1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type); 578 579 static void update_context_time(struct perf_event_context *ctx); 580 static u64 perf_event_time(struct perf_event *event); 581 582 void __weak perf_event_print_debug(void) { } 583 584 static inline u64 perf_clock(void) 585 { 586 return local_clock(); 587 } 588 589 static inline u64 perf_event_clock(struct perf_event *event) 590 { 591 return event->clock(); 592 } 593 594 /* 595 * State based event timekeeping... 596 * 597 * The basic idea is to use event->state to determine which (if any) time 598 * fields to increment with the current delta. This means we only need to 599 * update timestamps when we change state or when they are explicitly requested 600 * (read). 601 * 602 * Event groups make things a little more complicated, but not terribly so. The 603 * rules for a group are that if the group leader is OFF the entire group is 604 * OFF, irrespecive of what the group member states are. This results in 605 * __perf_effective_state(). 606 * 607 * A futher ramification is that when a group leader flips between OFF and 608 * !OFF, we need to update all group member times. 609 * 610 * 611 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 612 * need to make sure the relevant context time is updated before we try and 613 * update our timestamps. 614 */ 615 616 static __always_inline enum perf_event_state 617 __perf_effective_state(struct perf_event *event) 618 { 619 struct perf_event *leader = event->group_leader; 620 621 if (leader->state <= PERF_EVENT_STATE_OFF) 622 return leader->state; 623 624 return event->state; 625 } 626 627 static __always_inline void 628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 629 { 630 enum perf_event_state state = __perf_effective_state(event); 631 u64 delta = now - event->tstamp; 632 633 *enabled = event->total_time_enabled; 634 if (state >= PERF_EVENT_STATE_INACTIVE) 635 *enabled += delta; 636 637 *running = event->total_time_running; 638 if (state >= PERF_EVENT_STATE_ACTIVE) 639 *running += delta; 640 } 641 642 static void perf_event_update_time(struct perf_event *event) 643 { 644 u64 now = perf_event_time(event); 645 646 __perf_update_times(event, now, &event->total_time_enabled, 647 &event->total_time_running); 648 event->tstamp = now; 649 } 650 651 static void perf_event_update_sibling_time(struct perf_event *leader) 652 { 653 struct perf_event *sibling; 654 655 for_each_sibling_event(sibling, leader) 656 perf_event_update_time(sibling); 657 } 658 659 static void 660 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 661 { 662 if (event->state == state) 663 return; 664 665 perf_event_update_time(event); 666 /* 667 * If a group leader gets enabled/disabled all its siblings 668 * are affected too. 669 */ 670 if ((event->state < 0) ^ (state < 0)) 671 perf_event_update_sibling_time(event); 672 673 WRITE_ONCE(event->state, state); 674 } 675 676 /* 677 * UP store-release, load-acquire 678 */ 679 680 #define __store_release(ptr, val) \ 681 do { \ 682 barrier(); \ 683 WRITE_ONCE(*(ptr), (val)); \ 684 } while (0) 685 686 #define __load_acquire(ptr) \ 687 ({ \ 688 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 689 barrier(); \ 690 ___p; \ 691 }) 692 693 #ifdef CONFIG_CGROUP_PERF 694 695 static inline bool 696 perf_cgroup_match(struct perf_event *event) 697 { 698 struct perf_event_context *ctx = event->ctx; 699 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 700 701 /* @event doesn't care about cgroup */ 702 if (!event->cgrp) 703 return true; 704 705 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 706 if (!cpuctx->cgrp) 707 return false; 708 709 /* 710 * Cgroup scoping is recursive. An event enabled for a cgroup is 711 * also enabled for all its descendant cgroups. If @cpuctx's 712 * cgroup is a descendant of @event's (the test covers identity 713 * case), it's a match. 714 */ 715 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 716 event->cgrp->css.cgroup); 717 } 718 719 static inline void perf_detach_cgroup(struct perf_event *event) 720 { 721 css_put(&event->cgrp->css); 722 event->cgrp = NULL; 723 } 724 725 static inline int is_cgroup_event(struct perf_event *event) 726 { 727 return event->cgrp != NULL; 728 } 729 730 static inline u64 perf_cgroup_event_time(struct perf_event *event) 731 { 732 struct perf_cgroup_info *t; 733 734 t = per_cpu_ptr(event->cgrp->info, event->cpu); 735 return t->time; 736 } 737 738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 739 { 740 struct perf_cgroup_info *t; 741 742 t = per_cpu_ptr(event->cgrp->info, event->cpu); 743 if (!__load_acquire(&t->active)) 744 return t->time; 745 now += READ_ONCE(t->timeoffset); 746 return now; 747 } 748 749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 750 { 751 if (adv) 752 info->time += now - info->timestamp; 753 info->timestamp = now; 754 /* 755 * see update_context_time() 756 */ 757 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 758 } 759 760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 761 { 762 struct perf_cgroup *cgrp = cpuctx->cgrp; 763 struct cgroup_subsys_state *css; 764 struct perf_cgroup_info *info; 765 766 if (cgrp) { 767 u64 now = perf_clock(); 768 769 for (css = &cgrp->css; css; css = css->parent) { 770 cgrp = container_of(css, struct perf_cgroup, css); 771 info = this_cpu_ptr(cgrp->info); 772 773 __update_cgrp_time(info, now, true); 774 if (final) 775 __store_release(&info->active, 0); 776 } 777 } 778 } 779 780 static inline void update_cgrp_time_from_event(struct perf_event *event) 781 { 782 struct perf_cgroup_info *info; 783 784 /* 785 * ensure we access cgroup data only when needed and 786 * when we know the cgroup is pinned (css_get) 787 */ 788 if (!is_cgroup_event(event)) 789 return; 790 791 info = this_cpu_ptr(event->cgrp->info); 792 /* 793 * Do not update time when cgroup is not active 794 */ 795 if (info->active) 796 __update_cgrp_time(info, perf_clock(), true); 797 } 798 799 static inline void 800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 801 { 802 struct perf_event_context *ctx = &cpuctx->ctx; 803 struct perf_cgroup *cgrp = cpuctx->cgrp; 804 struct perf_cgroup_info *info; 805 struct cgroup_subsys_state *css; 806 807 /* 808 * ctx->lock held by caller 809 * ensure we do not access cgroup data 810 * unless we have the cgroup pinned (css_get) 811 */ 812 if (!cgrp) 813 return; 814 815 WARN_ON_ONCE(!ctx->nr_cgroups); 816 817 for (css = &cgrp->css; css; css = css->parent) { 818 cgrp = container_of(css, struct perf_cgroup, css); 819 info = this_cpu_ptr(cgrp->info); 820 __update_cgrp_time(info, ctx->timestamp, false); 821 __store_release(&info->active, 1); 822 } 823 } 824 825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 826 827 /* 828 * reschedule events based on the cgroup constraint of task. 829 */ 830 static void perf_cgroup_switch(struct task_struct *task) 831 { 832 struct perf_cgroup *cgrp; 833 struct perf_cpu_context *cpuctx, *tmp; 834 struct list_head *list; 835 unsigned long flags; 836 837 /* 838 * Disable interrupts and preemption to avoid this CPU's 839 * cgrp_cpuctx_entry to change under us. 840 */ 841 local_irq_save(flags); 842 843 cgrp = perf_cgroup_from_task(task, NULL); 844 845 list = this_cpu_ptr(&cgrp_cpuctx_list); 846 list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) { 847 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 848 if (READ_ONCE(cpuctx->cgrp) == cgrp) 849 continue; 850 851 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 852 perf_pmu_disable(cpuctx->ctx.pmu); 853 854 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 855 /* 856 * must not be done before ctxswout due 857 * to update_cgrp_time_from_cpuctx() in 858 * ctx_sched_out() 859 */ 860 cpuctx->cgrp = cgrp; 861 /* 862 * set cgrp before ctxsw in to allow 863 * perf_cgroup_set_timestamp() in ctx_sched_in() 864 * to not have to pass task around 865 */ 866 cpu_ctx_sched_in(cpuctx, EVENT_ALL); 867 868 perf_pmu_enable(cpuctx->ctx.pmu); 869 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 870 } 871 872 local_irq_restore(flags); 873 } 874 875 static int perf_cgroup_ensure_storage(struct perf_event *event, 876 struct cgroup_subsys_state *css) 877 { 878 struct perf_cpu_context *cpuctx; 879 struct perf_event **storage; 880 int cpu, heap_size, ret = 0; 881 882 /* 883 * Allow storage to have sufficent space for an iterator for each 884 * possibly nested cgroup plus an iterator for events with no cgroup. 885 */ 886 for (heap_size = 1; css; css = css->parent) 887 heap_size++; 888 889 for_each_possible_cpu(cpu) { 890 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 891 if (heap_size <= cpuctx->heap_size) 892 continue; 893 894 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 895 GFP_KERNEL, cpu_to_node(cpu)); 896 if (!storage) { 897 ret = -ENOMEM; 898 break; 899 } 900 901 raw_spin_lock_irq(&cpuctx->ctx.lock); 902 if (cpuctx->heap_size < heap_size) { 903 swap(cpuctx->heap, storage); 904 if (storage == cpuctx->heap_default) 905 storage = NULL; 906 cpuctx->heap_size = heap_size; 907 } 908 raw_spin_unlock_irq(&cpuctx->ctx.lock); 909 910 kfree(storage); 911 } 912 913 return ret; 914 } 915 916 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 917 struct perf_event_attr *attr, 918 struct perf_event *group_leader) 919 { 920 struct perf_cgroup *cgrp; 921 struct cgroup_subsys_state *css; 922 struct fd f = fdget(fd); 923 int ret = 0; 924 925 if (!f.file) 926 return -EBADF; 927 928 css = css_tryget_online_from_dir(f.file->f_path.dentry, 929 &perf_event_cgrp_subsys); 930 if (IS_ERR(css)) { 931 ret = PTR_ERR(css); 932 goto out; 933 } 934 935 ret = perf_cgroup_ensure_storage(event, css); 936 if (ret) 937 goto out; 938 939 cgrp = container_of(css, struct perf_cgroup, css); 940 event->cgrp = cgrp; 941 942 /* 943 * all events in a group must monitor 944 * the same cgroup because a task belongs 945 * to only one perf cgroup at a time 946 */ 947 if (group_leader && group_leader->cgrp != cgrp) { 948 perf_detach_cgroup(event); 949 ret = -EINVAL; 950 } 951 out: 952 fdput(f); 953 return ret; 954 } 955 956 static inline void 957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 958 { 959 struct perf_cpu_context *cpuctx; 960 961 if (!is_cgroup_event(event)) 962 return; 963 964 /* 965 * Because cgroup events are always per-cpu events, 966 * @ctx == &cpuctx->ctx. 967 */ 968 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 969 970 if (ctx->nr_cgroups++) 971 return; 972 973 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 974 list_add(&cpuctx->cgrp_cpuctx_entry, 975 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 976 } 977 978 static inline void 979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 980 { 981 struct perf_cpu_context *cpuctx; 982 983 if (!is_cgroup_event(event)) 984 return; 985 986 /* 987 * Because cgroup events are always per-cpu events, 988 * @ctx == &cpuctx->ctx. 989 */ 990 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 991 992 if (--ctx->nr_cgroups) 993 return; 994 995 cpuctx->cgrp = NULL; 996 list_del(&cpuctx->cgrp_cpuctx_entry); 997 } 998 999 #else /* !CONFIG_CGROUP_PERF */ 1000 1001 static inline bool 1002 perf_cgroup_match(struct perf_event *event) 1003 { 1004 return true; 1005 } 1006 1007 static inline void perf_detach_cgroup(struct perf_event *event) 1008 {} 1009 1010 static inline int is_cgroup_event(struct perf_event *event) 1011 { 1012 return 0; 1013 } 1014 1015 static inline void update_cgrp_time_from_event(struct perf_event *event) 1016 { 1017 } 1018 1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1020 bool final) 1021 { 1022 } 1023 1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1025 struct perf_event_attr *attr, 1026 struct perf_event *group_leader) 1027 { 1028 return -EINVAL; 1029 } 1030 1031 static inline void 1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1033 { 1034 } 1035 1036 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1037 { 1038 return 0; 1039 } 1040 1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1042 { 1043 return 0; 1044 } 1045 1046 static inline void 1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1048 { 1049 } 1050 1051 static inline void 1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1053 { 1054 } 1055 1056 static void perf_cgroup_switch(struct task_struct *task) 1057 { 1058 } 1059 #endif 1060 1061 /* 1062 * set default to be dependent on timer tick just 1063 * like original code 1064 */ 1065 #define PERF_CPU_HRTIMER (1000 / HZ) 1066 /* 1067 * function must be called with interrupts disabled 1068 */ 1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1070 { 1071 struct perf_cpu_context *cpuctx; 1072 bool rotations; 1073 1074 lockdep_assert_irqs_disabled(); 1075 1076 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1077 rotations = perf_rotate_context(cpuctx); 1078 1079 raw_spin_lock(&cpuctx->hrtimer_lock); 1080 if (rotations) 1081 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1082 else 1083 cpuctx->hrtimer_active = 0; 1084 raw_spin_unlock(&cpuctx->hrtimer_lock); 1085 1086 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1087 } 1088 1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1090 { 1091 struct hrtimer *timer = &cpuctx->hrtimer; 1092 struct pmu *pmu = cpuctx->ctx.pmu; 1093 u64 interval; 1094 1095 /* no multiplexing needed for SW PMU */ 1096 if (pmu->task_ctx_nr == perf_sw_context) 1097 return; 1098 1099 /* 1100 * check default is sane, if not set then force to 1101 * default interval (1/tick) 1102 */ 1103 interval = pmu->hrtimer_interval_ms; 1104 if (interval < 1) 1105 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1106 1107 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1108 1109 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1110 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1111 timer->function = perf_mux_hrtimer_handler; 1112 } 1113 1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1115 { 1116 struct hrtimer *timer = &cpuctx->hrtimer; 1117 struct pmu *pmu = cpuctx->ctx.pmu; 1118 unsigned long flags; 1119 1120 /* not for SW PMU */ 1121 if (pmu->task_ctx_nr == perf_sw_context) 1122 return 0; 1123 1124 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1125 if (!cpuctx->hrtimer_active) { 1126 cpuctx->hrtimer_active = 1; 1127 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1128 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1129 } 1130 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1131 1132 return 0; 1133 } 1134 1135 void perf_pmu_disable(struct pmu *pmu) 1136 { 1137 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1138 if (!