xref: /openbmc/linux/kernel/events/core.c (revision dfc66bef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 #ifdef CONFIG_CGROUP_PERF
678 
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682 	struct perf_event_context *ctx = event->ctx;
683 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684 
685 	/* @event doesn't care about cgroup */
686 	if (!event->cgrp)
687 		return true;
688 
689 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
690 	if (!cpuctx->cgrp)
691 		return false;
692 
693 	/*
694 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
695 	 * also enabled for all its descendant cgroups.  If @cpuctx's
696 	 * cgroup is a descendant of @event's (the test covers identity
697 	 * case), it's a match.
698 	 */
699 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700 				    event->cgrp->css.cgroup);
701 }
702 
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705 	css_put(&event->cgrp->css);
706 	event->cgrp = NULL;
707 }
708 
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711 	return event->cgrp != NULL;
712 }
713 
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716 	struct perf_cgroup_info *t;
717 
718 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
719 	return t->time;
720 }
721 
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724 	struct perf_cgroup_info *info;
725 	u64 now;
726 
727 	now = perf_clock();
728 
729 	info = this_cpu_ptr(cgrp->info);
730 
731 	info->time += now - info->timestamp;
732 	info->timestamp = now;
733 }
734 
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737 	struct perf_cgroup *cgrp = cpuctx->cgrp;
738 	struct cgroup_subsys_state *css;
739 
740 	if (cgrp) {
741 		for (css = &cgrp->css; css; css = css->parent) {
742 			cgrp = container_of(css, struct perf_cgroup, css);
743 			__update_cgrp_time(cgrp);
744 		}
745 	}
746 }
747 
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750 	struct perf_cgroup *cgrp;
751 
752 	/*
753 	 * ensure we access cgroup data only when needed and
754 	 * when we know the cgroup is pinned (css_get)
755 	 */
756 	if (!is_cgroup_event(event))
757 		return;
758 
759 	cgrp = perf_cgroup_from_task(current, event->ctx);
760 	/*
761 	 * Do not update time when cgroup is not active
762 	 */
763 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764 		__update_cgrp_time(event->cgrp);
765 }
766 
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769 			  struct perf_event_context *ctx)
770 {
771 	struct perf_cgroup *cgrp;
772 	struct perf_cgroup_info *info;
773 	struct cgroup_subsys_state *css;
774 
775 	/*
776 	 * ctx->lock held by caller
777 	 * ensure we do not access cgroup data
778 	 * unless we have the cgroup pinned (css_get)
779 	 */
780 	if (!task || !ctx->nr_cgroups)
781 		return;
782 
783 	cgrp = perf_cgroup_from_task(task, ctx);
784 
785 	for (css = &cgrp->css; css; css = css->parent) {
786 		cgrp = container_of(css, struct perf_cgroup, css);
787 		info = this_cpu_ptr(cgrp->info);
788 		info->timestamp = ctx->timestamp;
789 	}
790 }
791 
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793 
794 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
796 
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805 	struct perf_cpu_context *cpuctx;
806 	struct list_head *list;
807 	unsigned long flags;
808 
809 	/*
810 	 * Disable interrupts and preemption to avoid this CPU's
811 	 * cgrp_cpuctx_entry to change under us.
812 	 */
813 	local_irq_save(flags);
814 
815 	list = this_cpu_ptr(&cgrp_cpuctx_list);
816 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818 
819 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820 		perf_pmu_disable(cpuctx->ctx.pmu);
821 
822 		if (mode & PERF_CGROUP_SWOUT) {
823 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824 			/*
825 			 * must not be done before ctxswout due
826 			 * to event_filter_match() in event_sched_out()
827 			 */
828 			cpuctx->cgrp = NULL;
829 		}
830 
831 		if (mode & PERF_CGROUP_SWIN) {
832 			WARN_ON_ONCE(cpuctx->cgrp);
833 			/*
834 			 * set cgrp before ctxsw in to allow
835 			 * event_filter_match() to not have to pass
836 			 * task around
837 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
838 			 * because cgorup events are only per-cpu
839 			 */
840 			cpuctx->cgrp = perf_cgroup_from_task(task,
841 							     &cpuctx->ctx);
842 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843 		}
844 		perf_pmu_enable(cpuctx->ctx.pmu);
845 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846 	}
847 
848 	local_irq_restore(flags);
849 }
850 
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852 					 struct task_struct *next)
853 {
854 	struct perf_cgroup *cgrp1;
855 	struct perf_cgroup *cgrp2 = NULL;
856 
857 	rcu_read_lock();
858 	/*
859 	 * we come here when we know perf_cgroup_events > 0
860 	 * we do not need to pass the ctx here because we know
861 	 * we are holding the rcu lock
862 	 */
863 	cgrp1 = perf_cgroup_from_task(task, NULL);
864 	cgrp2 = perf_cgroup_from_task(next, NULL);
865 
866 	/*
867 	 * only schedule out current cgroup events if we know
868 	 * that we are switching to a different cgroup. Otherwise,
869 	 * do no touch the cgroup events.
870 	 */
871 	if (cgrp1 != cgrp2)
872 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873 
874 	rcu_read_unlock();
875 }
876 
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878 					struct task_struct *task)
879 {
880 	struct perf_cgroup *cgrp1;
881 	struct perf_cgroup *cgrp2 = NULL;
882 
883 	rcu_read_lock();
884 	/*
885 	 * we come here when we know perf_cgroup_events > 0
886 	 * we do not need to pass the ctx here because we know
887 	 * we are holding the rcu lock
888 	 */
889 	cgrp1 = perf_cgroup_from_task(task, NULL);
890 	cgrp2 = perf_cgroup_from_task(prev, NULL);
891 
892 	/*
893 	 * only need to schedule in cgroup events if we are changing
894 	 * cgroup during ctxsw. Cgroup events were not scheduled
895 	 * out of ctxsw out if that was not the case.
896 	 */
897 	if (cgrp1 != cgrp2)
898 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899 
900 	rcu_read_unlock();
901 }
902 
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904 				struct cgroup_subsys_state *css)
905 {
906 	struct perf_cpu_context *cpuctx;
907 	struct perf_event **storage;
908 	int cpu, heap_size, ret = 0;
909 
910 	/*
911 	 * Allow storage to have sufficent space for an iterator for each
912 	 * possibly nested cgroup plus an iterator for events with no cgroup.
913 	 */
914 	for (heap_size = 1; css; css = css->parent)
915 		heap_size++;
916 
917 	for_each_possible_cpu(cpu) {
918 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919 		if (heap_size <= cpuctx->heap_size)
920 			continue;
921 
922 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923 				       GFP_KERNEL, cpu_to_node(cpu));
924 		if (!storage) {
925 			ret = -ENOMEM;
926 			break;
927 		}
928 
929 		raw_spin_lock_irq(&cpuctx->ctx.lock);
930 		if (cpuctx->heap_size < heap_size) {
931 			swap(cpuctx->heap, storage);
932 			if (storage == cpuctx->heap_default)
933 				storage = NULL;
934 			cpuctx->heap_size = heap_size;
935 		}
936 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
937 
938 		kfree(storage);
939 	}
940 
941 	return ret;
942 }
943 
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945 				      struct perf_event_attr *attr,
946 				      struct perf_event *group_leader)
947 {
948 	struct perf_cgroup *cgrp;
949 	struct cgroup_subsys_state *css;
950 	struct fd f = fdget(fd);
951 	int ret = 0;
952 
953 	if (!f.file)
954 		return -EBADF;
955 
956 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
957 					 &perf_event_cgrp_subsys);
958 	if (IS_ERR(css)) {
959 		ret = PTR_ERR(css);
960 		goto out;
961 	}
962 
963 	ret = perf_cgroup_ensure_storage(event, css);
964 	if (ret)
965 		goto out;
966 
967 	cgrp = container_of(css, struct perf_cgroup, css);
968 	event->cgrp = cgrp;
969 
970 	/*
971 	 * all events in a group must monitor
972 	 * the same cgroup because a task belongs
973 	 * to only one perf cgroup at a time
974 	 */
975 	if (group_leader && group_leader->cgrp != cgrp) {
976 		perf_detach_cgroup(event);
977 		ret = -EINVAL;
978 	}
979 out:
980 	fdput(f);
981 	return ret;
982 }
983 
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987 	struct perf_cgroup_info *t;
988 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
989 	event->shadow_ctx_time = now - t->timestamp;
990 }
991 
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 	struct perf_cpu_context *cpuctx;
996 
997 	if (!is_cgroup_event(event))
998 		return;
999 
1000 	/*
1001 	 * Because cgroup events are always per-cpu events,
1002 	 * @ctx == &cpuctx->ctx.
1003 	 */
1004 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005 
1006 	/*
1007 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 	 * matching the event's cgroup, we must do this for every new event,
1009 	 * because if the first would mismatch, the second would not try again
1010 	 * and we would leave cpuctx->cgrp unset.
1011 	 */
1012 	if (ctx->is_active && !cpuctx->cgrp) {
1013 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014 
1015 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016 			cpuctx->cgrp = cgrp;
1017 	}
1018 
1019 	if (ctx->nr_cgroups++)
1020 		return;
1021 
1022 	list_add(&cpuctx->cgrp_cpuctx_entry,
1023 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025 
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029 	struct perf_cpu_context *cpuctx;
1030 
1031 	if (!is_cgroup_event(event))
1032 		return;
1033 
1034 	/*
1035 	 * Because cgroup events are always per-cpu events,
1036 	 * @ctx == &cpuctx->ctx.
1037 	 */
1038 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039 
1040 	if (--ctx->nr_cgroups)
1041 		return;
1042 
1043 	if (ctx->is_active && cpuctx->cgrp)
1044 		cpuctx->cgrp = NULL;
1045 
1046 	list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048 
1049 #else /* !CONFIG_CGROUP_PERF */
1050 
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054 	return true;
1055 }
1056 
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059 
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062 	return 0;
1063 }
1064 
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068 
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072 
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074 					 struct task_struct *next)
1075 {
1076 }
1077 
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079 					struct task_struct *task)
1080 {
1081 }
1082 
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084 				      struct perf_event_attr *attr,
1085 				      struct perf_event *group_leader)
1086 {
1087 	return -EINVAL;
1088 }
1089 
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092 			  struct perf_event_context *ctx)
1093 {
1094 }
1095 
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100 
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105 
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108 	return 0;
1109 }
1110 
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115 
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121 
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132 	struct perf_cpu_context *cpuctx;
1133 	bool rotations;
1134 
1135 	lockdep_assert_irqs_disabled();
1136 
1137 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138 	rotations = perf_rotate_context(cpuctx);
1139 
1140 	raw_spin_lock(&cpuctx->hrtimer_lock);
1141 	if (rotations)
1142 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143 	else
1144 		cpuctx->hrtimer_active = 0;
1145 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1146 
1147 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149 
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152 	struct hrtimer *timer = &cpuctx->hrtimer;
1153 	struct pmu *pmu = cpuctx->ctx.pmu;
1154 	u64 interval;
1155 
1156 	/* no multiplexing needed for SW PMU */
1157 	if (pmu->task_ctx_nr == perf_sw_context)
1158 		return;
1159 
1160 	/*
1161 	 * check default is sane, if not set then force to
1162 	 * default interval (1/tick)
1163 	 */
1164 	interval = pmu->hrtimer_interval_ms;
1165 	if (interval < 1)
1166 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167 
1168 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169 
1170 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172 	timer->function = perf_mux_hrtimer_handler;
1173 }
1174 
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177 	struct hrtimer *timer = &cpuctx->hrtimer;
1178 	struct pmu *pmu = cpuctx->ctx.pmu;
1179 	unsigned long flags;
1180 
1181 	/* not for SW PMU */
1182 	if (pmu->task_ctx_nr == perf_sw_context)
1183 		return 0;
1184 
1185 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186 	if (!cpuctx->hrtimer_active) {
1187 		cpuctx->hrtimer_active = 1;
1188 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190 	}
1191 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192 
1193 	return 0;
1194 }
1195 
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199 	if (!(*count)++)
1200 		pmu->pmu_disable(pmu);
1201 }
1202 
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206 	if (!--(*count))
1207 		pmu->pmu_enable(pmu);
1208 }
1209 
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211 
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221 
1222 	lockdep_assert_irqs_disabled();
1223 
1224 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1225 
1226 	list_add(&ctx->active_ctx_list, head);
1227 }
1228 
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231 	lockdep_assert_irqs_disabled();
1232 
1233 	WARN_ON(list_empty(&ctx->active_ctx_list));
1234 
1235 	list_del_init(&ctx->active_ctx_list);
1236 }
1237 
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240 	refcount_inc(&ctx->refcount);
1241 }
1242 
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245 	if (pmu->task_ctx_cache)
1246 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247 
1248 	return NULL;
1249 }
1250 
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253 	if (pmu->task_ctx_cache && task_ctx_data)
1254 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256 
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263 	kfree(ctx);
1264 }
1265 
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268 	if (refcount_dec_and_test(&ctx->refcount)) {
1269 		if (ctx->parent_ctx)
1270 			put_ctx(ctx->parent_ctx);
1271 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272 			put_task_struct(ctx->task);
1273 		call_rcu(&ctx->rcu_head, free_ctx);
1274 	}
1275 }
1276 
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()	[ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()			[ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()		[ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event()	[ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *	task_struct::perf_event_mutex
1332  *	  perf_event_context::mutex
1333  *	    perf_event::child_mutex;
1334  *	      perf_event_context::lock
1335  *	    perf_event::mmap_mutex
1336  *	    mmap_lock
1337  *	      perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *	  cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 	struct perf_event_context *ctx;
1347 
1348 again:
1349 	rcu_read_lock();
1350 	ctx = READ_ONCE(event->ctx);
1351 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 		rcu_read_unlock();
1353 		goto again;
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	mutex_lock_nested(&ctx->mutex, nesting);
1358 	if (event->ctx != ctx) {
1359 		mutex_unlock(&ctx->mutex);
1360 		put_ctx(ctx);
1361 		goto again;
1362 	}
1363 
1364 	return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 	return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 				  struct perf_event_context *ctx)
1375 {
1376 	mutex_unlock(&ctx->mutex);
1377 	put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390 	lockdep_assert_held(&ctx->lock);
1391 
1392 	if (parent_ctx)
1393 		ctx->parent_ctx = NULL;
1394 	ctx->generation++;
1395 
1396 	return parent_ctx;
1397 }
1398 
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 				enum pid_type type)
1401 {
1402 	u32 nr;
1403 	/*
1404 	 * only top level events have the pid namespace they were created in
1405 	 */
1406 	if (event->parent)
1407 		event = event->parent;
1408 
1409 	nr = __task_pid_nr_ns(p, type, event->ns);
1410 	/* avoid -1 if it is idle thread or runs in another ns */
1411 	if (!nr && !pid_alive(p))
1412 		nr = -1;
1413 	return nr;
1414 }
1415 
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 	u64 id = event->id;
1433 
1434 	if (event->parent)
1435 		id = event->parent->id;
1436 
1437 	return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449 	struct perf_event_context *ctx;
1450 
1451 retry:
1452 	/*
1453 	 * One of the few rules of preemptible RCU is that one cannot do
1454 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 	 * part of the read side critical section was irqs-enabled -- see
1456 	 * rcu_read_unlock_special().
1457 	 *
1458 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 	 * side critical section has interrupts disabled.
1460 	 */
1461 	local_irq_save(*flags);
1462 	rcu_read_lock();
1463 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464 	if (ctx) {
1465 		/*
1466 		 * If this context is a clone of another, it might
1467 		 * get swapped for another underneath us by
1468 		 * perf_event_task_sched_out, though the
1469 		 * rcu_read_lock() protects us from any context
1470 		 * getting freed.  Lock the context and check if it
1471 		 * got swapped before we could get the lock, and retry
1472 		 * if so.  If we locked the right context, then it
1473 		 * can't get swapped on us any more.
1474 		 */
1475 		raw_spin_lock(&ctx->lock);
1476 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477 			raw_spin_unlock(&ctx->lock);
1478 			rcu_read_unlock();
1479 			local_irq_restore(*flags);
1480 			goto retry;
1481 		}
1482 
1483 		if (ctx->task == TASK_TOMBSTONE ||
1484 		    !refcount_inc_not_zero(&ctx->refcount)) {
1485 			raw_spin_unlock(&ctx->lock);
1486 			ctx = NULL;
1487 		} else {
1488 			WARN_ON_ONCE(ctx->task != task);
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	if (!ctx)
1493 		local_irq_restore(*flags);
1494 	return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505 	struct perf_event_context *ctx;
1506 	unsigned long flags;
1507 
1508 	ctx = perf_lock_task_context(task, ctxn, &flags);
1509 	if (ctx) {
1510 		++ctx->pin_count;
1511 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 	}
1513 	return ctx;
1514 }
1515 
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 	unsigned long flags;
1519 
1520 	raw_spin_lock_irqsave(&ctx->lock, flags);
1521 	--ctx->pin_count;
1522 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530 	u64 now = perf_clock();
1531 
1532 	ctx->time += now - ctx->timestamp;
1533 	ctx->timestamp = now;
1534 }
1535 
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538 	struct perf_event_context *ctx = event->ctx;
1539 
1540 	if (is_cgroup_event(event))
1541 		return perf_cgroup_event_time(event);
1542 
1543 	return ctx ? ctx->time : 0;
1544 }
1545 
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548 	struct perf_event_context *ctx = event->ctx;
1549 	enum event_type_t event_type;
1550 
1551 	lockdep_assert_held(&ctx->lock);
1552 
1553 	/*
1554 	 * It's 'group type', really, because if our group leader is
1555 	 * pinned, so are we.
1556 	 */
1557 	if (event->group_leader != event)
1558 		event = event->group_leader;
1559 
1560 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561 	if (!ctx->task)
1562 		event_type |= EVENT_CPU;
1563 
1564 	return event_type;
1565 }
1566 
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572 	RB_CLEAR_NODE(&event->group_node);
1573 	event->group_index = 0;
1574 }
1575 
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583 	if (event->attr.pinned)
1584 		return &ctx->pinned_groups;
1585 	else
1586 		return &ctx->flexible_groups;
1587 }
1588 
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594 	groups->tree = RB_ROOT;
1595 	groups->index = 0;
1596 }
1597 
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600 	struct cgroup *cgroup = NULL;
1601 
1602 #ifdef CONFIG_CGROUP_PERF
1603 	if (event->cgrp)
1604 		cgroup = event->cgrp->css.cgroup;
1605 #endif
1606 
1607 	return cgroup;
1608 }
1609 
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618 		      const u64 left_group_index, const struct perf_event *right)
1619 {
1620 	if (left_cpu < right->cpu)
1621 		return -1;
1622 	if (left_cpu > right->cpu)
1623 		return 1;
1624 
1625 #ifdef CONFIG_CGROUP_PERF
1626 	{
1627 		const struct cgroup *right_cgroup = event_cgroup(right);
1628 
1629 		if (left_cgroup != right_cgroup) {
1630 			if (!left_cgroup) {
1631 				/*
1632 				 * Left has no cgroup but right does, no
1633 				 * cgroups come first.
1634 				 */
1635 				return -1;
1636 			}
1637 			if (!right_cgroup) {
1638 				/*
1639 				 * Right has no cgroup but left does, no
1640 				 * cgroups come first.
1641 				 */
1642 				return 1;
1643 			}
1644 			/* Two dissimilar cgroups, order by id. */
1645 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646 				return -1;
1647 
1648 			return 1;
1649 		}
1650 	}
1651 #endif
1652 
1653 	if (left_group_index < right->group_index)
1654 		return -1;
1655 	if (left_group_index > right->group_index)
1656 		return 1;
1657 
1658 	return 0;
1659 }
1660 
1661 #define __node_2_pe(node) \
1662 	rb_entry((node), struct perf_event, group_node)
1663 
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666 	struct perf_event *e = __node_2_pe(a);
1667 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668 				     __node_2_pe(b)) < 0;
1669 }
1670 
1671 struct __group_key {
1672 	int cpu;
1673 	struct cgroup *cgroup;
1674 };
1675 
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678 	const struct __group_key *a = key;
1679 	const struct perf_event *b = __node_2_pe(node);
1680 
1681 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684 
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692 			 struct perf_event *event)
1693 {
1694 	event->group_index = ++groups->index;
1695 
1696 	rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698 
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705 	struct perf_event_groups *groups;
1706 
1707 	groups = get_event_groups(event, ctx);
1708 	perf_event_groups_insert(groups, event);
1709 }
1710 
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716 			 struct perf_event *event)
1717 {
1718 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719 		     RB_EMPTY_ROOT(&groups->tree));
1720 
1721 	rb_erase(&event->group_node, &groups->tree);
1722 	init_event_group(event);
1723 }
1724 
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731 	struct perf_event_groups *groups;
1732 
1733 	groups = get_event_groups(event, ctx);
1734 	perf_event_groups_delete(groups, event);
1735 }
1736 
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742 			struct cgroup *cgrp)
1743 {
1744 	struct __group_key key = {
1745 		.cpu = cpu,
1746 		.cgroup = cgrp,
1747 	};
1748 	struct rb_node *node;
1749 
1750 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1751 	if (node)
1752 		return __node_2_pe(node);
1753 
1754 	return NULL;
1755 }
1756 
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763 	struct __group_key key = {
1764 		.cpu = event->cpu,
1765 		.cgroup = event_cgroup(event),
1766 	};
1767 	struct rb_node *next;
1768 
1769 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1770 	if (next)
1771 		return __node_2_pe(next);
1772 
1773 	return NULL;
1774 }
1775 
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)			\
1780 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1781 				typeof(*event), group_node); event;	\
1782 		event = rb_entry_safe(rb_next(&event->group_node),	\
1783 				typeof(*event), group_node))
1784 
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792 	lockdep_assert_held(&ctx->lock);
1793 
1794 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795 	event->attach_state |= PERF_ATTACH_CONTEXT;
1796 
1797 	event->tstamp = perf_event_time(event);
1798 
1799 	/*
1800 	 * If we're a stand alone event or group leader, we go to the context
1801 	 * list, group events are kept attached to the group so that
1802 	 * perf_group_detach can, at all times, locate all siblings.
1803 	 */
1804 	if (event->group_leader == event) {
1805 		event->group_caps = event->event_caps;
1806 		add_event_to_groups(event, ctx);
1807 	}
1808 
1809 	list_add_rcu(&event->event_entry, &ctx->event_list);
1810 	ctx->nr_events++;
1811 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1812 		ctx->nr_user++;
1813 	if (event->attr.inherit_stat)
1814 		ctx->nr_stat++;
1815 
1816 	if (event->state > PERF_EVENT_STATE_OFF)
1817 		perf_cgroup_event_enable(event, ctx);
1818 
1819 	ctx->generation++;
1820 }
1821 
1822 /*
1823  * Initialize event state based on the perf_event_attr::disabled.
1824  */
1825 static inline void perf_event__state_init(struct perf_event *event)
1826 {
1827 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1828 					      PERF_EVENT_STATE_INACTIVE;
1829 }
1830 
1831 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1832 {
1833 	int entry = sizeof(u64); /* value */
1834 	int size = 0;
1835 	int nr = 1;
1836 
1837 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1838 		size += sizeof(u64);
1839 
1840 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1841 		size += sizeof(u64);
1842 
1843 	if (event->attr.read_format & PERF_FORMAT_ID)
1844 		entry += sizeof(u64);
1845 
1846 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1847 		nr += nr_siblings;
1848 		size += sizeof(u64);
1849 	}
1850 
1851 	size += entry * nr;
1852 	event->read_size = size;
1853 }
1854 
1855 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1856 {
1857 	struct perf_sample_data *data;
1858 	u16 size = 0;
1859 
1860 	if (sample_type & PERF_SAMPLE_IP)
1861 		size += sizeof(data->ip);
1862 
1863 	if (sample_type & PERF_SAMPLE_ADDR)
1864 		size += sizeof(data->addr);
1865 
1866 	if (sample_type & PERF_SAMPLE_PERIOD)
1867 		size += sizeof(data->period);
1868 
1869 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1870 		size += sizeof(data->weight.full);
1871 
1872 	if (sample_type & PERF_SAMPLE_READ)
1873 		size += event->read_size;
1874 
1875 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1876 		size += sizeof(data->data_src.val);
1877 
1878 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1879 		size += sizeof(data->txn);
1880 
1881 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1882 		size += sizeof(data->phys_addr);
1883 
1884 	if (sample_type & PERF_SAMPLE_CGROUP)
1885 		size += sizeof(data->cgroup);
1886 
1887 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1888 		size += sizeof(data->data_page_size);
1889 
1890 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1891 		size += sizeof(data->code_page_size);
1892 
1893 	event->header_size = size;
1894 }
1895 
1896 /*
1897  * Called at perf_event creation and when events are attached/detached from a
1898  * group.
1899  */
1900 static void perf_event__header_size(struct perf_event *event)
1901 {
1902 	__perf_event_read_size(event,
1903 			       event->group_leader->nr_siblings);
1904 	__perf_event_header_size(event, event->attr.sample_type);
1905 }
1906 
1907 static void perf_event__id_header_size(struct perf_event *event)
1908 {
1909 	struct perf_sample_data *data;
1910 	u64 sample_type = event->attr.sample_type;
1911 	u16 size = 0;
1912 
1913 	if (sample_type & PERF_SAMPLE_TID)
1914 		size += sizeof(data->tid_entry);
1915 
1916 	if (sample_type & PERF_SAMPLE_TIME)
1917 		size += sizeof(data->time);
1918 
1919 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1920 		size += sizeof(data->id);
1921 
1922 	if (sample_type & PERF_SAMPLE_ID)
1923 		size += sizeof(data->id);
1924 
1925 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1926 		size += sizeof(data->stream_id);
1927 
1928 	if (sample_type & PERF_SAMPLE_CPU)
1929 		size += sizeof(data->cpu_entry);
1930 
1931 	event->id_header_size = size;
1932 }
1933 
1934 static bool perf_event_validate_size(struct perf_event *event)
1935 {
1936 	/*
1937 	 * The values computed here will be over-written when we actually
1938 	 * attach the event.
1939 	 */
1940 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1941 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1942 	perf_event__id_header_size(event);
1943 
1944 	/*
1945 	 * Sum the lot; should not exceed the 64k limit we have on records.
1946 	 * Conservative limit to allow for callchains and other variable fields.
1947 	 */
1948 	if (event->read_size + event->header_size +
1949 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1950 		return false;
1951 
1952 	return true;
1953 }
1954 
1955 static void perf_group_attach(struct perf_event *event)
1956 {
1957 	struct perf_event *group_leader = event->group_leader, *pos;
1958 
1959 	lockdep_assert_held(&event->ctx->lock);
1960 
1961 	/*
1962 	 * We can have double attach due to group movement in perf_event_open.
1963 	 */
1964 	if (event->attach_state & PERF_ATTACH_GROUP)
1965 		return;
1966 
1967 	event->attach_state |= PERF_ATTACH_GROUP;
1968 
1969 	if (group_leader == event)
1970 		return;
1971 
1972 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1973 
1974 	group_leader->group_caps &= event->event_caps;
1975 
1976 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1977 	group_leader->nr_siblings++;
1978 
1979 	perf_event__header_size(group_leader);
1980 
1981 	for_each_sibling_event(pos, group_leader)
1982 		perf_event__header_size(pos);
1983 }
1984 
1985 /*
1986  * Remove an event from the lists for its context.
1987  * Must be called with ctx->mutex and ctx->lock held.
1988  */
1989 static void
1990 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1991 {
1992 	WARN_ON_ONCE(event->ctx != ctx);
1993 	lockdep_assert_held(&ctx->lock);
1994 
1995 	/*
1996 	 * We can have double detach due to exit/hot-unplug + close.
1997 	 */
1998 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1999 		return;
2000 
2001 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2002 
2003 	ctx->nr_events--;
2004 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2005 		ctx->nr_user--;
2006 	if (event->attr.inherit_stat)
2007 		ctx->nr_stat--;
2008 
2009 	list_del_rcu(&event->event_entry);
2010 
2011 	if (event->group_leader == event)
2012 		del_event_from_groups(event, ctx);
2013 
2014 	/*
2015 	 * If event was in error state, then keep it
2016 	 * that way, otherwise bogus counts will be
2017 	 * returned on read(). The only way to get out
2018 	 * of error state is by explicit re-enabling
2019 	 * of the event
2020 	 */
2021 	if (event->state > PERF_EVENT_STATE_OFF) {
2022 		perf_cgroup_event_disable(event, ctx);
2023 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2024 	}
2025 
2026 	ctx->generation++;
2027 }
2028 
2029 static int
2030 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2031 {
2032 	if (!has_aux(aux_event))
2033 		return 0;
2034 
2035 	if (!event->pmu->aux_output_match)
2036 		return 0;
2037 
2038 	return event->pmu->aux_output_match(aux_event);
2039 }
2040 
2041 static void put_event(struct perf_event *event);
2042 static void event_sched_out(struct perf_event *event,
2043 			    struct perf_cpu_context *cpuctx,
2044 			    struct perf_event_context *ctx);
2045 
2046 static void perf_put_aux_event(struct perf_event *event)
2047 {
2048 	struct perf_event_context *ctx = event->ctx;
2049 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2050 	struct perf_event *iter;
2051 
2052 	/*
2053 	 * If event uses aux_event tear down the link
2054 	 */
2055 	if (event->aux_event) {
2056 		iter = event->aux_event;
2057 		event->aux_event = NULL;
2058 		put_event(iter);
2059 		return;
2060 	}
2061 
2062 	/*
2063 	 * If the event is an aux_event, tear down all links to
2064 	 * it from other events.
2065 	 */
2066 	for_each_sibling_event(iter, event->group_leader) {
2067 		if (iter->aux_event != event)
2068 			continue;
2069 
2070 		iter->aux_event = NULL;
2071 		put_event(event);
2072 
2073 		/*
2074 		 * If it's ACTIVE, schedule it out and put it into ERROR
2075 		 * state so that we don't try to schedule it again. Note
2076 		 * that perf_event_enable() will clear the ERROR status.
2077 		 */
2078 		event_sched_out(iter, cpuctx, ctx);
2079 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2080 	}
2081 }
2082 
2083 static bool perf_need_aux_event(struct perf_event *event)
2084 {
2085 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2086 }
2087 
2088 static int perf_get_aux_event(struct perf_event *event,
2089 			      struct perf_event *group_leader)
2090 {
2091 	/*
2092 	 * Our group leader must be an aux event if we want to be
2093 	 * an aux_output. This way, the aux event will precede its
2094 	 * aux_output events in the group, and therefore will always
2095 	 * schedule first.
2096 	 */
2097 	if (!group_leader)
2098 		return 0;
2099 
2100 	/*
2101 	 * aux_output and aux_sample_size are mutually exclusive.
2102 	 */
2103 	if (event->attr.aux_output && event->attr.aux_sample_size)
2104 		return 0;
2105 
2106 	if (event->attr.aux_output &&
2107 	    !perf_aux_output_match(event, group_leader))
2108 		return 0;
2109 
2110 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2111 		return 0;
2112 
2113 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2114 		return 0;
2115 
2116 	/*
2117 	 * Link aux_outputs to their aux event; this is undone in
2118 	 * perf_group_detach() by perf_put_aux_event(). When the
2119 	 * group in torn down, the aux_output events loose their
2120 	 * link to the aux_event and can't schedule any more.
2121 	 */
2122 	event->aux_event = group_leader;
2123 
2124 	return 1;
2125 }
2126 
2127 static inline struct list_head *get_event_list(struct perf_event *event)
2128 {
2129 	struct perf_event_context *ctx = event->ctx;
2130 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2131 }
2132 
2133 /*
2134  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2135  * cannot exist on their own, schedule them out and move them into the ERROR
2136  * state. Also see _perf_event_enable(), it will not be able to recover
2137  * this ERROR state.
2138  */
2139 static inline void perf_remove_sibling_event(struct perf_event *event)
2140 {
2141 	struct perf_event_context *ctx = event->ctx;
2142 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2143 
2144 	event_sched_out(event, cpuctx, ctx);
2145 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2146 }
2147 
2148 static void perf_group_detach(struct perf_event *event)
2149 {
2150 	struct perf_event *leader = event->group_leader;
2151 	struct perf_event *sibling, *tmp;
2152 	struct perf_event_context *ctx = event->ctx;
2153 
2154 	lockdep_assert_held(&ctx->lock);
2155 
2156 	/*
2157 	 * We can have double detach due to exit/hot-unplug + close.
2158 	 */
2159 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2160 		return;
2161 
2162 	event->attach_state &= ~PERF_ATTACH_GROUP;
2163 
2164 	perf_put_aux_event(event);
2165 
2166 	/*
2167 	 * If this is a sibling, remove it from its group.
2168 	 */
2169 	if (leader != event) {
2170 		list_del_init(&event->sibling_list);
2171 		event->group_leader->nr_siblings--;
2172 		goto out;
2173 	}
2174 
2175 	/*
2176 	 * If this was a group event with sibling events then
2177 	 * upgrade the siblings to singleton events by adding them
2178 	 * to whatever list we are on.
2179 	 */
2180 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2181 
2182 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2183 			perf_remove_sibling_event(sibling);
2184 
2185 		sibling->group_leader = sibling;
2186 		list_del_init(&sibling->sibling_list);
2187 
2188 		/* Inherit group flags from the previous leader */
2189 		sibling->group_caps = event->group_caps;
2190 
2191 		if (!RB_EMPTY_NODE(&event->group_node)) {
2192 			add_event_to_groups(sibling, event->ctx);
2193 
2194 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2195 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2196 		}
2197 
2198 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2199 	}
2200 
2201 out:
2202 	for_each_sibling_event(tmp, leader)
2203 		perf_event__header_size(tmp);
2204 
2205 	perf_event__header_size(leader);
2206 }
2207 
2208 static void sync_child_event(struct perf_event *child_event);
2209 
2210 static void perf_child_detach(struct perf_event *event)
2211 {
2212 	struct perf_event *parent_event = event->parent;
2213 
2214 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2215 		return;
2216 
2217 	event->attach_state &= ~PERF_ATTACH_CHILD;
2218 
2219 	if (WARN_ON_ONCE(!parent_event))
2220 		return;
2221 
2222 	lockdep_assert_held(&parent_event->child_mutex);
2223 
2224 	sync_child_event(event);
2225 	list_del_init(&event->child_list);
2226 }
2227 
2228 static bool is_orphaned_event(struct perf_event *event)
2229 {
2230 	return event->state == PERF_EVENT_STATE_DEAD;
2231 }
2232 
2233 static inline int __pmu_filter_match(struct perf_event *event)
2234 {
2235 	struct pmu *pmu = event->pmu;
2236 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2237 }
2238 
2239 /*
2240  * Check whether we should attempt to schedule an event group based on
2241  * PMU-specific filtering. An event group can consist of HW and SW events,
2242  * potentially with a SW leader, so we must check all the filters, to
2243  * determine whether a group is schedulable:
2244  */
2245 static inline int pmu_filter_match(struct perf_event *event)
2246 {
2247 	struct perf_event *sibling;
2248 
2249 	if (!__pmu_filter_match(event))
2250 		return 0;
2251 
2252 	for_each_sibling_event(sibling, event) {
2253 		if (!__pmu_filter_match(sibling))
2254 			return 0;
2255 	}
2256 
2257 	return 1;
2258 }
2259 
2260 static inline int
2261 event_filter_match(struct perf_event *event)
2262 {
2263 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2264 	       perf_cgroup_match(event) && pmu_filter_match(event);
2265 }
2266 
2267 static void
2268 event_sched_out(struct perf_event *event,
2269 		  struct perf_cpu_context *cpuctx,
2270 		  struct perf_event_context *ctx)
2271 {
2272 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2273 
2274 	WARN_ON_ONCE(event->ctx != ctx);
2275 	lockdep_assert_held(&ctx->lock);
2276 
2277 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2278 		return;
2279 
2280 	/*
2281 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2282 	 * we can schedule events _OUT_ individually through things like
2283 	 * __perf_remove_from_context().
2284 	 */
2285 	list_del_init(&event->active_list);
2286 
2287 	perf_pmu_disable(event->pmu);
2288 
2289 	event->pmu->del(event, 0);
2290 	event->oncpu = -1;
2291 
2292 	if (READ_ONCE(event->pending_disable) >= 0) {
2293 		WRITE_ONCE(event->pending_disable, -1);
2294 		perf_cgroup_event_disable(event, ctx);
2295 		state = PERF_EVENT_STATE_OFF;
2296 	}
2297 	perf_event_set_state(event, state);
2298 
2299 	if (!is_software_event(event))
2300 		cpuctx->active_oncpu--;
2301 	if (!--ctx->nr_active)
2302 		perf_event_ctx_deactivate(ctx);
2303 	if (event->attr.freq && event->attr.sample_freq)
2304 		ctx->nr_freq--;
2305 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2306 		cpuctx->exclusive = 0;
2307 
2308 	perf_pmu_enable(event->pmu);
2309 }
2310 
2311 static void
2312 group_sched_out(struct perf_event *group_event,
2313 		struct perf_cpu_context *cpuctx,
2314 		struct perf_event_context *ctx)
2315 {
2316 	struct perf_event *event;
2317 
2318 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2319 		return;
2320 
2321 	perf_pmu_disable(ctx->pmu);
2322 
2323 	event_sched_out(group_event, cpuctx, ctx);
2324 
2325 	/*
2326 	 * Schedule out siblings (if any):
2327 	 */
2328 	for_each_sibling_event(event, group_event)
2329 		event_sched_out(event, cpuctx, ctx);
2330 
2331 	perf_pmu_enable(ctx->pmu);
2332 }
2333 
2334 #define DETACH_GROUP	0x01UL
2335 #define DETACH_CHILD	0x02UL
2336 
2337 /*
2338  * Cross CPU call to remove a performance event
2339  *
2340  * We disable the event on the hardware level first. After that we
2341  * remove it from the context list.
2342  */
2343 static void
2344 __perf_remove_from_context(struct perf_event *event,
2345 			   struct perf_cpu_context *cpuctx,
2346 			   struct perf_event_context *ctx,
2347 			   void *info)
2348 {
2349 	unsigned long flags = (unsigned long)info;
2350 
2351 	if (ctx->is_active & EVENT_TIME) {
2352 		update_context_time(ctx);
2353 		update_cgrp_time_from_cpuctx(cpuctx);
2354 	}
2355 
2356 	event_sched_out(event, cpuctx, ctx);
2357 	if (flags & DETACH_GROUP)
2358 		perf_group_detach(event);
2359 	if (flags & DETACH_CHILD)
2360 		perf_child_detach(event);
2361 	list_del_event(event, ctx);
2362 
2363 	if (!ctx->nr_events && ctx->is_active) {
2364 		ctx->is_active = 0;
2365 		ctx->rotate_necessary = 0;
2366 		if (ctx->task) {
2367 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2368 			cpuctx->task_ctx = NULL;
2369 		}
2370 	}
2371 }
2372 
2373 /*
2374  * Remove the event from a task's (or a CPU's) list of events.
2375  *
2376  * If event->ctx is a cloned context, callers must make sure that
2377  * every task struct that event->ctx->task could possibly point to
2378  * remains valid.  This is OK when called from perf_release since
2379  * that only calls us on the top-level context, which can't be a clone.
2380  * When called from perf_event_exit_task, it's OK because the
2381  * context has been detached from its task.
2382  */
2383 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2384 {
2385 	struct perf_event_context *ctx = event->ctx;
2386 
2387 	lockdep_assert_held(&ctx->mutex);
2388 
2389 	/*
2390 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2391 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2392 	 * event_function_call() user.
2393 	 */
2394 	raw_spin_lock_irq(&ctx->lock);
2395 	if (!ctx->is_active) {
2396 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2397 					   ctx, (void *)flags);
2398 		raw_spin_unlock_irq(&ctx->lock);
2399 		return;
2400 	}
2401 	raw_spin_unlock_irq(&ctx->lock);
2402 
2403 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2404 }
2405 
2406 /*
2407  * Cross CPU call to disable a performance event
2408  */
2409 static void __perf_event_disable(struct perf_event *event,
2410 				 struct perf_cpu_context *cpuctx,
2411 				 struct perf_event_context *ctx,
2412 				 void *info)
2413 {
2414 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2415 		return;
2416 
2417 	if (ctx->is_active & EVENT_TIME) {
2418 		update_context_time(ctx);
2419 		update_cgrp_time_from_event(event);
2420 	}
2421 
2422 	if (event == event->group_leader)
2423 		group_sched_out(event, cpuctx, ctx);
2424 	else
2425 		event_sched_out(event, cpuctx, ctx);
2426 
2427 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2428 	perf_cgroup_event_disable(event, ctx);
2429 }
2430 
2431 /*
2432  * Disable an event.
2433  *
2434  * If event->ctx is a cloned context, callers must make sure that
2435  * every task struct that event->ctx->task could possibly point to
2436  * remains valid.  This condition is satisfied when called through
2437  * perf_event_for_each_child or perf_event_for_each because they
2438  * hold the top-level event's child_mutex, so any descendant that
2439  * goes to exit will block in perf_event_exit_event().
2440  *
2441  * When called from perf_pending_event it's OK because event->ctx
2442  * is the current context on this CPU and preemption is disabled,
2443  * hence we can't get into perf_event_task_sched_out for this context.
2444  */
2445 static void _perf_event_disable(struct perf_event *event)
2446 {
2447 	struct perf_event_context *ctx = event->ctx;
2448 
2449 	raw_spin_lock_irq(&ctx->lock);
2450 	if (event->state <= PERF_EVENT_STATE_OFF) {
2451 		raw_spin_unlock_irq(&ctx->lock);
2452 		return;
2453 	}
2454 	raw_spin_unlock_irq(&ctx->lock);
2455 
2456 	event_function_call(event, __perf_event_disable, NULL);
2457 }
2458 
2459 void perf_event_disable_local(struct perf_event *event)
2460 {
2461 	event_function_local(event, __perf_event_disable, NULL);
2462 }
2463 
2464 /*
2465  * Strictly speaking kernel users cannot create groups and therefore this
2466  * interface does not need the perf_event_ctx_lock() magic.
2467  */
2468 void perf_event_disable(struct perf_event *event)
2469 {
2470 	struct perf_event_context *ctx;
2471 
2472 	ctx = perf_event_ctx_lock(event);
2473 	_perf_event_disable(event);
2474 	perf_event_ctx_unlock(event, ctx);
2475 }
2476 EXPORT_SYMBOL_GPL(perf_event_disable);
2477 
2478 void perf_event_disable_inatomic(struct perf_event *event)
2479 {
2480 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2481 	/* can fail, see perf_pending_event_disable() */
2482 	irq_work_queue(&event->pending);
2483 }
2484 
2485 static void perf_set_shadow_time(struct perf_event *event,
2486 				 struct perf_event_context *ctx)
2487 {
2488 	/*
2489 	 * use the correct time source for the time snapshot
2490 	 *
2491 	 * We could get by without this by leveraging the
2492 	 * fact that to get to this function, the caller
2493 	 * has most likely already called update_context_time()
2494 	 * and update_cgrp_time_xx() and thus both timestamp
2495 	 * are identical (or very close). Given that tstamp is,
2496 	 * already adjusted for cgroup, we could say that:
2497 	 *    tstamp - ctx->timestamp
2498 	 * is equivalent to
2499 	 *    tstamp - cgrp->timestamp.
2500 	 *
2501 	 * Then, in perf_output_read(), the calculation would
2502 	 * work with no changes because:
2503 	 * - event is guaranteed scheduled in
2504 	 * - no scheduled out in between
2505 	 * - thus the timestamp would be the same
2506 	 *
2507 	 * But this is a bit hairy.
2508 	 *
2509 	 * So instead, we have an explicit cgroup call to remain
2510 	 * within the time source all along. We believe it
2511 	 * is cleaner and simpler to understand.
2512 	 */
2513 	if (is_cgroup_event(event))
2514 		perf_cgroup_set_shadow_time(event, event->tstamp);
2515 	else
2516 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2517 }
2518 
2519 #define MAX_INTERRUPTS (~0ULL)
2520 
2521 static void perf_log_throttle(struct perf_event *event, int enable);
2522 static void perf_log_itrace_start(struct perf_event *event);
2523 
2524 static int
2525 event_sched_in(struct perf_event *event,
2526 		 struct perf_cpu_context *cpuctx,
2527 		 struct perf_event_context *ctx)
2528 {
2529 	int ret = 0;
2530 
2531 	WARN_ON_ONCE(event->ctx != ctx);
2532 
2533 	lockdep_assert_held(&ctx->lock);
2534 
2535 	if (event->state <= PERF_EVENT_STATE_OFF)
2536 		return 0;
2537 
2538 	WRITE_ONCE(event->oncpu, smp_processor_id());
2539 	/*
2540 	 * Order event::oncpu write to happen before the ACTIVE state is
2541 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2542 	 * ->oncpu if it sees ACTIVE.
2543 	 */
2544 	smp_wmb();
2545 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2546 
2547 	/*
2548 	 * Unthrottle events, since we scheduled we might have missed several
2549 	 * ticks already, also for a heavily scheduling task there is little
2550 	 * guarantee it'll get a tick in a timely manner.
2551 	 */
2552 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2553 		perf_log_throttle(event, 1);
2554 		event->hw.interrupts = 0;
2555 	}
2556 
2557 	perf_pmu_disable(event->pmu);
2558 
2559 	perf_set_shadow_time(event, ctx);
2560 
2561 	perf_log_itrace_start(event);
2562 
2563 	if (event->pmu->add(event, PERF_EF_START)) {
2564 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2565 		event->oncpu = -1;
2566 		ret = -EAGAIN;
2567 		goto out;
2568 	}
2569 
2570 	if (!is_software_event(event))
2571 		cpuctx->active_oncpu++;
2572 	if (!ctx->nr_active++)
2573 		perf_event_ctx_activate(ctx);
2574 	if (event->attr.freq && event->attr.sample_freq)
2575 		ctx->nr_freq++;
2576 
2577 	if (event->attr.exclusive)
2578 		cpuctx->exclusive = 1;
2579 
2580 out:
2581 	perf_pmu_enable(event->pmu);
2582 
2583 	return ret;
2584 }
2585 
2586 static int
2587 group_sched_in(struct perf_event *group_event,
2588 	       struct perf_cpu_context *cpuctx,
2589 	       struct perf_event_context *ctx)
2590 {
2591 	struct perf_event *event, *partial_group = NULL;
2592 	struct pmu *pmu = ctx->pmu;
2593 
2594 	if (group_event->state == PERF_EVENT_STATE_OFF)
2595 		return 0;
2596 
2597 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2598 
2599 	if (event_sched_in(group_event, cpuctx, ctx))
2600 		goto error;
2601 
2602 	/*
2603 	 * Schedule in siblings as one group (if any):
2604 	 */
2605 	for_each_sibling_event(event, group_event) {
2606 		if (event_sched_in(event, cpuctx, ctx)) {
2607 			partial_group = event;
2608 			goto group_error;
2609 		}
2610 	}
2611 
2612 	if (!pmu->commit_txn(pmu))
2613 		return 0;
2614 
2615 group_error:
2616 	/*
2617 	 * Groups can be scheduled in as one unit only, so undo any
2618 	 * partial group before returning:
2619 	 * The events up to the failed event are scheduled out normally.
