 * event, or through other events by use of perf_event_set_output(). 6051 * 6052 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6053 * the buffer here, where we still have a VM context. This means we need 6054 * to detach all events redirecting to us. 6055 */ 6056 static void perf_mmap_close(struct vm_area_struct *vma) 6057 { 6058 struct perf_event *event = vma->vm_file->private_data; 6059 struct perf_buffer *rb = ring_buffer_get(event); 6060 struct user_struct *mmap_user = rb->mmap_user; 6061 int mmap_locked = rb->mmap_locked; 6062 unsigned long size = perf_data_size(rb); 6063 bool detach_rest = false; 6064 6065 if (event->pmu->event_unmapped) 6066 event->pmu->event_unmapped(event, vma->vm_mm); 6067 6068 /* 6069 * rb->aux_mmap_count will always drop before rb->mmap_count and 6070 * event->mmap_count, so it is ok to use event->mmap_mutex to 6071 * serialize with perf_mmap here. 6072 */ 6073 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6074 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6075 /* 6076 * Stop all AUX events that are writing to this buffer, 6077 * so that we can free its AUX pages and corresponding PMU 6078 * data. Note that after rb::aux_mmap_count dropped to zero, 6079 * they won't start any more (see perf_aux_output_begin()). 6080 */ 6081 perf_pmu_output_stop(event); 6082 6083 /* now it's safe to free the pages */ 6084 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6085 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6086 6087 /* this has to be the last one */ 6088 rb_free_aux(rb); 6089 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6090 6091 mutex_unlock(&event->mmap_mutex); 6092 } 6093 6094 if (atomic_dec_and_test(&rb->mmap_count)) 6095 detach_rest = true; 6096 6097 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6098 goto out_put; 6099 6100 ring_buffer_attach(event, NULL); 6101 mutex_unlock(&event->mmap_mutex); 6102 6103 /* If there's still other mmap()s of this buffer, we're done. */ 6104 if (!detach_rest) 6105 goto out_put; 6106 6107 /* 6108 * No other mmap()s, detach from all other events that might redirect 6109 * into the now unreachable buffer. Somewhat complicated by the 6110 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6111 */ 6112 again: 6113 rcu_read_lock(); 6114 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6115 if (!atomic_long_inc_not_zero(&event->refcount)) { 6116 /* 6117 * This event is en-route to free_event() which will 6118 * detach it and remove it from the list. 6119 */ 6120 continue; 6121 } 6122 rcu_read_unlock(); 6123 6124 mutex_lock(&event->mmap_mutex); 6125 /* 6126 * Check we didn't race with perf_event_set_output() which can 6127 * swizzle the rb from under us while we were waiting to 6128 * acquire mmap_mutex. 6129 * 6130 * If we find a different rb; ignore this event, a next 6131 * iteration will no longer find it on the list. We have to 6132 * still restart the iteration to make sure we're not now 6133 * iterating the wrong list. 6134 */ 6135 if (event->rb == rb) 6136 ring_buffer_attach(event, NULL); 6137 6138 mutex_unlock(&event->mmap_mutex); 6139 put_event(event); 6140 6141 /* 6142 * Restart the iteration; either we're on the wrong list or 6143 * destroyed its integrity by doing a deletion. 6144 */ 6145 goto again; 6146 } 6147 rcu_read_unlock(); 6148 6149 /* 6150 * It could be there's still a few 0-ref events on the list; they'll 6151 * get cleaned up by free_event() -- they'll also still have their 6152 * ref on the rb and will free it whenever they are done with it. 6153 * 6154 * Aside from that, this buffer is 'fully' detached and unmapped, 6155 * undo the VM accounting. 6156 */ 6157 6158 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6159 &mmap_user->locked_vm); 6160 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6161 free_uid(mmap_user); 6162 6163 out_put: 6164 ring_buffer_put(rb); /* could be last */ 6165 } 6166 6167 static const struct vm_operations_struct perf_mmap_vmops = { 6168 .open = perf_mmap_open, 6169 .close = perf_mmap_close, /* non mergeable */ 6170 .fault = perf_mmap_fault, 6171 .page_mkwrite = perf_mmap_fault, 6172 }; 6173 6174 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6175 { 6176 struct perf_event *event = file->private_data; 6177 unsigned long user_locked, user_lock_limit; 6178 struct user_struct *user = current_user(); 6179 struct perf_buffer *rb = NULL; 6180 unsigned long locked, lock_limit; 6181 unsigned long vma_size; 6182 unsigned long nr_pages; 6183 long user_extra = 0, extra = 0; 6184 int ret = 0, flags = 0; 6185 6186 /* 6187 * Don't allow mmap() of inherited per-task counters. This would 6188 * create a performance issue due to all children writing to the 6189 * same rb. 6190 */ 6191 if (event->cpu == -1 && event->attr.inherit) 6192 return -EINVAL; 6193 6194 if (!(vma->vm_flags & VM_SHARED)) 6195 return -EINVAL; 6196 6197 ret = security_perf_event_read(event); 6198 if (ret) 6199 return ret; 6200 6201 vma_size = vma->vm_end - vma->vm_start; 6202 6203 if (vma->vm_pgoff == 0) { 6204 nr_pages = (vma_size / PAGE_SIZE) - 1; 6205 } else { 6206 /* 6207 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6208 * mapped, all subsequent mappings should have the same size 6209 * and offset. Must be above the normal perf buffer. 6210 */ 6211 u64 aux_offset, aux_size; 6212 6213 if (!event->rb) 6214 return -EINVAL; 6215 6216 nr_pages = vma_size / PAGE_SIZE; 6217 6218 mutex_lock(&event->mmap_mutex); 6219 ret = -EINVAL; 6220 6221 rb = event->rb; 6222 if (!rb) 6223 goto aux_unlock; 6224 6225 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6226 aux_size = READ_ONCE(rb->user_page->aux_size); 6227 6228 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6229 goto aux_unlock; 6230 6231 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6232 goto aux_unlock; 6233 6234 /* already mapped with a different offset */ 6235 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6236 goto aux_unlock; 6237 6238 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6239 goto aux_unlock; 6240 6241 /* already mapped with a different size */ 6242 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6243 goto aux_unlock; 6244 6245 if (!is_power_of_2(nr_pages)) 6246 goto aux_unlock; 6247 6248 if (!atomic_inc_not_zero(&rb->mmap_count)) 6249 goto aux_unlock; 6250 6251 if (rb_has_aux(rb)) { 6252 atomic_inc(&rb->aux_mmap_count); 6253 ret = 0; 6254 goto unlock; 6255 } 6256 6257 atomic_set(&rb->aux_mmap_count, 1); 6258 user_extra = nr_pages; 6259 6260 goto accounting; 6261 } 6262 6263 /* 6264 * If we have rb pages ensure they're a power-of-two number, so we 6265 * can do bitmasks instead of modulo. 6266 */ 6267 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6268 return -EINVAL; 6269 6270 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6271 return -EINVAL; 6272 6273 WARN_ON_ONCE(event->ctx->parent_ctx); 6274 again: 6275 mutex_lock(&event->mmap_mutex); 6276 if (event->rb) { 6277 if (event->rb->nr_pages != nr_pages) { 6278 ret = -EINVAL; 6279 goto unlock; 6280 } 6281 6282 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6283 /* 6284 * Raced against perf_mmap_close() through 6285 * perf_event_set_output(). Try again, hope for better 6286 * luck. 6287 */ 6288 mutex_unlock(&event->mmap_mutex); 6289 goto again; 6290 } 6291 6292 goto unlock; 6293 } 6294 6295 user_extra = nr_pages + 1; 6296 6297 accounting: 6298 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6299 6300 /* 6301 * Increase the limit linearly with more CPUs: 6302 */ 6303 user_lock_limit *= num_online_cpus(); 6304 6305 user_locked = atomic_long_read(&user->locked_vm); 6306 6307 /* 6308 * sysctl_perf_event_mlock may have changed, so that 6309 * user->locked_vm > user_lock_limit 6310 */ 6311 if (user_locked > user_lock_limit) 6312 user_locked = user_lock_limit; 6313 user_locked += user_extra; 6314 6315 if (user_locked > user_lock_limit) { 6316 /* 6317 * charge locked_vm until it hits user_lock_limit; 6318 * charge the rest from pinned_vm 6319 */ 6320 extra = user_locked - user_lock_limit; 6321 user_extra -= extra; 6322 } 6323 6324 lock_limit = rlimit(RLIMIT_MEMLOCK); 6325 lock_limit >>= PAGE_SHIFT; 6326 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6327 6328 if ((locked > lock_limit) && perf_is_paranoid() && 6329 !capable(CAP_IPC_LOCK)) { 6330 ret = -EPERM; 6331 goto unlock; 6332 } 6333 6334 WARN_ON(!rb && event->rb); 6335 6336 if (vma->vm_flags & VM_WRITE) 6337 flags |= RING_BUFFER_WRITABLE; 6338 6339 if (!rb) { 6340 rb = rb_alloc(nr_pages, 6341 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6342 event->cpu, flags); 6343 6344 if (!rb) { 6345 ret = -ENOMEM; 6346 goto unlock; 6347 } 6348 6349 atomic_set(&rb->mmap_count, 1); 6350 rb->mmap_user = get_current_user(); 6351 rb->mmap_locked = extra; 6352 6353 ring_buffer_attach(event, rb); 6354 6355 perf_event_update_time(event); 6356 perf_set_shadow_time(event, event->ctx); 6357 perf_event_init_userpage(event); 6358 perf_event_update_userpage(event); 6359 } else { 6360 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6361 event->attr.aux_watermark, flags); 6362 if (!ret) 6363 rb->aux_mmap_locked = extra; 6364 } 6365 6366 unlock: 6367 if (!ret) { 6368 atomic_long_add(user_extra, &user->locked_vm); 6369 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6370 6371 atomic_inc(&event->mmap_count); 6372 } else if (rb) { 6373 atomic_dec(&rb->mmap_count); 6374 } 6375 aux_unlock: 6376 mutex_unlock(&event->mmap_mutex); 6377 6378 /* 6379 * Since pinned accounting is per vm we cannot allow fork() to copy our 6380 * vma. 6381 */ 6382 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6383 vma->vm_ops = &perf_mmap_vmops; 6384 6385 if (event->pmu->event_mapped) 6386 event->pmu->event_mapped(event, vma->vm_mm); 6387 6388 return ret; 6389 } 6390 6391 static int perf_fasync(int fd, struct file *filp, int on) 6392 { 6393 struct inode *inode = file_inode(filp); 6394 struct perf_event *event = filp->private_data; 6395 int retval; 6396 6397 inode_lock(inode); 6398 retval = fasync_helper(fd, filp, on, &event->fasync); 6399 inode_unlock(inode); 6400 6401 if (retval < 0) 6402 return retval; 6403 6404 return 0; 6405 } 6406 6407 static const struct file_operations perf_fops = { 6408 .llseek = no_llseek, 6409 .release = perf_release, 6410 .read = perf_read, 6411 .poll = perf_poll, 6412 .unlocked_ioctl = perf_ioctl, 6413 .compat_ioctl = perf_compat_ioctl, 6414 .mmap = perf_mmap, 6415 .fasync = perf_fasync, 6416 }; 6417 6418 /* 6419 * Perf event wakeup 6420 * 6421 * If there's data, ensure we set the poll() state and publish everything 6422 * to user-space before waking everybody up. 6423 */ 6424 6425 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6426 { 6427 /* only the parent has fasync state */ 6428 if (event->parent) 6429 event = event->parent; 6430 return &event->fasync; 6431 } 6432 6433 void perf_event_wakeup(struct perf_event *event) 6434 { 6435 ring_buffer_wakeup(event); 6436 6437 if (event->pending_kill) { 6438 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6439 event->pending_kill = 0; 6440 } 6441 } 6442 6443 static void perf_sigtrap(struct perf_event *event) 6444 { 6445 /* 6446 * We'd expect this to only occur if the irq_work is delayed and either 6447 * ctx->task or current has changed in the meantime. This can be the 6448 * case on architectures that do not implement arch_irq_work_raise(). 6449 */ 6450 if (WARN_ON_ONCE(event->ctx->task != current)) 6451 return; 6452 6453 /* 6454 * perf_pending_event() can race with the task exiting. 6455 */ 6456 if (current->flags & PF_EXITING) 6457 return; 6458 6459 force_sig_perf((void __user *)event->pending_addr, 6460 event->attr.type, event->attr.sig_data); 6461 } 6462 6463 static void perf_pending_event_disable(struct perf_event *event) 6464 { 6465 int cpu = READ_ONCE(event->pending_disable); 6466 6467 if (cpu < 0) 6468 return; 6469 6470 if (cpu == smp_processor_id()) { 6471 WRITE_ONCE(event->pending_disable, -1); 6472 6473 if (event->attr.sigtrap) { 6474 perf_sigtrap(event); 6475 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6476 return; 6477 } 6478 6479 perf_event_disable_local(event); 6480 return; 6481 } 6482 6483 /* 6484 * CPU-A CPU-B 6485 * 6486 * perf_event_disable_inatomic() 6487 * @pending_disable = CPU-A; 6488 * irq_work_queue(); 6489 * 6490 * sched-out 6491 * @pending_disable = -1; 6492 * 6493 * sched-in 6494 * perf_event_disable_inatomic() 6495 * @pending_disable = CPU-B; 6496 * irq_work_queue(); // FAILS 6497 * 6498 * irq_work_run() 6499 * perf_pending_event() 6500 * 6501 * But the event runs on CPU-B and wants disabling there. 6502 */ 6503 irq_work_queue_on(&event->pending, cpu); 6504 } 6505 6506 static void perf_pending_event(struct irq_work *entry) 6507 { 6508 struct perf_event *event = container_of(entry, struct perf_event, pending); 6509 int rctx; 6510 6511 rctx = perf_swevent_get_recursion_context(); 6512 /* 6513 * If we 'fail' here, that's OK, it means recursion is already disabled 6514 * and we won't recurse 'further'. 6515 */ 6516 6517 perf_pending_event_disable(event); 6518 6519 if (event->pending_wakeup) { 6520 event->pending_wakeup = 0; 6521 perf_event_wakeup(event); 6522 } 6523 6524 if (rctx >= 0) 6525 perf_swevent_put_recursion_context(rctx); 6526 } 6527 6528 /* 6529 * We assume there is only KVM supporting the callbacks. 6530 * Later on, we might change it to a list if there is 6531 * another virtualization implementation supporting the callbacks. 6532 */ 6533 struct perf_guest_info_callbacks *perf_guest_cbs; 6534 6535 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6536 { 6537 perf_guest_cbs = cbs; 6538 return 0; 6539 } 6540 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6541 6542 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6543 { 6544 perf_guest_cbs = NULL; 6545 return 0; 6546 } 6547 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6548 6549 static void 6550 perf_output_sample_regs(struct perf_output_handle *handle, 6551 struct pt_regs *regs, u64 mask) 6552 { 6553 int bit; 6554 DECLARE_BITMAP(_mask, 64); 6555 6556 bitmap_from_u64(_mask, mask); 6557 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6558 u64 val; 6559 6560 val = perf_reg_value(regs, bit); 6561 perf_output_put(handle, val); 6562 } 6563 } 6564 6565 static void perf_sample_regs_user(struct perf_regs *regs_user, 6566 struct pt_regs *regs) 6567 { 6568 if (user_mode(regs)) { 6569 regs_user->abi = perf_reg_abi(current); 6570 regs_user->regs = regs; 6571 } else if (!(current->flags & PF_KTHREAD)) { 6572 perf_get_regs_user(regs_user, regs); 6573 } else { 6574 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6575 regs_user->regs = NULL; 6576 } 6577 } 6578 6579 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6580 struct pt_regs *regs) 6581 { 6582 regs_intr->regs = regs; 6583 regs_intr->abi = perf_reg_abi(current); 6584 } 6585 6586 6587 /* 6588 * Get remaining task size from user stack pointer. 6589 * 6590 * It'd be better to take stack vma map and limit this more 6591 * precisely, but there's no way to get it safely under interrupt, 6592 * so using TASK_SIZE as limit. 6593 */ 6594 static u64 perf_ustack_task_size(struct pt_regs *regs) 6595 { 6596 unsigned long addr = perf_user_stack_pointer(regs); 6597 6598 if (!addr || addr >= TASK_SIZE) 6599 return 0; 6600 6601 return TASK_SIZE - addr; 6602 } 6603 6604 static u16 6605 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6606 struct pt_regs *regs) 6607 { 6608 u64 task_size; 6609 6610 /* No regs, no stack pointer, no dump. */ 6611 if (!regs) 6612 return 0; 6613 6614 /* 6615 * Check if we fit in with the requested stack size into the: 6616 * - TASK_SIZE 6617 * If we don't, we limit the size to the TASK_SIZE. 6618 * 6619 * - remaining sample size 6620 * If we don't, we customize the stack size to 6621 * fit in to the remaining sample size. 6622 */ 6623 6624 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6625 stack_size = min(stack_size, (u16) task_size); 6626 6627 /* Current header size plus static size and dynamic size. */ 6628 header_size += 2 * sizeof(u64); 6629 6630 /* Do we fit in with the current stack dump size? */ 6631 if ((u16) (header_size + stack_size) < header_size) { 6632 /* 6633 * If we overflow the maximum size for the sample, 6634 * we customize the stack dump size to fit in. 6635 */ 6636 stack_size = USHRT_MAX - header_size - sizeof(u64); 6637 stack_size = round_up(stack_size, sizeof(u64)); 6638 } 6639 6640 return stack_size; 6641 } 6642 6643 static void 6644 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6645 struct pt_regs *regs) 6646 { 6647 /* Case of a kernel thread, nothing to dump */ 6648 if (!regs) { 6649 u64 size = 0; 6650 perf_output_put(handle, size); 6651 } else { 6652 unsigned long sp; 6653 unsigned int rem; 6654 u64 dyn_size; 6655 mm_segment_t fs; 6656 6657 /* 6658 * We dump: 6659 * static size 6660 * - the size requested by user or the best one we can fit 6661 * in to the sample max size 6662 * data 6663 * - user stack dump data 6664 * dynamic size 6665 * - the actual dumped size 6666 */ 6667 6668 /* Static size. */ 6669 perf_output_put(handle, dump_size); 6670 6671 /* Data. */ 6672 sp = perf_user_stack_pointer(regs); 6673 fs = force_uaccess_begin(); 6674 rem = __output_copy_user(handle, (void *) sp, dump_size); 6675 force_uaccess_end(fs); 6676 dyn_size = dump_size - rem; 6677 6678 perf_output_skip(handle, rem); 6679 6680 /* Dynamic size. */ 6681 perf_output_put(handle, dyn_size); 6682 } 6683 } 6684 6685 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6686 struct perf_sample_data *data, 6687 size_t size) 6688 { 6689 struct perf_event *sampler = event->aux_event; 6690 struct perf_buffer *rb; 6691 6692 data->aux_size = 0; 6693 6694 if (!sampler) 6695 goto out; 6696 6697 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6698 goto out; 6699 6700 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6701 goto out; 6702 6703 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6704 if (!rb) 6705 goto out; 6706 6707 /* 6708 * If this is an NMI hit inside sampling code, don't take 6709 * the sample. See also perf_aux_sample_output(). 6710 */ 6711 if (READ_ONCE(rb->aux_in_sampling)) { 6712 data->aux_size = 0; 6713 } else { 6714 size = min_t(size_t, size, perf_aux_size(rb)); 6715 data->aux_size = ALIGN(size, sizeof(u64)); 6716 } 6717 ring_buffer_put(rb); 6718 6719 out: 6720 return data->aux_size; 6721 } 6722 6723 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6724 struct perf_event *event, 6725 struct perf_output_handle *handle, 6726 unsigned long size) 6727 { 6728 unsigned long flags; 6729 long ret; 6730 6731 /* 6732 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6733 * paths. If we start calling them in NMI context, they may race with 6734 * the IRQ ones, that is, for example, re-starting an event that's just 6735 * been stopped, which is why we're using a separate callback that 6736 * doesn't change the event state. 6737 * 6738 * IRQs need to be disabled to prevent IPIs from racing with us. 6739 */ 6740 local_irq_save(flags); 6741 /* 6742 * Guard against NMI hits inside the critical section; 6743 * see also perf_prepare_sample_aux(). 6744 */ 6745 WRITE_ONCE(rb->aux_in_sampling, 1); 6746 barrier(); 6747 6748 ret = event->pmu->snapshot_aux(event, handle, size); 6749 6750 barrier(); 6751 WRITE_ONCE(rb->aux_in_sampling, 0); 6752 local_irq_restore(flags); 6753 6754 return ret; 6755 } 6756 6757 static void perf_aux_sample_output(struct perf_event *event, 6758 struct perf_output_handle *handle, 6759 struct perf_sample_data *data) 6760 { 6761 struct perf_event *sampler = event->aux_event; 6762 struct perf_buffer *rb; 6763 unsigned long pad; 6764 long size; 6765 6766 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6767 return; 6768 6769 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6770 if (!rb) 6771 return; 6772 6773 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6774 6775 /* 6776 * An error here means that perf_output_copy() failed (returned a 6777 * non-zero surplus that it didn't copy), which in its current 6778 * enlightened implementation is not possible. If that changes, we'd 6779 * like to know. 6780 */ 6781 if (WARN_ON_ONCE(size < 0)) 6782 goto out_put; 6783 6784 /* 6785 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6786 * perf_prepare_sample_aux(), so should not be more than that. 6787 */ 6788 pad = data->aux_size - size; 6789 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6790 pad = 8; 6791 6792 if (pad) { 6793 u64 zero = 0; 6794 perf_output_copy(handle, &zero, pad); 6795 } 6796 6797 out_put: 6798 ring_buffer_put(rb); 6799 } 6800 6801 static void __perf_event_header__init_id(struct perf_event_header *header, 6802 struct perf_sample_data *data, 6803 struct perf_event *event) 6804 { 6805 u64 sample_type = event->attr.sample_type; 6806 6807 data->type = sample_type; 6808 header->size += event->id_header_size; 6809 6810 if (sample_type & PERF_SAMPLE_TID) { 6811 /* namespace issues */ 6812 data->tid_entry.pid = perf_event_pid(event, current); 6813 data->tid_entry.tid = perf_event_tid(event, current); 6814 } 6815 6816 if (sample_type & PERF_SAMPLE_TIME) 6817 data->time = perf_event_clock(event); 6818 6819 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6820 data->id = primary_event_id(event); 6821 6822 if (sample_type & PERF_SAMPLE_STREAM_ID) 6823 data->stream_id = event->id; 6824 6825 if (sample_type & PERF_SAMPLE_CPU) { 6826 data->cpu_entry.cpu = raw_smp_processor_id(); 6827 data->cpu_entry.reserved = 0; 6828 } 6829 } 6830 6831 void perf_event_header__init_id(struct perf_event_header *header, 6832 struct perf_sample_data *data, 6833 struct perf_event *event) 6834 { 6835 if (event->attr.sample_id_all) 6836 __perf_event_header__init_id(header, data, event); 6837 } 6838 6839 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6840 struct perf_sample_data *data) 6841 { 6842 u64 sample_type = data->type; 6843 6844 if (sample_type & PERF_SAMPLE_TID) 6845 perf_output_put(handle, data->tid_entry); 6846 6847 if (sample_type & PERF_SAMPLE_TIME) 6848 perf_output_put(handle, data->time); 6849 6850 if (sample_type & PERF_SAMPLE_ID) 6851 perf_output_put(handle, data->id); 6852 6853 if (sample_type & PERF_SAMPLE_STREAM_ID) 6854 perf_output_put(handle, data->stream_id); 6855 6856 if (sample_type & PERF_SAMPLE_CPU) 6857 perf_output_put(handle, data->cpu_entry); 6858 6859 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6860 perf_output_put(handle, data->id); 6861 } 6862 6863 void perf_event__output_id_sample(struct perf_event *event, 6864 struct perf_output_handle *handle, 6865 struct perf_sample_data *sample) 6866 { 6867 if (event->attr.sample_id_all) 6868 __perf_event__output_id_sample(handle, sample); 6869 } 6870 6871 static void perf_output_read_one(struct perf_output_handle *handle, 6872 struct perf_event *event, 6873 u64 enabled, u64 running) 6874 { 6875 u64 read_format = event->attr.read_format; 6876 u64 values[4]; 6877 int n = 0; 6878 6879 values[n++] = perf_event_count(event); 6880 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6881 values[n++] = enabled + 6882 atomic64_read(&event->child_total_time_enabled); 6883 } 6884 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6885 values[n++] = running + 6886 atomic64_read(&event->child_total_time_running); 6887 } 6888 if (read_format & PERF_FORMAT_ID) 6889 values[n++] = primary_event_id(event); 6890 6891 __output_copy(handle, values, n * sizeof(u64)); 6892 } 6893 6894 static void perf_output_read_group(struct perf_output_handle *handle, 6895 struct perf_event *event, 6896 u64 enabled, u64 running) 6897 { 6898 struct perf_event *leader = event->group_leader, *sub; 6899 u64 read_format = event->attr.read_format; 6900 u64 values[5]; 6901 int n = 0; 6902 6903 values[n++] = 1 + leader->nr_siblings; 6904 6905 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6906 values[n++] = enabled; 6907 6908 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6909 values[n++] = running; 6910 6911 if ((leader != event) && 6912 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6913 leader->pmu->read(leader); 6914 6915 values[n++] = perf_event_count(leader); 6916 if (read_format & PERF_FORMAT_ID) 6917 values[n++] = primary_event_id(leader); 6918 6919 __output_copy(handle, values, n * sizeof(u64)); 6920 6921 for_each_sibling_event(sub, leader) { 6922 n = 0; 6923 6924 if ((sub != event) && 6925 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6926 sub->pmu->read(sub); 6927 6928 values[n++] = perf_event_count(sub); 6929 if (read_format & PERF_FORMAT_ID) 6930 values[n++] = primary_event_id(sub); 6931 6932 __output_copy(handle, values, n * sizeof(u64)); 6933 } 6934 } 6935 6936 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6937 PERF_FORMAT_TOTAL_TIME_RUNNING) 6938 6939 /* 6940 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6941 * 6942 * The problem is that its both hard and excessively expensive to iterate the 6943 * child list, not to mention that its impossible to IPI the children running 6944 * on another CPU, from interrupt/NMI context. 