(*count)++) 1139 pmu->pmu_disable(pmu); 1140 } 1141 1142 void perf_pmu_enable(struct pmu *pmu) 1143 { 1144 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1145 if (!--(*count)) 1146 pmu->pmu_enable(pmu); 1147 } 1148 1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1150 1151 /* 1152 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1153 * perf_event_task_tick() are fully serialized because they're strictly cpu 1154 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1155 * disabled, while perf_event_task_tick is called from IRQ context. 1156 */ 1157 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1158 { 1159 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1160 1161 lockdep_assert_irqs_disabled(); 1162 1163 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1164 1165 list_add(&ctx->active_ctx_list, head); 1166 } 1167 1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1169 { 1170 lockdep_assert_irqs_disabled(); 1171 1172 WARN_ON(list_empty(&ctx->active_ctx_list)); 1173 1174 list_del_init(&ctx->active_ctx_list); 1175 } 1176 1177 static void get_ctx(struct perf_event_context *ctx) 1178 { 1179 refcount_inc(&ctx->refcount); 1180 } 1181 1182 static void *alloc_task_ctx_data(struct pmu *pmu) 1183 { 1184 if (pmu->task_ctx_cache) 1185 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1186 1187 return NULL; 1188 } 1189 1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1191 { 1192 if (pmu->task_ctx_cache && task_ctx_data) 1193 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1194 } 1195 1196 static void free_ctx(struct rcu_head *head) 1197 { 1198 struct perf_event_context *ctx; 1199 1200 ctx = container_of(head, struct perf_event_context, rcu_head); 1201 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1202 kfree(ctx); 1203 } 1204 1205 static void put_ctx(struct perf_event_context *ctx) 1206 { 1207 if (refcount_dec_and_test(&ctx->refcount)) { 1208 if (ctx->parent_ctx) 1209 put_ctx(ctx->parent_ctx); 1210 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1211 put_task_struct(ctx->task); 1212 call_rcu(&ctx->rcu_head, free_ctx); 1213 } 1214 } 1215 1216 /* 1217 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1218 * perf_pmu_migrate_context() we need some magic. 1219 * 1220 * Those places that change perf_event::ctx will hold both 1221 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1222 * 1223 * Lock ordering is by mutex address. There are two other sites where 1224 * perf_event_context::mutex nests and those are: 1225 * 1226 * - perf_event_exit_task_context() [ child , 0 ] 1227 * perf_event_exit_event() 1228 * put_event() [ parent, 1 ] 1229 * 1230 * - perf_event_init_context() [ parent, 0 ] 1231 * inherit_task_group() 1232 * inherit_group() 1233 * inherit_event() 1234 * perf_event_alloc() 1235 * perf_init_event() 1236 * perf_try_init_event() [ child , 1 ] 1237 * 1238 * While it appears there is an obvious deadlock here -- the parent and child 1239 * nesting levels are inverted between the two. This is in fact safe because 1240 * life-time rules separate them. That is an exiting task cannot fork, and a 1241 * spawning task cannot (yet) exit. 1242 * 1243 * But remember that these are parent<->child context relations, and 1244 * migration does not affect children, therefore these two orderings should not 1245 * interact. 1246 * 1247 * The change in perf_event::ctx does not affect children (as claimed above) 1248 * because the sys_perf_event_open() case will install a new event and break 1249 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1250 * concerned with cpuctx and that doesn't have children. 1251 * 1252 * The places that change perf_event::ctx will issue: 1253 * 1254 * perf_remove_from_context(); 1255 * synchronize_rcu(); 1256 * perf_install_in_context(); 1257 * 1258 * to affect the change. The remove_from_context() + synchronize_rcu() should 1259 * quiesce the event, after which we can install it in the new location. This 1260 * means that only external vectors (perf_fops, prctl) can perturb the event 1261 * while in transit. Therefore all such accessors should also acquire 1262 * perf_event_context::mutex to serialize against this. 1263 * 1264 * However; because event->ctx can change while we're waiting to acquire 1265 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1266 * function. 1267 * 1268 * Lock order: 1269 * exec_update_lock 1270 * task_struct::perf_event_mutex 1271 * perf_event_context::mutex 1272 * perf_event::child_mutex; 1273 * perf_event_context::lock 1274 * perf_event::mmap_mutex 1275 * mmap_lock 1276 * perf_addr_filters_head::lock 1277 * 1278 * cpu_hotplug_lock 1279 * pmus_lock 1280 * cpuctx->mutex / perf_event_context::mutex 1281 */ 1282 static struct perf_event_context * 1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1284 { 1285 struct perf_event_context *ctx; 1286 1287 again: 1288 rcu_read_lock(); 1289 ctx = READ_ONCE(event->ctx); 1290 if (!refcount_inc_not_zero(&ctx->refcount)) { 1291 rcu_read_unlock(); 1292 goto again; 1293 } 1294 rcu_read_unlock(); 1295 1296 mutex_lock_nested(&ctx->mutex, nesting); 1297 if (event->ctx != ctx) { 1298 mutex_unlock(&ctx->mutex); 1299 put_ctx(ctx); 1300 goto again; 1301 } 1302 1303 return ctx; 1304 } 1305 1306 static inline struct perf_event_context * 1307 perf_event_ctx_lock(struct perf_event *event) 1308 { 1309 return perf_event_ctx_lock_nested(event, 0); 1310 } 1311 1312 static void perf_event_ctx_unlock(struct perf_event *event, 1313 struct perf_event_context *ctx) 1314 { 1315 mutex_unlock(&ctx->mutex); 1316 put_ctx(ctx); 1317 } 1318 1319 /* 1320 * This must be done under the ctx->lock, such as to serialize against 1321 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1322 * calling scheduler related locks and ctx->lock nests inside those. 1323 */ 1324 static __must_check struct perf_event_context * 1325 unclone_ctx(struct perf_event_context *ctx) 1326 { 1327 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1328 1329 lockdep_assert_held(&ctx->lock); 1330 1331 if (parent_ctx) 1332 ctx->parent_ctx = NULL; 1333 ctx->generation++; 1334 1335 return parent_ctx; 1336 } 1337 1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1339 enum pid_type type) 1340 { 1341 u32 nr; 1342 /* 1343 * only top level events have the pid namespace they were created in 1344 */ 1345 if (event->parent) 1346 event = event->parent; 1347 1348 nr = __task_pid_nr_ns(p, type, event->ns); 1349 /* avoid -1 if it is idle thread or runs in another ns */ 1350 if (!nr && !pid_alive(p)) 1351 nr = -1; 1352 return nr; 1353 } 1354 1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1356 { 1357 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1358 } 1359 1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1361 { 1362 return perf_event_pid_type(event, p, PIDTYPE_PID); 1363 } 1364 1365 /* 1366 * If we inherit events we want to return the parent event id 1367 * to userspace. 1368 */ 1369 static u64 primary_event_id(struct perf_event *event) 1370 { 1371 u64 id = event->id; 1372 1373 if (event->parent) 1374 id = event->parent->id; 1375 1376 return id; 1377 } 1378 1379 /* 1380 * Get the perf_event_context for a task and lock it. 1381 * 1382 * This has to cope with the fact that until it is locked, 1383 * the context could get moved to another task. 1384 */ 1385 static struct perf_event_context * 1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1387 { 1388 struct perf_event_context *ctx; 1389 1390 retry: 1391 /* 1392 * One of the few rules of preemptible RCU is that one cannot do 1393 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1394 * part of the read side critical section was irqs-enabled -- see 1395 * rcu_read_unlock_special(). 1396 * 1397 * Since ctx->lock nests under rq->lock we must ensure the entire read 1398 * side critical section has interrupts disabled. 1399 */ 1400 local_irq_save(*flags); 1401 rcu_read_lock(); 1402 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1403 if (ctx) { 1404 /* 1405 * If this context is a clone of another, it might 1406 * get swapped for another underneath us by 1407 * perf_event_task_sched_out, though the 1408 * rcu_read_lock() protects us from any context 1409 * getting freed. Lock the context and check if it 1410 * got swapped before we could get the lock, and retry 1411 * if so. If we locked the right context, then it 1412 * can't get swapped on us any more. 1413 */ 1414 raw_spin_lock(&ctx->lock); 1415 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1416 raw_spin_unlock(&ctx->lock); 1417 rcu_read_unlock(); 1418 local_irq_restore(*flags); 1419 goto retry; 1420 } 1421 1422 if (ctx->task == TASK_TOMBSTONE || 1423 !refcount_inc_not_zero(&ctx->refcount)) { 1424 raw_spin_unlock(&ctx->lock); 1425 ctx = NULL; 1426 } else { 1427 WARN_ON_ONCE(ctx->task != task); 1428 } 1429 } 1430 rcu_read_unlock(); 1431 if (!ctx) 1432 local_irq_restore(*flags); 1433 return ctx; 1434 } 1435 1436 /* 1437 * Get the context for a task and increment its pin_count so it 1438 * can't get swapped to another task. This also increments its 1439 * reference count so that the context can't get freed. 1440 */ 1441 static struct perf_event_context * 1442 perf_pin_task_context(struct task_struct *task, int ctxn) 1443 { 1444 struct perf_event_context *ctx; 1445 unsigned long flags; 1446 1447 ctx = perf_lock_task_context(task, ctxn, &flags); 1448 if (ctx) { 1449 ++ctx->pin_count; 1450 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1451 } 1452 return ctx; 1453 } 1454 1455 static void perf_unpin_context(struct perf_event_context *ctx) 1456 { 1457 unsigned long flags; 1458 1459 raw_spin_lock_irqsave(&ctx->lock, flags); 1460 --ctx->pin_count; 1461 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1462 } 1463 1464 /* 1465 * Update the record of the current time in a context. 1466 */ 1467 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1468 { 1469 u64 now = perf_clock(); 1470 1471 if (adv) 1472 ctx->time += now - ctx->timestamp; 1473 ctx->timestamp = now; 1474 1475 /* 1476 * The above: time' = time + (now - timestamp), can be re-arranged 1477 * into: time` = now + (time - timestamp), which gives a single value 1478 * offset to compute future time without locks on. 1479 * 1480 * See perf_event_time_now(), which can be used from NMI context where 1481 * it's (obviously) not possible to acquire ctx->lock in order to read 1482 * both the above values in a consistent manner. 1483 */ 1484 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1485 } 1486 1487 static void update_context_time(struct perf_event_context *ctx) 1488 { 1489 __update_context_time(ctx, true); 1490 } 1491 1492 static u64 perf_event_time(struct perf_event *event) 1493 { 1494 struct perf_event_context *ctx = event->ctx; 1495 1496 if (unlikely(!ctx)) 1497 return 0; 1498 1499 if (is_cgroup_event(event)) 1500 return perf_cgroup_event_time(event); 1501 1502 return ctx->time; 1503 } 1504 1505 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1506 { 1507 struct perf_event_context *ctx = event->ctx; 1508 1509 if (unlikely(!ctx)) 1510 return 0; 1511 1512 if (is_cgroup_event(event)) 1513 return perf_cgroup_event_time_now(event, now); 1514 1515 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1516 return ctx->time; 1517 1518 now += READ_ONCE(ctx->timeoffset); 1519 return now; 1520 } 1521 1522 static enum event_type_t get_event_type(struct perf_event *event) 1523 { 1524 struct perf_event_context *ctx = event->ctx; 1525 enum event_type_t event_type; 1526 1527 lockdep_assert_held(&ctx->lock); 1528 1529 /* 1530 * It's 'group type', really, because if our group leader is 1531 * pinned, so are we. 1532 */ 1533 if (event->group_leader != event) 1534 event = event->group_leader; 1535 1536 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1537 if (!ctx->task) 1538 event_type |= EVENT_CPU; 1539 1540 return event_type; 1541 } 1542 1543 /* 1544 * Helper function to initialize event group nodes. 1545 */ 1546 static void init_event_group(struct perf_event *event) 1547 { 1548 RB_CLEAR_NODE(&event->group_node); 1549 event->group_index = 0; 1550 } 1551 1552 /* 1553 * Extract pinned or flexible groups from the context 1554 * based on event attrs bits. 1555 */ 1556 static struct perf_event_groups * 1557 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1558 { 1559 if (event->attr.pinned) 1560 return &ctx->pinned_groups; 1561 else 1562 return &ctx->flexible_groups; 1563 } 1564 1565 /* 1566 * Helper function to initializes perf_event_group trees. 1567 */ 1568 static void perf_event_groups_init(struct perf_event_groups *groups) 1569 { 1570 groups->tree = RB_ROOT; 1571 groups->index = 0; 1572 } 1573 1574 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1575 { 1576 struct cgroup *cgroup = NULL; 1577 1578 #ifdef CONFIG_CGROUP_PERF 1579 if (event->cgrp) 1580 cgroup = event->cgrp->css.cgroup; 1581 #endif 1582 1583 return cgroup; 1584 } 1585 1586 /* 1587 * Compare function for event groups; 1588 * 1589 * Implements complex key that first sorts by CPU and then by virtual index 1590 * which provides ordering when rotating groups for the same CPU. 1591 */ 1592 static __always_inline int 1593 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1594 const u64 left_group_index, const struct perf_event *right) 1595 { 1596 if (left_cpu < right->cpu) 1597 return -1; 1598 if (left_cpu > right->cpu) 1599 return 1; 1600 1601 #ifdef CONFIG_CGROUP_PERF 1602 { 1603 const struct cgroup *right_cgroup = event_cgroup(right); 1604 1605 if (left_cgroup != right_cgroup) { 1606 if (!left_cgroup) { 1607 /* 1608 * Left has no cgroup but right does, no 1609 * cgroups come first. 1610 */ 1611 return -1; 1612 } 1613 if (!right_cgroup) { 1614 /* 1615 * Right has no cgroup but left does, no 1616 * cgroups come first. 1617 */ 1618 return 1; 1619 } 1620 /* Two dissimilar cgroups, order by id. */ 1621 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1622 return -1; 1623 1624 return 1; 1625 } 1626 } 1627 #endif 1628 1629 if (left_group_index < right->group_index) 1630 return -1; 1631 if (left_group_index > right->group_index) 1632 return 1; 1633 1634 return 0; 1635 } 1636 1637 #define __node_2_pe(node) \ 1638 rb_entry((node), struct perf_event, group_node) 1639 1640 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1641 { 1642 struct perf_event *e = __node_2_pe(a); 1643 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1644 __node_2_pe(b)) < 0; 1645 } 1646 1647 struct __group_key { 1648 int cpu; 1649 struct cgroup *cgroup; 1650 }; 1651 1652 static inline int __group_cmp(const void *key, const struct rb_node *node) 1653 { 1654 const struct __group_key *a = key; 1655 const struct perf_event *b = __node_2_pe(node); 1656 1657 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1658 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1659 } 1660 1661 /* 1662 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1663 * key (see perf_event_groups_less). This places it last inside the CPU 1664 * subtree. 