2620 	 */
2621 	for_each_sibling_event(event, group_event) {
2622 		if (event == partial_group)
2623 			break;
2624 
2625 		event_sched_out(event, cpuctx, ctx);
2626 	}
2627 	event_sched_out(group_event, cpuctx, ctx);
2628 
2629 error:
2630 	pmu->cancel_txn(pmu);
2631 	return -EAGAIN;
2632 }
2633 
2634 /*
2635  * Work out whether we can put this event group on the CPU now.
2636  */
2637 static int group_can_go_on(struct perf_event *event,
2638 			   struct perf_cpu_context *cpuctx,
2639 			   int can_add_hw)
2640 {
2641 	/*
2642 	 * Groups consisting entirely of software events can always go on.
2643 	 */
2644 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2645 		return 1;
2646 	/*
2647 	 * If an exclusive group is already on, no other hardware
2648 	 * events can go on.
2649 	 */
2650 	if (cpuctx->exclusive)
2651 		return 0;
2652 	/*
2653 	 * If this group is exclusive and there are already
2654 	 * events on the CPU, it can't go on.
2655 	 */
2656 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2657 		return 0;
2658 	/*
2659 	 * Otherwise, try to add it if all previous groups were able
2660 	 * to go on.
2661 	 */
2662 	return can_add_hw;
2663 }
2664 
2665 static void add_event_to_ctx(struct perf_event *event,
2666 			       struct perf_event_context *ctx)
2667 {
2668 	list_add_event(event, ctx);
2669 	perf_group_attach(event);
2670 }
2671 
2672 static void ctx_sched_out(struct perf_event_context *ctx,
2673 			  struct perf_cpu_context *cpuctx,
2674 			  enum event_type_t event_type);
2675 static void
2676 ctx_sched_in(struct perf_event_context *ctx,
2677 	     struct perf_cpu_context *cpuctx,
2678 	     enum event_type_t event_type,
2679 	     struct task_struct *task);
2680 
2681 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2682 			       struct perf_event_context *ctx,
2683 			       enum event_type_t event_type)
2684 {
2685 	if (!cpuctx->task_ctx)
2686 		return;
2687 
2688 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2689 		return;
2690 
2691 	ctx_sched_out(ctx, cpuctx, event_type);
2692 }
2693 
2694 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2695 				struct perf_event_context *ctx,
2696 				struct task_struct *task)
2697 {
2698 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2699 	if (ctx)
2700 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2701 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2702 	if (ctx)
2703 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2704 }
2705 
2706 /*
2707  * We want to maintain the following priority of scheduling:
2708  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2709  *  - task pinned (EVENT_PINNED)
2710  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2711  *  - task flexible (EVENT_FLEXIBLE).
2712  *
2713  * In order to avoid unscheduling and scheduling back in everything every
2714  * time an event is added, only do it for the groups of equal priority and
2715  * below.
2716  *
2717  * This can be called after a batch operation on task events, in which case
2718  * event_type is a bit mask of the types of events involved. For CPU events,
2719  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2720  */
2721 static void ctx_resched(struct perf_cpu_context *cpuctx,
2722 			struct perf_event_context *task_ctx,
2723 			enum event_type_t event_type)
2724 {
2725 	enum event_type_t ctx_event_type;
2726 	bool cpu_event = !!(event_type & EVENT_CPU);
2727 
2728 	/*
2729 	 * If pinned groups are involved, flexible groups also need to be
2730 	 * scheduled out.
2731 	 */
2732 	if (event_type & EVENT_PINNED)
2733 		event_type |= EVENT_FLEXIBLE;
2734 
2735 	ctx_event_type = event_type & EVENT_ALL;
2736 
2737 	perf_pmu_disable(cpuctx->ctx.pmu);
2738 	if (task_ctx)
2739 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2740 
2741 	/*
2742 	 * Decide which cpu ctx groups to schedule out based on the types
2743 	 * of events that caused rescheduling:
2744 	 *  - EVENT_CPU: schedule out corresponding groups;
2745 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2746 	 *  - otherwise, do nothing more.
2747 	 */
2748 	if (cpu_event)
2749 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2750 	else if (ctx_event_type & EVENT_PINNED)
2751 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2752 
2753 	perf_event_sched_in(cpuctx, task_ctx, current);
2754 	perf_pmu_enable(cpuctx->ctx.pmu);
2755 }
2756 
2757 void perf_pmu_resched(struct pmu *pmu)
2758 {
2759 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2760 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2761 
2762 	perf_ctx_lock(cpuctx, task_ctx);
2763 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2764 	perf_ctx_unlock(cpuctx, task_ctx);
2765 }
2766 
2767 /*
2768  * Cross CPU call to install and enable a performance event
2769  *
2770  * Very similar to remote_function() + event_function() but cannot assume that
2771  * things like ctx->is_active and cpuctx->task_ctx are set.
2772  */
2773 static int  __perf_install_in_context(void *info)
2774 {
2775 	struct perf_event *event = info;
2776 	struct perf_event_context *ctx = event->ctx;
2777 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2778 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2779 	bool reprogram = true;
2780 	int ret = 0;
2781 
2782 	raw_spin_lock(&cpuctx->ctx.lock);
2783 	if (ctx->task) {
2784 		raw_spin_lock(&ctx->lock);
2785 		task_ctx = ctx;
2786 
2787 		reprogram = (ctx->task == current);
2788 
2789 		/*
2790 		 * If the task is running, it must be running on this CPU,
2791 		 * otherwise we cannot reprogram things.
2792 		 *
2793 		 * If its not running, we don't care, ctx->lock will
2794 		 * serialize against it becoming runnable.
2795 		 */
2796 		if (task_curr(ctx->task) && !reprogram) {
2797 			ret = -ESRCH;
2798 			goto unlock;
2799 		}
2800 
2801 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2802 	} else if (task_ctx) {
2803 		raw_spin_lock(&task_ctx->lock);
2804 	}
2805 
2806 #ifdef CONFIG_CGROUP_PERF
2807 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2808 		/*
2809 		 * If the current cgroup doesn't match the event's
2810 		 * cgroup, we should not try to schedule it.
2811 		 */
2812 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2813 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2814 					event->cgrp->css.cgroup);
2815 	}
2816 #endif
2817 
2818 	if (reprogram) {
2819 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2820 		add_event_to_ctx(event, ctx);
2821 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2822 	} else {
2823 		add_event_to_ctx(event, ctx);
2824 	}
2825 
2826 unlock:
2827 	perf_ctx_unlock(cpuctx, task_ctx);
2828 
2829 	return ret;
2830 }
2831 
2832 static bool exclusive_event_installable(struct perf_event *event,
2833 					struct perf_event_context *ctx);
2834 
2835 /*
2836  * Attach a performance event to a context.
2837  *
2838  * Very similar to event_function_call, see comment there.
2839  */
2840 static void
2841 perf_install_in_context(struct perf_event_context *ctx,
2842 			struct perf_event *event,
2843 			int cpu)
2844 {
2845 	struct task_struct *task = READ_ONCE(ctx->task);
2846 
2847 	lockdep_assert_held(&ctx->mutex);
2848 
2849 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2850 
2851 	if (event->cpu != -1)
2852 		event->cpu = cpu;
2853 
2854 	/*
2855 	 * Ensures that if we can observe event->ctx, both the event and ctx
2856 	 * will be 'complete'. See perf_iterate_sb_cpu().
2857 	 */
2858 	smp_store_release(&event->ctx, ctx);
2859 
2860 	/*
2861 	 * perf_event_attr::disabled events will not run and can be initialized
2862 	 * without IPI. Except when this is the first event for the context, in
2863 	 * that case we need the magic of the IPI to set ctx->is_active.
2864 	 *
2865 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2866 	 * event will issue the IPI and reprogram the hardware.
2867 	 */
2868 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2869 		raw_spin_lock_irq(&ctx->lock);
2870 		if (ctx->task == TASK_TOMBSTONE) {
2871 			raw_spin_unlock_irq(&ctx->lock);
2872 			return;
2873 		}
2874 		add_event_to_ctx(event, ctx);
2875 		raw_spin_unlock_irq(&ctx->lock);
2876 		return;
2877 	}
2878 
2879 	if (!task) {
2880 		cpu_function_call(cpu, __perf_install_in_context, event);
2881 		return;
2882 	}
2883 
2884 	/*
2885 	 * Should not happen, we validate the ctx is still alive before calling.
2886 	 */
2887 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2888 		return;
2889 
2890 	/*
2891 	 * Installing events is tricky because we cannot rely on ctx->is_active
2892 	 * to be set in case this is the nr_events 0 -> 1 transition.
2893 	 *
2894 	 * Instead we use task_curr(), which tells us if the task is running.
2895 	 * However, since we use task_curr() outside of rq::lock, we can race
2896 	 * against the actual state. This means the result can be wrong.
2897 	 *
2898 	 * If we get a false positive, we retry, this is harmless.
2899 	 *
2900 	 * If we get a false negative, things are complicated. If we are after
2901 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2902 	 * value must be correct. If we're before, it doesn't matter since
2903 	 * perf_event_context_sched_in() will program the counter.
2904 	 *
2905 	 * However, this hinges on the remote context switch having observed
2906 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2907 	 * ctx::lock in perf_event_context_sched_in().
2908 	 *
2909 	 * We do this by task_function_call(), if the IPI fails to hit the task
2910 	 * we know any future context switch of task must see the
2911 	 * perf_event_ctpx[] store.
2912 	 */
2913 
2914 	/*
2915 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2916 	 * task_cpu() load, such that if the IPI then does not find the task
2917 	 * running, a future context switch of that task must observe the
2918 	 * store.
2919 	 */
2920 	smp_mb();
2921 again:
2922 	if (!task_function_call(task, __perf_install_in_context, event))
2923 		return;
2924 
2925 	raw_spin_lock_irq(&ctx->lock);
2926 	task = ctx->task;
2927 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2928 		/*
2929 		 * Cannot happen because we already checked above (which also
2930 		 * cannot happen), and we hold ctx->mutex, which serializes us
2931 		 * against perf_event_exit_task_context().
2932 		 */
2933 		raw_spin_unlock_irq(&ctx->lock);
2934 		return;
2935 	}
2936 	/*
2937 	 * If the task is not running, ctx->lock will avoid it becoming so,
2938 	 * thus we can safely install the event.
2939 	 */
2940 	if (task_curr(task)) {
2941 		raw_spin_unlock_irq(&ctx->lock);
2942 		goto again;
2943 	}
2944 	add_event_to_ctx(event, ctx);
2945 	raw_spin_unlock_irq(&ctx->lock);
2946 }
2947 
2948 /*
2949  * Cross CPU call to enable a performance event
2950  */
2951 static void __perf_event_enable(struct perf_event *event,
2952 				struct perf_cpu_context *cpuctx,
2953 				struct perf_event_context *ctx,
2954 				void *info)
2955 {
2956 	struct perf_event *leader = event->group_leader;
2957 	struct perf_event_context *task_ctx;
2958 
2959 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2960 	    event->state <= PERF_EVENT_STATE_ERROR)
2961 		return;
2962 
2963 	if (ctx->is_active)
2964 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2965 
2966 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2967 	perf_cgroup_event_enable(event, ctx);
2968 
2969 	if (!ctx->is_active)
2970 		return;
2971 
2972 	if (!event_filter_match(event)) {
2973 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2974 		return;
2975 	}
2976 
2977 	/*
2978 	 * If the event is in a group and isn't the group leader,
2979 	 * then don't put it on unless the group is on.
2980 	 */
2981 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2982 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2983 		return;
2984 	}
2985 
2986 	task_ctx = cpuctx->task_ctx;
2987 	if (ctx->task)
2988 		WARN_ON_ONCE(task_ctx != ctx);
2989 
2990 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2991 }
2992 
2993 /*
2994  * Enable an event.
2995  *
2996  * If event->ctx is a cloned context, callers must make sure that
2997  * every task struct that event->ctx->task could possibly point to
2998  * remains valid.  This condition is satisfied when called through
2999  * perf_event_for_each_child or perf_event_for_each as described
3000  * for perf_event_disable.
3001  */
3002 static void _perf_event_enable(struct perf_event *event)
3003 {
3004 	struct perf_event_context *ctx = event->ctx;
3005 
3006 	raw_spin_lock_irq(&ctx->lock);
3007 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3008 	    event->state <  PERF_EVENT_STATE_ERROR) {
3009 out:
3010 		raw_spin_unlock_irq(&ctx->lock);
3011 		return;
3012 	}
3013 
3014 	/*
3015 	 * If the event is in error state, clear that first.
3016 	 *
3017 	 * That way, if we see the event in error state below, we know that it
3018 	 * has gone back into error state, as distinct from the task having
3019 	 * been scheduled away before the cross-call arrived.
3020 	 */
3021 	if (event->state == PERF_EVENT_STATE_ERROR) {
3022 		/*
3023 		 * Detached SIBLING events cannot leave ERROR state.
3024 		 */
3025 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3026 		    event->group_leader == event)
3027 			goto out;
3028 
3029 		event->state = PERF_EVENT_STATE_OFF;
3030 	}
3031 	raw_spin_unlock_irq(&ctx->lock);
3032 
3033 	event_function_call(event, __perf_event_enable, NULL);
3034 }
3035 
3036 /*
3037  * See perf_event_disable();
3038  */
3039 void perf_event_enable(struct perf_event *event)
3040 {
3041 	struct perf_event_context *ctx;
3042 
3043 	ctx = perf_event_ctx_lock(event);
3044 	_perf_event_enable(event);
3045 	perf_event_ctx_unlock(event, ctx);
3046 }
3047 EXPORT_SYMBOL_GPL(perf_event_enable);
3048 
3049 struct stop_event_data {
3050 	struct perf_event	*event;
3051 	unsigned int		restart;
3052 };
3053 
3054 static int __perf_event_stop(void *info)
3055 {
3056 	struct stop_event_data *sd = info;
3057 	struct perf_event *event = sd->event;
3058 
3059 	/* if it's already INACTIVE, do nothing */
3060 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3061 		return 0;
3062 
3063 	/* matches smp_wmb() in event_sched_in() */
3064 	smp_rmb();
3065 
3066 	/*
3067 	 * There is a window with interrupts enabled before we get here,
3068 	 * so we need to check again lest we try to stop another CPU's event.
3069 	 */
3070 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3071 		return -EAGAIN;
3072 
3073 	event->pmu->stop(event, PERF_EF_UPDATE);
3074 
3075 	/*
3076 	 * May race with the actual stop (through perf_pmu_output_stop()),
3077 	 * but it is only used for events with AUX ring buffer, and such
3078 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3079 	 * see comments in perf_aux_output_begin().
3080 	 *
3081 	 * Since this is happening on an event-local CPU, no trace is lost
3082 	 * while restarting.
3083 	 */
3084 	if (sd->restart)
3085 		event->pmu->start(event, 0);
3086 
3087 	return 0;
3088 }
3089 
3090 static int perf_event_stop(struct perf_event *event, int restart)
3091 {
3092 	struct stop_event_data sd = {
3093 		.event		= event,
3094 		.restart	= restart,
3095 	};
3096 	int ret = 0;
3097 
3098 	do {
3099 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3100 			return 0;
3101 
3102 		/* matches smp_wmb() in event_sched_in() */
3103 		smp_rmb();
3104 
3105 		/*
3106 		 * We only want to restart ACTIVE events, so if the event goes
3107 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3108 		 * fall through with ret==-ENXIO.
3109 		 */
3110 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3111 					__perf_event_stop, &sd);
3112 	} while (ret == -EAGAIN);
3113 
3114 	return ret;
3115 }
3116 
3117 /*
3118  * In order to contain the amount of racy and tricky in the address filter
3119  * configuration management, it is a two part process:
3120  *
3121  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3122  *      we update the addresses of corresponding vmas in
3123  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3124  * (p2) when an event is scheduled in (pmu::add), it calls
3125  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3126  *      if the generation has changed since the previous call.
3127  *
3128  * If (p1) happens while the event is active, we restart it to force (p2).
3129  *
3130  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3131  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3132  *     ioctl;
3133  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3134  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3135  *     for reading;
3136  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3137  *     of exec.
3138  */
3139 void perf_event_addr_filters_sync(struct perf_event *event)
3140 {
3141 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3142 
3143 	if (!has_addr_filter(event))
3144 		return;
3145 
3146 	raw_spin_lock(&ifh->lock);
3147 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3148 		event->pmu->addr_filters_sync(event);
3149 		event->hw.addr_filters_gen = event->addr_filters_gen;
3150 	}
3151 	raw_spin_unlock(&ifh->lock);
3152 }
3153 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3154 
3155 static int _perf_event_refresh(struct perf_event *event, int refresh)
3156 {
3157 	/*
3158 	 * not supported on inherited events
3159 	 */
3160 	if (event->attr.inherit || !is_sampling_event(event))
3161 		return -EINVAL;
3162 
3163 	atomic_add(refresh, &event->event_limit);
3164 	_perf_event_enable(event);
3165 
3166 	return 0;
3167 }
3168 
3169 /*
3170  * See perf_event_disable()
3171  */
3172 int perf_event_refresh(struct perf_event *event, int refresh)
3173 {
3174 	struct perf_event_context *ctx;
3175 	int ret;
3176 
3177 	ctx = perf_event_ctx_lock(event);
3178 	ret = _perf_event_refresh(event, refresh);
3179 	perf_event_ctx_unlock(event, ctx);
3180 
3181 	return ret;
3182 }
3183 EXPORT_SYMBOL_GPL(perf_event_refresh);
3184 
3185 static int perf_event_modify_breakpoint(struct perf_event *bp,
3186 					 struct perf_event_attr *attr)
3187 {
3188 	int err;
3189 
3190 	_perf_event_disable(bp);
3191 
3192 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3193 
3194 	if (!bp->attr.disabled)
3195 		_perf_event_enable(bp);
3196 
3197 	return err;
3198 }
3199 
3200 static int perf_event_modify_attr(struct perf_event *event,
3201 				  struct perf_event_attr *attr)
3202 {
3203 	int (*func)(struct perf_event *, struct perf_event_attr *);
3204 	struct perf_event *child;
3205 	int err;
3206 
3207 	if (event->attr.type != attr->type)
3208 		return -EINVAL;
3209 
3210 	switch (event->attr.type) {
3211 	case PERF_TYPE_BREAKPOINT:
3212 		func = perf_event_modify_breakpoint;
3213 		break;
3214 	default:
3215 		/* Place holder for future additions. */
3216 		return -EOPNOTSUPP;
3217 	}
3218 
3219 	WARN_ON_ONCE(event->ctx->parent_ctx);
3220 
3221 	mutex_lock(&event->child_mutex);
3222 	err = func(event, attr);
3223 	if (err)
3224 		goto out;
3225 	list_for_each_entry(child, &event->child_list, child_list) {
3226 		err = func(child, attr);
3227 		if (err)
3228 			goto out;
3229 	}
3230 out:
3231 	mutex_unlock(&event->child_mutex);
3232 	return err;
3233 }
3234 
3235 static void ctx_sched_out(struct perf_event_context *ctx,
3236 			  struct perf_cpu_context *cpuctx,
3237 			  enum event_type_t event_type)
3238 {
3239 	struct perf_event *event, *tmp;
3240 	int is_active = ctx->is_active;
3241 
3242 	lockdep_assert_held(&ctx->lock);
3243 
3244 	if (likely(!ctx->nr_events)) {
3245 		/*
3246 		 * See __perf_remove_from_context().
3247 		 */
3248 		WARN_ON_ONCE(ctx->is_active);
3249 		if (ctx->task)
3250 			WARN_ON_ONCE(cpuctx->task_ctx);
3251 		return;
3252 	}
3253 
3254 	ctx->is_active &= ~event_type;
3255 	if (!(ctx->is_active & EVENT_ALL))
3256 		ctx->is_active = 0;
3257 
3258 	if (ctx->task) {
3259 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3260 		if (!ctx->is_active)
3261 			cpuctx->task_ctx = NULL;
3262 	}
3263 
3264 	/*
3265 	 * Always update time if it was set; not only when it changes.
3266 	 * Otherwise we can 'forget' to update time for any but the last
3267 	 * context we sched out. For example:
3268 	 *
3269 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3270 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3271 	 *
3272 	 * would only update time for the pinned events.
3273 	 */
3274 	if (is_active & EVENT_TIME) {
3275 		/* update (and stop) ctx time */
3276 		update_context_time(ctx);
3277 		update_cgrp_time_from_cpuctx(cpuctx);
3278 	}
3279 
3280 	is_active ^= ctx->is_active; /* changed bits */
3281 
3282 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3283 		return;
3284 
3285 	perf_pmu_disable(ctx->pmu);
3286 	if (is_active & EVENT_PINNED) {
3287 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3288 			group_sched_out(event, cpuctx, ctx);
3289 	}
3290 
3291 	if (is_active & EVENT_FLEXIBLE) {
3292 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3293 			group_sched_out(event, cpuctx, ctx);
3294 
3295 		/*
3296 		 * Since we cleared EVENT_FLEXIBLE, also clear
3297 		 * rotate_necessary, is will be reset by
3298 		 * ctx_flexible_sched_in() when needed.
3299 		 */
3300 		ctx->rotate_necessary = 0;
3301 	}
3302 	perf_pmu_enable(ctx->pmu);
3303 }
3304 
3305 /*
3306  * Test whether two contexts are equivalent, i.e. whether they have both been
3307  * cloned from the same version of the same context.
3308  *
3309  * Equivalence is measured using a generation number in the context that is
3310  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3311  * and list_del_event().
3312  */
3313 static int context_equiv(struct perf_event_context *ctx1,
3314 			 struct perf_event_context *ctx2)
3315 {
3316 	lockdep_assert_held(&ctx1->lock);
3317 	lockdep_assert_held(&ctx2->lock);
3318 
3319 	/* Pinning disables the swap optimization */
3320 	if (ctx1->pin_count || ctx2->pin_count)
3321 		return 0;
3322 
3323 	/* If ctx1 is the parent of ctx2 */
3324 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3325 		return 1;
3326 
3327 	/* If ctx2 is the parent of ctx1 */
3328 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3329 		return 1;
3330 
3331 	/*
3332 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3333 	 * hierarchy, see perf_event_init_context().
3334 	 */
3335 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3336 			ctx1->parent_gen == ctx2->parent_gen)
3337 		return 1;
3338 
3339 	/* Unmatched */
3340 	return 0;
3341 }
3342 
3343 static void __perf_event_sync_stat(struct perf_event *event,
3344 				     struct perf_event *next_event)
3345 {
3346 	u64 value;
3347 
3348 	if (!event->attr.inherit_stat)
3349 		return;
3350 
3351 	/*
3352 	 * Update the event value, we cannot use perf_event_read()
3353 	 * because we're in the middle of a context switch and have IRQs
3354 	 * disabled, which upsets smp_call_function_single(), however
3355 	 * we know the event must be on the current CPU, therefore we
3356 	 * don't need to use it.
3357 	 */
3358 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3359 		event->pmu->read(event);
3360 
3361 	perf_event_update_time(event);
3362 
3363 	/*
3364 	 * In order to keep per-task stats reliable we need to flip the event
3365 	 * values when we flip the contexts.
3366 	 */
3367 	value = local64_read(&next_event->count);
3368 	value = local64_xchg(&event->count, value);
3369 	local64_set(&next_event->count, value);
3370 
3371 	swap(event->total_time_enabled, next_event->total_time_enabled);
3372 	swap(event->total_time_running, next_event->total_time_running);
3373 
3374 	/*
3375 	 * Since we swizzled the values, update the user visible data too.
3376 	 */
3377 	perf_event_update_userpage(event);
3378 	perf_event_update_userpage(next_event);
3379 }
3380 
3381 static void perf_event_sync_stat(struct perf_event_context *ctx,
3382 				   struct perf_event_context *next_ctx)
3383 {
3384 	struct perf_event *event, *next_event;
3385 
3386 	if (!ctx->nr_stat)
3387 		return;
3388 
3389 	update_context_time(ctx);
3390 
3391 	event = list_first_entry(&ctx->event_list,
3392 				   struct perf_event, event_entry);
3393 
3394 	next_event = list_first_entry(&next_ctx->event_list,
3395 					struct perf_event, event_entry);
3396 
3397 	while (&event->event_entry != &ctx->event_list &&
3398 	       &next_event->event_entry != &next_ctx->event_list) {
3399 
3400 		__perf_event_sync_stat(event, next_event);
3401 
3402 		event = list_next_entry(event, event_entry);
3403 		next_event = list_next_entry(next_event, event_entry);
3404 	}
3405 }
3406 
3407 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3408 					 struct task_struct *next)
3409 {
3410 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3411 	struct perf_event_context *next_ctx;
3412 	struct perf_event_context *parent, *next_parent;
3413 	struct perf_cpu_context *cpuctx;
3414 	int do_switch = 1;
3415 	struct pmu *pmu;
3416 
3417 	if (likely(!ctx))
3418 		return;
3419 
3420 	pmu = ctx->pmu;
3421 	cpuctx = __get_cpu_context(ctx);
3422 	if (!cpuctx->task_ctx)
3423 		return;
3424 
3425 	rcu_read_lock();
3426 	next_ctx = next->perf_event_ctxp[ctxn];
3427 	if (!next_ctx)
3428 		goto unlock;
3429 
3430 	parent = rcu_dereference(ctx->parent_ctx);
3431 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3432 
3433 	/* If neither context have a parent context; they cannot be clones. */
3434 	if (!parent && !next_parent)
3435 		goto unlock;
3436 
3437 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3438 		/*
3439 		 * Looks like the two contexts are clones, so we might be
3440 		 * able to optimize the context switch.  We lock both
3441 		 * contexts and check that they are clones under the
3442 		 * lock (including re-checking that neither has been
3443 		 * uncloned in the meantime).  It doesn't matter which
3444 		 * order we take the locks because no other cpu could
3445 		 * be trying to lock both of these tasks.
3446 		 */
3447 		raw_spin_lock(&ctx->lock);
3448 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3449 		if (context_equiv(ctx, next_ctx)) {
3450 
3451 			WRITE_ONCE(ctx->task, next);
3452 			WRITE_ONCE(next_ctx->task, task);
3453 
3454 			perf_pmu_disable(pmu);
3455 
3456 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3457 				pmu->sched_task(ctx, false);
3458 
3459 			/*
3460 			 * PMU specific parts of task perf context can require
3461 			 * additional synchronization. As an example of such
3462 			 * synchronization see implementation details of Intel
3463 			 * LBR call stack data profiling;
3464 			 */
3465 			if (pmu->swap_task_ctx)
3466 				pmu->swap_task_ctx(ctx, next_ctx);
3467 			else
3468 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3469 
3470 			perf_pmu_enable(pmu);
3471 
3472 			/*
3473 			 * RCU_INIT_POINTER here is safe because we've not
3474 			 * modified the ctx and the above modification of
3475 			 * ctx->task and ctx->task_ctx_data are immaterial
3476 			 * since those values are always verified under
3477 			 * ctx->lock which we're now holding.
3478 			 */
3479 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3480 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3481 
3482 			do_switch = 0;
3483 
3484 			perf_event_sync_stat(ctx, next_ctx);
3485 		}
3486 		raw_spin_unlock(&next_ctx->lock);
3487 		raw_spin_unlock(&ctx->lock);
3488 	}
3489 unlock:
3490 	rcu_read_unlock();
3491 
3492 	if (do_switch) {
3493 		raw_spin_lock(&ctx->lock);
3494 		perf_pmu_disable(pmu);
3495 
3496 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3497 			pmu->sched_task(ctx, false);
3498 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3499 
3500 		perf_pmu_enable(pmu);
3501 		raw_spin_unlock(&ctx->lock);
3502 	}
3503 }
3504 
3505 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3506 
3507 void perf_sched_cb_dec(struct pmu *pmu)
3508 {
3509 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3510 
3511 	this_cpu_dec(perf_sched_cb_usages);
3512 
3513 	if (!--cpuctx->sched_cb_usage)
3514 		list_del(&cpuctx->sched_cb_entry);
3515 }
3516 
3517 
3518 void perf_sched_cb_inc(struct pmu *pmu)
3519 {
3520 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3521 
3522 	if (!cpuctx->sched_cb_usage++)
3523 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3524 
3525 	this_cpu_inc(perf_sched_cb_usages);
3526 }
3527 
3528 /*
3529  * This function provides the context switch callback to the lower code
3530  * layer. It is invoked ONLY when the context switch callback is enabled.
3531  *
3532  * This callback is relevant even to per-cpu events; for example multi event
3533  * PEBS requires this to provide PID/TID information. This requires we flush
3534  * all queued PEBS records before we context switch to a new task.
3535  */
3536 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3537 {
3538 	struct pmu *pmu;
3539 
3540 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3541 
3542 	if (WARN_ON_ONCE(!pmu->sched_task))
3543 		return;
3544 
3545 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3546 	perf_pmu_disable(pmu);
3547 
3548 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3549 
3550 	perf_pmu_enable(pmu);
3551 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3552 }
3553 
3554 static void perf_pmu_sched_task(struct task_struct *prev,
3555 				struct task_struct *next,
3556 				bool sched_in)
3557 {
3558 	struct perf_cpu_context *cpuctx;
3559 
3560 	if (prev == next)
3561 		return;
3562 
3563 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3564 		/* will be handled in perf_event_context_sched_in/out */
3565 		if (cpuctx->task_ctx)
3566 			continue;
3567 
3568 		__perf_pmu_sched_task(cpuctx, sched_in);
3569 	}
3570 }
3571 
3572 static void perf_event_switch(struct task_struct *task,
3573 			      struct task_struct *next_prev, bool sched_in);
3574 
3575 #define for_each_task_context_nr(ctxn)					\
3576 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3577 
3578 /*
3579  * Called from scheduler to remove the events of the current task,
3580  * with interrupts disabled.
3581  *
3582  * We stop each event and update the event value in event->count.
3583  *
3584  * This does not protect us against NMI, but disable()
3585  * sets the disabled bit in the control field of event _before_
3586  * accessing the event control register. If a NMI hits, then it will
3587  * not restart the event.
3588  */
3589 void __perf_event_task_sched_out(struct task_struct *task,
3590 				 struct task_struct *next)
3591 {
3592 	int ctxn;
3593 
3594 	if (__this_cpu_read(perf_sched_cb_usages))
3595 		perf_pmu_sched_task(task, next, false);
3596 
3597 	if (atomic_read(&nr_switch_events))
3598 		perf_event_switch(task, next, false);
3599 
3600 	for_each_task_context_nr(ctxn)
3601 		perf_event_context_sched_out(task, ctxn, next);
3602 
3603 	/*
3604 	 * if cgroup events exist on this CPU, then we need
3605 	 * to check if we have to switch out PMU state.
3606 	 * cgroup event are system-wide mode only
3607 	 */
3608 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3609 		perf_cgroup_sched_out(task, next);
3610 }
3611 
3612 /*
3613  * Called with IRQs disabled
3614  */
3615 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3616 			      enum event_type_t event_type)
3617 {
3618 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3619 }
3620 
3621 static bool perf_less_group_idx(const void *l, const void *r)
3622 {
3623 	const struct perf_event *le = *(const struct perf_event **)l;
3624 	const struct perf_event *re = *(const struct perf_event **)r;
3625 
3626 	return le->group_index < re->group_index;
3627 }
3628 
3629 static void swap_ptr(void *l, void *r)
3630 {
3631 	void **lp = l, **rp = r;
3632 
3633 	swap(*lp, *rp);
3634 }
3635 
3636 static const struct min_heap_callbacks perf_min_heap = {
3637 	.elem_size = sizeof(struct perf_event *),
3638 	.less = perf_less_group_idx,
3639 	.swp = swap_ptr,
3640 };
3641 
3642 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3643 {
3644 	struct perf_event **itrs = heap->data;
3645 
3646 	if (event) {
3647 		itrs[heap->nr] = event;
3648 		heap->nr++;
3649 	}
3650 }
3651 
3652 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3653 				struct perf_event_groups *groups, int cpu,
3654 				int (*func)(struct perf_event *, void *),
3655 				void *data)
3656 {
3657 #ifdef CONFIG_CGROUP_PERF
3658 	struct cgroup_subsys_state *css = NULL;
3659 #endif
3660 	/* Space for per CPU and/or any CPU event iterators. */
3661 	struct perf_event *itrs[2];
3662 	struct min_heap event_heap;
3663 	struct perf_event **evt;
3664 	int ret;
3665 
3666 	if (cpuctx) {
3667 		event_heap = (struct min_heap){
3668 			.data = cpuctx->heap,
3669 			.nr = 0,
3670 			.size = cpuctx->heap_size,
3671 		};
3672 
3673 		lockdep_assert_held(&cpuctx->ctx.lock);
3674 
3675 #ifdef CONFIG_CGROUP_PERF
3676 		if (cpuctx->cgrp)
3677 			css = &cpuctx->cgrp->css;
3678 #endif
3679 	} else {
3680 		event_heap = (struct min_heap){
3681 			.data = itrs,
3682 			.nr = 0,
3683 			.size = ARRAY_SIZE(itrs),
3684 		};
3685 		/* Events not within a CPU context may be on any CPU. */
3686 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3687 	}
3688 	evt = event_heap.data;
3689 
3690 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3691 
3692 #ifdef CONFIG_CGROUP_PERF
3693 	for (; css; css = css->parent)
3694 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3695 #endif
3696 
3697 	min_heapify_all(&event_heap, &perf_min_heap);
3698 
3699 	while (event_heap.nr) {
3700 		ret = func(*evt, data);
3701 		if (ret)
3702 			return ret;
3703 
3704 		*evt = perf_event_groups_next(*evt);
3705 		if (*evt)
3706 			min_heapify(&event_heap, 0, &perf_min_heap);
3707 		else
3708 			min_heap_pop(&event_heap, &perf_min_heap);
3709 	}
3710 
3711 	return 0;
3712 }
3713 
3714 static inline bool event_update_userpage(struct perf_event *event)
3715 {
3716 	if (likely(!atomic_read(&event->mmap_count)))
3717 		return false;
3718 
3719 	perf_event_update_time(event);
3720 	perf_set_shadow_time(event, event->ctx);
3721 	perf_event_update_userpage(event);
3722 
3723 	return true;
3724 }
3725 
3726 static inline void group_update_userpage(struct perf_event *group_event)
3727 {
3728 	struct perf_event *event;
3729 
3730 	if (!event_update_userpage(group_event))
3731 		return;
3732 
3733 	for_each_sibling_event(event, group_event)
3734 		event_update_userpage(event);
3735 }
3736 
3737 static int merge_sched_in(struct perf_event *event, void *data)
3738 {
3739 	struct perf_event_context *ctx = event->ctx;
3740 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3741 	int *can_add_hw = data;
3742 
3743 	if (event->state <= PERF_EVENT_STATE_OFF)
3744 		return 0;
3745 
3746 	if (!event_filter_match(event))
3747 		return 0;
3748 
3749 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3750 		if (!group_sched_in(event, cpuctx, ctx))
3751 			list_add_tail(&event->active_list, get_event_list(event));
3752 	}
3753 
3754 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3755 		*can_add_hw = 0;
3756 		if (event->attr.pinned) {
3757 			perf_cgroup_event_disable(event, ctx);
3758 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3759 		} else {
3760 			ctx->rotate_necessary = 1;
3761 			perf_mux_hrtimer_restart(cpuctx);
3762 			group_update_userpage(event);
3763 		}
3764 	}
3765 
3766 	return 0;
3767 }
3768 
3769 static void
3770 ctx_pinned_sched_in(struct perf_event_context *ctx,
3771 		    struct perf_cpu_context *cpuctx)
3772 {
3773 	int can_add_hw = 1;
3774 
3775 	if (ctx != &cpuctx->ctx)
3776 		cpuctx = NULL;
3777 
3778 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3779 			   smp_processor_id(),
3780 			   merge_sched_in, &can_add_hw);
3781 }
3782 
3783 static void
3784 ctx_flexible_sched_in(struct perf_event_context *ctx,
3785 		      struct perf_cpu_context *cpuctx)
3786 {
3787 	int can_add_hw = 1;
3788 
3789 	if (ctx != &cpuctx->ctx)
3790 		cpuctx = NULL;
3791 
3792 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3793 			   smp_processor_id(),
3794 			   merge_sched_in, &can_add_hw);
3795 }
3796 
3797 static void
3798 ctx_sched_in(struct perf_event_context *ctx,
3799 	     struct perf_cpu_context *cpuctx,
3800 	     enum event_type_t event_type,
3801 	     struct task_struct *task)
3802 {
3803 	int is_active = ctx->is_active;
3804 	u64 now;
3805 
3806 	lockdep_assert_held(&ctx->lock);
3807 
3808 	if (likely(!ctx->nr_events))
3809 		return;
3810 
3811 	ctx->is_active |= (event_type | EVENT_TIME);
3812 	if (ctx->task) {
3813 		if (!is_active)
3814 			cpuctx->task_ctx = ctx;
3815 		else
3816 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3817 	}
3818 
3819 	is_active ^= ctx->is_active; /* changed bits */
3820 
3821 	if (is_active & EVENT_TIME) {
3822 		/* start ctx time */
3823 		now = perf_clock();
3824 		ctx->timestamp = now;
3825 		perf_cgroup_set_timestamp(task, ctx);
3826 	}
3827 
3828 	/*
3829 	 * First go through the list and put on any pinned groups
3830 	 * in order to give them the best chance of going on.
3831 	 */
3832 	if (is_active & EVENT_PINNED)
3833 		ctx_pinned_sched_in(ctx, cpuctx);
3834 
3835 	/* Then walk through the lower prio flexible groups */
3836 	if (is_active & EVENT_FLEXIBLE)
3837 		ctx_flexible_sched_in(ctx, cpuctx);
3838 }
3839 
3840 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3841 			     enum event_type_t event_type,
3842 			     struct task_struct *task)
3843 {
3844 	struct perf_event_context *ctx = &cpuctx->ctx;
3845 
3846 	ctx_sched_in(ctx, cpuctx, event_type, task);
3847 }
3848 
3849 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3850 					struct task_struct *task)
3851 {
3852 	struct perf_cpu_context *cpuctx;
3853 	struct pmu *pmu;
3854 
3855 	cpuctx = __get_cpu_context(ctx);
3856 
3857 	/*
3858 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3859 	 * different PMU, force (re)set the context,
3860 	 */
3861 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3862 
3863 	if (cpuctx->task_ctx == ctx) {
3864 		if (cpuctx->sched_cb_usage)
3865 			__perf_pmu_sched_task(cpuctx, true);
3866 		return;
3867 	}
3868 
3869 	perf_ctx_lock(cpuctx, ctx);
3870 	/*
3871 	 * We must check ctx->nr_events while holding ctx->lock, such
3872 	 * that we serialize against perf_install_in_context().
3873 	 */
3874 	if (!ctx->nr_events)
3875 		goto unlock;
3876 
3877 	perf_pmu_disable(pmu);
3878 	/*
3879 	 * We want to keep the following priority order:
3880 	 * cpu pinned (that don't need to move), task pinned,
3881 	 * cpu flexible, task flexible.
3882 	 *
3883 	 * However, if task's ctx is not carrying any pinned
3884 	 * events, no need to flip the cpuctx's events around.
3885 	 */
3886 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3887 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3888 	perf_event_sched_in(cpuctx, ctx, task);
3889 
3890 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3891 		pmu->sched_task(cpuctx->task_ctx, true);
3892 
3893 	perf_pmu_enable(pmu);
3894 
3895 unlock:
3896 	perf_ctx_unlock(cpuctx, ctx);
3897 }
3898 
3899 /*
3900  * Called from scheduler to add the events of the current task
3901  * with interrupts disabled.
3902  *
3903  * We restore the event value and then enable it.
3904  *
3905  * This does not protect us against NMI, but enable()
3906  * sets the enabled bit in the control field of event _before_
3907  * accessing the event control register. If a NMI hits, then it will
3908  * keep the event running.
3909  */
3910 void __perf_event_task_sched_in(struct task_struct *prev,
3911 				struct task_struct *task)
3912 {
3913 	struct perf_event_context *ctx;
3914 	int ctxn;
3915 
3916 	/*
3917 	 * If cgroup events exist on this CPU, then we need to check if we have
3918 	 * to switch in PMU state; cgroup event are system-wide mode only.
3919 	 *
3920 	 * Since cgroup events are CPU events, we must schedule these in before
3921 	 * we schedule in the task events.
3922 	 */
3923 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3924 		perf_cgroup_sched_in(prev, task);
3925 
3926 	for_each_task_context_nr(ctxn) {
3927 		ctx = task->perf_event_ctxp[ctxn];
3928 		if (likely(!ctx))
3929 			continue;
3930 
3931 		perf_event_context_sched_in(ctx, task);
3932 	}
3933 
3934 	if (atomic_read(&nr_switch_events))
3935 		perf_event_switch(task, prev, true);
3936 
3937 	if (__this_cpu_read(perf_sched_cb_usages))
3938 		perf_pmu_sched_task(prev, task, true);
3939 }
3940 
3941 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3942 {
3943 	u64 frequency = event->attr.sample_freq;
3944 	u64 sec = NSEC_PER_SEC;
3945 	u64 divisor, dividend;
3946 
3947 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3948 
3949 	count_fls = fls64(count);
3950 	nsec_fls = fls64(nsec);
3951 	frequency_fls = fls64(frequency);
3952 	sec_fls = 30;
3953 
3954 	/*
3955 	 * We got @count in @nsec, with a target of sample_freq HZ
3956 	 * the target period becomes:
3957 	 *
3958 	 *             @count * 10^9
3959 	 * period = -------------------
3960 	 *          @nsec * sample_freq
3961 	 *
3962 	 */
3963 
3964 	/*
3965 	 * Reduce accuracy by one bit such that @a and @b converge
3966 	 * to a similar magnitude.
3967 	 */
3968 #define REDUCE_FLS(a, b)		\
3969 do {					\
3970 	if (a##_fls > b##_fls) {	\
3971 		a >>= 1;		\
3972 		a##_fls--;		\
3973 	} else {			\
3974 		b >>= 1;		\
3975 		b##_fls--;		\
3976 	}				\
3977 } while (0)
3978 
3979 	/*
3980 	 * Reduce accuracy until either term fits in a u64, then proceed with
3981 	 * the other, so that finally we can do a u64/u64 division.
3982 	 */
3983 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3984 		REDUCE_FLS(nsec, frequency);
3985 		REDUCE_FLS(sec, count);
3986 	}
3987 
3988 	if (count_fls + sec_fls > 64) {
3989 		divisor = nsec * frequency;
3990 
3991 		while (count_fls + sec_fls > 64) {
3992 			REDUCE_FLS(count, sec);
3993 			divisor >>= 1;
3994 		}
3995 
3996 		dividend = count * sec;
3997 	} else {
3998 		dividend = count * sec;
3999 
4000 		while (nsec_fls + frequency_fls > 64) {
4001 			REDUCE_FLS(nsec, frequency);
4002 			dividend >>= 1;
4003 		}
4004 
4005 		divisor = nsec * frequency;
4006 	}
4007 
4008 	if (!divisor)
4009 		return dividend;
4010 
4011 	return div64_u64(dividend, divisor);
4012 }
4013 
4014 static DEFINE_PER_CPU(int, perf_throttled_count);
4015 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4016 
4017 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4018 {
4019 	struct hw_perf_event *hwc = &event->hw;
4020 	s64 period, sample_period;
4021 	s64 delta;
4022 
4023 	period = perf_calculate_period(event, nsec, count);
4024 
4025 	delta = (s64)(period - hwc->sample_period);
4026 	delta = (delta + 7) / 8; /* low pass filter */
4027 
4028 	sample_period = hwc->sample_period + delta;
4029 
4030 	if (!sample_period)
4031 		sample_period = 1;
4032 
4033 	hwc->sample_period = sample_period;
4034 
4035 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4036 		if (disable)
4037 			event->pmu->stop(event, PERF_EF_UPDATE);
4038 
4039 		local64_set(&hwc->period_left, 0);
4040 
4041 		if (disable)
4042 			event->pmu->start(event, PERF_EF_RELOAD);
4043 	}
4044 }
4045 
4046 /*
4047  * combine freq adjustment with unthrottling to avoid two passes over the
4048  * events. At the same time, make sure, having freq events does not change
4049  * the rate of unthrottling as that would introduce bias.
4050  */
4051 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4052 					   int needs_unthr)
4053 {
4054 	struct perf_event *event;
4055 	struct hw_perf_event *hwc;
4056 	u64 now, period = TICK_NSEC;
4057 	s64 delta;
4058 
4059 	/*
4060 	 * only need to iterate over all events iff:
4061 	 * - context have events in frequency mode (needs freq adjust)
4062 	 * - there are events to unthrottle on this cpu
4063 	 */
4064 	if (!(ctx->nr_freq || needs_unthr))
4065 		return;
4066 
4067 	raw_spin_lock(&ctx->lock);
4068 	perf_pmu_disable(ctx->pmu);
4069 
4070 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4071 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4072 			continue;
4073 
4074 		if (!event_filter_match(event))
4075 			continue;
4076 
4077 		perf_pmu_disable(event->pmu);
4078 
4079 		hwc = &event->hw;
4080 
4081 		if (hwc->interrupts == MAX_INTERRUPTS) {
4082 			hwc->interrupts = 0;
4083 			perf_log_throttle(event, 1);
4084 			event->pmu->start(event, 0);
4085 		}
4086 
4087 		if (!event->attr.freq || !event->attr.sample_freq)
4088 			goto next;
4089 
4090 		/*
4091 		 * stop the event and update event->count
4092 		 */
4093 		event->pmu->stop(event, PERF_EF_UPDATE);
4094 
4095 		now = local64_read(&event->count);
4096 		delta = now - hwc->freq_count_stamp;
4097 		hwc->freq_count_stamp = now;
4098 
4099 		/*
4100 		 * restart the event
4101 		 * reload only if value has changed
4102 		 * we have stopped the event so tell that
4103 		 * to perf_adjust_period() to avoid stopping it
4104 		 * twice.
4105 		 */
4106 		if (delta > 0)
4107 			perf_adjust_period(event, period, delta, false);
4108 
4109 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4110 	next:
4111 		perf_pmu_enable(event->pmu);
4112 	}
4113 
4114 	perf_pmu_enable(ctx->pmu);
4115 	raw_spin_unlock(&ctx->lock);
4116 }
4117 
4118 /*
4119  * Move @event to the tail of the @ctx's elegible events.
4120  */
4121 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4122 {
4123 	/*
4124 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4125 	 * disabled by the inheritance code.