6945 */ 6946 static void perf_output_read(struct perf_output_handle *handle, 6947 struct perf_event *event) 6948 { 6949 u64 enabled = 0, running = 0, now; 6950 u64 read_format = event->attr.read_format; 6951 6952 /* 6953 * compute total_time_enabled, total_time_running 6954 * based on snapshot values taken when the event 6955 * was last scheduled in. 6956 * 6957 * we cannot simply called update_context_time() 6958 * because of locking issue as we are called in 6959 * NMI context 6960 */ 6961 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6962 calc_timer_values(event, &now, &enabled, &running); 6963 6964 if (event->attr.read_format & PERF_FORMAT_GROUP) 6965 perf_output_read_group(handle, event, enabled, running); 6966 else 6967 perf_output_read_one(handle, event, enabled, running); 6968 } 6969 6970 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6971 { 6972 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6973 } 6974 6975 void perf_output_sample(struct perf_output_handle *handle, 6976 struct perf_event_header *header, 6977 struct perf_sample_data *data, 6978 struct perf_event *event) 6979 { 6980 u64 sample_type = data->type; 6981 6982 perf_output_put(handle, *header); 6983 6984 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6985 perf_output_put(handle, data->id); 6986 6987 if (sample_type & PERF_SAMPLE_IP) 6988 perf_output_put(handle, data->ip); 6989 6990 if (sample_type & PERF_SAMPLE_TID) 6991 perf_output_put(handle, data->tid_entry); 6992 6993 if (sample_type & PERF_SAMPLE_TIME) 6994 perf_output_put(handle, data->time); 6995 6996 if (sample_type & PERF_SAMPLE_ADDR) 6997 perf_output_put(handle, data->addr); 6998 6999 if (sample_type & PERF_SAMPLE_ID) 7000 perf_output_put(handle, data->id); 7001 7002 if (sample_type & PERF_SAMPLE_STREAM_ID) 7003 perf_output_put(handle, data->stream_id); 7004 7005 if (sample_type & PERF_SAMPLE_CPU) 7006 perf_output_put(handle, data->cpu_entry); 7007 7008 if (sample_type & PERF_SAMPLE_PERIOD) 7009 perf_output_put(handle, data->period); 7010 7011 if (sample_type & PERF_SAMPLE_READ) 7012 perf_output_read(handle, event); 7013 7014 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7015 int size = 1; 7016 7017 size += data->callchain->nr; 7018 size *= sizeof(u64); 7019 __output_copy(handle, data->callchain, size); 7020 } 7021 7022 if (sample_type & PERF_SAMPLE_RAW) { 7023 struct perf_raw_record *raw = data->raw; 7024 7025 if (raw) { 7026 struct perf_raw_frag *frag = &raw->frag; 7027 7028 perf_output_put(handle, raw->size); 7029 do { 7030 if (frag->copy) { 7031 __output_custom(handle, frag->copy, 7032 frag->data, frag->size); 7033 } else { 7034 __output_copy(handle, frag->data, 7035 frag->size); 7036 } 7037 if (perf_raw_frag_last(frag)) 7038 break; 7039 frag = frag->next; 7040 } while (1); 7041 if (frag->pad) 7042 __output_skip(handle, NULL, frag->pad); 7043 } else { 7044 struct { 7045 u32 size; 7046 u32 data; 7047 } raw = { 7048 .size = sizeof(u32), 7049 .data = 0, 7050 }; 7051 perf_output_put(handle, raw); 7052 } 7053 } 7054 7055 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7056 if (data->br_stack) { 7057 size_t size; 7058 7059 size = data->br_stack->nr 7060 * sizeof(struct perf_branch_entry); 7061 7062 perf_output_put(handle, data->br_stack->nr); 7063 if (perf_sample_save_hw_index(event)) 7064 perf_output_put(handle, data->br_stack->hw_idx); 7065 perf_output_copy(handle, data->br_stack->entries, size); 7066 } else { 7067 /* 7068 * we always store at least the value of nr 7069 */ 7070 u64 nr = 0; 7071 perf_output_put(handle, nr); 7072 } 7073 } 7074 7075 if (sample_type & PERF_SAMPLE_REGS_USER) { 7076 u64 abi = data->regs_user.abi; 7077 7078 /* 7079 * If there are no regs to dump, notice it through 7080 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7081 */ 7082 perf_output_put(handle, abi); 7083 7084 if (abi) { 7085 u64 mask = event->attr.sample_regs_user; 7086 perf_output_sample_regs(handle, 7087 data->regs_user.regs, 7088 mask); 7089 } 7090 } 7091 7092 if (sample_type & PERF_SAMPLE_STACK_USER) { 7093 perf_output_sample_ustack(handle, 7094 data->stack_user_size, 7095 data->regs_user.regs); 7096 } 7097 7098 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7099 perf_output_put(handle, data->weight.full); 7100 7101 if (sample_type & PERF_SAMPLE_DATA_SRC) 7102 perf_output_put(handle, data->data_src.val); 7103 7104 if (sample_type & PERF_SAMPLE_TRANSACTION) 7105 perf_output_put(handle, data->txn); 7106 7107 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7108 u64 abi = data->regs_intr.abi; 7109 /* 7110 * If there are no regs to dump, notice it through 7111 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7112 */ 7113 perf_output_put(handle, abi); 7114 7115 if (abi) { 7116 u64 mask = event->attr.sample_regs_intr; 7117 7118 perf_output_sample_regs(handle, 7119 data->regs_intr.regs, 7120 mask); 7121 } 7122 } 7123 7124 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7125 perf_output_put(handle, data->phys_addr); 7126 7127 if (sample_type & PERF_SAMPLE_CGROUP) 7128 perf_output_put(handle, data->cgroup); 7129 7130 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7131 perf_output_put(handle, data->data_page_size); 7132 7133 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7134 perf_output_put(handle, data->code_page_size); 7135 7136 if (sample_type & PERF_SAMPLE_AUX) { 7137 perf_output_put(handle, data->aux_size); 7138 7139 if (data->aux_size) 7140 perf_aux_sample_output(event, handle, data); 7141 } 7142 7143 if (!event->attr.watermark) { 7144 int wakeup_events = event->attr.wakeup_events; 7145 7146 if (wakeup_events) { 7147 struct perf_buffer *rb = handle->rb; 7148 int events = local_inc_return(&rb->events); 7149 7150 if (events >= wakeup_events) { 7151 local_sub(wakeup_events, &rb->events); 7152 local_inc(&rb->wakeup); 7153 } 7154 } 7155 } 7156 } 7157 7158 static u64 perf_virt_to_phys(u64 virt) 7159 { 7160 u64 phys_addr = 0; 7161 7162 if (!virt) 7163 return 0; 7164 7165 if (virt >= TASK_SIZE) { 7166 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7167 if (virt_addr_valid((void *)(uintptr_t)virt) && 7168 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7169 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7170 } else { 7171 /* 7172 * Walking the pages tables for user address. 7173 * Interrupts are disabled, so it prevents any tear down 7174 * of the page tables. 7175 * Try IRQ-safe get_user_page_fast_only first. 7176 * If failed, leave phys_addr as 0. 7177 */ 7178 if (current->mm != NULL) { 7179 struct page *p; 7180 7181 pagefault_disable(); 7182 if (get_user_page_fast_only(virt, 0, &p)) { 7183 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7184 put_page(p); 7185 } 7186 pagefault_enable(); 7187 } 7188 } 7189 7190 return phys_addr; 7191 } 7192 7193 /* 7194 * Return the pagetable size of a given virtual address. 7195 */ 7196 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7197 { 7198 u64 size = 0; 7199 7200 #ifdef CONFIG_HAVE_FAST_GUP 7201 pgd_t *pgdp, pgd; 7202 p4d_t *p4dp, p4d; 7203 pud_t *pudp, pud; 7204 pmd_t *pmdp, pmd; 7205 pte_t *ptep, pte; 7206 7207 pgdp = pgd_offset(mm, addr); 7208 pgd = READ_ONCE(*pgdp); 7209 if (pgd_none(pgd)) 7210 return 0; 7211 7212 if (pgd_leaf(pgd)) 7213 return pgd_leaf_size(pgd); 7214 7215 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7216 p4d = READ_ONCE(*p4dp); 7217 if (!p4d_present(p4d)) 7218 return 0; 7219 7220 if (p4d_leaf(p4d)) 7221 return p4d_leaf_size(p4d); 7222 7223 pudp = pud_offset_lockless(p4dp, p4d, addr); 7224 pud = READ_ONCE(*pudp); 7225 if (!pud_present(pud)) 7226 return 0; 7227 7228 if (pud_leaf(pud)) 7229 return pud_leaf_size(pud); 7230 7231 pmdp = pmd_offset_lockless(pudp, pud, addr); 7232 pmd = READ_ONCE(*pmdp); 7233 if (!pmd_present(pmd)) 7234 return 0; 7235 7236 if (pmd_leaf(pmd)) 7237 return pmd_leaf_size(pmd); 7238 7239 ptep = pte_offset_map(&pmd, addr); 7240 pte = ptep_get_lockless(ptep); 7241 if (pte_present(pte)) 7242 size = pte_leaf_size(pte); 7243 pte_unmap(ptep); 7244 #endif /* CONFIG_HAVE_FAST_GUP */ 7245 7246 return size; 7247 } 7248 7249 static u64 perf_get_page_size(unsigned long addr) 7250 { 7251 struct mm_struct *mm; 7252 unsigned long flags; 7253 u64 size; 7254 7255 if (!addr) 7256 return 0; 7257 7258 /* 7259 * Software page-table walkers must disable IRQs, 7260 * which prevents any tear down of the page tables. 7261 */ 7262 local_irq_save(flags); 7263 7264 mm = current->mm; 7265 if (!mm) { 7266 /* 7267 * For kernel threads and the like, use init_mm so that 7268 * we can find kernel memory. 7269 */ 7270 mm = &init_mm; 7271 } 7272 7273 size = perf_get_pgtable_size(mm, addr); 7274 7275 local_irq_restore(flags); 7276 7277 return size; 7278 } 7279 7280 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7281 7282 struct perf_callchain_entry * 7283 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7284 { 7285 bool kernel = !event->attr.exclude_callchain_kernel; 7286 bool user = !event->attr.exclude_callchain_user; 7287 /* Disallow cross-task user callchains. */ 7288 bool crosstask = event->ctx->task && event->ctx->task != current; 7289 const u32 max_stack = event->attr.sample_max_stack; 7290 struct perf_callchain_entry *callchain; 7291 7292 if (!kernel && !user) 7293 return &__empty_callchain; 7294 7295 callchain = get_perf_callchain(regs, 0, kernel, user, 7296 max_stack, crosstask, true); 7297 return callchain ?: &__empty_callchain; 7298 } 7299 7300 void perf_prepare_sample(struct perf_event_header *header, 7301 struct perf_sample_data *data, 7302 struct perf_event *event, 7303 struct pt_regs *regs) 7304 { 7305 u64 sample_type = event->attr.sample_type; 7306 7307 header->type = PERF_RECORD_SAMPLE; 7308 header->size = sizeof(*header) + event->header_size; 7309 7310 header->misc = 0; 7311 header->misc |= perf_misc_flags(regs); 7312 7313 __perf_event_header__init_id(header, data, event); 7314 7315 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7316 data->ip = perf_instruction_pointer(regs); 7317 7318 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7319 int size = 1; 7320 7321 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7322 data->callchain = perf_callchain(event, regs); 7323 7324 size += data->callchain->nr; 7325 7326 header->size += size * sizeof(u64); 7327 } 7328 7329 if (sample_type & PERF_SAMPLE_RAW) { 7330 struct perf_raw_record *raw = data->raw; 7331 int size; 7332 7333 if (raw) { 7334 struct perf_raw_frag *frag = &raw->frag; 7335 u32 sum = 0; 7336 7337 do { 7338 sum += frag->size; 7339 if (perf_raw_frag_last(frag)) 7340 break; 7341 frag = frag->next; 7342 } while (1); 7343 7344 size = round_up(sum + sizeof(u32), sizeof(u64)); 7345 raw->size = size - sizeof(u32); 7346 frag->pad = raw->size - sum; 7347 } else { 7348 size = sizeof(u64); 7349 } 7350 7351 header->size += size; 7352 } 7353 7354 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7355 int size = sizeof(u64); /* nr */ 7356 if (data->br_stack) { 7357 if (perf_sample_save_hw_index(event)) 7358 size += sizeof(u64); 7359 7360 size += data->br_stack->nr 7361 * sizeof(struct perf_branch_entry); 7362 } 7363 header->size += size; 7364 } 7365 7366 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7367 perf_sample_regs_user(&data->regs_user, regs); 7368 7369 if (sample_type & PERF_SAMPLE_REGS_USER) { 7370 /* regs dump ABI info */ 7371 int size = sizeof(u64); 7372 7373 if (data->regs_user.regs) { 7374 u64 mask = event->attr.sample_regs_user; 7375 size += hweight64(mask) * sizeof(u64); 7376 } 7377 7378 header->size += size; 7379 } 7380 7381 if (sample_type & PERF_SAMPLE_STACK_USER) { 7382 /* 7383 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7384 * processed as the last one or have additional check added 7385 * in case new sample type is added, because we could eat 7386 * up the rest of the sample size. 7387 */ 7388 u16 stack_size = event->attr.sample_stack_user; 7389 u16 size = sizeof(u64); 7390 7391 stack_size = perf_sample_ustack_size(stack_size, header->size, 7392 data->regs_user.regs); 7393 7394 /* 7395 * If there is something to dump, add space for the dump 7396 * itself and for the field that tells the dynamic size, 7397 * which is how many have been actually dumped. 7398 */ 7399 if (stack_size) 7400 size += sizeof(u64) + stack_size; 7401 7402 data->stack_user_size = stack_size; 7403 header->size += size; 7404 } 7405 7406 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7407 /* regs dump ABI info */ 7408 int size = sizeof(u64); 7409 7410 perf_sample_regs_intr(&data->regs_intr, regs); 7411 7412 if (data->regs_intr.regs) { 7413 u64 mask = event->attr.sample_regs_intr; 7414 7415 size += hweight64(mask) * sizeof(u64); 7416 } 7417 7418 header->size += size; 7419 } 7420 7421 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7422 data->phys_addr = perf_virt_to_phys(data->addr); 7423 7424 #ifdef CONFIG_CGROUP_PERF 7425 if (sample_type & PERF_SAMPLE_CGROUP) { 7426 struct cgroup *cgrp; 7427 7428 /* protected by RCU */ 7429 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7430 data->cgroup = cgroup_id(cgrp); 7431 } 7432 #endif 7433 7434 /* 7435 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7436 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7437 * but the value will not dump to the userspace. 7438 */ 7439 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7440 data->data_page_size = perf_get_page_size(data->addr); 7441 7442 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7443 data->code_page_size = perf_get_page_size(data->ip); 7444 7445 if (sample_type & PERF_SAMPLE_AUX) { 7446 u64 size; 7447 7448 header->size += sizeof(u64); /* size */ 7449 7450 /* 7451 * Given the 16bit nature of header::size, an AUX sample can 7452 * easily overflow it, what with all the preceding sample bits. 7453 * Make sure this doesn't happen by using up to U16_MAX bytes 7454 * per sample in total (rounded down to 8 byte boundary). 7455 */ 7456 size = min_t(size_t, U16_MAX - header->size, 7457 event->attr.aux_sample_size); 7458 size = rounddown(size, 8); 7459 size = perf_prepare_sample_aux(event, data, size); 7460 7461 WARN_ON_ONCE(size + header->size > U16_MAX); 7462 header->size += size; 7463 } 7464 /* 7465 * If you're adding more sample types here, you likely need to do 7466 * something about the overflowing header::size, like repurpose the 7467 * lowest 3 bits of size, which should be always zero at the moment. 7468 * This raises a more important question, do we really need 512k sized 7469 * samples and why, so good argumentation is in order for whatever you 7470 * do here next. 7471 */ 7472 WARN_ON_ONCE(header->size & 7); 7473 } 7474 7475 static __always_inline int 7476 __perf_event_output(struct perf_event *event, 7477 struct perf_sample_data *data, 7478 struct pt_regs *regs, 7479 int (*output_begin)(struct perf_output_handle *, 7480 struct perf_sample_data *, 7481 struct perf_event *, 7482 unsigned int)) 7483 { 7484 struct perf_output_handle handle; 7485 struct perf_event_header header; 7486 int err; 7487 7488 /* protect the callchain buffers */ 7489 rcu_read_lock(); 7490 7491 perf_prepare_sample(&header, data, event, regs); 7492 7493 err = output_begin(&handle, data, event, header.size); 7494 if (err) 7495 goto exit; 7496 7497 perf_output_sample(&handle, &header, data, event); 7498 7499 perf_output_end(&handle); 7500 7501 exit: 7502 rcu_read_unlock(); 7503 return err; 7504 } 7505 7506 void 7507 perf_event_output_forward(struct perf_event *event, 7508 struct perf_sample_data *data, 7509 struct pt_regs *regs) 7510 { 7511 __perf_event_output(event, data, regs, perf_output_begin_forward); 7512 } 7513 7514 void 7515 perf_event_output_backward(struct perf_event *event, 7516 struct perf_sample_data *data, 7517 struct pt_regs *regs) 7518 { 7519 __perf_event_output(event, data, regs, perf_output_begin_backward); 7520 } 7521 7522 int 7523 perf_event_output(struct perf_event *event, 7524 struct perf_sample_data *data, 7525 struct pt_regs *regs) 7526 { 7527 return __perf_event_output(event, data, regs, perf_output_begin); 7528 } 7529 7530 /* 7531 * read event_id 7532 */ 7533 7534 struct perf_read_event { 7535 struct perf_event_header header; 7536 7537 u32 pid; 7538 u32 tid; 7539 }; 7540 7541 static void 7542 perf_event_read_event(struct perf_event *event, 7543 struct task_struct *task) 7544 { 7545 struct perf_output_handle handle; 7546 struct perf_sample_data sample; 7547 struct perf_read_event read_event = { 7548 .header = { 7549 .type = PERF_RECORD_READ, 7550 .misc = 0, 7551 .size = sizeof(read_event) + event->read_size, 7552 }, 7553 .pid = perf_event_pid(event, task), 7554 .tid = perf_event_tid(event, task), 7555 }; 7556 int ret; 7557 7558 perf_event_header__init_id(&read_event.header, &sample, event); 7559 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7560 if (ret) 7561 return; 7562 7563 perf_output_put(&handle, read_event); 7564 perf_output_read(&handle, event); 7565 perf_event__output_id_sample(event, &handle, &sample); 7566 7567 perf_output_end(&handle); 7568 } 7569 7570 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7571 7572 static void 7573 perf_iterate_ctx(struct perf_event_context *ctx, 7574 perf_iterate_f output, 7575 void *data, bool all) 7576 { 7577 struct perf_event *event; 7578 7579 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7580 if (!all) { 7581 if (event->state < PERF_EVENT_STATE_INACTIVE) 7582 continue; 7583 if (!event_filter_match(event)) 7584 continue; 7585 } 7586 7587 output(event, data); 7588 } 7589 } 7590 7591 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7592 { 7593 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7594 struct perf_event *event; 7595 7596 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7597 /* 7598 * Skip events that are not fully formed yet; ensure that 7599 * if we observe event->ctx, both event and ctx will be 7600 * complete enough. See perf_install_in_context(). 7601 */ 7602 if (!smp_load_acquire(&event->ctx)) 7603 continue; 7604 7605 if (event->state < PERF_EVENT_STATE_INACTIVE) 7606 continue; 7607 if (!event_filter_match(event)) 7608 continue; 7609 output(event, data); 7610 } 7611 } 7612 7613 /* 7614 * Iterate all events that need to receive side-band events. 7615 * 7616 * For new callers; ensure that account_pmu_sb_event() includes 7617 * your event, otherwise it might not get delivered. 7618 */ 7619 static void 7620 perf_iterate_sb(perf_iterate_f output, void *data, 7621 struct perf_event_context *task_ctx) 7622 { 7623 struct perf_event_context *ctx; 7624 int ctxn; 7625 7626 rcu_read_lock(); 7627 preempt_disable(); 7628 7629 /* 7630 * If we have task_ctx != NULL we only notify the task context itself. 7631 * The task_ctx is set only for EXIT events before releasing task 7632 * context. 7633 */ 7634 if (task_ctx) { 7635 perf_iterate_ctx(task_ctx, output, data, false); 7636 goto done; 7637 } 7638 7639 perf_iterate_sb_cpu(output, data); 7640 7641 for_each_task_context_nr(ctxn) { 7642 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7643 if (ctx) 7644 perf_iterate_ctx(ctx, output, data, false); 7645 } 7646 done: 7647 preempt_enable(); 7648 rcu_read_unlock(); 7649 } 7650 7651 /* 7652 * Clear all file-based filters at exec, they'll have to be 7653 * re-instated when/if these objects are mmapped again. 7654 */ 7655 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7656 { 7657 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7658 struct perf_addr_filter *filter; 7659 unsigned int restart = 0, count = 0; 7660 unsigned long flags; 7661 7662 if (!has_addr_filter(event)) 7663 return; 7664 7665 raw_spin_lock_irqsave(&ifh->lock, flags); 7666 list_for_each_entry(filter, &ifh->list, entry) { 7667 if (filter->path.dentry) { 7668 event->addr_filter_ranges[count].start = 0; 7669 event->addr_filter_ranges[count].size = 0; 7670 restart++; 7671 } 7672 7673 count++; 7674 } 7675 7676 if (restart) 7677 event->addr_filters_gen++; 7678 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7679 7680 if (restart) 7681 perf_event_stop(event, 1); 7682 } 7683 7684 void perf_event_exec(void) 7685 { 7686 struct perf_event_context *ctx; 7687 int ctxn; 7688 7689 for_each_task_context_nr(ctxn) { 7690 perf_event_enable_on_exec(ctxn); 7691 perf_event_remove_on_exec(ctxn); 7692 7693 rcu_read_lock(); 7694 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7695 if (ctx) { 7696 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7697 NULL, true); 7698 } 7699 rcu_read_unlock(); 7700 } 7701 } 7702 7703 struct remote_output { 7704 struct perf_buffer *rb; 7705 int err; 7706 }; 7707 7708 static void __perf_event_output_stop(struct perf_event *event, void *data) 7709 { 7710 struct perf_event *parent = event->parent; 7711 struct remote_output *ro = data; 7712 struct perf_buffer *rb = ro->rb; 7713 struct stop_event_data sd = { 7714 .event = event, 7715 }; 7716 7717 if (!has_aux(event)) 7718 return; 7719 7720 if (!parent) 7721 parent = event; 7722 7723 /* 7724 * In case of inheritance, it will be the parent that links to the 7725 * ring-buffer, but it will be the child that's actually using it. 7726 * 7727 * We are using event::rb to determine if the event should be stopped, 7728 * however this may race with ring_buffer_attach() (through set_output), 7729 * which will make us skip the event that actually needs to be stopped. 7730 * So ring_buffer_attach() has to stop an aux event before re-assigning 7731 * its rb pointer. 7732 */ 7733 if (rcu_dereference(parent->rb) == rb) 7734 ro->err = __perf_event_stop(&sd); 7735 } 7736 7737 static int __perf_pmu_output_stop(void *info) 7738 { 7739 struct perf_event *event = info; 7740 struct pmu *pmu = event->ctx->pmu; 7741 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7742 struct remote_output ro = { 7743 .rb = event->rb, 7744 }; 7745 7746 rcu_read_lock(); 7747 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7748 if (cpuctx->task_ctx) 7749 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7750 &ro, false); 7751 rcu_read_unlock(); 7752 7753 return ro.err; 7754 } 7755 7756 static void perf_pmu_output_stop(struct perf_event *event) 7757 { 7758 struct perf_event *iter; 7759 int err, cpu; 7760 7761 restart: 7762 rcu_read_lock(); 7763 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7764 /* 7765 * For per-CPU events, we need to make sure that neither they 7766 * nor their children are running; for cpu==-1 events it's 7767 * sufficient to stop the event itself if it's active, since 7768 * it can't have children. 