1665 */ 1666 static void 1667 perf_event_groups_insert(struct perf_event_groups *groups, 1668 struct perf_event *event) 1669 { 1670 event->group_index = ++groups->index; 1671 1672 rb_add(&event->group_node, &groups->tree, __group_less); 1673 } 1674 1675 /* 1676 * Helper function to insert event into the pinned or flexible groups. 1677 */ 1678 static void 1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1680 { 1681 struct perf_event_groups *groups; 1682 1683 groups = get_event_groups(event, ctx); 1684 perf_event_groups_insert(groups, event); 1685 } 1686 1687 /* 1688 * Delete a group from a tree. 1689 */ 1690 static void 1691 perf_event_groups_delete(struct perf_event_groups *groups, 1692 struct perf_event *event) 1693 { 1694 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1695 RB_EMPTY_ROOT(&groups->tree)); 1696 1697 rb_erase(&event->group_node, &groups->tree); 1698 init_event_group(event); 1699 } 1700 1701 /* 1702 * Helper function to delete event from its groups. 1703 */ 1704 static void 1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1706 { 1707 struct perf_event_groups *groups; 1708 1709 groups = get_event_groups(event, ctx); 1710 perf_event_groups_delete(groups, event); 1711 } 1712 1713 /* 1714 * Get the leftmost event in the cpu/cgroup subtree. 1715 */ 1716 static struct perf_event * 1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1718 struct cgroup *cgrp) 1719 { 1720 struct __group_key key = { 1721 .cpu = cpu, 1722 .cgroup = cgrp, 1723 }; 1724 struct rb_node *node; 1725 1726 node = rb_find_first(&key, &groups->tree, __group_cmp); 1727 if (node) 1728 return __node_2_pe(node); 1729 1730 return NULL; 1731 } 1732 1733 /* 1734 * Like rb_entry_next_safe() for the @cpu subtree. 1735 */ 1736 static struct perf_event * 1737 perf_event_groups_next(struct perf_event *event) 1738 { 1739 struct __group_key key = { 1740 .cpu = event->cpu, 1741 .cgroup = event_cgroup(event), 1742 }; 1743 struct rb_node *next; 1744 1745 next = rb_next_match(&key, &event->group_node, __group_cmp); 1746 if (next) 1747 return __node_2_pe(next); 1748 1749 return NULL; 1750 } 1751 1752 /* 1753 * Iterate through the whole groups tree. 1754 */ 1755 #define perf_event_groups_for_each(event, groups) \ 1756 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1757 typeof(*event), group_node); event; \ 1758 event = rb_entry_safe(rb_next(&event->group_node), \ 1759 typeof(*event), group_node)) 1760 1761 /* 1762 * Add an event from the lists for its context. 1763 * Must be called with ctx->mutex and ctx->lock held. 1764 */ 1765 static void 1766 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1767 { 1768 lockdep_assert_held(&ctx->lock); 1769 1770 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1771 event->attach_state |= PERF_ATTACH_CONTEXT; 1772 1773 event->tstamp = perf_event_time(event); 1774 1775 /* 1776 * If we're a stand alone event or group leader, we go to the context 1777 * list, group events are kept attached to the group so that 1778 * perf_group_detach can, at all times, locate all siblings. 1779 */ 1780 if (event->group_leader == event) { 1781 event->group_caps = event->event_caps; 1782 add_event_to_groups(event, ctx); 1783 } 1784 1785 list_add_rcu(&event->event_entry, &ctx->event_list); 1786 ctx->nr_events++; 1787 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1788 ctx->nr_user++; 1789 if (event->attr.inherit_stat) 1790 ctx->nr_stat++; 1791 1792 if (event->state > PERF_EVENT_STATE_OFF) 1793 perf_cgroup_event_enable(event, ctx); 1794 1795 ctx->generation++; 1796 } 1797 1798 /* 1799 * Initialize event state based on the perf_event_attr::disabled. 1800 */ 1801 static inline void perf_event__state_init(struct perf_event *event) 1802 { 1803 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1804 PERF_EVENT_STATE_INACTIVE; 1805 } 1806 1807 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1808 { 1809 int entry = sizeof(u64); /* value */ 1810 int size = 0; 1811 int nr = 1; 1812 1813 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1814 size += sizeof(u64); 1815 1816 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1817 size += sizeof(u64); 1818 1819 if (event->attr.read_format & PERF_FORMAT_ID) 1820 entry += sizeof(u64); 1821 1822 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1823 nr += nr_siblings; 1824 size += sizeof(u64); 1825 } 1826 1827 size += entry * nr; 1828 event->read_size = size; 1829 } 1830 1831 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1832 { 1833 struct perf_sample_data *data; 1834 u16 size = 0; 1835 1836 if (sample_type & PERF_SAMPLE_IP) 1837 size += sizeof(data->ip); 1838 1839 if (sample_type & PERF_SAMPLE_ADDR) 1840 size += sizeof(data->addr); 1841 1842 if (sample_type & PERF_SAMPLE_PERIOD) 1843 size += sizeof(data->period); 1844 1845 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1846 size += sizeof(data->weight.full); 1847 1848 if (sample_type & PERF_SAMPLE_READ) 1849 size += event->read_size; 1850 1851 if (sample_type & PERF_SAMPLE_DATA_SRC) 1852 size += sizeof(data->data_src.val); 1853 1854 if (sample_type & PERF_SAMPLE_TRANSACTION) 1855 size += sizeof(data->txn); 1856 1857 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1858 size += sizeof(data->phys_addr); 1859 1860 if (sample_type & PERF_SAMPLE_CGROUP) 1861 size += sizeof(data->cgroup); 1862 1863 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1864 size += sizeof(data->data_page_size); 1865 1866 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1867 size += sizeof(data->code_page_size); 1868 1869 event->header_size = size; 1870 } 1871 1872 /* 1873 * Called at perf_event creation and when events are attached/detached from a 1874 * group. 1875 */ 1876 static void perf_event__header_size(struct perf_event *event) 1877 { 1878 __perf_event_read_size(event, 1879 event->group_leader->nr_siblings); 1880 __perf_event_header_size(event, event->attr.sample_type); 1881 } 1882 1883 static void perf_event__id_header_size(struct perf_event *event) 1884 { 1885 struct perf_sample_data *data; 1886 u64 sample_type = event->attr.sample_type; 1887 u16 size = 0; 1888 1889 if (sample_type & PERF_SAMPLE_TID) 1890 size += sizeof(data->tid_entry); 1891 1892 if (sample_type & PERF_SAMPLE_TIME) 1893 size += sizeof(data->time); 1894 1895 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1896 size += sizeof(data->id); 1897 1898 if (sample_type & PERF_SAMPLE_ID) 1899 size += sizeof(data->id); 1900 1901 if (sample_type & PERF_SAMPLE_STREAM_ID) 1902 size += sizeof(data->stream_id); 1903 1904 if (sample_type & PERF_SAMPLE_CPU) 1905 size += sizeof(data->cpu_entry); 1906 1907 event->id_header_size = size; 1908 } 1909 1910 static bool perf_event_validate_size(struct perf_event *event) 1911 { 1912 /* 1913 * The values computed here will be over-written when we actually 1914 * attach the event. 1915 */ 1916 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1917 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1918 perf_event__id_header_size(event); 1919 1920 /* 1921 * Sum the lot; should not exceed the 64k limit we have on records. 1922 * Conservative limit to allow for callchains and other variable fields. 1923 */ 1924 if (event->read_size + event->header_size + 1925 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1926 return false; 1927 1928 return true; 1929 } 1930 1931 static void perf_group_attach(struct perf_event *event) 1932 { 1933 struct perf_event *group_leader = event->group_leader, *pos; 1934 1935 lockdep_assert_held(&event->ctx->lock); 1936 1937 /* 1938 * We can have double attach due to group movement in perf_event_open. 1939 */ 1940 if (event->attach_state & PERF_ATTACH_GROUP) 1941 return; 1942 1943 event->attach_state |= PERF_ATTACH_GROUP; 1944 1945 if (group_leader == event) 1946 return; 1947 1948 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1949 1950 group_leader->group_caps &= event->event_caps; 1951 1952 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1953 group_leader->nr_siblings++; 1954 1955 perf_event__header_size(group_leader); 1956 1957 for_each_sibling_event(pos, group_leader) 1958 perf_event__header_size(pos); 1959 } 1960 1961 /* 1962 * Remove an event from the lists for its context. 1963 * Must be called with ctx->mutex and ctx->lock held. 1964 */ 1965 static void 1966 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1967 { 1968 WARN_ON_ONCE(event->ctx != ctx); 1969 lockdep_assert_held(&ctx->lock); 1970 1971 /* 1972 * We can have double detach due to exit/hot-unplug + close. 1973 */ 1974 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1975 return; 1976 1977 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1978 1979 ctx->nr_events--; 1980 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1981 ctx->nr_user--; 1982 if (event->attr.inherit_stat) 1983 ctx->nr_stat--; 1984 1985 list_del_rcu(&event->event_entry); 1986 1987 if (event->group_leader == event) 1988 del_event_from_groups(event, ctx); 1989 1990 /* 1991 * If event was in error state, then keep it 1992 * that way, otherwise bogus counts will be 1993 * returned on read(). The only way to get out 1994 * of error state is by explicit re-enabling 1995 * of the event 1996 */ 1997 if (event->state > PERF_EVENT_STATE_OFF) { 1998 perf_cgroup_event_disable(event, ctx); 1999 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2000 } 2001 2002 ctx->generation++; 2003 } 2004 2005 static int 2006 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2007 { 2008 if (!has_aux(aux_event)) 2009 return 0; 2010 2011 if (!event->pmu->aux_output_match) 2012 return 0; 2013 2014 return event->pmu->aux_output_match(aux_event); 2015 } 2016 2017 static void put_event(struct perf_event *event); 2018 static void event_sched_out(struct perf_event *event, 2019 struct perf_cpu_context *cpuctx, 2020 struct perf_event_context *ctx); 2021 2022 static void perf_put_aux_event(struct perf_event *event) 2023 { 2024 struct perf_event_context *ctx = event->ctx; 2025 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2026 struct perf_event *iter; 2027 2028 /* 2029 * If event uses aux_event tear down the link 2030 */ 2031 if (event->aux_event) { 2032 iter = event->aux_event; 2033 event->aux_event = NULL; 2034 put_event(iter); 2035 return; 2036 } 2037 2038 /* 2039 * If the event is an aux_event, tear down all links to 2040 * it from other events. 2041 */ 2042 for_each_sibling_event(iter, event->group_leader) { 2043 if (iter->aux_event != event) 2044 continue; 2045 2046 iter->aux_event = NULL; 2047 put_event(event); 2048 2049 /* 2050 * If it's ACTIVE, schedule it out and put it into ERROR 2051 * state so that we don't try to schedule it again. Note 2052 * that perf_event_enable() will clear the ERROR status. 2053 */ 2054 event_sched_out(iter, cpuctx, ctx); 2055 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2056 } 2057 } 2058 2059 static bool perf_need_aux_event(struct perf_event *event) 2060 { 2061 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2062 } 2063 2064 static int perf_get_aux_event(struct perf_event *event, 2065 struct perf_event *group_leader) 2066 { 2067 /* 2068 * Our group leader must be an aux event if we want to be 2069 * an aux_output. This way, the aux event will precede its 2070 * aux_output events in the group, and therefore will always 2071 * schedule first. 2072 */ 2073 if (!group_leader) 2074 return 0; 2075 2076 /* 2077 * aux_output and aux_sample_size are mutually exclusive. 2078 */ 2079 if (event->attr.aux_output && event->attr.aux_sample_size) 2080 return 0; 2081 2082 if (event->attr.aux_output && 2083 !perf_aux_output_match(event, group_leader)) 2084 return 0; 2085 2086 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2087 return 0; 2088 2089 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2090 return 0; 2091 2092 /* 2093 * Link aux_outputs to their aux event; this is undone in 2094 * perf_group_detach() by perf_put_aux_event(). When the 2095 * group in torn down, the aux_output events loose their 2096 * link to the aux_event and can't schedule any more. 2097 */ 2098 event->aux_event = group_leader; 2099 2100 return 1; 2101 } 2102 2103 static inline struct list_head *get_event_list(struct perf_event *event) 2104 { 2105 struct perf_event_context *ctx = event->ctx; 2106 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2107 } 2108 2109 /* 2110 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2111 * cannot exist on their own, schedule them out and move them into the ERROR 2112 * state. Also see _perf_event_enable(), it will not be able to recover 2113 * this ERROR state. 2114 */ 2115 static inline void perf_remove_sibling_event(struct perf_event *event) 2116 { 2117 struct perf_event_context *ctx = event->ctx; 2118 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2119 2120 event_sched_out(event, cpuctx, ctx); 2121 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2122 } 2123 2124 static void perf_group_detach(struct perf_event *event) 2125 { 2126 struct perf_event *leader = event->group_leader; 2127 struct perf_event *sibling, *tmp; 2128 struct perf_event_context *ctx = event->ctx; 2129 2130 lockdep_assert_held(&ctx->lock); 2131 2132 /* 2133 * We can have double detach due to exit/hot-unplug + close. 2134 */ 2135 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2136 return; 2137 2138 event->attach_state &= ~PERF_ATTACH_GROUP; 2139 2140 perf_put_aux_event(event); 2141 2142 /* 2143 * If this is a sibling, remove it from its group. 