4126 	 */
4127 	if (ctx->rotate_disable)
4128 		return;
4129 
4130 	perf_event_groups_delete(&ctx->flexible_groups, event);
4131 	perf_event_groups_insert(&ctx->flexible_groups, event);
4132 }
4133 
4134 /* pick an event from the flexible_groups to rotate */
4135 static inline struct perf_event *
4136 ctx_event_to_rotate(struct perf_event_context *ctx)
4137 {
4138 	struct perf_event *event;
4139 
4140 	/* pick the first active flexible event */
4141 	event = list_first_entry_or_null(&ctx->flexible_active,
4142 					 struct perf_event, active_list);
4143 
4144 	/* if no active flexible event, pick the first event */
4145 	if (!event) {
4146 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4147 				      typeof(*event), group_node);
4148 	}
4149 
4150 	/*
4151 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4152 	 * finds there are unschedulable events, it will set it again.
4153 	 */
4154 	ctx->rotate_necessary = 0;
4155 
4156 	return event;
4157 }
4158 
4159 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4160 {
4161 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4162 	struct perf_event_context *task_ctx = NULL;
4163 	int cpu_rotate, task_rotate;
4164 
4165 	/*
4166 	 * Since we run this from IRQ context, nobody can install new
4167 	 * events, thus the event count values are stable.
4168 	 */
4169 
4170 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4171 	task_ctx = cpuctx->task_ctx;
4172 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4173 
4174 	if (!(cpu_rotate || task_rotate))
4175 		return false;
4176 
4177 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4178 	perf_pmu_disable(cpuctx->ctx.pmu);
4179 
4180 	if (task_rotate)
4181 		task_event = ctx_event_to_rotate(task_ctx);
4182 	if (cpu_rotate)
4183 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4184 
4185 	/*
4186 	 * As per the order given at ctx_resched() first 'pop' task flexible
4187 	 * and then, if needed CPU flexible.
4188 	 */
4189 	if (task_event || (task_ctx && cpu_event))
4190 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4191 	if (cpu_event)
4192 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4193 
4194 	if (task_event)
4195 		rotate_ctx(task_ctx, task_event);
4196 	if (cpu_event)
4197 		rotate_ctx(&cpuctx->ctx, cpu_event);
4198 
4199 	perf_event_sched_in(cpuctx, task_ctx, current);
4200 
4201 	perf_pmu_enable(cpuctx->ctx.pmu);
4202 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4203 
4204 	return true;
4205 }
4206 
4207 void perf_event_task_tick(void)
4208 {
4209 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4210 	struct perf_event_context *ctx, *tmp;
4211 	int throttled;
4212 
4213 	lockdep_assert_irqs_disabled();
4214 
4215 	__this_cpu_inc(perf_throttled_seq);
4216 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4217 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4218 
4219 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4220 		perf_adjust_freq_unthr_context(ctx, throttled);
4221 }
4222 
4223 static int event_enable_on_exec(struct perf_event *event,
4224 				struct perf_event_context *ctx)
4225 {
4226 	if (!event->attr.enable_on_exec)
4227 		return 0;
4228 
4229 	event->attr.enable_on_exec = 0;
4230 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4231 		return 0;
4232 
4233 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4234 
4235 	return 1;
4236 }
4237 
4238 /*
4239  * Enable all of a task's events that have been marked enable-on-exec.
4240  * This expects task == current.
4241  */
4242 static void perf_event_enable_on_exec(int ctxn)
4243 {
4244 	struct perf_event_context *ctx, *clone_ctx = NULL;
4245 	enum event_type_t event_type = 0;
4246 	struct perf_cpu_context *cpuctx;
4247 	struct perf_event *event;
4248 	unsigned long flags;
4249 	int enabled = 0;
4250 
4251 	local_irq_save(flags);
4252 	ctx = current->perf_event_ctxp[ctxn];
4253 	if (!ctx || !ctx->nr_events)
4254 		goto out;
4255 
4256 	cpuctx = __get_cpu_context(ctx);
4257 	perf_ctx_lock(cpuctx, ctx);
4258 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4259 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4260 		enabled |= event_enable_on_exec(event, ctx);
4261 		event_type |= get_event_type(event);
4262 	}
4263 
4264 	/*
4265 	 * Unclone and reschedule this context if we enabled any event.
4266 	 */
4267 	if (enabled) {
4268 		clone_ctx = unclone_ctx(ctx);
4269 		ctx_resched(cpuctx, ctx, event_type);
4270 	} else {
4271 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4272 	}
4273 	perf_ctx_unlock(cpuctx, ctx);
4274 
4275 out:
4276 	local_irq_restore(flags);
4277 
4278 	if (clone_ctx)
4279 		put_ctx(clone_ctx);
4280 }
4281 
4282 static void perf_remove_from_owner(struct perf_event *event);
4283 static void perf_event_exit_event(struct perf_event *event,
4284 				  struct perf_event_context *ctx);
4285 
4286 /*
4287  * Removes all events from the current task that have been marked
4288  * remove-on-exec, and feeds their values back to parent events.
4289  */
4290 static void perf_event_remove_on_exec(int ctxn)
4291 {
4292 	struct perf_event_context *ctx, *clone_ctx = NULL;
4293 	struct perf_event *event, *next;
4294 	LIST_HEAD(free_list);
4295 	unsigned long flags;
4296 	bool modified = false;
4297 
4298 	ctx = perf_pin_task_context(current, ctxn);
4299 	if (!ctx)
4300 		return;
4301 
4302 	mutex_lock(&ctx->mutex);
4303 
4304 	if (WARN_ON_ONCE(ctx->task != current))
4305 		goto unlock;
4306 
4307 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4308 		if (!event->attr.remove_on_exec)
4309 			continue;
4310 
4311 		if (!is_kernel_event(event))
4312 			perf_remove_from_owner(event);
4313 
4314 		modified = true;
4315 
4316 		perf_event_exit_event(event, ctx);
4317 	}
4318 
4319 	raw_spin_lock_irqsave(&ctx->lock, flags);
4320 	if (modified)
4321 		clone_ctx = unclone_ctx(ctx);
4322 	--ctx->pin_count;
4323 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4324 
4325 unlock:
4326 	mutex_unlock(&ctx->mutex);
4327 
4328 	put_ctx(ctx);
4329 	if (clone_ctx)
4330 		put_ctx(clone_ctx);
4331 }
4332 
4333 struct perf_read_data {
4334 	struct perf_event *event;
4335 	bool group;
4336 	int ret;
4337 };
4338 
4339 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4340 {
4341 	u16 local_pkg, event_pkg;
4342 
4343 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4344 		int local_cpu = smp_processor_id();
4345 
4346 		event_pkg = topology_physical_package_id(event_cpu);
4347 		local_pkg = topology_physical_package_id(local_cpu);
4348 
4349 		if (event_pkg == local_pkg)
4350 			return local_cpu;
4351 	}
4352 
4353 	return event_cpu;
4354 }
4355 
4356 /*
4357  * Cross CPU call to read the hardware event
4358  */
4359 static void __perf_event_read(void *info)
4360 {
4361 	struct perf_read_data *data = info;
4362 	struct perf_event *sub, *event = data->event;
4363 	struct perf_event_context *ctx = event->ctx;
4364 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4365 	struct pmu *pmu = event->pmu;
4366 
4367 	/*
4368 	 * If this is a task context, we need to check whether it is
4369 	 * the current task context of this cpu.  If not it has been
4370 	 * scheduled out before the smp call arrived.  In that case
4371 	 * event->count would have been updated to a recent sample
4372 	 * when the event was scheduled out.
4373 	 */
4374 	if (ctx->task && cpuctx->task_ctx != ctx)
4375 		return;
4376 
4377 	raw_spin_lock(&ctx->lock);
4378 	if (ctx->is_active & EVENT_TIME) {
4379 		update_context_time(ctx);
4380 		update_cgrp_time_from_event(event);
4381 	}
4382 
4383 	perf_event_update_time(event);
4384 	if (data->group)
4385 		perf_event_update_sibling_time(event);
4386 
4387 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4388 		goto unlock;
4389 
4390 	if (!data->group) {
4391 		pmu->read(event);
4392 		data->ret = 0;
4393 		goto unlock;
4394 	}
4395 
4396 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4397 
4398 	pmu->read(event);
4399 
4400 	for_each_sibling_event(sub, event) {
4401 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4402 			/*
4403 			 * Use sibling's PMU rather than @event's since
4404 			 * sibling could be on different (eg: software) PMU.
4405 			 */
4406 			sub->pmu->read(sub);
4407 		}
4408 	}
4409 
4410 	data->ret = pmu->commit_txn(pmu);
4411 
4412 unlock:
4413 	raw_spin_unlock(&ctx->lock);
4414 }
4415 
4416 static inline u64 perf_event_count(struct perf_event *event)
4417 {
4418 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4419 }
4420 
4421 /*
4422  * NMI-safe method to read a local event, that is an event that
4423  * is:
4424  *   - either for the current task, or for this CPU
4425  *   - does not have inherit set, for inherited task events
4426  *     will not be local and we cannot read them atomically
4427  *   - must not have a pmu::count method
4428  */
4429 int perf_event_read_local(struct perf_event *event, u64 *value,
4430 			  u64 *enabled, u64 *running)
4431 {
4432 	unsigned long flags;
4433 	int ret = 0;
4434 
4435 	/*
4436 	 * Disabling interrupts avoids all counter scheduling (context
4437 	 * switches, timer based rotation and IPIs).
4438 	 */
4439 	local_irq_save(flags);
4440 
4441 	/*
4442 	 * It must not be an event with inherit set, we cannot read
4443 	 * all child counters from atomic context.
4444 	 */
4445 	if (event->attr.inherit) {
4446 		ret = -EOPNOTSUPP;
4447 		goto out;
4448 	}
4449 
4450 	/* If this is a per-task event, it must be for current */
4451 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4452 	    event->hw.target != current) {
4453 		ret = -EINVAL;
4454 		goto out;
4455 	}
4456 
4457 	/* If this is a per-CPU event, it must be for this CPU */
4458 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4459 	    event->cpu != smp_processor_id()) {
4460 		ret = -EINVAL;
4461 		goto out;
4462 	}
4463 
4464 	/* If this is a pinned event it must be running on this CPU */
4465 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4466 		ret = -EBUSY;
4467 		goto out;
4468 	}
4469 
4470 	/*
4471 	 * If the event is currently on this CPU, its either a per-task event,
4472 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4473 	 * oncpu == -1).
4474 	 */
4475 	if (event->oncpu == smp_processor_id())
4476 		event->pmu->read(event);
4477 
4478 	*value = local64_read(&event->count);
4479 	if (enabled || running) {
4480 		u64 now = event->shadow_ctx_time + perf_clock();
4481 		u64 __enabled, __running;
4482 
4483 		__perf_update_times(event, now, &__enabled, &__running);
4484 		if (enabled)
4485 			*enabled = __enabled;
4486 		if (running)
4487 			*running = __running;
4488 	}
4489 out:
4490 	local_irq_restore(flags);
4491 
4492 	return ret;
4493 }
4494 
4495 static int perf_event_read(struct perf_event *event, bool group)
4496 {
4497 	enum perf_event_state state = READ_ONCE(event->state);
4498 	int event_cpu, ret = 0;
4499 
4500 	/*
4501 	 * If event is enabled and currently active on a CPU, update the
4502 	 * value in the event structure:
4503 	 */
4504 again:
4505 	if (state == PERF_EVENT_STATE_ACTIVE) {
4506 		struct perf_read_data data;
4507 
4508 		/*
4509 		 * Orders the ->state and ->oncpu loads such that if we see
4510 		 * ACTIVE we must also see the right ->oncpu.
4511 		 *
4512 		 * Matches the smp_wmb() from event_sched_in().
4513 		 */
4514 		smp_rmb();
4515 
4516 		event_cpu = READ_ONCE(event->oncpu);
4517 		if ((unsigned)event_cpu >= nr_cpu_ids)
4518 			return 0;
4519 
4520 		data = (struct perf_read_data){
4521 			.event = event,
4522 			.group = group,
4523 			.ret = 0,
4524 		};
4525 
4526 		preempt_disable();
4527 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4528 
4529 		/*
4530 		 * Purposely ignore the smp_call_function_single() return
4531 		 * value.
4532 		 *
4533 		 * If event_cpu isn't a valid CPU it means the event got
4534 		 * scheduled out and that will have updated the event count.
4535 		 *
4536 		 * Therefore, either way, we'll have an up-to-date event count
4537 		 * after this.
4538 		 */
4539 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4540 		preempt_enable();
4541 		ret = data.ret;
4542 
4543 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4544 		struct perf_event_context *ctx = event->ctx;
4545 		unsigned long flags;
4546 
4547 		raw_spin_lock_irqsave(&ctx->lock, flags);
4548 		state = event->state;
4549 		if (state != PERF_EVENT_STATE_INACTIVE) {
4550 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4551 			goto again;
4552 		}
4553 
4554 		/*
4555 		 * May read while context is not active (e.g., thread is
4556 		 * blocked), in that case we cannot update context time
4557 		 */
4558 		if (ctx->is_active & EVENT_TIME) {
4559 			update_context_time(ctx);
4560 			update_cgrp_time_from_event(event);
4561 		}
4562 
4563 		perf_event_update_time(event);
4564 		if (group)
4565 			perf_event_update_sibling_time(event);
4566 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4567 	}
4568 
4569 	return ret;
4570 }
4571 
4572 /*
4573  * Initialize the perf_event context in a task_struct:
4574  */
4575 static void __perf_event_init_context(struct perf_event_context *ctx)
4576 {
4577 	raw_spin_lock_init(&ctx->lock);
4578 	mutex_init(&ctx->mutex);
4579 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4580 	perf_event_groups_init(&ctx->pinned_groups);
4581 	perf_event_groups_init(&ctx->flexible_groups);
4582 	INIT_LIST_HEAD(&ctx->event_list);
4583 	INIT_LIST_HEAD(&ctx->pinned_active);
4584 	INIT_LIST_HEAD(&ctx->flexible_active);
4585 	refcount_set(&ctx->refcount, 1);
4586 }
4587 
4588 static struct perf_event_context *
4589 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4590 {
4591 	struct perf_event_context *ctx;
4592 
4593 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4594 	if (!ctx)
4595 		return NULL;
4596 
4597 	__perf_event_init_context(ctx);
4598 	if (task)
4599 		ctx->task = get_task_struct(task);
4600 	ctx->pmu = pmu;
4601 
4602 	return ctx;
4603 }
4604 
4605 static struct task_struct *
4606 find_lively_task_by_vpid(pid_t vpid)
4607 {
4608 	struct task_struct *task;
4609 
4610 	rcu_read_lock();
4611 	if (!vpid)
4612 		task = current;
4613 	else
4614 		task = find_task_by_vpid(vpid);
4615 	if (task)
4616 		get_task_struct(task);
4617 	rcu_read_unlock();
4618 
4619 	if (!task)
4620 		return ERR_PTR(-ESRCH);
4621 
4622 	return task;
4623 }
4624 
4625 /*
4626  * Returns a matching context with refcount and pincount.
4627  */
4628 static struct perf_event_context *
4629 find_get_context(struct pmu *pmu, struct task_struct *task,
4630 		struct perf_event *event)
4631 {
4632 	struct perf_event_context *ctx, *clone_ctx = NULL;
4633 	struct perf_cpu_context *cpuctx;
4634 	void *task_ctx_data = NULL;
4635 	unsigned long flags;
4636 	int ctxn, err;
4637 	int cpu = event->cpu;
4638 
4639 	if (!task) {
4640 		/* Must be root to operate on a CPU event: */
4641 		err = perf_allow_cpu(&event->attr);
4642 		if (err)
4643 			return ERR_PTR(err);
4644 
4645 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4646 		ctx = &cpuctx->ctx;
4647 		get_ctx(ctx);
4648 		raw_spin_lock_irqsave(&ctx->lock, flags);
4649 		++ctx->pin_count;
4650 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4651 
4652 		return ctx;
4653 	}
4654 
4655 	err = -EINVAL;
4656 	ctxn = pmu->task_ctx_nr;
4657 	if (ctxn < 0)
4658 		goto errout;
4659 
4660 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4661 		task_ctx_data = alloc_task_ctx_data(pmu);
4662 		if (!task_ctx_data) {
4663 			err = -ENOMEM;
4664 			goto errout;
4665 		}
4666 	}
4667 
4668 retry:
4669 	ctx = perf_lock_task_context(task, ctxn, &flags);
4670 	if (ctx) {
4671 		clone_ctx = unclone_ctx(ctx);
4672 		++ctx->pin_count;
4673 
4674 		if (task_ctx_data && !ctx->task_ctx_data) {
4675 			ctx->task_ctx_data = task_ctx_data;
4676 			task_ctx_data = NULL;
4677 		}
4678 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4679 
4680 		if (clone_ctx)
4681 			put_ctx(clone_ctx);
4682 	} else {
4683 		ctx = alloc_perf_context(pmu, task);
4684 		err = -ENOMEM;
4685 		if (!ctx)
4686 			goto errout;
4687 
4688 		if (task_ctx_data) {
4689 			ctx->task_ctx_data = task_ctx_data;
4690 			task_ctx_data = NULL;
4691 		}
4692 
4693 		err = 0;
4694 		mutex_lock(&task->perf_event_mutex);
4695 		/*
4696 		 * If it has already passed perf_event_exit_task().
4697 		 * we must see PF_EXITING, it takes this mutex too.
4698 		 */
4699 		if (task->flags & PF_EXITING)
4700 			err = -ESRCH;
4701 		else if (task->perf_event_ctxp[ctxn])
4702 			err = -EAGAIN;
4703 		else {
4704 			get_ctx(ctx);
4705 			++ctx->pin_count;
4706 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4707 		}
4708 		mutex_unlock(&task->perf_event_mutex);
4709 
4710 		if (unlikely(err)) {
4711 			put_ctx(ctx);
4712 
4713 			if (err == -EAGAIN)
4714 				goto retry;
4715 			goto errout;
4716 		}
4717 	}
4718 
4719 	free_task_ctx_data(pmu, task_ctx_data);
4720 	return ctx;
4721 
4722 errout:
4723 	free_task_ctx_data(pmu, task_ctx_data);
4724 	return ERR_PTR(err);
4725 }
4726 
4727 static void perf_event_free_filter(struct perf_event *event);
4728 
4729 static void free_event_rcu(struct rcu_head *head)
4730 {
4731 	struct perf_event *event;
4732 
4733 	event = container_of(head, struct perf_event, rcu_head);
4734 	if (event->ns)
4735 		put_pid_ns(event->ns);
4736 	perf_event_free_filter(event);
4737 	kmem_cache_free(perf_event_cache, event);
4738 }
4739 
4740 static void ring_buffer_attach(struct perf_event *event,
4741 			       struct perf_buffer *rb);
4742 
4743 static void detach_sb_event(struct perf_event *event)
4744 {
4745 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4746 
4747 	raw_spin_lock(&pel->lock);
4748 	list_del_rcu(&event->sb_list);
4749 	raw_spin_unlock(&pel->lock);
4750 }
4751 
4752 static bool is_sb_event(struct perf_event *event)
4753 {
4754 	struct perf_event_attr *attr = &event->attr;
4755 
4756 	if (event->parent)
4757 		return false;
4758 
4759 	if (event->attach_state & PERF_ATTACH_TASK)
4760 		return false;
4761 
4762 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4763 	    attr->comm || attr->comm_exec ||
4764 	    attr->task || attr->ksymbol ||
4765 	    attr->context_switch || attr->text_poke ||
4766 	    attr->bpf_event)
4767 		return true;
4768 	return false;
4769 }
4770 
4771 static void unaccount_pmu_sb_event(struct perf_event *event)
4772 {
4773 	if (is_sb_event(event))
4774 		detach_sb_event(event);
4775 }
4776 
4777 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4778 {
4779 	if (event->parent)
4780 		return;
4781 
4782 	if (is_cgroup_event(event))
4783 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4784 }
4785 
4786 #ifdef CONFIG_NO_HZ_FULL
4787 static DEFINE_SPINLOCK(nr_freq_lock);
4788 #endif
4789 
4790 static void unaccount_freq_event_nohz(void)
4791 {
4792 #ifdef CONFIG_NO_HZ_FULL
4793 	spin_lock(&nr_freq_lock);
4794 	if (atomic_dec_and_test(&nr_freq_events))
4795 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4796 	spin_unlock(&nr_freq_lock);
4797 #endif
4798 }
4799 
4800 static void unaccount_freq_event(void)
4801 {
4802 	if (tick_nohz_full_enabled())
4803 		unaccount_freq_event_nohz();
4804 	else
4805 		atomic_dec(&nr_freq_events);
4806 }
4807 
4808 static void unaccount_event(struct perf_event *event)
4809 {
4810 	bool dec = false;
4811 
4812 	if (event->parent)
4813 		return;
4814 
4815 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4816 		dec = true;
4817 	if (event->attr.mmap || event->attr.mmap_data)
4818 		atomic_dec(&nr_mmap_events);
4819 	if (event->attr.build_id)
4820 		atomic_dec(&nr_build_id_events);
4821 	if (event->attr.comm)
4822 		atomic_dec(&nr_comm_events);
4823 	if (event->attr.namespaces)
4824 		atomic_dec(&nr_namespaces_events);
4825 	if (event->attr.cgroup)
4826 		atomic_dec(&nr_cgroup_events);
4827 	if (event->attr.task)
4828 		atomic_dec(&nr_task_events);
4829 	if (event->attr.freq)
4830 		unaccount_freq_event();
4831 	if (event->attr.context_switch) {
4832 		dec = true;
4833 		atomic_dec(&nr_switch_events);
4834 	}
4835 	if (is_cgroup_event(event))
4836 		dec = true;
4837 	if (has_branch_stack(event))
4838 		dec = true;
4839 	if (event->attr.ksymbol)
4840 		atomic_dec(&nr_ksymbol_events);
4841 	if (event->attr.bpf_event)
4842 		atomic_dec(&nr_bpf_events);
4843 	if (event->attr.text_poke)
4844 		atomic_dec(&nr_text_poke_events);
4845 
4846 	if (dec) {
4847 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4848 			schedule_delayed_work(&perf_sched_work, HZ);
4849 	}
4850 
4851 	unaccount_event_cpu(event, event->cpu);
4852 
4853 	unaccount_pmu_sb_event(event);
4854 }
4855 
4856 static void perf_sched_delayed(struct work_struct *work)
4857 {
4858 	mutex_lock(&perf_sched_mutex);
4859 	if (atomic_dec_and_test(&perf_sched_count))
4860 		static_branch_disable(&perf_sched_events);
4861 	mutex_unlock(&perf_sched_mutex);
4862 }
4863 
4864 /*
4865  * The following implement mutual exclusion of events on "exclusive" pmus
4866  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4867  * at a time, so we disallow creating events that might conflict, namely:
4868  *
4869  *  1) cpu-wide events in the presence of per-task events,
4870  *  2) per-task events in the presence of cpu-wide events,
4871  *  3) two matching events on the same context.
4872  *
4873  * The former two cases are handled in the allocation path (perf_event_alloc(),
4874  * _free_event()), the latter -- before the first perf_install_in_context().
4875  */
4876 static int exclusive_event_init(struct perf_event *event)
4877 {
4878 	struct pmu *pmu = event->pmu;
4879 
4880 	if (!is_exclusive_pmu(pmu))
4881 		return 0;
4882 
4883 	/*
4884 	 * Prevent co-existence of per-task and cpu-wide events on the
4885 	 * same exclusive pmu.
4886 	 *
4887 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4888 	 * events on this "exclusive" pmu, positive means there are
4889 	 * per-task events.
4890 	 *
4891 	 * Since this is called in perf_event_alloc() path, event::ctx
4892 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4893 	 * to mean "per-task event", because unlike other attach states it
4894 	 * never gets cleared.
4895 	 */
4896 	if (event->attach_state & PERF_ATTACH_TASK) {
4897 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4898 			return -EBUSY;
4899 	} else {
4900 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4901 			return -EBUSY;
4902 	}
4903 
4904 	return 0;
4905 }
4906 
4907 static void exclusive_event_destroy(struct perf_event *event)
4908 {
4909 	struct pmu *pmu = event->pmu;
4910 
4911 	if (!is_exclusive_pmu(pmu))
4912 		return;
4913 
4914 	/* see comment in exclusive_event_init() */
4915 	if (event->attach_state & PERF_ATTACH_TASK)
4916 		atomic_dec(&pmu->exclusive_cnt);
4917 	else
4918 		atomic_inc(&pmu->exclusive_cnt);
4919 }
4920 
4921 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4922 {
4923 	if ((e1->pmu == e2->pmu) &&
4924 	    (e1->cpu == e2->cpu ||
4925 	     e1->cpu == -1 ||
4926 	     e2->cpu == -1))
4927 		return true;
4928 	return false;
4929 }
4930 
4931 static bool exclusive_event_installable(struct perf_event *event,
4932 					struct perf_event_context *ctx)
4933 {
4934 	struct perf_event *iter_event;
4935 	struct pmu *pmu = event->pmu;
4936 
4937 	lockdep_assert_held(&ctx->mutex);
4938 
4939 	if (!is_exclusive_pmu(pmu))
4940 		return true;
4941 
4942 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4943 		if (exclusive_event_match(iter_event, event))
4944 			return false;
4945 	}
4946 
4947 	return true;
4948 }
4949 
4950 static void perf_addr_filters_splice(struct perf_event *event,
4951 				       struct list_head *head);
4952 
4953 static void _free_event(struct perf_event *event)
4954 {
4955 	irq_work_sync(&event->pending);
4956 
4957 	unaccount_event(event);
4958 
4959 	security_perf_event_free(event);
4960 
4961 	if (event->rb) {
4962 		/*
4963 		 * Can happen when we close an event with re-directed output.
4964 		 *
4965 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4966 		 * over us; possibly making our ring_buffer_put() the last.
4967 		 */
4968 		mutex_lock(&event->mmap_mutex);
4969 		ring_buffer_attach(event, NULL);
4970 		mutex_unlock(&event->mmap_mutex);
4971 	}
4972 
4973 	if (is_cgroup_event(event))
4974 		perf_detach_cgroup(event);
4975 
4976 	if (!event->parent) {
4977 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4978 			put_callchain_buffers();
4979 	}
4980 
4981 	perf_event_free_bpf_prog(event);
4982 	perf_addr_filters_splice(event, NULL);
4983 	kfree(event->addr_filter_ranges);
4984 
4985 	if (event->destroy)
4986 		event->destroy(event);
4987 
4988 	/*
4989 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4990 	 * hw.target.
4991 	 */
4992 	if (event->hw.target)
4993 		put_task_struct(event->hw.target);
4994 
4995 	/*
4996 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4997 	 * all task references must be cleaned up.
4998 	 */
4999 	if (event->ctx)
5000 		put_ctx(event->ctx);
5001 
5002 	exclusive_event_destroy(event);
5003 	module_put(event->pmu->module);
5004 
5005 	call_rcu(&event->rcu_head, free_event_rcu);
5006 }
5007 
5008 /*
5009  * Used to free events which have a known refcount of 1, such as in error paths
5010  * where the event isn't exposed yet and inherited events.
5011  */
5012 static void free_event(struct perf_event *event)
5013 {
5014 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5015 				"unexpected event refcount: %ld; ptr=%p\n",
5016 				atomic_long_read(&event->refcount), event)) {
5017 		/* leak to avoid use-after-free */
5018 		return;
5019 	}
5020 
5021 	_free_event(event);
5022 }
5023 
5024 /*
5025  * Remove user event from the owner task.
5026  */
5027 static void perf_remove_from_owner(struct perf_event *event)
5028 {
5029 	struct task_struct *owner;
5030 
5031 	rcu_read_lock();
5032 	/*
5033 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5034 	 * observe !owner it means the list deletion is complete and we can
5035 	 * indeed free this event, otherwise we need to serialize on
5036 	 * owner->perf_event_mutex.
5037 	 */
5038 	owner = READ_ONCE(event->owner);
5039 	if (owner) {
5040 		/*
5041 		 * Since delayed_put_task_struct() also drops the last
5042 		 * task reference we can safely take a new reference
5043 		 * while holding the rcu_read_lock().
5044 		 */
5045 		get_task_struct(owner);
5046 	}
5047 	rcu_read_unlock();
5048 
5049 	if (owner) {
5050 		/*
5051 		 * If we're here through perf_event_exit_task() we're already
5052 		 * holding ctx->mutex which would be an inversion wrt. the
5053 		 * normal lock order.
5054 		 *
5055 		 * However we can safely take this lock because its the child
5056 		 * ctx->mutex.
5057 		 */
5058 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5059 
5060 		/*
5061 		 * We have to re-check the event->owner field, if it is cleared
5062 		 * we raced with perf_event_exit_task(), acquiring the mutex
5063 		 * ensured they're done, and we can proceed with freeing the
5064 		 * event.
5065 		 */
5066 		if (event->owner) {
5067 			list_del_init(&event->owner_entry);
5068 			smp_store_release(&event->owner, NULL);
5069 		}
5070 		mutex_unlock(&owner->perf_event_mutex);
5071 		put_task_struct(owner);
5072 	}
5073 }
5074 
5075 static void put_event(struct perf_event *event)
5076 {
5077 	if (!atomic_long_dec_and_test(&event->refcount))
5078 		return;
5079 
5080 	_free_event(event);
5081 }
5082 
5083 /*
5084  * Kill an event dead; while event:refcount will preserve the event
5085  * object, it will not preserve its functionality. Once the last 'user'
5086  * gives up the object, we'll destroy the thing.
5087  */
5088 int perf_event_release_kernel(struct perf_event *event)
5089 {
5090 	struct perf_event_context *ctx = event->ctx;
5091 	struct perf_event *child, *tmp;
5092 	LIST_HEAD(free_list);
5093 
5094 	/*
5095 	 * If we got here through err_file: fput(event_file); we will not have
5096 	 * attached to a context yet.
5097 	 */
5098 	if (!ctx) {
5099 		WARN_ON_ONCE(event->attach_state &
5100 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5101 		goto no_ctx;
5102 	}
5103 
5104 	if (!is_kernel_event(event))
5105 		perf_remove_from_owner(event);
5106 
5107 	ctx = perf_event_ctx_lock(event);
5108 	WARN_ON_ONCE(ctx->parent_ctx);
5109 	perf_remove_from_context(event, DETACH_GROUP);
5110 
5111 	raw_spin_lock_irq(&ctx->lock);
5112 	/*
5113 	 * Mark this event as STATE_DEAD, there is no external reference to it
5114 	 * anymore.
5115 	 *
5116 	 * Anybody acquiring event->child_mutex after the below loop _must_
5117 	 * also see this, most importantly inherit_event() which will avoid
5118 	 * placing more children on the list.
5119 	 *
5120 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5121 	 * child events.
5122 	 */
5123 	event->state = PERF_EVENT_STATE_DEAD;
5124 	raw_spin_unlock_irq(&ctx->lock);
5125 
5126 	perf_event_ctx_unlock(event, ctx);
5127 
5128 again:
5129 	mutex_lock(&event->child_mutex);
5130 	list_for_each_entry(child, &event->child_list, child_list) {
5131 
5132 		/*
5133 		 * Cannot change, child events are not migrated, see the
5134 		 * comment with perf_event_ctx_lock_nested().
5135 		 */
5136 		ctx = READ_ONCE(child->ctx);
5137 		/*
5138 		 * Since child_mutex nests inside ctx::mutex, we must jump
5139 		 * through hoops. We start by grabbing a reference on the ctx.
5140 		 *
5141 		 * Since the event cannot get freed while we hold the
5142 		 * child_mutex, the context must also exist and have a !0
5143 		 * reference count.
5144 		 */
5145 		get_ctx(ctx);
5146 
5147 		/*
5148 		 * Now that we have a ctx ref, we can drop child_mutex, and
5149 		 * acquire ctx::mutex without fear of it going away. Then we
5150 		 * can re-acquire child_mutex.
5151 		 */
5152 		mutex_unlock(&event->child_mutex);
5153 		mutex_lock(&ctx->mutex);
5154 		mutex_lock(&event->child_mutex);
5155 
5156 		/*
5157 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5158 		 * state, if child is still the first entry, it didn't get freed
5159 		 * and we can continue doing so.
5160 		 */
5161 		tmp = list_first_entry_or_null(&event->child_list,
5162 					       struct perf_event, child_list);
5163 		if (tmp == child) {
5164 			perf_remove_from_context(child, DETACH_GROUP);
5165 			list_move(&child->child_list, &free_list);
5166 			/*
5167 			 * This matches the refcount bump in inherit_event();
5168 			 * this can't be the last reference.
5169 			 */
5170 			put_event(event);
5171 		}
5172 
5173 		mutex_unlock(&event->child_mutex);
5174 		mutex_unlock(&ctx->mutex);
5175 		put_ctx(ctx);
5176 		goto again;
5177 	}
5178 	mutex_unlock(&event->child_mutex);
5179 
5180 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5181 		void *var = &child->ctx->refcount;
5182 
5183 		list_del(&child->child_list);
5184 		free_event(child);
5185 
5186 		/*
5187 		 * Wake any perf_event_free_task() waiting for this event to be
5188 		 * freed.
5189 		 */
5190 		smp_mb(); /* pairs with wait_var_event() */
5191 		wake_up_var(var);
5192 	}
5193 
5194 no_ctx:
5195 	put_event(event); /* Must be the 'last' reference */
5196 	return 0;
5197 }
5198 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5199 
5200 /*
5201  * Called when the last reference to the file is gone.
5202  */
5203 static int perf_release(struct inode *inode, struct file *file)
5204 {
5205 	perf_event_release_kernel(file->private_data);
5206 	return 0;
5207 }
5208 
5209 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5210 {
5211 	struct perf_event *child;
5212 	u64 total = 0;
5213 
5214 	*enabled = 0;
5215 	*running = 0;
5216 
5217 	mutex_lock(&event->child_mutex);
5218 
5219 	(void)perf_event_read(event, false);
5220 	total += perf_event_count(event);
5221 
5222 	*enabled += event->total_time_enabled +
5223 			atomic64_read(&event->child_total_time_enabled);
5224 	*running += event->total_time_running +
5225 			atomic64_read(&event->child_total_time_running);
5226 
5227 	list_for_each_entry(child, &event->child_list, child_list) {
5228 		(void)perf_event_read(child, false);
5229 		total += perf_event_count(child);
5230 		*enabled += child->total_time_enabled;
5231 		*running += child->total_time_running;
5232 	}
5233 	mutex_unlock(&event->child_mutex);
5234 
5235 	return total;
5236 }
5237 
5238 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5239 {
5240 	struct perf_event_context *ctx;
5241 	u64 count;
5242 
5243 	ctx = perf_event_ctx_lock(event);
5244 	count = __perf_event_read_value(event, enabled, running);
5245 	perf_event_ctx_unlock(event, ctx);
5246 
5247 	return count;
5248 }
5249 EXPORT_SYMBOL_GPL(perf_event_read_value);
5250 
5251 static int __perf_read_group_add(struct perf_event *leader,
5252 					u64 read_format, u64 *values)
5253 {
5254 	struct perf_event_context *ctx = leader->ctx;
5255 	struct perf_event *sub;
5256 	unsigned long flags;
5257 	int n = 1; /* skip @nr */
5258 	int ret;
5259 
5260 	ret = perf_event_read(leader, true);
5261 	if (ret)
5262 		return ret;
5263 
5264 	raw_spin_lock_irqsave(&ctx->lock, flags);
5265 
5266 	/*
5267 	 * Since we co-schedule groups, {enabled,running} times of siblings
5268 	 * will be identical to those of the leader, so we only publish one
5269 	 * set.
5270 	 */
5271 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5272 		values[n++] += leader->total_time_enabled +
5273 			atomic64_read(&leader->child_total_time_enabled);
5274 	}
5275 
5276 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5277 		values[n++] += leader->total_time_running +
5278 			atomic64_read(&leader->child_total_time_running);
5279 	}
5280 
5281 	/*
5282 	 * Write {count,id} tuples for every sibling.
5283 	 */
5284 	values[n++] += perf_event_count(leader);
5285 	if (read_format & PERF_FORMAT_ID)
5286 		values[n++] = primary_event_id(leader);
5287 
5288 	for_each_sibling_event(sub, leader) {
5289 		values[n++] += perf_event_count(sub);
5290 		if (read_format & PERF_FORMAT_ID)
5291 			values[n++] = primary_event_id(sub);
5292 	}
5293 
5294 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5295 	return 0;
5296 }
5297 
5298 static int perf_read_group(struct perf_event *event,
5299 				   u64 read_format, char __user *buf)
5300 {
5301 	struct perf_event *leader = event->group_leader, *child;
5302 	struct perf_event_context *ctx = leader->ctx;
5303 	int ret;
5304 	u64 *values;
5305 
5306 	lockdep_assert_held(&ctx->mutex);
5307 
5308 	values = kzalloc(event->read_size, GFP_KERNEL);
5309 	if (!values)
5310 		return -ENOMEM;
5311 
5312 	values[0] = 1 + leader->nr_siblings;
5313 
5314 	/*
5315 	 * By locking the child_mutex of the leader we effectively
5316 	 * lock the child list of all siblings.. XXX explain how.
5317 	 */
5318 	mutex_lock(&leader->child_mutex);
5319 
5320 	ret = __perf_read_group_add(leader, read_format, values);
5321 	if (ret)
5322 		goto unlock;
5323 
5324 	list_for_each_entry(child, &leader->child_list, child_list) {
5325 		ret = __perf_read_group_add(child, read_format, values);
5326 		if (ret)
5327 			goto unlock;
5328 	}
5329 
5330 	mutex_unlock(&leader->child_mutex);
5331 
5332 	ret = event->read_size;
5333 	if (copy_to_user(buf, values, event->read_size))
5334 		ret = -EFAULT;
5335 	goto out;
5336 
5337 unlock:
5338 	mutex_unlock(&leader->child_mutex);
5339 out:
5340 	kfree(values);
5341 	return ret;
5342 }
5343 
5344 static int perf_read_one(struct perf_event *event,
5345 				 u64 read_format, char __user *buf)
5346 {
5347 	u64 enabled, running;
5348 	u64 values[4];
5349 	int n = 0;
5350 
5351 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5352 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5353 		values[n++] = enabled;
5354 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5355 		values[n++] = running;
5356 	if (read_format & PERF_FORMAT_ID)
5357 		values[n++] = primary_event_id(event);
5358 
5359 	if (copy_to_user(buf, values, n * sizeof(u64)))
5360 		return -EFAULT;
5361 
5362 	return n * sizeof(u64);
5363 }
5364 
5365 static bool is_event_hup(struct perf_event *event)
5366 {
5367 	bool no_children;
5368 
5369 	if (event->state > PERF_EVENT_STATE_EXIT)
5370 		return false;
5371 
5372 	mutex_lock(&event->child_mutex);
5373 	no_children = list_empty(&event->child_list);
5374 	mutex_unlock(&event->child_mutex);
5375 	return no_children;
5376 }
5377 
5378 /*
5379  * Read the performance event - simple non blocking version for now
5380  */
5381 static ssize_t
5382 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5383 {
5384 	u64 read_format = event->attr.read_format;
5385 	int ret;
5386 
5387 	/*
5388 	 * Return end-of-file for a read on an event that is in
5389 	 * error state (i.e. because it was pinned but it couldn't be
5390 	 * scheduled on to the CPU at some point).
5391 	 */
5392 	if (event->state == PERF_EVENT_STATE_ERROR)
5393 		return 0;
5394 
5395 	if (count < event->read_size)
5396 		return -ENOSPC;
5397 
5398 	WARN_ON_ONCE(event->ctx->parent_ctx);
5399 	if (read_format & PERF_FORMAT_GROUP)
5400 		ret = perf_read_group(event, read_format, buf);
5401 	else
5402 		ret = perf_read_one(event, read_format, buf);
5403 
5404 	return ret;
5405 }
5406 
5407 static ssize_t
5408 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5409 {
5410 	struct perf_event *event = file->private_data;
5411 	struct perf_event_context *ctx;
5412 	int ret;
5413 
5414 	ret = security_perf_event_read(event);
5415 	if (ret)
5416 		return ret;
5417 
5418 	ctx = perf_event_ctx_lock(event);
5419 	ret = __perf_read(event, buf, count);
5420 	perf_event_ctx_unlock(event, ctx);
5421 
5422 	return ret;
5423 }
5424 
5425 static __poll_t perf_poll(struct file *file, poll_table *wait)
5426 {
5427 	struct perf_event *event = file->private_data;
5428 	struct perf_buffer *rb;
5429 	__poll_t events = EPOLLHUP;
5430 
5431 	poll_wait(file, &event->waitq, wait);
5432 
5433 	if (is_event_hup(event))
5434 		return events;
5435 
5436 	/*
5437 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5438 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5439 	 */
5440 	mutex_lock(&event->mmap_mutex);
5441 	rb = event->rb;
5442 	if (rb)
5443 		events = atomic_xchg(&rb->poll, 0);
5444 	mutex_unlock(&event->mmap_mutex);
5445 	return events;
5446 }
5447 
5448 static void _perf_event_reset(struct perf_event *event)
5449 {
5450 	(void)perf_event_read(event, false);
5451 	local64_set(&event->count, 0);
5452 	perf_event_update_userpage(event);
5453 }
5454 
5455 /* Assume it's not an event with inherit set. */
5456 u64 perf_event_pause(struct perf_event *event, bool reset)
5457 {
5458 	struct perf_event_context *ctx;
5459 	u64 count;
5460 
5461 	ctx = perf_event_ctx_lock(event);
5462 	WARN_ON_ONCE(event->attr.inherit);
5463 	_perf_event_disable(event);
5464 	count = local64_read(&event->count);
5465 	if (reset)
5466 		local64_set(&event->count, 0);
5467 	perf_event_ctx_unlock(event, ctx);
5468 
5469 	return count;
5470 }
5471 EXPORT_SYMBOL_GPL(perf_event_pause);
5472 
5473 /*
5474  * Holding the top-level event's child_mutex means that any
5475  * descendant process that has inherited this event will block
5476  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5477  * task existence requirements of perf_event_enable/disable.
5478  */
5479 static void perf_event_for_each_child(struct perf_event *event,
5480 					void (*func)(struct perf_event *))
5481 {
5482 	struct perf_event *child;
5483 
5484 	WARN_ON_ONCE(event->ctx->parent_ctx);
5485 
5486 	mutex_lock(&event->child_mutex);
5487 	func(event);
5488 	list_for_each_entry(child, &event->child_list, child_list)
5489 		func(child);
5490 	mutex_unlock(&event->child_mutex);
5491 }
5492 
5493 static void perf_event_for_each(struct perf_event *event,
5494 				  void (*func)(struct perf_event *))
5495 {
5496 	struct perf_event_context *ctx = event->ctx;
5497 	struct perf_event *sibling;
5498 
5499 	lockdep_assert_held(&ctx->mutex);
5500 
5501 	event = event->group_leader;
5502 
5503 	perf_event_for_each_child(event, func);
5504 	for_each_sibling_event(sibling, event)
5505 		perf_event_for_each_child(sibling, func);
5506 }
5507 
5508 static void __perf_event_period(struct perf_event *event,
5509 				struct perf_cpu_context *cpuctx,
5510 				struct perf_event_context *ctx,
5511 				void *info)
5512 {
5513 	u64 value = *((u64 *)info);
5514 	bool active;
5515 
5516 	if (event->attr.freq) {
5517 		event->attr.sample_freq = value;
5518 	} else {
5519 		event->attr.sample_period = value;
5520 		event->hw.sample_period = value;
5521 	}
5522 
5523 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5524 	if (active) {
5525 		perf_pmu_disable(ctx->pmu);
5526 		/*
5527 		 * We could be throttled; unthrottle now to avoid the tick
5528 		 * trying to unthrottle while we already re-started the event.