7769 */ 7770 cpu = iter->cpu; 7771 if (cpu == -1) 7772 cpu = READ_ONCE(iter->oncpu); 7773 7774 if (cpu == -1) 7775 continue; 7776 7777 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7778 if (err == -EAGAIN) { 7779 rcu_read_unlock(); 7780 goto restart; 7781 } 7782 } 7783 rcu_read_unlock(); 7784 } 7785 7786 /* 7787 * task tracking -- fork/exit 7788 * 7789 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7790 */ 7791 7792 struct perf_task_event { 7793 struct task_struct *task; 7794 struct perf_event_context *task_ctx; 7795 7796 struct { 7797 struct perf_event_header header; 7798 7799 u32 pid; 7800 u32 ppid; 7801 u32 tid; 7802 u32 ptid; 7803 u64 time; 7804 } event_id; 7805 }; 7806 7807 static int perf_event_task_match(struct perf_event *event) 7808 { 7809 return event->attr.comm || event->attr.mmap || 7810 event->attr.mmap2 || event->attr.mmap_data || 7811 event->attr.task; 7812 } 7813 7814 static void perf_event_task_output(struct perf_event *event, 7815 void *data) 7816 { 7817 struct perf_task_event *task_event = data; 7818 struct perf_output_handle handle; 7819 struct perf_sample_data sample; 7820 struct task_struct *task = task_event->task; 7821 int ret, size = task_event->event_id.header.size; 7822 7823 if (!perf_event_task_match(event)) 7824 return; 7825 7826 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7827 7828 ret = perf_output_begin(&handle, &sample, event, 7829 task_event->event_id.header.size); 7830 if (ret) 7831 goto out; 7832 7833 task_event->event_id.pid = perf_event_pid(event, task); 7834 task_event->event_id.tid = perf_event_tid(event, task); 7835 7836 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7837 task_event->event_id.ppid = perf_event_pid(event, 7838 task->real_parent); 7839 task_event->event_id.ptid = perf_event_pid(event, 7840 task->real_parent); 7841 } else { /* PERF_RECORD_FORK */ 7842 task_event->event_id.ppid = perf_event_pid(event, current); 7843 task_event->event_id.ptid = perf_event_tid(event, current); 7844 } 7845 7846 task_event->event_id.time = perf_event_clock(event); 7847 7848 perf_output_put(&handle, task_event->event_id); 7849 7850 perf_event__output_id_sample(event, &handle, &sample); 7851 7852 perf_output_end(&handle); 7853 out: 7854 task_event->event_id.header.size = size; 7855 } 7856 7857 static void perf_event_task(struct task_struct *task, 7858 struct perf_event_context *task_ctx, 7859 int new) 7860 { 7861 struct perf_task_event task_event; 7862 7863 if (!atomic_read(&nr_comm_events) && 7864 !atomic_read(&nr_mmap_events) && 7865 !atomic_read(&nr_task_events)) 7866 return; 7867 7868 task_event = (struct perf_task_event){ 7869 .task = task, 7870 .task_ctx = task_ctx, 7871 .event_id = { 7872 .header = { 7873 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7874 .misc = 0, 7875 .size = sizeof(task_event.event_id), 7876 }, 7877 /* .pid */ 7878 /* .ppid */ 7879 /* .tid */ 7880 /* .ptid */ 7881 /* .time */ 7882 }, 7883 }; 7884 7885 perf_iterate_sb(perf_event_task_output, 7886 &task_event, 7887 task_ctx); 7888 } 7889 7890 void perf_event_fork(struct task_struct *task) 7891 { 7892 perf_event_task(task, NULL, 1); 7893 perf_event_namespaces(task); 7894 } 7895 7896 /* 7897 * comm tracking 7898 */ 7899 7900 struct perf_comm_event { 7901 struct task_struct *task; 7902 char *comm; 7903 int comm_size; 7904 7905 struct { 7906 struct perf_event_header header; 7907 7908 u32 pid; 7909 u32 tid; 7910 } event_id; 7911 }; 7912 7913 static int perf_event_comm_match(struct perf_event *event) 7914 { 7915 return event->attr.comm; 7916 } 7917 7918 static void perf_event_comm_output(struct perf_event *event, 7919 void *data) 7920 { 7921 struct perf_comm_event *comm_event = data; 7922 struct perf_output_handle handle; 7923 struct perf_sample_data sample; 7924 int size = comm_event->event_id.header.size; 7925 int ret; 7926 7927 if (!perf_event_comm_match(event)) 7928 return; 7929 7930 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7931 ret = perf_output_begin(&handle, &sample, event, 7932 comm_event->event_id.header.size); 7933 7934 if (ret) 7935 goto out; 7936 7937 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7938 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7939 7940 perf_output_put(&handle, comm_event->event_id); 7941 __output_copy(&handle, comm_event->comm, 7942 comm_event->comm_size); 7943 7944 perf_event__output_id_sample(event, &handle, &sample); 7945 7946 perf_output_end(&handle); 7947 out: 7948 comm_event->event_id.header.size = size; 7949 } 7950 7951 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7952 { 7953 char comm[TASK_COMM_LEN]; 7954 unsigned int size; 7955 7956 memset(comm, 0, sizeof(comm)); 7957 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7958 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7959 7960 comm_event->comm = comm; 7961 comm_event->comm_size = size; 7962 7963 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7964 7965 perf_iterate_sb(perf_event_comm_output, 7966 comm_event, 7967 NULL); 7968 } 7969 7970 void perf_event_comm(struct task_struct *task, bool exec) 7971 { 7972 struct perf_comm_event comm_event; 7973 7974 if (!atomic_read(&nr_comm_events)) 7975 return; 7976 7977 comm_event = (struct perf_comm_event){ 7978 .task = task, 7979 /* .comm */ 7980 /* .comm_size */ 7981 .event_id = { 7982 .header = { 7983 .type = PERF_RECORD_COMM, 7984 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7985 /* .size */ 7986 }, 7987 /* .pid */ 7988 /* .tid */ 7989 }, 7990 }; 7991 7992 perf_event_comm_event(&comm_event); 7993 } 7994 7995 /* 7996 * namespaces tracking 7997 */ 7998 7999 struct perf_namespaces_event { 8000 struct task_struct *task; 8001 8002 struct { 8003 struct perf_event_header header; 8004 8005 u32 pid; 8006 u32 tid; 8007 u64 nr_namespaces; 8008 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8009 } event_id; 8010 }; 8011 8012 static int perf_event_namespaces_match(struct perf_event *event) 8013 { 8014 return event->attr.namespaces; 8015 } 8016 8017 static void perf_event_namespaces_output(struct perf_event *event, 8018 void *data) 8019 { 8020 struct perf_namespaces_event *namespaces_event = data; 8021 struct perf_output_handle handle; 8022 struct perf_sample_data sample; 8023 u16 header_size = namespaces_event->event_id.header.size; 8024 int ret; 8025 8026 if (!perf_event_namespaces_match(event)) 8027 return; 8028 8029 perf_event_header__init_id(&namespaces_event->event_id.header, 8030 &sample, event); 8031 ret = perf_output_begin(&handle, &sample, event, 8032 namespaces_event->event_id.header.size); 8033 if (ret) 8034 goto out; 8035 8036 namespaces_event->event_id.pid = perf_event_pid(event, 8037 namespaces_event->task); 8038 namespaces_event->event_id.tid = perf_event_tid(event, 8039 namespaces_event->task); 8040 8041 perf_output_put(&handle, namespaces_event->event_id); 8042 8043 perf_event__output_id_sample(event, &handle, &sample); 8044 8045 perf_output_end(&handle); 8046 out: 8047 namespaces_event->event_id.header.size = header_size; 8048 } 8049 8050 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8051 struct task_struct *task, 8052 const struct proc_ns_operations *ns_ops) 8053 { 8054 struct path ns_path; 8055 struct inode *ns_inode; 8056 int error; 8057 8058 error = ns_get_path(&ns_path, task, ns_ops); 8059 if (!error) { 8060 ns_inode = ns_path.dentry->d_inode; 8061 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8062 ns_link_info->ino = ns_inode->i_ino; 8063 path_put(&ns_path); 8064 } 8065 } 8066 8067 void perf_event_namespaces(struct task_struct *task) 8068 { 8069 struct perf_namespaces_event namespaces_event; 8070 struct perf_ns_link_info *ns_link_info; 8071 8072 if (!atomic_read(&nr_namespaces_events)) 8073 return; 8074 8075 namespaces_event = (struct perf_namespaces_event){ 8076 .task = task, 8077 .event_id = { 8078 .header = { 8079 .type = PERF_RECORD_NAMESPACES, 8080 .misc = 0, 8081 .size = sizeof(namespaces_event.event_id), 8082 }, 8083 /* .pid */ 8084 /* .tid */ 8085 .nr_namespaces = NR_NAMESPACES, 8086 /* .link_info[NR_NAMESPACES] */ 8087 }, 8088 }; 8089 8090 ns_link_info = namespaces_event.event_id.link_info; 8091 8092 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8093 task, &mntns_operations); 8094 8095 #ifdef CONFIG_USER_NS 8096 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8097 task, &userns_operations); 8098 #endif 8099 #ifdef CONFIG_NET_NS 8100 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8101 task, &netns_operations); 8102 #endif 8103 #ifdef CONFIG_UTS_NS 8104 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8105 task, &utsns_operations); 8106 #endif 8107 #ifdef CONFIG_IPC_NS 8108 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8109 task, &ipcns_operations); 8110 #endif 8111 #ifdef CONFIG_PID_NS 8112 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8113 task, &pidns_operations); 8114 #endif 8115 #ifdef CONFIG_CGROUPS 8116 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8117 task, &cgroupns_operations); 8118 #endif 8119 8120 perf_iterate_sb(perf_event_namespaces_output, 8121 &namespaces_event, 8122 NULL); 8123 } 8124 8125 /* 8126 * cgroup tracking 8127 */ 8128 #ifdef CONFIG_CGROUP_PERF 8129 8130 struct perf_cgroup_event { 8131 char *path; 8132 int path_size; 8133 struct { 8134 struct perf_event_header header; 8135 u64 id; 8136 char path[]; 8137 } event_id; 8138 }; 8139 8140 static int perf_event_cgroup_match(struct perf_event *event) 8141 { 8142 return event->attr.cgroup; 8143 } 8144 8145 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8146 { 8147 struct perf_cgroup_event *cgroup_event = data; 8148 struct perf_output_handle handle; 8149 struct perf_sample_data sample; 8150 u16 header_size = cgroup_event->event_id.header.size; 8151 int ret; 8152 8153 if (!perf_event_cgroup_match(event)) 8154 return; 8155 8156 perf_event_header__init_id(&cgroup_event->event_id.header, 8157 &sample, event); 8158 ret = perf_output_begin(&handle, &sample, event, 8159 cgroup_event->event_id.header.size); 8160 if (ret) 8161 goto out; 8162 8163 perf_output_put(&handle, cgroup_event->event_id); 8164 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8165 8166 perf_event__output_id_sample(event, &handle, &sample); 8167 8168 perf_output_end(&handle); 8169 out: 8170 cgroup_event->event_id.header.size = header_size; 8171 } 8172 8173 static void perf_event_cgroup(struct cgroup *cgrp) 8174 { 8175 struct perf_cgroup_event cgroup_event; 8176 char path_enomem[16] = "//enomem"; 8177 char *pathname; 8178 size_t size; 8179 8180 if (!atomic_read(&nr_cgroup_events)) 8181 return; 8182 8183 cgroup_event = (struct perf_cgroup_event){ 8184 .event_id = { 8185 .header = { 8186 .type = PERF_RECORD_CGROUP, 8187 .misc = 0, 8188 .size = sizeof(cgroup_event.event_id), 8189 }, 8190 .id = cgroup_id(cgrp), 8191 }, 8192 }; 8193 8194 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8195 if (pathname == NULL) { 8196 cgroup_event.path = path_enomem; 8197 } else { 8198 /* just to be sure to have enough space for alignment */ 8199 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8200 cgroup_event.path = pathname; 8201 } 8202 8203 /* 8204 * Since our buffer works in 8 byte units we need to align our string 8205 * size to a multiple of 8. However, we must guarantee the tail end is 8206 * zero'd out to avoid leaking random bits to userspace. 8207 */ 8208 size = strlen(cgroup_event.path) + 1; 8209 while (!IS_ALIGNED(size, sizeof(u64))) 8210 cgroup_event.path[size++] = '\0'; 8211 8212 cgroup_event.event_id.header.size += size; 8213 cgroup_event.path_size = size; 8214 8215 perf_iterate_sb(perf_event_cgroup_output, 8216 &cgroup_event, 8217 NULL); 8218 8219 kfree(pathname); 8220 } 8221 8222 #endif 8223 8224 /* 8225 * mmap tracking 8226 */ 8227 8228 struct perf_mmap_event { 8229 struct vm_area_struct *vma; 8230 8231 const char *file_name; 8232 int file_size; 8233 int maj, min; 8234 u64 ino; 8235 u64 ino_generation; 8236 u32 prot, flags; 8237 u8 build_id[BUILD_ID_SIZE_MAX]; 8238 u32 build_id_size; 8239 8240 struct { 8241 struct perf_event_header header; 8242 8243 u32 pid; 8244 u32 tid; 8245 u64 start; 8246 u64 len; 8247 u64 pgoff; 8248 } event_id; 8249 }; 8250 8251 static int perf_event_mmap_match(struct perf_event *event, 8252 void *data) 8253 { 8254 struct perf_mmap_event *mmap_event = data; 8255 struct vm_area_struct *vma = mmap_event->vma; 8256 int executable = vma->vm_flags & VM_EXEC; 8257 8258 return (!executable && event->attr.mmap_data) || 8259 (executable && (event->attr.mmap || event->attr.mmap2)); 8260 } 8261 8262 static void perf_event_mmap_output(struct perf_event *event, 8263 void *data) 8264 { 8265 struct perf_mmap_event *mmap_event = data; 8266 struct perf_output_handle handle; 8267 struct perf_sample_data sample; 8268 int size = mmap_event->event_id.header.size; 8269 u32 type = mmap_event->event_id.header.type; 8270 bool use_build_id; 8271 int ret; 8272 8273 if (!perf_event_mmap_match(event, data)) 8274 return; 8275 8276 if (event->attr.mmap2) { 8277 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8278 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8279 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8280 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8281 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8282 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8283 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8284 } 8285 8286 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8287 ret = perf_output_begin(&handle, &sample, event, 8288 mmap_event->event_id.header.size); 8289 if (ret) 8290 goto out; 8291 8292 mmap_event->event_id.pid = perf_event_pid(event, current); 8293 mmap_event->event_id.tid = perf_event_tid(event, current); 8294 8295 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8296 8297 if (event->attr.mmap2 && use_build_id) 8298 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8299 8300 perf_output_put(&handle, mmap_event->event_id); 8301 8302 if (event->attr.mmap2) { 8303 if (use_build_id) { 8304 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8305 8306 __output_copy(&handle, size, 4); 8307 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8308 } else { 8309 perf_output_put(&handle, mmap_event->maj); 8310 perf_output_put(&handle, mmap_event->min); 8311 perf_output_put(&handle, mmap_event->ino); 8312 perf_output_put(&handle, mmap_event->ino_generation); 8313 } 8314 perf_output_put(&handle, mmap_event->prot); 8315 perf_output_put(&handle, mmap_event->flags); 8316 } 8317 8318 __output_copy(&handle, mmap_event->file_name, 8319 mmap_event->file_size); 8320 8321 perf_event__output_id_sample(event, &handle, &sample); 8322 8323 perf_output_end(&handle); 8324 out: 8325 mmap_event->event_id.header.size = size; 8326 mmap_event->event_id.header.type = type; 8327 } 8328 8329 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8330 { 8331 struct vm_area_struct *vma = mmap_event->vma; 8332 struct file *file = vma->vm_file; 8333 int maj = 0, min = 0; 8334 u64 ino = 0, gen = 0; 8335 u32 prot = 0, flags = 0; 8336 unsigned int size; 8337 char tmp[16]; 8338 char *buf = NULL; 8339 char *name; 8340 8341 if (vma->vm_flags & VM_READ) 8342 prot |= PROT_READ; 8343 if (vma->vm_flags & VM_WRITE) 8344 prot |= PROT_WRITE; 8345 if (vma->vm_flags & VM_EXEC) 8346 prot |= PROT_EXEC; 8347 8348 if (vma->vm_flags & VM_MAYSHARE) 8349 flags = MAP_SHARED; 8350 else 8351 flags = MAP_PRIVATE; 8352 8353 if (vma->vm_flags & VM_LOCKED) 8354 flags |= MAP_LOCKED; 8355 if (is_vm_hugetlb_page(vma)) 8356 flags |= MAP_HUGETLB; 8357 8358 if (file) { 8359 struct inode *inode; 8360 dev_t dev; 8361 8362 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8363 if (!buf) { 8364 name = "//enomem"; 8365 goto cpy_name; 8366 } 8367 /* 8368 * d_path() works from the end of the rb backwards, so we 8369 * need to add enough zero bytes after the string to handle 8370 * the 64bit alignment we do later. 8371 */ 8372 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8373 if (IS_ERR(name)) { 8374 name = "//toolong"; 8375 goto cpy_name; 8376 } 8377 inode = file_inode(vma->vm_file); 8378 dev = inode->i_sb->s_dev; 8379 ino = inode->i_ino; 8380 gen = inode->i_generation; 8381 maj = MAJOR(dev); 8382 min = MINOR(dev); 8383 8384 goto got_name; 8385 } else { 8386 if (vma->vm_ops && vma->vm_ops->name) { 8387 name = (char *) vma->vm_ops->name(vma); 8388 if (name) 8389 goto cpy_name; 8390 } 8391 8392 name = (char *)arch_vma_name(vma); 8393 if (name) 8394 goto cpy_name; 8395 8396 if (vma->vm_start <= vma->vm_mm->start_brk && 8397 vma->vm_end >= vma->vm_mm->brk) { 8398 name = "[heap]"; 8399 goto cpy_name; 8400 } 8401 if (vma->vm_start <= vma->vm_mm->start_stack && 8402 vma->vm_end >= vma->vm_mm->start_stack) { 8403 name = "[stack]"; 8404 goto cpy_name; 8405 } 8406 8407 name = "//anon"; 8408 goto cpy_name; 8409 } 8410 8411 cpy_name: 8412 strlcpy(tmp, name, sizeof(tmp)); 8413 name = tmp; 8414 got_name: 8415 /* 8416 * Since our buffer works in 8 byte units we need to align our string 8417 * size to a multiple of 8. However, we must guarantee the tail end is 8418 * zero'd out to avoid leaking random bits to userspace. 8419 */ 8420 size = strlen(name)+1; 8421 while (!IS_ALIGNED(size, sizeof(u64))) 8422 name[size++] = '\0'; 8423 8424 mmap_event->file_name = name; 8425 mmap_event->file_size = size; 8426 mmap_event->maj = maj; 8427 mmap_event->min = min; 8428 mmap_event->ino = ino; 8429 mmap_event->ino_generation = gen; 8430 mmap_event->prot = prot; 8431 mmap_event->flags = flags; 8432 8433 if (!(vma->vm_flags & VM_EXEC)) 8434 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8435 8436 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8437 8438 if (atomic_read(&nr_build_id_events)) 8439 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8440 8441 perf_iterate_sb(perf_event_mmap_output, 8442 mmap_event, 8443 NULL); 8444 8445 kfree(buf); 8446 } 8447 8448 /* 8449 * Check whether inode and address range match filter criteria. 8450 */ 8451 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8452 struct file *file, unsigned long offset, 8453 unsigned long size) 8454 { 8455 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8456 if (!filter->path.dentry) 8457 return false; 8458 8459 if (d_inode(filter->path.dentry) != file_inode(file)) 8460 return false; 8461 8462 if (filter->offset > offset + size) 8463 return false; 8464 8465 if (filter->offset + filter->size < offset) 8466 return false; 8467 8468 return true; 8469 } 8470 8471 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8472 struct vm_area_struct *vma, 8473 struct perf_addr_filter_range *fr) 8474 { 8475 unsigned long vma_size = vma->vm_end - vma->vm_start; 8476 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8477 struct file *file = vma->vm_file; 8478 8479 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8480 return false; 8481 8482 if (filter->offset < off) { 8483 fr->start = vma->vm_start; 8484 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8485 } else { 8486 fr->start = vma->vm_start + filter->offset - off; 8487 fr->size = min(vma->vm_end - fr->start, filter->size); 8488 } 8489 8490 return true; 8491 } 8492 8493 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8494 { 8495 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8496 struct vm_area_struct *vma = data; 8497 struct perf_addr_filter *filter; 8498 unsigned int restart = 0, count = 0; 8499 unsigned long flags; 8500 8501 if (!has_addr_filter(event)) 8502 return; 8503 8504 if (!vma->vm_file) 8505 return; 8506 8507 raw_spin_lock_irqsave(&ifh->lock, flags); 8508 list_for_each_entry(filter, &ifh->list, entry) { 8509 if (perf_addr_filter_vma_adjust(filter, vma, 8510 &event->addr_filter_ranges[count])) 8511 restart++; 8512 8513 count++; 8514 } 8515 8516 if (restart) 8517 event->addr_filters_gen++; 8518 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8519 8520 if (restart) 8521 perf_event_stop(event, 1); 8522 } 8523 8524 /* 8525 * Adjust all task's events' filters to the new vma 8526 */ 8527 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8528 { 8529 struct perf_event_context *ctx; 8530 int ctxn; 8531 8532 /* 8533 * Data tracing isn't supported yet and as such there is no need 8534 * to keep track of anything that isn't related to executable code: 8535 */ 8536 if (!(vma->vm_flags & VM_EXEC)) 8537 return; 8538 8539 rcu_read_lock(); 8540 for_each_task_context_nr(ctxn) { 8541 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8542 if (!ctx) 8543 continue; 8544 8545 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8546 } 8547 rcu_read_unlock(); 8548 } 8549 8550 void perf_event_mmap(struct vm_area_struct *vma) 8551 { 8552 struct perf_mmap_event mmap_event; 8553 8554 if (!atomic_read(&nr_mmap_events)) 8555 return; 8556 8557 mmap_event = (struct perf_mmap_event){ 8558 .vma = vma, 8559 /* .file_name */ 8560 /* .file_size */ 8561 .event_id = { 8562 .header = { 8563 .type = PERF_RECORD_MMAP, 8564 .misc = PERF_RECORD_MISC_USER, 8565 /* .size */ 8566 }, 8567 /* .pid */ 8568 /* .tid */ 8569 .start = vma->vm_start, 8570 .len = vma->vm_end - vma->vm_start, 8571 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8572 }, 8573 /* .maj (attr_mmap2 only) */ 8574 /* .min (attr_mmap2 only) */ 8575 /* .ino (attr_mmap2 only) */ 8576 /* .ino_generation (attr_mmap2 only) */ 8577 /* .prot (attr_mmap2 only) */ 8578 /* .flags (attr_mmap2 only) */ 8579 }; 8580 8581 perf_addr_filters_adjust(vma); 8582 perf_event_mmap_event(&mmap_event); 8583 } 8584 8585 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8586 unsigned long size, u64 flags) 8587 { 8588 struct perf_output_handle handle; 8589 struct perf_sample_data sample; 8590 struct perf_aux_event { 8591 struct perf_event_header header; 8592 u64 offset; 8593 u64 size; 8594 u64 flags; 8595 } rec = { 8596 .header = { 8597 .type = PERF_RECORD_AUX, 8598 .misc = 0, 8599 .size = sizeof(rec), 8600 }, 8601 .offset = head, 8602 .size = size, 8603 .flags = flags, 8604 }; 8605 int ret; 8606 8607 perf_event_header__init_id(&rec.header, &sample, event); 8608 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8609 8610 if (ret) 8611 return; 8612 8613 perf_output_put(&handle, rec); 8614 perf_event__output_id_sample(event, &handle, &sample); 8615 8616 perf_output_end(&handle); 8617 } 8618 8619 /* 8620 * Lost/dropped samples logging 8621 */ 8622 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8623 { 8624 struct perf_output_handle handle; 8625 struct perf_sample_data sample; 8626 int ret; 8627 8628 struct { 8629 struct perf_event_header header; 8630 u64 lost; 8631 } lost_samples_event = { 8632 .header = { 8633 .type = PERF_RECORD_LOST_SAMPLES, 8634 .misc = 0, 8635 .size = sizeof(lost_samples_event), 8636 }, 8637 .lost = lost, 8638 }; 8639 8640 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8641 8642 ret = perf_output_begin(&handle, &sample, event, 8643 lost_samples_event.header.size); 8644 if (ret) 8645 return; 8646 8647 perf_output_put(&handle, lost_samples_event); 8648 perf_event__output_id_sample(event, &handle, &sample); 8649 perf_output_end(&handle); 8650 } 8651 8652 /* 8653 * context_switch tracking 8654 */ 8655 8656 struct perf_switch_event { 8657 struct task_struct *task; 8658 struct task_struct *next_prev; 8659 8660 struct { 8661 struct perf_event_header header; 8662 u32 next_prev_pid; 8663 u32 next_prev_tid; 8664 } event_id; 8665 }; 8666 8667 static int perf_event_switch_match(struct perf_event *event) 8668 { 8669 return event->attr.context_switch; 8670 } 8671 8672 static void perf_event_switch_output(struct perf_event *event, void *data) 8673 { 8674 struct perf_switch_event *se = data; 8675 struct perf_output_handle handle; 8676 struct perf_sample_data sample; 8677 int ret; 8678 8679 if (!perf_event_switch_match(event)) 8680 return; 8681 8682 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8683 if (event->ctx->task) { 8684 se->event_id.header.type = PERF_RECORD_SWITCH; 8685 se->event_id.header.size = sizeof(se->event_id.header); 8686 } else { 8687 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8688 se->event_id.header.size = sizeof(se->event_id); 8689 se->event_id.next_prev_pid = 8690 perf_event_pid(event, se->next_prev); 8691 se->event_id.next_prev_tid = 8692 perf_event_tid(event, se->next_prev); 8693 } 8694 8695 perf_event_header__init_id(&se->event_id.header, &sample, event); 8696 8697 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8698 if (ret) 8699 return; 8700 8701 if (event->ctx->task) 8702 perf_output_put(&handle, se->event_id.header); 8703 else 8704 perf_output_put(&handle, se->event_id); 8705 8706 perf_event__output_id_sample(event, &handle, &sample); 8707 8708 perf_output_end(&handle); 8709 } 8710 8711 static void perf_event_switch(struct task_struct *task, 8712 struct task_struct *next_prev, bool sched_in) 8713 { 8714 struct perf_switch_event switch_event; 8715 8716 /* N.B. caller checks nr_switch_events != 0 */ 8717 8718 switch_event = (struct perf_switch_event){ 8719 .task = task, 8720 .next_prev = next_prev, 8721 .event_id = { 8722 .header = { 8723 /* .type */ 8724 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8725 /* .size */ 8726 }, 8727 /* .next_prev_pid */ 8728 /* .next_prev_tid */ 8729 }, 8730 }; 8731 8732 if (!sched_in && task->on_rq) { 8733 switch_event.event_id.header.misc |= 8734 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8735 } 8736 8737 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8738 } 8739 8740 /* 8741 * IRQ throttle logging 8742 */ 8743 8744 static void perf_log_throttle(struct perf_event *event, int enable) 8745 { 8746 struct perf_output_handle handle; 8747 struct perf_sample_data sample; 8748 int ret; 8749 8750 struct { 8751 struct perf_event_header header; 8752 u64 time; 8753 u64 id; 8754 u64 stream_id; 8755 } throttle_event = { 8756 .header = { 8757 .type = PERF_RECORD_THROTTLE, 8758 .misc = 0, 8759 .size = sizeof(throttle_event), 8760 }, 8761 .time = perf_event_clock(event), 8762 .id = primary_event_id(event), 8763 .stream_id = event->id, 8764 }; 8765 8766 if (enable) 8767 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8768 8769 perf_event_header__init_id(&throttle_event.header, &sample, event); 8770 8771 ret = perf_output_begin(&handle, &sample, event, 8772 throttle_event.header.size); 8773 if (ret) 8774 return; 8775 8776 perf_output_put(&handle, throttle_event); 8777 perf_event__output_id_sample(event, &handle, &sample); 8778 perf_output_end(&handle); 8779 } 8780 8781 /* 8782 * ksymbol register/unregister tracking 8783 */ 8784 8785 struct perf_ksymbol_event { 8786 const char *name; 8787 int name_len; 8788 struct { 8789 struct perf_event_header header; 8790 u64 addr; 8791 u32 len; 8792 u16 ksym_type; 8793 u16 flags; 8794 } event_id; 8795 }; 8796 8797 static int perf_event_ksymbol_match(struct perf_event *event) 8798 { 8799 return event->attr.ksymbol; 8800 } 8801 8802 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8803 { 8804 struct perf_ksymbol_event *ksymbol_event = data; 8805 struct perf_output_handle handle; 8806 struct perf_sample_data sample; 8807 int ret; 8808 8809 if (!perf_event_ksymbol_match(event)) 8810 return; 8811 8812 perf_event_header__init_id(&ksymbol_event->event_id.header, 8813 &sample, event); 8814 ret = perf_output_begin(&handle, &sample, event, 8815 ksymbol_event->event_id.header.size); 8816 if (ret) 8817 return; 8818 8819 perf_output_put(&handle, ksymbol_event->event_id); 8820 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8821 perf_event__output_id_sample(event, &handle, &sample); 8822 8823 perf_output_end(&handle); 8824 } 8825 8826 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8827 const char *sym) 8828 { 8829 struct perf_ksymbol_event ksymbol_event; 8830 char name[KSYM_NAME_LEN]; 8831 u16 flags = 0; 8832 int name_len; 8833 8834 if (!atomic_read(&nr_ksymbol_events)) 8835 return; 8836 8837 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8838 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8839 goto err; 8840 8841 strlcpy(name, sym, KSYM_NAME_LEN); 8842 name_len = strlen(name) + 1; 8843 while (!IS_ALIGNED(name_len, sizeof(u64))) 8844 name[name_len++] = '\0'; 8845 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8846 8847 if (unregister) 8848 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8849 8850 ksymbol_event = (struct perf_ksymbol_event){ 8851 .name = name, 8852 .name_len = name_len, 8853 .event_id = { 8854 .header = { 8855 .type = PERF_RECORD_KSYMBOL, 8856 .size = sizeof(ksymbol_event.event_id) + 8857 name_len, 8858 }, 8859 .addr = addr, 8860 .len = len, 8861 .ksym_type = ksym_type, 8862 .flags = flags, 8863 }, 8864 }; 8865 8866 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8867 return; 8868 err: 8869 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8870 } 8871 8872 /* 8873 * bpf program load/unload tracking 8874 */ 8875 8876 struct perf_bpf_event { 8877 struct bpf_prog *prog; 8878 struct { 8879 struct perf_event_header header; 8880 u16 type; 8881 u16 flags; 8882 u32 id; 8883 u8 tag[BPF_TAG_SIZE]; 8884 } event_id; 8885 }; 8886 8887 static int perf_event_bpf_match(struct perf_event *event) 8888 { 8889 return