2144 */ 2145 if (leader != event) { 2146 list_del_init(&event->sibling_list); 2147 event->group_leader->nr_siblings--; 2148 goto out; 2149 } 2150 2151 /* 2152 * If this was a group event with sibling events then 2153 * upgrade the siblings to singleton events by adding them 2154 * to whatever list we are on. 2155 */ 2156 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2157 2158 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2159 perf_remove_sibling_event(sibling); 2160 2161 sibling->group_leader = sibling; 2162 list_del_init(&sibling->sibling_list); 2163 2164 /* Inherit group flags from the previous leader */ 2165 sibling->group_caps = event->group_caps; 2166 2167 if (!RB_EMPTY_NODE(&event->group_node)) { 2168 add_event_to_groups(sibling, event->ctx); 2169 2170 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2171 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2172 } 2173 2174 WARN_ON_ONCE(sibling->ctx != event->ctx); 2175 } 2176 2177 out: 2178 for_each_sibling_event(tmp, leader) 2179 perf_event__header_size(tmp); 2180 2181 perf_event__header_size(leader); 2182 } 2183 2184 static void sync_child_event(struct perf_event *child_event); 2185 2186 static void perf_child_detach(struct perf_event *event) 2187 { 2188 struct perf_event *parent_event = event->parent; 2189 2190 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2191 return; 2192 2193 event->attach_state &= ~PERF_ATTACH_CHILD; 2194 2195 if (WARN_ON_ONCE(!parent_event)) 2196 return; 2197 2198 lockdep_assert_held(&parent_event->child_mutex); 2199 2200 sync_child_event(event); 2201 list_del_init(&event->child_list); 2202 } 2203 2204 static bool is_orphaned_event(struct perf_event *event) 2205 { 2206 return event->state == PERF_EVENT_STATE_DEAD; 2207 } 2208 2209 static inline int __pmu_filter_match(struct perf_event *event) 2210 { 2211 struct pmu *pmu = event->pmu; 2212 return pmu->filter_match ? pmu->filter_match(event) : 1; 2213 } 2214 2215 /* 2216 * Check whether we should attempt to schedule an event group based on 2217 * PMU-specific filtering. An event group can consist of HW and SW events, 2218 * potentially with a SW leader, so we must check all the filters, to 2219 * determine whether a group is schedulable: 2220 */ 2221 static inline int pmu_filter_match(struct perf_event *event) 2222 { 2223 struct perf_event *sibling; 2224 2225 if (!__pmu_filter_match(event)) 2226 return 0; 2227 2228 for_each_sibling_event(sibling, event) { 2229 if (!__pmu_filter_match(sibling)) 2230 return 0; 2231 } 2232 2233 return 1; 2234 } 2235 2236 static inline int 2237 event_filter_match(struct perf_event *event) 2238 { 2239 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2240 perf_cgroup_match(event) && pmu_filter_match(event); 2241 } 2242 2243 static void 2244 event_sched_out(struct perf_event *event, 2245 struct perf_cpu_context *cpuctx, 2246 struct perf_event_context *ctx) 2247 { 2248 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2249 2250 WARN_ON_ONCE(event->ctx != ctx); 2251 lockdep_assert_held(&ctx->lock); 2252 2253 if (event->state != PERF_EVENT_STATE_ACTIVE) 2254 return; 2255 2256 /* 2257 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2258 * we can schedule events _OUT_ individually through things like 2259 * __perf_remove_from_context(). 2260 */ 2261 list_del_init(&event->active_list); 2262 2263 perf_pmu_disable(event->pmu); 2264 2265 event->pmu->del(event, 0); 2266 event->oncpu = -1; 2267 2268 if (READ_ONCE(event->pending_disable) >= 0) { 2269 WRITE_ONCE(event->pending_disable, -1); 2270 perf_cgroup_event_disable(event, ctx); 2271 state = PERF_EVENT_STATE_OFF; 2272 } 2273 perf_event_set_state(event, state); 2274 2275 if (!is_software_event(event)) 2276 cpuctx->active_oncpu--; 2277 if (!--ctx->nr_active) 2278 perf_event_ctx_deactivate(ctx); 2279 if (event->attr.freq && event->attr.sample_freq) 2280 ctx->nr_freq--; 2281 if (event->attr.exclusive || !cpuctx->active_oncpu) 2282 cpuctx->exclusive = 0; 2283 2284 perf_pmu_enable(event->pmu); 2285 } 2286 2287 static void 2288 group_sched_out(struct perf_event *group_event, 2289 struct perf_cpu_context *cpuctx, 2290 struct perf_event_context *ctx) 2291 { 2292 struct perf_event *event; 2293 2294 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2295 return; 2296 2297 perf_pmu_disable(ctx->pmu); 2298 2299 event_sched_out(group_event, cpuctx, ctx); 2300 2301 /* 2302 * Schedule out siblings (if any): 2303 */ 2304 for_each_sibling_event(event, group_event) 2305 event_sched_out(event, cpuctx, ctx); 2306 2307 perf_pmu_enable(ctx->pmu); 2308 } 2309 2310 #define DETACH_GROUP 0x01UL 2311 #define DETACH_CHILD 0x02UL 2312 2313 /* 2314 * Cross CPU call to remove a performance event 2315 * 2316 * We disable the event on the hardware level first. After that we 2317 * remove it from the context list. 2318 */ 2319 static void 2320 __perf_remove_from_context(struct perf_event *event, 2321 struct perf_cpu_context *cpuctx, 2322 struct perf_event_context *ctx, 2323 void *info) 2324 { 2325 unsigned long flags = (unsigned long)info; 2326 2327 if (ctx->is_active & EVENT_TIME) { 2328 update_context_time(ctx); 2329 update_cgrp_time_from_cpuctx(cpuctx, false); 2330 } 2331 2332 event_sched_out(event, cpuctx, ctx); 2333 if (flags & DETACH_GROUP) 2334 perf_group_detach(event); 2335 if (flags & DETACH_CHILD) 2336 perf_child_detach(event); 2337 list_del_event(event, ctx); 2338 2339 if (!ctx->nr_events && ctx->is_active) { 2340 if (ctx == &cpuctx->ctx) 2341 update_cgrp_time_from_cpuctx(cpuctx, true); 2342 2343 ctx->is_active = 0; 2344 ctx->rotate_necessary = 0; 2345 if (ctx->task) { 2346 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2347 cpuctx->task_ctx = NULL; 2348 } 2349 } 2350 } 2351 2352 /* 2353 * Remove the event from a task's (or a CPU's) list of events. 2354 * 2355 * If event->ctx is a cloned context, callers must make sure that 2356 * every task struct that event->ctx->task could possibly point to 2357 * remains valid. This is OK when called from perf_release since 2358 * that only calls us on the top-level context, which can't be a clone. 2359 * When called from perf_event_exit_task, it's OK because the 2360 * context has been detached from its task. 2361 */ 2362 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2363 { 2364 struct perf_event_context *ctx = event->ctx; 2365 2366 lockdep_assert_held(&ctx->mutex); 2367 2368 /* 2369 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2370 * to work in the face of TASK_TOMBSTONE, unlike every other 2371 * event_function_call() user. 2372 */ 2373 raw_spin_lock_irq(&ctx->lock); 2374 /* 2375 * Cgroup events are per-cpu events, and must IPI because of 2376 * cgrp_cpuctx_list. 2377 */ 2378 if (!ctx->is_active && !is_cgroup_event(event)) { 2379 __perf_remove_from_context(event, __get_cpu_context(ctx), 2380 ctx, (void *)flags); 2381 raw_spin_unlock_irq(&ctx->lock); 2382 return; 2383 } 2384 raw_spin_unlock_irq(&ctx->lock); 2385 2386 event_function_call(event, __perf_remove_from_context, (void *)flags); 2387 } 2388 2389 /* 2390 * Cross CPU call to disable a performance event 2391 */ 2392 static void __perf_event_disable(struct perf_event *event, 2393 struct perf_cpu_context *cpuctx, 2394 struct perf_event_context *ctx, 2395 void *info) 2396 { 2397 if (event->state < PERF_EVENT_STATE_INACTIVE) 2398 return; 2399 2400 if (ctx->is_active & EVENT_TIME) { 2401 update_context_time(ctx); 2402 update_cgrp_time_from_event(event); 2403 } 2404 2405 if (event == event->group_leader) 2406 group_sched_out(event, cpuctx, ctx); 2407 else 2408 event_sched_out(event, cpuctx, ctx); 2409 2410 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2411 perf_cgroup_event_disable(event, ctx); 2412 } 2413 2414 /* 2415 * Disable an event. 2416 * 2417 * If event->ctx is a cloned context, callers must make sure that 2418 * every task struct that event->ctx->task could possibly point to 2419 * remains valid. This condition is satisfied when called through 2420 * perf_event_for_each_child or perf_event_for_each because they 2421 * hold the top-level event's child_mutex, so any descendant that 2422 * goes to exit will block in perf_event_exit_event(). 2423 * 2424 * When called from perf_pending_event it's OK because event->ctx 2425 * is the current context on this CPU and preemption is disabled, 2426 * hence we can't get into perf_event_task_sched_out for this context. 2427 */ 2428 static void _perf_event_disable(struct perf_event *event) 2429 { 2430 struct perf_event_context *ctx = event->ctx; 2431 2432 raw_spin_lock_irq(&ctx->lock); 2433 if (event->state <= PERF_EVENT_STATE_OFF) { 2434 raw_spin_unlock_irq(&ctx->lock); 2435 return; 2436 } 2437 raw_spin_unlock_irq(&ctx->lock); 2438 2439 event_function_call(event, __perf_event_disable, NULL); 2440 } 2441 2442 void perf_event_disable_local(struct perf_event *event) 2443 { 2444 event_function_local(event, __perf_event_disable, NULL); 2445 } 2446 2447 /* 2448 * Strictly speaking kernel users cannot create groups and therefore this 2449 * interface does not need the perf_event_ctx_lock() magic. 2450 */ 2451 void perf_event_disable(struct perf_event *event) 2452 { 2453 struct perf_event_context *ctx; 2454 2455 ctx = perf_event_ctx_lock(event); 2456 _perf_event_disable(event); 2457 perf_event_ctx_unlock(event, ctx); 2458 } 2459 EXPORT_SYMBOL_GPL(perf_event_disable); 2460 2461 void perf_event_disable_inatomic(struct perf_event *event) 2462 { 2463 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2464 /* can fail, see perf_pending_event_disable() */ 2465 irq_work_queue(&event->pending); 2466 } 2467 2468 #define MAX_INTERRUPTS (~0ULL) 2469 2470 static void perf_log_throttle(struct perf_event *event, int enable); 2471 static void perf_log_itrace_start(struct perf_event *event); 2472 2473 static int 2474 event_sched_in(struct perf_event *event, 2475 struct perf_cpu_context *cpuctx, 2476 struct perf_event_context *ctx) 2477 { 2478 int ret = 0; 2479 2480 WARN_ON_ONCE(event->ctx != ctx); 2481 2482 lockdep_assert_held(&ctx->lock); 2483 2484 if (event->state <= PERF_EVENT_STATE_OFF) 2485 return 0; 2486 2487 WRITE_ONCE(event->oncpu, smp_processor_id()); 2488 /* 2489 * Order event::oncpu write to happen before the ACTIVE state is 2490 * visible. This allows perf_event_{stop,read}() to observe the correct 2491 * ->oncpu if it sees ACTIVE. 2492 */ 2493 smp_wmb(); 2494 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2495 2496 /* 2497 * Unthrottle events, since we scheduled we might have missed several 2498 * ticks already, also for a heavily scheduling task there is little 2499 * guarantee it'll get a tick in a timely manner. 2500 */ 2501 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2502 perf_log_throttle(event, 1); 2503 event->hw.interrupts = 0; 2504 } 2505 2506 perf_pmu_disable(event->pmu); 2507 2508 perf_log_itrace_start(event); 2509 2510 if (event->pmu->add(event, PERF_EF_START)) { 2511 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2512 event->oncpu = -1; 2513 ret = -EAGAIN; 2514 goto out; 2515 } 2516 2517 if (!is_software_event(event)) 2518 cpuctx->active_oncpu++; 2519 if (!ctx->nr_active++) 2520 perf_event_ctx_activate(ctx); 2521 if (event->attr.freq && event->attr.sample_freq) 2522 ctx->nr_freq++; 2523 2524 if (event->attr.exclusive) 2525 cpuctx->exclusive = 1; 2526 2527 out: 2528 perf_pmu_enable(event->pmu); 2529 2530 return ret; 2531 } 2532 2533 static int 2534 group_sched_in(struct perf_event *group_event, 2535 struct perf_cpu_context *cpuctx, 2536 struct perf_event_context *ctx) 2537 { 2538 struct perf_event *event, *partial_group = NULL; 2539 struct pmu *pmu = ctx->pmu; 2540 2541 if (group_event->state == PERF_EVENT_STATE_OFF) 2542 return 0; 2543 2544 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2545 2546 if (event_sched_in(group_event, cpuctx, ctx)) 2547 goto error; 2548 2549 /* 2550 * Schedule in siblings as one group (if any): 2551 */ 2552 for_each_sibling_event(event, group_event) { 2553 if (event_sched_in(event, cpuctx, ctx)) { 2554 partial_group = event; 2555 goto group_error; 2556 } 2557 } 2558 2559 if (!pmu->commit_txn(pmu)) 2560 return 0; 2561 2562 group_error: 2563 /* 2564 * Groups can be scheduled in as one unit only, so undo any 2565 * partial group before returning: 2566 * The events up to the failed event are scheduled out normally. 2567 */ 2568 for_each_sibling_event(event, group_event) { 2569 if (event == partial_group) 2570 break; 2571 2572 event_sched_out(event, cpuctx, ctx); 2573 } 2574 event_sched_out(group_event, cpuctx, ctx); 2575 2576 error: 2577 pmu->cancel_txn(pmu); 2578 return -EAGAIN; 2579 } 2580 2581 /* 2582 * Work out whether we can put this event group on the CPU now. 2583 */ 2584 static int group_can_go_on(struct perf_event *event, 2585 struct perf_cpu_context *cpuctx, 2586 int can_add_hw) 2587 { 2588 /* 2589 * Groups consisting entirely of software events can always go on. 2590 */ 2591 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2592 return 1; 2593 /* 2594 * If an exclusive group is already on, no other hardware 2595 * events can go on. 2596 */ 2597 if (cpuctx->exclusive) 2598 return 0; 2599 /* 2600 * If this group is exclusive and there are already 2601 * events on the CPU, it can't go on. 2602 */ 2603 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2604 return 0; 2605 /* 2606 * Otherwise, try to add it if all previous groups were able 2607 * to go on. 2608 */ 2609 return can_add_hw; 2610 } 2611 2612 static void add_event_to_ctx(struct perf_event *event, 2613 struct perf_event_context *ctx) 2614 { 2615 list_add_event(event, ctx); 2616 perf_group_attach(event); 2617 } 2618 2619 static void ctx_sched_out(struct perf_event_context *ctx, 2620 struct perf_cpu_context *cpuctx, 2621 enum event_type_t event_type); 2622 static void 2623 ctx_sched_in(struct perf_event_context *ctx, 2624 struct perf_cpu_context *cpuctx, 2625 enum event_type_t event_type); 2626 2627 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2628 struct perf_event_context *ctx, 2629 enum event_type_t event_type) 2630 { 2631 if (!cpuctx->task_ctx) 2632 return; 2633 2634 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2635 return; 2636 2637 ctx_sched_out(ctx, cpuctx, event_type); 2638 } 2639 2640 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2641 struct perf_event_context *ctx) 2642 { 2643 cpu_ctx_sched_in(cpuctx, EVENT_PINNED); 2644 if (ctx) 2645 ctx_sched_in(ctx, cpuctx, EVENT_PINNED); 2646 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE); 2647 if (ctx) 2648 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE); 2649 } 2650 2651 /* 2652 * We want to maintain the following priority of scheduling: 2653 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2654 * - task pinned (EVENT_PINNED) 2655 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2656 * - task flexible (EVENT_FLEXIBLE). 2657 * 2658 * In order to avoid unscheduling and scheduling back in everything every 2659 * time an event is added, only do it for the groups of equal priority and 2660 * below. 