5529 		 */
5530 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5531 			event->hw.interrupts = 0;
5532 			perf_log_throttle(event, 1);
5533 		}
5534 		event->pmu->stop(event, PERF_EF_UPDATE);
5535 	}
5536 
5537 	local64_set(&event->hw.period_left, 0);
5538 
5539 	if (active) {
5540 		event->pmu->start(event, PERF_EF_RELOAD);
5541 		perf_pmu_enable(ctx->pmu);
5542 	}
5543 }
5544 
5545 static int perf_event_check_period(struct perf_event *event, u64 value)
5546 {
5547 	return event->pmu->check_period(event, value);
5548 }
5549 
5550 static int _perf_event_period(struct perf_event *event, u64 value)
5551 {
5552 	if (!is_sampling_event(event))
5553 		return -EINVAL;
5554 
5555 	if (!value)
5556 		return -EINVAL;
5557 
5558 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5559 		return -EINVAL;
5560 
5561 	if (perf_event_check_period(event, value))
5562 		return -EINVAL;
5563 
5564 	if (!event->attr.freq && (value & (1ULL << 63)))
5565 		return -EINVAL;
5566 
5567 	event_function_call(event, __perf_event_period, &value);
5568 
5569 	return 0;
5570 }
5571 
5572 int perf_event_period(struct perf_event *event, u64 value)
5573 {
5574 	struct perf_event_context *ctx;
5575 	int ret;
5576 
5577 	ctx = perf_event_ctx_lock(event);
5578 	ret = _perf_event_period(event, value);
5579 	perf_event_ctx_unlock(event, ctx);
5580 
5581 	return ret;
5582 }
5583 EXPORT_SYMBOL_GPL(perf_event_period);
5584 
5585 static const struct file_operations perf_fops;
5586 
5587 static inline int perf_fget_light(int fd, struct fd *p)
5588 {
5589 	struct fd f = fdget(fd);
5590 	if (!f.file)
5591 		return -EBADF;
5592 
5593 	if (f.file->f_op != &perf_fops) {
5594 		fdput(f);
5595 		return -EBADF;
5596 	}
5597 	*p = f;
5598 	return 0;
5599 }
5600 
5601 static int perf_event_set_output(struct perf_event *event,
5602 				 struct perf_event *output_event);
5603 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5604 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5605 			  struct perf_event_attr *attr);
5606 
5607 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5608 {
5609 	void (*func)(struct perf_event *);
5610 	u32 flags = arg;
5611 
5612 	switch (cmd) {
5613 	case PERF_EVENT_IOC_ENABLE:
5614 		func = _perf_event_enable;
5615 		break;
5616 	case PERF_EVENT_IOC_DISABLE:
5617 		func = _perf_event_disable;
5618 		break;
5619 	case PERF_EVENT_IOC_RESET:
5620 		func = _perf_event_reset;
5621 		break;
5622 
5623 	case PERF_EVENT_IOC_REFRESH:
5624 		return _perf_event_refresh(event, arg);
5625 
5626 	case PERF_EVENT_IOC_PERIOD:
5627 	{
5628 		u64 value;
5629 
5630 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5631 			return -EFAULT;
5632 
5633 		return _perf_event_period(event, value);
5634 	}
5635 	case PERF_EVENT_IOC_ID:
5636 	{
5637 		u64 id = primary_event_id(event);
5638 
5639 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5640 			return -EFAULT;
5641 		return 0;
5642 	}
5643 
5644 	case PERF_EVENT_IOC_SET_OUTPUT:
5645 	{
5646 		int ret;
5647 		if (arg != -1) {
5648 			struct perf_event *output_event;
5649 			struct fd output;
5650 			ret = perf_fget_light(arg, &output);
5651 			if (ret)
5652 				return ret;
5653 			output_event = output.file->private_data;
5654 			ret = perf_event_set_output(event, output_event);
5655 			fdput(output);
5656 		} else {
5657 			ret = perf_event_set_output(event, NULL);
5658 		}
5659 		return ret;
5660 	}
5661 
5662 	case PERF_EVENT_IOC_SET_FILTER:
5663 		return perf_event_set_filter(event, (void __user *)arg);
5664 
5665 	case PERF_EVENT_IOC_SET_BPF:
5666 	{
5667 		struct bpf_prog *prog;
5668 		int err;
5669 
5670 		prog = bpf_prog_get(arg);
5671 		if (IS_ERR(prog))
5672 			return PTR_ERR(prog);
5673 
5674 		err = perf_event_set_bpf_prog(event, prog, 0);
5675 		if (err) {
5676 			bpf_prog_put(prog);
5677 			return err;
5678 		}
5679 
5680 		return 0;
5681 	}
5682 
5683 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5684 		struct perf_buffer *rb;
5685 
5686 		rcu_read_lock();
5687 		rb = rcu_dereference(event->rb);
5688 		if (!rb || !rb->nr_pages) {
5689 			rcu_read_unlock();
5690 			return -EINVAL;
5691 		}
5692 		rb_toggle_paused(rb, !!arg);
5693 		rcu_read_unlock();
5694 		return 0;
5695 	}
5696 
5697 	case PERF_EVENT_IOC_QUERY_BPF:
5698 		return perf_event_query_prog_array(event, (void __user *)arg);
5699 
5700 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5701 		struct perf_event_attr new_attr;
5702 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5703 					 &new_attr);
5704 
5705 		if (err)
5706 			return err;
5707 
5708 		return perf_event_modify_attr(event,  &new_attr);
5709 	}
5710 	default:
5711 		return -ENOTTY;
5712 	}
5713 
5714 	if (flags & PERF_IOC_FLAG_GROUP)
5715 		perf_event_for_each(event, func);
5716 	else
5717 		perf_event_for_each_child(event, func);
5718 
5719 	return 0;
5720 }
5721 
5722 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5723 {
5724 	struct perf_event *event = file->private_data;
5725 	struct perf_event_context *ctx;
5726 	long ret;
5727 
5728 	/* Treat ioctl like writes as it is likely a mutating operation. */
5729 	ret = security_perf_event_write(event);
5730 	if (ret)
5731 		return ret;
5732 
5733 	ctx = perf_event_ctx_lock(event);
5734 	ret = _perf_ioctl(event, cmd, arg);
5735 	perf_event_ctx_unlock(event, ctx);
5736 
5737 	return ret;
5738 }
5739 
5740 #ifdef CONFIG_COMPAT
5741 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5742 				unsigned long arg)
5743 {
5744 	switch (_IOC_NR(cmd)) {
5745 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5746 	case _IOC_NR(PERF_EVENT_IOC_ID):
5747 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5748 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5749 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5750 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5751 			cmd &= ~IOCSIZE_MASK;
5752 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5753 		}
5754 		break;
5755 	}
5756 	return perf_ioctl(file, cmd, arg);
5757 }
5758 #else
5759 # define perf_compat_ioctl NULL
5760 #endif
5761 
5762 int perf_event_task_enable(void)
5763 {
5764 	struct perf_event_context *ctx;
5765 	struct perf_event *event;
5766 
5767 	mutex_lock(&current->perf_event_mutex);
5768 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5769 		ctx = perf_event_ctx_lock(event);
5770 		perf_event_for_each_child(event, _perf_event_enable);
5771 		perf_event_ctx_unlock(event, ctx);
5772 	}
5773 	mutex_unlock(&current->perf_event_mutex);
5774 
5775 	return 0;
5776 }
5777 
5778 int perf_event_task_disable(void)
5779 {
5780 	struct perf_event_context *ctx;
5781 	struct perf_event *event;
5782 
5783 	mutex_lock(&current->perf_event_mutex);
5784 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5785 		ctx = perf_event_ctx_lock(event);
5786 		perf_event_for_each_child(event, _perf_event_disable);
5787 		perf_event_ctx_unlock(event, ctx);
5788 	}
5789 	mutex_unlock(&current->perf_event_mutex);
5790 
5791 	return 0;
5792 }
5793 
5794 static int perf_event_index(struct perf_event *event)
5795 {
5796 	if (event->hw.state & PERF_HES_STOPPED)
5797 		return 0;
5798 
5799 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5800 		return 0;
5801 
5802 	return event->pmu->event_idx(event);
5803 }
5804 
5805 static void calc_timer_values(struct perf_event *event,
5806 				u64 *now,
5807 				u64 *enabled,
5808 				u64 *running)
5809 {
5810 	u64 ctx_time;
5811 
5812 	*now = perf_clock();
5813 	ctx_time = event->shadow_ctx_time + *now;
5814 	__perf_update_times(event, ctx_time, enabled, running);
5815 }
5816 
5817 static void perf_event_init_userpage(struct perf_event *event)
5818 {
5819 	struct perf_event_mmap_page *userpg;
5820 	struct perf_buffer *rb;
5821 
5822 	rcu_read_lock();
5823 	rb = rcu_dereference(event->rb);
5824 	if (!rb)
5825 		goto unlock;
5826 
5827 	userpg = rb->user_page;
5828 
5829 	/* Allow new userspace to detect that bit 0 is deprecated */
5830 	userpg->cap_bit0_is_deprecated = 1;
5831 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5832 	userpg->data_offset = PAGE_SIZE;
5833 	userpg->data_size = perf_data_size(rb);
5834 
5835 unlock:
5836 	rcu_read_unlock();
5837 }
5838 
5839 void __weak arch_perf_update_userpage(
5840 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5841 {
5842 }
5843 
5844 /*
5845  * Callers need to ensure there can be no nesting of this function, otherwise
5846  * the seqlock logic goes bad. We can not serialize this because the arch
5847  * code calls this from NMI context.
5848  */
5849 void perf_event_update_userpage(struct perf_event *event)
5850 {
5851 	struct perf_event_mmap_page *userpg;
5852 	struct perf_buffer *rb;
5853 	u64 enabled, running, now;
5854 
5855 	rcu_read_lock();
5856 	rb = rcu_dereference(event->rb);
5857 	if (!rb)
5858 		goto unlock;
5859 
5860 	/*
5861 	 * compute total_time_enabled, total_time_running
5862 	 * based on snapshot values taken when the event
5863 	 * was last scheduled in.
5864 	 *
5865 	 * we cannot simply called update_context_time()
5866 	 * because of locking issue as we can be called in
5867 	 * NMI context
5868 	 */
5869 	calc_timer_values(event, &now, &enabled, &running);
5870 
5871 	userpg = rb->user_page;
5872 	/*
5873 	 * Disable preemption to guarantee consistent time stamps are stored to
5874 	 * the user page.
5875 	 */
5876 	preempt_disable();
5877 	++userpg->lock;
5878 	barrier();
5879 	userpg->index = perf_event_index(event);
5880 	userpg->offset = perf_event_count(event);
5881 	if (userpg->index)
5882 		userpg->offset -= local64_read(&event->hw.prev_count);
5883 
5884 	userpg->time_enabled = enabled +
5885 			atomic64_read(&event->child_total_time_enabled);
5886 
5887 	userpg->time_running = running +
5888 			atomic64_read(&event->child_total_time_running);
5889 
5890 	arch_perf_update_userpage(event, userpg, now);
5891 
5892 	barrier();
5893 	++userpg->lock;
5894 	preempt_enable();
5895 unlock:
5896 	rcu_read_unlock();
5897 }
5898 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5899 
5900 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5901 {
5902 	struct perf_event *event = vmf->vma->vm_file->private_data;
5903 	struct perf_buffer *rb;
5904 	vm_fault_t ret = VM_FAULT_SIGBUS;
5905 
5906 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5907 		if (vmf->pgoff == 0)
5908 			ret = 0;
5909 		return ret;
5910 	}
5911 
5912 	rcu_read_lock();
5913 	rb = rcu_dereference(event->rb);
5914 	if (!rb)
5915 		goto unlock;
5916 
5917 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5918 		goto unlock;
5919 
5920 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5921 	if (!vmf->page)
5922 		goto unlock;
5923 
5924 	get_page(vmf->page);
5925 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5926 	vmf->page->index   = vmf->pgoff;
5927 
5928 	ret = 0;
5929 unlock:
5930 	rcu_read_unlock();
5931 
5932 	return ret;
5933 }
5934 
5935 static void ring_buffer_attach(struct perf_event *event,
5936 			       struct perf_buffer *rb)
5937 {
5938 	struct perf_buffer *old_rb = NULL;
5939 	unsigned long flags;
5940 
5941 	if (event->rb) {
5942 		/*
5943 		 * Should be impossible, we set this when removing
5944 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5945 		 */
5946 		WARN_ON_ONCE(event->rcu_pending);
5947 
5948 		old_rb = event->rb;
5949 		spin_lock_irqsave(&old_rb->event_lock, flags);
5950 		list_del_rcu(&event->rb_entry);
5951 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5952 
5953 		event->rcu_batches = get_state_synchronize_rcu();
5954 		event->rcu_pending = 1;
5955 	}
5956 
5957 	if (rb) {
5958 		if (event->rcu_pending) {
5959 			cond_synchronize_rcu(event->rcu_batches);
5960 			event->rcu_pending = 0;
5961 		}
5962 
5963 		spin_lock_irqsave(&rb->event_lock, flags);
5964 		list_add_rcu(&event->rb_entry, &rb->event_list);
5965 		spin_unlock_irqrestore(&rb->event_lock, flags);
5966 	}
5967 
5968 	/*
5969 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5970 	 * before swizzling the event::rb pointer; if it's getting
5971 	 * unmapped, its aux_mmap_count will be 0 and it won't
5972 	 * restart. See the comment in __perf_pmu_output_stop().
5973 	 *
5974 	 * Data will inevitably be lost when set_output is done in
5975 	 * mid-air, but then again, whoever does it like this is
5976 	 * not in for the data anyway.
5977 	 */
5978 	if (has_aux(event))
5979 		perf_event_stop(event, 0);
5980 
5981 	rcu_assign_pointer(event->rb, rb);
5982 
5983 	if (old_rb) {
5984 		ring_buffer_put(old_rb);
5985 		/*
5986 		 * Since we detached before setting the new rb, so that we
5987 		 * could attach the new rb, we could have missed a wakeup.
5988 		 * Provide it now.
5989 		 */
5990 		wake_up_all(&event->waitq);
5991 	}
5992 }
5993 
5994 static void ring_buffer_wakeup(struct perf_event *event)
5995 {
5996 	struct perf_buffer *rb;
5997 
5998 	rcu_read_lock();
5999 	rb = rcu_dereference(event->rb);
6000 	if (rb) {
6001 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6002 			wake_up_all(&event->waitq);
6003 	}
6004 	rcu_read_unlock();
6005 }
6006 
6007 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6008 {
6009 	struct perf_buffer *rb;
6010 
6011 	rcu_read_lock();
6012 	rb = rcu_dereference(event->rb);
6013 	if (rb) {
6014 		if (!refcount_inc_not_zero(&rb->refcount))
6015 			rb = NULL;
6016 	}
6017 	rcu_read_unlock();
6018 
6019 	return rb;
6020 }
6021 
6022 void ring_buffer_put(struct perf_buffer *rb)
6023 {
6024 	if (!refcount_dec_and_test(&rb->refcount))
6025 		return;
6026 
6027 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6028 
6029 	call_rcu(&rb->rcu_head, rb_free_rcu);
6030 }
6031 
6032 static void perf_mmap_open(struct vm_area_struct *vma)
6033 {
6034 	struct perf_event *event = vma->vm_file->private_data;
6035 
6036 	atomic_inc(&event->mmap_count);
6037 	atomic_inc(&event->rb->mmap_count);
6038 
6039 	if (vma->vm_pgoff)
6040 		atomic_inc(&event->rb->aux_mmap_count);
6041 
6042 	if (event->pmu->event_mapped)
6043 		event->pmu->event_mapped(event, vma->vm_mm);
6044 }
6045 
6046 static void perf_pmu_output_stop(struct perf_event *event);
6047 
6048 /*
6049  * A buffer can be mmap()ed multiple times; either directly through the same
6050  * event, or through other events by use of perf_event_set_output().
6051  *
6052  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6053  * the buffer here, where we still have a VM context. This means we need
6054  * to detach all events redirecting to us.
6055  */
6056 static void perf_mmap_close(struct vm_area_struct *vma)
6057 {
6058 	struct perf_event *event = vma->vm_file->private_data;
6059 	struct perf_buffer *rb = ring_buffer_get(event);
6060 	struct user_struct *mmap_user = rb->mmap_user;
6061 	int mmap_locked = rb->mmap_locked;
6062 	unsigned long size = perf_data_size(rb);
6063 	bool detach_rest = false;
6064 
6065 	if (event->pmu->event_unmapped)
6066 		event->pmu->event_unmapped(event, vma->vm_mm);
6067 
6068 	/*
6069 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6070 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6071 	 * serialize with perf_mmap here.
6072 	 */
6073 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6074 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6075 		/*
6076 		 * Stop all AUX events that are writing to this buffer,
6077 		 * so that we can free its AUX pages and corresponding PMU
6078 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6079 		 * they won't start any more (see perf_aux_output_begin()).
6080 		 */
6081 		perf_pmu_output_stop(event);
6082 
6083 		/* now it's safe to free the pages */
6084 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6085 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6086 
6087 		/* this has to be the last one */
6088 		rb_free_aux(rb);
6089 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6090 
6091 		mutex_unlock(&event->mmap_mutex);
6092 	}
6093 
6094 	if (atomic_dec_and_test(&rb->mmap_count))
6095 		detach_rest = true;
6096 
6097 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6098 		goto out_put;
6099 
6100 	ring_buffer_attach(event, NULL);
6101 	mutex_unlock(&event->mmap_mutex);
6102 
6103 	/* If there's still other mmap()s of this buffer, we're done. */
6104 	if (!detach_rest)
6105 		goto out_put;
6106 
6107 	/*
6108 	 * No other mmap()s, detach from all other events that might redirect
6109 	 * into the now unreachable buffer. Somewhat complicated by the
6110 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6111 	 */
6112 again:
6113 	rcu_read_lock();
6114 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6115 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6116 			/*
6117 			 * This event is en-route to free_event() which will
6118 			 * detach it and remove it from the list.
6119 			 */
6120 			continue;
6121 		}
6122 		rcu_read_unlock();
6123 
6124 		mutex_lock(&event->mmap_mutex);
6125 		/*
6126 		 * Check we didn't race with perf_event_set_output() which can
6127 		 * swizzle the rb from under us while we were waiting to
6128 		 * acquire mmap_mutex.
6129 		 *
6130 		 * If we find a different rb; ignore this event, a next
6131 		 * iteration will no longer find it on the list. We have to
6132 		 * still restart the iteration to make sure we're not now
6133 		 * iterating the wrong list.
6134 		 */
6135 		if (event->rb == rb)
6136 			ring_buffer_attach(event, NULL);
6137 
6138 		mutex_unlock(&event->mmap_mutex);
6139 		put_event(event);
6140 
6141 		/*
6142 		 * Restart the iteration; either we're on the wrong list or
6143 		 * destroyed its integrity by doing a deletion.
6144 		 */
6145 		goto again;
6146 	}
6147 	rcu_read_unlock();
6148 
6149 	/*
6150 	 * It could be there's still a few 0-ref events on the list; they'll
6151 	 * get cleaned up by free_event() -- they'll also still have their
6152 	 * ref on the rb and will free it whenever they are done with it.
6153 	 *
6154 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6155 	 * undo the VM accounting.
6156 	 */
6157 
6158 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6159 			&mmap_user->locked_vm);
6160 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6161 	free_uid(mmap_user);
6162 
6163 out_put:
6164 	ring_buffer_put(rb); /* could be last */
6165 }
6166 
6167 static const struct vm_operations_struct perf_mmap_vmops = {
6168 	.open		= perf_mmap_open,
6169 	.close		= perf_mmap_close, /* non mergeable */
6170 	.fault		= perf_mmap_fault,
6171 	.page_mkwrite	= perf_mmap_fault,
6172 };
6173 
6174 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6175 {
6176 	struct perf_event *event = file->private_data;
6177 	unsigned long user_locked, user_lock_limit;
6178 	struct user_struct *user = current_user();
6179 	struct perf_buffer *rb = NULL;
6180 	unsigned long locked, lock_limit;
6181 	unsigned long vma_size;
6182 	unsigned long nr_pages;
6183 	long user_extra = 0, extra = 0;
6184 	int ret = 0, flags = 0;
6185 
6186 	/*
6187 	 * Don't allow mmap() of inherited per-task counters. This would
6188 	 * create a performance issue due to all children writing to the
6189 	 * same rb.
6190 	 */
6191 	if (event->cpu == -1 && event->attr.inherit)
6192 		return -EINVAL;
6193 
6194 	if (!(vma->vm_flags & VM_SHARED))
6195 		return -EINVAL;
6196 
6197 	ret = security_perf_event_read(event);
6198 	if (ret)
6199 		return ret;
6200 
6201 	vma_size = vma->vm_end - vma->vm_start;
6202 
6203 	if (vma->vm_pgoff == 0) {
6204 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6205 	} else {
6206 		/*
6207 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6208 		 * mapped, all subsequent mappings should have the same size
6209 		 * and offset. Must be above the normal perf buffer.
6210 		 */
6211 		u64 aux_offset, aux_size;
6212 
6213 		if (!event->rb)
6214 			return -EINVAL;
6215 
6216 		nr_pages = vma_size / PAGE_SIZE;
6217 
6218 		mutex_lock(&event->mmap_mutex);
6219 		ret = -EINVAL;
6220 
6221 		rb = event->rb;
6222 		if (!rb)
6223 			goto aux_unlock;
6224 
6225 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6226 		aux_size = READ_ONCE(rb->user_page->aux_size);
6227 
6228 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6229 			goto aux_unlock;
6230 
6231 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6232 			goto aux_unlock;
6233 
6234 		/* already mapped with a different offset */
6235 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6236 			goto aux_unlock;
6237 
6238 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6239 			goto aux_unlock;
6240 
6241 		/* already mapped with a different size */
6242 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6243 			goto aux_unlock;
6244 
6245 		if (!is_power_of_2(nr_pages))
6246 			goto aux_unlock;
6247 
6248 		if (!atomic_inc_not_zero(&rb->mmap_count))
6249 			goto aux_unlock;
6250 
6251 		if (rb_has_aux(rb)) {
6252 			atomic_inc(&rb->aux_mmap_count);
6253 			ret = 0;
6254 			goto unlock;
6255 		}
6256 
6257 		atomic_set(&rb->aux_mmap_count, 1);
6258 		user_extra = nr_pages;
6259 
6260 		goto accounting;
6261 	}
6262 
6263 	/*
6264 	 * If we have rb pages ensure they're a power-of-two number, so we
6265 	 * can do bitmasks instead of modulo.
6266 	 */
6267 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6268 		return -EINVAL;
6269 
6270 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6271 		return -EINVAL;
6272 
6273 	WARN_ON_ONCE(event->ctx->parent_ctx);
6274 again:
6275 	mutex_lock(&event->mmap_mutex);
6276 	if (event->rb) {
6277 		if (event->rb->nr_pages != nr_pages) {
6278 			ret = -EINVAL;
6279 			goto unlock;
6280 		}
6281 
6282 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6283 			/*
6284 			 * Raced against perf_mmap_close() through
6285 			 * perf_event_set_output(). Try again, hope for better
6286 			 * luck.
6287 			 */
6288 			mutex_unlock(&event->mmap_mutex);
6289 			goto again;
6290 		}
6291 
6292 		goto unlock;
6293 	}
6294 
6295 	user_extra = nr_pages + 1;
6296 
6297 accounting:
6298 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6299 
6300 	/*
6301 	 * Increase the limit linearly with more CPUs:
6302 	 */
6303 	user_lock_limit *= num_online_cpus();
6304 
6305 	user_locked = atomic_long_read(&user->locked_vm);
6306 
6307 	/*
6308 	 * sysctl_perf_event_mlock may have changed, so that
6309 	 *     user->locked_vm > user_lock_limit
6310 	 */
6311 	if (user_locked > user_lock_limit)
6312 		user_locked = user_lock_limit;
6313 	user_locked += user_extra;
6314 
6315 	if (user_locked > user_lock_limit) {
6316 		/*
6317 		 * charge locked_vm until it hits user_lock_limit;
6318 		 * charge the rest from pinned_vm
6319 		 */
6320 		extra = user_locked - user_lock_limit;
6321 		user_extra -= extra;
6322 	}
6323 
6324 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6325 	lock_limit >>= PAGE_SHIFT;
6326 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6327 
6328 	if ((locked > lock_limit) && perf_is_paranoid() &&
6329 		!capable(CAP_IPC_LOCK)) {
6330 		ret = -EPERM;
6331 		goto unlock;
6332 	}
6333 
6334 	WARN_ON(!rb && event->rb);
6335 
6336 	if (vma->vm_flags & VM_WRITE)
6337 		flags |= RING_BUFFER_WRITABLE;
6338 
6339 	if (!rb) {
6340 		rb = rb_alloc(nr_pages,
6341 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6342 			      event->cpu, flags);
6343 
6344 		if (!rb) {
6345 			ret = -ENOMEM;
6346 			goto unlock;
6347 		}
6348 
6349 		atomic_set(&rb->mmap_count, 1);
6350 		rb->mmap_user = get_current_user();
6351 		rb->mmap_locked = extra;
6352 
6353 		ring_buffer_attach(event, rb);
6354 
6355 		perf_event_update_time(event);
6356 		perf_set_shadow_time(event, event->ctx);
6357 		perf_event_init_userpage(event);
6358 		perf_event_update_userpage(event);
6359 	} else {
6360 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6361 				   event->attr.aux_watermark, flags);
6362 		if (!ret)
6363 			rb->aux_mmap_locked = extra;
6364 	}
6365 
6366 unlock:
6367 	if (!ret) {
6368 		atomic_long_add(user_extra, &user->locked_vm);
6369 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6370 
6371 		atomic_inc(&event->mmap_count);
6372 	} else if (rb) {
6373 		atomic_dec(&rb->mmap_count);
6374 	}
6375 aux_unlock:
6376 	mutex_unlock(&event->mmap_mutex);
6377 
6378 	/*
6379 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6380 	 * vma.
6381 	 */
6382 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6383 	vma->vm_ops = &perf_mmap_vmops;
6384 
6385 	if (event->pmu->event_mapped)
6386 		event->pmu->event_mapped(event, vma->vm_mm);
6387 
6388 	return ret;
6389 }
6390 
6391 static int perf_fasync(int fd, struct file *filp, int on)
6392 {
6393 	struct inode *inode = file_inode(filp);
6394 	struct perf_event *event = filp->private_data;
6395 	int retval;
6396 
6397 	inode_lock(inode);
6398 	retval = fasync_helper(fd, filp, on, &event->fasync);
6399 	inode_unlock(inode);
6400 
6401 	if (retval < 0)
6402 		return retval;
6403 
6404 	return 0;
6405 }
6406 
6407 static const struct file_operations perf_fops = {
6408 	.llseek			= no_llseek,
6409 	.release		= perf_release,
6410 	.read			= perf_read,
6411 	.poll			= perf_poll,
6412 	.unlocked_ioctl		= perf_ioctl,
6413 	.compat_ioctl		= perf_compat_ioctl,
6414 	.mmap			= perf_mmap,
6415 	.fasync			= perf_fasync,
6416 };
6417 
6418 /*
6419  * Perf event wakeup
6420  *
6421  * If there's data, ensure we set the poll() state and publish everything
6422  * to user-space before waking everybody up.
6423  */
6424 
6425 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6426 {
6427 	/* only the parent has fasync state */
6428 	if (event->parent)
6429 		event = event->parent;
6430 	return &event->fasync;
6431 }
6432 
6433 void perf_event_wakeup(struct perf_event *event)
6434 {
6435 	ring_buffer_wakeup(event);
6436 
6437 	if (event->pending_kill) {
6438 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6439 		event->pending_kill = 0;
6440 	}
6441 }
6442 
6443 static void perf_sigtrap(struct perf_event *event)
6444 {
6445 	/*
6446 	 * We'd expect this to only occur if the irq_work is delayed and either
6447 	 * ctx->task or current has changed in the meantime. This can be the
6448 	 * case on architectures that do not implement arch_irq_work_raise().
6449 	 */
6450 	if (WARN_ON_ONCE(event->ctx->task != current))
6451 		return;
6452 
6453 	/*
6454 	 * perf_pending_event() can race with the task exiting.
6455 	 */
6456 	if (current->flags & PF_EXITING)
6457 		return;
6458 
6459 	force_sig_perf((void __user *)event->pending_addr,
6460 		       event->attr.type, event->attr.sig_data);
6461 }
6462 
6463 static void perf_pending_event_disable(struct perf_event *event)
6464 {
6465 	int cpu = READ_ONCE(event->pending_disable);
6466 
6467 	if (cpu < 0)
6468 		return;
6469 
6470 	if (cpu == smp_processor_id()) {
6471 		WRITE_ONCE(event->pending_disable, -1);
6472 
6473 		if (event->attr.sigtrap) {
6474 			perf_sigtrap(event);
6475 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6476 			return;
6477 		}
6478 
6479 		perf_event_disable_local(event);
6480 		return;
6481 	}
6482 
6483 	/*
6484 	 *  CPU-A			CPU-B
6485 	 *
6486 	 *  perf_event_disable_inatomic()
6487 	 *    @pending_disable = CPU-A;
6488 	 *    irq_work_queue();
6489 	 *
6490 	 *  sched-out
6491 	 *    @pending_disable = -1;
6492 	 *
6493 	 *				sched-in
6494 	 *				perf_event_disable_inatomic()
6495 	 *				  @pending_disable = CPU-B;
6496 	 *				  irq_work_queue(); // FAILS
6497 	 *
6498 	 *  irq_work_run()
6499 	 *    perf_pending_event()
6500 	 *
6501 	 * But the event runs on CPU-B and wants disabling there.
6502 	 */
6503 	irq_work_queue_on(&event->pending, cpu);
6504 }
6505 
6506 static void perf_pending_event(struct irq_work *entry)
6507 {
6508 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6509 	int rctx;
6510 
6511 	rctx = perf_swevent_get_recursion_context();
6512 	/*
6513 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6514 	 * and we won't recurse 'further'.
6515 	 */
6516 
6517 	perf_pending_event_disable(event);
6518 
6519 	if (event->pending_wakeup) {
6520 		event->pending_wakeup = 0;
6521 		perf_event_wakeup(event);
6522 	}
6523 
6524 	if (rctx >= 0)
6525 		perf_swevent_put_recursion_context(rctx);
6526 }
6527 
6528 /*
6529  * We assume there is only KVM supporting the callbacks.
6530  * Later on, we might change it to a list if there is
6531  * another virtualization implementation supporting the callbacks.
6532  */
6533 struct perf_guest_info_callbacks *perf_guest_cbs;
6534 
6535 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6536 {
6537 	perf_guest_cbs = cbs;
6538 	return 0;
6539 }
6540 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6541 
6542 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6543 {
6544 	perf_guest_cbs = NULL;
6545 	return 0;
6546 }
6547 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6548 
6549 static void
6550 perf_output_sample_regs(struct perf_output_handle *handle,
6551 			struct pt_regs *regs, u64 mask)
6552 {
6553 	int bit;
6554 	DECLARE_BITMAP(_mask, 64);
6555 
6556 	bitmap_from_u64(_mask, mask);
6557 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6558 		u64 val;
6559 
6560 		val = perf_reg_value(regs, bit);
6561 		perf_output_put(handle, val);
6562 	}
6563 }
6564 
6565 static void perf_sample_regs_user(struct perf_regs *regs_user,
6566 				  struct pt_regs *regs)
6567 {
6568 	if (user_mode(regs)) {
6569 		regs_user->abi = perf_reg_abi(current);
6570 		regs_user->regs = regs;
6571 	} else if (!(current->flags & PF_KTHREAD)) {
6572 		perf_get_regs_user(regs_user, regs);
6573 	} else {
6574 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6575 		regs_user->regs = NULL;
6576 	}
6577 }
6578 
6579 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6580 				  struct pt_regs *regs)
6581 {
6582 	regs_intr->regs = regs;
6583 	regs_intr->abi  = perf_reg_abi(current);
6584 }
6585 
6586 
6587 /*
6588  * Get remaining task size from user stack pointer.
6589  *
6590  * It'd be better to take stack vma map and limit this more
6591  * precisely, but there's no way to get it safely under interrupt,
6592  * so using TASK_SIZE as limit.
6593  */
6594 static u64 perf_ustack_task_size(struct pt_regs *regs)
6595 {
6596 	unsigned long addr = perf_user_stack_pointer(regs);
6597 
6598 	if (!addr || addr >= TASK_SIZE)
6599 		return 0;
6600 
6601 	return TASK_SIZE - addr;
6602 }
6603 
6604 static u16
6605 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6606 			struct pt_regs *regs)
6607 {
6608 	u64 task_size;
6609 
6610 	/* No regs, no stack pointer, no dump. */
6611 	if (!regs)
6612 		return 0;
6613 
6614 	/*
6615 	 * Check if we fit in with the requested stack size into the:
6616 	 * - TASK_SIZE
6617 	 *   If we don't, we limit the size to the TASK_SIZE.
6618 	 *
6619 	 * - remaining sample size
6620 	 *   If we don't, we customize the stack size to
6621 	 *   fit in to the remaining sample size.
6622 	 */
6623 
6624 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6625 	stack_size = min(stack_size, (u16) task_size);
6626 
6627 	/* Current header size plus static size and dynamic size. */
6628 	header_size += 2 * sizeof(u64);
6629 
6630 	/* Do we fit in with the current stack dump size? */
6631 	if ((u16) (header_size + stack_size) < header_size) {
6632 		/*
6633 		 * If we overflow the maximum size for the sample,
6634 		 * we customize the stack dump size to fit in.
6635 		 */
6636 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6637 		stack_size = round_up(stack_size, sizeof(u64));
6638 	}
6639 
6640 	return stack_size;
6641 }
6642 
6643 static void
6644 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6645 			  struct pt_regs *regs)
6646 {
6647 	/* Case of a kernel thread, nothing to dump */
6648 	if (!regs) {
6649 		u64 size = 0;
6650 		perf_output_put(handle, size);
6651 	} else {
6652 		unsigned long sp;
6653 		unsigned int rem;
6654 		u64 dyn_size;
6655 		mm_segment_t fs;
6656 
6657 		/*
6658 		 * We dump:
6659 		 * static size
6660 		 *   - the size requested by user or the best one we can fit
6661 		 *     in to the sample max size
6662 		 * data
6663 		 *   - user stack dump data
6664 		 * dynamic size
6665 		 *   - the actual dumped size
6666 		 */
6667 
6668 		/* Static size. */
6669 		perf_output_put(handle, dump_size);
6670 
6671 		/* Data. */
6672 		sp = perf_user_stack_pointer(regs);
6673 		fs = force_uaccess_begin();
6674 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6675 		force_uaccess_end(fs);
6676 		dyn_size = dump_size - rem;
6677 
6678 		perf_output_skip(handle, rem);
6679 
6680 		/* Dynamic size. */
6681 		perf_output_put(handle, dyn_size);
6682 	}
6683 }
6684 
6685 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6686 					  struct perf_sample_data *data,
6687 					  size_t size)
6688 {
6689 	struct perf_event *sampler = event->aux_event;
6690 	struct perf_buffer *rb;
6691 
6692 	data->aux_size = 0;
6693 
6694 	if (!sampler)
6695 		goto out;
6696 
6697 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6698 		goto out;
6699 
6700 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6701 		goto out;
6702 
6703 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6704 	if (!rb)
6705 		goto out;
6706 
6707 	/*
6708 	 * If this is an NMI hit inside sampling code, don't take
6709 	 * the sample. See also perf_aux_sample_output().
6710 	 */
6711 	if (READ_ONCE(rb->aux_in_sampling)) {
6712 		data->aux_size = 0;
6713 	} else {
6714 		size = min_t(size_t, size, perf_aux_size(rb));
6715 		data->aux_size = ALIGN(size, sizeof(u64));
6716 	}
6717 	ring_buffer_put(rb);
6718 
6719 out:
6720 	return data->aux_size;
6721 }
6722 
6723 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6724                                  struct perf_event *event,
6725                                  struct perf_output_handle *handle,
6726                                  unsigned long size)
6727 {
6728 	unsigned long flags;
6729 	long ret;
6730 
6731 	/*
6732 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6733 	 * paths. If we start calling them in NMI context, they may race with
6734 	 * the IRQ ones, that is, for example, re-starting an event that's just
6735 	 * been stopped, which is why we're using a separate callback that
6736 	 * doesn't change the event state.
6737 	 *
6738 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6739 	 */
6740 	local_irq_save(flags);
6741 	/*
6742 	 * Guard against NMI hits inside the critical section;
6743 	 * see also perf_prepare_sample_aux().
6744 	 */
6745 	WRITE_ONCE(rb->aux_in_sampling, 1);
6746 	barrier();
6747 
6748 	ret = event->pmu->snapshot_aux(event, handle, size);
6749 
6750 	barrier();
6751 	WRITE_ONCE(rb->aux_in_sampling, 0);
6752 	local_irq_restore(flags);
6753 
6754 	return ret;
6755 }
6756 
6757 static void perf_aux_sample_output(struct perf_event *event,
6758 				   struct perf_output_handle *handle,
6759 				   struct perf_sample_data *data)
6760 {
6761 	struct perf_event *sampler = event->aux_event;
6762 	struct perf_buffer *rb;
6763 	unsigned long pad;
6764 	long size;
6765 
6766 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6767 		return;
6768 
6769 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6770 	if (!rb)
6771 		return;
6772 
6773 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6774 
6775 	/*
6776 	 * An error here means that perf_output_copy() failed (returned a
6777 	 * non-zero surplus that it didn't copy), which in its current
6778 	 * enlightened implementation is not possible. If that changes, we'd
6779 	 * like to know.
6780 	 */
6781 	if (WARN_ON_ONCE(size < 0))
6782 		goto out_put;
6783 
6784 	/*
6785 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6786 	 * perf_prepare_sample_aux(), so should not be more than that.
6787 	 */
6788 	pad = data->aux_size - size;
6789 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6790 		pad = 8;
6791 
6792 	if (pad) {
6793 		u64 zero = 0;
6794 		perf_output_copy(handle, &zero, pad);
6795 	}
6796 
6797 out_put:
6798 	ring_buffer_put(rb);
6799 }
6800 
6801 static void __perf_event_header__init_id(struct perf_event_header *header,
6802 					 struct perf_sample_data *data,
6803 					 struct perf_event *event)
6804 {
6805 	u64 sample_type = event->attr.sample_type;
6806 
6807 	data->type = sample_type;
6808 	header->size += event->id_header_size;
6809 
6810 	if (sample_type & PERF_SAMPLE_TID) {
6811 		/* namespace issues */
6812 		data->tid_entry.pid = perf_event_pid(event, current);
6813 		data->tid_entry.tid = perf_event_tid(event, current);
6814 	}
6815 
6816 	if (sample_type & PERF_SAMPLE_TIME)
6817 		data->time = perf_event_clock(event);
6818 
6819 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6820 		data->id = primary_event_id(event);
6821 
6822 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6823 		data->stream_id = event->id;
6824 
6825 	if (sample_type & PERF_SAMPLE_CPU) {
6826 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6827 		data->cpu_entry.reserved = 0;
6828 	}
6829 }
6830 
6831 void perf_event_header__init_id(struct perf_event_header *header,
6832 				struct perf_sample_data *data,
6833 				struct perf_event *event)
6834 {
6835 	if (event->attr.sample_id_all)
6836 		__perf_event_header__init_id(header, data, event);
6837 }
6838 
6839 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6840 					   struct perf_sample_data *data)
6841 {
6842 	u64 sample_type = data->type;
6843 
6844 	if (sample_type & PERF_SAMPLE_TID)
6845 		perf_output_put(handle, data->tid_entry);
6846 
6847 	if (sample_type & PERF_SAMPLE_TIME)
6848 		perf_output_put(handle, data->time);
6849 
6850 	if (sample_type & PERF_SAMPLE_ID)
6851 		perf_output_put(handle, data->id);
6852 
6853 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6854 		perf_output_put(handle, data->stream_id);
6855 
6856 	if (sample_type & PERF_SAMPLE_CPU)
6857 		perf_output_put(handle, data->cpu_entry);
6858 
6859 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6860 		perf_output_put(handle, data->id);
6861 }
6862 
6863 void perf_event__output_id_sample(struct perf_event *event,
6864 				  struct perf_output_handle *handle,
6865 				  struct perf_sample_data *sample)
6866 {
6867 	if (event->attr.sample_id_all)
6868 		__perf_event__output_id_sample(handle, sample);
6869 }
6870 
6871 static void perf_output_read_one(struct perf_output_handle *handle,
6872 				 struct perf_event *event,
6873 				 u64 enabled, u64 running)
6874 {
6875 	u64 read_format = event->attr.read_format;
6876 	u64 values[4];
6877 	int n = 0;
6878 
6879 	values[n++] = perf_event_count(event);
6880 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6881 		values[n++] = enabled +
6882 			atomic64_read(&event->child_total_time_enabled);
6883 	}
6884 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6885 		values[n++] = running +
6886 			atomic64_read(&event->child_total_time_running);
6887 	}
6888 	if (read_format & PERF_FORMAT_ID)
6889 		values[n++] = primary_event_id(event);
6890 
6891 	__output_copy(handle, values, n * sizeof(u64));
6892 }
6893 
6894 static void perf_output_read_group(struct perf_output_handle *handle,
6895 			    struct perf_event *event,
6896 			    u64 enabled, u64 running)
6897 {
6898 	struct perf_event *leader = event->group_leader, *sub;
6899 	u64 read_format = event->attr.read_format;
6900 	u64 values[5];
6901 	int n = 0;
6902 
6903 	values[n++] = 1 + leader->nr_siblings;
6904 
6905 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6906 		values[n++] = enabled;
6907 
6908 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6909 		values[n++] = running;
6910 
6911 	if ((leader != event) &&
6912 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6913 		leader->pmu->read(leader);
6914 
6915 	values[n++] = perf_event_count(leader);
6916 	if (read_format & PERF_FORMAT_ID)
6917 		values[n++] = primary_event_id(leader);
6918 
6919 	__output_copy(handle, values, n * sizeof(u64));
6920 
6921 	for_each_sibling_event(sub, leader) {
6922 		n = 0;
6923 
6924 		if ((sub != event) &&
6925 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6926 			sub->pmu->read(sub);
6927 
6928 		values[n++] = perf_event_count(sub);
6929 		if (read_format & PERF_FORMAT_ID)
6930 			values[n++] = primary_event_id(sub);
6931 
6932 		__output_copy(handle, values, n * sizeof(u64));
6933 	}
6934 }
6935 
6936 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6937 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6938 
6939 /*
6940  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6941  *
6942  * The problem is that its both hard and excessively expensive to iterate the
6943  * child list, not to mention that its impossible to IPI the children running
6944  * on another CPU, from interrupt/NMI context.
6945  */
6946 static void perf_output_read(struct perf_output_handle *handle,
6947 			     struct perf_event *event)
6948 {
6949 	u64 enabled = 0, running = 0, now;
6950 	u64 read_format = event->attr.read_format;
6951 
6952 	/*
6953 	 * compute total_time_enabled, total_time_running
6954 	 * based on snapshot values taken when the event
6955 	 * was last scheduled in.
6956 	 *
6957 	 * we cannot simply called update_context_time()
6958 	 * because of locking issue as we are called in
6959 	 * NMI context
6960 	 */
6961 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6962 		calc_timer_values(event, &now, &enabled, &running);
6963 
6964 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6965 		perf_output_read_group(handle, event, enabled, running);
6966 	else
6967 		perf_output_read_one(handle, event, enabled, running);
6968 }
6969 
6970 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6971 {
6972 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6973 }
6974 
6975 void perf_output_sample(struct perf_output_handle *handle,
6976 			struct perf_event_header *header,
6977 			struct perf_sample_data *data,
6978 			struct perf_event *event)
6979 {
6980 	u64 sample_type = data->type;
6981 
6982 	perf_output_put(handle, *header);
6983 
6984 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6985 		perf_output_put(handle, data->id);
6986 
6987 	if (sample_type & PERF_SAMPLE_IP)
6988 		perf_output_put(handle, data->ip);
6989 
6990 	if (sample_type & PERF_SAMPLE_TID)
6991 		perf_output_put(handle, data->tid_entry);
6992 
6993 	if (sample_type & PERF_SAMPLE_TIME)
6994 		perf_output_put(handle, data->time);
6995 
6996 	if (sample_type & PERF_SAMPLE_ADDR)
6997 		perf_output_put(handle, data->addr);
6998 
6999 	if (sample_type & PERF_SAMPLE_ID)
7000 		perf_output_put(handle, data->id);
7001 
7002 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7003 		perf_output_put(handle, data->stream_id);
7004 
7005 	if (sample_type & PERF_SAMPLE_CPU)
7006 		perf_output_put(handle, data->cpu_entry);
7007 
7008 	if (sample_type & PERF_SAMPLE_PERIOD)
7009 		perf_output_put(handle, data->period);
7010 
7011 	if (sample_type & PERF_SAMPLE_READ)
7012 		perf_output_read(handle, event);
7013 
7014 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7015 		int size = 1;
7016 
7017 		size += data->callchain->nr;
7018 		size *= sizeof(u64);
7019 		__output_copy(handle, data->callchain, size);
7020 	}
7021 
7022 	if (sample_type & PERF_SAMPLE_RAW) {
7023 		struct perf_raw_record *raw = data->raw;
7024 
7025 		if (raw) {
7026 			struct perf_raw_frag *frag = &raw->frag;
7027 
7028 			perf_output_put(handle, raw->size);
7029 			do {
7030 				if (frag->copy) {
7031 					__output_custom(handle, frag->copy,
7032 							frag->data, frag->size);
7033 				} else {
7034 					__output_copy(handle, frag->data,
7035 						      frag->size);
7036 				}
7037 				if (perf_raw_frag_last(frag))
7038 					break;
7039 				frag = frag->next;
7040 			} while (1);
7041 			if (frag->pad)
7042 				__output_skip(handle, NULL, frag->pad);
7043 		} else {
7044 			struct {
7045 				u32	size;
7046 				u32	data;
7047 			} raw = {
7048 				.size = sizeof(u32),
7049 				.data = 0,
7050 			};
7051 			perf_output_put(handle, raw);
7052 		}
7053 	}
7054 
7055 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7056 		if (data->br_stack) {
7057 			size_t size;
7058 
7059 			size = data->br_stack->nr
7060 			     * sizeof(struct perf_branch_entry);
7061 
7062 			perf_output_put(handle, data->br_stack->nr);
7063 			if (perf_sample_save_hw_index(event))
7064 				perf_output_put(handle, data->br_stack->hw_idx);
7065 			perf_output_copy(handle, data->br_stack->entries, size);
7066 		} else {
7067 			/*
7068 			 * we always store at least the value of nr
7069 			 */
7070 			u64 nr = 0;
7071 			perf_output_put(handle, nr);
7072 		}
7073 	}
7074 
7075 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7076 		u64 abi = data->regs_user.abi;
7077 
7078 		/*
7079 		 * If there are no regs to dump, notice it through
7080 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7081 		 */
7082 		perf_output_put(handle, abi);
7083 
7084 		if (abi) {
7085 			u64 mask = event->attr.sample_regs_user;
7086 			perf_output_sample_regs(handle,
7087 						data->regs_user.regs,
7088 						mask);
7089 		}
7090 	}
7091 
7092 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7093 		perf_output_sample_ustack(handle,
7094 					  data->stack_user_size,
7095 					  data->regs_user.regs);
7096 	}
7097 
7098 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7099 		perf_output_put(handle, data->weight.full);
7100 
7101 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7102 		perf_output_put(handle, data->data_src.val);
7103 
7104 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7105 		perf_output_put(handle, data->txn);
7106 
7107 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7108 		u64 abi = data->regs_intr.abi;
7109 		/*
7110 		 * If there are no regs to dump, notice it through
7111 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7112 		 */
7113 		perf_output_put(handle, abi);
7114 
7115 		if (abi) {
7116 			u64 mask = event->attr.sample_regs_intr;
7117 
7118 			perf_output_sample_regs(handle,
7119 						data->regs_intr.regs,
7120 						mask);
7121 		}
7122 	}
7123 
7124 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7125 		perf_output_put(handle, data->phys_addr);
7126 
7127 	if (sample_type & PERF_SAMPLE_CGROUP)
7128 		perf_output_put(handle, data->cgroup);
7129 
7130 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7131 		perf_output_put(handle, data->data_page_size);
7132 
7133 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7134 		perf_output_put(handle, data->code_page_size);
7135 
7136 	if (sample_type & PERF_SAMPLE_AUX) {
7137 		perf_output_put(handle, data->aux_size);
7138 
7139 		if (data->aux_size)
7140 			perf_aux_sample_output(event, handle, data);
7141 	}
7142 
7143 	if (!event->attr.watermark) {
7144 		int wakeup_events = event->attr.wakeup_events;
7145 
7146 		if (wakeup_events) {
7147 			struct perf_buffer *rb = handle->rb;
7148 			int events = local_inc_return(&rb->events);
7149 
7150 			if (events >= wakeup_events) {
7151 				local_sub(wakeup_events, &rb->events);
7152 				local_inc(&rb->wakeup);
7153 			}
7154 		}
7155 	}
7156 }
7157 
7158 static u64 perf_virt_to_phys(u64 virt)
7159 {
7160 	u64 phys_addr = 0;
7161 
7162 	if (!virt)
7163 		return 0;
7164 
7165 	if (virt >= TASK_SIZE) {
7166 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7167 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7168 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7169 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7170 	} else {
7171 		/*
7172 		 * Walking the pages tables for user address.
7173 		 * Interrupts are disabled, so it prevents any tear down
7174 		 * of the page tables.
7175 		 * Try IRQ-safe get_user_page_fast_only first.
7176 		 * If failed, leave phys_addr as 0.
7177 		 */
7178 		if (current->mm != NULL) {
7179 			struct page *p;
7180 
7181 			pagefault_disable();
7182 			if (get_user_page_fast_only(virt, 0, &p)) {
7183 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7184 				put_page(p);
7185 			}
7186 			pagefault_enable();
7187 		}
7188 	}
7189 
7190 	return phys_addr;
7191 }
7192 
7193 /*
7194  * Return the pagetable size of a given virtual address.