event->attr.bpf_event; 8890 } 8891 8892 static void perf_event_bpf_output(struct perf_event *event, void *data) 8893 { 8894 struct perf_bpf_event *bpf_event = data; 8895 struct perf_output_handle handle; 8896 struct perf_sample_data sample; 8897 int ret; 8898 8899 if (!perf_event_bpf_match(event)) 8900 return; 8901 8902 perf_event_header__init_id(&bpf_event->event_id.header, 8903 &sample, event); 8904 ret = perf_output_begin(&handle, data, event, 8905 bpf_event->event_id.header.size); 8906 if (ret) 8907 return; 8908 8909 perf_output_put(&handle, bpf_event->event_id); 8910 perf_event__output_id_sample(event, &handle, &sample); 8911 8912 perf_output_end(&handle); 8913 } 8914 8915 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8916 enum perf_bpf_event_type type) 8917 { 8918 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8919 int i; 8920 8921 if (prog->aux->func_cnt == 0) { 8922 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8923 (u64)(unsigned long)prog->bpf_func, 8924 prog->jited_len, unregister, 8925 prog->aux->ksym.name); 8926 } else { 8927 for (i = 0; i < prog->aux->func_cnt; i++) { 8928 struct bpf_prog *subprog = prog->aux->func[i]; 8929 8930 perf_event_ksymbol( 8931 PERF_RECORD_KSYMBOL_TYPE_BPF, 8932 (u64)(unsigned long)subprog->bpf_func, 8933 subprog->jited_len, unregister, 8934 prog->aux->ksym.name); 8935 } 8936 } 8937 } 8938 8939 void perf_event_bpf_event(struct bpf_prog *prog, 8940 enum perf_bpf_event_type type, 8941 u16 flags) 8942 { 8943 struct perf_bpf_event bpf_event; 8944 8945 if (type <= PERF_BPF_EVENT_UNKNOWN || 8946 type >= PERF_BPF_EVENT_MAX) 8947 return; 8948 8949 switch (type) { 8950 case PERF_BPF_EVENT_PROG_LOAD: 8951 case PERF_BPF_EVENT_PROG_UNLOAD: 8952 if (atomic_read(&nr_ksymbol_events)) 8953 perf_event_bpf_emit_ksymbols(prog, type); 8954 break; 8955 default: 8956 break; 8957 } 8958 8959 if (!atomic_read(&nr_bpf_events)) 8960 return; 8961 8962 bpf_event = (struct perf_bpf_event){ 8963 .prog = prog, 8964 .event_id = { 8965 .header = { 8966 .type = PERF_RECORD_BPF_EVENT, 8967 .size = sizeof(bpf_event.event_id), 8968 }, 8969 .type = type, 8970 .flags = flags, 8971 .id = prog->aux->id, 8972 }, 8973 }; 8974 8975 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8976 8977 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8978 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8979 } 8980 8981 struct perf_text_poke_event { 8982 const void *old_bytes; 8983 const void *new_bytes; 8984 size_t pad; 8985 u16 old_len; 8986 u16 new_len; 8987 8988 struct { 8989 struct perf_event_header header; 8990 8991 u64 addr; 8992 } event_id; 8993 }; 8994 8995 static int perf_event_text_poke_match(struct perf_event *event) 8996 { 8997 return event->attr.text_poke; 8998 } 8999 9000 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9001 { 9002 struct perf_text_poke_event *text_poke_event = data; 9003 struct perf_output_handle handle; 9004 struct perf_sample_data sample; 9005 u64 padding = 0; 9006 int ret; 9007 9008 if (!perf_event_text_poke_match(event)) 9009 return; 9010 9011 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9012 9013 ret = perf_output_begin(&handle, &sample, event, 9014 text_poke_event->event_id.header.size); 9015 if (ret) 9016 return; 9017 9018 perf_output_put(&handle, text_poke_event->event_id); 9019 perf_output_put(&handle, text_poke_event->old_len); 9020 perf_output_put(&handle, text_poke_event->new_len); 9021 9022 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9023 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9024 9025 if (text_poke_event->pad) 9026 __output_copy(&handle, &padding, text_poke_event->pad); 9027 9028 perf_event__output_id_sample(event, &handle, &sample); 9029 9030 perf_output_end(&handle); 9031 } 9032 9033 void perf_event_text_poke(const void *addr, const void *old_bytes, 9034 size_t old_len, const void *new_bytes, size_t new_len) 9035 { 9036 struct perf_text_poke_event text_poke_event; 9037 size_t tot, pad; 9038 9039 if (!atomic_read(&nr_text_poke_events)) 9040 return; 9041 9042 tot = sizeof(text_poke_event.old_len) + old_len; 9043 tot += sizeof(text_poke_event.new_len) + new_len; 9044 pad = ALIGN(tot, sizeof(u64)) - tot; 9045 9046 text_poke_event = (struct perf_text_poke_event){ 9047 .old_bytes = old_bytes, 9048 .new_bytes = new_bytes, 9049 .pad = pad, 9050 .old_len = old_len, 9051 .new_len = new_len, 9052 .event_id = { 9053 .header = { 9054 .type = PERF_RECORD_TEXT_POKE, 9055 .misc = PERF_RECORD_MISC_KERNEL, 9056 .size = sizeof(text_poke_event.event_id) + tot + pad, 9057 }, 9058 .addr = (unsigned long)addr, 9059 }, 9060 }; 9061 9062 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9063 } 9064 9065 void perf_event_itrace_started(struct perf_event *event) 9066 { 9067 event->attach_state |= PERF_ATTACH_ITRACE; 9068 } 9069 9070 static void perf_log_itrace_start(struct perf_event *event) 9071 { 9072 struct perf_output_handle handle; 9073 struct perf_sample_data sample; 9074 struct perf_aux_event { 9075 struct perf_event_header header; 9076 u32 pid; 9077 u32 tid; 9078 } rec; 9079 int ret; 9080 9081 if (event->parent) 9082 event = event->parent; 9083 9084 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9085 event->attach_state & PERF_ATTACH_ITRACE) 9086 return; 9087 9088 rec.header.type = PERF_RECORD_ITRACE_START; 9089 rec.header.misc = 0; 9090 rec.header.size = sizeof(rec); 9091 rec.pid = perf_event_pid(event, current); 9092 rec.tid = perf_event_tid(event, current); 9093 9094 perf_event_header__init_id(&rec.header, &sample, event); 9095 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9096 9097 if (ret) 9098 return; 9099 9100 perf_output_put(&handle, rec); 9101 perf_event__output_id_sample(event, &handle, &sample); 9102 9103 perf_output_end(&handle); 9104 } 9105 9106 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9107 { 9108 struct perf_output_handle handle; 9109 struct perf_sample_data sample; 9110 struct perf_aux_event { 9111 struct perf_event_header header; 9112 u64 hw_id; 9113 } rec; 9114 int ret; 9115 9116 if (event->parent) 9117 event = event->parent; 9118 9119 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9120 rec.header.misc = 0; 9121 rec.header.size = sizeof(rec); 9122 rec.hw_id = hw_id; 9123 9124 perf_event_header__init_id(&rec.header, &sample, event); 9125 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9126 9127 if (ret) 9128 return; 9129 9130 perf_output_put(&handle, rec); 9131 perf_event__output_id_sample(event, &handle, &sample); 9132 9133 perf_output_end(&handle); 9134 } 9135 9136 static int 9137 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9138 { 9139 struct hw_perf_event *hwc = &event->hw; 9140 int ret = 0; 9141 u64 seq; 9142 9143 seq = __this_cpu_read(perf_throttled_seq); 9144 if (seq != hwc->interrupts_seq) { 9145 hwc->interrupts_seq = seq; 9146 hwc->interrupts = 1; 9147 } else { 9148 hwc->interrupts++; 9149 if (unlikely(throttle 9150 && hwc->interrupts >= max_samples_per_tick)) { 9151 __this_cpu_inc(perf_throttled_count); 9152 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9153 hwc->interrupts = MAX_INTERRUPTS; 9154 perf_log_throttle(event, 0); 9155 ret = 1; 9156 } 9157 } 9158 9159 if (event->attr.freq) { 9160 u64 now = perf_clock(); 9161 s64 delta = now - hwc->freq_time_stamp; 9162 9163 hwc->freq_time_stamp = now; 9164 9165 if (delta > 0 && delta < 2*TICK_NSEC) 9166 perf_adjust_period(event, delta, hwc->last_period, true); 9167 } 9168 9169 return ret; 9170 } 9171 9172 int perf_event_account_interrupt(struct perf_event *event) 9173 { 9174 return __perf_event_account_interrupt(event, 1); 9175 } 9176 9177 /* 9178 * Generic event overflow handling, sampling. 9179 */ 9180 9181 static int __perf_event_overflow(struct perf_event *event, 9182 int throttle, struct perf_sample_data *data, 9183 struct pt_regs *regs) 9184 { 9185 int events = atomic_read(&event->event_limit); 9186 int ret = 0; 9187 9188 /* 9189 * Non-sampling counters might still use the PMI to fold short 9190 * hardware counters, ignore those. 9191 */ 9192 if (unlikely(!is_sampling_event(event))) 9193 return 0; 9194 9195 ret = __perf_event_account_interrupt(event, throttle); 9196 9197 /* 9198 * XXX event_limit might not quite work as expected on inherited 9199 * events 9200 */ 9201 9202 event->pending_kill = POLL_IN; 9203 if (events && atomic_dec_and_test(&event->event_limit)) { 9204 ret = 1; 9205 event->pending_kill = POLL_HUP; 9206 event->pending_addr = data->addr; 9207 9208 perf_event_disable_inatomic(event); 9209 } 9210 9211 READ_ONCE(event->overflow_handler)(event, data, regs); 9212 9213 if (*perf_event_fasync(event) && event->pending_kill) { 9214 event->pending_wakeup = 1; 9215 irq_work_queue(&event->pending); 9216 } 9217 9218 return ret; 9219 } 9220 9221 int perf_event_overflow(struct perf_event *event, 9222 struct perf_sample_data *data, 9223 struct pt_regs *regs) 9224 { 9225 return __perf_event_overflow(event, 1, data, regs); 9226 } 9227 9228 /* 9229 * Generic software event infrastructure 9230 */ 9231 9232 struct swevent_htable { 9233 struct swevent_hlist *swevent_hlist; 9234 struct mutex hlist_mutex; 9235 int hlist_refcount; 9236 9237 /* Recursion avoidance in each contexts */ 9238 int recursion[PERF_NR_CONTEXTS]; 9239 }; 9240 9241 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9242 9243 /* 9244 * We directly increment event->count and keep a second value in 9245 * event->hw.period_left to count intervals. This period event 9246 * is kept in the range [-sample_period, 0] so that we can use the 9247 * sign as trigger. 9248 */ 9249 9250 u64 perf_swevent_set_period(struct perf_event *event) 9251 { 9252 struct hw_perf_event *hwc = &event->hw; 9253 u64 period = hwc->last_period; 9254 u64 nr, offset; 9255 s64 old, val; 9256 9257 hwc->last_period = hwc->sample_period; 9258 9259 again: 9260 old = val = local64_read(&hwc->period_left); 9261 if (val < 0) 9262 return 0; 9263 9264 nr = div64_u64(period + val, period); 9265 offset = nr * period; 9266 val -= offset; 9267 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9268 goto again; 9269 9270 return nr; 9271 } 9272 9273 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9274 struct perf_sample_data *data, 9275 struct pt_regs *regs) 9276 { 9277 struct hw_perf_event *hwc = &event->hw; 9278 int throttle = 0; 9279 9280 if (!overflow) 9281 overflow = perf_swevent_set_period(event); 9282 9283 if (hwc->interrupts == MAX_INTERRUPTS) 9284 return; 9285 9286 for (; overflow; overflow--) { 9287 if (__perf_event_overflow(event, throttle, 9288 data, regs)) { 9289 /* 9290 * We inhibit the overflow from happening when 9291 * hwc->interrupts == MAX_INTERRUPTS. 9292 */ 9293 break; 9294 } 9295 throttle = 1; 9296 } 9297 } 9298 9299 static void perf_swevent_event(struct perf_event *event, u64 nr, 9300 struct perf_sample_data *data, 9301 struct pt_regs *regs) 9302 { 9303 struct hw_perf_event *hwc = &event->hw; 9304 9305 local64_add(nr, &event->count); 9306 9307 if (!regs) 9308 return; 9309 9310 if (!is_sampling_event(event)) 9311 return; 9312 9313 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9314 data->period = nr; 9315 return perf_swevent_overflow(event, 1, data, regs); 9316 } else 9317 data->period = event->hw.last_period; 9318 9319 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9320 return perf_swevent_overflow(event, 1, data, regs); 9321 9322 if (local64_add_negative(nr, &hwc->period_left)) 9323 return; 9324 9325 perf_swevent_overflow(event, 0, data, regs); 9326 } 9327 9328 static int perf_exclude_event(struct perf_event *event, 9329 struct pt_regs *regs) 9330 { 9331 if (event->hw.state & PERF_HES_STOPPED) 9332 return 1; 9333 9334 if (regs) { 9335 if (event->attr.exclude_user && user_mode(regs)) 9336 return 1; 9337 9338 if (event->attr.exclude_kernel && !user_mode(regs)) 9339 return 1; 9340 } 9341 9342 return 0; 9343 } 9344 9345 static int perf_swevent_match(struct perf_event *event, 9346 enum perf_type_id type, 9347 u32 event_id, 9348 struct perf_sample_data *data, 9349 struct pt_regs *regs) 9350 { 9351 if (event->attr.type != type) 9352 return 0; 9353 9354 if (event->attr.config != event_id) 9355 return 0; 9356 9357 if (perf_exclude_event(event, regs)) 9358 return 0; 9359 9360 return 1; 9361 } 9362 9363 static inline u64 swevent_hash(u64 type, u32 event_id) 9364 { 9365 u64 val = event_id | (type << 32); 9366 9367 return hash_64(val, SWEVENT_HLIST_BITS); 9368 } 9369 9370 static inline struct hlist_head * 9371 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9372 { 9373 u64 hash = swevent_hash(type, event_id); 9374 9375 return &hlist->heads[hash]; 9376 } 9377 9378 /* For the read side: events when they trigger */ 9379 static inline struct hlist_head * 9380 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9381 { 9382 struct swevent_hlist *hlist; 9383 9384 hlist = rcu_dereference(swhash->swevent_hlist); 9385 if (!hlist) 9386 return NULL; 9387 9388 return __find_swevent_head(hlist, type, event_id); 9389 } 9390 9391 /* For the event head insertion and removal in the hlist */ 9392 static inline struct hlist_head * 9393 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9394 { 9395 struct swevent_hlist *hlist; 9396 u32 event_id = event->attr.config; 9397 u64 type = event->attr.type; 9398 9399 /* 9400 * Event scheduling is always serialized against hlist allocation 9401 * and release. Which makes the protected version suitable here. 9402 * The context lock guarantees that. 9403 */ 9404 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9405 lockdep_is_held(&event->ctx->lock)); 9406 if (!hlist) 9407 return NULL; 9408 9409 return __find_swevent_head(hlist, type, event_id); 9410 } 9411 9412 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9413 u64 nr, 9414 struct perf_sample_data *data, 9415 struct pt_regs *regs) 9416 { 9417 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9418 struct perf_event *event; 9419 struct hlist_head *head; 9420 9421 rcu_read_lock(); 9422 head = find_swevent_head_rcu(swhash, type, event_id); 9423 if (!head) 9424 goto end; 9425 9426 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9427 if (perf_swevent_match(event, type, event_id, data, regs)) 9428 perf_swevent_event(event, nr, data, regs); 9429 } 9430 end: 9431 rcu_read_unlock(); 9432 } 9433 9434 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9435 9436 int perf_swevent_get_recursion_context(void) 9437 { 9438 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9439 9440 return get_recursion_context(swhash->recursion); 9441 } 9442 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9443 9444 void perf_swevent_put_recursion_context(int rctx) 9445 { 9446 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9447 9448 put_recursion_context(swhash->recursion, rctx); 9449 } 9450 9451 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9452 { 9453 struct perf_sample_data data; 9454 9455 if (WARN_ON_ONCE(!regs)) 9456 return; 9457 9458 perf_sample_data_init(&data, addr, 0); 9459 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9460 } 9461 9462 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9463 { 9464 int rctx; 9465 9466 preempt_disable_notrace(); 9467 rctx = perf_swevent_get_recursion_context(); 9468 if (unlikely(rctx < 0)) 9469 goto fail; 9470 9471 ___perf_sw_event(event_id, nr, regs, addr); 9472 9473 perf_swevent_put_recursion_context(rctx); 9474 fail: 9475 preempt_enable_notrace(); 9476 } 9477 9478 static void perf_swevent_read(struct perf_event *event) 9479 { 9480 } 9481 9482 static int perf_swevent_add(struct perf_event *event, int flags) 9483 { 9484 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9485 struct hw_perf_event *hwc = &event->hw; 9486 struct hlist_head *head; 9487 9488 if (is_sampling_event(event)) { 9489 hwc->last_period = hwc->sample_period; 9490 perf_swevent_set_period(event); 9491 } 9492 9493 hwc->state = !(flags & PERF_EF_START); 9494 9495 head = find_swevent_head(swhash, event); 9496 if (WARN_ON_ONCE(!head)) 9497 return -EINVAL; 9498 9499 hlist_add_head_rcu(&event->hlist_entry, head); 9500 perf_event_update_userpage(event); 9501 9502 return 0; 9503 } 9504 9505 static void perf_swevent_del(struct perf_event *event, int flags) 9506 { 9507 hlist_del_rcu(&event->hlist_entry); 9508 } 9509 9510 static void perf_swevent_start(struct perf_event *event, int flags) 9511 { 9512 event->hw.state = 0; 9513 } 9514 9515 static void perf_swevent_stop(struct perf_event *event, int flags) 9516 { 9517 event->hw.state = PERF_HES_STOPPED; 9518 } 9519 9520 /* Deref the hlist from the update side */ 9521 static inline struct swevent_hlist * 9522 swevent_hlist_deref(struct swevent_htable *swhash) 9523 { 9524 return rcu_dereference_protected(swhash->swevent_hlist, 9525 lockdep_is_held(&swhash->hlist_mutex)); 9526 } 9527 9528 static void swevent_hlist_release(struct swevent_htable *swhash) 9529 { 9530 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9531 9532 if (!hlist) 9533 return; 9534 9535 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9536 kfree_rcu(hlist, rcu_head); 9537 } 9538 9539 static void swevent_hlist_put_cpu(int cpu) 9540 { 9541 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9542 9543 mutex_lock(&swhash->hlist_mutex); 9544 9545 if (!--swhash->hlist_refcount) 9546 swevent_hlist_release(swhash); 9547 9548 mutex_unlock(&swhash->hlist_mutex); 9549 } 9550 9551 static void swevent_hlist_put(void) 9552 { 9553 int cpu; 9554 9555 for_each_possible_cpu(cpu) 9556 swevent_hlist_put_cpu(cpu); 9557 } 9558 9559 static int swevent_hlist_get_cpu(int cpu) 9560 { 9561 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9562 int err = 0; 9563 9564 mutex_lock(&swhash->hlist_mutex); 9565 if (!swevent_hlist_deref(swhash) && 9566 cpumask_test_cpu(cpu, perf_online_mask)) { 9567 struct swevent_hlist *hlist; 9568 9569 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9570 if (!hlist) { 9571 err = -ENOMEM; 9572 goto exit; 9573 } 9574 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9575 } 9576 swhash->hlist_refcount++; 9577 exit: 9578 mutex_unlock(&swhash->hlist_mutex); 9579 9580 return err; 9581 } 9582 9583 static int swevent_hlist_get(void) 9584 { 9585 int err, cpu, failed_cpu; 9586 9587 mutex_lock(&pmus_lock); 9588 for_each_possible_cpu(cpu) { 9589 err = swevent_hlist_get_cpu(cpu); 9590 if (err) { 9591 failed_cpu = cpu; 9592 goto fail; 9593 } 9594 } 9595 mutex_unlock(&pmus_lock); 9596 return 0; 9597 fail: 9598 for_each_possible_cpu(cpu) { 9599 if (cpu == failed_cpu) 9600 break; 9601 swevent_hlist_put_cpu(cpu); 9602 } 9603 mutex_unlock(&pmus_lock); 9604 return err; 9605 } 9606 9607 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9608 9609 static void sw_perf_event_destroy(struct perf_event *event) 9610 { 9611 u64 event_id = event->attr.config; 9612 9613 WARN_ON(event->parent); 9614 9615 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9616 swevent_hlist_put(); 9617 } 9618 9619 static int perf_swevent_init(struct perf_event *event) 9620 { 9621 u64 event_id = event->attr.config; 9622 9623 if (event->attr.type != PERF_TYPE_SOFTWARE) 9624 return -ENOENT; 9625 9626 /* 9627 * no branch sampling for software events 9628 */ 9629 if (has_branch_stack(event)) 9630 return -EOPNOTSUPP; 9631 9632 switch (event_id) { 9633 case PERF_COUNT_SW_CPU_CLOCK: 9634 case PERF_COUNT_SW_TASK_CLOCK: 9635 return -ENOENT; 9636 9637 default: 9638 break; 9639 } 9640 9641 if (event_id >= PERF_COUNT_SW_MAX) 9642 return -ENOENT; 9643 9644 if (!event->parent) { 9645 int err; 9646 9647 err = swevent_hlist_get(); 9648 if (err) 9649 return err; 9650 9651 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9652 event->destroy = sw_perf_event_destroy; 9653 } 9654 9655 return 0; 9656 } 9657 9658 static struct pmu perf_swevent = { 9659 .task_ctx_nr = perf_sw_context, 9660 9661 .capabilities = PERF_PMU_CAP_NO_NMI, 9662 9663 .event_init = perf_swevent_init, 9664 .add = perf_swevent_add, 9665 .del = perf_swevent_del, 9666 .start = perf_swevent_start, 9667 .stop = perf_swevent_stop, 9668 .read = perf_swevent_read, 9669 }; 9670 9671 #ifdef CONFIG_EVENT_TRACING 9672 9673 static int perf_tp_filter_match(struct perf_event *event, 9674 struct perf_sample_data *data) 9675 { 9676 void *record = data->raw->frag.data; 9677 9678 /* only top level events have filters set */ 9679 if (event->parent) 9680 event = event->parent; 9681 9682 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9683 return 1; 9684 return 0; 9685 } 9686 9687 static int perf_tp_event_match(struct perf_event *event, 9688 struct perf_sample_data *data, 9689 struct pt_regs *regs) 9690 { 9691 if (event->hw.state & PERF_HES_STOPPED) 9692 return 0; 9693 /* 9694 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9695 */ 9696 if (event->attr.exclude_kernel && !user_mode(regs)) 9697 return 0; 9698 9699 if (!perf_tp_filter_match(event, data)) 9700 return 0; 9701 9702 return 1; 9703 } 9704 9705 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9706 struct trace_event_call *call, u64 count, 9707 struct pt_regs *regs, struct hlist_head *head, 9708 struct task_struct *task) 9709 { 9710 if (bpf_prog_array_valid(call)) { 9711 *(struct pt_regs **)raw_data = regs; 9712 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9713 perf_swevent_put_recursion_context(rctx); 9714 return; 9715 } 9716 } 9717 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9718 rctx, task); 9719 } 9720 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9721 9722 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9723 struct pt_regs *regs, struct hlist_head *head, int rctx, 9724 struct task_struct *task) 9725 { 9726 struct perf_sample_data data; 9727 struct perf_event *event; 9728 9729 struct perf_raw_record raw = { 9730 .frag = { 9731 .size = entry_size, 9732 .data = record, 9733 }, 9734 }; 9735 9736 perf_sample_data_init(&data, 0, 0); 9737 data.raw = &raw; 9738 9739 perf_trace_buf_update(record, event_type); 9740 9741 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9742 if (perf_tp_event_match(event, &data, regs)) 9743 perf_swevent_event(event, count, &data, regs); 9744 } 9745 9746 /* 9747 * If we got specified a target task, also iterate its context and 9748 * deliver this event there too. 9749 */ 9750 if (task && task != current) { 9751 struct perf_event_context *ctx; 9752 struct trace_entry *entry = record; 9753 9754 rcu_read_lock(); 9755 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9756 if (!ctx) 9757 goto unlock; 9758 9759 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9760 if (event->cpu != smp_processor_id()) 9761 continue; 9762 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9763 continue; 9764 if (event->attr.config != entry->type) 9765 continue; 9766 /* Cannot deliver synchronous signal to other task. */ 9767 if (event->attr.sigtrap) 9768 continue; 9769 if (perf_tp_event_match(event, &data, regs)) 9770 perf_swevent_event(event, count, &data, regs); 9771 } 9772 unlock: 9773 rcu_read_unlock(); 9774 } 9775 9776 perf_swevent_put_recursion_context(rctx); 9777 } 9778 EXPORT_SYMBOL_GPL(perf_tp_event); 9779 9780 static void tp_perf_event_destroy(struct perf_event *event) 9781 { 9782 perf_trace_destroy(event); 9783 } 9784 9785 static int perf_tp_event_init(struct perf_event *event) 9786 { 9787 int err; 9788 9789 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9790 return -ENOENT; 9791 9792 /* 9793 * no branch sampling for tracepoint events 9794 */ 9795 if (has_branch_stack(event)) 9796 return -EOPNOTSUPP; 9797 9798 err = perf_trace_init(event); 9799 if (err) 9800 return err; 9801 9802 event->destroy = tp_perf_event_destroy; 9803 9804 return 0; 9805 } 9806 9807 static struct pmu perf_tracepoint = { 9808 .task_ctx_nr = perf_sw_context, 9809 9810 .event_init = perf_tp_event_init, 9811 .add = perf_trace_add, 9812 .del = perf_trace_del, 9813 .start = perf_swevent_start, 9814 .stop = perf_swevent_stop, 9815 .read = perf_swevent_read, 9816 }; 9817 9818 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9819 /* 9820 * Flags in config, used by dynamic PMU kprobe and uprobe 9821 * The flags should match following PMU_FORMAT_ATTR(). 