2661 * 2662 * This can be called after a batch operation on task events, in which case 2663 * event_type is a bit mask of the types of events involved. For CPU events, 2664 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2665 */ 2666 static void ctx_resched(struct perf_cpu_context *cpuctx, 2667 struct perf_event_context *task_ctx, 2668 enum event_type_t event_type) 2669 { 2670 enum event_type_t ctx_event_type; 2671 bool cpu_event = !!(event_type & EVENT_CPU); 2672 2673 /* 2674 * If pinned groups are involved, flexible groups also need to be 2675 * scheduled out. 2676 */ 2677 if (event_type & EVENT_PINNED) 2678 event_type |= EVENT_FLEXIBLE; 2679 2680 ctx_event_type = event_type & EVENT_ALL; 2681 2682 perf_pmu_disable(cpuctx->ctx.pmu); 2683 if (task_ctx) 2684 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2685 2686 /* 2687 * Decide which cpu ctx groups to schedule out based on the types 2688 * of events that caused rescheduling: 2689 * - EVENT_CPU: schedule out corresponding groups; 2690 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2691 * - otherwise, do nothing more. 2692 */ 2693 if (cpu_event) 2694 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2695 else if (ctx_event_type & EVENT_PINNED) 2696 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2697 2698 perf_event_sched_in(cpuctx, task_ctx); 2699 perf_pmu_enable(cpuctx->ctx.pmu); 2700 } 2701 2702 void perf_pmu_resched(struct pmu *pmu) 2703 { 2704 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2705 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2706 2707 perf_ctx_lock(cpuctx, task_ctx); 2708 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2709 perf_ctx_unlock(cpuctx, task_ctx); 2710 } 2711 2712 /* 2713 * Cross CPU call to install and enable a performance event 2714 * 2715 * Very similar to remote_function() + event_function() but cannot assume that 2716 * things like ctx->is_active and cpuctx->task_ctx are set. 2717 */ 2718 static int __perf_install_in_context(void *info) 2719 { 2720 struct perf_event *event = info; 2721 struct perf_event_context *ctx = event->ctx; 2722 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2723 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2724 bool reprogram = true; 2725 int ret = 0; 2726 2727 raw_spin_lock(&cpuctx->ctx.lock); 2728 if (ctx->task) { 2729 raw_spin_lock(&ctx->lock); 2730 task_ctx = ctx; 2731 2732 reprogram = (ctx->task == current); 2733 2734 /* 2735 * If the task is running, it must be running on this CPU, 2736 * otherwise we cannot reprogram things. 2737 * 2738 * If its not running, we don't care, ctx->lock will 2739 * serialize against it becoming runnable. 2740 */ 2741 if (task_curr(ctx->task) && !reprogram) { 2742 ret = -ESRCH; 2743 goto unlock; 2744 } 2745 2746 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2747 } else if (task_ctx) { 2748 raw_spin_lock(&task_ctx->lock); 2749 } 2750 2751 #ifdef CONFIG_CGROUP_PERF 2752 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2753 /* 2754 * If the current cgroup doesn't match the event's 2755 * cgroup, we should not try to schedule it. 2756 */ 2757 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2758 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2759 event->cgrp->css.cgroup); 2760 } 2761 #endif 2762 2763 if (reprogram) { 2764 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2765 add_event_to_ctx(event, ctx); 2766 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2767 } else { 2768 add_event_to_ctx(event, ctx); 2769 } 2770 2771 unlock: 2772 perf_ctx_unlock(cpuctx, task_ctx); 2773 2774 return ret; 2775 } 2776 2777 static bool exclusive_event_installable(struct perf_event *event, 2778 struct perf_event_context *ctx); 2779 2780 /* 2781 * Attach a performance event to a context. 2782 * 2783 * Very similar to event_function_call, see comment there. 2784 */ 2785 static void 2786 perf_install_in_context(struct perf_event_context *ctx, 2787 struct perf_event *event, 2788 int cpu) 2789 { 2790 struct task_struct *task = READ_ONCE(ctx->task); 2791 2792 lockdep_assert_held(&ctx->mutex); 2793 2794 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2795 2796 if (event->cpu != -1) 2797 event->cpu = cpu; 2798 2799 /* 2800 * Ensures that if we can observe event->ctx, both the event and ctx 2801 * will be 'complete'. See perf_iterate_sb_cpu(). 2802 */ 2803 smp_store_release(&event->ctx, ctx); 2804 2805 /* 2806 * perf_event_attr::disabled events will not run and can be initialized 2807 * without IPI. Except when this is the first event for the context, in 2808 * that case we need the magic of the IPI to set ctx->is_active. 2809 * Similarly, cgroup events for the context also needs the IPI to 2810 * manipulate the cgrp_cpuctx_list. 2811 * 2812 * The IOC_ENABLE that is sure to follow the creation of a disabled 2813 * event will issue the IPI and reprogram the hardware. 2814 */ 2815 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2816 ctx->nr_events && !is_cgroup_event(event)) { 2817 raw_spin_lock_irq(&ctx->lock); 2818 if (ctx->task == TASK_TOMBSTONE) { 2819 raw_spin_unlock_irq(&ctx->lock); 2820 return; 2821 } 2822 add_event_to_ctx(event, ctx); 2823 raw_spin_unlock_irq(&ctx->lock); 2824 return; 2825 } 2826 2827 if (!task) { 2828 cpu_function_call(cpu, __perf_install_in_context, event); 2829 return; 2830 } 2831 2832 /* 2833 * Should not happen, we validate the ctx is still alive before calling. 2834 */ 2835 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2836 return; 2837 2838 /* 2839 * Installing events is tricky because we cannot rely on ctx->is_active 2840 * to be set in case this is the nr_events 0 -> 1 transition. 2841 * 2842 * Instead we use task_curr(), which tells us if the task is running. 2843 * However, since we use task_curr() outside of rq::lock, we can race 2844 * against the actual state. This means the result can be wrong. 2845 * 2846 * If we get a false positive, we retry, this is harmless. 2847 * 2848 * If we get a false negative, things are complicated. If we are after 2849 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2850 * value must be correct. If we're before, it doesn't matter since 2851 * perf_event_context_sched_in() will program the counter. 2852 * 2853 * However, this hinges on the remote context switch having observed 2854 * our task->perf_event_ctxp[] store, such that it will in fact take 2855 * ctx::lock in perf_event_context_sched_in(). 2856 * 2857 * We do this by task_function_call(), if the IPI fails to hit the task 2858 * we know any future context switch of task must see the 2859 * perf_event_ctpx[] store. 2860 */ 2861 2862 /* 2863 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2864 * task_cpu() load, such that if the IPI then does not find the task 2865 * running, a future context switch of that task must observe the 2866 * store. 2867 */ 2868 smp_mb(); 2869 again: 2870 if (!task_function_call(task, __perf_install_in_context, event)) 2871 return; 2872 2873 raw_spin_lock_irq(&ctx->lock); 2874 task = ctx->task; 2875 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2876 /* 2877 * Cannot happen because we already checked above (which also 2878 * cannot happen), and we hold ctx->mutex, which serializes us 2879 * against perf_event_exit_task_context(). 2880 */ 2881 raw_spin_unlock_irq(&ctx->lock); 2882 return; 2883 } 2884 /* 2885 * If the task is not running, ctx->lock will avoid it becoming so, 2886 * thus we can safely install the event. 2887 */ 2888 if (task_curr(task)) { 2889 raw_spin_unlock_irq(&ctx->lock); 2890 goto again; 2891 } 2892 add_event_to_ctx(event, ctx); 2893 raw_spin_unlock_irq(&ctx->lock); 2894 } 2895 2896 /* 2897 * Cross CPU call to enable a performance event 2898 */ 2899 static void __perf_event_enable(struct perf_event *event, 2900 struct perf_cpu_context *cpuctx, 2901 struct perf_event_context *ctx, 2902 void *info) 2903 { 2904 struct perf_event *leader = event->group_leader; 2905 struct perf_event_context *task_ctx; 2906 2907 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2908 event->state <= PERF_EVENT_STATE_ERROR) 2909 return; 2910 2911 if (ctx->is_active) 2912 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2913 2914 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2915 perf_cgroup_event_enable(event, ctx); 2916 2917 if (!ctx->is_active) 2918 return; 2919 2920 if (!event_filter_match(event)) { 2921 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 2922 return; 2923 } 2924 2925 /* 2926 * If the event is in a group and isn't the group leader, 2927 * then don't put it on unless the group is on. 2928 */ 2929 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2930 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 2931 return; 2932 } 2933 2934 task_ctx = cpuctx->task_ctx; 2935 if (ctx->task) 2936 WARN_ON_ONCE(task_ctx != ctx); 2937 2938 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2939 } 2940 2941 /* 2942 * Enable an event. 2943 * 2944 * If event->ctx is a cloned context, callers must make sure that 2945 * every task struct that event->ctx->task could possibly point to 2946 * remains valid. This condition is satisfied when called through 2947 * perf_event_for_each_child or perf_event_for_each as described 2948 * for perf_event_disable. 2949 */ 2950 static void _perf_event_enable(struct perf_event *event) 2951 { 2952 struct perf_event_context *ctx = event->ctx; 2953 2954 raw_spin_lock_irq(&ctx->lock); 2955 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2956 event->state < PERF_EVENT_STATE_ERROR) { 2957 out: 2958 raw_spin_unlock_irq(&ctx->lock); 2959 return; 2960 } 2961 2962 /* 2963 * If the event is in error state, clear that first. 2964 * 2965 * That way, if we see the event in error state below, we know that it 2966 * has gone back into error state, as distinct from the task having 2967 * been scheduled away before the cross-call arrived. 2968 */ 2969 if (event->state == PERF_EVENT_STATE_ERROR) { 2970 /* 2971 * Detached SIBLING events cannot leave ERROR state. 2972 */ 2973 if (event->event_caps & PERF_EV_CAP_SIBLING && 2974 event->group_leader == event) 2975 goto out; 2976 2977 event->state = PERF_EVENT_STATE_OFF; 2978 } 2979 raw_spin_unlock_irq(&ctx->lock); 2980 2981 event_function_call(event, __perf_event_enable, NULL); 2982 } 2983 2984 /* 2985 * See perf_event_disable(); 2986 */ 2987 void perf_event_enable(struct perf_event *event) 2988 { 2989 struct perf_event_context *ctx; 2990 2991 ctx = perf_event_ctx_lock(event); 2992 _perf_event_enable(event); 2993 perf_event_ctx_unlock(event, ctx); 2994 } 2995 EXPORT_SYMBOL_GPL(perf_event_enable); 2996 2997 struct stop_event_data { 2998 struct perf_event *event; 2999 unsigned int restart; 3000 }; 3001 3002 static int __perf_event_stop(void *info) 3003 { 3004 struct stop_event_data *sd = info; 3005 struct perf_event *event = sd->event; 3006 3007 /* if it's already INACTIVE, do nothing */ 3008 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3009 return 0; 3010 3011 /* matches smp_wmb() in event_sched_in() */ 3012 smp_rmb(); 3013 3014 /* 3015 * There is a window with interrupts enabled before we get here, 3016 * so we need to check again lest we try to stop another CPU's event. 3017 */ 3018 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3019 return -EAGAIN; 3020 3021 event->pmu->stop(event, PERF_EF_UPDATE); 3022 3023 /* 3024 * May race with the actual stop (through perf_pmu_output_stop()), 3025 * but it is only used for events with AUX ring buffer, and such 3026 * events will refuse to restart because of rb::aux_mmap_count==0, 3027 * see comments in perf_aux_output_begin(). 3028 * 3029 * Since this is happening on an event-local CPU, no trace is lost 3030 * while restarting. 3031 */ 3032 if (sd->restart) 3033 event->pmu->start(event, 0); 3034 3035 return 0; 3036 } 3037 3038 static int perf_event_stop(struct perf_event *event, int restart) 3039 { 3040 struct stop_event_data sd = { 3041 .event = event, 3042 .restart = restart, 3043 }; 3044 int ret = 0; 3045 3046 do { 3047 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3048 return 0; 3049 3050 /* matches smp_wmb() in event_sched_in() */ 3051 smp_rmb(); 3052 3053 /* 3054 * We only want to restart ACTIVE events, so if the event goes 3055 * inactive here (event->oncpu==-1), there's nothing more to do; 3056 * fall through with ret==-ENXIO. 3057 */ 3058 ret = cpu_function_call(READ_ONCE(event->oncpu), 3059 __perf_event_stop, &sd); 3060 } while (ret == -EAGAIN); 3061 3062 return ret; 3063 } 3064 3065 /* 3066 * In order to contain the amount of racy and tricky in the address filter 3067 * configuration management, it is a two part process: 3068 * 3069 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3070 * we update the addresses of corresponding vmas in 3071 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3072 * (p2) when an event is scheduled in (pmu::add), it calls 3073 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3074 * if the generation has changed since the previous call. 3075 * 3076 * If (p1) happens while the event is active, we restart it to force (p2). 3077 * 3078 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3079 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3080 * ioctl; 3081 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3082 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3083 * for reading; 3084 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3085 * of exec. 3086 */ 3087 void perf_event_addr_filters_sync(struct perf_event *event) 3088 { 3089 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3090 3091 if (!has_addr_filter(event)) 3092 return; 3093 3094 raw_spin_lock(&ifh->lock); 3095 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3096 event->pmu->addr_filters_sync(event); 3097 event->hw.addr_filters_gen = event->addr_filters_gen; 3098 } 3099 raw_spin_unlock(&ifh->lock); 3100 } 3101 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3102 3103 static int _perf_event_refresh(struct perf_event *event, int refresh) 3104 { 3105 /* 3106 * not supported on inherited events 3107 */ 3108 if (event->attr.inherit || !is_sampling_event(event)) 3109 return -EINVAL; 3110 3111 atomic_add(refresh, &event->event_limit); 3112 _perf_event_enable(event); 3113 3114 return 0; 3115 } 3116 3117 /* 3118 * See perf_event_disable() 3119 */ 3120 int perf_event_refresh(struct perf_event *event, int refresh) 3121 { 3122 struct perf_event_context *ctx; 3123 int ret; 3124 3125 ctx = perf_event_ctx_lock(event); 3126 ret = _perf_event_refresh(event, refresh); 3127 perf_event_ctx_unlock(event, ctx); 3128 3129 return ret; 3130 } 3131 EXPORT_SYMBOL_GPL(perf_event_refresh); 3132 3133 static int perf_event_modify_breakpoint(struct perf_event *bp, 3134 struct perf_event_attr *attr) 3135 { 3136 int err; 3137 3138 _perf_event_disable(bp); 3139 3140 err = modify_user_hw_breakpoint_check(bp, attr, true); 3141 3142 if (!bp->attr.disabled) 3143 _perf_event_enable(bp); 3144 3145 return err; 3146 } 3147 3148 /* 3149 * Copy event-type-independent attributes that may be modified. 