7195  */
7196 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7197 {
7198 	u64 size = 0;
7199 
7200 #ifdef CONFIG_HAVE_FAST_GUP
7201 	pgd_t *pgdp, pgd;
7202 	p4d_t *p4dp, p4d;
7203 	pud_t *pudp, pud;
7204 	pmd_t *pmdp, pmd;
7205 	pte_t *ptep, pte;
7206 
7207 	pgdp = pgd_offset(mm, addr);
7208 	pgd = READ_ONCE(*pgdp);
7209 	if (pgd_none(pgd))
7210 		return 0;
7211 
7212 	if (pgd_leaf(pgd))
7213 		return pgd_leaf_size(pgd);
7214 
7215 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7216 	p4d = READ_ONCE(*p4dp);
7217 	if (!p4d_present(p4d))
7218 		return 0;
7219 
7220 	if (p4d_leaf(p4d))
7221 		return p4d_leaf_size(p4d);
7222 
7223 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7224 	pud = READ_ONCE(*pudp);
7225 	if (!pud_present(pud))
7226 		return 0;
7227 
7228 	if (pud_leaf(pud))
7229 		return pud_leaf_size(pud);
7230 
7231 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7232 	pmd = READ_ONCE(*pmdp);
7233 	if (!pmd_present(pmd))
7234 		return 0;
7235 
7236 	if (pmd_leaf(pmd))
7237 		return pmd_leaf_size(pmd);
7238 
7239 	ptep = pte_offset_map(&pmd, addr);
7240 	pte = ptep_get_lockless(ptep);
7241 	if (pte_present(pte))
7242 		size = pte_leaf_size(pte);
7243 	pte_unmap(ptep);
7244 #endif /* CONFIG_HAVE_FAST_GUP */
7245 
7246 	return size;
7247 }
7248 
7249 static u64 perf_get_page_size(unsigned long addr)
7250 {
7251 	struct mm_struct *mm;
7252 	unsigned long flags;
7253 	u64 size;
7254 
7255 	if (!addr)
7256 		return 0;
7257 
7258 	/*
7259 	 * Software page-table walkers must disable IRQs,
7260 	 * which prevents any tear down of the page tables.
7261 	 */
7262 	local_irq_save(flags);
7263 
7264 	mm = current->mm;
7265 	if (!mm) {
7266 		/*
7267 		 * For kernel threads and the like, use init_mm so that
7268 		 * we can find kernel memory.
7269 		 */
7270 		mm = &init_mm;
7271 	}
7272 
7273 	size = perf_get_pgtable_size(mm, addr);
7274 
7275 	local_irq_restore(flags);
7276 
7277 	return size;
7278 }
7279 
7280 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7281 
7282 struct perf_callchain_entry *
7283 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7284 {
7285 	bool kernel = !event->attr.exclude_callchain_kernel;
7286 	bool user   = !event->attr.exclude_callchain_user;
7287 	/* Disallow cross-task user callchains. */
7288 	bool crosstask = event->ctx->task && event->ctx->task != current;
7289 	const u32 max_stack = event->attr.sample_max_stack;
7290 	struct perf_callchain_entry *callchain;
7291 
7292 	if (!kernel && !user)
7293 		return &__empty_callchain;
7294 
7295 	callchain = get_perf_callchain(regs, 0, kernel, user,
7296 				       max_stack, crosstask, true);
7297 	return callchain ?: &__empty_callchain;
7298 }
7299 
7300 void perf_prepare_sample(struct perf_event_header *header,
7301 			 struct perf_sample_data *data,
7302 			 struct perf_event *event,
7303 			 struct pt_regs *regs)
7304 {
7305 	u64 sample_type = event->attr.sample_type;
7306 
7307 	header->type = PERF_RECORD_SAMPLE;
7308 	header->size = sizeof(*header) + event->header_size;
7309 
7310 	header->misc = 0;
7311 	header->misc |= perf_misc_flags(regs);
7312 
7313 	__perf_event_header__init_id(header, data, event);
7314 
7315 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7316 		data->ip = perf_instruction_pointer(regs);
7317 
7318 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7319 		int size = 1;
7320 
7321 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7322 			data->callchain = perf_callchain(event, regs);
7323 
7324 		size += data->callchain->nr;
7325 
7326 		header->size += size * sizeof(u64);
7327 	}
7328 
7329 	if (sample_type & PERF_SAMPLE_RAW) {
7330 		struct perf_raw_record *raw = data->raw;
7331 		int size;
7332 
7333 		if (raw) {
7334 			struct perf_raw_frag *frag = &raw->frag;
7335 			u32 sum = 0;
7336 
7337 			do {
7338 				sum += frag->size;
7339 				if (perf_raw_frag_last(frag))
7340 					break;
7341 				frag = frag->next;
7342 			} while (1);
7343 
7344 			size = round_up(sum + sizeof(u32), sizeof(u64));
7345 			raw->size = size - sizeof(u32);
7346 			frag->pad = raw->size - sum;
7347 		} else {
7348 			size = sizeof(u64);
7349 		}
7350 
7351 		header->size += size;
7352 	}
7353 
7354 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7355 		int size = sizeof(u64); /* nr */
7356 		if (data->br_stack) {
7357 			if (perf_sample_save_hw_index(event))
7358 				size += sizeof(u64);
7359 
7360 			size += data->br_stack->nr
7361 			      * sizeof(struct perf_branch_entry);
7362 		}
7363 		header->size += size;
7364 	}
7365 
7366 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7367 		perf_sample_regs_user(&data->regs_user, regs);
7368 
7369 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7370 		/* regs dump ABI info */
7371 		int size = sizeof(u64);
7372 
7373 		if (data->regs_user.regs) {
7374 			u64 mask = event->attr.sample_regs_user;
7375 			size += hweight64(mask) * sizeof(u64);
7376 		}
7377 
7378 		header->size += size;
7379 	}
7380 
7381 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7382 		/*
7383 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7384 		 * processed as the last one or have additional check added
7385 		 * in case new sample type is added, because we could eat
7386 		 * up the rest of the sample size.
7387 		 */
7388 		u16 stack_size = event->attr.sample_stack_user;
7389 		u16 size = sizeof(u64);
7390 
7391 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7392 						     data->regs_user.regs);
7393 
7394 		/*
7395 		 * If there is something to dump, add space for the dump
7396 		 * itself and for the field that tells the dynamic size,
7397 		 * which is how many have been actually dumped.
7398 		 */
7399 		if (stack_size)
7400 			size += sizeof(u64) + stack_size;
7401 
7402 		data->stack_user_size = stack_size;
7403 		header->size += size;
7404 	}
7405 
7406 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7407 		/* regs dump ABI info */
7408 		int size = sizeof(u64);
7409 
7410 		perf_sample_regs_intr(&data->regs_intr, regs);
7411 
7412 		if (data->regs_intr.regs) {
7413 			u64 mask = event->attr.sample_regs_intr;
7414 
7415 			size += hweight64(mask) * sizeof(u64);
7416 		}
7417 
7418 		header->size += size;
7419 	}
7420 
7421 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7422 		data->phys_addr = perf_virt_to_phys(data->addr);
7423 
7424 #ifdef CONFIG_CGROUP_PERF
7425 	if (sample_type & PERF_SAMPLE_CGROUP) {
7426 		struct cgroup *cgrp;
7427 
7428 		/* protected by RCU */
7429 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7430 		data->cgroup = cgroup_id(cgrp);
7431 	}
7432 #endif
7433 
7434 	/*
7435 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7436 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7437 	 * but the value will not dump to the userspace.
7438 	 */
7439 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7440 		data->data_page_size = perf_get_page_size(data->addr);
7441 
7442 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7443 		data->code_page_size = perf_get_page_size(data->ip);
7444 
7445 	if (sample_type & PERF_SAMPLE_AUX) {
7446 		u64 size;
7447 
7448 		header->size += sizeof(u64); /* size */
7449 
7450 		/*
7451 		 * Given the 16bit nature of header::size, an AUX sample can
7452 		 * easily overflow it, what with all the preceding sample bits.
7453 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7454 		 * per sample in total (rounded down to 8 byte boundary).
7455 		 */
7456 		size = min_t(size_t, U16_MAX - header->size,
7457 			     event->attr.aux_sample_size);
7458 		size = rounddown(size, 8);
7459 		size = perf_prepare_sample_aux(event, data, size);
7460 
7461 		WARN_ON_ONCE(size + header->size > U16_MAX);
7462 		header->size += size;
7463 	}
7464 	/*
7465 	 * If you're adding more sample types here, you likely need to do
7466 	 * something about the overflowing header::size, like repurpose the
7467 	 * lowest 3 bits of size, which should be always zero at the moment.
7468 	 * This raises a more important question, do we really need 512k sized
7469 	 * samples and why, so good argumentation is in order for whatever you
7470 	 * do here next.
7471 	 */
7472 	WARN_ON_ONCE(header->size & 7);
7473 }
7474 
7475 static __always_inline int
7476 __perf_event_output(struct perf_event *event,
7477 		    struct perf_sample_data *data,
7478 		    struct pt_regs *regs,
7479 		    int (*output_begin)(struct perf_output_handle *,
7480 					struct perf_sample_data *,
7481 					struct perf_event *,
7482 					unsigned int))
7483 {
7484 	struct perf_output_handle handle;
7485 	struct perf_event_header header;
7486 	int err;
7487 
7488 	/* protect the callchain buffers */
7489 	rcu_read_lock();
7490 
7491 	perf_prepare_sample(&header, data, event, regs);
7492 
7493 	err = output_begin(&handle, data, event, header.size);
7494 	if (err)
7495 		goto exit;
7496 
7497 	perf_output_sample(&handle, &header, data, event);
7498 
7499 	perf_output_end(&handle);
7500 
7501 exit:
7502 	rcu_read_unlock();
7503 	return err;
7504 }
7505 
7506 void
7507 perf_event_output_forward(struct perf_event *event,
7508 			 struct perf_sample_data *data,
7509 			 struct pt_regs *regs)
7510 {
7511 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7512 }
7513 
7514 void
7515 perf_event_output_backward(struct perf_event *event,
7516 			   struct perf_sample_data *data,
7517 			   struct pt_regs *regs)
7518 {
7519 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7520 }
7521 
7522 int
7523 perf_event_output(struct perf_event *event,
7524 		  struct perf_sample_data *data,
7525 		  struct pt_regs *regs)
7526 {
7527 	return __perf_event_output(event, data, regs, perf_output_begin);
7528 }
7529 
7530 /*
7531  * read event_id
7532  */
7533 
7534 struct perf_read_event {
7535 	struct perf_event_header	header;
7536 
7537 	u32				pid;
7538 	u32				tid;
7539 };
7540 
7541 static void
7542 perf_event_read_event(struct perf_event *event,
7543 			struct task_struct *task)
7544 {
7545 	struct perf_output_handle handle;
7546 	struct perf_sample_data sample;
7547 	struct perf_read_event read_event = {
7548 		.header = {
7549 			.type = PERF_RECORD_READ,
7550 			.misc = 0,
7551 			.size = sizeof(read_event) + event->read_size,
7552 		},
7553 		.pid = perf_event_pid(event, task),
7554 		.tid = perf_event_tid(event, task),
7555 	};
7556 	int ret;
7557 
7558 	perf_event_header__init_id(&read_event.header, &sample, event);
7559 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7560 	if (ret)
7561 		return;
7562 
7563 	perf_output_put(&handle, read_event);
7564 	perf_output_read(&handle, event);
7565 	perf_event__output_id_sample(event, &handle, &sample);
7566 
7567 	perf_output_end(&handle);
7568 }
7569 
7570 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7571 
7572 static void
7573 perf_iterate_ctx(struct perf_event_context *ctx,
7574 		   perf_iterate_f output,
7575 		   void *data, bool all)
7576 {
7577 	struct perf_event *event;
7578 
7579 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7580 		if (!all) {
7581 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7582 				continue;
7583 			if (!event_filter_match(event))
7584 				continue;
7585 		}
7586 
7587 		output(event, data);
7588 	}
7589 }
7590 
7591 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7592 {
7593 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7594 	struct perf_event *event;
7595 
7596 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7597 		/*
7598 		 * Skip events that are not fully formed yet; ensure that
7599 		 * if we observe event->ctx, both event and ctx will be
7600 		 * complete enough. See perf_install_in_context().
7601 		 */
7602 		if (!smp_load_acquire(&event->ctx))
7603 			continue;
7604 
7605 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7606 			continue;
7607 		if (!event_filter_match(event))
7608 			continue;
7609 		output(event, data);
7610 	}
7611 }
7612 
7613 /*
7614  * Iterate all events that need to receive side-band events.
7615  *
7616  * For new callers; ensure that account_pmu_sb_event() includes
7617  * your event, otherwise it might not get delivered.
7618  */
7619 static void
7620 perf_iterate_sb(perf_iterate_f output, void *data,
7621 	       struct perf_event_context *task_ctx)
7622 {
7623 	struct perf_event_context *ctx;
7624 	int ctxn;
7625 
7626 	rcu_read_lock();
7627 	preempt_disable();
7628 
7629 	/*
7630 	 * If we have task_ctx != NULL we only notify the task context itself.
7631 	 * The task_ctx is set only for EXIT events before releasing task
7632 	 * context.
7633 	 */
7634 	if (task_ctx) {
7635 		perf_iterate_ctx(task_ctx, output, data, false);
7636 		goto done;
7637 	}
7638 
7639 	perf_iterate_sb_cpu(output, data);
7640 
7641 	for_each_task_context_nr(ctxn) {
7642 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7643 		if (ctx)
7644 			perf_iterate_ctx(ctx, output, data, false);
7645 	}
7646 done:
7647 	preempt_enable();
7648 	rcu_read_unlock();
7649 }
7650 
7651 /*
7652  * Clear all file-based filters at exec, they'll have to be
7653  * re-instated when/if these objects are mmapped again.
7654  */
7655 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7656 {
7657 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7658 	struct perf_addr_filter *filter;
7659 	unsigned int restart = 0, count = 0;
7660 	unsigned long flags;
7661 
7662 	if (!has_addr_filter(event))
7663 		return;
7664 
7665 	raw_spin_lock_irqsave(&ifh->lock, flags);
7666 	list_for_each_entry(filter, &ifh->list, entry) {
7667 		if (filter->path.dentry) {
7668 			event->addr_filter_ranges[count].start = 0;
7669 			event->addr_filter_ranges[count].size = 0;
7670 			restart++;
7671 		}
7672 
7673 		count++;
7674 	}
7675 
7676 	if (restart)
7677 		event->addr_filters_gen++;
7678 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7679 
7680 	if (restart)
7681 		perf_event_stop(event, 1);
7682 }
7683 
7684 void perf_event_exec(void)
7685 {
7686 	struct perf_event_context *ctx;
7687 	int ctxn;
7688 
7689 	for_each_task_context_nr(ctxn) {
7690 		perf_event_enable_on_exec(ctxn);
7691 		perf_event_remove_on_exec(ctxn);
7692 
7693 		rcu_read_lock();
7694 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7695 		if (ctx) {
7696 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7697 					 NULL, true);
7698 		}
7699 		rcu_read_unlock();
7700 	}
7701 }
7702 
7703 struct remote_output {
7704 	struct perf_buffer	*rb;
7705 	int			err;
7706 };
7707 
7708 static void __perf_event_output_stop(struct perf_event *event, void *data)
7709 {
7710 	struct perf_event *parent = event->parent;
7711 	struct remote_output *ro = data;
7712 	struct perf_buffer *rb = ro->rb;
7713 	struct stop_event_data sd = {
7714 		.event	= event,
7715 	};
7716 
7717 	if (!has_aux(event))
7718 		return;
7719 
7720 	if (!parent)
7721 		parent = event;
7722 
7723 	/*
7724 	 * In case of inheritance, it will be the parent that links to the
7725 	 * ring-buffer, but it will be the child that's actually using it.
7726 	 *
7727 	 * We are using event::rb to determine if the event should be stopped,
7728 	 * however this may race with ring_buffer_attach() (through set_output),
7729 	 * which will make us skip the event that actually needs to be stopped.
7730 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7731 	 * its rb pointer.
7732 	 */
7733 	if (rcu_dereference(parent->rb) == rb)
7734 		ro->err = __perf_event_stop(&sd);
7735 }
7736 
7737 static int __perf_pmu_output_stop(void *info)
7738 {
7739 	struct perf_event *event = info;
7740 	struct pmu *pmu = event->ctx->pmu;
7741 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7742 	struct remote_output ro = {
7743 		.rb	= event->rb,
7744 	};
7745 
7746 	rcu_read_lock();
7747 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7748 	if (cpuctx->task_ctx)
7749 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7750 				   &ro, false);
7751 	rcu_read_unlock();
7752 
7753 	return ro.err;
7754 }
7755 
7756 static void perf_pmu_output_stop(struct perf_event *event)
7757 {
7758 	struct perf_event *iter;
7759 	int err, cpu;
7760 
7761 restart:
7762 	rcu_read_lock();
7763 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7764 		/*
7765 		 * For per-CPU events, we need to make sure that neither they
7766 		 * nor their children are running; for cpu==-1 events it's
7767 		 * sufficient to stop the event itself if it's active, since
7768 		 * it can't have children.
7769 		 */
7770 		cpu = iter->cpu;
7771 		if (cpu == -1)
7772 			cpu = READ_ONCE(iter->oncpu);
7773 
7774 		if (cpu == -1)
7775 			continue;
7776 
7777 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7778 		if (err == -EAGAIN) {
7779 			rcu_read_unlock();
7780 			goto restart;
7781 		}
7782 	}
7783 	rcu_read_unlock();
7784 }
7785 
7786 /*
7787  * task tracking -- fork/exit
7788  *
7789  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7790  */
7791 
7792 struct perf_task_event {
7793 	struct task_struct		*task;
7794 	struct perf_event_context	*task_ctx;
7795 
7796 	struct {
7797 		struct perf_event_header	header;
7798 
7799 		u32				pid;
7800 		u32				ppid;
7801 		u32				tid;
7802 		u32				ptid;
7803 		u64				time;
7804 	} event_id;
7805 };
7806 
7807 static int perf_event_task_match(struct perf_event *event)
7808 {
7809 	return event->attr.comm  || event->attr.mmap ||
7810 	       event->attr.mmap2 || event->attr.mmap_data ||
7811 	       event->attr.task;
7812 }
7813 
7814 static void perf_event_task_output(struct perf_event *event,
7815 				   void *data)
7816 {
7817 	struct perf_task_event *task_event = data;
7818 	struct perf_output_handle handle;
7819 	struct perf_sample_data	sample;
7820 	struct task_struct *task = task_event->task;
7821 	int ret, size = task_event->event_id.header.size;
7822 
7823 	if (!perf_event_task_match(event))
7824 		return;
7825 
7826 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7827 
7828 	ret = perf_output_begin(&handle, &sample, event,
7829 				task_event->event_id.header.size);
7830 	if (ret)
7831 		goto out;
7832 
7833 	task_event->event_id.pid = perf_event_pid(event, task);
7834 	task_event->event_id.tid = perf_event_tid(event, task);
7835 
7836 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7837 		task_event->event_id.ppid = perf_event_pid(event,
7838 							task->real_parent);
7839 		task_event->event_id.ptid = perf_event_pid(event,
7840 							task->real_parent);
7841 	} else {  /* PERF_RECORD_FORK */
7842 		task_event->event_id.ppid = perf_event_pid(event, current);
7843 		task_event->event_id.ptid = perf_event_tid(event, current);
7844 	}
7845 
7846 	task_event->event_id.time = perf_event_clock(event);
7847 
7848 	perf_output_put(&handle, task_event->event_id);
7849 
7850 	perf_event__output_id_sample(event, &handle, &sample);
7851 
7852 	perf_output_end(&handle);
7853 out:
7854 	task_event->event_id.header.size = size;
7855 }
7856 
7857 static void perf_event_task(struct task_struct *task,
7858 			      struct perf_event_context *task_ctx,
7859 			      int new)
7860 {
7861 	struct perf_task_event task_event;
7862 
7863 	if (!atomic_read(&nr_comm_events) &&
7864 	    !atomic_read(&nr_mmap_events) &&
7865 	    !atomic_read(&nr_task_events))
7866 		return;
7867 
7868 	task_event = (struct perf_task_event){
7869 		.task	  = task,
7870 		.task_ctx = task_ctx,
7871 		.event_id    = {
7872 			.header = {
7873 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7874 				.misc = 0,
7875 				.size = sizeof(task_event.event_id),
7876 			},
7877 			/* .pid  */
7878 			/* .ppid */
7879 			/* .tid  */
7880 			/* .ptid */
7881 			/* .time */
7882 		},
7883 	};
7884 
7885 	perf_iterate_sb(perf_event_task_output,
7886 		       &task_event,
7887 		       task_ctx);
7888 }
7889 
7890 void perf_event_fork(struct task_struct *task)
7891 {
7892 	perf_event_task(task, NULL, 1);
7893 	perf_event_namespaces(task);
7894 }
7895 
7896 /*
7897  * comm tracking
7898  */
7899 
7900 struct perf_comm_event {
7901 	struct task_struct	*task;
7902 	char			*comm;
7903 	int			comm_size;
7904 
7905 	struct {
7906 		struct perf_event_header	header;
7907 
7908 		u32				pid;
7909 		u32				tid;
7910 	} event_id;
7911 };
7912 
7913 static int perf_event_comm_match(struct perf_event *event)
7914 {
7915 	return event->attr.comm;
7916 }
7917 
7918 static void perf_event_comm_output(struct perf_event *event,
7919 				   void *data)
7920 {
7921 	struct perf_comm_event *comm_event = data;
7922 	struct perf_output_handle handle;
7923 	struct perf_sample_data sample;
7924 	int size = comm_event->event_id.header.size;
7925 	int ret;
7926 
7927 	if (!perf_event_comm_match(event))
7928 		return;
7929 
7930 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7931 	ret = perf_output_begin(&handle, &sample, event,
7932 				comm_event->event_id.header.size);
7933 
7934 	if (ret)
7935 		goto out;
7936 
7937 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7938 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7939 
7940 	perf_output_put(&handle, comm_event->event_id);
7941 	__output_copy(&handle, comm_event->comm,
7942 				   comm_event->comm_size);
7943 
7944 	perf_event__output_id_sample(event, &handle, &sample);
7945 
7946 	perf_output_end(&handle);
7947 out:
7948 	comm_event->event_id.header.size = size;
7949 }
7950 
7951 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7952 {
7953 	char comm[TASK_COMM_LEN];
7954 	unsigned int size;
7955 
7956 	memset(comm, 0, sizeof(comm));
7957 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7958 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7959 
7960 	comm_event->comm = comm;
7961 	comm_event->comm_size = size;
7962 
7963 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7964 
7965 	perf_iterate_sb(perf_event_comm_output,
7966 		       comm_event,
7967 		       NULL);
7968 }
7969 
7970 void perf_event_comm(struct task_struct *task, bool exec)
7971 {
7972 	struct perf_comm_event comm_event;
7973 
7974 	if (!atomic_read(&nr_comm_events))
7975 		return;
7976 
7977 	comm_event = (struct perf_comm_event){
7978 		.task	= task,
7979 		/* .comm      */
7980 		/* .comm_size */
7981 		.event_id  = {
7982 			.header = {
7983 				.type = PERF_RECORD_COMM,
7984 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7985 				/* .size */
7986 			},
7987 			/* .pid */
7988 			/* .tid */
7989 		},
7990 	};
7991 
7992 	perf_event_comm_event(&comm_event);
7993 }
7994 
7995 /*
7996  * namespaces tracking
7997  */
7998 
7999 struct perf_namespaces_event {
8000 	struct task_struct		*task;
8001 
8002 	struct {
8003 		struct perf_event_header	header;
8004 
8005 		u32				pid;
8006 		u32				tid;
8007 		u64				nr_namespaces;
8008 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8009 	} event_id;
8010 };
8011 
8012 static int perf_event_namespaces_match(struct perf_event *event)
8013 {
8014 	return event->attr.namespaces;
8015 }
8016 
8017 static void perf_event_namespaces_output(struct perf_event *event,
8018 					 void *data)
8019 {
8020 	struct perf_namespaces_event *namespaces_event = data;
8021 	struct perf_output_handle handle;
8022 	struct perf_sample_data sample;
8023 	u16 header_size = namespaces_event->event_id.header.size;
8024 	int ret;
8025 
8026 	if (!perf_event_namespaces_match(event))
8027 		return;
8028 
8029 	perf_event_header__init_id(&namespaces_event->event_id.header,
8030 				   &sample, event);
8031 	ret = perf_output_begin(&handle, &sample, event,
8032 				namespaces_event->event_id.header.size);
8033 	if (ret)
8034 		goto out;
8035 
8036 	namespaces_event->event_id.pid = perf_event_pid(event,
8037 							namespaces_event->task);
8038 	namespaces_event->event_id.tid = perf_event_tid(event,
8039 							namespaces_event->task);
8040 
8041 	perf_output_put(&handle, namespaces_event->event_id);
8042 
8043 	perf_event__output_id_sample(event, &handle, &sample);
8044 
8045 	perf_output_end(&handle);
8046 out:
8047 	namespaces_event->event_id.header.size = header_size;
8048 }
8049 
8050 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8051 				   struct task_struct *task,
8052 				   const struct proc_ns_operations *ns_ops)
8053 {
8054 	struct path ns_path;
8055 	struct inode *ns_inode;
8056 	int error;
8057 
8058 	error = ns_get_path(&ns_path, task, ns_ops);
8059 	if (!error) {
8060 		ns_inode = ns_path.dentry->d_inode;
8061 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8062 		ns_link_info->ino = ns_inode->i_ino;
8063 		path_put(&ns_path);
8064 	}
8065 }
8066 
8067 void perf_event_namespaces(struct task_struct *task)
8068 {
8069 	struct perf_namespaces_event namespaces_event;
8070 	struct perf_ns_link_info *ns_link_info;
8071 
8072 	if (!atomic_read(&nr_namespaces_events))
8073 		return;
8074 
8075 	namespaces_event = (struct perf_namespaces_event){
8076 		.task	= task,
8077 		.event_id  = {
8078 			.header = {
8079 				.type = PERF_RECORD_NAMESPACES,
8080 				.misc = 0,
8081 				.size = sizeof(namespaces_event.event_id),
8082 			},
8083 			/* .pid */
8084 			/* .tid */
8085 			.nr_namespaces = NR_NAMESPACES,
8086 			/* .link_info[NR_NAMESPACES] */
8087 		},
8088 	};
8089 
8090 	ns_link_info = namespaces_event.event_id.link_info;
8091 
8092 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8093 			       task, &mntns_operations);
8094 
8095 #ifdef CONFIG_USER_NS
8096 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8097 			       task, &userns_operations);
8098 #endif
8099 #ifdef CONFIG_NET_NS
8100 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8101 			       task, &netns_operations);
8102 #endif
8103 #ifdef CONFIG_UTS_NS
8104 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8105 			       task, &utsns_operations);
8106 #endif
8107 #ifdef CONFIG_IPC_NS
8108 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8109 			       task, &ipcns_operations);
8110 #endif
8111 #ifdef CONFIG_PID_NS
8112 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8113 			       task, &pidns_operations);
8114 #endif
8115 #ifdef CONFIG_CGROUPS
8116 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8117 			       task, &cgroupns_operations);
8118 #endif
8119 
8120 	perf_iterate_sb(perf_event_namespaces_output,
8121 			&namespaces_event,
8122 			NULL);
8123 }
8124 
8125 /*
8126  * cgroup tracking
8127  */
8128 #ifdef CONFIG_CGROUP_PERF
8129 
8130 struct perf_cgroup_event {
8131 	char				*path;
8132 	int				path_size;
8133 	struct {
8134 		struct perf_event_header	header;
8135 		u64				id;
8136 		char				path[];
8137 	} event_id;
8138 };
8139 
8140 static int perf_event_cgroup_match(struct perf_event *event)
8141 {
8142 	return event->attr.cgroup;
8143 }
8144 
8145 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8146 {
8147 	struct perf_cgroup_event *cgroup_event = data;
8148 	struct perf_output_handle handle;
8149 	struct perf_sample_data sample;
8150 	u16 header_size = cgroup_event->event_id.header.size;
8151 	int ret;
8152 
8153 	if (!perf_event_cgroup_match(event))
8154 		return;
8155 
8156 	perf_event_header__init_id(&cgroup_event->event_id.header,
8157 				   &sample, event);
8158 	ret = perf_output_begin(&handle, &sample, event,
8159 				cgroup_event->event_id.header.size);
8160 	if (ret)
8161 		goto out;
8162 
8163 	perf_output_put(&handle, cgroup_event->event_id);
8164 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8165 
8166 	perf_event__output_id_sample(event, &handle, &sample);
8167 
8168 	perf_output_end(&handle);
8169 out:
8170 	cgroup_event->event_id.header.size = header_size;
8171 }
8172 
8173 static void perf_event_cgroup(struct cgroup *cgrp)
8174 {
8175 	struct perf_cgroup_event cgroup_event;
8176 	char path_enomem[16] = "//enomem";
8177 	char *pathname;
8178 	size_t size;
8179 
8180 	if (!atomic_read(&nr_cgroup_events))
8181 		return;
8182 
8183 	cgroup_event = (struct perf_cgroup_event){
8184 		.event_id  = {
8185 			.header = {
8186 				.type = PERF_RECORD_CGROUP,
8187 				.misc = 0,
8188 				.size = sizeof(cgroup_event.event_id),
8189 			},
8190 			.id = cgroup_id(cgrp),
8191 		},
8192 	};
8193 
8194 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8195 	if (pathname == NULL) {
8196 		cgroup_event.path = path_enomem;
8197 	} else {
8198 		/* just to be sure to have enough space for alignment */
8199 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8200 		cgroup_event.path = pathname;
8201 	}
8202 
8203 	/*
8204 	 * Since our buffer works in 8 byte units we need to align our string
8205 	 * size to a multiple of 8. However, we must guarantee the tail end is
8206 	 * zero'd out to avoid leaking random bits to userspace.
8207 	 */
8208 	size = strlen(cgroup_event.path) + 1;
8209 	while (!IS_ALIGNED(size, sizeof(u64)))
8210 		cgroup_event.path[size++] = '\0';
8211 
8212 	cgroup_event.event_id.header.size += size;
8213 	cgroup_event.path_size = size;
8214 
8215 	perf_iterate_sb(perf_event_cgroup_output,
8216 			&cgroup_event,
8217 			NULL);
8218 
8219 	kfree(pathname);
8220 }
8221 
8222 #endif
8223 
8224 /*
8225  * mmap tracking
8226  */
8227 
8228 struct perf_mmap_event {
8229 	struct vm_area_struct	*vma;
8230 
8231 	const char		*file_name;
8232 	int			file_size;
8233 	int			maj, min;
8234 	u64			ino;
8235 	u64			ino_generation;
8236 	u32			prot, flags;
8237 	u8			build_id[BUILD_ID_SIZE_MAX];
8238 	u32			build_id_size;
8239 
8240 	struct {
8241 		struct perf_event_header	header;
8242 
8243 		u32				pid;
8244 		u32				tid;
8245 		u64				start;
8246 		u64				len;
8247 		u64				pgoff;
8248 	} event_id;
8249 };
8250 
8251 static int perf_event_mmap_match(struct perf_event *event,
8252 				 void *data)
8253 {
8254 	struct perf_mmap_event *mmap_event = data;
8255 	struct vm_area_struct *vma = mmap_event->vma;
8256 	int executable = vma->vm_flags & VM_EXEC;
8257 
8258 	return (!executable && event->attr.mmap_data) ||
8259 	       (executable && (event->attr.mmap || event->attr.mmap2));
8260 }
8261 
8262 static void perf_event_mmap_output(struct perf_event *event,
8263 				   void *data)
8264 {
8265 	struct perf_mmap_event *mmap_event = data;
8266 	struct perf_output_handle handle;
8267 	struct perf_sample_data sample;
8268 	int size = mmap_event->event_id.header.size;
8269 	u32 type = mmap_event->event_id.header.type;
8270 	bool use_build_id;
8271 	int ret;
8272 
8273 	if (!perf_event_mmap_match(event, data))
8274 		return;
8275 
8276 	if (event->attr.mmap2) {
8277 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8278 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8279 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8280 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8281 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8282 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8283 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8284 	}
8285 
8286 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8287 	ret = perf_output_begin(&handle, &sample, event,
8288 				mmap_event->event_id.header.size);
8289 	if (ret)
8290 		goto out;
8291 
8292 	mmap_event->event_id.pid = perf_event_pid(event, current);
8293 	mmap_event->event_id.tid = perf_event_tid(event, current);
8294 
8295 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8296 
8297 	if (event->attr.mmap2 && use_build_id)
8298 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8299 
8300 	perf_output_put(&handle, mmap_event->event_id);
8301 
8302 	if (event->attr.mmap2) {
8303 		if (use_build_id) {
8304 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8305 
8306 			__output_copy(&handle, size, 4);
8307 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8308 		} else {
8309 			perf_output_put(&handle, mmap_event->maj);
8310 			perf_output_put(&handle, mmap_event->min);
8311 			perf_output_put(&handle, mmap_event->ino);
8312 			perf_output_put(&handle, mmap_event->ino_generation);
8313 		}
8314 		perf_output_put(&handle, mmap_event->prot);
8315 		perf_output_put(&handle, mmap_event->flags);
8316 	}
8317 
8318 	__output_copy(&handle, mmap_event->file_name,
8319 				   mmap_event->file_size);
8320 
8321 	perf_event__output_id_sample(event, &handle, &sample);
8322 
8323 	perf_output_end(&handle);
8324 out:
8325 	mmap_event->event_id.header.size = size;
8326 	mmap_event->event_id.header.type = type;
8327 }
8328 
8329 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8330 {
8331 	struct vm_area_struct *vma = mmap_event->vma;
8332 	struct file *file = vma->vm_file;
8333 	int maj = 0, min = 0;
8334 	u64 ino = 0, gen = 0;
8335 	u32 prot = 0, flags = 0;
8336 	unsigned int size;
8337 	char tmp[16];
8338 	char *buf = NULL;
8339 	char *name;
8340 
8341 	if (vma->vm_flags & VM_READ)
8342 		prot |= PROT_READ;
8343 	if (vma->vm_flags & VM_WRITE)
8344 		prot |= PROT_WRITE;
8345 	if (vma->vm_flags & VM_EXEC)
8346 		prot |= PROT_EXEC;
8347 
8348 	if (vma->vm_flags & VM_MAYSHARE)
8349 		flags = MAP_SHARED;
8350 	else
8351 		flags = MAP_PRIVATE;
8352 
8353 	if (vma->vm_flags & VM_LOCKED)
8354 		flags |= MAP_LOCKED;
8355 	if (is_vm_hugetlb_page(vma))
8356 		flags |= MAP_HUGETLB;
8357 
8358 	if (file) {
8359 		struct inode *inode;
8360 		dev_t dev;
8361 
8362 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8363 		if (!buf) {
8364 			name = "//enomem";
8365 			goto cpy_name;
8366 		}
8367 		/*
8368 		 * d_path() works from the end of the rb backwards, so we
8369 		 * need to add enough zero bytes after the string to handle
8370 		 * the 64bit alignment we do later.
8371 		 */
8372 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8373 		if (IS_ERR(name)) {
8374 			name = "//toolong";
8375 			goto cpy_name;
8376 		}
8377 		inode = file_inode(vma->vm_file);
8378 		dev = inode->i_sb->s_dev;
8379 		ino = inode->i_ino;
8380 		gen = inode->i_generation;
8381 		maj = MAJOR(dev);
8382 		min = MINOR(dev);
8383 
8384 		goto got_name;
8385 	} else {
8386 		if (vma->vm_ops && vma->vm_ops->name) {
8387 			name = (char *) vma->vm_ops->name(vma);
8388 			if (name)
8389 				goto cpy_name;
8390 		}
8391 
8392 		name = (char *)arch_vma_name(vma);
8393 		if (name)
8394 			goto cpy_name;
8395 
8396 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8397 				vma->vm_end >= vma->vm_mm->brk) {
8398 			name = "[heap]";
8399 			goto cpy_name;
8400 		}
8401 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8402 				vma->vm_end >= vma->vm_mm->start_stack) {
8403 			name = "[stack]";
8404 			goto cpy_name;
8405 		}
8406 
8407 		name = "//anon";
8408 		goto cpy_name;
8409 	}
8410 
8411 cpy_name:
8412 	strlcpy(tmp, name, sizeof(tmp));
8413 	name = tmp;
8414 got_name:
8415 	/*
8416 	 * Since our buffer works in 8 byte units we need to align our string
8417 	 * size to a multiple of 8. However, we must guarantee the tail end is
8418 	 * zero'd out to avoid leaking random bits to userspace.
8419 	 */
8420 	size = strlen(name)+1;
8421 	while (!IS_ALIGNED(size, sizeof(u64)))
8422 		name[size++] = '\0';
8423 
8424 	mmap_event->file_name = name;
8425 	mmap_event->file_size = size;
8426 	mmap_event->maj = maj;
8427 	mmap_event->min = min;
8428 	mmap_event->ino = ino;
8429 	mmap_event->ino_generation = gen;
8430 	mmap_event->prot = prot;
8431 	mmap_event->flags = flags;
8432 
8433 	if (!(vma->vm_flags & VM_EXEC))
8434 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8435 
8436 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8437 
8438 	if (atomic_read(&nr_build_id_events))
8439 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8440 
8441 	perf_iterate_sb(perf_event_mmap_output,
8442 		       mmap_event,
8443 		       NULL);
8444 
8445 	kfree(buf);
8446 }
8447 
8448 /*
8449  * Check whether inode and address range match filter criteria.