9822 * 9823 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9824 * if not set, create kprobe/uprobe 9825 * 9826 * The following values specify a reference counter (or semaphore in the 9827 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9828 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9829 * 9830 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9831 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9832 */ 9833 enum perf_probe_config { 9834 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9835 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9836 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9837 }; 9838 9839 PMU_FORMAT_ATTR(retprobe, "config:0"); 9840 #endif 9841 9842 #ifdef CONFIG_KPROBE_EVENTS 9843 static struct attribute *kprobe_attrs[] = { 9844 &format_attr_retprobe.attr, 9845 NULL, 9846 }; 9847 9848 static struct attribute_group kprobe_format_group = { 9849 .name = "format", 9850 .attrs = kprobe_attrs, 9851 }; 9852 9853 static const struct attribute_group *kprobe_attr_groups[] = { 9854 &kprobe_format_group, 9855 NULL, 9856 }; 9857 9858 static int perf_kprobe_event_init(struct perf_event *event); 9859 static struct pmu perf_kprobe = { 9860 .task_ctx_nr = perf_sw_context, 9861 .event_init = perf_kprobe_event_init, 9862 .add = perf_trace_add, 9863 .del = perf_trace_del, 9864 .start = perf_swevent_start, 9865 .stop = perf_swevent_stop, 9866 .read = perf_swevent_read, 9867 .attr_groups = kprobe_attr_groups, 9868 }; 9869 9870 static int perf_kprobe_event_init(struct perf_event *event) 9871 { 9872 int err; 9873 bool is_retprobe; 9874 9875 if (event->attr.type != perf_kprobe.type) 9876 return -ENOENT; 9877 9878 if (!perfmon_capable()) 9879 return -EACCES; 9880 9881 /* 9882 * no branch sampling for probe events 9883 */ 9884 if (has_branch_stack(event)) 9885 return -EOPNOTSUPP; 9886 9887 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9888 err = perf_kprobe_init(event, is_retprobe); 9889 if (err) 9890 return err; 9891 9892 event->destroy = perf_kprobe_destroy; 9893 9894 return 0; 9895 } 9896 #endif /* CONFIG_KPROBE_EVENTS */ 9897 9898 #ifdef CONFIG_UPROBE_EVENTS 9899 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9900 9901 static struct attribute *uprobe_attrs[] = { 9902 &format_attr_retprobe.attr, 9903 &format_attr_ref_ctr_offset.attr, 9904 NULL, 9905 }; 9906 9907 static struct attribute_group uprobe_format_group = { 9908 .name = "format", 9909 .attrs = uprobe_attrs, 9910 }; 9911 9912 static const struct attribute_group *uprobe_attr_groups[] = { 9913 &uprobe_format_group, 9914 NULL, 9915 }; 9916 9917 static int perf_uprobe_event_init(struct perf_event *event); 9918 static struct pmu perf_uprobe = { 9919 .task_ctx_nr = perf_sw_context, 9920 .event_init = perf_uprobe_event_init, 9921 .add = perf_trace_add, 9922 .del = perf_trace_del, 9923 .start = perf_swevent_start, 9924 .stop = perf_swevent_stop, 9925 .read = perf_swevent_read, 9926 .attr_groups = uprobe_attr_groups, 9927 }; 9928 9929 static int perf_uprobe_event_init(struct perf_event *event) 9930 { 9931 int err; 9932 unsigned long ref_ctr_offset; 9933 bool is_retprobe; 9934 9935 if (event->attr.type != perf_uprobe.type) 9936 return -ENOENT; 9937 9938 if (!perfmon_capable()) 9939 return -EACCES; 9940 9941 /* 9942 * no branch sampling for probe events 9943 */ 9944 if (has_branch_stack(event)) 9945 return -EOPNOTSUPP; 9946 9947 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9948 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9949 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9950 if (err) 9951 return err; 9952 9953 event->destroy = perf_uprobe_destroy; 9954 9955 return 0; 9956 } 9957 #endif /* CONFIG_UPROBE_EVENTS */ 9958 9959 static inline void perf_tp_register(void) 9960 { 9961 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9962 #ifdef CONFIG_KPROBE_EVENTS 9963 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9964 #endif 9965 #ifdef CONFIG_UPROBE_EVENTS 9966 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9967 #endif 9968 } 9969 9970 static void perf_event_free_filter(struct perf_event *event) 9971 { 9972 ftrace_profile_free_filter(event); 9973 } 9974 9975 #ifdef CONFIG_BPF_SYSCALL 9976 static void bpf_overflow_handler(struct perf_event *event, 9977 struct perf_sample_data *data, 9978 struct pt_regs *regs) 9979 { 9980 struct bpf_perf_event_data_kern ctx = { 9981 .data = data, 9982 .event = event, 9983 }; 9984 struct bpf_prog *prog; 9985 int ret = 0; 9986 9987 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9988 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9989 goto out; 9990 rcu_read_lock(); 9991 prog = READ_ONCE(event->prog); 9992 if (prog) 9993 ret = bpf_prog_run(prog, &ctx); 9994 rcu_read_unlock(); 9995 out: 9996 __this_cpu_dec(bpf_prog_active); 9997 if (!ret) 9998 return; 9999 10000 event->orig_overflow_handler(event, data, regs); 10001 } 10002 10003 static int perf_event_set_bpf_handler(struct perf_event *event, 10004 struct bpf_prog *prog, 10005 u64 bpf_cookie) 10006 { 10007 if (event->overflow_handler_context) 10008 /* hw breakpoint or kernel counter */ 10009 return -EINVAL; 10010 10011 if (event->prog) 10012 return -EEXIST; 10013 10014 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10015 return -EINVAL; 10016 10017 if (event->attr.precise_ip && 10018 prog->call_get_stack && 10019 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 10020 event->attr.exclude_callchain_kernel || 10021 event->attr.exclude_callchain_user)) { 10022 /* 10023 * On perf_event with precise_ip, calling bpf_get_stack() 10024 * may trigger unwinder warnings and occasional crashes. 10025 * bpf_get_[stack|stackid] works around this issue by using 10026 * callchain attached to perf_sample_data. If the 10027 * perf_event does not full (kernel and user) callchain 10028 * attached to perf_sample_data, do not allow attaching BPF 10029 * program that calls bpf_get_[stack|stackid]. 10030 */ 10031 return -EPROTO; 10032 } 10033 10034 event->prog = prog; 10035 event->bpf_cookie = bpf_cookie; 10036 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10037 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10038 return 0; 10039 } 10040 10041 static void perf_event_free_bpf_handler(struct perf_event *event) 10042 { 10043 struct bpf_prog *prog = event->prog; 10044 10045 if (!prog) 10046 return; 10047 10048 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10049 event->prog = NULL; 10050 bpf_prog_put(prog); 10051 } 10052 #else 10053 static int perf_event_set_bpf_handler(struct perf_event *event, 10054 struct bpf_prog *prog, 10055 u64 bpf_cookie) 10056 { 10057 return -EOPNOTSUPP; 10058 } 10059 static void perf_event_free_bpf_handler(struct perf_event *event) 10060 { 10061 } 10062 #endif 10063 10064 /* 10065 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10066 * with perf_event_open() 10067 */ 10068 static inline bool perf_event_is_tracing(struct perf_event *event) 10069 { 10070 if (event->pmu == &perf_tracepoint) 10071 return true; 10072 #ifdef CONFIG_KPROBE_EVENTS 10073 if (event->pmu == &perf_kprobe) 10074 return true; 10075 #endif 10076 #ifdef CONFIG_UPROBE_EVENTS 10077 if (event->pmu == &perf_uprobe) 10078 return true; 10079 #endif 10080 return false; 10081 } 10082 10083 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10084 u64 bpf_cookie) 10085 { 10086 bool is_kprobe, is_tracepoint, is_syscall_tp; 10087 10088 if (!perf_event_is_tracing(event)) 10089 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10090 10091 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10092 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10093 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10094 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10095 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10096 return -EINVAL; 10097 10098 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10099 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10100 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10101 return -EINVAL; 10102 10103 /* Kprobe override only works for kprobes, not uprobes. */ 10104 if (prog->kprobe_override && 10105 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 10106 return -EINVAL; 10107 10108 if (is_tracepoint || is_syscall_tp) { 10109 int off = trace_event_get_offsets(event->tp_event); 10110 10111 if (prog->aux->max_ctx_offset > off) 10112 return -EACCES; 10113 } 10114 10115 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10116 } 10117 10118 void perf_event_free_bpf_prog(struct perf_event *event) 10119 { 10120 if (!perf_event_is_tracing(event)) { 10121 perf_event_free_bpf_handler(event); 10122 return; 10123 } 10124 perf_event_detach_bpf_prog(event); 10125 } 10126 10127 #else 10128 10129 static inline void perf_tp_register(void) 10130 { 10131 } 10132 10133 static void perf_event_free_filter(struct perf_event *event) 10134 { 10135 } 10136 10137 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10138 u64 bpf_cookie) 10139 { 10140 return -ENOENT; 10141 } 10142 10143 void perf_event_free_bpf_prog(struct perf_event *event) 10144 { 10145 } 10146 #endif /* CONFIG_EVENT_TRACING */ 10147 10148 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10149 void perf_bp_event(struct perf_event *bp, void *data) 10150 { 10151 struct perf_sample_data sample; 10152 struct pt_regs *regs = data; 10153 10154 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10155 10156 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10157 perf_swevent_event(bp, 1, &sample, regs); 10158 } 10159 #endif 10160 10161 /* 10162 * Allocate a new address filter 10163 */ 10164 static struct perf_addr_filter * 10165 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10166 { 10167 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10168 struct perf_addr_filter *filter; 10169 10170 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10171 if (!filter) 10172 return NULL; 10173 10174 INIT_LIST_HEAD(&filter->entry); 10175 list_add_tail(&filter->entry, filters); 10176 10177 return filter; 10178 } 10179 10180 static void free_filters_list(struct list_head *filters) 10181 { 10182 struct perf_addr_filter *filter, *iter; 10183 10184 list_for_each_entry_safe(filter, iter, filters, entry) { 10185 path_put(&filter->path); 10186 list_del(&filter->entry); 10187 kfree(filter); 10188 } 10189 } 10190 10191 /* 10192 * Free existing address filters and optionally install new ones 10193 */ 10194 static void perf_addr_filters_splice(struct perf_event *event, 10195 struct list_head *head) 10196 { 10197 unsigned long flags; 10198 LIST_HEAD(list); 10199 10200 if (!has_addr_filter(event)) 10201 return; 10202 10203 /* don't bother with children, they don't have their own filters */ 10204 if (event->parent) 10205 return; 10206 10207 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10208 10209 list_splice_init(&event->addr_filters.list, &list); 10210 if (head) 10211 list_splice(head, &event->addr_filters.list); 10212 10213 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10214 10215 free_filters_list(&list); 10216 } 10217 10218 /* 10219 * Scan through mm's vmas and see if one of them matches the 10220 * @filter; if so, adjust filter's address range. 10221 * Called with mm::mmap_lock down for reading. 10222 */ 10223 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10224 struct mm_struct *mm, 10225 struct perf_addr_filter_range *fr) 10226 { 10227 struct vm_area_struct *vma; 10228 10229 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10230 if (!vma->vm_file) 10231 continue; 10232 10233 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10234 return; 10235 } 10236 } 10237 10238 /* 10239 * Update event's address range filters based on the 10240 * task's existing mappings, if any. 10241 */ 10242 static void perf_event_addr_filters_apply(struct perf_event *event) 10243 { 10244 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10245 struct task_struct *task = READ_ONCE(event->ctx->task); 10246 struct perf_addr_filter *filter; 10247 struct mm_struct *mm = NULL; 10248 unsigned int count = 0; 10249 unsigned long flags; 10250 10251 /* 10252 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10253 * will stop on the parent's child_mutex that our caller is also holding 10254 */ 10255 if (task == TASK_TOMBSTONE) 10256 return; 10257 10258 if (ifh->nr_file_filters) { 10259 mm = get_task_mm(task); 10260 if (!mm) 10261 goto restart; 10262 10263 mmap_read_lock(mm); 10264 } 10265 10266 raw_spin_lock_irqsave(&ifh->lock, flags); 10267 list_for_each_entry(filter, &ifh->list, entry) { 10268 if (filter->path.dentry) { 10269 /* 10270 * Adjust base offset if the filter is associated to a 10271 * binary that needs to be mapped: 10272 */ 10273 event->addr_filter_ranges[count].start = 0; 10274 event->addr_filter_ranges[count].size = 0; 10275 10276 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10277 } else { 10278 event->addr_filter_ranges[count].start = filter->offset; 10279 event->addr_filter_ranges[count].size = filter->size; 10280 } 10281 10282 count++; 10283 } 10284 10285 event->addr_filters_gen++; 10286 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10287 10288 if (ifh->nr_file_filters) { 10289 mmap_read_unlock(mm); 10290 10291 mmput(mm); 10292 } 10293 10294 restart: 10295 perf_event_stop(event, 1); 10296 } 10297 10298 /* 10299 * Address range filtering: limiting the data to certain 10300 * instruction address ranges. Filters are ioctl()ed to us from 10301 * userspace as ascii strings. 10302 * 10303 * Filter string format: 10304 * 10305 * ACTION RANGE_SPEC 10306 * where ACTION is one of the 10307 * * "filter": limit the trace to this region 10308 * * "start": start tracing from this address 10309 * * "stop": stop tracing at this address/region; 10310 * RANGE_SPEC is 10311 * * for kernel addresses: <start address>[/<size>] 10312 * * for object files: <start address>[/<size>]@</path/to/object/file> 10313 * 10314 * if <size> is not specified or is zero, the range is treated as a single 10315 * address; not valid for ACTION=="filter". 10316 */ 10317 enum { 10318 IF_ACT_NONE = -1, 10319 IF_ACT_FILTER, 10320 IF_ACT_START, 10321 IF_ACT_STOP, 10322 IF_SRC_FILE, 10323 IF_SRC_KERNEL, 10324 IF_SRC_FILEADDR, 10325 IF_SRC_KERNELADDR, 10326 }; 10327 10328 enum { 10329 IF_STATE_ACTION = 0, 10330 IF_STATE_SOURCE, 10331 IF_STATE_END, 10332 }; 10333 10334 static const match_table_t if_tokens = { 10335 { IF_ACT_FILTER, "filter" }, 10336 { IF_ACT_START, "start" }, 10337 { IF_ACT_STOP, "stop" }, 10338 { IF_SRC_FILE, "%u/%u@%s" }, 10339 { IF_SRC_KERNEL, "%u/%u" }, 10340 { IF_SRC_FILEADDR, "%u@%s" }, 10341 { IF_SRC_KERNELADDR, "%u" }, 10342 { IF_ACT_NONE, NULL }, 10343 }; 10344 10345 /* 10346 * Address filter string parser 10347 */ 10348 static int 10349 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10350 struct list_head *filters) 10351 { 10352 struct perf_addr_filter *filter = NULL; 10353 char *start, *orig, *filename = NULL; 10354 substring_t args[MAX_OPT_ARGS]; 10355 int state = IF_STATE_ACTION, token; 10356 unsigned int kernel = 0; 10357 int ret = -EINVAL; 10358 10359 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10360 if (!fstr) 10361 return -ENOMEM; 10362 10363 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10364 static const enum perf_addr_filter_action_t actions[] = { 10365 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10366 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10367 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10368 }; 10369 ret = -EINVAL; 10370 10371 if (!*start) 10372 continue; 10373 10374 /* filter definition begins */ 10375 if (state == IF_STATE_ACTION) { 10376 filter = perf_addr_filter_new(event, filters); 10377 if (!filter) 10378 goto fail; 10379 } 10380 10381 token = match_token(start, if_tokens, args); 10382 switch (token) { 10383 case IF_ACT_FILTER: 10384 case IF_ACT_START: 10385 case IF_ACT_STOP: 10386 if (state != IF_STATE_ACTION) 10387 goto fail; 10388 10389 filter->action = actions[token]; 10390 state = IF_STATE_SOURCE; 10391 break; 10392 10393 case IF_SRC_KERNELADDR: 10394 case IF_SRC_KERNEL: 10395 kernel = 1; 10396 fallthrough; 10397 10398 case IF_SRC_FILEADDR: 10399 case IF_SRC_FILE: 10400 if (state != IF_STATE_SOURCE) 10401 goto fail; 10402 10403 *args[0].to = 0; 10404 ret = kstrtoul(args[0].from, 0, &filter->offset); 10405 if (ret) 10406 goto fail; 10407 10408 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10409 *args[1].to = 0; 10410 ret = kstrtoul(args[1].from, 0, &filter->size); 10411 if (ret) 10412 goto fail; 10413 } 10414 10415 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10416 int fpos = token == IF_SRC_FILE ? 2 : 1; 10417 10418 kfree(filename); 10419 filename = match_strdup(&args[fpos]); 10420 if (!filename) { 10421 ret = -ENOMEM; 10422 goto fail; 10423 } 10424 } 10425 10426 state = IF_STATE_END; 10427 break; 10428 10429 default: 10430 goto fail; 10431 } 10432 10433 /* 10434 * Filter definition is fully parsed, validate and install it. 10435 * Make sure that it doesn't contradict itself or the event's 10436 * attribute. 10437 */ 10438 if (state == IF_STATE_END) { 10439 ret = -EINVAL; 10440 if (kernel && event->attr.exclude_kernel) 10441 goto fail; 10442 10443 /* 10444 * ACTION "filter" must have a non-zero length region 10445 * specified. 10446 */ 10447 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10448 !filter->size) 10449 goto fail; 10450 10451 if (!kernel) { 10452 if (!filename) 10453 goto fail; 10454 10455 /* 10456 * For now, we only support file-based filters 10457 * in per-task events; doing so for CPU-wide 10458 * events requires additional context switching 10459 * trickery, since same object code will be 10460 * mapped at different virtual addresses in 10461 * different processes. 10462 */ 10463 ret = -EOPNOTSUPP; 10464 if (!event->ctx->task) 10465 goto fail; 10466 10467 /* look up the path and grab its inode */ 10468 ret = kern_path(filename, LOOKUP_FOLLOW, 10469 &filter->path); 10470 if (ret) 10471 goto fail; 10472 10473 ret = -EINVAL; 10474 if (!filter->path.dentry || 10475 !S_ISREG(d_inode(filter->path.dentry) 10476 ->i_mode)) 10477 goto fail; 10478 10479 event->addr_filters.nr_file_filters++; 10480 } 10481 10482 /* ready to consume more filters */ 10483 state = IF_STATE_ACTION; 10484 filter = NULL; 10485 } 10486 } 10487 10488 if (state != IF_STATE_ACTION) 10489 goto fail; 10490 10491 kfree(filename); 10492 kfree(orig); 10493 10494 return 0; 10495 10496 fail: 10497 kfree(filename); 10498 free_filters_list(filters); 10499 kfree(orig); 10500 10501 return ret; 10502 } 10503 10504 static int 10505 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10506 { 10507 LIST_HEAD(filters); 10508 int ret; 10509 10510 /* 10511 * Since this is called in perf_ioctl() path, we're already holding 10512 * ctx::mutex. 10513 */ 10514 lockdep_assert_held(&event->ctx->mutex); 10515 10516 if (WARN_ON_ONCE(event->parent)) 10517 return -EINVAL; 10518 10519 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10520 if (ret) 10521 goto fail_clear_files; 10522 10523 ret = event->pmu->addr_filters_validate(&filters); 10524 if (ret) 10525 goto fail_free_filters; 10526 10527 /* remove existing filters, if any */ 10528 perf_addr_filters_splice(event, &filters); 10529 10530 /* install new filters */ 10531 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10532 10533 return ret; 10534 10535 fail_free_filters: 10536 free_filters_list(&filters); 10537 10538 fail_clear_files: 10539 event->addr_filters.nr_file_filters = 0; 10540 10541 return ret; 10542 } 10543 10544 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10545 { 10546 int ret = -EINVAL; 10547 char *filter_str; 10548 10549 filter_str = strndup_user(arg, PAGE_SIZE); 10550 if (IS_ERR(filter_str)) 10551 return PTR_ERR(filter_str); 10552 10553 #ifdef CONFIG_EVENT_TRACING 10554 if (perf_event_is_tracing(event)) { 10555 struct perf_event_context *ctx = event->ctx; 10556 10557 /* 10558 * Beware, here be dragons!! 10559 * 10560 * the tracepoint muck will deadlock against ctx->mutex, but 10561 * the tracepoint stuff does not actually need it. So 10562 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10563 * already have a reference on ctx. 10564 * 10565 * This can result in event getting moved to a different ctx, 10566 * but that does not affect the tracepoint state. 10567 */ 10568 mutex_unlock(&ctx->mutex); 10569 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10570 mutex_lock(&ctx->mutex); 10571 } else 10572 #endif 10573 if (has_addr_filter(event)) 10574 ret = perf_event_set_addr_filter(event, filter_str); 10575 10576 kfree(filter_str); 10577 return ret; 10578 } 10579 10580 /* 10581 * hrtimer based swevent callback 10582 */ 10583 10584 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10585 { 10586 enum hrtimer_restart ret = HRTIMER_RESTART; 10587 struct perf_sample_data data; 10588 struct pt_regs *regs; 10589 struct perf_event *event; 10590 u64 period; 10591 10592 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10593 10594 if (event->state != PERF_EVENT_STATE_ACTIVE) 10595 return HRTIMER_NORESTART; 10596 10597 event->pmu->read(event); 10598 10599 perf_sample_data_init(&data, 0, event->hw.last_period); 10600 regs = get_irq_regs(); 10601 10602 if (regs && !perf_exclude_event(event, regs)) { 10603 if (!(event->attr.exclude_idle && is_idle_task(current))) 10604 if (__perf_event_overflow(event, 1, &data, regs)) 10605 ret = HRTIMER_NORESTART; 10606 } 10607 10608 period = max_t(u64, 10000, event->hw.sample_period); 10609 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10610 10611 return ret; 10612 } 10613 10614 static void perf_swevent_start_hrtimer(struct perf_event *event) 10615 { 10616 struct hw_perf_event *hwc = &event->hw; 10617 s64 period; 10618 10619 if (!is_sampling_event(event)) 10620 return; 10621 10622 period = local64_read(&hwc->period_left); 10623 if (period) { 10624 if (period < 0) 10625 period = 10000; 10626 10627 local64_set(&hwc->period_left, 0); 10628 } else { 10629 period = max_t(u64, 10000, hwc->sample_period); 10630 } 10631 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10632 HRTIMER_MODE_REL_PINNED_HARD); 10633 } 10634 10635 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10636 { 10637 struct hw_perf_event *hwc = &event->hw; 10638 10639 if (is_sampling_event(event)) { 10640 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10641 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10642 10643 hrtimer_cancel(&hwc->hrtimer); 10644 } 10645 } 10646 10647 static void perf_swevent_init_hrtimer(struct perf_event *event) 10648 { 10649 struct hw_perf_event *hwc = &event->hw; 10650 10651 if (!is_sampling_event(event)) 10652 return; 10653 10654 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10655 hwc->hrtimer.function = perf_swevent_hrtimer; 10656 10657 /* 10658 * Since hrtimers have a fixed rate, we can do a static freq->period 10659 * mapping and avoid the whole period adjust feedback stuff. 10660 */ 10661 if (event->attr.freq) { 10662 long freq = event->attr.sample_freq; 10663 10664 event->attr.sample_period = NSEC_PER_SEC / freq; 10665 hwc->sample_period = event->attr.sample_period; 10666 local64_set(&hwc->period_left, hwc->sample_period); 10667 hwc->last_period = hwc->sample_period; 10668 event->attr.freq = 0; 10669 } 10670 } 10671 10672 /* 10673 * Software event: cpu wall time clock 10674 */ 10675 10676 static void cpu_clock_event_update(struct perf_event *event) 10677 { 10678 s64 prev; 10679 u64 now; 10680 10681 now = local_clock(); 10682 prev = local64_xchg(&event->hw.prev_count, now); 10683 local64_add(now - prev, &event->count); 10684 } 10685 10686 static void cpu_clock_event_start(struct perf_event *event, int flags) 10687 { 10688 local64_set(&event->hw.prev_count, local_clock()); 10689 perf_swevent_start_hrtimer(event); 10690 } 10691 10692 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10693 { 10694 perf_swevent_cancel_hrtimer(event); 10695 cpu_clock_event_update(event); 10696 } 10697 10698 static int cpu_clock_event_add(struct perf_event *event, int flags) 10699 { 10700 if (flags & PERF_EF_START) 10701 cpu_clock_event_start(event, flags); 10702 perf_event_update_userpage(event); 10703 10704 return 0; 10705 } 10706 10707 static void cpu_clock_event_del(struct perf_event *event, int flags) 10708 { 10709 cpu_clock_event_stop(event, flags); 10710 } 10711 10712 static void cpu_clock_event_read(struct perf_event *event) 10713 { 10714 cpu_clock_event_update(event); 10715 } 10716 10717 static int cpu_clock_event_init(struct perf_event *event) 10718 { 10719 if (event->attr.type != PERF_TYPE_SOFTWARE) 10720 return -ENOENT; 10721 10722 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10723 return -ENOENT; 10724 10725 /* 10726 * no branch sampling for software events 10727 */ 10728 if (has_branch_stack(event)) 10729 return -EOPNOTSUPP; 10730 10731 perf_swevent_init_hrtimer(event); 10732 10733 return 0; 10734 } 10735 10736 static struct pmu perf_cpu_clock = { 10737 .task_ctx_nr = perf_sw_context, 10738 10739 .capabilities = PERF_PMU_CAP_NO_NMI, 10740 10741 .event_init = cpu_clock_event_init, 10742 .add = cpu_clock_event_add, 10743 .del = cpu_clock_event_del, 10744 .start = cpu_clock_event_start, 10745 .stop = cpu_clock_event_stop, 10746 .read = cpu_clock_event_read, 10747 }; 10748 10749 /* 10750 * Software event: task time clock 10751 */ 10752 10753 static void task_clock_event_update(struct perf_event *event, u64 now) 10754 { 10755 u64 prev; 10756 s64 delta; 10757 10758 prev = local64_xchg(&event->hw.prev_count, now); 10759 delta = now - prev; 10760 local64_add(delta, &event->count); 10761 } 10762 10763 static void task_clock_event_start(struct perf_event *event, int flags) 10764 { 10765 local64_set(&event->hw.prev_count, event->ctx->time); 10766 perf_swevent_start_hrtimer(event); 10767 } 10768 10769 static void task_clock_event_stop(struct perf_event *event, int flags) 10770 { 10771 perf_swevent_cancel_hrtimer(event); 10772 task_clock_event_update(event, event->ctx->time); 10773 } 10774 10775 static int task_clock_event_add(struct perf_event *event, int flags) 10776 { 10777 if (flags & PERF_EF_START) 10778 task_clock_event_start(event, flags); 10779 perf_event_update_userpage(event); 10780 10781 return 0; 10782 } 10783 10784 static void task_clock_event_del(struct perf_event *event, int flags) 10785 { 10786 task_clock_event_stop(event, PERF_EF_UPDATE); 10787 } 10788 10789 static void task_clock_event_read(struct perf_event *event) 10790 { 10791 u64 now = perf_clock(); 10792 u64 delta = now - event->ctx->timestamp; 10793 u64 time = event->ctx->time + delta; 10794 10795 task_clock_event_update(event, time); 10796 } 10797 10798 static int task_clock_event_init(struct perf_event *event) 10799 { 10800 if (event->attr.type != PERF_TYPE_SOFTWARE) 10801 return -ENOENT; 10802 10803 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10804 return -ENOENT; 10805 10806 /* 10807 * no branch sampling for software events 10808 */ 10809 if (has_branch_stack(event)) 10810 return -EOPNOTSUPP; 10811 10812 