3150 */ 3151 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3152 const struct perf_event_attr *from) 3153 { 3154 to->sig_data = from->sig_data; 3155 } 3156 3157 static int perf_event_modify_attr(struct perf_event *event, 3158 struct perf_event_attr *attr) 3159 { 3160 int (*func)(struct perf_event *, struct perf_event_attr *); 3161 struct perf_event *child; 3162 int err; 3163 3164 if (event->attr.type != attr->type) 3165 return -EINVAL; 3166 3167 switch (event->attr.type) { 3168 case PERF_TYPE_BREAKPOINT: 3169 func = perf_event_modify_breakpoint; 3170 break; 3171 default: 3172 /* Place holder for future additions. */ 3173 return -EOPNOTSUPP; 3174 } 3175 3176 WARN_ON_ONCE(event->ctx->parent_ctx); 3177 3178 mutex_lock(&event->child_mutex); 3179 /* 3180 * Event-type-independent attributes must be copied before event-type 3181 * modification, which will validate that final attributes match the 3182 * source attributes after all relevant attributes have been copied. 3183 */ 3184 perf_event_modify_copy_attr(&event->attr, attr); 3185 err = func(event, attr); 3186 if (err) 3187 goto out; 3188 list_for_each_entry(child, &event->child_list, child_list) { 3189 perf_event_modify_copy_attr(&child->attr, attr); 3190 err = func(child, attr); 3191 if (err) 3192 goto out; 3193 } 3194 out: 3195 mutex_unlock(&event->child_mutex); 3196 return err; 3197 } 3198 3199 static void ctx_sched_out(struct perf_event_context *ctx, 3200 struct perf_cpu_context *cpuctx, 3201 enum event_type_t event_type) 3202 { 3203 struct perf_event *event, *tmp; 3204 int is_active = ctx->is_active; 3205 3206 lockdep_assert_held(&ctx->lock); 3207 3208 if (likely(!ctx->nr_events)) { 3209 /* 3210 * See __perf_remove_from_context(). 3211 */ 3212 WARN_ON_ONCE(ctx->is_active); 3213 if (ctx->task) 3214 WARN_ON_ONCE(cpuctx->task_ctx); 3215 return; 3216 } 3217 3218 /* 3219 * Always update time if it was set; not only when it changes. 3220 * Otherwise we can 'forget' to update time for any but the last 3221 * context we sched out. For example: 3222 * 3223 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3224 * ctx_sched_out(.event_type = EVENT_PINNED) 3225 * 3226 * would only update time for the pinned events. 3227 */ 3228 if (is_active & EVENT_TIME) { 3229 /* update (and stop) ctx time */ 3230 update_context_time(ctx); 3231 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3232 /* 3233 * CPU-release for the below ->is_active store, 3234 * see __load_acquire() in perf_event_time_now() 3235 */ 3236 barrier(); 3237 } 3238 3239 ctx->is_active &= ~event_type; 3240 if (!(ctx->is_active & EVENT_ALL)) 3241 ctx->is_active = 0; 3242 3243 if (ctx->task) { 3244 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3245 if (!ctx->is_active) 3246 cpuctx->task_ctx = NULL; 3247 } 3248 3249 is_active ^= ctx->is_active; /* changed bits */ 3250 3251 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3252 return; 3253 3254 perf_pmu_disable(ctx->pmu); 3255 if (is_active & EVENT_PINNED) { 3256 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3257 group_sched_out(event, cpuctx, ctx); 3258 } 3259 3260 if (is_active & EVENT_FLEXIBLE) { 3261 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3262 group_sched_out(event, cpuctx, ctx); 3263 3264 /* 3265 * Since we cleared EVENT_FLEXIBLE, also clear 3266 * rotate_necessary, is will be reset by 3267 * ctx_flexible_sched_in() when needed. 3268 */ 3269 ctx->rotate_necessary = 0; 3270 } 3271 perf_pmu_enable(ctx->pmu); 3272 } 3273 3274 /* 3275 * Test whether two contexts are equivalent, i.e. whether they have both been 3276 * cloned from the same version of the same context. 3277 * 3278 * Equivalence is measured using a generation number in the context that is 3279 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3280 * and list_del_event(). 3281 */ 3282 static int context_equiv(struct perf_event_context *ctx1, 3283 struct perf_event_context *ctx2) 3284 { 3285 lockdep_assert_held(&ctx1->lock); 3286 lockdep_assert_held(&ctx2->lock); 3287 3288 /* Pinning disables the swap optimization */ 3289 if (ctx1->pin_count || ctx2->pin_count) 3290 return 0; 3291 3292 /* If ctx1 is the parent of ctx2 */ 3293 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3294 return 1; 3295 3296 /* If ctx2 is the parent of ctx1 */ 3297 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3298 return 1; 3299 3300 /* 3301 * If ctx1 and ctx2 have the same parent; we flatten the parent 3302 * hierarchy, see perf_event_init_context(). 3303 */ 3304 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3305 ctx1->parent_gen == ctx2->parent_gen) 3306 return 1; 3307 3308 /* Unmatched */ 3309 return 0; 3310 } 3311 3312 static void __perf_event_sync_stat(struct perf_event *event, 3313 struct perf_event *next_event) 3314 { 3315 u64 value; 3316 3317 if (!event->attr.inherit_stat) 3318 return; 3319 3320 /* 3321 * Update the event value, we cannot use perf_event_read() 3322 * because we're in the middle of a context switch and have IRQs 3323 * disabled, which upsets smp_call_function_single(), however 3324 * we know the event must be on the current CPU, therefore we 3325 * don't need to use it. 3326 */ 3327 if (event->state == PERF_EVENT_STATE_ACTIVE) 3328 event->pmu->read(event); 3329 3330 perf_event_update_time(event); 3331 3332 /* 3333 * In order to keep per-task stats reliable we need to flip the event 3334 * values when we flip the contexts. 3335 */ 3336 value = local64_read(&next_event->count); 3337 value = local64_xchg(&event->count, value); 3338 local64_set(&next_event->count, value); 3339 3340 swap(event->total_time_enabled, next_event->total_time_enabled); 3341 swap(event->total_time_running, next_event->total_time_running); 3342 3343 /* 3344 * Since we swizzled the values, update the user visible data too. 3345 */ 3346 perf_event_update_userpage(event); 3347 perf_event_update_userpage(next_event); 3348 } 3349 3350 static void perf_event_sync_stat(struct perf_event_context *ctx, 3351 struct perf_event_context *next_ctx) 3352 { 3353 struct perf_event *event, *next_event; 3354 3355 if (!ctx->nr_stat) 3356 return; 3357 3358 update_context_time(ctx); 3359 3360 event = list_first_entry(&ctx->event_list, 3361 struct perf_event, event_entry); 3362 3363 next_event = list_first_entry(&next_ctx->event_list, 3364 struct perf_event, event_entry); 3365 3366 while (&event->event_entry != &ctx->event_list && 3367 &next_event->event_entry != &next_ctx->event_list) { 3368 3369 __perf_event_sync_stat(event, next_event); 3370 3371 event = list_next_entry(event, event_entry); 3372 next_event = list_next_entry(next_event, event_entry); 3373 } 3374 } 3375 3376 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3377 struct task_struct *next) 3378 { 3379 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3380 struct perf_event_context *next_ctx; 3381 struct perf_event_context *parent, *next_parent; 3382 struct perf_cpu_context *cpuctx; 3383 int do_switch = 1; 3384 struct pmu *pmu; 3385 3386 if (likely(!ctx)) 3387 return; 3388 3389 pmu = ctx->pmu; 3390 cpuctx = __get_cpu_context(ctx); 3391 if (!cpuctx->task_ctx) 3392 return; 3393 3394 rcu_read_lock(); 3395 next_ctx = next->perf_event_ctxp[ctxn]; 3396 if (!next_ctx) 3397 goto unlock; 3398 3399 parent = rcu_dereference(ctx->parent_ctx); 3400 next_parent = rcu_dereference(next_ctx->parent_ctx); 3401 3402 /* If neither context have a parent context; they cannot be clones. */ 3403 if (!parent && !next_parent) 3404 goto unlock; 3405 3406 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3407 /* 3408 * Looks like the two contexts are clones, so we might be 3409 * able to optimize the context switch. We lock both 3410 * contexts and check that they are clones under the 3411 * lock (including re-checking that neither has been 3412 * uncloned in the meantime). It doesn't matter which 3413 * order we take the locks because no other cpu could 3414 * be trying to lock both of these tasks. 3415 */ 3416 raw_spin_lock(&ctx->lock); 3417 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3418 if (context_equiv(ctx, next_ctx)) { 3419 3420 WRITE_ONCE(ctx->task, next); 3421 WRITE_ONCE(next_ctx->task, task); 3422 3423 perf_pmu_disable(pmu); 3424 3425 if (cpuctx->sched_cb_usage && pmu->sched_task) 3426 pmu->sched_task(ctx, false); 3427 3428 /* 3429 * PMU specific parts of task perf context can require 3430 * additional synchronization. As an example of such 3431 * synchronization see implementation details of Intel 3432 * LBR call stack data profiling; 3433 */ 3434 if (pmu->swap_task_ctx) 3435 pmu->swap_task_ctx(ctx, next_ctx); 3436 else 3437 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3438 3439 perf_pmu_enable(pmu); 3440 3441 /* 3442 * RCU_INIT_POINTER here is safe because we've not 3443 * modified the ctx and the above modification of 3444 * ctx->task and ctx->task_ctx_data are immaterial 3445 * since those values are always verified under 3446 * ctx->lock which we're now holding. 3447 */ 3448 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3449 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3450 3451 do_switch = 0; 3452 3453 perf_event_sync_stat(ctx, next_ctx); 3454 } 3455 raw_spin_unlock(&next_ctx->lock); 3456 raw_spin_unlock(&ctx->lock); 3457 } 3458 unlock: 3459 rcu_read_unlock(); 3460 3461 if (do_switch) { 3462 raw_spin_lock(&ctx->lock); 3463 perf_pmu_disable(pmu); 3464 3465 if (cpuctx->sched_cb_usage && pmu->sched_task) 3466 pmu->sched_task(ctx, false); 3467 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3468 3469 perf_pmu_enable(pmu); 3470 raw_spin_unlock(&ctx->lock); 3471 } 3472 } 3473 3474 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3475 3476 void perf_sched_cb_dec(struct pmu *pmu) 3477 { 3478 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3479 3480 this_cpu_dec(perf_sched_cb_usages); 3481 3482 if (!--cpuctx->sched_cb_usage) 3483 list_del(&cpuctx->sched_cb_entry); 3484 } 3485 3486 3487 void perf_sched_cb_inc(struct pmu *pmu) 3488 { 3489 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3490 3491 if (!cpuctx->sched_cb_usage++) 3492 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3493 3494 this_cpu_inc(perf_sched_cb_usages); 3495 } 3496 3497 /* 3498 * This function provides the context switch callback to the lower code 3499 * layer. It is invoked ONLY when the context switch callback is enabled. 3500 * 3501 * This callback is relevant even to per-cpu events; for example multi event 3502 * PEBS requires this to provide PID/TID information. This requires we flush 3503 * all queued PEBS records before we context switch to a new task. 3504 */ 3505 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3506 { 3507 struct pmu *pmu; 3508 3509 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3510 3511 if (WARN_ON_ONCE(!pmu->sched_task)) 3512 return; 3513 3514 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3515 perf_pmu_disable(pmu); 3516 3517 pmu->sched_task(cpuctx->task_ctx, sched_in); 3518 3519 perf_pmu_enable(pmu); 3520 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3521 } 3522 3523 static void perf_pmu_sched_task(struct task_struct *prev, 3524 struct task_struct *next, 3525 bool sched_in) 3526 { 3527 struct perf_cpu_context *cpuctx; 3528 3529 if (prev == next) 3530 return; 3531 3532 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3533 /* will be handled in perf_event_context_sched_in/out */ 3534 if (cpuctx->task_ctx) 3535 continue; 3536 3537 __perf_pmu_sched_task(cpuctx, sched_in); 3538 } 3539 } 3540 3541 static void perf_event_switch(struct task_struct *task, 3542 struct task_struct *next_prev, bool sched_in); 3543 3544 #define for_each_task_context_nr(ctxn) \ 3545 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3546 3547 /* 3548 * Called from scheduler to remove the events of the current task, 3549 * with interrupts disabled. 3550 * 3551 * We stop each event and update the event value in event->count. 3552 * 3553 * This does not protect us against NMI, but disable() 3554 * sets the disabled bit in the control field of event _before_ 3555 * accessing the event control register. If a NMI hits, then it will 3556 * not restart the event. 3557 */ 3558 void __perf_event_task_sched_out(struct task_struct *task, 3559 struct task_struct *next) 3560 { 3561 int ctxn; 3562 3563 if (__this_cpu_read(perf_sched_cb_usages)) 3564 perf_pmu_sched_task(task, next, false); 3565 3566 if (atomic_read(&nr_switch_events)) 3567 perf_event_switch(task, next, false); 3568 3569 for_each_task_context_nr(ctxn) 3570 perf_event_context_sched_out(task, ctxn, next); 3571 3572 /* 3573 * if cgroup events exist on this CPU, then we need 3574 * to check if we have to switch out PMU state. 