8450  */
8451 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8452 				     struct file *file, unsigned long offset,
8453 				     unsigned long size)
8454 {
8455 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8456 	if (!filter->path.dentry)
8457 		return false;
8458 
8459 	if (d_inode(filter->path.dentry) != file_inode(file))
8460 		return false;
8461 
8462 	if (filter->offset > offset + size)
8463 		return false;
8464 
8465 	if (filter->offset + filter->size < offset)
8466 		return false;
8467 
8468 	return true;
8469 }
8470 
8471 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8472 					struct vm_area_struct *vma,
8473 					struct perf_addr_filter_range *fr)
8474 {
8475 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8476 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8477 	struct file *file = vma->vm_file;
8478 
8479 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8480 		return false;
8481 
8482 	if (filter->offset < off) {
8483 		fr->start = vma->vm_start;
8484 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8485 	} else {
8486 		fr->start = vma->vm_start + filter->offset - off;
8487 		fr->size = min(vma->vm_end - fr->start, filter->size);
8488 	}
8489 
8490 	return true;
8491 }
8492 
8493 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8494 {
8495 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8496 	struct vm_area_struct *vma = data;
8497 	struct perf_addr_filter *filter;
8498 	unsigned int restart = 0, count = 0;
8499 	unsigned long flags;
8500 
8501 	if (!has_addr_filter(event))
8502 		return;
8503 
8504 	if (!vma->vm_file)
8505 		return;
8506 
8507 	raw_spin_lock_irqsave(&ifh->lock, flags);
8508 	list_for_each_entry(filter, &ifh->list, entry) {
8509 		if (perf_addr_filter_vma_adjust(filter, vma,
8510 						&event->addr_filter_ranges[count]))
8511 			restart++;
8512 
8513 		count++;
8514 	}
8515 
8516 	if (restart)
8517 		event->addr_filters_gen++;
8518 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8519 
8520 	if (restart)
8521 		perf_event_stop(event, 1);
8522 }
8523 
8524 /*
8525  * Adjust all task's events' filters to the new vma
8526  */
8527 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8528 {
8529 	struct perf_event_context *ctx;
8530 	int ctxn;
8531 
8532 	/*
8533 	 * Data tracing isn't supported yet and as such there is no need
8534 	 * to keep track of anything that isn't related to executable code:
8535 	 */
8536 	if (!(vma->vm_flags & VM_EXEC))
8537 		return;
8538 
8539 	rcu_read_lock();
8540 	for_each_task_context_nr(ctxn) {
8541 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8542 		if (!ctx)
8543 			continue;
8544 
8545 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8546 	}
8547 	rcu_read_unlock();
8548 }
8549 
8550 void perf_event_mmap(struct vm_area_struct *vma)
8551 {
8552 	struct perf_mmap_event mmap_event;
8553 
8554 	if (!atomic_read(&nr_mmap_events))
8555 		return;
8556 
8557 	mmap_event = (struct perf_mmap_event){
8558 		.vma	= vma,
8559 		/* .file_name */
8560 		/* .file_size */
8561 		.event_id  = {
8562 			.header = {
8563 				.type = PERF_RECORD_MMAP,
8564 				.misc = PERF_RECORD_MISC_USER,
8565 				/* .size */
8566 			},
8567 			/* .pid */
8568 			/* .tid */
8569 			.start  = vma->vm_start,
8570 			.len    = vma->vm_end - vma->vm_start,
8571 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8572 		},
8573 		/* .maj (attr_mmap2 only) */
8574 		/* .min (attr_mmap2 only) */
8575 		/* .ino (attr_mmap2 only) */
8576 		/* .ino_generation (attr_mmap2 only) */
8577 		/* .prot (attr_mmap2 only) */
8578 		/* .flags (attr_mmap2 only) */
8579 	};
8580 
8581 	perf_addr_filters_adjust(vma);
8582 	perf_event_mmap_event(&mmap_event);
8583 }
8584 
8585 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8586 			  unsigned long size, u64 flags)
8587 {
8588 	struct perf_output_handle handle;
8589 	struct perf_sample_data sample;
8590 	struct perf_aux_event {
8591 		struct perf_event_header	header;
8592 		u64				offset;
8593 		u64				size;
8594 		u64				flags;
8595 	} rec = {
8596 		.header = {
8597 			.type = PERF_RECORD_AUX,
8598 			.misc = 0,
8599 			.size = sizeof(rec),
8600 		},
8601 		.offset		= head,
8602 		.size		= size,
8603 		.flags		= flags,
8604 	};
8605 	int ret;
8606 
8607 	perf_event_header__init_id(&rec.header, &sample, event);
8608 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8609 
8610 	if (ret)
8611 		return;
8612 
8613 	perf_output_put(&handle, rec);
8614 	perf_event__output_id_sample(event, &handle, &sample);
8615 
8616 	perf_output_end(&handle);
8617 }
8618 
8619 /*
8620  * Lost/dropped samples logging
8621  */
8622 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8623 {
8624 	struct perf_output_handle handle;
8625 	struct perf_sample_data sample;
8626 	int ret;
8627 
8628 	struct {
8629 		struct perf_event_header	header;
8630 		u64				lost;
8631 	} lost_samples_event = {
8632 		.header = {
8633 			.type = PERF_RECORD_LOST_SAMPLES,
8634 			.misc = 0,
8635 			.size = sizeof(lost_samples_event),
8636 		},
8637 		.lost		= lost,
8638 	};
8639 
8640 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8641 
8642 	ret = perf_output_begin(&handle, &sample, event,
8643 				lost_samples_event.header.size);
8644 	if (ret)
8645 		return;
8646 
8647 	perf_output_put(&handle, lost_samples_event);
8648 	perf_event__output_id_sample(event, &handle, &sample);
8649 	perf_output_end(&handle);
8650 }
8651 
8652 /*
8653  * context_switch tracking
8654  */
8655 
8656 struct perf_switch_event {
8657 	struct task_struct	*task;
8658 	struct task_struct	*next_prev;
8659 
8660 	struct {
8661 		struct perf_event_header	header;
8662 		u32				next_prev_pid;
8663 		u32				next_prev_tid;
8664 	} event_id;
8665 };
8666 
8667 static int perf_event_switch_match(struct perf_event *event)
8668 {
8669 	return event->attr.context_switch;
8670 }
8671 
8672 static void perf_event_switch_output(struct perf_event *event, void *data)
8673 {
8674 	struct perf_switch_event *se = data;
8675 	struct perf_output_handle handle;
8676 	struct perf_sample_data sample;
8677 	int ret;
8678 
8679 	if (!perf_event_switch_match(event))
8680 		return;
8681 
8682 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8683 	if (event->ctx->task) {
8684 		se->event_id.header.type = PERF_RECORD_SWITCH;
8685 		se->event_id.header.size = sizeof(se->event_id.header);
8686 	} else {
8687 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8688 		se->event_id.header.size = sizeof(se->event_id);
8689 		se->event_id.next_prev_pid =
8690 					perf_event_pid(event, se->next_prev);
8691 		se->event_id.next_prev_tid =
8692 					perf_event_tid(event, se->next_prev);
8693 	}
8694 
8695 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8696 
8697 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8698 	if (ret)
8699 		return;
8700 
8701 	if (event->ctx->task)
8702 		perf_output_put(&handle, se->event_id.header);
8703 	else
8704 		perf_output_put(&handle, se->event_id);
8705 
8706 	perf_event__output_id_sample(event, &handle, &sample);
8707 
8708 	perf_output_end(&handle);
8709 }
8710 
8711 static void perf_event_switch(struct task_struct *task,
8712 			      struct task_struct *next_prev, bool sched_in)
8713 {
8714 	struct perf_switch_event switch_event;
8715 
8716 	/* N.B. caller checks nr_switch_events != 0 */
8717 
8718 	switch_event = (struct perf_switch_event){
8719 		.task		= task,
8720 		.next_prev	= next_prev,
8721 		.event_id	= {
8722 			.header = {
8723 				/* .type */
8724 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8725 				/* .size */
8726 			},
8727 			/* .next_prev_pid */
8728 			/* .next_prev_tid */
8729 		},
8730 	};
8731 
8732 	if (!sched_in && task->on_rq) {
8733 		switch_event.event_id.header.misc |=
8734 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8735 	}
8736 
8737 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8738 }
8739 
8740 /*
8741  * IRQ throttle logging
8742  */
8743 
8744 static void perf_log_throttle(struct perf_event *event, int enable)
8745 {
8746 	struct perf_output_handle handle;
8747 	struct perf_sample_data sample;
8748 	int ret;
8749 
8750 	struct {
8751 		struct perf_event_header	header;
8752 		u64				time;
8753 		u64				id;
8754 		u64				stream_id;
8755 	} throttle_event = {
8756 		.header = {
8757 			.type = PERF_RECORD_THROTTLE,
8758 			.misc = 0,
8759 			.size = sizeof(throttle_event),
8760 		},
8761 		.time		= perf_event_clock(event),
8762 		.id		= primary_event_id(event),
8763 		.stream_id	= event->id,
8764 	};
8765 
8766 	if (enable)
8767 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8768 
8769 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8770 
8771 	ret = perf_output_begin(&handle, &sample, event,
8772 				throttle_event.header.size);
8773 	if (ret)
8774 		return;
8775 
8776 	perf_output_put(&handle, throttle_event);
8777 	perf_event__output_id_sample(event, &handle, &sample);
8778 	perf_output_end(&handle);
8779 }
8780 
8781 /*
8782  * ksymbol register/unregister tracking
8783  */
8784 
8785 struct perf_ksymbol_event {
8786 	const char	*name;
8787 	int		name_len;
8788 	struct {
8789 		struct perf_event_header        header;
8790 		u64				addr;
8791 		u32				len;
8792 		u16				ksym_type;
8793 		u16				flags;
8794 	} event_id;
8795 };
8796 
8797 static int perf_event_ksymbol_match(struct perf_event *event)
8798 {
8799 	return event->attr.ksymbol;
8800 }
8801 
8802 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8803 {
8804 	struct perf_ksymbol_event *ksymbol_event = data;
8805 	struct perf_output_handle handle;
8806 	struct perf_sample_data sample;
8807 	int ret;
8808 
8809 	if (!perf_event_ksymbol_match(event))
8810 		return;
8811 
8812 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8813 				   &sample, event);
8814 	ret = perf_output_begin(&handle, &sample, event,
8815 				ksymbol_event->event_id.header.size);
8816 	if (ret)
8817 		return;
8818 
8819 	perf_output_put(&handle, ksymbol_event->event_id);
8820 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8821 	perf_event__output_id_sample(event, &handle, &sample);
8822 
8823 	perf_output_end(&handle);
8824 }
8825 
8826 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8827 			const char *sym)
8828 {
8829 	struct perf_ksymbol_event ksymbol_event;
8830 	char name[KSYM_NAME_LEN];
8831 	u16 flags = 0;
8832 	int name_len;
8833 
8834 	if (!atomic_read(&nr_ksymbol_events))
8835 		return;
8836 
8837 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8838 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8839 		goto err;
8840 
8841 	strlcpy(name, sym, KSYM_NAME_LEN);
8842 	name_len = strlen(name) + 1;
8843 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8844 		name[name_len++] = '\0';
8845 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8846 
8847 	if (unregister)
8848 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8849 
8850 	ksymbol_event = (struct perf_ksymbol_event){
8851 		.name = name,
8852 		.name_len = name_len,
8853 		.event_id = {
8854 			.header = {
8855 				.type = PERF_RECORD_KSYMBOL,
8856 				.size = sizeof(ksymbol_event.event_id) +
8857 					name_len,
8858 			},
8859 			.addr = addr,
8860 			.len = len,
8861 			.ksym_type = ksym_type,
8862 			.flags = flags,
8863 		},
8864 	};
8865 
8866 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8867 	return;
8868 err:
8869 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8870 }
8871 
8872 /*
8873  * bpf program load/unload tracking
8874  */
8875 
8876 struct perf_bpf_event {
8877 	struct bpf_prog	*prog;
8878 	struct {
8879 		struct perf_event_header        header;
8880 		u16				type;
8881 		u16				flags;
8882 		u32				id;
8883 		u8				tag[BPF_TAG_SIZE];
8884 	} event_id;
8885 };
8886 
8887 static int perf_event_bpf_match(struct perf_event *event)
8888 {
8889 	return event->attr.bpf_event;
8890 }
8891 
8892 static void perf_event_bpf_output(struct perf_event *event, void *data)
8893 {
8894 	struct perf_bpf_event *bpf_event = data;
8895 	struct perf_output_handle handle;
8896 	struct perf_sample_data sample;
8897 	int ret;
8898 
8899 	if (!perf_event_bpf_match(event))
8900 		return;
8901 
8902 	perf_event_header__init_id(&bpf_event->event_id.header,
8903 				   &sample, event);
8904 	ret = perf_output_begin(&handle, data, event,
8905 				bpf_event->event_id.header.size);
8906 	if (ret)
8907 		return;
8908 
8909 	perf_output_put(&handle, bpf_event->event_id);
8910 	perf_event__output_id_sample(event, &handle, &sample);
8911 
8912 	perf_output_end(&handle);
8913 }
8914 
8915 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8916 					 enum perf_bpf_event_type type)
8917 {
8918 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8919 	int i;
8920 
8921 	if (prog->aux->func_cnt == 0) {
8922 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8923 				   (u64)(unsigned long)prog->bpf_func,
8924 				   prog->jited_len, unregister,
8925 				   prog->aux->ksym.name);
8926 	} else {
8927 		for (i = 0; i < prog->aux->func_cnt; i++) {
8928 			struct bpf_prog *subprog = prog->aux->func[i];
8929 
8930 			perf_event_ksymbol(
8931 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8932 				(u64)(unsigned long)subprog->bpf_func,
8933 				subprog->jited_len, unregister,
8934 				prog->aux->ksym.name);
8935 		}
8936 	}
8937 }
8938 
8939 void perf_event_bpf_event(struct bpf_prog *prog,
8940 			  enum perf_bpf_event_type type,
8941 			  u16 flags)
8942 {
8943 	struct perf_bpf_event bpf_event;
8944 
8945 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8946 	    type >= PERF_BPF_EVENT_MAX)
8947 		return;
8948 
8949 	switch (type) {
8950 	case PERF_BPF_EVENT_PROG_LOAD:
8951 	case PERF_BPF_EVENT_PROG_UNLOAD:
8952 		if (atomic_read(&nr_ksymbol_events))
8953 			perf_event_bpf_emit_ksymbols(prog, type);
8954 		break;
8955 	default:
8956 		break;
8957 	}
8958 
8959 	if (!atomic_read(&nr_bpf_events))
8960 		return;
8961 
8962 	bpf_event = (struct perf_bpf_event){
8963 		.prog = prog,
8964 		.event_id = {
8965 			.header = {
8966 				.type = PERF_RECORD_BPF_EVENT,
8967 				.size = sizeof(bpf_event.event_id),
8968 			},
8969 			.type = type,
8970 			.flags = flags,
8971 			.id = prog->aux->id,
8972 		},
8973 	};
8974 
8975 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8976 
8977 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8978 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8979 }
8980 
8981 struct perf_text_poke_event {
8982 	const void		*old_bytes;
8983 	const void		*new_bytes;
8984 	size_t			pad;
8985 	u16			old_len;
8986 	u16			new_len;
8987 
8988 	struct {
8989 		struct perf_event_header	header;
8990 
8991 		u64				addr;
8992 	} event_id;
8993 };
8994 
8995 static int perf_event_text_poke_match(struct perf_event *event)
8996 {
8997 	return event->attr.text_poke;
8998 }
8999 
9000 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9001 {
9002 	struct perf_text_poke_event *text_poke_event = data;
9003 	struct perf_output_handle handle;
9004 	struct perf_sample_data sample;
9005 	u64 padding = 0;
9006 	int ret;
9007 
9008 	if (!perf_event_text_poke_match(event))
9009 		return;
9010 
9011 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9012 
9013 	ret = perf_output_begin(&handle, &sample, event,
9014 				text_poke_event->event_id.header.size);
9015 	if (ret)
9016 		return;
9017 
9018 	perf_output_put(&handle, text_poke_event->event_id);
9019 	perf_output_put(&handle, text_poke_event->old_len);
9020 	perf_output_put(&handle, text_poke_event->new_len);
9021 
9022 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9023 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9024 
9025 	if (text_poke_event->pad)
9026 		__output_copy(&handle, &padding, text_poke_event->pad);
9027 
9028 	perf_event__output_id_sample(event, &handle, &sample);
9029 
9030 	perf_output_end(&handle);
9031 }
9032 
9033 void perf_event_text_poke(const void *addr, const void *old_bytes,
9034 			  size_t old_len, const void *new_bytes, size_t new_len)
9035 {
9036 	struct perf_text_poke_event text_poke_event;
9037 	size_t tot, pad;
9038 
9039 	if (!atomic_read(&nr_text_poke_events))
9040 		return;
9041 
9042 	tot  = sizeof(text_poke_event.old_len) + old_len;
9043 	tot += sizeof(text_poke_event.new_len) + new_len;
9044 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9045 
9046 	text_poke_event = (struct perf_text_poke_event){
9047 		.old_bytes    = old_bytes,
9048 		.new_bytes    = new_bytes,
9049 		.pad          = pad,
9050 		.old_len      = old_len,
9051 		.new_len      = new_len,
9052 		.event_id  = {
9053 			.header = {
9054 				.type = PERF_RECORD_TEXT_POKE,
9055 				.misc = PERF_RECORD_MISC_KERNEL,
9056 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9057 			},
9058 			.addr = (unsigned long)addr,
9059 		},
9060 	};
9061 
9062 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9063 }
9064 
9065 void perf_event_itrace_started(struct perf_event *event)
9066 {
9067 	event->attach_state |= PERF_ATTACH_ITRACE;
9068 }
9069 
9070 static void perf_log_itrace_start(struct perf_event *event)
9071 {
9072 	struct perf_output_handle handle;
9073 	struct perf_sample_data sample;
9074 	struct perf_aux_event {
9075 		struct perf_event_header        header;
9076 		u32				pid;
9077 		u32				tid;
9078 	} rec;
9079 	int ret;
9080 
9081 	if (event->parent)
9082 		event = event->parent;
9083 
9084 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9085 	    event->attach_state & PERF_ATTACH_ITRACE)
9086 		return;
9087 
9088 	rec.header.type	= PERF_RECORD_ITRACE_START;
9089 	rec.header.misc	= 0;
9090 	rec.header.size	= sizeof(rec);
9091 	rec.pid	= perf_event_pid(event, current);
9092 	rec.tid	= perf_event_tid(event, current);
9093 
9094 	perf_event_header__init_id(&rec.header, &sample, event);
9095 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9096 
9097 	if (ret)
9098 		return;
9099 
9100 	perf_output_put(&handle, rec);
9101 	perf_event__output_id_sample(event, &handle, &sample);
9102 
9103 	perf_output_end(&handle);
9104 }
9105 
9106 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9107 {
9108 	struct perf_output_handle handle;
9109 	struct perf_sample_data sample;
9110 	struct perf_aux_event {
9111 		struct perf_event_header        header;
9112 		u64				hw_id;
9113 	} rec;
9114 	int ret;
9115 
9116 	if (event->parent)
9117 		event = event->parent;
9118 
9119 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9120 	rec.header.misc	= 0;
9121 	rec.header.size	= sizeof(rec);
9122 	rec.hw_id	= hw_id;
9123 
9124 	perf_event_header__init_id(&rec.header, &sample, event);
9125 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9126 
9127 	if (ret)
9128 		return;
9129 
9130 	perf_output_put(&handle, rec);
9131 	perf_event__output_id_sample(event, &handle, &sample);
9132 
9133 	perf_output_end(&handle);
9134 }
9135 
9136 static int
9137 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9138 {
9139 	struct hw_perf_event *hwc = &event->hw;
9140 	int ret = 0;
9141 	u64 seq;
9142 
9143 	seq = __this_cpu_read(perf_throttled_seq);
9144 	if (seq != hwc->interrupts_seq) {
9145 		hwc->interrupts_seq = seq;
9146 		hwc->interrupts = 1;
9147 	} else {
9148 		hwc->interrupts++;
9149 		if (unlikely(throttle
9150 			     && hwc->interrupts >= max_samples_per_tick)) {
9151 			__this_cpu_inc(perf_throttled_count);
9152 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9153 			hwc->interrupts = MAX_INTERRUPTS;
9154 			perf_log_throttle(event, 0);
9155 			ret = 1;
9156 		}
9157 	}
9158 
9159 	if (event->attr.freq) {
9160 		u64 now = perf_clock();
9161 		s64 delta = now - hwc->freq_time_stamp;
9162 
9163 		hwc->freq_time_stamp = now;
9164 
9165 		if (delta > 0 && delta < 2*TICK_NSEC)
9166 			perf_adjust_period(event, delta, hwc->last_period, true);
9167 	}
9168 
9169 	return ret;
9170 }
9171 
9172 int perf_event_account_interrupt(struct perf_event *event)
9173 {
9174 	return __perf_event_account_interrupt(event, 1);
9175 }
9176 
9177 /*
9178  * Generic event overflow handling, sampling.
9179  */
9180 
9181 static int __perf_event_overflow(struct perf_event *event,
9182 				   int throttle, struct perf_sample_data *data,
9183 				   struct pt_regs *regs)
9184 {
9185 	int events = atomic_read(&event->event_limit);
9186 	int ret = 0;
9187 
9188 	/*
9189 	 * Non-sampling counters might still use the PMI to fold short
9190 	 * hardware counters, ignore those.
9191 	 */
9192 	if (unlikely(!is_sampling_event(event)))
9193 		return 0;
9194 
9195 	ret = __perf_event_account_interrupt(event, throttle);
9196 
9197 	/*
9198 	 * XXX event_limit might not quite work as expected on inherited
9199 	 * events
9200 	 */
9201 
9202 	event->pending_kill = POLL_IN;
9203 	if (events && atomic_dec_and_test(&event->event_limit)) {
9204 		ret = 1;
9205 		event->pending_kill = POLL_HUP;
9206 		event->pending_addr = data->addr;
9207 
9208 		perf_event_disable_inatomic(event);
9209 	}
9210 
9211 	READ_ONCE(event->overflow_handler)(event, data, regs);
9212 
9213 	if (*perf_event_fasync(event) && event->pending_kill) {
9214 		event->pending_wakeup = 1;
9215 		irq_work_queue(&event->pending);
9216 	}
9217 
9218 	return ret;
9219 }
9220 
9221 int perf_event_overflow(struct perf_event *event,
9222 			  struct perf_sample_data *data,
9223 			  struct pt_regs *regs)
9224 {
9225 	return __perf_event_overflow(event, 1, data, regs);
9226 }
9227 
9228 /*
9229  * Generic software event infrastructure
9230  */
9231 
9232 struct swevent_htable {
9233 	struct swevent_hlist		*swevent_hlist;
9234 	struct mutex			hlist_mutex;
9235 	int				hlist_refcount;
9236 
9237 	/* Recursion avoidance in each contexts */
9238 	int				recursion[PERF_NR_CONTEXTS];
9239 };
9240 
9241 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9242 
9243 /*
9244  * We directly increment event->count and keep a second value in
9245  * event->hw.period_left to count intervals. This period event
9246  * is kept in the range [-sample_period, 0] so that we can use the
9247  * sign as trigger.
9248  */
9249 
9250 u64 perf_swevent_set_period(struct perf_event *event)
9251 {
9252 	struct hw_perf_event *hwc = &event->hw;
9253 	u64 period = hwc->last_period;
9254 	u64 nr, offset;
9255 	s64 old, val;
9256 
9257 	hwc->last_period = hwc->sample_period;
9258 
9259 again:
9260 	old = val = local64_read(&hwc->period_left);
9261 	if (val < 0)
9262 		return 0;
9263 
9264 	nr = div64_u64(period + val, period);
9265 	offset = nr * period;
9266 	val -= offset;
9267 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9268 		goto again;
9269 
9270 	return nr;
9271 }
9272 
9273 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9274 				    struct perf_sample_data *data,
9275 				    struct pt_regs *regs)
9276 {
9277 	struct hw_perf_event *hwc = &event->hw;
9278 	int throttle = 0;
9279 
9280 	if (!overflow)
9281 		overflow = perf_swevent_set_period(event);
9282 
9283 	if (hwc->interrupts == MAX_INTERRUPTS)
9284 		return;
9285 
9286 	for (; overflow; overflow--) {
9287 		if (__perf_event_overflow(event, throttle,
9288 					    data, regs)) {
9289 			/*
9290 			 * We inhibit the overflow from happening when
9291 			 * hwc->interrupts == MAX_INTERRUPTS.
9292 			 */
9293 			break;
9294 		}
9295 		throttle = 1;
9296 	}
9297 }
9298 
9299 static void perf_swevent_event(struct perf_event *event, u64 nr,
9300 			       struct perf_sample_data *data,
9301 			       struct pt_regs *regs)
9302 {
9303 	struct hw_perf_event *hwc = &event->hw;
9304 
9305 	local64_add(nr, &event->count);
9306 
9307 	if (!regs)
9308 		return;
9309 
9310 	if (!is_sampling_event(event))
9311 		return;
9312 
9313 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9314 		data->period = nr;
9315 		return perf_swevent_overflow(event, 1, data, regs);
9316 	} else
9317 		data->period = event->hw.last_period;
9318 
9319 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9320 		return perf_swevent_overflow(event, 1, data, regs);
9321 
9322 	if (local64_add_negative(nr, &hwc->period_left))
9323 		return;
9324 
9325 	perf_swevent_overflow(event, 0, data, regs);
9326 }
9327 
9328 static int perf_exclude_event(struct perf_event *event,
9329 			      struct pt_regs *regs)
9330 {
9331 	if (event->hw.state & PERF_HES_STOPPED)
9332 		return 1;
9333 
9334 	if (regs) {
9335 		if (event->attr.exclude_user && user_mode(regs))
9336 			return 1;
9337 
9338 		if (event->attr.exclude_kernel && !user_mode(regs))
9339 			return 1;
9340 	}
9341 
9342 	return 0;
9343 }
9344 
9345 static int perf_swevent_match(struct perf_event *event,
9346 				enum perf_type_id type,
9347 				u32 event_id,
9348 				struct perf_sample_data *data,
9349 				struct pt_regs *regs)
9350 {
9351 	if (event->attr.type != type)
9352 		return 0;
9353 
9354 	if (event->attr.config != event_id)
9355 		return 0;
9356 
9357 	if (perf_exclude_event(event, regs))
9358 		return 0;
9359 
9360 	return 1;
9361 }
9362 
9363 static inline u64 swevent_hash(u64 type, u32 event_id)
9364 {
9365 	u64 val = event_id | (type << 32);
9366 
9367 	return hash_64(val, SWEVENT_HLIST_BITS);
9368 }
9369 
9370 static inline struct hlist_head *
9371 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9372 {
9373 	u64 hash = swevent_hash(type, event_id);
9374 
9375 	return &hlist->heads[hash];
9376 }
9377 
9378 /* For the read side: events when they trigger */
9379 static inline struct hlist_head *
9380 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9381 {
9382 	struct swevent_hlist *hlist;
9383 
9384 	hlist = rcu_dereference(swhash->swevent_hlist);
9385 	if (!hlist)
9386 		return NULL;
9387 
9388 	return __find_swevent_head(hlist, type, event_id);
9389 }
9390 
9391 /* For the event head insertion and removal in the hlist */
9392 static inline struct hlist_head *
9393 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9394 {
9395 	struct swevent_hlist *hlist;
9396 	u32 event_id = event->attr.config;
9397 	u64 type = event->attr.type;
9398 
9399 	/*
9400 	 * Event scheduling is always serialized against hlist allocation
9401 	 * and release. Which makes the protected version suitable here.
9402 	 * The context lock guarantees that.
9403 	 */
9404 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9405 					  lockdep_is_held(&event->ctx->lock));
9406 	if (!hlist)
9407 		return NULL;
9408 
9409 	return __find_swevent_head(hlist, type, event_id);
9410 }
9411 
9412 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9413 				    u64 nr,
9414 				    struct perf_sample_data *data,
9415 				    struct pt_regs *regs)
9416 {
9417 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9418 	struct perf_event *event;
9419 	struct hlist_head *head;
9420 
9421 	rcu_read_lock();
9422 	head = find_swevent_head_rcu(swhash, type, event_id);
9423 	if (!head)
9424 		goto end;
9425 
9426 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9427 		if (perf_swevent_match(event, type, event_id, data, regs))
9428 			perf_swevent_event(event, nr, data, regs);
9429 	}
9430 end:
9431 	rcu_read_unlock();
9432 }
9433 
9434 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9435 
9436 int perf_swevent_get_recursion_context(void)
9437 {
9438 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9439 
9440 	return get_recursion_context(swhash->recursion);
9441 }
9442 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9443 
9444 void perf_swevent_put_recursion_context(int rctx)
9445 {
9446 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9447 
9448 	put_recursion_context(swhash->recursion, rctx);
9449 }
9450 
9451 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9452 {
9453 	struct perf_sample_data data;
9454 
9455 	if (WARN_ON_ONCE(!regs))
9456 		return;
9457 
9458 	perf_sample_data_init(&data, addr, 0);
9459 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9460 }
9461 
9462 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9463 {
9464 	int rctx;
9465 
9466 	preempt_disable_notrace();
9467 	rctx = perf_swevent_get_recursion_context();
9468 	if (unlikely(rctx < 0))
9469 		goto fail;
9470 
9471 	___perf_sw_event(event_id, nr, regs, addr);
9472 
9473 	perf_swevent_put_recursion_context(rctx);
9474 fail:
9475 	preempt_enable_notrace();
9476 }
9477 
9478 static void perf_swevent_read(struct perf_event *event)
9479 {
9480 }
9481 
9482 static int perf_swevent_add(struct perf_event *event, int flags)
9483 {
9484 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9485 	struct hw_perf_event *hwc = &event->hw;
9486 	struct hlist_head *head;
9487 
9488 	if (is_sampling_event(event)) {
9489 		hwc->last_period = hwc->sample_period;
9490 		perf_swevent_set_period(event);
9491 	}
9492 
9493 	hwc->state = !(flags & PERF_EF_START);
9494 
9495 	head = find_swevent_head(swhash, event);
9496 	if (WARN_ON_ONCE(!head))
9497 		return -EINVAL;
9498 
9499 	hlist_add_head_rcu(&event->hlist_entry, head);
9500 	perf_event_update_userpage(event);
9501 
9502 	return 0;
9503 }
9504 
9505 static void perf_swevent_del(struct perf_event *event, int flags)
9506 {
9507 	hlist_del_rcu(&event->hlist_entry);
9508 }
9509 
9510 static void perf_swevent_start(struct perf_event *event, int flags)
9511 {
9512 	event->hw.state = 0;
9513 }
9514 
9515 static void perf_swevent_stop(struct perf_event *event, int flags)
9516 {
9517 	event->hw.state = PERF_HES_STOPPED;
9518 }
9519 
9520 /* Deref the hlist from the update side */
9521 static inline struct swevent_hlist *
9522 swevent_hlist_deref(struct swevent_htable *swhash)
9523 {
9524 	return rcu_dereference_protected(swhash->swevent_hlist,
9525 					 lockdep_is_held(&swhash->hlist_mutex));
9526 }
9527 
9528 static void swevent_hlist_release(struct swevent_htable *swhash)
9529 {
9530 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9531 
9532 	if (!hlist)
9533 		return;
9534 
9535 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9536 	kfree_rcu(hlist, rcu_head);
9537 }
9538 
9539 static void swevent_hlist_put_cpu(int cpu)
9540 {
9541 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9542 
9543 	mutex_lock(&swhash->hlist_mutex);
9544 
9545 	if (!--swhash->hlist_refcount)
9546 		swevent_hlist_release(swhash);
9547 
9548 	mutex_unlock(&swhash->hlist_mutex);
9549 }
9550 
9551 static void swevent_hlist_put(void)
9552 {
9553 	int cpu;
9554 
9555 	for_each_possible_cpu(cpu)
9556 		swevent_hlist_put_cpu(cpu);
9557 }
9558 
9559 static int swevent_hlist_get_cpu(int cpu)
9560 {
9561 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9562 	int err = 0;
9563 
9564 	mutex_lock(&swhash->hlist_mutex);
9565 	if (!swevent_hlist_deref(swhash) &&
9566 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9567 		struct swevent_hlist *hlist;
9568 
9569 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9570 		if (!hlist) {
9571 			err = -ENOMEM;
9572 			goto exit;
9573 		}
9574 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9575 	}
9576 	swhash->hlist_refcount++;
9577 exit:
9578 	mutex_unlock(&swhash->hlist_mutex);
9579 
9580 	return err;
9581 }
9582 
9583 static int swevent_hlist_get(void)
9584 {
9585 	int err, cpu, failed_cpu;
9586 
9587 	mutex_lock(&pmus_lock);
9588 	for_each_possible_cpu(cpu) {
9589 		err = swevent_hlist_get_cpu(cpu);
9590 		if (err) {
9591 			failed_cpu = cpu;
9592 			goto fail;
9593 		}
9594 	}
9595 	mutex_unlock(&pmus_lock);
9596 	return 0;
9597 fail:
9598 	for_each_possible_cpu(cpu) {
9599 		if (cpu == failed_cpu)
9600 			break;
9601 		swevent_hlist_put_cpu(cpu);
9602 	}
9603 	mutex_unlock(&pmus_lock);
9604 	return err;
9605 }
9606 
9607 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9608 
9609 static void sw_perf_event_destroy(struct perf_event *event)
9610 {
9611 	u64 event_id = event->attr.config;
9612 
9613 	WARN_ON(event->parent);
9614 
9615 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9616 	swevent_hlist_put();
9617 }
9618 
9619 static int perf_swevent_init(struct perf_event *event)
9620 {
9621 	u64 event_id = event->attr.config;
9622 
9623 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9624 		return -ENOENT;
9625 
9626 	/*
9627 	 * no branch sampling for software events
9628 	 */
9629 	if (has_branch_stack(event))
9630 		return -EOPNOTSUPP;
9631 
9632 	switch (event_id) {
9633 	case PERF_COUNT_SW_CPU_CLOCK:
9634 	case PERF_COUNT_SW_TASK_CLOCK:
9635 		return -ENOENT;
9636 
9637 	default:
9638 		break;
9639 	}
9640 
9641 	if (event_id >= PERF_COUNT_SW_MAX)
9642 		return -ENOENT;
9643 
9644 	if (!event->parent) {
9645 		int err;
9646 
9647 		err = swevent_hlist_get();
9648 		if (err)
9649 			return err;
9650 
9651 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9652 		event->destroy = sw_perf_event_destroy;
9653 	}
9654 
9655 	return 0;
9656 }
9657 
9658 static struct pmu perf_swevent = {
9659 	.task_ctx_nr	= perf_sw_context,
9660 
9661 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9662 
9663 	.event_init	= perf_swevent_init,
9664 	.add		= perf_swevent_add,
9665 	.del		= perf_swevent_del,
9666 	.start		= perf_swevent_start,
9667 	.stop		= perf_swevent_stop,
9668 	.read		= perf_swevent_read,
9669 };
9670 
9671 #ifdef CONFIG_EVENT_TRACING
9672 
9673 static int perf_tp_filter_match(struct perf_event *event,
9674 				struct perf_sample_data *data)
9675 {
9676 	void *record = data->raw->frag.data;
9677 
9678 	/* only top level events have filters set */
9679 	if (event->parent)
9680 		event = event->parent;
9681 
9682 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9683 		return 1;
9684 	return 0;
9685 }
9686 
9687 static int perf_tp_event_match(struct perf_event *event,
9688 				struct perf_sample_data *data,
9689 				struct pt_regs *regs)
9690 {
9691 	if (event->hw.state & PERF_HES_STOPPED)
9692 		return 0;
9693 	/*
9694 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9695 	 */
9696 	if (event->attr.exclude_kernel && !user_mode(regs))
9697 		return 0;
9698 
9699 	if (!perf_tp_filter_match(event, data))
9700 		return 0;
9701 
9702 	return 1;
9703 }
9704 
9705 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9706 			       struct trace_event_call *call, u64 count,
9707 			       struct pt_regs *regs, struct hlist_head *head,
9708 			       struct task_struct *task)
9709 {
9710 	if (bpf_prog_array_valid(call)) {
9711 		*(struct pt_regs **)raw_data = regs;
9712 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9713 			perf_swevent_put_recursion_context(rctx);
9714 			return;
9715 		}
9716 	}
9717 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9718 		      rctx, task);
9719 }
9720 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9721 
9722 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9723 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9724 		   struct task_struct *task)
9725 {
9726 	struct perf_sample_data data;
9727 	struct perf_event *event;
9728 
9729 	struct perf_raw_record raw = {
9730 		.frag = {
9731 			.size = entry_size,
9732 			.data = record,
9733 		},
9734 	};
9735 
9736 	perf_sample_data_init(&data, 0, 0);
9737 	data.raw = &raw;
9738 
9739 	perf_trace_buf_update(record, event_type);
9740 
9741 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9742 		if (perf_tp_event_match(event, &data, regs))
9743 			perf_swevent_event(event, count, &data, regs);
9744 	}
9745 
9746 	/*
9747 	 * If we got specified a target task, also iterate its context and
9748 	 * deliver this event there too.
9749 	 */
9750 	if (task && task != current) {
9751 		struct perf_event_context *ctx;
9752 		struct trace_entry *entry = record;
9753 
9754 		rcu_read_lock();
9755 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9756 		if (!ctx)
9757 			goto unlock;
9758 
9759 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9760 			if (event->cpu != smp_processor_id())
9761 				continue;
9762 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9763 				continue;
9764 			if (event->attr.config != entry->type)
9765 				continue;
9766 			/* Cannot deliver synchronous signal to other task. */
9767 			if (event->attr.sigtrap)
9768 				continue;
9769 			if (perf_tp_event_match(event, &data, regs))
9770 				perf_swevent_event(event, count, &data, regs);
9771 		}
9772 unlock:
9773 		rcu_read_unlock();
9774 	}
9775 
9776 	perf_swevent_put_recursion_context(rctx);
9777 }
9778 EXPORT_SYMBOL_GPL(perf_tp_event);
9779 
9780 static void tp_perf_event_destroy(struct perf_event *event)
9781 {
9782 	perf_trace_destroy(event);
9783 }
9784 
9785 static int perf_tp_event_init(struct perf_event *event)
9786 {
9787 	int err;
9788 
9789 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9790 		return -ENOENT;
9791 
9792 	/*
9793 	 * no branch sampling for tracepoint events
9794 	 */
9795 	if (has_branch_stack(event))
9796 		return -EOPNOTSUPP;
9797 
9798 	err = perf_trace_init(event);
9799 	if (err)
9800 		return err;
9801 
9802 	event->destroy = tp_perf_event_destroy;
9803 
9804 	return 0;
9805 }
9806 
9807 static struct pmu perf_tracepoint = {
9808 	.task_ctx_nr	= perf_sw_context,
9809 
9810 	.event_init	= perf_tp_event_init,
9811 	.add		= perf_trace_add,
9812 	.del		= perf_trace_del,
9813 	.start		= perf_swevent_start,
9814 	.stop		= perf_swevent_stop,
9815 	.read		= perf_swevent_read,
9816 };
9817 
9818 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9819 /*
9820  * Flags in config, used by dynamic PMU kprobe and uprobe
9821  * The flags should match following PMU_FORMAT_ATTR().
9822  *
9823  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9824  *                               if not set, create kprobe/uprobe
9825  *
9826  * The following values specify a reference counter (or semaphore in the
9827  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9828  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9829  *
9830  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9831  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9832  */
9833 enum perf_probe_config {
9834 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9835 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9836 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9837 };
9838 
9839 PMU_FORMAT_ATTR(retprobe, "config:0");
9840 #endif
9841 
9842 #ifdef CONFIG_KPROBE_EVENTS
9843 static struct attribute *kprobe_attrs[] = {
9844 	&format_attr_retprobe.attr,
9845 	NULL,
9846 };
9847 
9848 static struct attribute_group kprobe_format_group = {
9849 	.name = "format",
9850 	.attrs = kprobe_attrs,
9851 };
9852 
9853 static const struct attribute_group *kprobe_attr_groups[] = {
9854 	&kprobe_format_group,
9855 	NULL,
9856 };
9857 
9858 static int perf_kprobe_event_init(struct perf_event *event);
9859 static struct pmu perf_kprobe = {
9860 	.task_ctx_nr	= perf_sw_context,
9861 	.event_init	= perf_kprobe_event_init,
9862 	.add		= perf_trace_add,
9863 	.del		= perf_trace_del,
9864 	.start		= perf_swevent_start,
9865 	.stop		= perf_swevent_stop,
9866 	.read		= perf_swevent_read,
9867 	.attr_groups	= kprobe_attr_groups,
9868 };
9869 
9870 static int perf_kprobe_event_init(struct perf_event *event)
9871 {
9872 	int err;
9873 	bool is_retprobe;
9874 
9875 	if (event->attr.type != perf_kprobe.type)
9876 		return -ENOENT;
9877 
9878 	if (!perfmon_capable())
9879 		return -EACCES;
9880 
9881 	/*
9882 	 * no branch sampling for probe events
9883 	 */
9884 	if (has_branch_stack(event))
9885 		return -EOPNOTSUPP;
9886 
9887 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9888 	err = perf_kprobe_init(event, is_retprobe);
9889 	if (err)
9890 		return err;
9891 
9892 	event->destroy = perf_kprobe_destroy;
9893 
9894 	return 0;
9895 }
9896 #endif /* CONFIG_KPROBE_EVENTS */
9897 
9898 #ifdef CONFIG_UPROBE_EVENTS
9899 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9900 
9901 static struct attribute *uprobe_attrs[] = {
9902 	&format_attr_retprobe.attr,
9903 	&format_attr_ref_ctr_offset.attr,
9904 	NULL,
9905 };
9906 
9907 static struct attribute_group uprobe_format_group = {
9908 	.name = "format",
9909 	.attrs = uprobe_attrs,
9910 };
9911 
9912 static const struct attribute_group *uprobe_attr_groups[] = {
9913 	&uprobe_format_group,
9914 	NULL,
9915 };
9916 
9917 static int perf_uprobe_event_init(struct perf_event *event);
9918 static struct pmu perf_uprobe = {
9919 	.task_ctx_nr	= perf_sw_context,
9920 	.event_init	= perf_uprobe_event_init,
9921 	.add		= perf_trace_add,
9922 	.del		= perf_trace_del,
9923 	.start		= perf_swevent_start,
9924 	.stop		= perf_swevent_stop,
9925 	.read		= perf_swevent_read,
9926 	.attr_groups	= uprobe_attr_groups,
9927 };
9928 
9929 static int perf_uprobe_event_init(struct perf_event *event)
9930 {
9931 	int err;
9932 	unsigned long ref_ctr_offset;
9933 	bool is_retprobe;
9934 
9935 	if (event->attr.type != perf_uprobe.type)
9936 		return -ENOENT;
9937 
9938 	if (!perfmon_capable())
9939 		return -EACCES;
9940 
9941 	/*
9942 	 * no branch sampling for probe events
9943 	 */
9944 	if (has_branch_stack(event))
9945 		return -EOPNOTSUPP;
9946 
9947 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9948 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9949 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9950 	if (err)
9951 		return err;
9952 
9953 	event->destroy = perf_uprobe_destroy;
9954 
9955 	return 0;
9956 }
9957 #endif /* CONFIG_UPROBE_EVENTS */
9958 
9959 static inline void perf_tp_register(void)
9960 {
9961 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9962 #ifdef CONFIG_KPROBE_EVENTS
9963 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9964 #endif
9965 #ifdef CONFIG_UPROBE_EVENTS
9966 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9967 #endif
9968 }
9969 
9970 static void perf_event_free_filter(struct perf_event *event)
9971 {
9972 	ftrace_profile_free_filter(event);
9973 }
9974 
9975 #ifdef CONFIG_BPF_SYSCALL
9976 static void bpf_overflow_handler(struct perf_event *event,
9977 				 struct perf_sample_data *data,
9978 				 struct pt_regs *regs)
9979 {
9980 	struct bpf_perf_event_data_kern ctx = {
9981 		.data = data,
9982 		.event = event,
9983 	};
9984 	struct bpf_prog *prog;
9985 	int ret = 0;
9986 
9987 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9988 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9989 		goto out;
9990 	rcu_read_lock();
9991 	prog = READ_ONCE(event->prog);
9992 	if (prog)
9993 		ret = bpf_prog_run(prog, &ctx);
9994 	rcu_read_unlock();
9995 out:
9996 	__this_cpu_dec(bpf_prog_active);
9997 	if (!ret)
9998 		return;
9999 
10000 	event->orig_overflow_handler(event, data, regs);
10001 }
10002 
10003 static int perf_event_set_bpf_handler(struct perf_event *event,
10004 				      struct bpf_prog *prog,
10005 				      u64 bpf_cookie)
10006 {
10007 	if (event->overflow_handler_context)
10008 		/* hw breakpoint or kernel counter */
10009 		return -EINVAL;
10010 
10011 	if (event->prog)
10012 		return -EEXIST;
10013 
10014 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10015 		return -EINVAL;
10016 
10017 	if (event->attr.precise_ip &&
10018 	    prog->call_get_stack &&
10019 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10020 	     event->attr.exclude_callchain_kernel ||
10021 	     event->attr.exclude_callchain_user)) {
10022 		/*
10023 		 * On perf_event with precise_ip, calling bpf_get_stack()
10024 		 * may trigger unwinder warnings and occasional crashes.
10025 		 * bpf_get_[stack|stackid] works around this issue by using
10026 		 * callchain attached to perf_sample_data. If the
10027 		 * perf_event does not full (kernel and user) callchain
10028 		 * attached to perf_sample_data, do not allow attaching BPF
10029 		 * program that calls bpf_get_[stack|stackid].
10030 		 */
10031 		return -EPROTO;
10032 	}
10033 
10034 	event->prog = prog;
10035 	event->bpf_cookie = bpf_cookie;
10036 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10037 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10038 	return 0;
10039 }
10040 
10041 static void perf_event_free_bpf_handler(struct perf_event *event)
10042 {
10043 	struct bpf_prog *prog = event->prog;
10044 
10045 	if (!prog)
10046 		return;
10047 
10048 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10049 	event->prog = NULL;
10050 	bpf_prog_put(prog);
10051 }
10052 #else
10053 static int perf_event_set_bpf_handler(struct perf_event *event,
10054 				      struct bpf_prog *prog,
10055 				      u64 bpf_cookie)
10056 {
10057 	return -EOPNOTSUPP;
10058 }
10059 static void perf_event_free_bpf_handler(struct perf_event *event)
10060 {
10061 }
10062 #endif
10063 
10064 /*
10065  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10066  * with perf_event_open()
10067  */
10068 static inline bool perf_event_is_tracing(struct perf_event *event)
10069 {
10070 	if (event->pmu == &perf_tracepoint)
10071 		return true;
10072 #ifdef CONFIG_KPROBE_EVENTS
10073 	if (event->pmu == &perf_kprobe)
10074 		return true;
10075 #endif
10076 #ifdef CONFIG_UPROBE_EVENTS
10077 	if (event->pmu == &perf_uprobe)
10078 		return true;
10079 #endif
10080 	return false;
10081 }
10082 
10083 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10084 			    u64 bpf_cookie)
10085 {
10086 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10087 
10088 	if (!perf_event_is_tracing(event))
10089 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10090 
10091 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10092 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10093 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10094 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10095 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10096 		return -EINVAL;
10097 
10098 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10099 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10100 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10101 		return -EINVAL;
10102 
10103 	/* Kprobe override only works for kprobes, not uprobes. */
10104 	if (prog->kprobe_override &&
10105 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10106 		return -EINVAL;
10107 
10108 	if (is_tracepoint || is_syscall_tp) {
10109 		int off = trace_event_get_offsets(event->tp_event);
10110 
10111 		if (prog->aux->max_ctx_offset > off)
10112 			return -EACCES;
10113 	}
10114 
10115 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10116 }
10117 
10118 void perf_event_free_bpf_prog(struct perf_event *event)
10119 {
10120 	if (!perf_event_is_tracing(event)) {
10121 		perf_event_free_bpf_handler(event);
10122 		return;
10123 	}
10124 	perf_event_detach_bpf_prog(event);
10125 }
10126 
10127 #else
10128 
10129 static inline void perf_tp_register(void)
10130 {
10131 }
10132 
10133 static void perf_event_free_filter(struct perf_event *event)
10134 {
10135 }
10136 
10137 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10138 			    u64 bpf_cookie)
10139 {
10140 	return -ENOENT;
10141 }
10142 
10143 void perf_event_free_bpf_prog(struct perf_event *event)
10144 {
10145 }
10146 #endif /* CONFIG_EVENT_TRACING */
10147 
10148 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10149 void perf_bp_event(struct perf_event *bp, void *data)
10150 {
10151 	struct perf_sample_data sample;
10152 	struct pt_regs *regs = data;
10153 
10154 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10155 
10156 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10157 		perf_swevent_event(bp, 1, &sample, regs);
10158 }
10159 #endif
10160 
10161 /*
10162  * Allocate a new address filter
10163  */
10164 static struct perf_addr_filter *
10165 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10166 {
10167 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10168 	struct perf_addr_filter *filter;
10169 
10170 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10171 	if (!filter)
10172 		return NULL;
10173 
10174 	INIT_LIST_HEAD(&filter->entry);
10175 	list_add_tail(&filter->entry, filters);
10176 
10177 	return filter;
10178 }
10179 
10180 static void free_filters_list(struct list_head *filters)
10181 {
10182 	struct perf_addr_filter *filter, *iter;
10183 
10184 	list_for_each_entry_safe(filter, iter, filters, entry) {
10185 		path_put(&filter->path);
10186 		list_del(&filter->entry);
10187 		kfree(filter);
10188 	}
10189 }
10190 
10191 /*
10192  * Free existing address filters and optionally install new ones
10193  */
10194 static void perf_addr_filters_splice(struct perf_event *event,
10195 				     struct list_head *head)
10196 {
10197 	unsigned long flags;
10198 	LIST_HEAD(list);
10199 
10200 	if (!has_addr_filter(event))
10201 		return;
10202 
10203 	/* don't bother with children, they don't have their own filters */
10204 	if (event->parent)
10205 		return;
10206 
10207 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10208 
10209 	list_splice_init(&event->addr_filters.list, &list);
10210 	if (head)
10211 		list_splice(head, &event->addr_filters.list);
10212 
10213 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10214 
10215 	free_filters_list(&list);
10216 }
10217 
10218 /*
10219  * Scan through mm's vmas and see if one of them matches the
10220  * @filter; if so, adjust filter's address range.
10221  * Called with mm::mmap_lock down for reading.
10222  */
10223 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10224 				   struct mm_struct *mm,
10225 				   struct perf_addr_filter_range *fr)
10226 {
10227 	struct vm_area_struct *vma;
10228 
10229 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10230 		if (!vma->vm_file)
10231 			continue;
10232 
10233 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10234 			return;
10235 	}
10236 }
10237 
10238 /*
10239  * Update event's address range filters based on the
10240  * task's existing mappings, if any.
10241  */
10242 static void perf_event_addr_filters_apply(struct perf_event *event)
10243 {
10244 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10245 	struct task_struct *task = READ_ONCE(event->ctx->task);
10246 	struct perf_addr_filter *filter;
10247 	struct mm_struct *mm = NULL;
10248 	unsigned int count = 0;
10249 	unsigned long flags;
10250 
10251 	/*
10252 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10253 	 * will stop on the parent's child_mutex that our caller is also holding
10254 	 */
10255 	if (task == TASK_TOMBSTONE)
10256 		return;
10257 
10258 	if (ifh->nr_file_filters) {
10259 		mm = get_task_mm(task);
10260 		if (!mm)
10261 			goto restart;
10262 
10263 		mmap_read_lock(mm);
10264 	}
10265 
10266 	raw_spin_lock_irqsave(&ifh->lock, flags);
10267 	list_for_each_entry(filter, &ifh->list, entry) {
10268 		if (filter->path.dentry) {
10269 			/*
10270 			 * Adjust base offset if the filter is associated to a
10271 			 * binary that needs to be mapped:
10272 			 */
10273 			event->addr_filter_ranges[count].start = 0;
10274 			event->addr_filter_ranges[count].size = 0;
10275 
10276 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10277 		} else {
10278 			event->addr_filter_ranges[count].start = filter->offset;
10279 			event->addr_filter_ranges[count].size  = filter->size;
10280 		}
10281 
10282 		count++;
10283 	}
10284 
10285 	event->addr_filters_gen++;
10286 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10287 
10288 	if (ifh->nr_file_filters) {
10289 		mmap_read_unlock(mm);
10290 
10291 		mmput(mm);
10292 	}
10293 
10294 restart:
10295 	perf_event_stop(event, 1);
10296 }
10297 
10298 /*
10299  * Address range filtering: limiting the data to certain
10300  * instruction address ranges. Filters are ioctl()ed to us from
10301  * userspace as ascii strings.
10302  *
10303  * Filter string format:
10304  *
10305  * ACTION RANGE_SPEC
10306  * where ACTION is one of the
10307  *  * "filter": limit the trace to this region
10308  *  * "start": start tracing from this address
10309  *  * "stop": stop tracing at this address/region;
10310  * RANGE_SPEC is
10311  *  * for kernel addresses: <start address>[/<size>]
10312  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10313  *
10314  * if <size> is not specified or is zero, the range is treated as a single
10315  * address; not valid for ACTION=="filter".
10316  */
10317 enum {
10318 	IF_ACT_NONE = -1,
10319 	IF_ACT_FILTER,
10320 	IF_ACT_START,
10321 	IF_ACT_STOP,
10322 	IF_SRC_FILE,
10323 	IF_SRC_KERNEL,
10324 	IF_SRC_FILEADDR,
10325 	IF_SRC_KERNELADDR,
10326 };
10327 
10328 enum {
10329 	IF_STATE_ACTION = 0,
10330 	IF_STATE_SOURCE,
10331 	IF_STATE_END,
10332 };
10333 
10334 static const match_table_t if_tokens = {
10335 	{ IF_ACT_FILTER,	"filter" },
10336 	{ IF_ACT_START,		"start" },
10337 	{ IF_ACT_STOP,		"stop" },
10338 	{ IF_SRC_FILE,		"%u/%u@%s" },
10339 	{ IF_SRC_KERNEL,	"%u/%u" },
10340 	{ IF_SRC_FILEADDR,	"%u@%s" },
10341 	{ IF_SRC_KERNELADDR,	"%u" },
10342 	{ IF_ACT_NONE,		NULL },
10343 };
10344 
10345 /*
10346  * Address filter string parser
10347  */
10348 static int
10349 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10350 			     struct list_head *filters)
10351 {
10352 	struct perf_addr_filter *filter = NULL;
10353 	char *start, *orig, *filename = NULL;
10354 	substring_t args[MAX_OPT_ARGS];
10355 	int state = IF_STATE_ACTION, token;
10356 	unsigned int kernel = 0;
10357 	int ret = -EINVAL;
10358 
10359 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10360 	if (!fstr)
10361 		return -ENOMEM;
10362 
10363 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10364 		static const enum perf_addr_filter_action_t actions[] = {
10365 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10366 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10367 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10368 		};
10369 		ret = -EINVAL;
10370 
10371 		if (!*start)
10372 			continue;
10373 
10374 		/* filter definition begins */
10375 		if (state == IF_STATE_ACTION) {
10376 			filter = perf_addr_filter_new(event, filters);
10377 			if (!filter)
10378 				goto fail;
10379 		}
10380 
10381 		token = match_token(start, if_tokens, args);
10382 		switch (token) {
10383 		case IF_ACT_FILTER:
10384 		case IF_ACT_START:
10385 		case IF_ACT_STOP:
10386 			if (state != IF_STATE_ACTION)
10387 				goto fail;
10388 
10389 			filter->action = actions[token];
10390 			state = IF_STATE_SOURCE;
10391 			break;
10392 
10393 		case IF_SRC_KERNELADDR:
10394 		case IF_SRC_KERNEL:
10395 			kernel = 1;
10396 			fallthrough;
10397 
10398 		case IF_SRC_FILEADDR:
10399 		case IF_SRC_FILE:
10400 			if (state != IF_STATE_SOURCE)
10401 				goto fail;
10402 
10403 			*args[0].to = 0;
10404 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10405 			if (ret)
10406 				goto fail;
10407 
10408 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10409 				*args[1].to = 0;
10410 				ret = kstrtoul(args[1].from, 0, &filter->size);
10411 				if (ret)
10412 					goto fail;
10413 			}
10414 
10415 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10416 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10417 
10418 				kfree(filename);
10419 				filename = match_strdup(&args[fpos]);
10420 				if (!filename) {
10421 					ret = -ENOMEM;
10422 					goto fail;
10423 				}
10424 			}
10425 
10426 			state = IF_STATE_END;
10427 			break;
10428 
10429 		default:
10430 			goto fail;
10431 		}
10432 
10433 		/*
10434 		 * Filter definition is fully parsed, validate and install it.