perf_swevent_init_hrtimer(event); 10813 10814 return 0; 10815 } 10816 10817 static struct pmu perf_task_clock = { 10818 .task_ctx_nr = perf_sw_context, 10819 10820 .capabilities = PERF_PMU_CAP_NO_NMI, 10821 10822 .event_init = task_clock_event_init, 10823 .add = task_clock_event_add, 10824 .del = task_clock_event_del, 10825 .start = task_clock_event_start, 10826 .stop = task_clock_event_stop, 10827 .read = task_clock_event_read, 10828 }; 10829 10830 static void perf_pmu_nop_void(struct pmu *pmu) 10831 { 10832 } 10833 10834 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10835 { 10836 } 10837 10838 static int perf_pmu_nop_int(struct pmu *pmu) 10839 { 10840 return 0; 10841 } 10842 10843 static int perf_event_nop_int(struct perf_event *event, u64 value) 10844 { 10845 return 0; 10846 } 10847 10848 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10849 10850 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10851 { 10852 __this_cpu_write(nop_txn_flags, flags); 10853 10854 if (flags & ~PERF_PMU_TXN_ADD) 10855 return; 10856 10857 perf_pmu_disable(pmu); 10858 } 10859 10860 static int perf_pmu_commit_txn(struct pmu *pmu) 10861 { 10862 unsigned int flags = __this_cpu_read(nop_txn_flags); 10863 10864 __this_cpu_write(nop_txn_flags, 0); 10865 10866 if (flags & ~PERF_PMU_TXN_ADD) 10867 return 0; 10868 10869 perf_pmu_enable(pmu); 10870 return 0; 10871 } 10872 10873 static void perf_pmu_cancel_txn(struct pmu *pmu) 10874 { 10875 unsigned int flags = __this_cpu_read(nop_txn_flags); 10876 10877 __this_cpu_write(nop_txn_flags, 0); 10878 10879 if (flags & ~PERF_PMU_TXN_ADD) 10880 return; 10881 10882 perf_pmu_enable(pmu); 10883 } 10884 10885 static int perf_event_idx_default(struct perf_event *event) 10886 { 10887 return 0; 10888 } 10889 10890 /* 10891 * Ensures all contexts with the same task_ctx_nr have the same 10892 * pmu_cpu_context too. 10893 */ 10894 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10895 { 10896 struct pmu *pmu; 10897 10898 if (ctxn < 0) 10899 return NULL; 10900 10901 list_for_each_entry(pmu, &pmus, entry) { 10902 if (pmu->task_ctx_nr == ctxn) 10903 return pmu->pmu_cpu_context; 10904 } 10905 10906 return NULL; 10907 } 10908 10909 static void free_pmu_context(struct pmu *pmu) 10910 { 10911 /* 10912 * Static contexts such as perf_sw_context have a global lifetime 10913 * and may be shared between different PMUs. Avoid freeing them 10914 * when a single PMU is going away. 10915 */ 10916 if (pmu->task_ctx_nr > perf_invalid_context) 10917 return; 10918 10919 free_percpu(pmu->pmu_cpu_context); 10920 } 10921 10922 /* 10923 * Let userspace know that this PMU supports address range filtering: 10924 */ 10925 static ssize_t nr_addr_filters_show(struct device *dev, 10926 struct device_attribute *attr, 10927 char *page) 10928 { 10929 struct pmu *pmu = dev_get_drvdata(dev); 10930 10931 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10932 } 10933 DEVICE_ATTR_RO(nr_addr_filters); 10934 10935 static struct idr pmu_idr; 10936 10937 static ssize_t 10938 type_show(struct device *dev, struct device_attribute *attr, char *page) 10939 { 10940 struct pmu *pmu = dev_get_drvdata(dev); 10941 10942 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10943 } 10944 static DEVICE_ATTR_RO(type); 10945 10946 static ssize_t 10947 perf_event_mux_interval_ms_show(struct device *dev, 10948 struct device_attribute *attr, 10949 char *page) 10950 { 10951 struct pmu *pmu = dev_get_drvdata(dev); 10952 10953 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10954 } 10955 10956 static DEFINE_MUTEX(mux_interval_mutex); 10957 10958 static ssize_t 10959 perf_event_mux_interval_ms_store(struct device *dev, 10960 struct device_attribute *attr, 10961 const char *buf, size_t count) 10962 { 10963 struct pmu *pmu = dev_get_drvdata(dev); 10964 int timer, cpu, ret; 10965 10966 ret = kstrtoint(buf, 0, &timer); 10967 if (ret) 10968 return ret; 10969 10970 if (timer < 1) 10971 return -EINVAL; 10972 10973 /* same value, noting to do */ 10974 if (timer == pmu->hrtimer_interval_ms) 10975 return count; 10976 10977 mutex_lock(&mux_interval_mutex); 10978 pmu->hrtimer_interval_ms = timer; 10979 10980 /* update all cpuctx for this PMU */ 10981 cpus_read_lock(); 10982 for_each_online_cpu(cpu) { 10983 struct perf_cpu_context *cpuctx; 10984 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10985 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10986 10987 cpu_function_call(cpu, 10988 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10989 } 10990 cpus_read_unlock(); 10991 mutex_unlock(&mux_interval_mutex); 10992 10993 return count; 10994 } 10995 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10996 10997 static struct attribute *pmu_dev_attrs[] = { 10998 &dev_attr_type.attr, 10999 &dev_attr_perf_event_mux_interval_ms.attr, 11000 NULL, 11001 }; 11002 ATTRIBUTE_GROUPS(pmu_dev); 11003 11004 static int pmu_bus_running; 11005 static struct bus_type pmu_bus = { 11006 .name = "event_source", 11007 .dev_groups = pmu_dev_groups, 11008 }; 11009 11010 static void pmu_dev_release(struct device *dev) 11011 { 11012 kfree(dev); 11013 } 11014 11015 static int pmu_dev_alloc(struct pmu *pmu) 11016 { 11017 int ret = -ENOMEM; 11018 11019 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11020 if (!pmu->dev) 11021 goto out; 11022 11023 pmu->dev->groups = pmu->attr_groups; 11024 device_initialize(pmu->dev); 11025 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11026 if (ret) 11027 goto free_dev; 11028 11029 dev_set_drvdata(pmu->dev, pmu); 11030 pmu->dev->bus = &pmu_bus; 11031 pmu->dev->release = pmu_dev_release; 11032 ret = device_add(pmu->dev); 11033 if (ret) 11034 goto free_dev; 11035 11036 /* For PMUs with address filters, throw in an extra attribute: */ 11037 if (pmu->nr_addr_filters) 11038 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11039 11040 if (ret) 11041 goto del_dev; 11042 11043 if (pmu->attr_update) 11044 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11045 11046 if (ret) 11047 goto del_dev; 11048 11049 out: 11050 return ret; 11051 11052 del_dev: 11053 device_del(pmu->dev); 11054 11055 free_dev: 11056 put_device(pmu->dev); 11057 goto out; 11058 } 11059 11060 static struct lock_class_key cpuctx_mutex; 11061 static struct lock_class_key cpuctx_lock; 11062 11063 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11064 { 11065 int cpu, ret, max = PERF_TYPE_MAX; 11066 11067 mutex_lock(&pmus_lock); 11068 ret = -ENOMEM; 11069 pmu->pmu_disable_count = alloc_percpu(int); 11070 if (!pmu->pmu_disable_count) 11071 goto unlock; 11072 11073 pmu->type = -1; 11074 if (!name) 11075 goto skip_type; 11076 pmu->name = name; 11077 11078 if (type != PERF_TYPE_SOFTWARE) { 11079 if (type >= 0) 11080 max = type; 11081 11082 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11083 if (ret < 0) 11084 goto free_pdc; 11085 11086 WARN_ON(type >= 0 && ret != type); 11087 11088 type = ret; 11089 } 11090 pmu->type = type; 11091 11092 if (pmu_bus_running) { 11093 ret = pmu_dev_alloc(pmu); 11094 if (ret) 11095 goto free_idr; 11096 } 11097 11098 skip_type: 11099 if (pmu->task_ctx_nr == perf_hw_context) { 11100 static int hw_context_taken = 0; 11101 11102 /* 11103 * Other than systems with heterogeneous CPUs, it never makes 11104 * sense for two PMUs to share perf_hw_context. PMUs which are 11105 * uncore must use perf_invalid_context. 11106 */ 11107 if (WARN_ON_ONCE(hw_context_taken && 11108 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11109 pmu->task_ctx_nr = perf_invalid_context; 11110 11111 hw_context_taken = 1; 11112 } 11113 11114 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11115 if (pmu->pmu_cpu_context) 11116 goto got_cpu_context; 11117 11118 ret = -ENOMEM; 11119 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11120 if (!pmu->pmu_cpu_context) 11121 goto free_dev; 11122 11123 for_each_possible_cpu(cpu) { 11124 struct perf_cpu_context *cpuctx; 11125 11126 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11127 __perf_event_init_context(&cpuctx->ctx); 11128 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11129 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11130 cpuctx->ctx.pmu = pmu; 11131 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11132 11133 __perf_mux_hrtimer_init(cpuctx, cpu); 11134 11135 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11136 cpuctx->heap = cpuctx->heap_default; 11137 } 11138 11139 got_cpu_context: 11140 if (!pmu->start_txn) { 11141 if (pmu->pmu_enable) { 11142 /* 11143 * If we have pmu_enable/pmu_disable calls, install 11144 * transaction stubs that use that to try and batch 11145 * hardware accesses. 11146 */ 11147 pmu->start_txn = perf_pmu_start_txn; 11148 pmu->commit_txn = perf_pmu_commit_txn; 11149 pmu->cancel_txn = perf_pmu_cancel_txn; 11150 } else { 11151 pmu->start_txn = perf_pmu_nop_txn; 11152 pmu->commit_txn = perf_pmu_nop_int; 11153 pmu->cancel_txn = perf_pmu_nop_void; 11154 } 11155 } 11156 11157 if (!pmu->pmu_enable) { 11158 pmu->pmu_enable = perf_pmu_nop_void; 11159 pmu->pmu_disable = perf_pmu_nop_void; 11160 } 11161 11162 if (!pmu->check_period) 11163 pmu->check_period = perf_event_nop_int; 11164 11165 if (!pmu->event_idx) 11166 pmu->event_idx = perf_event_idx_default; 11167 11168 /* 11169 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11170 * since these cannot be in the IDR. This way the linear search 11171 * is fast, provided a valid software event is provided. 11172 */ 11173 if (type == PERF_TYPE_SOFTWARE || !name) 11174 list_add_rcu(&pmu->entry, &pmus); 11175 else 11176 list_add_tail_rcu(&pmu->entry, &pmus); 11177 11178 atomic_set(&pmu->exclusive_cnt, 0); 11179 ret = 0; 11180 unlock: 11181 mutex_unlock(&pmus_lock); 11182 11183 return ret; 11184 11185 free_dev: 11186 device_del(pmu->dev); 11187 put_device(pmu->dev); 11188 11189 free_idr: 11190 if (pmu->type != PERF_TYPE_SOFTWARE) 11191 idr_remove(&pmu_idr, pmu->type); 11192 11193 free_pdc: 11194 free_percpu(pmu->pmu_disable_count); 11195 goto unlock; 11196 } 11197 EXPORT_SYMBOL_GPL(perf_pmu_register); 11198 11199 void perf_pmu_unregister(struct pmu *pmu) 11200 { 11201 mutex_lock(&pmus_lock); 11202 list_del_rcu(&pmu->entry); 11203 11204 /* 11205 * We dereference the pmu list under both SRCU and regular RCU, so 11206 * synchronize against both of those. 11207 */ 11208 synchronize_srcu(&pmus_srcu); 11209 synchronize_rcu(); 11210 11211 free_percpu(pmu->pmu_disable_count); 11212 if (pmu->type != PERF_TYPE_SOFTWARE) 11213 idr_remove(&pmu_idr, pmu->type); 11214 if (pmu_bus_running) { 11215 if (pmu->nr_addr_filters) 11216 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11217 device_del(pmu->dev); 11218 put_device(pmu->dev); 11219 } 11220 free_pmu_context(pmu); 11221 mutex_unlock(&pmus_lock); 11222 } 11223 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11224 11225 static inline bool has_extended_regs(struct perf_event *event) 11226 { 11227 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11228 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11229 } 11230 11231 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11232 { 11233 struct perf_event_context *ctx = NULL; 11234 int ret; 11235 11236 if (!try_module_get(pmu->module)) 11237 return -ENODEV; 11238 11239 /* 11240 * A number of pmu->event_init() methods iterate the sibling_list to, 11241 * for example, validate if the group fits on the PMU. Therefore, 11242 * if this is a sibling event, acquire the ctx->mutex to protect 11243 * the sibling_list. 11244 */ 11245 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11246 /* 11247 * This ctx->mutex can nest when we're called through 11248 * inheritance. See the perf_event_ctx_lock_nested() comment. 11249 */ 11250 ctx = perf_event_ctx_lock_nested(event->group_leader, 11251 SINGLE_DEPTH_NESTING); 11252 BUG_ON(!ctx); 11253 } 11254 11255 event->pmu = pmu; 11256 ret = pmu->event_init(event); 11257 11258 if (ctx) 11259 perf_event_ctx_unlock(event->group_leader, ctx); 11260 11261 if (!ret) { 11262 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11263 has_extended_regs(event)) 11264 ret = -EOPNOTSUPP; 11265 11266 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11267 event_has_any_exclude_flag(event)) 11268 ret = -EINVAL; 11269 11270 if (ret && event->destroy) 11271 event->destroy(event); 11272 } 11273 11274 if (ret) 11275 module_put(pmu->module); 11276 11277 return ret; 11278 } 11279 11280 static struct pmu *perf_init_event(struct perf_event *event) 11281 { 11282 bool extended_type = false; 11283 int idx, type, ret; 11284 struct pmu *pmu; 11285 11286 idx = srcu_read_lock(&pmus_srcu); 11287 11288 /* Try parent's PMU first: */ 11289 if (event->parent && event->parent->pmu) { 11290 pmu = event->parent->pmu; 11291 ret = perf_try_init_event(pmu, event); 11292 if (!ret) 11293 goto unlock; 11294 } 11295 11296 /* 11297 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11298 * are often aliases for PERF_TYPE_RAW. 11299 */ 11300 type = event->attr.type; 11301 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11302 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11303 if (!type) { 11304 type = PERF_TYPE_RAW; 11305 } else { 11306 extended_type = true; 11307 event->attr.config &= PERF_HW_EVENT_MASK; 11308 } 11309 } 11310 11311 again: 11312 rcu_read_lock(); 11313 pmu = idr_find(&pmu_idr, type); 11314 rcu_read_unlock(); 11315 if (pmu) { 11316 if (event->attr.type != type && type != PERF_TYPE_RAW && 11317 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11318 goto fail; 11319 11320 ret = perf_try_init_event(pmu, event); 11321 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11322 type = event->attr.type; 11323 goto again; 11324 } 11325 11326 if (ret) 11327 pmu = ERR_PTR(ret); 11328 11329 goto unlock; 11330 } 11331 11332 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11333 ret = perf_try_init_event(pmu, event); 11334 if (!ret) 11335 goto unlock; 11336 11337 if (ret != -ENOENT) { 11338 pmu = ERR_PTR(ret); 11339 goto unlock; 11340 } 11341 } 11342 fail: 11343 pmu = ERR_PTR(-ENOENT); 11344 unlock: 11345 srcu_read_unlock(&pmus_srcu, idx); 11346 11347 return pmu; 11348 } 11349 11350 static void attach_sb_event(struct perf_event *event) 11351 { 11352 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11353 11354 raw_spin_lock(&pel->lock); 11355 list_add_rcu(&event->sb_list, &pel->list); 11356 raw_spin_unlock(&pel->lock); 11357 } 11358 11359 /* 11360 * We keep a list of all !task (and therefore per-cpu) events 11361 * that need to receive side-band records. 11362 * 11363 * This avoids having to scan all the various PMU per-cpu contexts 11364 * looking for them. 11365 */ 11366 static void account_pmu_sb_event(struct perf_event *event) 11367 { 11368 if (is_sb_event(event)) 11369 attach_sb_event(event); 11370 } 11371 11372 static void account_event_cpu(struct perf_event *event, int cpu) 11373 { 11374 if (event->parent) 11375 return; 11376 11377 if (is_cgroup_event(event)) 11378 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11379 } 11380 11381 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11382 static void account_freq_event_nohz(void) 11383 { 11384 #ifdef CONFIG_NO_HZ_FULL 11385 /* Lock so we don't race with concurrent unaccount */ 11386 spin_lock(&nr_freq_lock); 11387 if (atomic_inc_return(&nr_freq_events) == 1) 11388 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11389 spin_unlock(&nr_freq_lock); 11390 #endif 11391 } 11392 11393 static void account_freq_event(void) 11394 { 11395 if (tick_nohz_full_enabled()) 11396 account_freq_event_nohz(); 11397 else 11398 atomic_inc(&nr_freq_events); 11399 } 11400 11401 11402 static void account_event(struct perf_event *event) 11403 { 11404 bool inc = false; 11405 11406 if (event->parent) 11407 return; 11408 11409 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11410 inc = true; 11411 if (event->attr.mmap || event->attr.mmap_data) 11412 atomic_inc(&nr_mmap_events); 11413 if (event->attr.build_id) 11414 atomic_inc(&nr_build_id_events); 11415 if (event->attr.comm) 11416 atomic_inc(&nr_comm_events); 11417 if (event->attr.namespaces) 11418 atomic_inc(&nr_namespaces_events); 11419 if (event->attr.cgroup) 11420 atomic_inc(&nr_cgroup_events); 11421 if (event->attr.task) 11422 atomic_inc(&nr_task_events); 11423 if (event->attr.freq) 11424 account_freq_event(); 11425 if (event->attr.context_switch) { 11426 atomic_inc(&nr_switch_events); 11427 inc = true; 11428 } 11429 if (has_branch_stack(event)) 11430 inc = true; 11431 if (is_cgroup_event(event)) 11432 inc = true; 11433 if (event->attr.ksymbol) 11434 atomic_inc(&nr_ksymbol_events); 11435 if (event->attr.bpf_event) 11436 atomic_inc(&nr_bpf_events); 11437 if (event->attr.text_poke) 11438 atomic_inc(&nr_text_poke_events); 11439 11440 if (inc) { 11441 /* 11442 * We need the mutex here because static_branch_enable() 11443 * must complete *before* the perf_sched_count increment 11444 * becomes visible. 11445 */ 11446 if (atomic_inc_not_zero(&perf_sched_count)) 11447 goto enabled; 11448 11449 mutex_lock(&perf_sched_mutex); 11450 if (!atomic_read(&perf_sched_count)) { 11451 static_branch_enable(&perf_sched_events); 11452 /* 11453 * Guarantee that all CPUs observe they key change and 11454 * call the perf scheduling hooks before proceeding to 11455 * install events that need them. 11456 */ 11457 synchronize_rcu(); 11458 } 11459 /* 11460 * Now that we have waited for the sync_sched(), allow further 11461 * increments to by-pass the mutex. 11462 */ 11463 atomic_inc(&perf_sched_count); 11464 mutex_unlock(&perf_sched_mutex); 11465 } 11466 enabled: 11467 11468 account_event_cpu(event, event->cpu); 11469 11470 account_pmu_sb_event(event); 11471 } 11472 11473 /* 11474 * Allocate and initialize an event structure 11475 */ 11476 static struct perf_event * 11477 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11478 struct task_struct *task, 11479 struct perf_event *group_leader, 11480 struct perf_event *parent_event, 11481 perf_overflow_handler_t overflow_handler, 11482 void *context, int cgroup_fd) 11483 { 11484 struct pmu *pmu; 11485 struct perf_event *event; 11486 struct hw_perf_event *hwc; 11487 long err = -EINVAL; 11488 int node; 11489 11490 if ((unsigned)cpu >= nr_cpu_ids) { 11491 if (!task || cpu != -1) 11492 return ERR_PTR(-EINVAL); 11493 } 11494 if (attr->sigtrap && !task) { 11495 /* Requires a task: avoid signalling random tasks. */ 11496 return ERR_PTR(-EINVAL); 11497 } 11498 11499 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11500 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11501 node); 11502 if (!event) 11503 return ERR_PTR(-ENOMEM); 11504 11505 /* 11506 * Single events are their own group leaders, with an 11507 * empty sibling list: 11508 */ 11509 if (!group_leader) 11510 group_leader = event; 11511 11512 mutex_init(&event->child_mutex); 11513 INIT_LIST_HEAD(&event->child_list); 11514 11515 INIT_LIST_HEAD(&event->event_entry); 11516 INIT_LIST_HEAD(&event->sibling_list); 11517 INIT_LIST_HEAD(&event->active_list); 11518 init_event_group(event); 11519 INIT_LIST_HEAD(&event->rb_entry); 11520 INIT_LIST_HEAD(&event->active_entry); 11521 INIT_LIST_HEAD(&event->addr_filters.list); 11522 INIT_HLIST_NODE(&event->hlist_entry); 11523 11524 11525 init_waitqueue_head(&event->waitq); 11526 event->pending_disable = -1; 11527 init_irq_work(&event->pending, perf_pending_event); 11528 11529 mutex_init(&event->mmap_mutex); 11530 raw_spin_lock_init(&event->addr_filters.lock); 11531 11532 atomic_long_set(&event->refcount, 1); 11533 event->cpu = cpu; 11534 event->attr = *attr; 11535 event->group_leader = group_leader; 11536 event->pmu = NULL; 11537 event->oncpu = -1; 11538 11539 event->parent = parent_event; 11540 11541 event->ns = get_pid_ns(task_active_pid_ns(current)); 11542 event->id = atomic64_inc_return(&perf_event_id); 11543 11544 event->state = PERF_EVENT_STATE_INACTIVE; 11545 11546 if (event->attr.sigtrap) 11547 atomic_set(&event->event_limit, 1); 11548 11549 if (task) { 11550 event->attach_state = PERF_ATTACH_TASK; 11551 /* 11552 * XXX pmu::event_init needs to know what task to account to 11553 * and we cannot use the ctx information because we need the 11554 * pmu before we get a ctx. 11555 */ 11556 event->hw.target = get_task_struct(task); 11557 } 11558 11559 event->clock = &local_clock; 11560 if (parent_event) 11561 event->clock = parent_event->clock; 11562 11563 if (!overflow_handler && parent_event) { 11564 overflow_handler = parent_event->overflow_handler; 11565 context = parent_event->overflow_handler_context; 11566 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11567 if (overflow_handler == bpf_overflow_handler) { 11568 struct bpf_prog *prog = parent_event->prog; 11569 11570 bpf_prog_inc(prog); 11571 event->prog = prog; 11572 event->orig_overflow_handler = 11573 parent_event->orig_overflow_handler; 11574 } 11575 #endif 11576 } 11577 11578 if (overflow_handler) { 11579 event->overflow_handler = overflow_handler; 11580 event->overflow_handler_context = context; 11581 } else if (is_write_backward(event)){ 11582 event->overflow_handler = perf_event_output_backward; 11583 event->overflow_handler_context = NULL; 11584 } else { 11585 event->overflow_handler = perf_event_output_forward; 11586 event->overflow_handler_context = NULL; 11587 } 11588 11589 perf_event__state_init(event); 11590 11591 pmu = NULL; 11592 11593 hwc = &event->hw; 11594 hwc->sample_period = attr->sample_period; 11595 if (attr->freq && attr->sample_freq) 11596 hwc->sample_period = 1; 11597 hwc->last_period = hwc->sample_period; 11598 11599 local64_set(&hwc->period_left, hwc->sample_period); 11600 11601 /* 11602 * We currently do not support PERF_SAMPLE_READ on inherited events. 11603 * See perf_output_read(). 11604 */ 11605 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11606 goto err_ns; 11607 11608 if (!has_branch_stack(event)) 11609 event->attr.branch_sample_type = 0; 11610 11611 pmu = perf_init_event(event); 11612 if (IS_ERR(pmu)) { 11613 err = PTR_ERR(pmu); 11614 goto err_ns; 11615 } 11616 11617 /* 11618 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11619 * be different on other CPUs in the uncore mask. 11620 */ 11621 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11622 err = -EINVAL; 11623 goto err_pmu; 11624 } 11625 11626 if (event->attr.aux_output && 11627 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11628 err = -EOPNOTSUPP; 11629 goto err_pmu; 11630 } 11631 11632 if (cgroup_fd != -1) { 11633 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11634 if (err) 11635 goto err_pmu; 11636 } 11637 11638 err = exclusive_event_init(event); 11639 if (err) 11640 goto err_pmu; 11641 11642 if (has_addr_filter(event)) { 11643 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11644 sizeof(struct perf_addr_filter_range), 11645 GFP_KERNEL); 11646 if (!event->addr_filter_ranges) { 11647 err = -ENOMEM; 11648 goto err_per_task; 11649 } 11650 11651 /* 11652 * Clone the parent's vma offsets: they are valid until exec() 11653 * even if the mm is not shared with the parent. 11654 */ 11655 if (event->parent) { 11656 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11657 11658 raw_spin_lock_irq(&ifh->lock); 11659 memcpy(event->addr_filter_ranges, 11660 event->parent->addr_filter_ranges, 11661 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11662 raw_spin_unlock_irq(&ifh->lock); 11663 } 11664 11665 /* force hw sync on the address filters */ 11666 event->addr_filters_gen = 1; 11667 } 11668 11669 if (!event->parent) { 11670 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11671 err = get_callchain_buffers(attr->sample_max_stack); 11672 if (err) 11673 goto err_addr_filters; 11674 } 11675 } 11676 11677 err = security_perf_event_alloc(event); 11678 if (err) 11679 goto err_callchain_buffer; 11680 11681 /* symmetric to unaccount_event() in _free_event() */ 11682 account_event(event); 11683 11684 return event; 11685 11686 err_callchain_buffer: 11687 if (!event->parent) { 11688 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11689 put_callchain_buffers(); 11690 } 11691 err_addr_filters: 11692 kfree(event->addr_filter_ranges); 11693 11694 err_per_task: 11695 exclusive_event_destroy(event); 11696 11697 err_pmu: 11698 if (is_cgroup_event(event)) 11699 perf_detach_cgroup(event); 11700 if (event->destroy) 11701 event->destroy(event); 11702 module_put(pmu->module); 11703 err_ns: 11704 if (event->ns) 11705 put_pid_ns(event->ns); 11706 if (event->hw.target) 11707 put_task_struct(event->hw.target); 11708 kmem_cache_free(perf_event_cache, event); 11709 11710 return ERR_PTR(err); 11711 } 11712 11713 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11714 struct perf_event_attr *attr) 11715 { 11716 u32 size; 11717 int ret; 11718 11719 /* Zero the full structure, so that a short copy will be nice. */ 11720 memset(attr, 0, sizeof(*attr)); 11721 11722 ret = get_user(size, &uattr->size); 11723 if (ret) 11724 return ret; 11725 11726 /* ABI compatibility quirk: */ 11727 if (!size) 11728 size = PERF_ATTR_SIZE_VER0; 11729 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11730 goto err_size; 11731 11732 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11733 if (ret) { 11734 if (ret == -E2BIG) 11735 goto err_size; 11736 return ret; 11737 } 11738 11739 attr->size = size; 11740 11741 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11742 return -EINVAL; 11743 11744 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11745 return -EINVAL; 11746 11747 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11748 return -EINVAL; 11749 11750 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11751 u64 mask = attr->branch_sample_type; 11752 11753 /* only using defined bits */ 11754 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11755 return -EINVAL; 11756 11757 /* at least one branch bit must be set */ 11758 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11759 return -EINVAL; 11760 11761 /* propagate priv level, when not set for branch */ 11762 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11763 11764 /* exclude_kernel checked on syscall entry */ 11765 if (!attr->exclude_kernel) 11766 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11767 11768 if (!attr->exclude_user) 11769 mask |= PERF_SAMPLE_BRANCH_USER; 11770 11771 if (!attr->exclude_hv) 11772 mask |= PERF_SAMPLE_BRANCH_HV; 11773 /* 11774 * adjust user setting (for HW filter setup) 11775 */ 11776 attr->branch_sample_type = mask; 11777 } 11778 /* privileged levels capture (kernel, hv): check permissions */ 11779 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11780 ret = perf_allow_kernel(attr); 11781 if (ret) 11782 return ret; 11783 } 11784 } 11785 11786 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11787 ret = perf_reg_validate(attr->sample_regs_user); 11788 if (ret) 11789 return ret; 11790 } 11791 11792 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11793 if (!arch_perf_have_user_stack_dump()) 11794 return -ENOSYS; 11795 11796 /* 11797 * We have __u32 type for the size, but so far 11798 * we can only use __u16 as maximum due to the 11799 * __u16 sample size limit. 