3575 * cgroup event are system-wide mode only 3576 */ 3577 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3578 perf_cgroup_switch(next); 3579 } 3580 3581 /* 3582 * Called with IRQs disabled 3583 */ 3584 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3585 enum event_type_t event_type) 3586 { 3587 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3588 } 3589 3590 static bool perf_less_group_idx(const void *l, const void *r) 3591 { 3592 const struct perf_event *le = *(const struct perf_event **)l; 3593 const struct perf_event *re = *(const struct perf_event **)r; 3594 3595 return le->group_index < re->group_index; 3596 } 3597 3598 static void swap_ptr(void *l, void *r) 3599 { 3600 void **lp = l, **rp = r; 3601 3602 swap(*lp, *rp); 3603 } 3604 3605 static const struct min_heap_callbacks perf_min_heap = { 3606 .elem_size = sizeof(struct perf_event *), 3607 .less = perf_less_group_idx, 3608 .swp = swap_ptr, 3609 }; 3610 3611 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3612 { 3613 struct perf_event **itrs = heap->data; 3614 3615 if (event) { 3616 itrs[heap->nr] = event; 3617 heap->nr++; 3618 } 3619 } 3620 3621 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3622 struct perf_event_groups *groups, int cpu, 3623 int (*func)(struct perf_event *, void *), 3624 void *data) 3625 { 3626 #ifdef CONFIG_CGROUP_PERF 3627 struct cgroup_subsys_state *css = NULL; 3628 #endif 3629 /* Space for per CPU and/or any CPU event iterators. */ 3630 struct perf_event *itrs[2]; 3631 struct min_heap event_heap; 3632 struct perf_event **evt; 3633 int ret; 3634 3635 if (cpuctx) { 3636 event_heap = (struct min_heap){ 3637 .data = cpuctx->heap, 3638 .nr = 0, 3639 .size = cpuctx->heap_size, 3640 }; 3641 3642 lockdep_assert_held(&cpuctx->ctx.lock); 3643 3644 #ifdef CONFIG_CGROUP_PERF 3645 if (cpuctx->cgrp) 3646 css = &cpuctx->cgrp->css; 3647 #endif 3648 } else { 3649 event_heap = (struct min_heap){ 3650 .data = itrs, 3651 .nr = 0, 3652 .size = ARRAY_SIZE(itrs), 3653 }; 3654 /* Events not within a CPU context may be on any CPU. */ 3655 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3656 } 3657 evt = event_heap.data; 3658 3659 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3660 3661 #ifdef CONFIG_CGROUP_PERF 3662 for (; css; css = css->parent) 3663 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3664 #endif 3665 3666 min_heapify_all(&event_heap, &perf_min_heap); 3667 3668 while (event_heap.nr) { 3669 ret = func(*evt, data); 3670 if (ret) 3671 return ret; 3672 3673 *evt = perf_event_groups_next(*evt); 3674 if (*evt) 3675 min_heapify(&event_heap, 0, &perf_min_heap); 3676 else 3677 min_heap_pop(&event_heap, &perf_min_heap); 3678 } 3679 3680 return 0; 3681 } 3682 3683 /* 3684 * Because the userpage is strictly per-event (there is no concept of context, 3685 * so there cannot be a context indirection), every userpage must be updated 3686 * when context time starts :-( 3687 * 3688 * IOW, we must not miss EVENT_TIME edges. 3689 */ 3690 static inline bool event_update_userpage(struct perf_event *event) 3691 { 3692 if (likely(!atomic_read(&event->mmap_count))) 3693 return false; 3694 3695 perf_event_update_time(event); 3696 perf_event_update_userpage(event); 3697 3698 return true; 3699 } 3700 3701 static inline void group_update_userpage(struct perf_event *group_event) 3702 { 3703 struct perf_event *event; 3704 3705 if (!event_update_userpage(group_event)) 3706 return; 3707 3708 for_each_sibling_event(event, group_event) 3709 event_update_userpage(event); 3710 } 3711 3712 static int merge_sched_in(struct perf_event *event, void *data) 3713 { 3714 struct perf_event_context *ctx = event->ctx; 3715 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3716 int *can_add_hw = data; 3717 3718 if (event->state <= PERF_EVENT_STATE_OFF) 3719 return 0; 3720 3721 if (!event_filter_match(event)) 3722 return 0; 3723 3724 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3725 if (!group_sched_in(event, cpuctx, ctx)) 3726 list_add_tail(&event->active_list, get_event_list(event)); 3727 } 3728 3729 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3730 *can_add_hw = 0; 3731 if (event->attr.pinned) { 3732 perf_cgroup_event_disable(event, ctx); 3733 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3734 } else { 3735 ctx->rotate_necessary = 1; 3736 perf_mux_hrtimer_restart(cpuctx); 3737 group_update_userpage(event); 3738 } 3739 } 3740 3741 return 0; 3742 } 3743 3744 static void 3745 ctx_pinned_sched_in(struct perf_event_context *ctx, 3746 struct perf_cpu_context *cpuctx) 3747 { 3748 int can_add_hw = 1; 3749 3750 if (ctx != &cpuctx->ctx) 3751 cpuctx = NULL; 3752 3753 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3754 smp_processor_id(), 3755 merge_sched_in, &can_add_hw); 3756 } 3757 3758 static void 3759 ctx_flexible_sched_in(struct perf_event_context *ctx, 3760 struct perf_cpu_context *cpuctx) 3761 { 3762 int can_add_hw = 1; 3763 3764 if (ctx != &cpuctx->ctx) 3765 cpuctx = NULL; 3766 3767 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3768 smp_processor_id(), 3769 merge_sched_in, &can_add_hw); 3770 } 3771 3772 static void 3773 ctx_sched_in(struct perf_event_context *ctx, 3774 struct perf_cpu_context *cpuctx, 3775 enum event_type_t event_type) 3776 { 3777 int is_active = ctx->is_active; 3778 3779 lockdep_assert_held(&ctx->lock); 3780 3781 if (likely(!ctx->nr_events)) 3782 return; 3783 3784 if (is_active ^ EVENT_TIME) { 3785 /* start ctx time */ 3786 __update_context_time(ctx, false); 3787 perf_cgroup_set_timestamp(cpuctx); 3788 /* 3789 * CPU-release for the below ->is_active store, 3790 * see __load_acquire() in perf_event_time_now() 3791 */ 3792 barrier(); 3793 } 3794 3795 ctx->is_active |= (event_type | EVENT_TIME); 3796 if (ctx->task) { 3797 if (!is_active) 3798 cpuctx->task_ctx = ctx; 3799 else 3800 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3801 } 3802 3803 is_active ^= ctx->is_active; /* changed bits */ 3804 3805 /* 3806 * First go through the list and put on any pinned groups 3807 * in order to give them the best chance of going on. 3808 */ 3809 if (is_active & EVENT_PINNED) 3810 ctx_pinned_sched_in(ctx, cpuctx); 3811 3812 /* Then walk through the lower prio flexible groups */ 3813 if (is_active & EVENT_FLEXIBLE) 3814 ctx_flexible_sched_in(ctx, cpuctx); 3815 } 3816 3817 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3818 enum event_type_t event_type) 3819 { 3820 struct perf_event_context *ctx = &cpuctx->ctx; 3821 3822 ctx_sched_in(ctx, cpuctx, event_type); 3823 } 3824 3825 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3826 struct task_struct *task) 3827 { 3828 struct perf_cpu_context *cpuctx; 3829 struct pmu *pmu; 3830 3831 cpuctx = __get_cpu_context(ctx); 3832 3833 /* 3834 * HACK: for HETEROGENEOUS the task context might have switched to a 3835 * different PMU, force (re)set the context, 3836 */ 3837 pmu = ctx->pmu = cpuctx->ctx.pmu; 3838 3839 if (cpuctx->task_ctx == ctx) { 3840 if (cpuctx->sched_cb_usage) 3841 __perf_pmu_sched_task(cpuctx, true); 3842 return; 3843 } 3844 3845 perf_ctx_lock(cpuctx, ctx); 3846 /* 3847 * We must check ctx->nr_events while holding ctx->lock, such 3848 * that we serialize against perf_install_in_context(). 3849 */ 3850 if (!ctx->nr_events) 3851 goto unlock; 3852 3853 perf_pmu_disable(pmu); 3854 /* 3855 * We want to keep the following priority order: 3856 * cpu pinned (that don't need to move), task pinned, 3857 * cpu flexible, task flexible. 3858 * 3859 * However, if task's ctx is not carrying any pinned 3860 * events, no need to flip the cpuctx's events around. 3861 */ 3862 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3863 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3864 perf_event_sched_in(cpuctx, ctx); 3865 3866 if (cpuctx->sched_cb_usage && pmu->sched_task) 3867 pmu->sched_task(cpuctx->task_ctx, true); 3868 3869 perf_pmu_enable(pmu); 3870 3871 unlock: 3872 perf_ctx_unlock(cpuctx, ctx); 3873 } 3874 3875 /* 3876 * Called from scheduler to add the events of the current task 3877 * with interrupts disabled. 3878 * 3879 * We restore the event value and then enable it. 3880 * 3881 * This does not protect us against NMI, but enable() 3882 * sets the enabled bit in the control field of event _before_ 3883 * accessing the event control register. If a NMI hits, then it will 3884 * keep the event running. 3885 */ 3886 void __perf_event_task_sched_in(struct task_struct *prev, 3887 struct task_struct *task) 3888 { 3889 struct perf_event_context *ctx; 3890 int ctxn; 3891 3892 for_each_task_context_nr(ctxn) { 3893 ctx = task->perf_event_ctxp[ctxn]; 3894 if (likely(!ctx)) 3895 continue; 3896 3897 perf_event_context_sched_in(ctx, task); 3898 } 3899 3900 if (atomic_read(&nr_switch_events)) 3901 perf_event_switch(task, prev, true); 3902 3903 if (__this_cpu_read(perf_sched_cb_usages)) 3904 perf_pmu_sched_task(prev, task, true); 3905 } 3906 3907 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3908 { 3909 u64 frequency = event->attr.sample_freq; 3910 u64 sec = NSEC_PER_SEC; 3911 u64 divisor, dividend; 3912 3913 int count_fls, nsec_fls, frequency_fls, sec_fls; 3914 3915 count_fls = fls64(count); 3916 nsec_fls = fls64(nsec); 3917 frequency_fls = fls64(frequency); 3918 sec_fls = 30; 3919 3920 /* 3921 * We got @count in @nsec, with a target of sample_freq HZ 3922 * the target period becomes: 3923 * 3924 * @count * 10^9 3925 * period = ------------------- 3926 * @nsec * sample_freq 3927 * 3928 */ 3929 3930 /* 3931 * Reduce accuracy by one bit such that @a and @b converge 3932 * to a similar magnitude. 3933 */ 3934 #define REDUCE_FLS(a, b) \ 3935 do { \ 3936 if (a##_fls > b##_fls) { \ 3937 a >>= 1; \ 3938 a##_fls--; \ 3939 } else { \ 3940 b >>= 1; \ 3941 b##_fls--; \ 3942 } \ 3943 } while (0) 3944 3945 /* 3946 * Reduce accuracy until either term fits in a u64, then proceed with 3947 * the other, so that finally we can do a u64/u64 division. 3948 */ 3949 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3950 REDUCE_FLS(nsec, frequency); 3951 REDUCE_FLS(sec, count); 3952 } 3953 3954 if (count_fls + sec_fls > 64) { 3955 divisor = nsec * frequency; 3956 3957 while (count_fls + sec_fls > 64) { 3958 REDUCE_FLS(count, sec); 3959 divisor >>= 1; 3960 } 3961 3962 dividend = count * sec; 3963 } else { 3964 dividend = count * sec; 3965 3966 while (nsec_fls + frequency_fls > 64) { 3967 REDUCE_FLS(nsec, frequency); 3968 dividend >>= 1; 3969 } 3970 3971 divisor = nsec * frequency; 3972 } 3973 3974 if (!divisor) 3975 return dividend; 3976 3977 return div64_u64(dividend, divisor); 3978 } 3979 3980 static DEFINE_PER_CPU(int, perf_throttled_count); 3981 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3982 3983 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3984 { 3985 struct hw_perf_event *hwc = &event->hw; 3986 s64 period, sample_period; 3987 s64 delta; 3988 3989 period = perf_calculate_period(event, nsec, count); 3990 3991 delta = (s64)(period - hwc->sample_period); 3992 delta = (delta + 7) / 8; /* low pass filter */ 3993 3994 sample_period = hwc->sample_period + delta; 3995 3996 if (!sample_period) 3997 sample_period = 1; 3998 3999 hwc->sample_period = sample_period; 4000 4001 if (local64_read(&hwc->period_left) > 8*sample_period) { 4002 if (disable) 4003 event->pmu->stop(event, PERF_EF_UPDATE); 4004 4005 local64_set(&hwc->period_left, 0); 4006 4007 if (disable) 4008 event->pmu->start(event, PERF_EF_RELOAD); 4009 } 4010 } 4011 4012 /* 4013 * combine freq adjustment with unthrottling to avoid two passes over the 4014 * events. At the same time, make sure, having freq events does not change 4015 * the rate of unthrottling as that would introduce bias. 4016 */ 4017 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4018 int needs_unthr) 4019 { 4020 struct perf_event *event; 4021 struct hw_perf_event *hwc; 4022 u64 now, period = TICK_NSEC; 4023 s64 delta; 4024 4025 /* 4026 * only need to iterate over all events iff: 4027 * - context have events in frequency mode (needs freq adjust) 4028 * - there are events to unthrottle on this cpu 4029 */ 4030 if (!(ctx->nr_freq || needs_unthr)) 4031 return; 4032 4033 raw_spin_lock(&ctx->lock); 4034 perf_pmu_disable(ctx->pmu); 4035 4036 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4037 if (event->state != PERF_EVENT_STATE_ACTIVE) 4038 continue; 4039 4040 if (!event_filter_match(event)) 4041 continue; 4042 4043 perf_pmu_disable(event->pmu); 4044 4045 hwc = &event->hw; 4046 4047 if (hwc->interrupts == MAX_INTERRUPTS) { 4048 hwc->interrupts = 0; 4049 perf_log_throttle(event, 1); 4050 event->pmu->start(event, 0); 4051 } 4052 4053 if (!event->attr.freq || !event->attr.sample_freq) 4054 goto next; 4055 4056 /* 4057 * stop the event and update event->count 4058 */ 4059 event->pmu->stop(event, PERF_EF_UPDATE); 4060 4061 now = local64_read(&event->count); 4062 delta = now - hwc->freq_count_stamp; 4063 hwc->freq_count_stamp = now; 4064 4065 /* 4066 * restart the event 4067 * reload only if value has changed 4068 * we have stopped the event so tell that 4069 * to perf_adjust_period() to avoid stopping it 4070 * twice. 4071 */ 4072 if (delta > 0) 4073 perf_adjust_period(event, period, delta, false); 4074 4075 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4076 next: 4077 perf_pmu_enable(event->pmu); 4078 } 4079 4080 perf_pmu_enable(ctx->pmu); 4081 raw_spin_unlock(&ctx->lock); 4082 } 4083 4084 /* 4085 * Move @event to the tail of the @ctx's elegible events. 4086 */ 4087 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4088 { 4089 /* 4090 * Rotate the first entry last of non-pinned groups. Rotation might be 4091 * disabled by the inheritance code. 4092 */ 4093 if (ctx->rotate_disable) 4094 return; 4095 4096 perf_event_groups_delete(&ctx->flexible_groups, event); 4097 perf_event_groups_insert(&ctx->flexible_groups, event); 4098 } 4099 4100 /* pick an event from the flexible_groups to rotate */ 4101 static inline struct perf_event * 4102 ctx_event_to_rotate(struct perf_event_context *ctx) 4103 { 4104 struct perf_event *event; 4105 4106 /* pick the first active flexible event */ 4107 event = list_first_entry_or_null(&ctx->flexible_active, 4108 struct perf_event, active_list); 4109 4110 /* if no active flexible event, pick the first event */ 4111 if (!event) { 4112 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4113 typeof(*event), group_node); 4114 } 4115 4116 /* 4117 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4118 * finds there are unschedulable events, it will set it again. 4119 */ 4120 ctx->rotate_necessary = 0; 4121 4122 return event; 4123 } 4124 4125 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4126 { 4127 struct perf_event *cpu_event = NULL, *task_event = NULL; 4128 struct perf_event_context *task_ctx = NULL; 4129 int cpu_rotate, task_rotate; 4130 4131 /* 4132 * Since we run this from IRQ context, nobody can install new 4133 * events, thus the event count values are stable. 4134 */ 4135 4136 cpu_rotate = cpuctx->ctx.rotate_necessary; 4137 task_ctx = cpuctx->task_ctx; 4138 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4139 4140 if (!(cpu_rotate || task_rotate)) 4141 return false; 4142 4143 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4144 perf_pmu_disable(cpuctx->ctx.pmu); 4145 4146 if (task_rotate) 4147 task_event = ctx_event_to_rotate(task_ctx); 4148 if (cpu_rotate) 4149 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4150 4151 /* 4152 * As per the order given at ctx_resched() first 'pop' task flexible 4153 * and then, if needed CPU flexible. 