10435 		 * Make sure that it doesn't contradict itself or the event's
10436 		 * attribute.
10437 		 */
10438 		if (state == IF_STATE_END) {
10439 			ret = -EINVAL;
10440 			if (kernel && event->attr.exclude_kernel)
10441 				goto fail;
10442 
10443 			/*
10444 			 * ACTION "filter" must have a non-zero length region
10445 			 * specified.
10446 			 */
10447 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10448 			    !filter->size)
10449 				goto fail;
10450 
10451 			if (!kernel) {
10452 				if (!filename)
10453 					goto fail;
10454 
10455 				/*
10456 				 * For now, we only support file-based filters
10457 				 * in per-task events; doing so for CPU-wide
10458 				 * events requires additional context switching
10459 				 * trickery, since same object code will be
10460 				 * mapped at different virtual addresses in
10461 				 * different processes.
10462 				 */
10463 				ret = -EOPNOTSUPP;
10464 				if (!event->ctx->task)
10465 					goto fail;
10466 
10467 				/* look up the path and grab its inode */
10468 				ret = kern_path(filename, LOOKUP_FOLLOW,
10469 						&filter->path);
10470 				if (ret)
10471 					goto fail;
10472 
10473 				ret = -EINVAL;
10474 				if (!filter->path.dentry ||
10475 				    !S_ISREG(d_inode(filter->path.dentry)
10476 					     ->i_mode))
10477 					goto fail;
10478 
10479 				event->addr_filters.nr_file_filters++;
10480 			}
10481 
10482 			/* ready to consume more filters */
10483 			state = IF_STATE_ACTION;
10484 			filter = NULL;
10485 		}
10486 	}
10487 
10488 	if (state != IF_STATE_ACTION)
10489 		goto fail;
10490 
10491 	kfree(filename);
10492 	kfree(orig);
10493 
10494 	return 0;
10495 
10496 fail:
10497 	kfree(filename);
10498 	free_filters_list(filters);
10499 	kfree(orig);
10500 
10501 	return ret;
10502 }
10503 
10504 static int
10505 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10506 {
10507 	LIST_HEAD(filters);
10508 	int ret;
10509 
10510 	/*
10511 	 * Since this is called in perf_ioctl() path, we're already holding
10512 	 * ctx::mutex.
10513 	 */
10514 	lockdep_assert_held(&event->ctx->mutex);
10515 
10516 	if (WARN_ON_ONCE(event->parent))
10517 		return -EINVAL;
10518 
10519 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10520 	if (ret)
10521 		goto fail_clear_files;
10522 
10523 	ret = event->pmu->addr_filters_validate(&filters);
10524 	if (ret)
10525 		goto fail_free_filters;
10526 
10527 	/* remove existing filters, if any */
10528 	perf_addr_filters_splice(event, &filters);
10529 
10530 	/* install new filters */
10531 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10532 
10533 	return ret;
10534 
10535 fail_free_filters:
10536 	free_filters_list(&filters);
10537 
10538 fail_clear_files:
10539 	event->addr_filters.nr_file_filters = 0;
10540 
10541 	return ret;
10542 }
10543 
10544 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10545 {
10546 	int ret = -EINVAL;
10547 	char *filter_str;
10548 
10549 	filter_str = strndup_user(arg, PAGE_SIZE);
10550 	if (IS_ERR(filter_str))
10551 		return PTR_ERR(filter_str);
10552 
10553 #ifdef CONFIG_EVENT_TRACING
10554 	if (perf_event_is_tracing(event)) {
10555 		struct perf_event_context *ctx = event->ctx;
10556 
10557 		/*
10558 		 * Beware, here be dragons!!
10559 		 *
10560 		 * the tracepoint muck will deadlock against ctx->mutex, but
10561 		 * the tracepoint stuff does not actually need it. So
10562 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10563 		 * already have a reference on ctx.
10564 		 *
10565 		 * This can result in event getting moved to a different ctx,
10566 		 * but that does not affect the tracepoint state.
10567 		 */
10568 		mutex_unlock(&ctx->mutex);
10569 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10570 		mutex_lock(&ctx->mutex);
10571 	} else
10572 #endif
10573 	if (has_addr_filter(event))
10574 		ret = perf_event_set_addr_filter(event, filter_str);
10575 
10576 	kfree(filter_str);
10577 	return ret;
10578 }
10579 
10580 /*
10581  * hrtimer based swevent callback
10582  */
10583 
10584 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10585 {
10586 	enum hrtimer_restart ret = HRTIMER_RESTART;
10587 	struct perf_sample_data data;
10588 	struct pt_regs *regs;
10589 	struct perf_event *event;
10590 	u64 period;
10591 
10592 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10593 
10594 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10595 		return HRTIMER_NORESTART;
10596 
10597 	event->pmu->read(event);
10598 
10599 	perf_sample_data_init(&data, 0, event->hw.last_period);
10600 	regs = get_irq_regs();
10601 
10602 	if (regs && !perf_exclude_event(event, regs)) {
10603 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10604 			if (__perf_event_overflow(event, 1, &data, regs))
10605 				ret = HRTIMER_NORESTART;
10606 	}
10607 
10608 	period = max_t(u64, 10000, event->hw.sample_period);
10609 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10610 
10611 	return ret;
10612 }
10613 
10614 static void perf_swevent_start_hrtimer(struct perf_event *event)
10615 {
10616 	struct hw_perf_event *hwc = &event->hw;
10617 	s64 period;
10618 
10619 	if (!is_sampling_event(event))
10620 		return;
10621 
10622 	period = local64_read(&hwc->period_left);
10623 	if (period) {
10624 		if (period < 0)
10625 			period = 10000;
10626 
10627 		local64_set(&hwc->period_left, 0);
10628 	} else {
10629 		period = max_t(u64, 10000, hwc->sample_period);
10630 	}
10631 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10632 		      HRTIMER_MODE_REL_PINNED_HARD);
10633 }
10634 
10635 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10636 {
10637 	struct hw_perf_event *hwc = &event->hw;
10638 
10639 	if (is_sampling_event(event)) {
10640 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10641 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10642 
10643 		hrtimer_cancel(&hwc->hrtimer);
10644 	}
10645 }
10646 
10647 static void perf_swevent_init_hrtimer(struct perf_event *event)
10648 {
10649 	struct hw_perf_event *hwc = &event->hw;
10650 
10651 	if (!is_sampling_event(event))
10652 		return;
10653 
10654 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10655 	hwc->hrtimer.function = perf_swevent_hrtimer;
10656 
10657 	/*
10658 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10659 	 * mapping and avoid the whole period adjust feedback stuff.
10660 	 */
10661 	if (event->attr.freq) {
10662 		long freq = event->attr.sample_freq;
10663 
10664 		event->attr.sample_period = NSEC_PER_SEC / freq;
10665 		hwc->sample_period = event->attr.sample_period;
10666 		local64_set(&hwc->period_left, hwc->sample_period);
10667 		hwc->last_period = hwc->sample_period;
10668 		event->attr.freq = 0;
10669 	}
10670 }
10671 
10672 /*
10673  * Software event: cpu wall time clock
10674  */
10675 
10676 static void cpu_clock_event_update(struct perf_event *event)
10677 {
10678 	s64 prev;
10679 	u64 now;
10680 
10681 	now = local_clock();
10682 	prev = local64_xchg(&event->hw.prev_count, now);
10683 	local64_add(now - prev, &event->count);
10684 }
10685 
10686 static void cpu_clock_event_start(struct perf_event *event, int flags)
10687 {
10688 	local64_set(&event->hw.prev_count, local_clock());
10689 	perf_swevent_start_hrtimer(event);
10690 }
10691 
10692 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10693 {
10694 	perf_swevent_cancel_hrtimer(event);
10695 	cpu_clock_event_update(event);
10696 }
10697 
10698 static int cpu_clock_event_add(struct perf_event *event, int flags)
10699 {
10700 	if (flags & PERF_EF_START)
10701 		cpu_clock_event_start(event, flags);
10702 	perf_event_update_userpage(event);
10703 
10704 	return 0;
10705 }
10706 
10707 static void cpu_clock_event_del(struct perf_event *event, int flags)
10708 {
10709 	cpu_clock_event_stop(event, flags);
10710 }
10711 
10712 static void cpu_clock_event_read(struct perf_event *event)
10713 {
10714 	cpu_clock_event_update(event);
10715 }
10716 
10717 static int cpu_clock_event_init(struct perf_event *event)
10718 {
10719 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10720 		return -ENOENT;
10721 
10722 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10723 		return -ENOENT;
10724 
10725 	/*
10726 	 * no branch sampling for software events
10727 	 */
10728 	if (has_branch_stack(event))
10729 		return -EOPNOTSUPP;
10730 
10731 	perf_swevent_init_hrtimer(event);
10732 
10733 	return 0;
10734 }
10735 
10736 static struct pmu perf_cpu_clock = {
10737 	.task_ctx_nr	= perf_sw_context,
10738 
10739 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10740 
10741 	.event_init	= cpu_clock_event_init,
10742 	.add		= cpu_clock_event_add,
10743 	.del		= cpu_clock_event_del,
10744 	.start		= cpu_clock_event_start,
10745 	.stop		= cpu_clock_event_stop,
10746 	.read		= cpu_clock_event_read,
10747 };
10748 
10749 /*
10750  * Software event: task time clock
10751  */
10752 
10753 static void task_clock_event_update(struct perf_event *event, u64 now)
10754 {
10755 	u64 prev;
10756 	s64 delta;
10757 
10758 	prev = local64_xchg(&event->hw.prev_count, now);
10759 	delta = now - prev;
10760 	local64_add(delta, &event->count);
10761 }
10762 
10763 static void task_clock_event_start(struct perf_event *event, int flags)
10764 {
10765 	local64_set(&event->hw.prev_count, event->ctx->time);
10766 	perf_swevent_start_hrtimer(event);
10767 }
10768 
10769 static void task_clock_event_stop(struct perf_event *event, int flags)
10770 {
10771 	perf_swevent_cancel_hrtimer(event);
10772 	task_clock_event_update(event, event->ctx->time);
10773 }
10774 
10775 static int task_clock_event_add(struct perf_event *event, int flags)
10776 {
10777 	if (flags & PERF_EF_START)
10778 		task_clock_event_start(event, flags);
10779 	perf_event_update_userpage(event);
10780 
10781 	return 0;
10782 }
10783 
10784 static void task_clock_event_del(struct perf_event *event, int flags)
10785 {
10786 	task_clock_event_stop(event, PERF_EF_UPDATE);
10787 }
10788 
10789 static void task_clock_event_read(struct perf_event *event)
10790 {
10791 	u64 now = perf_clock();
10792 	u64 delta = now - event->ctx->timestamp;
10793 	u64 time = event->ctx->time + delta;
10794 
10795 	task_clock_event_update(event, time);
10796 }
10797 
10798 static int task_clock_event_init(struct perf_event *event)
10799 {
10800 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10801 		return -ENOENT;
10802 
10803 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10804 		return -ENOENT;
10805 
10806 	/*
10807 	 * no branch sampling for software events
10808 	 */
10809 	if (has_branch_stack(event))
10810 		return -EOPNOTSUPP;
10811 
10812 	perf_swevent_init_hrtimer(event);
10813 
10814 	return 0;
10815 }
10816 
10817 static struct pmu perf_task_clock = {
10818 	.task_ctx_nr	= perf_sw_context,
10819 
10820 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10821 
10822 	.event_init	= task_clock_event_init,
10823 	.add		= task_clock_event_add,
10824 	.del		= task_clock_event_del,
10825 	.start		= task_clock_event_start,
10826 	.stop		= task_clock_event_stop,
10827 	.read		= task_clock_event_read,
10828 };
10829 
10830 static void perf_pmu_nop_void(struct pmu *pmu)
10831 {
10832 }
10833 
10834 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10835 {
10836 }
10837 
10838 static int perf_pmu_nop_int(struct pmu *pmu)
10839 {
10840 	return 0;
10841 }
10842 
10843 static int perf_event_nop_int(struct perf_event *event, u64 value)
10844 {
10845 	return 0;
10846 }
10847 
10848 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10849 
10850 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10851 {
10852 	__this_cpu_write(nop_txn_flags, flags);
10853 
10854 	if (flags & ~PERF_PMU_TXN_ADD)
10855 		return;
10856 
10857 	perf_pmu_disable(pmu);
10858 }
10859 
10860 static int perf_pmu_commit_txn(struct pmu *pmu)
10861 {
10862 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10863 
10864 	__this_cpu_write(nop_txn_flags, 0);
10865 
10866 	if (flags & ~PERF_PMU_TXN_ADD)
10867 		return 0;
10868 
10869 	perf_pmu_enable(pmu);
10870 	return 0;
10871 }
10872 
10873 static void perf_pmu_cancel_txn(struct pmu *pmu)
10874 {
10875 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10876 
10877 	__this_cpu_write(nop_txn_flags, 0);
10878 
10879 	if (flags & ~PERF_PMU_TXN_ADD)
10880 		return;
10881 
10882 	perf_pmu_enable(pmu);
10883 }
10884 
10885 static int perf_event_idx_default(struct perf_event *event)
10886 {
10887 	return 0;
10888 }
10889 
10890 /*
10891  * Ensures all contexts with the same task_ctx_nr have the same
10892  * pmu_cpu_context too.
10893  */
10894 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10895 {
10896 	struct pmu *pmu;
10897 
10898 	if (ctxn < 0)
10899 		return NULL;
10900 
10901 	list_for_each_entry(pmu, &pmus, entry) {
10902 		if (pmu->task_ctx_nr == ctxn)
10903 			return pmu->pmu_cpu_context;
10904 	}
10905 
10906 	return NULL;
10907 }
10908 
10909 static void free_pmu_context(struct pmu *pmu)
10910 {
10911 	/*
10912 	 * Static contexts such as perf_sw_context have a global lifetime
10913 	 * and may be shared between different PMUs. Avoid freeing them
10914 	 * when a single PMU is going away.
10915 	 */
10916 	if (pmu->task_ctx_nr > perf_invalid_context)
10917 		return;
10918 
10919 	free_percpu(pmu->pmu_cpu_context);
10920 }
10921 
10922 /*
10923  * Let userspace know that this PMU supports address range filtering:
10924  */
10925 static ssize_t nr_addr_filters_show(struct device *dev,
10926 				    struct device_attribute *attr,
10927 				    char *page)
10928 {
10929 	struct pmu *pmu = dev_get_drvdata(dev);
10930 
10931 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10932 }
10933 DEVICE_ATTR_RO(nr_addr_filters);
10934 
10935 static struct idr pmu_idr;
10936 
10937 static ssize_t
10938 type_show(struct device *dev, struct device_attribute *attr, char *page)
10939 {
10940 	struct pmu *pmu = dev_get_drvdata(dev);
10941 
10942 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10943 }
10944 static DEVICE_ATTR_RO(type);
10945 
10946 static ssize_t
10947 perf_event_mux_interval_ms_show(struct device *dev,
10948 				struct device_attribute *attr,
10949 				char *page)
10950 {
10951 	struct pmu *pmu = dev_get_drvdata(dev);
10952 
10953 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10954 }
10955 
10956 static DEFINE_MUTEX(mux_interval_mutex);
10957 
10958 static ssize_t
10959 perf_event_mux_interval_ms_store(struct device *dev,
10960 				 struct device_attribute *attr,
10961 				 const char *buf, size_t count)
10962 {
10963 	struct pmu *pmu = dev_get_drvdata(dev);
10964 	int timer, cpu, ret;
10965 
10966 	ret = kstrtoint(buf, 0, &timer);
10967 	if (ret)
10968 		return ret;
10969 
10970 	if (timer < 1)
10971 		return -EINVAL;
10972 
10973 	/* same value, noting to do */
10974 	if (timer == pmu->hrtimer_interval_ms)
10975 		return count;
10976 
10977 	mutex_lock(&mux_interval_mutex);
10978 	pmu->hrtimer_interval_ms = timer;
10979 
10980 	/* update all cpuctx for this PMU */
10981 	cpus_read_lock();
10982 	for_each_online_cpu(cpu) {
10983 		struct perf_cpu_context *cpuctx;
10984 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10985 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10986 
10987 		cpu_function_call(cpu,
10988 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10989 	}
10990 	cpus_read_unlock();
10991 	mutex_unlock(&mux_interval_mutex);
10992 
10993 	return count;
10994 }
10995 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10996 
10997 static struct attribute *pmu_dev_attrs[] = {
10998 	&dev_attr_type.attr,
10999 	&dev_attr_perf_event_mux_interval_ms.attr,
11000 	NULL,
11001 };
11002 ATTRIBUTE_GROUPS(pmu_dev);
11003 
11004 static int pmu_bus_running;
11005 static struct bus_type pmu_bus = {
11006 	.name		= "event_source",
11007 	.dev_groups	= pmu_dev_groups,
11008 };
11009 
11010 static void pmu_dev_release(struct device *dev)
11011 {
11012 	kfree(dev);
11013 }
11014 
11015 static int pmu_dev_alloc(struct pmu *pmu)
11016 {
11017 	int ret = -ENOMEM;
11018 
11019 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11020 	if (!pmu->dev)
11021 		goto out;
11022 
11023 	pmu->dev->groups = pmu->attr_groups;
11024 	device_initialize(pmu->dev);
11025 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11026 	if (ret)
11027 		goto free_dev;
11028 
11029 	dev_set_drvdata(pmu->dev, pmu);
11030 	pmu->dev->bus = &pmu_bus;
11031 	pmu->dev->release = pmu_dev_release;
11032 	ret = device_add(pmu->dev);
11033 	if (ret)
11034 		goto free_dev;
11035 
11036 	/* For PMUs with address filters, throw in an extra attribute: */
11037 	if (pmu->nr_addr_filters)
11038 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11039 
11040 	if (ret)
11041 		goto del_dev;
11042 
11043 	if (pmu->attr_update)
11044 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11045 
11046 	if (ret)
11047 		goto del_dev;
11048 
11049 out:
11050 	return ret;
11051 
11052 del_dev:
11053 	device_del(pmu->dev);
11054 
11055 free_dev:
11056 	put_device(pmu->dev);
11057 	goto out;
11058 }
11059 
11060 static struct lock_class_key cpuctx_mutex;
11061 static struct lock_class_key cpuctx_lock;
11062 
11063 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11064 {
11065 	int cpu, ret, max = PERF_TYPE_MAX;
11066 
11067 	mutex_lock(&pmus_lock);
11068 	ret = -ENOMEM;
11069 	pmu->pmu_disable_count = alloc_percpu(int);
11070 	if (!pmu->pmu_disable_count)
11071 		goto unlock;
11072 
11073 	pmu->type = -1;
11074 	if (!name)
11075 		goto skip_type;
11076 	pmu->name = name;
11077 
11078 	if (type != PERF_TYPE_SOFTWARE) {
11079 		if (type >= 0)
11080 			max = type;
11081 
11082 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11083 		if (ret < 0)
11084 			goto free_pdc;
11085 
11086 		WARN_ON(type >= 0 && ret != type);
11087 
11088 		type = ret;
11089 	}
11090 	pmu->type = type;
11091 
11092 	if (pmu_bus_running) {
11093 		ret = pmu_dev_alloc(pmu);
11094 		if (ret)
11095 			goto free_idr;
11096 	}
11097 
11098 skip_type:
11099 	if (pmu->task_ctx_nr == perf_hw_context) {
11100 		static int hw_context_taken = 0;
11101 
11102 		/*
11103 		 * Other than systems with heterogeneous CPUs, it never makes
11104 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11105 		 * uncore must use perf_invalid_context.
11106 		 */
11107 		if (WARN_ON_ONCE(hw_context_taken &&
11108 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11109 			pmu->task_ctx_nr = perf_invalid_context;
11110 
11111 		hw_context_taken = 1;
11112 	}
11113 
11114 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11115 	if (pmu->pmu_cpu_context)
11116 		goto got_cpu_context;
11117 
11118 	ret = -ENOMEM;
11119 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11120 	if (!pmu->pmu_cpu_context)
11121 		goto free_dev;
11122 
11123 	for_each_possible_cpu(cpu) {
11124 		struct perf_cpu_context *cpuctx;
11125 
11126 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11127 		__perf_event_init_context(&cpuctx->ctx);
11128 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11129 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11130 		cpuctx->ctx.pmu = pmu;
11131 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11132 
11133 		__perf_mux_hrtimer_init(cpuctx, cpu);
11134 
11135 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11136 		cpuctx->heap = cpuctx->heap_default;
11137 	}
11138 
11139 got_cpu_context:
11140 	if (!pmu->start_txn) {
11141 		if (pmu->pmu_enable) {
11142 			/*
11143 			 * If we have pmu_enable/pmu_disable calls, install
11144 			 * transaction stubs that use that to try and batch
11145 			 * hardware accesses.
11146 			 */
11147 			pmu->start_txn  = perf_pmu_start_txn;
11148 			pmu->commit_txn = perf_pmu_commit_txn;
11149 			pmu->cancel_txn = perf_pmu_cancel_txn;
11150 		} else {
11151 			pmu->start_txn  = perf_pmu_nop_txn;
11152 			pmu->commit_txn = perf_pmu_nop_int;
11153 			pmu->cancel_txn = perf_pmu_nop_void;
11154 		}
11155 	}
11156 
11157 	if (!pmu->pmu_enable) {
11158 		pmu->pmu_enable  = perf_pmu_nop_void;
11159 		pmu->pmu_disable = perf_pmu_nop_void;
11160 	}
11161 
11162 	if (!pmu->check_period)
11163 		pmu->check_period = perf_event_nop_int;
11164 
11165 	if (!pmu->event_idx)
11166 		pmu->event_idx = perf_event_idx_default;
11167 
11168 	/*
11169 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11170 	 * since these cannot be in the IDR. This way the linear search
11171 	 * is fast, provided a valid software event is provided.
11172 	 */
11173 	if (type == PERF_TYPE_SOFTWARE || !name)
11174 		list_add_rcu(&pmu->entry, &pmus);
11175 	else
11176 		list_add_tail_rcu(&pmu->entry, &pmus);
11177 
11178 	atomic_set(&pmu->exclusive_cnt, 0);
11179 	ret = 0;
11180 unlock:
11181 	mutex_unlock(&pmus_lock);
11182 
11183 	return ret;
11184 
11185 free_dev:
11186 	device_del(pmu->dev);
11187 	put_device(pmu->dev);
11188 
11189 free_idr:
11190 	if (pmu->type != PERF_TYPE_SOFTWARE)
11191 		idr_remove(&pmu_idr, pmu->type);
11192 
11193 free_pdc:
11194 	free_percpu(pmu->pmu_disable_count);
11195 	goto unlock;
11196 }
11197 EXPORT_SYMBOL_GPL(perf_pmu_register);
11198 
11199 void perf_pmu_unregister(struct pmu *pmu)
11200 {
11201 	mutex_lock(&pmus_lock);
11202 	list_del_rcu(&pmu->entry);
11203 
11204 	/*
11205 	 * We dereference the pmu list under both SRCU and regular RCU, so
11206 	 * synchronize against both of those.
11207 	 */
11208 	synchronize_srcu(&pmus_srcu);
11209 	synchronize_rcu();
11210 
11211 	free_percpu(pmu->pmu_disable_count);
11212 	if (pmu->type != PERF_TYPE_SOFTWARE)
11213 		idr_remove(&pmu_idr, pmu->type);
11214 	if (pmu_bus_running) {
11215 		if (pmu->nr_addr_filters)
11216 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11217 		device_del(pmu->dev);
11218 		put_device(pmu->dev);
11219 	}
11220 	free_pmu_context(pmu);
11221 	mutex_unlock(&pmus_lock);
11222 }
11223 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11224 
11225 static inline bool has_extended_regs(struct perf_event *event)
11226 {
11227 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11228 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11229 }
11230 
11231 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11232 {
11233 	struct perf_event_context *ctx = NULL;
11234 	int ret;
11235 
11236 	if (!try_module_get(pmu->module))
11237 		return -ENODEV;
11238 
11239 	/*
11240 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11241 	 * for example, validate if the group fits on the PMU. Therefore,
11242 	 * if this is a sibling event, acquire the ctx->mutex to protect
11243 	 * the sibling_list.
11244 	 */
11245 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11246 		/*
11247 		 * This ctx->mutex can nest when we're called through
11248 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11249 		 */
11250 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11251 						 SINGLE_DEPTH_NESTING);
11252 		BUG_ON(!ctx);
11253 	}
11254 
11255 	event->pmu = pmu;
11256 	ret = pmu->event_init(event);
11257 
11258 	if (ctx)
11259 		perf_event_ctx_unlock(event->group_leader, ctx);
11260 
11261 	if (!ret) {
11262 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11263 		    has_extended_regs(event))
11264 			ret = -EOPNOTSUPP;
11265 
11266 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11267 		    event_has_any_exclude_flag(event))
11268 			ret = -EINVAL;
11269 
11270 		if (ret && event->destroy)
11271 			event->destroy(event);
11272 	}
11273 
11274 	if (ret)
11275 		module_put(pmu->module);
11276 
11277 	return ret;
11278 }
11279 
11280 static struct pmu *perf_init_event(struct perf_event *event)
11281 {
11282 	bool extended_type = false;
11283 	int idx, type, ret;
11284 	struct pmu *pmu;
11285 
11286 	idx = srcu_read_lock(&pmus_srcu);
11287 
11288 	/* Try parent's PMU first: */
11289 	if (event->parent && event->parent->pmu) {
11290 		pmu = event->parent->pmu;
11291 		ret = perf_try_init_event(pmu, event);
11292 		if (!ret)
11293 			goto unlock;
11294 	}
11295 
11296 	/*
11297 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11298 	 * are often aliases for PERF_TYPE_RAW.
11299 	 */
11300 	type = event->attr.type;
11301 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11302 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11303 		if (!type) {
11304 			type = PERF_TYPE_RAW;
11305 		} else {
11306 			extended_type = true;
11307 			event->attr.config &= PERF_HW_EVENT_MASK;
11308 		}
11309 	}
11310 
11311 again:
11312 	rcu_read_lock();
11313 	pmu = idr_find(&pmu_idr, type);
11314 	rcu_read_unlock();
11315 	if (pmu) {
11316 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11317 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11318 			goto fail;
11319 
11320 		ret = perf_try_init_event(pmu, event);
11321 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11322 			type = event->attr.type;
11323 			goto again;
11324 		}
11325 
11326 		if (ret)
11327 			pmu = ERR_PTR(ret);
11328 
11329 		goto unlock;
11330 	}
11331 
11332 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11333 		ret = perf_try_init_event(pmu, event);
11334 		if (!ret)
11335 			goto unlock;
11336 
11337 		if (ret != -ENOENT) {
11338 			pmu = ERR_PTR(ret);
11339 			goto unlock;
11340 		}
11341 	}
11342 fail:
11343 	pmu = ERR_PTR(-ENOENT);
11344 unlock:
11345 	srcu_read_unlock(&pmus_srcu, idx);
11346 
11347 	return pmu;
11348 }
11349 
11350 static void attach_sb_event(struct perf_event *event)
11351 {
11352 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11353 
11354 	raw_spin_lock(&pel->lock);
11355 	list_add_rcu(&event->sb_list, &pel->list);
11356 	raw_spin_unlock(&pel->lock);
11357 }
11358 
11359 /*
11360  * We keep a list of all !task (and therefore per-cpu) events
11361  * that need to receive side-band records.
11362  *
11363  * This avoids having to scan all the various PMU per-cpu contexts
11364  * looking for them.
11365  */
11366 static void account_pmu_sb_event(struct perf_event *event)
11367 {
11368 	if (is_sb_event(event))
11369 		attach_sb_event(event);
11370 }
11371 
11372 static void account_event_cpu(struct perf_event *event, int cpu)
11373 {
11374 	if (event->parent)
11375 		return;
11376 
11377 	if (is_cgroup_event(event))
11378 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11379 }
11380 
11381 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11382 static void account_freq_event_nohz(void)
11383 {
11384 #ifdef CONFIG_NO_HZ_FULL
11385 	/* Lock so we don't race with concurrent unaccount */
11386 	spin_lock(&nr_freq_lock);
11387 	if (atomic_inc_return(&nr_freq_events) == 1)
11388 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11389 	spin_unlock(&nr_freq_lock);
11390 #endif
11391 }
11392 
11393 static void account_freq_event(void)
11394 {
11395 	if (tick_nohz_full_enabled())
11396 		account_freq_event_nohz();
11397 	else
11398 		atomic_inc(&nr_freq_events);
11399 }
11400 
11401 
11402 static void account_event(struct perf_event *event)
11403 {
11404 	bool inc = false;
11405 
11406 	if (event->parent)
11407 		return;
11408 
11409 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11410 		inc = true;
11411 	if (event->attr.mmap || event->attr.mmap_data)
11412 		atomic_inc(&nr_mmap_events);
11413 	if (event->attr.build_id)
11414 		atomic_inc(&nr_build_id_events);
11415 	if (event->attr.comm)
11416 		atomic_inc(&nr_comm_events);
11417 	if (event->attr.namespaces)
11418 		atomic_inc(&nr_namespaces_events);
11419 	if (event->attr.cgroup)
11420 		atomic_inc(&nr_cgroup_events);
11421 	if (event->attr.task)
11422 		atomic_inc(&nr_task_events);
11423 	if (event->attr.freq)
11424 		account_freq_event();
11425 	if (event->attr.context_switch) {
11426 		atomic_inc(&nr_switch_events);
11427 		inc = true;
11428 	}
11429 	if (has_branch_stack(event))
11430 		inc = true;
11431 	if (is_cgroup_event(event))
11432 		inc = true;
11433 	if (event->attr.ksymbol)
11434 		atomic_inc(&nr_ksymbol_events);
11435 	if (event->attr.bpf_event)
11436 		atomic_inc(&nr_bpf_events);
11437 	if (event->attr.text_poke)
11438 		atomic_inc(&nr_text_poke_events);
11439 
11440 	if (inc) {
11441 		/*
11442 		 * We need the mutex here because static_branch_enable()
11443 		 * must complete *before* the perf_sched_count increment
11444 		 * becomes visible.
11445 		 */
11446 		if (atomic_inc_not_zero(&perf_sched_count))
11447 			goto enabled;
11448 
11449 		mutex_lock(&perf_sched_mutex);
11450 		if (!atomic_read(&perf_sched_count)) {
11451 			static_branch_enable(&perf_sched_events);
11452 			/*
11453 			 * Guarantee that all CPUs observe they key change and
11454 			 * call the perf scheduling hooks before proceeding to
11455 			 * install events that need them.
11456 			 */
11457 			synchronize_rcu();
11458 		}
11459 		/*
11460 		 * Now that we have waited for the sync_sched(), allow further
11461 		 * increments to by-pass the mutex.
11462 		 */
11463 		atomic_inc(&perf_sched_count);
11464 		mutex_unlock(&perf_sched_mutex);
11465 	}
11466 enabled:
11467 
11468 	account_event_cpu(event, event->cpu);
11469 
11470 	account_pmu_sb_event(event);
11471 }
11472 
11473 /*
11474  * Allocate and initialize an event structure
11475  */
11476 static struct perf_event *
11477 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11478 		 struct task_struct *task,
11479 		 struct perf_event *group_leader,
11480 		 struct perf_event *parent_event,
11481 		 perf_overflow_handler_t overflow_handler,
11482 		 void *context, int cgroup_fd)
11483 {
11484 	struct pmu *pmu;
11485 	struct perf_event *event;
11486 	struct hw_perf_event *hwc;
11487 	long err = -EINVAL;
11488 	int node;
11489 
11490 	if ((unsigned)cpu >= nr_cpu_ids) {
11491 		if (!task || cpu != -1)
11492 			return ERR_PTR(-EINVAL);
11493 	}
11494 	if (attr->sigtrap && !task) {
11495 		/* Requires a task: avoid signalling random tasks. */
11496 		return ERR_PTR(-EINVAL);
11497 	}
11498 
11499 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11500 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11501 				      node);
11502 	if (!event)
11503 		return ERR_PTR(-ENOMEM);
11504 
11505 	/*
11506 	 * Single events are their own group leaders, with an
11507 	 * empty sibling list:
11508 	 */
11509 	if (!group_leader)
11510 		group_leader = event;
11511 
11512 	mutex_init(&event->child_mutex);
11513 	INIT_LIST_HEAD(&event->child_list);
11514 
11515 	INIT_LIST_HEAD(&event->event_entry);
11516 	INIT_LIST_HEAD(&event->sibling_list);
11517 	INIT_LIST_HEAD(&event->active_list);
11518 	init_event_group(event);
11519 	INIT_LIST_HEAD(&event->rb_entry);
11520 	INIT_LIST_HEAD(&event->active_entry);
11521 	INIT_LIST_HEAD(&event->addr_filters.list);
11522 	INIT_HLIST_NODE(&event->hlist_entry);
11523 
11524 
11525 	init_waitqueue_head(&event->waitq);
11526 	event->pending_disable = -1;
11527 	init_irq_work(&event->pending, perf_pending_event);
11528 
11529 	mutex_init(&event->mmap_mutex);
11530 	raw_spin_lock_init(&event->addr_filters.lock);
11531 
11532 	atomic_long_set(&event->refcount, 1);
11533 	event->cpu		= cpu;
11534 	event->attr		= *attr;
11535 	event->group_leader	= group_leader;
11536 	event->pmu		= NULL;
11537 	event->oncpu		= -1;
11538 
11539 	event->parent		= parent_event;
11540 
11541 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11542 	event->id		= atomic64_inc_return(&perf_event_id);
11543 
11544 	event->state		= PERF_EVENT_STATE_INACTIVE;
11545 
11546 	if (event->attr.sigtrap)
11547 		atomic_set(&event->event_limit, 1);
11548 
11549 	if (task) {
11550 		event->attach_state = PERF_ATTACH_TASK;
11551 		/*
11552 		 * XXX pmu::event_init needs to know what task to account to
11553 		 * and we cannot use the ctx information because we need the
11554 		 * pmu before we get a ctx.
11555 		 */
11556 		event->hw.target = get_task_struct(task);
11557 	}
11558 
11559 	event->clock = &local_clock;
11560 	if (parent_event)
11561 		event->clock = parent_event->clock;
11562 
11563 	if (!overflow_handler && parent_event) {
11564 		overflow_handler = parent_event->overflow_handler;
11565 		context = parent_event->overflow_handler_context;
11566 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11567 		if (overflow_handler == bpf_overflow_handler) {
11568 			struct bpf_prog *prog = parent_event->prog;
11569 
11570 			bpf_prog_inc(prog);
11571 			event->prog = prog;
11572 			event->orig_overflow_handler =
11573 				parent_event->orig_overflow_handler;
11574 		}
11575 #endif
11576 	}
11577 
11578 	if (overflow_handler) {
11579 		event->overflow_handler	= overflow_handler;
11580 		event->overflow_handler_context = context;
11581 	} else if (is_write_backward(event)){
11582 		event->overflow_handler = perf_event_output_backward;
11583 		event->overflow_handler_context = NULL;
11584 	} else {
11585 		event->overflow_handler = perf_event_output_forward;
11586 		event->overflow_handler_context = NULL;
11587 	}
11588 
11589 	perf_event__state_init(event);
11590 
11591 	pmu = NULL;
11592 
11593 	hwc = &event->hw;
11594 	hwc->sample_period = attr->sample_period;
11595 	if (attr->freq && attr->sample_freq)
11596 		hwc->sample_period = 1;
11597 	hwc->last_period = hwc->sample_period;
11598 
11599 	local64_set(&hwc->period_left, hwc->sample_period);
11600 
11601 	/*
11602 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11603 	 * See perf_output_read().
11604 	 */
11605 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11606 		goto err_ns;
11607 
11608 	if (!has_branch_stack(event))
11609 		event->attr.branch_sample_type = 0;
11610 
11611 	pmu = perf_init_event(event);
11612 	if (IS_ERR(pmu)) {
11613 		err = PTR_ERR(pmu);
11614 		goto err_ns;
11615 	}
11616 
11617 	/*
11618 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11619 	 * be different on other CPUs in the uncore mask.
11620 	 */
11621 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11622 		err = -EINVAL;
11623 		goto err_pmu;
11624 	}
11625 
11626 	if (event->attr.aux_output &&
11627 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11628 		err = -EOPNOTSUPP;
11629 		goto err_pmu;
11630 	}
11631 
11632 	if (cgroup_fd != -1) {
11633 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11634 		if (err)
11635 			goto err_pmu;
11636 	}
11637 
11638 	err = exclusive_event_init(event);
11639 	if (err)
11640 		goto err_pmu;
11641 
11642 	if (has_addr_filter(event)) {
11643 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11644 						    sizeof(struct perf_addr_filter_range),
11645 						    GFP_KERNEL);
11646 		if (!event->addr_filter_ranges) {
11647 			err = -ENOMEM;
11648 			goto err_per_task;
11649 		}
11650 
11651 		/*
11652 		 * Clone the parent's vma offsets: they are valid until exec()
11653 		 * even if the mm is not shared with the parent.
11654 		 */
11655 		if (event->parent) {
11656 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11657 
11658 			raw_spin_lock_irq(&ifh->lock);
11659 			memcpy(event->addr_filter_ranges,
11660 			       event->parent->addr_filter_ranges,
11661 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11662 			raw_spin_unlock_irq(&ifh->lock);
11663 		}
11664 
11665 		/* force hw sync on the address filters */
11666 		event->addr_filters_gen = 1;
11667 	}
11668 
11669 	if (!event->parent) {
11670 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11671 			err = get_callchain_buffers(attr->sample_max_stack);
11672 			if (err)
11673 				goto err_addr_filters;
11674 		}
11675 	}
11676 
11677 	err = security_perf_event_alloc(event);
11678 	if (err)
11679 		goto err_callchain_buffer;
11680 
11681 	/* symmetric to unaccount_event() in _free_event() */
11682 	account_event(event);
11683 
11684 	return event;
11685 
11686 err_callchain_buffer:
11687 	if (!event->parent) {
11688 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11689 			put_callchain_buffers();
11690 	}
11691 err_addr_filters:
11692 	kfree(event->addr_filter_ranges);
11693 
11694 err_per_task:
11695 	exclusive_event_destroy(event);
11696 
11697 err_pmu:
11698 	if (is_cgroup_event(event))
11699 		perf_detach_cgroup(event);
11700 	if (event->destroy)
11701 		event->destroy(event);
11702 	module_put(pmu->module);
11703 err_ns:
11704 	if (event->ns)
11705 		put_pid_ns(event->ns);
11706 	if (event->hw.target)
11707 		put_task_struct(event->hw.target);
11708 	kmem_cache_free(perf_event_cache, event);
11709 
11710 	return ERR_PTR(err);
11711 }
11712 
11713 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11714 			  struct perf_event_attr *attr)
11715 {
11716 	u32 size;
11717 	int ret;
11718 
11719 	/* Zero the full structure, so that a short copy will be nice. */
11720 	memset(attr, 0, sizeof(*attr));
11721 
11722 	ret = get_user(size, &uattr->size);
11723 	if (ret)
11724 		return ret;
11725 
11726 	/* ABI compatibility quirk: */
11727 	if (!size)
11728 		size = PERF_ATTR_SIZE_VER0;
11729 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11730 		goto err_size;
11731 
11732 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11733 	if (ret) {
11734 		if (ret == -E2BIG)
11735 			goto err_size;
11736 		return ret;
11737 	}
11738 
11739 	attr->size = size;
11740 
11741 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11742 		return -EINVAL;
11743 
11744 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11745 		return -EINVAL;
11746 
11747 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11748 		return -EINVAL;
11749 
11750 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11751 		u64 mask = attr->branch_sample_type;
11752 
11753 		/* only using defined bits */
11754 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11755 			return -EINVAL;
11756 
11757 		/* at least one branch bit must be set */
11758 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11759 			return -EINVAL;
11760 
11761 		/* propagate priv level, when not set for branch */
11762 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11763 
11764 			/* exclude_kernel checked on syscall entry */
11765 			if (!attr->exclude_kernel)
11766 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11767 
11768 			if (!attr->exclude_user)
11769 				mask |= PERF_SAMPLE_BRANCH_USER;
11770 
11771 			if (!attr->exclude_hv)
11772 				mask |= PERF_SAMPLE_BRANCH_HV;
11773 			/*
11774 			 * adjust user setting (for HW filter setup)
11775 			 */
11776 			attr->branch_sample_type = mask;
11777 		}
11778 		/* privileged levels capture (kernel, hv): check permissions */
11779 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11780 			ret = perf_allow_kernel(attr);
11781 			if (ret)
11782 				return ret;
11783 		}
11784 	}
11785 
11786 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11787 		ret = perf_reg_validate(attr->sample_regs_user);
11788 		if (ret)
11789 			return ret;
11790 	}
11791 
11792 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11793 		if (!arch_perf_have_user_stack_dump())
11794 			return -ENOSYS;
11795 
11796 		/*
11797 		 * We have __u32 type for the size, but so far
11798 		 * we can only use __u16 as maximum due to the
11799 		 * __u16 sample size limit.
11800 		 */
11801 		if (attr->sample_stack_user >= USHRT_MAX)
11802 			return -EINVAL;
11803 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11804 			return -EINVAL;
11805 	}
11806 
11807 	if (!attr->sample_max_stack)
11808 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11809 
11810 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11811 		ret = perf_reg_validate(attr->sample_regs_intr);
11812 
11813 #ifndef CONFIG_CGROUP_PERF
11814 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11815 		return -EINVAL;
11816 #endif
11817 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11818 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11819 		return -EINVAL;
11820 
11821 	if (!attr->inherit && attr->inherit_thread)
11822 		return -EINVAL;
11823 
11824 	if (attr->remove_on_exec && attr->enable_on_exec)
11825 		return -EINVAL;
11826 
11827 	if (attr->sigtrap && !attr->remove_on_exec)
11828 		return -EINVAL;
11829 
11830 out:
11831 	return ret;
11832 
11833 err_size:
11834 	put_user(sizeof(*attr), &uattr->size);
11835 	ret = -E2BIG;
11836 	goto out;
11837 }
11838 
11839 static int
11840 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11841 {
11842 	struct perf_buffer *rb = NULL;
11843 	int ret = -EINVAL;
11844 
11845 	if (!output_event)
11846 		goto set;
11847 
11848 	/* don't allow circular references */
11849 	if (event == output_event)
11850 		goto out;
11851 
11852 	/*
11853 	 * Don't allow cross-cpu buffers
11854 	 */
11855 	if (output_event->cpu != event->cpu)
11856 		goto out;
11857 
11858 	/*
11859 	 * If its not a per-cpu rb, it must be the same task.
11860 	 */
11861 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11862 		goto out;
11863 
11864 	/*
11865 	 * Mixing clocks in the same buffer is trouble you don't need.
11866 	 */
11867 	if (output_event->clock != event->clock)
11868 		goto out;
11869 
11870 	/*
11871 	 * Either writing ring buffer from beginning or from end.
11872 	 * Mixing is not allowed.
11873 	 */
11874 	if (is_write_backward(output_event) != is_write_backward(event))
11875 		goto out;
11876 
11877 	/*
11878 	 * If both events generate aux data, they must be on the same PMU
11879 	 */
11880 	if (has_aux(event) && has_aux(output_event) &&
11881 	    event->pmu != output_event->pmu)
11882 		goto out;
11883 
11884 set:
11885 	mutex_lock(&event->mmap_mutex);
11886 	/* Can't redirect output if we've got an active mmap() */
11887 	if (atomic_read(&event->mmap_count))
11888 		goto unlock;
11889 
11890 	if (output_event) {
11891 		/* get the rb we want to redirect to */
11892 		rb = ring_buffer_get(output_event);
11893 		if (!rb)
11894 			goto unlock;
11895 	}
11896 
11897 	ring_buffer_attach(event, rb);
11898 
11899 	ret = 0;
11900 unlock:
11901 	mutex_unlock(&event->mmap_mutex);
11902 
11903 out:
11904 	return ret;
11905 }
11906 
11907 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11908 {
11909 	if (b < a)
11910 		swap(a, b);
11911 
11912 	mutex_lock(a);
11913 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11914 }
11915 
11916 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11917 {
11918 	bool nmi_safe = false;
11919 
11920 	switch (clk_id) {
11921 	case CLOCK_MONOTONIC:
11922 		event->clock = &ktime_get_mono_fast_ns;
11923 		nmi_safe = true;
11924 		break;
11925 
11926 	case CLOCK_MONOTONIC_RAW:
11927 		event->clock = &ktime_get_raw_fast_ns;
11928 		nmi_safe = true;
11929 		break;
11930 
11931 	case CLOCK_REALTIME:
11932 		event->clock = &ktime_get_real_ns;
11933 		break;
11934 
11935 	case CLOCK_BOOTTIME:
11936 		event->clock = &ktime_get_boottime_ns;
11937 		break;
11938 
11939 	case CLOCK_TAI:
11940 		event->clock = &ktime_get_clocktai_ns;
11941 		break;
11942 
11943 	default:
11944 		return -EINVAL;
11945 	}
11946 
11947 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11948 		return -EINVAL;
11949 
11950 	return 0;
11951 }
11952 
11953 /*
11954  * Variation on perf_event_ctx_lock_nested(), except we take two context
11955  * mutexes.
11956  */
11957 static struct perf_event_context *
11958 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11959 			     struct perf_event_context *ctx)
11960 {
11961 	struct perf_event_context *gctx;
11962 
11963 again:
11964 	rcu_read_lock();
11965 	gctx = READ_ONCE(group_leader->ctx);
11966 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11967 		rcu_read_unlock();
11968 		goto again;
11969 	}
11970 	rcu_read_unlock();
11971 
11972 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11973 
11974 	if (group_leader->ctx != gctx) {
11975 		mutex_unlock(&ctx->mutex);
11976 		mutex_unlock(&gctx->mutex);
11977 		put_ctx(gctx);
11978 		goto again;
11979 	}
11980 
11981 	return gctx;
11982 }
11983 
11984 static bool
11985 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11986 {
11987 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11988 	bool is_capable = perfmon_capable();
11989 
11990 	if (attr->sigtrap) {
11991 		/*
11992 		 * perf_event_attr::sigtrap sends signals to the other task.
11993 		 * Require the current task to also have CAP_KILL.
11994 		 */
11995 		rcu_read_lock();
11996 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11997 		rcu_read_unlock();
11998 
11999 		/*
12000 		 * If the required capabilities aren't available, checks for
12001 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12002 		 * can effectively change the target task.