11800 */ 11801 if (attr->sample_stack_user >= USHRT_MAX) 11802 return -EINVAL; 11803 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11804 return -EINVAL; 11805 } 11806 11807 if (!attr->sample_max_stack) 11808 attr->sample_max_stack = sysctl_perf_event_max_stack; 11809 11810 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11811 ret = perf_reg_validate(attr->sample_regs_intr); 11812 11813 #ifndef CONFIG_CGROUP_PERF 11814 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11815 return -EINVAL; 11816 #endif 11817 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11818 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11819 return -EINVAL; 11820 11821 if (!attr->inherit && attr->inherit_thread) 11822 return -EINVAL; 11823 11824 if (attr->remove_on_exec && attr->enable_on_exec) 11825 return -EINVAL; 11826 11827 if (attr->sigtrap && !attr->remove_on_exec) 11828 return -EINVAL; 11829 11830 out: 11831 return ret; 11832 11833 err_size: 11834 put_user(sizeof(*attr), &uattr->size); 11835 ret = -E2BIG; 11836 goto out; 11837 } 11838 11839 static int 11840 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11841 { 11842 struct perf_buffer *rb = NULL; 11843 int ret = -EINVAL; 11844 11845 if (!output_event) 11846 goto set; 11847 11848 /* don't allow circular references */ 11849 if (event == output_event) 11850 goto out; 11851 11852 /* 11853 * Don't allow cross-cpu buffers 11854 */ 11855 if (output_event->cpu != event->cpu) 11856 goto out; 11857 11858 /* 11859 * If its not a per-cpu rb, it must be the same task. 11860 */ 11861 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11862 goto out; 11863 11864 /* 11865 * Mixing clocks in the same buffer is trouble you don't need. 11866 */ 11867 if (output_event->clock != event->clock) 11868 goto out; 11869 11870 /* 11871 * Either writing ring buffer from beginning or from end. 11872 * Mixing is not allowed. 11873 */ 11874 if (is_write_backward(output_event) != is_write_backward(event)) 11875 goto out; 11876 11877 /* 11878 * If both events generate aux data, they must be on the same PMU 11879 */ 11880 if (has_aux(event) && has_aux(output_event) && 11881 event->pmu != output_event->pmu) 11882 goto out; 11883 11884 set: 11885 mutex_lock(&event->mmap_mutex); 11886 /* Can't redirect output if we've got an active mmap() */ 11887 if (atomic_read(&event->mmap_count)) 11888 goto unlock; 11889 11890 if (output_event) { 11891 /* get the rb we want to redirect to */ 11892 rb = ring_buffer_get(output_event); 11893 if (!rb) 11894 goto unlock; 11895 } 11896 11897 ring_buffer_attach(event, rb); 11898 11899 ret = 0; 11900 unlock: 11901 mutex_unlock(&event->mmap_mutex); 11902 11903 out: 11904 return ret; 11905 } 11906 11907 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11908 { 11909 if (b < a) 11910 swap(a, b); 11911 11912 mutex_lock(a); 11913 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11914 } 11915 11916 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11917 { 11918 bool nmi_safe = false; 11919 11920 switch (clk_id) { 11921 case CLOCK_MONOTONIC: 11922 event->clock = &ktime_get_mono_fast_ns; 11923 nmi_safe = true; 11924 break; 11925 11926 case CLOCK_MONOTONIC_RAW: 11927 event->clock = &ktime_get_raw_fast_ns; 11928 nmi_safe = true; 11929 break; 11930 11931 case CLOCK_REALTIME: 11932 event->clock = &ktime_get_real_ns; 11933 break; 11934 11935 case CLOCK_BOOTTIME: 11936 event->clock = &ktime_get_boottime_ns; 11937 break; 11938 11939 case CLOCK_TAI: 11940 event->clock = &ktime_get_clocktai_ns; 11941 break; 11942 11943 default: 11944 return -EINVAL; 11945 } 11946 11947 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11948 return -EINVAL; 11949 11950 return 0; 11951 } 11952 11953 /* 11954 * Variation on perf_event_ctx_lock_nested(), except we take two context 11955 * mutexes. 11956 */ 11957 static struct perf_event_context * 11958 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11959 struct perf_event_context *ctx) 11960 { 11961 struct perf_event_context *gctx; 11962 11963 again: 11964 rcu_read_lock(); 11965 gctx = READ_ONCE(group_leader->ctx); 11966 if (!refcount_inc_not_zero(&gctx->refcount)) { 11967 rcu_read_unlock(); 11968 goto again; 11969 } 11970 rcu_read_unlock(); 11971 11972 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11973 11974 if (group_leader->ctx != gctx) { 11975 mutex_unlock(&ctx->mutex); 11976 mutex_unlock(&gctx->mutex); 11977 put_ctx(gctx); 11978 goto again; 11979 } 11980 11981 return gctx; 11982 } 11983 11984 static bool 11985 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 11986 { 11987 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 11988 bool is_capable = perfmon_capable(); 11989 11990 if (attr->sigtrap) { 11991 /* 11992 * perf_event_attr::sigtrap sends signals to the other task. 11993 * Require the current task to also have CAP_KILL. 11994 */ 11995 rcu_read_lock(); 11996 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 11997 rcu_read_unlock(); 11998 11999 /* 12000 * If the required capabilities aren't available, checks for 12001 * ptrace permissions: upgrade to ATTACH, since sending signals 12002 * can effectively change the target task. 12003 */ 12004 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12005 } 12006 12007 /* 12008 * Preserve ptrace permission check for backwards compatibility. The 12009 * ptrace check also includes checks that the current task and other 12010 * task have matching uids, and is therefore not done here explicitly. 12011 */ 12012 return is_capable || ptrace_may_access(task, ptrace_mode); 12013 } 12014 12015 /** 12016 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12017 * 12018 * @attr_uptr: event_id type attributes for monitoring/sampling 12019 * @pid: target pid 12020 * @cpu: target cpu 12021 * @group_fd: group leader event fd 12022 * @flags: perf event open flags 12023 */ 12024 SYSCALL_DEFINE5(perf_event_open, 12025 struct perf_event_attr __user *, attr_uptr, 12026 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12027 { 12028 struct perf_event *group_leader = NULL, *output_event = NULL; 12029 struct perf_event *event, *sibling; 12030 struct perf_event_attr attr; 12031 struct perf_event_context *ctx, *gctx; 12032 struct file *event_file = NULL; 12033 struct fd group = {NULL, 0}; 12034 struct task_struct *task = NULL; 12035 struct pmu *pmu; 12036 int event_fd; 12037 int move_group = 0; 12038 int err; 12039 int f_flags = O_RDWR; 12040 int cgroup_fd = -1; 12041 12042 /* for future expandability... */ 12043 if (flags & ~PERF_FLAG_ALL) 12044 return -EINVAL; 12045 12046 /* Do we allow access to perf_event_open(2) ? */ 12047 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12048 if (err) 12049 return err; 12050 12051 err = perf_copy_attr(attr_uptr, &attr); 12052 if (err) 12053 return err; 12054 12055 if (!attr.exclude_kernel) { 12056 err = perf_allow_kernel(&attr); 12057 if (err) 12058 return err; 12059 } 12060 12061 if (attr.namespaces) { 12062 if (!perfmon_capable()) 12063 return -EACCES; 12064 } 12065 12066 if (attr.freq) { 12067 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12068 return -EINVAL; 12069 } else { 12070 if (attr.sample_period & (1ULL << 63)) 12071 return -EINVAL; 12072 } 12073 12074 /* Only privileged users can get physical addresses */ 12075 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12076 err = perf_allow_kernel(&attr); 12077 if (err) 12078 return err; 12079 } 12080 12081 /* REGS_INTR can leak data, lockdown must prevent this */ 12082 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12083 err = security_locked_down(LOCKDOWN_PERF); 12084 if (err) 12085 return err; 12086 } 12087 12088 /* 12089 * In cgroup mode, the pid argument is used to pass the fd 12090 * opened to the cgroup directory in cgroupfs. The cpu argument 12091 * designates the cpu on which to monitor threads from that 12092 * cgroup. 12093 */ 12094 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12095 return -EINVAL; 12096 12097 if (flags & PERF_FLAG_FD_CLOEXEC) 12098 f_flags |= O_CLOEXEC; 12099 12100 event_fd = get_unused_fd_flags(f_flags); 12101 if (event_fd < 0) 12102 return event_fd; 12103 12104 if (group_fd != -1) { 12105 err = perf_fget_light(group_fd, &group); 12106 if (err) 12107 goto err_fd; 12108 group_leader = group.file->private_data; 12109 if (flags & PERF_FLAG_FD_OUTPUT) 12110 output_event = group_leader; 12111 if (flags & PERF_FLAG_FD_NO_GROUP) 12112 group_leader = NULL; 12113 } 12114 12115 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12116 task = find_lively_task_by_vpid(pid); 12117 if (IS_ERR(task)) { 12118 err = PTR_ERR(task); 12119 goto err_group_fd; 12120 } 12121 } 12122 12123 if (task && group_leader && 12124 group_leader->attr.inherit != attr.inherit) { 12125 err = -EINVAL; 12126 goto err_task; 12127 } 12128 12129 if (flags & PERF_FLAG_PID_CGROUP) 12130 cgroup_fd = pid; 12131 12132 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12133 NULL, NULL, cgroup_fd); 12134 if (IS_ERR(event)) { 12135 err = PTR_ERR(event); 12136 goto err_task; 12137 } 12138 12139 if (is_sampling_event(event)) { 12140 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12141 err = -EOPNOTSUPP; 12142 goto err_alloc; 12143 } 12144 } 12145 12146 /* 12147 * Special case software events and allow them to be part of 12148 * any hardware group. 12149 */ 12150 pmu = event->pmu; 12151 12152 if (attr.use_clockid) { 12153 err = perf_event_set_clock(event, attr.clockid); 12154 if (err) 12155 goto err_alloc; 12156 } 12157 12158 if (pmu->task_ctx_nr == perf_sw_context) 12159 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12160 12161 if (group_leader) { 12162 if (is_software_event(event) && 12163 !in_software_context(group_leader)) { 12164 /* 12165 * If the event is a sw event, but the group_leader 12166 * is on hw context. 12167 * 12168 * Allow the addition of software events to hw 12169 * groups, this is safe because software events 12170 * never fail to schedule. 12171 */ 12172 pmu = group_leader->ctx->pmu; 12173 } else if (!is_software_event(event) && 12174 is_software_event(group_leader) && 12175 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12176 /* 12177 * In case the group is a pure software group, and we 12178 * try to add a hardware event, move the whole group to 12179 * the hardware context. 12180 */ 12181 move_group = 1; 12182 } 12183 } 12184 12185 /* 12186 * Get the target context (task or percpu): 12187 */ 12188 ctx = find_get_context(pmu, task, event); 12189 if (IS_ERR(ctx)) { 12190 err = PTR_ERR(ctx); 12191 goto err_alloc; 12192 } 12193 12194 /* 12195 * Look up the group leader (we will attach this event to it): 12196 */ 12197 if (group_leader) { 12198 err = -EINVAL; 12199 12200 /* 12201 * Do not allow a recursive hierarchy (this new sibling 12202 * becoming part of another group-sibling): 12203 */ 12204 if (group_leader->group_leader != group_leader) 12205 goto err_context; 12206 12207 /* All events in a group should have the same clock */ 12208 if (group_leader->clock != event->clock) 12209 goto err_context; 12210 12211 /* 12212 * Make sure we're both events for the same CPU; 12213 * grouping events for different CPUs is broken; since 12214 * you can never concurrently schedule them anyhow. 12215 */ 12216 if (group_leader->cpu != event->cpu) 12217 goto err_context; 12218 12219 /* 12220 * Make sure we're both on the same task, or both 12221 * per-CPU events. 12222 */ 12223 if (group_leader->ctx->task != ctx->task) 12224 goto err_context; 12225 12226 /* 12227 * Do not allow to attach to a group in a different task 12228 * or CPU context. If we're moving SW events, we'll fix 12229 * this up later, so allow that. 12230 */ 12231 if (!move_group && group_leader->ctx != ctx) 12232 goto err_context; 12233 12234 /* 12235 * Only a group leader can be exclusive or pinned 12236 */ 12237 if (attr.exclusive || attr.pinned) 12238 goto err_context; 12239 } 12240 12241 if (output_event) { 12242 err = perf_event_set_output(event, output_event); 12243 if (err) 12244 goto err_context; 12245 } 12246 12247 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12248 f_flags); 12249 if (IS_ERR(event_file)) { 12250 err = PTR_ERR(event_file); 12251 event_file = NULL; 12252 goto err_context; 12253 } 12254 12255 if (task) { 12256 err = down_read_interruptible(&task->signal->exec_update_lock); 12257 if (err) 12258 goto err_file; 12259 12260 /* 12261 * We must hold exec_update_lock across this and any potential 12262 * perf_install_in_context() call for this new event to 12263 * serialize against exec() altering our credentials (and the 12264 * perf_event_exit_task() that could imply). 12265 */ 12266 err = -EACCES; 12267 if (!perf_check_permission(&attr, task)) 12268 goto err_cred; 12269 } 12270 12271 if (move_group) { 12272 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12273 12274 if (gctx->task == TASK_TOMBSTONE) { 12275 err = -ESRCH; 12276 goto err_locked; 12277 } 12278 12279 /* 12280 * Check if we raced against another sys_perf_event_open() call 12281 * moving the software group underneath us. 12282 */ 12283 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12284 /* 12285 * If someone moved the group out from under us, check 12286 * if this new event wound up on the same ctx, if so 12287 * its the regular !move_group case, otherwise fail. 12288 */ 12289 if (gctx != ctx) { 12290 err = -EINVAL; 12291 goto err_locked; 12292 } else { 12293 perf_event_ctx_unlock(group_leader, gctx); 12294 move_group = 0; 12295 } 12296 } 12297 12298 /* 12299 * Failure to create exclusive events returns -EBUSY. 12300 */ 12301 err = -EBUSY; 12302 if (!exclusive_event_installable(group_leader, ctx)) 12303 goto err_locked; 12304 12305 for_each_sibling_event(sibling, group_leader) { 12306 if (!exclusive_event_installable(sibling, ctx)) 12307 goto err_locked; 12308 } 12309 } else { 12310 mutex_lock(&ctx->mutex); 12311 } 12312 12313 if (ctx->task == TASK_TOMBSTONE) { 12314 err = -ESRCH; 12315 goto err_locked; 12316 } 12317 12318 if (!perf_event_validate_size(event)) { 12319 err = -E2BIG; 12320 goto err_locked; 12321 } 12322 12323 if (!task) { 12324 /* 12325 * Check if the @cpu we're creating an event for is online. 12326 * 12327 * We use the perf_cpu_context::ctx::mutex to serialize against 12328 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12329 */ 12330 struct perf_cpu_context *cpuctx = 12331 container_of(ctx, struct perf_cpu_context, ctx); 12332 12333 if (!cpuctx->online) { 12334 err = -ENODEV; 12335 goto err_locked; 12336 } 12337 } 12338 12339 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12340 err = -EINVAL; 12341 goto err_locked; 12342 } 12343 12344 /* 12345 * Must be under the same ctx::mutex as perf_install_in_context(), 12346 * because we need to serialize with concurrent event creation. 12347 */ 12348 if (!exclusive_event_installable(event, ctx)) { 12349 err = -EBUSY; 12350 goto err_locked; 12351 } 12352 12353 WARN_ON_ONCE(ctx->parent_ctx); 12354 12355 /* 12356 * This is the point on no return; we cannot fail hereafter. This is 12357 * where we start modifying current state. 12358 */ 12359 12360 if (move_group) { 12361 /* 12362 * See perf_event_ctx_lock() for comments on the details 12363 * of swizzling perf_event::ctx. 12364 */ 12365 perf_remove_from_context(group_leader, 0); 12366 put_ctx(gctx); 12367 12368 for_each_sibling_event(sibling, group_leader) { 12369 perf_remove_from_context(sibling, 0); 12370 put_ctx(gctx); 12371 } 12372 12373 /* 12374 * Wait for everybody to stop referencing the events through 12375 * the old lists, before installing it on new lists. 12376 */ 12377 synchronize_rcu(); 12378 12379 /* 12380 * Install the group siblings before the group leader. 12381 * 12382 * Because a group leader will try and install the entire group 12383 * (through the sibling list, which is still in-tact), we can 12384 * end up with siblings installed in the wrong context. 12385 * 12386 * By installing siblings first we NO-OP because they're not 12387 * reachable through the group lists. 12388 */ 12389 for_each_sibling_event(sibling, group_leader) { 12390 perf_event__state_init(sibling); 12391 perf_install_in_context(ctx, sibling, sibling->cpu); 12392 get_ctx(ctx); 12393 } 12394 12395 /* 12396 * Removing from the context ends up with disabled 12397 * event. What we want here is event in the initial 12398 * startup state, ready to be add into new context. 12399 */ 12400 perf_event__state_init(group_leader); 12401 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12402 get_ctx(ctx); 12403 } 12404 12405 /* 12406 * Precalculate sample_data sizes; do while holding ctx::mutex such 12407 * that we're serialized against further additions and before 12408 * perf_install_in_context() which is the point the event is active and 12409 * can use these values. 12410 */ 12411 perf_event__header_size(event); 12412 perf_event__id_header_size(event); 12413 12414 event->owner = current; 12415 12416 perf_install_in_context(ctx, event, event->cpu); 12417 perf_unpin_context(ctx); 12418 12419 if (move_group) 12420 perf_event_ctx_unlock(group_leader, gctx); 12421 mutex_unlock(&ctx->mutex); 12422 12423 if (task) { 12424 up_read(&task->signal->exec_update_lock); 12425 put_task_struct(task); 12426 } 12427 12428 mutex_lock(¤t->perf_event_mutex); 12429 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12430 mutex_unlock(¤t->perf_event_mutex); 12431 12432 /* 12433 * Drop the reference on the group_event after placing the 12434 * new event on the sibling_list. This ensures destruction 12435 * of the group leader will find the pointer to itself in 12436 * perf_group_detach(). 12437 */ 12438 fdput(group); 12439 fd_install(event_fd, event_file); 12440 return event_fd; 12441 12442 err_locked: 12443 if (move_group) 12444 perf_event_ctx_unlock(group_leader, gctx); 12445 mutex_unlock(&ctx->mutex); 12446 err_cred: 12447 if (task) 12448 up_read(&task->signal->exec_update_lock); 12449 err_file: 12450 fput(event_file); 12451 err_context: 12452 perf_unpin_context(ctx); 12453 put_ctx(ctx); 12454 err_alloc: 12455 /* 12456 * If event_file is set, the fput() above will have called ->release() 12457 * and that will take care of freeing the event. 12458 */ 12459 if (!event_file) 12460 free_event(event); 12461 err_task: 12462 if (task) 12463 put_task_struct(task); 12464 err_group_fd: 12465 fdput(group); 12466 err_fd: 12467 put_unused_fd(event_fd); 12468 return err; 12469 } 12470 12471 /** 12472 * perf_event_create_kernel_counter 12473 * 12474 * @attr: attributes of the counter to create 12475 * @cpu: cpu in which the counter is bound 12476 * @task: task to profile (NULL for percpu) 12477 * @overflow_handler: callback to trigger when we hit the event 12478 * @context: context data could be used in overflow_handler callback 12479 */ 12480 struct perf_event * 12481 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12482 struct task_struct *task, 12483 perf_overflow_handler_t overflow_handler, 12484 void *context) 12485 { 12486 struct perf_event_context *ctx; 12487 struct perf_event *event; 12488 int err; 12489 12490 /* 12491 * Grouping is not supported for kernel events, neither is 'AUX', 12492 * make sure the caller's intentions are adjusted. 12493 */ 12494 if (attr->aux_output) 12495 return ERR_PTR(-EINVAL); 12496 12497 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12498 overflow_handler, context, -1); 12499 if (IS_ERR(event)) { 12500 err = PTR_ERR(event); 12501 goto err; 12502 } 12503 12504 /* Mark owner so we could distinguish it from user events. */ 12505 event->owner = TASK_TOMBSTONE; 12506 12507 /* 12508 * Get the target context (task or percpu): 12509 */ 12510 ctx = find_get_context(event->pmu, task, event); 12511 if (IS_ERR(ctx)) { 12512 err = PTR_ERR(ctx); 12513 goto err_free; 12514 } 12515 12516 WARN_ON_ONCE(ctx->parent_ctx); 12517 mutex_lock(&ctx->mutex); 12518 if (ctx->task == TASK_TOMBSTONE) { 12519 err = -ESRCH; 12520 goto err_unlock; 12521 } 12522 12523 if (!task) { 12524 /* 12525 * Check if the @cpu we're creating an event for is online. 12526 * 12527 * We use the perf_cpu_context::ctx::mutex to serialize against 12528 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12529 */ 12530 struct perf_cpu_context *cpuctx = 12531 container_of(ctx, struct perf_cpu_context, ctx); 12532 if (!cpuctx->online) { 12533 err = -ENODEV; 12534 goto err_unlock; 12535 } 12536 } 12537 12538 if (!exclusive_event_installable(event, ctx)) { 12539 err = -EBUSY; 12540 goto err_unlock; 12541 } 12542 12543 perf_install_in_context(ctx, event, event->cpu); 12544 perf_unpin_context(ctx); 12545 mutex_unlock(&ctx->mutex); 12546 12547 return event; 12548 12549 err_unlock: 12550 mutex_unlock(&ctx->mutex); 12551 perf_unpin_context(ctx); 12552 put_ctx(ctx); 12553 err_free: 12554 free_event(event); 12555 err: 12556 return ERR_PTR(err); 12557 } 12558 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12559 12560 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12561 { 12562 struct perf_event_context *src_ctx; 12563 struct perf_event_context *dst_ctx; 12564 struct perf_event *event, *tmp; 12565 LIST_HEAD(events); 12566 12567 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12568 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12569 12570 /* 12571 * See perf_event_ctx_lock() for comments on the details 12572 * of swizzling perf_event::ctx. 12573 */ 12574 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12575 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12576 event_entry) { 12577 perf_remove_from_context(event, 0); 12578 unaccount_event_cpu(event, src_cpu); 12579 put_ctx(src_ctx); 12580 list_add(&event->migrate_entry, &events); 12581 } 12582 12583 /* 12584 * Wait for the events to quiesce before re-instating them. 12585 */ 12586 synchronize_rcu(); 12587 12588 /* 12589 * Re-instate events in 2 passes. 12590 * 12591 * Skip over group leaders and only install siblings on this first 12592 * pass, siblings will not get enabled without a leader, however a 12593 * leader will enable its siblings, even if those are still on the old 12594 * context. 12595 */ 12596 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12597 if (event->group_leader == event) 12598 continue; 12599 12600 list_del(&event->migrate_entry); 12601 if (event->state >= PERF_EVENT_STATE_OFF) 12602 event->state = PERF_EVENT_STATE_INACTIVE; 12603 account_event_cpu(event, dst_cpu); 12604 perf_install_in_context(dst_ctx, event, dst_cpu); 12605 get_ctx(dst_ctx); 12606 } 12607 12608 /* 12609 * Once all the siblings are setup properly, install the group leaders 12610 * to make it go. 12611 */ 12612 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12613 list_del(&event->migrate_entry); 12614 if (event->state >= PERF_EVENT_STATE_OFF) 12615 event->state = PERF_EVENT_STATE_INACTIVE; 12616 account_event_cpu(event, dst_cpu); 12617 perf_install_in_context(dst_ctx, event, dst_cpu); 12618 get_ctx(dst_ctx); 12619 } 12620 mutex_unlock(&dst_ctx->mutex); 12621 mutex_unlock(&src_ctx->mutex); 12622 } 12623 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12624 12625 static void sync_child_event(struct perf_event *child_event) 12626 { 12627 struct perf_event *parent_event = child_event->parent; 12628 u64 child_val; 12629 12630 if (child_event->attr.inherit_stat) { 12631 struct task_struct *task = child_event->ctx->task; 12632 12633 if (task && task != TASK_TOMBSTONE) 12634 perf_event_read_event(child_event, task); 12635 } 12636 12637 child_val = perf_event_count(child_event); 12638 12639 /* 12640 * Add back the child's count to the parent's count: 12641 */ 12642 atomic64_add(child_val, &parent_event->child_count); 12643 atomic64_add(child_event->total_time_enabled, 12644 &parent_event->child_total_time_enabled); 12645 atomic64_add(child_event->total_time_running, 12646 &parent_event->child_total_time_running); 12647 } 12648 12649 static void 12650 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12651 { 12652 struct perf_event *parent_event = event->parent; 12653 unsigned long detach_flags = 0; 12654 12655 if (parent_event) { 12656 /* 12657 * Do not destroy the 'original' grouping; because of the 12658 * context switch optimization the original events could've 12659 * ended up in a random child task. 12660 * 12661 * If we were to destroy the original group, all group related 12662 * operations would cease to function properly after this 12663 * random child dies. 12664 * 12665 * Do destroy all inherited groups, we don't care about those 12666 * and being thorough is better. 