12003 		 */
12004 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12005 	}
12006 
12007 	/*
12008 	 * Preserve ptrace permission check for backwards compatibility. The
12009 	 * ptrace check also includes checks that the current task and other
12010 	 * task have matching uids, and is therefore not done here explicitly.
12011 	 */
12012 	return is_capable || ptrace_may_access(task, ptrace_mode);
12013 }
12014 
12015 /**
12016  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12017  *
12018  * @attr_uptr:	event_id type attributes for monitoring/sampling
12019  * @pid:		target pid
12020  * @cpu:		target cpu
12021  * @group_fd:		group leader event fd
12022  * @flags:		perf event open flags
12023  */
12024 SYSCALL_DEFINE5(perf_event_open,
12025 		struct perf_event_attr __user *, attr_uptr,
12026 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12027 {
12028 	struct perf_event *group_leader = NULL, *output_event = NULL;
12029 	struct perf_event *event, *sibling;
12030 	struct perf_event_attr attr;
12031 	struct perf_event_context *ctx, *gctx;
12032 	struct file *event_file = NULL;
12033 	struct fd group = {NULL, 0};
12034 	struct task_struct *task = NULL;
12035 	struct pmu *pmu;
12036 	int event_fd;
12037 	int move_group = 0;
12038 	int err;
12039 	int f_flags = O_RDWR;
12040 	int cgroup_fd = -1;
12041 
12042 	/* for future expandability... */
12043 	if (flags & ~PERF_FLAG_ALL)
12044 		return -EINVAL;
12045 
12046 	/* Do we allow access to perf_event_open(2) ? */
12047 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12048 	if (err)
12049 		return err;
12050 
12051 	err = perf_copy_attr(attr_uptr, &attr);
12052 	if (err)
12053 		return err;
12054 
12055 	if (!attr.exclude_kernel) {
12056 		err = perf_allow_kernel(&attr);
12057 		if (err)
12058 			return err;
12059 	}
12060 
12061 	if (attr.namespaces) {
12062 		if (!perfmon_capable())
12063 			return -EACCES;
12064 	}
12065 
12066 	if (attr.freq) {
12067 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12068 			return -EINVAL;
12069 	} else {
12070 		if (attr.sample_period & (1ULL << 63))
12071 			return -EINVAL;
12072 	}
12073 
12074 	/* Only privileged users can get physical addresses */
12075 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12076 		err = perf_allow_kernel(&attr);
12077 		if (err)
12078 			return err;
12079 	}
12080 
12081 	/* REGS_INTR can leak data, lockdown must prevent this */
12082 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12083 		err = security_locked_down(LOCKDOWN_PERF);
12084 		if (err)
12085 			return err;
12086 	}
12087 
12088 	/*
12089 	 * In cgroup mode, the pid argument is used to pass the fd
12090 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12091 	 * designates the cpu on which to monitor threads from that
12092 	 * cgroup.
12093 	 */
12094 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12095 		return -EINVAL;
12096 
12097 	if (flags & PERF_FLAG_FD_CLOEXEC)
12098 		f_flags |= O_CLOEXEC;
12099 
12100 	event_fd = get_unused_fd_flags(f_flags);
12101 	if (event_fd < 0)
12102 		return event_fd;
12103 
12104 	if (group_fd != -1) {
12105 		err = perf_fget_light(group_fd, &group);
12106 		if (err)
12107 			goto err_fd;
12108 		group_leader = group.file->private_data;
12109 		if (flags & PERF_FLAG_FD_OUTPUT)
12110 			output_event = group_leader;
12111 		if (flags & PERF_FLAG_FD_NO_GROUP)
12112 			group_leader = NULL;
12113 	}
12114 
12115 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12116 		task = find_lively_task_by_vpid(pid);
12117 		if (IS_ERR(task)) {
12118 			err = PTR_ERR(task);
12119 			goto err_group_fd;
12120 		}
12121 	}
12122 
12123 	if (task && group_leader &&
12124 	    group_leader->attr.inherit != attr.inherit) {
12125 		err = -EINVAL;
12126 		goto err_task;
12127 	}
12128 
12129 	if (flags & PERF_FLAG_PID_CGROUP)
12130 		cgroup_fd = pid;
12131 
12132 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12133 				 NULL, NULL, cgroup_fd);
12134 	if (IS_ERR(event)) {
12135 		err = PTR_ERR(event);
12136 		goto err_task;
12137 	}
12138 
12139 	if (is_sampling_event(event)) {
12140 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12141 			err = -EOPNOTSUPP;
12142 			goto err_alloc;
12143 		}
12144 	}
12145 
12146 	/*
12147 	 * Special case software events and allow them to be part of
12148 	 * any hardware group.
12149 	 */
12150 	pmu = event->pmu;
12151 
12152 	if (attr.use_clockid) {
12153 		err = perf_event_set_clock(event, attr.clockid);
12154 		if (err)
12155 			goto err_alloc;
12156 	}
12157 
12158 	if (pmu->task_ctx_nr == perf_sw_context)
12159 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12160 
12161 	if (group_leader) {
12162 		if (is_software_event(event) &&
12163 		    !in_software_context(group_leader)) {
12164 			/*
12165 			 * If the event is a sw event, but the group_leader
12166 			 * is on hw context.
12167 			 *
12168 			 * Allow the addition of software events to hw
12169 			 * groups, this is safe because software events
12170 			 * never fail to schedule.
12171 			 */
12172 			pmu = group_leader->ctx->pmu;
12173 		} else if (!is_software_event(event) &&
12174 			   is_software_event(group_leader) &&
12175 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12176 			/*
12177 			 * In case the group is a pure software group, and we
12178 			 * try to add a hardware event, move the whole group to
12179 			 * the hardware context.
12180 			 */
12181 			move_group = 1;
12182 		}
12183 	}
12184 
12185 	/*
12186 	 * Get the target context (task or percpu):
12187 	 */
12188 	ctx = find_get_context(pmu, task, event);
12189 	if (IS_ERR(ctx)) {
12190 		err = PTR_ERR(ctx);
12191 		goto err_alloc;
12192 	}
12193 
12194 	/*
12195 	 * Look up the group leader (we will attach this event to it):
12196 	 */
12197 	if (group_leader) {
12198 		err = -EINVAL;
12199 
12200 		/*
12201 		 * Do not allow a recursive hierarchy (this new sibling
12202 		 * becoming part of another group-sibling):
12203 		 */
12204 		if (group_leader->group_leader != group_leader)
12205 			goto err_context;
12206 
12207 		/* All events in a group should have the same clock */
12208 		if (group_leader->clock != event->clock)
12209 			goto err_context;
12210 
12211 		/*
12212 		 * Make sure we're both events for the same CPU;
12213 		 * grouping events for different CPUs is broken; since
12214 		 * you can never concurrently schedule them anyhow.
12215 		 */
12216 		if (group_leader->cpu != event->cpu)
12217 			goto err_context;
12218 
12219 		/*
12220 		 * Make sure we're both on the same task, or both
12221 		 * per-CPU events.
12222 		 */
12223 		if (group_leader->ctx->task != ctx->task)
12224 			goto err_context;
12225 
12226 		/*
12227 		 * Do not allow to attach to a group in a different task
12228 		 * or CPU context. If we're moving SW events, we'll fix
12229 		 * this up later, so allow that.
12230 		 */
12231 		if (!move_group && group_leader->ctx != ctx)
12232 			goto err_context;
12233 
12234 		/*
12235 		 * Only a group leader can be exclusive or pinned
12236 		 */
12237 		if (attr.exclusive || attr.pinned)
12238 			goto err_context;
12239 	}
12240 
12241 	if (output_event) {
12242 		err = perf_event_set_output(event, output_event);
12243 		if (err)
12244 			goto err_context;
12245 	}
12246 
12247 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12248 					f_flags);
12249 	if (IS_ERR(event_file)) {
12250 		err = PTR_ERR(event_file);
12251 		event_file = NULL;
12252 		goto err_context;
12253 	}
12254 
12255 	if (task) {
12256 		err = down_read_interruptible(&task->signal->exec_update_lock);
12257 		if (err)
12258 			goto err_file;
12259 
12260 		/*
12261 		 * We must hold exec_update_lock across this and any potential
12262 		 * perf_install_in_context() call for this new event to
12263 		 * serialize against exec() altering our credentials (and the
12264 		 * perf_event_exit_task() that could imply).
12265 		 */
12266 		err = -EACCES;
12267 		if (!perf_check_permission(&attr, task))
12268 			goto err_cred;
12269 	}
12270 
12271 	if (move_group) {
12272 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12273 
12274 		if (gctx->task == TASK_TOMBSTONE) {
12275 			err = -ESRCH;
12276 			goto err_locked;
12277 		}
12278 
12279 		/*
12280 		 * Check if we raced against another sys_perf_event_open() call
12281 		 * moving the software group underneath us.
12282 		 */
12283 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12284 			/*
12285 			 * If someone moved the group out from under us, check
12286 			 * if this new event wound up on the same ctx, if so
12287 			 * its the regular !move_group case, otherwise fail.
12288 			 */
12289 			if (gctx != ctx) {
12290 				err = -EINVAL;
12291 				goto err_locked;
12292 			} else {
12293 				perf_event_ctx_unlock(group_leader, gctx);
12294 				move_group = 0;
12295 			}
12296 		}
12297 
12298 		/*
12299 		 * Failure to create exclusive events returns -EBUSY.
12300 		 */
12301 		err = -EBUSY;
12302 		if (!exclusive_event_installable(group_leader, ctx))
12303 			goto err_locked;
12304 
12305 		for_each_sibling_event(sibling, group_leader) {
12306 			if (!exclusive_event_installable(sibling, ctx))
12307 				goto err_locked;
12308 		}
12309 	} else {
12310 		mutex_lock(&ctx->mutex);
12311 	}
12312 
12313 	if (ctx->task == TASK_TOMBSTONE) {
12314 		err = -ESRCH;
12315 		goto err_locked;
12316 	}
12317 
12318 	if (!perf_event_validate_size(event)) {
12319 		err = -E2BIG;
12320 		goto err_locked;
12321 	}
12322 
12323 	if (!task) {
12324 		/*
12325 		 * Check if the @cpu we're creating an event for is online.
12326 		 *
12327 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12328 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12329 		 */
12330 		struct perf_cpu_context *cpuctx =
12331 			container_of(ctx, struct perf_cpu_context, ctx);
12332 
12333 		if (!cpuctx->online) {
12334 			err = -ENODEV;
12335 			goto err_locked;
12336 		}
12337 	}
12338 
12339 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12340 		err = -EINVAL;
12341 		goto err_locked;
12342 	}
12343 
12344 	/*
12345 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12346 	 * because we need to serialize with concurrent event creation.
12347 	 */
12348 	if (!exclusive_event_installable(event, ctx)) {
12349 		err = -EBUSY;
12350 		goto err_locked;
12351 	}
12352 
12353 	WARN_ON_ONCE(ctx->parent_ctx);
12354 
12355 	/*
12356 	 * This is the point on no return; we cannot fail hereafter. This is
12357 	 * where we start modifying current state.
12358 	 */
12359 
12360 	if (move_group) {
12361 		/*
12362 		 * See perf_event_ctx_lock() for comments on the details
12363 		 * of swizzling perf_event::ctx.
12364 		 */
12365 		perf_remove_from_context(group_leader, 0);
12366 		put_ctx(gctx);
12367 
12368 		for_each_sibling_event(sibling, group_leader) {
12369 			perf_remove_from_context(sibling, 0);
12370 			put_ctx(gctx);
12371 		}
12372 
12373 		/*
12374 		 * Wait for everybody to stop referencing the events through
12375 		 * the old lists, before installing it on new lists.
12376 		 */
12377 		synchronize_rcu();
12378 
12379 		/*
12380 		 * Install the group siblings before the group leader.
12381 		 *
12382 		 * Because a group leader will try and install the entire group
12383 		 * (through the sibling list, which is still in-tact), we can
12384 		 * end up with siblings installed in the wrong context.
12385 		 *
12386 		 * By installing siblings first we NO-OP because they're not
12387 		 * reachable through the group lists.
12388 		 */
12389 		for_each_sibling_event(sibling, group_leader) {
12390 			perf_event__state_init(sibling);
12391 			perf_install_in_context(ctx, sibling, sibling->cpu);
12392 			get_ctx(ctx);
12393 		}
12394 
12395 		/*
12396 		 * Removing from the context ends up with disabled
12397 		 * event. What we want here is event in the initial
12398 		 * startup state, ready to be add into new context.
12399 		 */
12400 		perf_event__state_init(group_leader);
12401 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12402 		get_ctx(ctx);
12403 	}
12404 
12405 	/*
12406 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12407 	 * that we're serialized against further additions and before
12408 	 * perf_install_in_context() which is the point the event is active and
12409 	 * can use these values.
12410 	 */
12411 	perf_event__header_size(event);
12412 	perf_event__id_header_size(event);
12413 
12414 	event->owner = current;
12415 
12416 	perf_install_in_context(ctx, event, event->cpu);
12417 	perf_unpin_context(ctx);
12418 
12419 	if (move_group)
12420 		perf_event_ctx_unlock(group_leader, gctx);
12421 	mutex_unlock(&ctx->mutex);
12422 
12423 	if (task) {
12424 		up_read(&task->signal->exec_update_lock);
12425 		put_task_struct(task);
12426 	}
12427 
12428 	mutex_lock(&current->perf_event_mutex);
12429 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12430 	mutex_unlock(&current->perf_event_mutex);
12431 
12432 	/*
12433 	 * Drop the reference on the group_event after placing the
12434 	 * new event on the sibling_list. This ensures destruction
12435 	 * of the group leader will find the pointer to itself in
12436 	 * perf_group_detach().
12437 	 */
12438 	fdput(group);
12439 	fd_install(event_fd, event_file);
12440 	return event_fd;
12441 
12442 err_locked:
12443 	if (move_group)
12444 		perf_event_ctx_unlock(group_leader, gctx);
12445 	mutex_unlock(&ctx->mutex);
12446 err_cred:
12447 	if (task)
12448 		up_read(&task->signal->exec_update_lock);
12449 err_file:
12450 	fput(event_file);
12451 err_context:
12452 	perf_unpin_context(ctx);
12453 	put_ctx(ctx);
12454 err_alloc:
12455 	/*
12456 	 * If event_file is set, the fput() above will have called ->release()
12457 	 * and that will take care of freeing the event.
12458 	 */
12459 	if (!event_file)
12460 		free_event(event);
12461 err_task:
12462 	if (task)
12463 		put_task_struct(task);
12464 err_group_fd:
12465 	fdput(group);
12466 err_fd:
12467 	put_unused_fd(event_fd);
12468 	return err;
12469 }
12470 
12471 /**
12472  * perf_event_create_kernel_counter
12473  *
12474  * @attr: attributes of the counter to create
12475  * @cpu: cpu in which the counter is bound
12476  * @task: task to profile (NULL for percpu)
12477  * @overflow_handler: callback to trigger when we hit the event
12478  * @context: context data could be used in overflow_handler callback
12479  */
12480 struct perf_event *
12481 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12482 				 struct task_struct *task,
12483 				 perf_overflow_handler_t overflow_handler,
12484 				 void *context)
12485 {
12486 	struct perf_event_context *ctx;
12487 	struct perf_event *event;
12488 	int err;
12489 
12490 	/*
12491 	 * Grouping is not supported for kernel events, neither is 'AUX',
12492 	 * make sure the caller's intentions are adjusted.
12493 	 */
12494 	if (attr->aux_output)
12495 		return ERR_PTR(-EINVAL);
12496 
12497 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12498 				 overflow_handler, context, -1);
12499 	if (IS_ERR(event)) {
12500 		err = PTR_ERR(event);
12501 		goto err;
12502 	}
12503 
12504 	/* Mark owner so we could distinguish it from user events. */
12505 	event->owner = TASK_TOMBSTONE;
12506 
12507 	/*
12508 	 * Get the target context (task or percpu):
12509 	 */
12510 	ctx = find_get_context(event->pmu, task, event);
12511 	if (IS_ERR(ctx)) {
12512 		err = PTR_ERR(ctx);
12513 		goto err_free;
12514 	}
12515 
12516 	WARN_ON_ONCE(ctx->parent_ctx);
12517 	mutex_lock(&ctx->mutex);
12518 	if (ctx->task == TASK_TOMBSTONE) {
12519 		err = -ESRCH;
12520 		goto err_unlock;
12521 	}
12522 
12523 	if (!task) {
12524 		/*
12525 		 * Check if the @cpu we're creating an event for is online.
12526 		 *
12527 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12528 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12529 		 */
12530 		struct perf_cpu_context *cpuctx =
12531 			container_of(ctx, struct perf_cpu_context, ctx);
12532 		if (!cpuctx->online) {
12533 			err = -ENODEV;
12534 			goto err_unlock;
12535 		}
12536 	}
12537 
12538 	if (!exclusive_event_installable(event, ctx)) {
12539 		err = -EBUSY;
12540 		goto err_unlock;
12541 	}
12542 
12543 	perf_install_in_context(ctx, event, event->cpu);
12544 	perf_unpin_context(ctx);
12545 	mutex_unlock(&ctx->mutex);
12546 
12547 	return event;
12548 
12549 err_unlock:
12550 	mutex_unlock(&ctx->mutex);
12551 	perf_unpin_context(ctx);
12552 	put_ctx(ctx);
12553 err_free:
12554 	free_event(event);
12555 err:
12556 	return ERR_PTR(err);
12557 }
12558 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12559 
12560 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12561 {
12562 	struct perf_event_context *src_ctx;
12563 	struct perf_event_context *dst_ctx;
12564 	struct perf_event *event, *tmp;
12565 	LIST_HEAD(events);
12566 
12567 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12568 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12569 
12570 	/*
12571 	 * See perf_event_ctx_lock() for comments on the details
12572 	 * of swizzling perf_event::ctx.
12573 	 */
12574 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12575 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12576 				 event_entry) {
12577 		perf_remove_from_context(event, 0);
12578 		unaccount_event_cpu(event, src_cpu);
12579 		put_ctx(src_ctx);
12580 		list_add(&event->migrate_entry, &events);
12581 	}
12582 
12583 	/*
12584 	 * Wait for the events to quiesce before re-instating them.
12585 	 */
12586 	synchronize_rcu();
12587 
12588 	/*
12589 	 * Re-instate events in 2 passes.
12590 	 *
12591 	 * Skip over group leaders and only install siblings on this first
12592 	 * pass, siblings will not get enabled without a leader, however a
12593 	 * leader will enable its siblings, even if those are still on the old
12594 	 * context.
12595 	 */
12596 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12597 		if (event->group_leader == event)
12598 			continue;
12599 
12600 		list_del(&event->migrate_entry);
12601 		if (event->state >= PERF_EVENT_STATE_OFF)
12602 			event->state = PERF_EVENT_STATE_INACTIVE;
12603 		account_event_cpu(event, dst_cpu);
12604 		perf_install_in_context(dst_ctx, event, dst_cpu);
12605 		get_ctx(dst_ctx);
12606 	}
12607 
12608 	/*
12609 	 * Once all the siblings are setup properly, install the group leaders
12610 	 * to make it go.
12611 	 */
12612 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12613 		list_del(&event->migrate_entry);
12614 		if (event->state >= PERF_EVENT_STATE_OFF)
12615 			event->state = PERF_EVENT_STATE_INACTIVE;
12616 		account_event_cpu(event, dst_cpu);
12617 		perf_install_in_context(dst_ctx, event, dst_cpu);
12618 		get_ctx(dst_ctx);
12619 	}
12620 	mutex_unlock(&dst_ctx->mutex);
12621 	mutex_unlock(&src_ctx->mutex);
12622 }
12623 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12624 
12625 static void sync_child_event(struct perf_event *child_event)
12626 {
12627 	struct perf_event *parent_event = child_event->parent;
12628 	u64 child_val;
12629 
12630 	if (child_event->attr.inherit_stat) {
12631 		struct task_struct *task = child_event->ctx->task;
12632 
12633 		if (task && task != TASK_TOMBSTONE)
12634 			perf_event_read_event(child_event, task);
12635 	}
12636 
12637 	child_val = perf_event_count(child_event);
12638 
12639 	/*
12640 	 * Add back the child's count to the parent's count:
12641 	 */
12642 	atomic64_add(child_val, &parent_event->child_count);
12643 	atomic64_add(child_event->total_time_enabled,
12644 		     &parent_event->child_total_time_enabled);
12645 	atomic64_add(child_event->total_time_running,
12646 		     &parent_event->child_total_time_running);
12647 }
12648 
12649 static void
12650 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12651 {
12652 	struct perf_event *parent_event = event->parent;
12653 	unsigned long detach_flags = 0;
12654 
12655 	if (parent_event) {
12656 		/*
12657 		 * Do not destroy the 'original' grouping; because of the
12658 		 * context switch optimization the original events could've
12659 		 * ended up in a random child task.
12660 		 *
12661 		 * If we were to destroy the original group, all group related
12662 		 * operations would cease to function properly after this
12663 		 * random child dies.
12664 		 *
12665 		 * Do destroy all inherited groups, we don't care about those
12666 		 * and being thorough is better.
12667 		 */
12668 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12669 		mutex_lock(&parent_event->child_mutex);
12670 	}
12671 
12672 	perf_remove_from_context(event, detach_flags);
12673 
12674 	raw_spin_lock_irq(&ctx->lock);
12675 	if (event->state > PERF_EVENT_STATE_EXIT)
12676 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12677 	raw_spin_unlock_irq(&ctx->lock);
12678 
12679 	/*
12680 	 * Child events can be freed.
12681 	 */
12682 	if (parent_event) {
12683 		mutex_unlock(&parent_event->child_mutex);
12684 		/*
12685 		 * Kick perf_poll() for is_event_hup();
12686 		 */
12687 		perf_event_wakeup(parent_event);
12688 		free_event(event);
12689 		put_event(parent_event);
12690 		return;
12691 	}
12692 
12693 	/*
12694 	 * Parent events are governed by their filedesc, retain them.
12695 	 */
12696 	perf_event_wakeup(event);
12697 }
12698 
12699 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12700 {
12701 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12702 	struct perf_event *child_event, *next;
12703 
12704 	WARN_ON_ONCE(child != current);
12705 
12706 	child_ctx = perf_pin_task_context(child, ctxn);
12707 	if (!child_ctx)
12708 		return;
12709 
12710 	/*
12711 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12712 	 * ctx::mutex over the entire thing. This serializes against almost
12713 	 * everything that wants to access the ctx.
12714 	 *
12715 	 * The exception is sys_perf_event_open() /
12716 	 * perf_event_create_kernel_count() which does find_get_context()
12717 	 * without ctx::mutex (it cannot because of the move_group double mutex
12718 	 * lock thing). See the comments in perf_install_in_context().
12719 	 */
12720 	mutex_lock(&child_ctx->mutex);
12721 
12722 	/*
12723 	 * In a single ctx::lock section, de-schedule the events and detach the
12724 	 * context from the task such that we cannot ever get it scheduled back
12725 	 * in.
12726 	 */
12727 	raw_spin_lock_irq(&child_ctx->lock);
12728 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12729 
12730 	/*
12731 	 * Now that the context is inactive, destroy the task <-> ctx relation
12732 	 * and mark the context dead.
12733 	 */
12734 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12735 	put_ctx(child_ctx); /* cannot be last */
12736 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12737 	put_task_struct(current); /* cannot be last */
12738 
12739 	clone_ctx = unclone_ctx(child_ctx);
12740 	raw_spin_unlock_irq(&child_ctx->lock);
12741 
12742 	if (clone_ctx)
12743 		put_ctx(clone_ctx);
12744 
12745 	/*
12746 	 * Report the task dead after unscheduling the events so that we
12747 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12748 	 * get a few PERF_RECORD_READ events.
12749 	 */
12750 	perf_event_task(child, child_ctx, 0);
12751 
12752 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12753 		perf_event_exit_event(child_event, child_ctx);
12754 
12755 	mutex_unlock(&child_ctx->mutex);
12756 
12757 	put_ctx(child_ctx);
12758 }
12759 
12760 /*
12761  * When a child task exits, feed back event values to parent events.
12762  *
12763  * Can be called with exec_update_lock held when called from
12764  * setup_new_exec().
12765  */
12766 void perf_event_exit_task(struct task_struct *child)
12767 {
12768 	struct perf_event *event, *tmp;
12769 	int ctxn;
12770 
12771 	mutex_lock(&child->perf_event_mutex);
12772 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12773 				 owner_entry) {
12774 		list_del_init(&event->owner_entry);
12775 
12776 		/*
12777 		 * Ensure the list deletion is visible before we clear
12778 		 * the owner, closes a race against perf_release() where
12779 		 * we need to serialize on the owner->perf_event_mutex.
12780 		 */
12781 		smp_store_release(&event->owner, NULL);
12782 	}
12783 	mutex_unlock(&child->perf_event_mutex);
12784 
12785 	for_each_task_context_nr(ctxn)
12786 		perf_event_exit_task_context(child, ctxn);
12787 
12788 	/*
12789 	 * The perf_event_exit_task_context calls perf_event_task
12790 	 * with child's task_ctx, which generates EXIT events for
12791 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12792 	 * At this point we need to send EXIT events to cpu contexts.
12793 	 */
12794 	perf_event_task(child, NULL, 0);
12795 }
12796 
12797 static void perf_free_event(struct perf_event *event,
12798 			    struct perf_event_context *ctx)
12799 {
12800 	struct perf_event *parent = event->parent;
12801 
12802 	if (WARN_ON_ONCE(!parent))
12803 		return;
12804 
12805 	mutex_lock(&parent->child_mutex);
12806 	list_del_init(&event->child_list);
12807 	mutex_unlock(&parent->child_mutex);
12808 
12809 	put_event(parent);
12810 
12811 	raw_spin_lock_irq(&ctx->lock);
12812 	perf_group_detach(event);
12813 	list_del_event(event, ctx);
12814 	raw_spin_unlock_irq(&ctx->lock);
12815 	free_event(event);
12816 }
12817 
12818 /*
12819  * Free a context as created by inheritance by perf_event_init_task() below,
12820  * used by fork() in case of fail.
12821  *
12822  * Even though the task has never lived, the context and events have been
12823  * exposed through the child_list, so we must take care tearing it all down.
12824  */
12825 void perf_event_free_task(struct task_struct *task)
12826 {
12827 	struct perf_event_context *ctx;
12828 	struct perf_event *event, *tmp;
12829 	int ctxn;
12830 
12831 	for_each_task_context_nr(ctxn) {
12832 		ctx = task->perf_event_ctxp[ctxn];
12833 		if (!ctx)
12834 			continue;
12835 
12836 		mutex_lock(&ctx->mutex);
12837 		raw_spin_lock_irq(&ctx->lock);
12838 		/*
12839 		 * Destroy the task <-> ctx relation and mark the context dead.
12840 		 *
12841 		 * This is important because even though the task hasn't been
12842 		 * exposed yet the context has been (through child_list).
12843 		 */
12844 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12845 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12846 		put_task_struct(task); /* cannot be last */
12847 		raw_spin_unlock_irq(&ctx->lock);
12848 
12849 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12850 			perf_free_event(event, ctx);
12851 
12852 		mutex_unlock(&ctx->mutex);
12853 
12854 		/*
12855 		 * perf_event_release_kernel() could've stolen some of our
12856 		 * child events and still have them on its free_list. In that
12857 		 * case we must wait for these events to have been freed (in
12858 		 * particular all their references to this task must've been
12859 		 * dropped).
12860 		 *
12861 		 * Without this copy_process() will unconditionally free this
12862 		 * task (irrespective of its reference count) and
12863 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12864 		 * use-after-free.
12865 		 *
12866 		 * Wait for all events to drop their context reference.
12867 		 */
12868 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12869 		put_ctx(ctx); /* must be last */
12870 	}
12871 }
12872 
12873 void perf_event_delayed_put(struct task_struct *task)
12874 {
12875 	int ctxn;
12876 
12877 	for_each_task_context_nr(ctxn)
12878 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12879 }
12880 
12881 struct file *perf_event_get(unsigned int fd)
12882 {
12883 	struct file *file = fget(fd);
12884 	if (!file)
12885 		return ERR_PTR(-EBADF);
12886 
12887 	if (file->f_op != &perf_fops) {
12888 		fput(file);
12889 		return ERR_PTR(-EBADF);
12890 	}
12891 
12892 	return file;
12893 }
12894 
12895 const struct perf_event *perf_get_event(struct file *file)
12896 {
12897 	if (file->f_op != &perf_fops)
12898 		return ERR_PTR(-EINVAL);
12899 
12900 	return file->private_data;
12901 }
12902 
12903 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12904 {
12905 	if (!event)
12906 		return ERR_PTR(-EINVAL);
12907 
12908 	return &event->attr;
12909 }
12910 
12911 /*
12912  * Inherit an event from parent task to child task.
12913  *
12914  * Returns:
12915  *  - valid pointer on success
12916  *  - NULL for orphaned events
12917  *  - IS_ERR() on error
12918  */
12919 static struct perf_event *
12920 inherit_event(struct perf_event *parent_event,
12921 	      struct task_struct *parent,
12922 	      struct perf_event_context *parent_ctx,
12923 	      struct task_struct *child,
12924 	      struct perf_event *group_leader,
12925 	      struct perf_event_context *child_ctx)
12926 {
12927 	enum perf_event_state parent_state = parent_event->state;
12928 	struct perf_event *child_event;
12929 	unsigned long flags;
12930 
12931 	/*
12932 	 * Instead of creating recursive hierarchies of events,
12933 	 * we link inherited events back to the original parent,
12934 	 * which has a filp for sure, which we use as the reference
12935 	 * count:
12936 	 */
12937 	if (parent_event->parent)
12938 		parent_event = parent_event->parent;
12939 
12940 	child_event = perf_event_alloc(&parent_event->attr,
12941 					   parent_event->cpu,
12942 					   child,
12943 					   group_leader, parent_event,
12944 					   NULL, NULL, -1);
12945 	if (IS_ERR(child_event))
12946 		return child_event;
12947 
12948 
12949 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12950 	    !child_ctx->task_ctx_data) {
12951 		struct pmu *pmu = child_event->pmu;
12952 
12953 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12954 		if (!child_ctx->task_ctx_data) {
12955 			free_event(child_event);
12956 			return ERR_PTR(-ENOMEM);
12957 		}
12958 	}
12959 
12960 	/*
12961 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12962 	 * must be under the same lock in order to serialize against
12963 	 * perf_event_release_kernel(), such that either we must observe
12964 	 * is_orphaned_event() or they will observe us on the child_list.
12965 	 */
12966 	mutex_lock(&parent_event->child_mutex);
12967 	if (is_orphaned_event(parent_event) ||
12968 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12969 		mutex_unlock(&parent_event->child_mutex);
12970 		/* task_ctx_data is freed with child_ctx */
12971 		free_event(child_event);
12972 		return NULL;
12973 	}
12974 
12975 	get_ctx(child_ctx);
12976 
12977 	/*
12978 	 * Make the child state follow the state of the parent event,
12979 	 * not its attr.disabled bit.  We hold the parent's mutex,
12980 	 * so we won't race with perf_event_{en, dis}able_family.
12981 	 */
12982 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12983 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12984 	else
12985 		child_event->state = PERF_EVENT_STATE_OFF;
12986 
12987 	if (parent_event->attr.freq) {
12988 		u64 sample_period = parent_event->hw.sample_period;
12989 		struct hw_perf_event *hwc = &child_event->hw;
12990 
12991 		hwc->sample_period = sample_period;
12992 		hwc->last_period   = sample_period;
12993 
12994 		local64_set(&hwc->period_left, sample_period);
12995 	}
12996 
12997 	child_event->ctx = child_ctx;
12998 	child_event->overflow_handler = parent_event->overflow_handler;
12999 	child_event->overflow_handler_context
13000 		= parent_event->overflow_handler_context;
13001 
13002 	/*
13003 	 * Precalculate sample_data sizes
13004 	 */
13005 	perf_event__header_size(child_event);
13006 	perf_event__id_header_size(child_event);
13007 
13008 	/*
13009 	 * Link it up in the child's context:
13010 	 */
13011 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13012 	add_event_to_ctx(child_event, child_ctx);
13013 	child_event->attach_state |= PERF_ATTACH_CHILD;
13014 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13015 
13016 	/*
13017 	 * Link this into the parent event's child list
13018 	 */
13019 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13020 	mutex_unlock(&parent_event->child_mutex);
13021 
13022 	return child_event;
13023 }
13024 
13025 /*
13026  * Inherits an event group.
13027  *
13028  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13029  * This matches with perf_event_release_kernel() removing all child events.
13030  *
13031  * Returns:
13032  *  - 0 on success
13033  *  - <0 on error
13034  */
13035 static int inherit_group(struct perf_event *parent_event,
13036 	      struct task_struct *parent,
13037 	      struct perf_event_context *parent_ctx,
13038 	      struct task_struct *child,
13039 	      struct perf_event_context *child_ctx)
13040 {
13041 	struct perf_event *leader;
13042 	struct perf_event *sub;
13043 	struct perf_event *child_ctr;
13044 
13045 	leader = inherit_event(parent_event, parent, parent_ctx,
13046 				 child, NULL, child_ctx);
13047 	if (IS_ERR(leader))
13048 		return PTR_ERR(leader);
13049 	/*
13050 	 * @leader can be NULL here because of is_orphaned_event(). In this
13051 	 * case inherit_event() will create individual events, similar to what
13052 	 * perf_group_detach() would do anyway.
13053 	 */
13054 	for_each_sibling_event(sub, parent_event) {
13055 		child_ctr = inherit_event(sub, parent, parent_ctx,
13056 					    child, leader, child_ctx);
13057 		if (IS_ERR(child_ctr))
13058 			return PTR_ERR(child_ctr);
13059 
13060 		if (sub->aux_event == parent_event && child_ctr &&
13061 		    !perf_get_aux_event(child_ctr, leader))
13062 			return -EINVAL;
13063 	}
13064 	return 0;
13065 }
13066 
13067 /*
13068  * Creates the child task context and tries to inherit the event-group.
13069  *
13070  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13071  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13072  * consistent with perf_event_release_kernel() removing all child events.
13073  *
13074  * Returns:
13075  *  - 0 on success
13076  *  - <0 on error
13077  */
13078 static int
13079 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13080 		   struct perf_event_context *parent_ctx,
13081 		   struct task_struct *child, int ctxn,
13082 		   u64 clone_flags, int *inherited_all)
13083 {
13084 	int ret;
13085 	struct perf_event_context *child_ctx;
13086 
13087 	if (!event->attr.inherit ||
13088 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13089 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13090 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13091 		*inherited_all = 0;
13092 		return 0;
13093 	}
13094 
13095 	child_ctx = child->perf_event_ctxp[ctxn];
13096 	if (!child_ctx) {
13097 		/*
13098 		 * This is executed from the parent task context, so
13099 		 * inherit events that have been marked for cloning.
13100 		 * First allocate and initialize a context for the
13101 		 * child.
13102 		 */
13103 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13104 		if (!child_ctx)
13105 			return -ENOMEM;
13106 
13107 		child->perf_event_ctxp[ctxn] = child_ctx;
13108 	}
13109 
13110 	ret = inherit_group(event, parent, parent_ctx,
13111 			    child, child_ctx);
13112 
13113 	if (ret)
13114 		*inherited_all = 0;
13115 
13116 	return ret;
13117 }
13118 
13119 /*
13120  * Initialize the perf_event context in task_struct
13121  */
13122 static int perf_event_init_context(struct task_struct *child, int ctxn,
13123 				   u64 clone_flags)
13124 {
13125 	struct perf_event_context *child_ctx, *parent_ctx;
13126 	struct perf_event_context *cloned_ctx;
13127 	struct perf_event *event;
13128 	struct task_struct *parent = current;
13129 	int inherited_all = 1;
13130 	unsigned long flags;
13131 	int ret = 0;
13132 
13133 	if (likely(!parent->perf_event_ctxp[ctxn]))
13134 		return 0;
13135 
13136 	/*
13137 	 * If the parent's context is a clone, pin it so it won't get
13138 	 * swapped under us.
13139 	 */
13140 	parent_ctx = perf_pin_task_context(parent, ctxn);
13141 	if (!parent_ctx)
13142 		return 0;
13143 
13144 	/*
13145 	 * No need to check if parent_ctx != NULL here; since we saw
13146 	 * it non-NULL earlier, the only reason for it to become NULL
13147 	 * is if we exit, and since we're currently in the middle of
13148 	 * a fork we can't be exiting at the same time.
13149 	 */
13150 
13151 	/*
13152 	 * Lock the parent list. No need to lock the child - not PID
13153 	 * hashed yet and not running, so nobody can access it.
13154 	 */
13155 	mutex_lock(&parent_ctx->mutex);
13156 
13157 	/*
13158 	 * We dont have to disable NMIs - we are only looking at
13159 	 * the list, not manipulating it:
13160 	 */
13161 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13162 		ret = inherit_task_group(event, parent, parent_ctx,
13163 					 child, ctxn, clone_flags,
13164 					 &inherited_all);
13165 		if (ret)
13166 			goto out_unlock;
13167 	}
13168 
13169 	/*
13170 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13171 	 * to allocations, but we need to prevent rotation because
13172 	 * rotate_ctx() will change the list from interrupt context.
13173 	 */
13174 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13175 	parent_ctx->rotate_disable = 1;
13176 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13177 
13178 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13179 		ret = inherit_task_group(event, parent, parent_ctx,
13180 					 child, ctxn, clone_flags,
13181 					 &inherited_all);
13182 		if (ret)
13183 			goto out_unlock;
13184 	}
13185 
13186 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13187 	parent_ctx->rotate_disable = 0;
13188 
13189 	child_ctx = child->perf_event_ctxp[ctxn];
13190 
13191 	if (child_ctx && inherited_all) {
13192 		/*
13193 		 * Mark the child context as a clone of the parent
13194 		 * context, or of whatever the parent is a clone of.
13195 		 *
13196 		 * Note that if the parent is a clone, the holding of
13197 		 * parent_ctx->lock avoids it from being uncloned.
13198 		 */
13199 		cloned_ctx = parent_ctx->parent_ctx;
13200 		if (cloned_ctx) {
13201 			child_ctx->parent_ctx = cloned_ctx;
13202 			child_ctx->parent_gen = parent_ctx->parent_gen;
13203 		} else {
13204 			child_ctx->parent_ctx = parent_ctx;
13205 			child_ctx->parent_gen = parent_ctx->generation;
13206 		}
13207 		get_ctx(child_ctx->parent_ctx);
13208 	}
13209 
13210 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13211 out_unlock:
13212 	mutex_unlock(&parent_ctx->mutex);
13213 
13214 	perf_unpin_context(parent_ctx);
13215 	put_ctx(parent_ctx);
13216 
13217 	return ret;
13218 }
13219 
13220 /*
13221  * Initialize the perf_event context in task_struct
13222  */
13223 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13224 {
13225 	int ctxn, ret;
13226 
13227 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13228 	mutex_init(&child->perf_event_mutex);
13229 	INIT_LIST_HEAD(&child->perf_event_list);
13230 
13231 	for_each_task_context_nr(ctxn) {
13232 		ret = perf_event_init_context(child, ctxn, clone_flags);
13233 		if (ret) {
13234 			perf_event_free_task(child);
13235 			return ret;
13236 		}
13237 	}
13238 
13239 	return 0;
13240 }
13241 
13242 static void __init perf_event_init_all_cpus(void)
13243 {
13244 	struct swevent_htable *swhash;
13245 	int cpu;
13246 
13247 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13248 
13249 	for_each_possible_cpu(cpu) {
13250 		swhash = &per_cpu(swevent_htable, cpu);
13251 		mutex_init(&swhash->hlist_mutex);
13252 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13253 
13254 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13255 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13256 
13257 #ifdef CONFIG_CGROUP_PERF
13258 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13259 #endif
13260 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13261 	}
13262 }
13263 
13264 static void perf_swevent_init_cpu(unsigned int cpu)
13265 {
13266 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13267 
13268 	mutex_lock(&swhash->hlist_mutex);
13269 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13270 		struct swevent_hlist *hlist;
13271 
13272 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13273 		WARN_ON(!hlist);
13274 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13275 	}
13276 	mutex_unlock(&swhash->hlist_mutex);
13277 }
13278 
13279 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13280 static void __perf_event_exit_context(void *__info)
13281 {
13282 	struct perf_event_context *ctx = __info;
13283 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13284 	struct perf_event *event;
13285 
13286 	raw_spin_lock(&ctx->lock);
13287 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13288 	list_for_each_entry(event, &ctx->event_list, event_entry)
13289 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13290 	raw_spin_unlock(&ctx->lock);
13291 }
13292 
13293 static void perf_event_exit_cpu_context(int cpu)
13294 {
13295 	struct perf_cpu_context *cpuctx;
13296 	struct perf_event_context *ctx;
13297 	struct pmu *pmu;
13298 
13299 	mutex_lock(&pmus_lock);
13300 	list_for_each_entry(pmu, &pmus, entry) {
13301 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13302 		ctx = &cpuctx->ctx;
13303 
13304 		mutex_lock(&ctx->mutex);
13305 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13306 		cpuctx->online = 0;
13307 		mutex_unlock(&ctx->mutex);
13308 	}
13309 	cpumask_clear_cpu(cpu, perf_online_mask);
13310 	mutex_unlock(&pmus_lock);
13311 }
13312 #else
13313 
13314 static void perf_event_exit_cpu_context(int cpu) { }
13315 
13316 #endif
13317 
13318 int perf_event_init_cpu(unsigned int cpu)
13319 {
13320 	struct perf_cpu_context *cpuctx;
13321 	struct perf_event_context *ctx;
13322 	struct pmu *pmu;
13323 
13324 	perf_swevent_init_cpu(cpu);
13325 
13326 	mutex_lock(&pmus_lock);
13327 	cpumask_set_cpu(cpu, perf_online_mask);
13328 	list_for_each_entry(pmu, &pmus, entry) {
13329 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13330 		ctx = &cpuctx->ctx;
13331 
13332 		mutex_lock(&ctx->mutex);
13333 		cpuctx->online = 1;
13334 		mutex_unlock(&ctx->mutex);
13335 	}
13336 	mutex_unlock(&pmus_lock);
13337 
13338 	return 0;
13339 }
13340 
13341 int perf_event_exit_cpu(unsigned int cpu)
13342 {
13343 	perf_event_exit_cpu_context(cpu);
13344 	return 0;
13345 }
13346 
13347 static int
13348 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13349 {
13350 	int cpu;
13351 
13352 	for_each_online_cpu(cpu)
13353 		perf_event_exit_cpu(cpu);
13354 
13355 	return NOTIFY_OK;
13356 }
13357 
13358 /*
13359  * Run the perf reboot notifier at the very last possible moment so that
13360  * the generic watchdog code runs as long as possible.
13361  */
13362 static struct notifier_block perf_reboot_notifier = {
13363 	.notifier_call = perf_reboot,
13364 	.priority = INT_MIN,
13365 };
13366 
13367 void __init perf_event_init(void)
13368 {
13369 	int ret;
13370 
13371 	idr_init(&pmu_idr);
13372 
13373 	perf_event_init_all_cpus();
13374 	init_srcu_struct(&pmus_srcu);
13375 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13376 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13377 	perf_pmu_register(&perf_task_clock, NULL, -1);
13378 	perf_tp_register();
13379 	perf_event_init_cpu(smp_processor_id());
13380 	register_reboot_notifier(&perf_reboot_notifier);
13381 
13382 	ret = init_hw_breakpoint();
13383 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13384 
13385 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13386 
13387 	/*
13388 	 * Build time assertion that we keep the data_head at the intended
13389 	 * location.  IOW, validation we got the __reserved[] size right.
13390 	 */
13391 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13392 		     != 1024);
13393 }
13394 
13395 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13396 			      char *page)
13397 {
13398 	struct perf_pmu_events_attr *pmu_attr =
13399 		container_of(attr, struct perf_pmu_events_attr, attr);
13400 
13401 	if (pmu_attr->event_str)
13402 		return sprintf(page, "%s\n", pmu_attr->event_str);
13403 
13404 	return 0;
13405 }
13406 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13407 
13408 static int __init perf_event_sysfs_init(void)
13409 {
13410 	struct pmu *pmu;
13411 	int ret;
13412 
13413 	mutex_lock(&pmus_lock);
13414 
13415 	ret = bus_register(&pmu_bus);
13416 	if (ret)
13417 		goto unlock;
13418 
13419 	list_for_each_entry(pmu, &pmus, entry) {
13420 		if (!pmu->name || pmu->type < 0)
13421 			continue;
13422 
13423 		ret = pmu_dev_alloc(pmu);
13424 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13425 	}
13426 	pmu_bus_running = 1;
13427 	ret = 0;
13428 
13429 unlock:
13430 	mutex_unlock(&pmus_lock);
13431 
13432 	return ret;
13433 }
13434 device_initcall(perf_event_sysfs_init);
13435 
13436 #ifdef CONFIG_CGROUP_PERF
13437 static struct cgroup_subsys_state *
13438 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13439 {
13440 	struct perf_cgroup *jc;
13441 
13442 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13443 	if (!jc)
13444 		return ERR_PTR(-ENOMEM);
13445 
13446 	jc->info = alloc_percpu(struct perf_cgroup_info);
13447 	if (!jc->info) {
13448 		kfree(jc);
13449 		return ERR_PTR(-ENOMEM);
13450 	}
13451 
13452 	return &jc->css;
13453 }
13454 
13455 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13456 {
13457 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13458 
13459 	free_percpu(jc->info);
13460 	kfree(jc);
13461 }
13462 
13463 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13464 {
13465 	perf_event_cgroup(css->cgroup);
13466 	return 0;
13467 }
13468 
13469 static int __perf_cgroup_move(void *info)
13470 {
13471 	struct task_struct *task = info;
13472 	rcu_read_lock();
13473 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13474 	rcu_read_unlock();
13475 	return 0;
13476 }
13477 
13478 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13479 {
13480 	struct task_struct *task;
13481 	struct cgroup_subsys_state *css;
13482 
13483 	cgroup_taskset_for_each(task, css, tset)
13484 		task_function_call(task, __perf_cgroup_move, task);
13485 }
13486 
13487 struct cgroup_subsys perf_event_cgrp_subsys = {
13488 	.css_alloc	= perf_cgroup_css_alloc,
13489 	.css_free	= perf_cgroup_css_free,
13490 	.css_online	= perf_cgroup_css_online,
13491 	.attach		= perf_cgroup_attach,
13492 	/*
13493 	 * Implicitly enable on dfl hierarchy so that perf events can
13494 	 * always be filtered by cgroup2 path as long as perf_event
13495 	 * controller is not mounted on a legacy hierarchy.
13496 	 */
13497 	.implicit_on_dfl = true,
13498 	.threaded	= true,
13499 };
13500 #endif /* CONFIG_CGROUP_PERF */
13501 
13502 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13503