12667 */ 12668 detach_flags = DETACH_GROUP | DETACH_CHILD; 12669 mutex_lock(&parent_event->child_mutex); 12670 } 12671 12672 perf_remove_from_context(event, detach_flags); 12673 12674 raw_spin_lock_irq(&ctx->lock); 12675 if (event->state > PERF_EVENT_STATE_EXIT) 12676 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12677 raw_spin_unlock_irq(&ctx->lock); 12678 12679 /* 12680 * Child events can be freed. 12681 */ 12682 if (parent_event) { 12683 mutex_unlock(&parent_event->child_mutex); 12684 /* 12685 * Kick perf_poll() for is_event_hup(); 12686 */ 12687 perf_event_wakeup(parent_event); 12688 free_event(event); 12689 put_event(parent_event); 12690 return; 12691 } 12692 12693 /* 12694 * Parent events are governed by their filedesc, retain them. 12695 */ 12696 perf_event_wakeup(event); 12697 } 12698 12699 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12700 { 12701 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12702 struct perf_event *child_event, *next; 12703 12704 WARN_ON_ONCE(child != current); 12705 12706 child_ctx = perf_pin_task_context(child, ctxn); 12707 if (!child_ctx) 12708 return; 12709 12710 /* 12711 * In order to reduce the amount of tricky in ctx tear-down, we hold 12712 * ctx::mutex over the entire thing. This serializes against almost 12713 * everything that wants to access the ctx. 12714 * 12715 * The exception is sys_perf_event_open() / 12716 * perf_event_create_kernel_count() which does find_get_context() 12717 * without ctx::mutex (it cannot because of the move_group double mutex 12718 * lock thing). See the comments in perf_install_in_context(). 12719 */ 12720 mutex_lock(&child_ctx->mutex); 12721 12722 /* 12723 * In a single ctx::lock section, de-schedule the events and detach the 12724 * context from the task such that we cannot ever get it scheduled back 12725 * in. 12726 */ 12727 raw_spin_lock_irq(&child_ctx->lock); 12728 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12729 12730 /* 12731 * Now that the context is inactive, destroy the task <-> ctx relation 12732 * and mark the context dead. 12733 */ 12734 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12735 put_ctx(child_ctx); /* cannot be last */ 12736 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12737 put_task_struct(current); /* cannot be last */ 12738 12739 clone_ctx = unclone_ctx(child_ctx); 12740 raw_spin_unlock_irq(&child_ctx->lock); 12741 12742 if (clone_ctx) 12743 put_ctx(clone_ctx); 12744 12745 /* 12746 * Report the task dead after unscheduling the events so that we 12747 * won't get any samples after PERF_RECORD_EXIT. We can however still 12748 * get a few PERF_RECORD_READ events. 12749 */ 12750 perf_event_task(child, child_ctx, 0); 12751 12752 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12753 perf_event_exit_event(child_event, child_ctx); 12754 12755 mutex_unlock(&child_ctx->mutex); 12756 12757 put_ctx(child_ctx); 12758 } 12759 12760 /* 12761 * When a child task exits, feed back event values to parent events. 12762 * 12763 * Can be called with exec_update_lock held when called from 12764 * setup_new_exec(). 12765 */ 12766 void perf_event_exit_task(struct task_struct *child) 12767 { 12768 struct perf_event *event, *tmp; 12769 int ctxn; 12770 12771 mutex_lock(&child->perf_event_mutex); 12772 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12773 owner_entry) { 12774 list_del_init(&event->owner_entry); 12775 12776 /* 12777 * Ensure the list deletion is visible before we clear 12778 * the owner, closes a race against perf_release() where 12779 * we need to serialize on the owner->perf_event_mutex. 12780 */ 12781 smp_store_release(&event->owner, NULL); 12782 } 12783 mutex_unlock(&child->perf_event_mutex); 12784 12785 for_each_task_context_nr(ctxn) 12786 perf_event_exit_task_context(child, ctxn); 12787 12788 /* 12789 * The perf_event_exit_task_context calls perf_event_task 12790 * with child's task_ctx, which generates EXIT events for 12791 * child contexts and sets child->perf_event_ctxp[] to NULL. 12792 * At this point we need to send EXIT events to cpu contexts. 12793 */ 12794 perf_event_task(child, NULL, 0); 12795 } 12796 12797 static void perf_free_event(struct perf_event *event, 12798 struct perf_event_context *ctx) 12799 { 12800 struct perf_event *parent = event->parent; 12801 12802 if (WARN_ON_ONCE(!parent)) 12803 return; 12804 12805 mutex_lock(&parent->child_mutex); 12806 list_del_init(&event->child_list); 12807 mutex_unlock(&parent->child_mutex); 12808 12809 put_event(parent); 12810 12811 raw_spin_lock_irq(&ctx->lock); 12812 perf_group_detach(event); 12813 list_del_event(event, ctx); 12814 raw_spin_unlock_irq(&ctx->lock); 12815 free_event(event); 12816 } 12817 12818 /* 12819 * Free a context as created by inheritance by perf_event_init_task() below, 12820 * used by fork() in case of fail. 12821 * 12822 * Even though the task has never lived, the context and events have been 12823 * exposed through the child_list, so we must take care tearing it all down. 12824 */ 12825 void perf_event_free_task(struct task_struct *task) 12826 { 12827 struct perf_event_context *ctx; 12828 struct perf_event *event, *tmp; 12829 int ctxn; 12830 12831 for_each_task_context_nr(ctxn) { 12832 ctx = task->perf_event_ctxp[ctxn]; 12833 if (!ctx) 12834 continue; 12835 12836 mutex_lock(&ctx->mutex); 12837 raw_spin_lock_irq(&ctx->lock); 12838 /* 12839 * Destroy the task <-> ctx relation and mark the context dead. 12840 * 12841 * This is important because even though the task hasn't been 12842 * exposed yet the context has been (through child_list). 12843 */ 12844 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12845 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12846 put_task_struct(task); /* cannot be last */ 12847 raw_spin_unlock_irq(&ctx->lock); 12848 12849 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12850 perf_free_event(event, ctx); 12851 12852 mutex_unlock(&ctx->mutex); 12853 12854 /* 12855 * perf_event_release_kernel() could've stolen some of our 12856 * child events and still have them on its free_list. In that 12857 * case we must wait for these events to have been freed (in 12858 * particular all their references to this task must've been 12859 * dropped). 12860 * 12861 * Without this copy_process() will unconditionally free this 12862 * task (irrespective of its reference count) and 12863 * _free_event()'s put_task_struct(event->hw.target) will be a 12864 * use-after-free. 12865 * 12866 * Wait for all events to drop their context reference. 12867 */ 12868 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12869 put_ctx(ctx); /* must be last */ 12870 } 12871 } 12872 12873 void perf_event_delayed_put(struct task_struct *task) 12874 { 12875 int ctxn; 12876 12877 for_each_task_context_nr(ctxn) 12878 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12879 } 12880 12881 struct file *perf_event_get(unsigned int fd) 12882 { 12883 struct file *file = fget(fd); 12884 if (!file) 12885 return ERR_PTR(-EBADF); 12886 12887 if (file->f_op != &perf_fops) { 12888 fput(file); 12889 return ERR_PTR(-EBADF); 12890 } 12891 12892 return file; 12893 } 12894 12895 const struct perf_event *perf_get_event(struct file *file) 12896 { 12897 if (file->f_op != &perf_fops) 12898 return ERR_PTR(-EINVAL); 12899 12900 return file->private_data; 12901 } 12902 12903 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12904 { 12905 if (!event) 12906 return ERR_PTR(-EINVAL); 12907 12908 return &event->attr; 12909 } 12910 12911 /* 12912 * Inherit an event from parent task to child task. 12913 * 12914 * Returns: 12915 * - valid pointer on success 12916 * - NULL for orphaned events 12917 * - IS_ERR() on error 12918 */ 12919 static struct perf_event * 12920 inherit_event(struct perf_event *parent_event, 12921 struct task_struct *parent, 12922 struct perf_event_context *parent_ctx, 12923 struct task_struct *child, 12924 struct perf_event *group_leader, 12925 struct perf_event_context *child_ctx) 12926 { 12927 enum perf_event_state parent_state = parent_event->state; 12928 struct perf_event *child_event; 12929 unsigned long flags; 12930 12931 /* 12932 * Instead of creating recursive hierarchies of events, 12933 * we link inherited events back to the original parent, 12934 * which has a filp for sure, which we use as the reference 12935 * count: 12936 */ 12937 if (parent_event->parent) 12938 parent_event = parent_event->parent; 12939 12940 child_event = perf_event_alloc(&parent_event->attr, 12941 parent_event->cpu, 12942 child, 12943 group_leader, parent_event, 12944 NULL, NULL, -1); 12945 if (IS_ERR(child_event)) 12946 return child_event; 12947 12948 12949 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12950 !child_ctx->task_ctx_data) { 12951 struct pmu *pmu = child_event->pmu; 12952 12953 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12954 if (!child_ctx->task_ctx_data) { 12955 free_event(child_event); 12956 return ERR_PTR(-ENOMEM); 12957 } 12958 } 12959 12960 /* 12961 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12962 * must be under the same lock in order to serialize against 12963 * perf_event_release_kernel(), such that either we must observe 12964 * is_orphaned_event() or they will observe us on the child_list. 12965 */ 12966 mutex_lock(&parent_event->child_mutex); 12967 if (is_orphaned_event(parent_event) || 12968 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12969 mutex_unlock(&parent_event->child_mutex); 12970 /* task_ctx_data is freed with child_ctx */ 12971 free_event(child_event); 12972 return NULL; 12973 } 12974 12975 get_ctx(child_ctx); 12976 12977 /* 12978 * Make the child state follow the state of the parent event, 12979 * not its attr.disabled bit. We hold the parent's mutex, 12980 * so we won't race with perf_event_{en, dis}able_family. 12981 */ 12982 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12983 child_event->state = PERF_EVENT_STATE_INACTIVE; 12984 else 12985 child_event->state = PERF_EVENT_STATE_OFF; 12986 12987 if (parent_event->attr.freq) { 12988 u64 sample_period = parent_event->hw.sample_period; 12989 struct hw_perf_event *hwc = &child_event->hw; 12990 12991 hwc->sample_period = sample_period; 12992 hwc->last_period = sample_period; 12993 12994 local64_set(&hwc->period_left, sample_period); 12995 } 12996 12997 child_event->ctx = child_ctx; 12998 child_event->overflow_handler = parent_event->overflow_handler; 12999 child_event->overflow_handler_context 13000 = parent_event->overflow_handler_context; 13001 13002 /* 13003 * Precalculate sample_data sizes 13004 */ 13005 perf_event__header_size(child_event); 13006 perf_event__id_header_size(child_event); 13007 13008 /* 13009 * Link it up in the child's context: 13010 */ 13011 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13012 add_event_to_ctx(child_event, child_ctx); 13013 child_event->attach_state |= PERF_ATTACH_CHILD; 13014 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13015 13016 /* 13017 * Link this into the parent event's child list 13018 */ 13019 list_add_tail(&child_event->child_list, &parent_event->child_list); 13020 mutex_unlock(&parent_event->child_mutex); 13021 13022 return child_event; 13023 } 13024 13025 /* 13026 * Inherits an event group. 13027 * 13028 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13029 * This matches with perf_event_release_kernel() removing all child events. 13030 * 13031 * Returns: 13032 * - 0 on success 13033 * - <0 on error 13034 */ 13035 static int inherit_group(struct perf_event *parent_event, 13036 struct task_struct *parent, 13037 struct perf_event_context *parent_ctx, 13038 struct task_struct *child, 13039 struct perf_event_context *child_ctx) 13040 { 13041 struct perf_event *leader; 13042 struct perf_event *sub; 13043 struct perf_event *child_ctr; 13044 13045 leader = inherit_event(parent_event, parent, parent_ctx, 13046 child, NULL, child_ctx); 13047 if (IS_ERR(leader)) 13048 return PTR_ERR(leader); 13049 /* 13050 * @leader can be NULL here because of is_orphaned_event(). In this 13051 * case inherit_event() will create individual events, similar to what 13052 * perf_group_detach() would do anyway. 13053 */ 13054 for_each_sibling_event(sub, parent_event) { 13055 child_ctr = inherit_event(sub, parent, parent_ctx, 13056 child, leader, child_ctx); 13057 if (IS_ERR(child_ctr)) 13058 return PTR_ERR(child_ctr); 13059 13060 if (sub->aux_event == parent_event && child_ctr && 13061 !perf_get_aux_event(child_ctr, leader)) 13062 return -EINVAL; 13063 } 13064 return 0; 13065 } 13066 13067 /* 13068 * Creates the child task context and tries to inherit the event-group. 13069 * 13070 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13071 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13072 * consistent with perf_event_release_kernel() removing all child events. 13073 * 13074 * Returns: 13075 * - 0 on success 13076 * - <0 on error 13077 */ 13078 static int 13079 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13080 struct perf_event_context *parent_ctx, 13081 struct task_struct *child, int ctxn, 13082 u64 clone_flags, int *inherited_all) 13083 { 13084 int ret; 13085 struct perf_event_context *child_ctx; 13086 13087 if (!event->attr.inherit || 13088 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13089 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13090 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13091 *inherited_all = 0; 13092 return 0; 13093 } 13094 13095 child_ctx = child->perf_event_ctxp[ctxn]; 13096 if (!child_ctx) { 13097 /* 13098 * This is executed from the parent task context, so 13099 * inherit events that have been marked for cloning. 13100 * First allocate and initialize a context for the 13101 * child. 13102 */ 13103 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13104 if (!child_ctx) 13105 return -ENOMEM; 13106 13107 child->perf_event_ctxp[ctxn] = child_ctx; 13108 } 13109 13110 ret = inherit_group(event, parent, parent_ctx, 13111 child, child_ctx); 13112 13113 if (ret) 13114 *inherited_all = 0; 13115 13116 return ret; 13117 } 13118 13119 /* 13120 * Initialize the perf_event context in task_struct 13121 */ 13122 static int perf_event_init_context(struct task_struct *child, int ctxn, 13123 u64 clone_flags) 13124 { 13125 struct perf_event_context *child_ctx, *parent_ctx; 13126 struct perf_event_context *cloned_ctx; 13127 struct perf_event *event; 13128 struct task_struct *parent = current; 13129 int inherited_all = 1; 13130 unsigned long flags; 13131 int ret = 0; 13132 13133 if (likely(!parent->perf_event_ctxp[ctxn])) 13134 return 0; 13135 13136 /* 13137 * If the parent's context is a clone, pin it so it won't get 13138 * swapped under us. 13139 */ 13140 parent_ctx = perf_pin_task_context(parent, ctxn); 13141 if (!parent_ctx) 13142 return 0; 13143 13144 /* 13145 * No need to check if parent_ctx != NULL here; since we saw 13146 * it non-NULL earlier, the only reason for it to become NULL 13147 * is if we exit, and since we're currently in the middle of 13148 * a fork we can't be exiting at the same time. 13149 */ 13150 13151 /* 13152 * Lock the parent list. No need to lock the child - not PID 13153 * hashed yet and not running, so nobody can access it. 13154 */ 13155 mutex_lock(&parent_ctx->mutex); 13156 13157 /* 13158 * We dont have to disable NMIs - we are only looking at 13159 * the list, not manipulating it: 13160 */ 13161 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13162 ret = inherit_task_group(event, parent, parent_ctx, 13163 child, ctxn, clone_flags, 13164 &inherited_all); 13165 if (ret) 13166 goto out_unlock; 13167 } 13168 13169 /* 13170 * We can't hold ctx->lock when iterating the ->flexible_group list due 13171 * to allocations, but we need to prevent rotation because 13172 * rotate_ctx() will change the list from interrupt context. 13173 */ 13174 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13175 parent_ctx->rotate_disable = 1; 13176 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13177 13178 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13179 ret = inherit_task_group(event, parent, parent_ctx, 13180 child, ctxn, clone_flags, 13181 &inherited_all); 13182 if (ret) 13183 goto out_unlock; 13184 } 13185 13186 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13187 parent_ctx->rotate_disable = 0; 13188 13189 child_ctx = child->perf_event_ctxp[ctxn]; 13190 13191 if (child_ctx && inherited_all) { 13192 /* 13193 * Mark the child context as a clone of the parent 13194 * context, or of whatever the parent is a clone of. 13195 * 13196 * Note that if the parent is a clone, the holding of 13197 * parent_ctx->lock avoids it from being uncloned. 13198 */ 13199 cloned_ctx = parent_ctx->parent_ctx; 13200 if (cloned_ctx) { 13201 child_ctx->parent_ctx = cloned_ctx; 13202 child_ctx->parent_gen = parent_ctx->parent_gen; 13203 } else { 13204 child_ctx->parent_ctx = parent_ctx; 13205 child_ctx->parent_gen = parent_ctx->generation; 13206 } 13207 get_ctx(child_ctx->parent_ctx); 13208 } 13209 13210 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13211 out_unlock: 13212 mutex_unlock(&parent_ctx->mutex); 13213 13214 perf_unpin_context(parent_ctx); 13215 put_ctx(parent_ctx); 13216 13217 return ret; 13218 } 13219 13220 /* 13221 * Initialize the perf_event context in task_struct 13222 */ 13223 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13224 { 13225 int ctxn, ret; 13226 13227 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13228 mutex_init(&child->perf_event_mutex); 13229 INIT_LIST_HEAD(&child->perf_event_list); 13230 13231 for_each_task_context_nr(ctxn) { 13232 ret = perf_event_init_context(child, ctxn, clone_flags); 13233 if (ret) { 13234 perf_event_free_task(child); 13235 return ret; 13236 } 13237 } 13238 13239 return 0; 13240 } 13241 13242 static void __init perf_event_init_all_cpus(void) 13243 { 13244 struct swevent_htable *swhash; 13245 int cpu; 13246 13247 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13248 13249 for_each_possible_cpu(cpu) { 13250 swhash = &per_cpu(swevent_htable, cpu); 13251 mutex_init(&swhash->hlist_mutex); 13252 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13253 13254 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13255 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13256 13257 #ifdef CONFIG_CGROUP_PERF 13258 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13259 #endif 13260 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13261 } 13262 } 13263 13264 static void perf_swevent_init_cpu(unsigned int cpu) 13265 { 13266 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13267 13268 mutex_lock(&swhash->hlist_mutex); 13269 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13270 struct swevent_hlist *hlist; 13271 13272 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13273 WARN_ON(!hlist); 13274 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13275 } 13276 mutex_unlock(&swhash->hlist_mutex); 13277 } 13278 13279 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13280 static void __perf_event_exit_context(void *__info) 13281 { 13282 struct perf_event_context *ctx = __info; 13283 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13284 struct perf_event *event; 13285 13286 raw_spin_lock(&ctx->lock); 13287 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13288 list_for_each_entry(event, &ctx->event_list, event_entry) 13289 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13290 raw_spin_unlock(&ctx->lock); 13291 } 13292 13293 static void perf_event_exit_cpu_context(int cpu) 13294 { 13295 struct perf_cpu_context *cpuctx; 13296 struct perf_event_context *ctx; 13297 struct pmu *pmu; 13298 13299 mutex_lock(&pmus_lock); 13300 list_for_each_entry(pmu, &pmus, entry) { 13301 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13302 ctx = &cpuctx->ctx; 13303 13304 mutex_lock(&ctx->mutex); 13305 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13306 cpuctx->online = 0; 13307 mutex_unlock(&ctx->mutex); 13308 } 13309 cpumask_clear_cpu(cpu, perf_online_mask); 13310 mutex_unlock(&pmus_lock); 13311 } 13312 #else 13313 13314 static void perf_event_exit_cpu_context(int cpu) { } 13315 13316 #endif 13317 13318 int perf_event_init_cpu(unsigned int cpu) 13319 { 13320 struct perf_cpu_context *cpuctx; 13321 struct perf_event_context *ctx; 13322 struct pmu *pmu; 13323 13324 perf_swevent_init_cpu(cpu); 13325 13326 mutex_lock(&pmus_lock); 13327 cpumask_set_cpu(cpu, perf_online_mask); 13328 list_for_each_entry(pmu, &pmus, entry) { 13329 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13330 ctx = &cpuctx->ctx; 13331 13332 mutex_lock(&ctx->mutex); 13333 cpuctx->online = 1; 13334 mutex_unlock(&ctx->mutex); 13335 } 13336 mutex_unlock(&pmus_lock); 13337 13338 return 0; 13339 } 13340 13341 int perf_event_exit_cpu(unsigned int cpu) 13342 { 13343 perf_event_exit_cpu_context(cpu); 13344 return 0; 13345 } 13346 13347 static int 13348 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13349 { 13350 int cpu; 13351 13352 for_each_online_cpu(cpu) 13353 perf_event_exit_cpu(cpu); 13354 13355 return NOTIFY_OK; 13356 } 13357 13358 /* 13359 * Run the perf reboot notifier at the very last possible moment so that 13360 * the generic watchdog code runs as long as possible. 13361 */ 13362 static struct notifier_block perf_reboot_notifier = { 13363 .notifier_call = perf_reboot, 13364 .priority = INT_MIN, 13365 }; 13366 13367 void __init perf_event_init(void) 13368 { 13369 int ret; 13370 13371 idr_init(&pmu_idr); 13372 13373 perf_event_init_all_cpus(); 13374 init_srcu_struct(&pmus_srcu); 13375 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13376 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13377 perf_pmu_register(&perf_task_clock, NULL, -1); 13378 perf_tp_register(); 13379 perf_event_init_cpu(smp_processor_id()); 13380 register_reboot_notifier(&perf_reboot_notifier); 13381 13382 ret = init_hw_breakpoint(); 13383 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13384 13385 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13386 13387 /* 13388 * Build time assertion that we keep the data_head at the intended 13389 * location. IOW, validation we got the __reserved[] size right. 13390 */ 13391 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13392 != 1024); 13393 } 13394 13395 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13396 char *page) 13397 { 13398 struct perf_pmu_events_attr *pmu_attr = 13399 container_of(attr, struct perf_pmu_events_attr, attr); 13400 13401 if (pmu_attr->event_str) 13402 return sprintf(page, "%s\n", pmu_attr->event_str); 13403 13404 return 0; 13405 } 13406 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13407 13408 static int __init perf_event_sysfs_init(void) 13409 { 13410 struct pmu *pmu; 13411 int ret; 13412 13413 mutex_lock(&pmus_lock); 13414 13415 ret = bus_register(&pmu_bus); 13416 if (ret) 13417 goto unlock; 13418 13419 list_for_each_entry(pmu, &pmus, entry) { 13420 if (!pmu->name || pmu->type < 0) 13421 continue; 13422 13423 ret = pmu_dev_alloc(pmu); 13424 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13425 } 13426 pmu_bus_running = 1; 13427 ret = 0; 13428 13429 unlock: 13430 mutex_unlock(&pmus_lock); 13431 13432 return ret; 13433 } 13434 device_initcall(perf_event_sysfs_init); 13435 13436 #ifdef CONFIG_CGROUP_PERF 13437 static struct cgroup_subsys_state * 13438 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13439 { 13440 struct perf_cgroup *jc; 13441 13442 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13443 if (!jc) 13444 return ERR_PTR(-ENOMEM); 13445 13446 jc->info = alloc_percpu(struct perf_cgroup_info); 13447 if (!jc->info) { 13448 kfree(jc); 13449 return ERR_PTR(-ENOMEM); 13450 } 13451 13452 return &jc->css; 13453 } 13454 13455 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13456 { 13457 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13458 13459 free_percpu(jc->info); 13460 kfree(jc); 13461 } 13462 13463 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13464 { 13465 perf_event_cgroup(css->cgroup); 13466 return 0; 13467 } 13468 13469 static int __perf_cgroup_move(void *info) 13470 { 13471 struct task_struct *task = info; 13472 rcu_read_lock(); 13473 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13474 rcu_read_unlock(); 13475 return 0; 13476 } 13477 13478 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13479 { 13480 struct task_struct *task; 13481 struct cgroup_subsys_state *css; 13482 13483 cgroup_taskset_for_each(task, css, tset) 13484 task_function_call(task, __perf_cgroup_move, task); 13485 } 13486 13487 struct cgroup_subsys perf_event_cgrp_subsys = { 13488 .css_alloc = perf_cgroup_css_alloc, 13489 .css_free = perf_cgroup_css_free, 13490 .css_online = perf_cgroup_css_online, 13491 .attach = perf_cgroup_attach, 13492 /* 13493 * Implicitly enable on dfl hierarchy so that perf events can 13494 * always be filtered by cgroup2 path as long as perf_event 13495 * controller is not mounted on a legacy hierarchy. 13496 */ 13497 .implicit_on_dfl = true, 13498 .threaded = true, 13499 }; 13500 #endif /* CONFIG_CGROUP_PERF */ 13501 13502 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13503