4154 */ 4155 if (task_event || (task_ctx && cpu_event)) 4156 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4157 if (cpu_event) 4158 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4159 4160 if (task_event) 4161 rotate_ctx(task_ctx, task_event); 4162 if (cpu_event) 4163 rotate_ctx(&cpuctx->ctx, cpu_event); 4164 4165 perf_event_sched_in(cpuctx, task_ctx); 4166 4167 perf_pmu_enable(cpuctx->ctx.pmu); 4168 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4169 4170 return true; 4171 } 4172 4173 void perf_event_task_tick(void) 4174 { 4175 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4176 struct perf_event_context *ctx, *tmp; 4177 int throttled; 4178 4179 lockdep_assert_irqs_disabled(); 4180 4181 __this_cpu_inc(perf_throttled_seq); 4182 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4183 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4184 4185 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4186 perf_adjust_freq_unthr_context(ctx, throttled); 4187 } 4188 4189 static int event_enable_on_exec(struct perf_event *event, 4190 struct perf_event_context *ctx) 4191 { 4192 if (!event->attr.enable_on_exec) 4193 return 0; 4194 4195 event->attr.enable_on_exec = 0; 4196 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4197 return 0; 4198 4199 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4200 4201 return 1; 4202 } 4203 4204 /* 4205 * Enable all of a task's events that have been marked enable-on-exec. 4206 * This expects task == current. 4207 */ 4208 static void perf_event_enable_on_exec(int ctxn) 4209 { 4210 struct perf_event_context *ctx, *clone_ctx = NULL; 4211 enum event_type_t event_type = 0; 4212 struct perf_cpu_context *cpuctx; 4213 struct perf_event *event; 4214 unsigned long flags; 4215 int enabled = 0; 4216 4217 local_irq_save(flags); 4218 ctx = current->perf_event_ctxp[ctxn]; 4219 if (!ctx || !ctx->nr_events) 4220 goto out; 4221 4222 cpuctx = __get_cpu_context(ctx); 4223 perf_ctx_lock(cpuctx, ctx); 4224 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4225 list_for_each_entry(event, &ctx->event_list, event_entry) { 4226 enabled |= event_enable_on_exec(event, ctx); 4227 event_type |= get_event_type(event); 4228 } 4229 4230 /* 4231 * Unclone and reschedule this context if we enabled any event. 4232 */ 4233 if (enabled) { 4234 clone_ctx = unclone_ctx(ctx); 4235 ctx_resched(cpuctx, ctx, event_type); 4236 } else { 4237 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 4238 } 4239 perf_ctx_unlock(cpuctx, ctx); 4240 4241 out: 4242 local_irq_restore(flags); 4243 4244 if (clone_ctx) 4245 put_ctx(clone_ctx); 4246 } 4247 4248 static void perf_remove_from_owner(struct perf_event *event); 4249 static void perf_event_exit_event(struct perf_event *event, 4250 struct perf_event_context *ctx); 4251 4252 /* 4253 * Removes all events from the current task that have been marked 4254 * remove-on-exec, and feeds their values back to parent events. 4255 */ 4256 static void perf_event_remove_on_exec(int ctxn) 4257 { 4258 struct perf_event_context *ctx, *clone_ctx = NULL; 4259 struct perf_event *event, *next; 4260 unsigned long flags; 4261 bool modified = false; 4262 4263 ctx = perf_pin_task_context(current, ctxn); 4264 if (!ctx) 4265 return; 4266 4267 mutex_lock(&ctx->mutex); 4268 4269 if (WARN_ON_ONCE(ctx->task != current)) 4270 goto unlock; 4271 4272 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4273 if (!event->attr.remove_on_exec) 4274 continue; 4275 4276 if (!is_kernel_event(event)) 4277 perf_remove_from_owner(event); 4278 4279 modified = true; 4280 4281 perf_event_exit_event(event, ctx); 4282 } 4283 4284 raw_spin_lock_irqsave(&ctx->lock, flags); 4285 if (modified) 4286 clone_ctx = unclone_ctx(ctx); 4287 --ctx->pin_count; 4288 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4289 4290 unlock: 4291 mutex_unlock(&ctx->mutex); 4292 4293 put_ctx(ctx); 4294 if (clone_ctx) 4295 put_ctx(clone_ctx); 4296 } 4297 4298 struct perf_read_data { 4299 struct perf_event *event; 4300 bool group; 4301 int ret; 4302 }; 4303 4304 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4305 { 4306 u16 local_pkg, event_pkg; 4307 4308 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4309 int local_cpu = smp_processor_id(); 4310 4311 event_pkg = topology_physical_package_id(event_cpu); 4312 local_pkg = topology_physical_package_id(local_cpu); 4313 4314 if (event_pkg == local_pkg) 4315 return local_cpu; 4316 } 4317 4318 return event_cpu; 4319 } 4320 4321 /* 4322 * Cross CPU call to read the hardware event 4323 */ 4324 static void __perf_event_read(void *info) 4325 { 4326 struct perf_read_data *data = info; 4327 struct perf_event *sub, *event = data->event; 4328 struct perf_event_context *ctx = event->ctx; 4329 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4330 struct pmu *pmu = event->pmu; 4331 4332 /* 4333 * If this is a task context, we need to check whether it is 4334 * the current task context of this cpu. If not it has been 4335 * scheduled out before the smp call arrived. In that case 4336 * event->count would have been updated to a recent sample 4337 * when the event was scheduled out. 4338 */ 4339 if (ctx->task && cpuctx->task_ctx != ctx) 4340 return; 4341 4342 raw_spin_lock(&ctx->lock); 4343 if (ctx->is_active & EVENT_TIME) { 4344 update_context_time(ctx); 4345 update_cgrp_time_from_event(event); 4346 } 4347 4348 perf_event_update_time(event); 4349 if (data->group) 4350 perf_event_update_sibling_time(event); 4351 4352 if (event->state != PERF_EVENT_STATE_ACTIVE) 4353 goto unlock; 4354 4355 if (!data->group) { 4356 pmu->read(event); 4357 data->ret = 0; 4358 goto unlock; 4359 } 4360 4361 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4362 4363 pmu->read(event); 4364 4365 for_each_sibling_event(sub, event) { 4366 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4367 /* 4368 * Use sibling's PMU rather than @event's since 4369 * sibling could be on different (eg: software) PMU. 4370 */ 4371 sub->pmu->read(sub); 4372 } 4373 } 4374 4375 data->ret = pmu->commit_txn(pmu); 4376 4377 unlock: 4378 raw_spin_unlock(&ctx->lock); 4379 } 4380 4381 static inline u64 perf_event_count(struct perf_event *event) 4382 { 4383 return local64_read(&event->count) + atomic64_read(&event->child_count); 4384 } 4385 4386 static void calc_timer_values(struct perf_event *event, 4387 u64 *now, 4388 u64 *enabled, 4389 u64 *running) 4390 { 4391 u64 ctx_time; 4392 4393 *now = perf_clock(); 4394 ctx_time = perf_event_time_now(event, *now); 4395 __perf_update_times(event, ctx_time, enabled, running); 4396 } 4397 4398 /* 4399 * NMI-safe method to read a local event, that is an event that 4400 * is: 4401 * - either for the current task, or for this CPU 4402 * - does not have inherit set, for inherited task events 4403 * will not be local and we cannot read them atomically 4404 * - must not have a pmu::count method 4405 */ 4406 int perf_event_read_local(struct perf_event *event, u64 *value, 4407 u64 *enabled, u64 *running) 4408 { 4409 unsigned long flags; 4410 int ret = 0; 4411 4412 /* 4413 * Disabling interrupts avoids all counter scheduling (context 4414 * switches, timer based rotation and IPIs). 4415 */ 4416 local_irq_save(flags); 4417 4418 /* 4419 * It must not be an event with inherit set, we cannot read 4420 * all child counters from atomic context. 4421 */ 4422 if (event->attr.inherit) { 4423 ret = -EOPNOTSUPP; 4424 goto out; 4425 } 4426 4427 /* If this is a per-task event, it must be for current */ 4428 if ((event->attach_state & PERF_ATTACH_TASK) && 4429 event->hw.target != current) { 4430 ret = -EINVAL; 4431 goto out; 4432 } 4433 4434 /* If this is a per-CPU event, it must be for this CPU */ 4435 if (!(event->attach_state & PERF_ATTACH_TASK) && 4436 event->cpu != smp_processor_id()) { 4437 ret = -EINVAL; 4438 goto out; 4439 } 4440 4441 /* If this is a pinned event it must be running on this CPU */ 4442 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4443 ret = -EBUSY; 4444 goto out; 4445 } 4446 4447 /* 4448 * If the event is currently on this CPU, its either a per-task event, 4449 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4450 * oncpu == -1). 4451 */ 4452 if (event->oncpu == smp_processor_id()) 4453 event->pmu->read(event); 4454 4455 *value = local64_read(&event->count); 4456 if (enabled || running) { 4457 u64 __enabled, __running, __now;; 4458 4459 calc_timer_values(event, &__now, &__enabled, &__running); 4460 if (enabled) 4461 *enabled = __enabled; 4462 if (running) 4463 *running = __running; 4464 } 4465 out: 4466 local_irq_restore(flags); 4467 4468 return ret; 4469 } 4470 4471 static int perf_event_read(struct perf_event *event, bool group) 4472 { 4473 enum perf_event_state state = READ_ONCE(event->state); 4474 int event_cpu, ret = 0; 4475 4476 /* 4477 * If event is enabled and currently active on a CPU, update the 4478 * value in the event structure: 4479 */ 4480 again: 4481 if (state == PERF_EVENT_STATE_ACTIVE) { 4482 struct perf_read_data data; 4483 4484 /* 4485 * Orders the ->state and ->oncpu loads such that if we see 4486 * ACTIVE we must also see the right ->oncpu. 4487 * 4488 * Matches the smp_wmb() from event_sched_in(). 4489 */ 4490 smp_rmb(); 4491 4492 event_cpu = READ_ONCE(event->oncpu); 4493 if ((unsigned)event_cpu >= nr_cpu_ids) 4494 return 0; 4495 4496 data = (struct perf_read_data){ 4497 .event = event, 4498 .group = group, 4499 .ret = 0, 4500 }; 4501 4502 preempt_disable(); 4503 event_cpu = __perf_event_read_cpu(event, event_cpu); 4504 4505 /* 4506 * Purposely ignore the smp_call_function_single() return 4507 * value. 4508 * 4509 * If event_cpu isn't a valid CPU it means the event got 4510 * scheduled out and that will have updated the event count. 4511 * 4512 * Therefore, either way, we'll have an up-to-date event count 4513 * after this. 4514 */ 4515 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4516 preempt_enable(); 4517 ret = data.ret; 4518 4519 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4520 struct perf_event_context *ctx = event->ctx; 4521 unsigned long flags; 4522 4523 raw_spin_lock_irqsave(&ctx->lock, flags); 4524 state = event->state; 4525 if (state != PERF_EVENT_STATE_INACTIVE) { 4526 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4527 goto again; 4528 } 4529 4530 /* 4531 * May read while context is not active (e.g., thread is 4532 * blocked), in that case we cannot update context time 4533 */ 4534 if (ctx->is_active & EVENT_TIME) { 4535 update_context_time(ctx); 4536 update_cgrp_time_from_event(event); 4537 } 4538 4539 perf_event_update_time(event); 4540 if (group) 4541 perf_event_update_sibling_time(event); 4542 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4543 } 4544 4545 return ret; 4546 } 4547 4548 /* 4549 * Initialize the perf_event context in a task_struct: 4550 */ 4551 static void __perf_event_init_context(struct perf_event_context *ctx) 4552 { 4553 raw_spin_lock_init(&ctx->lock); 4554 mutex_init(&ctx->mutex); 4555 INIT_LIST_HEAD(&ctx->active_ctx_list); 4556 perf_event_groups_init(&ctx->pinned_groups); 4557 perf_event_groups_init(&ctx->flexible_groups); 4558 INIT_LIST_HEAD(&ctx->event_list); 4559 INIT_LIST_HEAD(&ctx->pinned_active); 4560 INIT_LIST_HEAD(&ctx->flexible_active); 4561 refcount_set(&ctx->refcount, 1); 4562 } 4563 4564 static struct perf_event_context * 4565 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4566 { 4567 struct perf_event_context *ctx; 4568 4569 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4570 if (!ctx) 4571 return NULL; 4572 4573 __perf_event_init_context(ctx); 4574 if (task) 4575 ctx->task = get_task_struct(task); 4576 ctx->pmu = pmu; 4577 4578 return ctx; 4579 } 4580 4581 static struct task_struct * 4582 find_lively_task_by_vpid(pid_t vpid) 4583 { 4584 struct task_struct *task; 4585 4586 rcu_read_lock(); 4587 if (!vpid) 4588 task = current; 4589 else 4590 task = find_task_by_vpid(vpid); 4591 if (task) 4592 get_task_struct(task); 4593 rcu_read_unlock(); 4594 4595 if (!task) 4596 return ERR_PTR(-ESRCH); 4597 4598 return task; 4599 } 4600 4601 /* 4602 * Returns a matching context with refcount and pincount. 4603 */ 4604 static struct perf_event_context * 4605 find_get_context(struct pmu *pmu, struct task_struct *task, 4606 struct perf_event *event) 4607 { 4608 struct perf_event_context *ctx, *clone_ctx = NULL; 4609 struct perf_cpu_context *cpuctx; 4610 void *task_ctx_data = NULL; 4611 unsigned long flags; 4612 int ctxn, err; 4613 int cpu = event->cpu; 4614 4615 if (!task) { 4616 /* Must be root to operate on a CPU event: */ 4617 err = perf_allow_cpu(&event->attr); 4618 if (err) 4619 return ERR_PTR(err); 4620 4621 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4622 ctx = &cpuctx->ctx; 4623 get_ctx(ctx); 4624 raw_spin_lock_irqsave(&ctx->lock, flags); 4625 ++ctx->pin_count; 4626 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4627 4628 return ctx; 4629 } 4630 4631 err = -EINVAL; 4632 ctxn = pmu->task_ctx_nr; 4633 if (ctxn < 0) 4634 goto errout; 4635 4636 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4637 task_ctx_data = alloc_task_ctx_data(pmu); 4638 if (!task_ctx_data) { 4639 err = -ENOMEM; 4640 goto errout; 4641 } 4642 } 4643 4644 retry: 4645 ctx = perf_lock_task_context(task, ctxn, &flags); 4646 if (ctx) { 4647 clone_ctx = unclone_ctx(ctx); 4648 ++ctx->pin_count; 4649 4650 if (task_ctx_data && !ctx->task_ctx_data) { 4651 ctx->task_ctx_data = task_ctx_data; 4652 task_ctx_data = NULL; 4653 } 4654 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4655 4656 if (clone_ctx) 4657 put_ctx(clone_ctx); 4658 } else { 4659 ctx = alloc_perf_context(pmu, task); 4660 err = -ENOMEM; 4661 if (!ctx) 4662 goto errout; 4663 4664 if (task_ctx_data) { 4665 ctx->task_ctx_data = task_ctx_data; 4666 task_ctx_data = NULL; 4667 } 4668 4669 err = 0; 4670 mutex_lock(&task->perf_event_mutex); 4671 /* 4672 * If it has already passed perf_event_exit_task(). 4673 * we must see PF_EXITING, it takes this mutex too. 4674 */ 4675 if (task->flags & PF_EXITING) 4676 err = -ESRCH; 4677 else if (task->perf_event_ctxp[ctxn]) 4678 err = -EAGAIN; 4679 else { 4680 get_ctx(ctx); 4681 ++ctx->pin_count; 4682 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4683 } 4684 mutex_unlock(&task->perf_event_mutex); 4685 4686 if (unlikely(err)) { 4687 put_ctx(ctx); 4688 4689 if (err == -EAGAIN) 4690 goto retry; 4691 goto errout; 4692 } 4693 } 4694 4695 free_task_ctx_data(pmu, task_ctx_data); 4696 return ctx; 4697 4698 errout: 4699 free_task_ctx_data(pmu, task_ctx_data); 4700 return ERR_PTR(err); 4701 } 4702 4703 static void perf_event_free_filter(struct perf_event *event); 4704 4705 static void free_event_rcu(struct rcu_head *head) 4706 { 4707 struct perf_event *event; 4708 4709 event = container_of(head, struct perf_event, rcu_head); 4710 if (event->ns) 4711 put_pid_ns(event->ns); 4712 perf_event_free_filter(event); 4713 kmem_cache_free(perf_event_cache, event); 4714 } 4715 4716 static void ring_buffer_attach(struct perf_event *event, 4717 struct perf_buffer *rb); 4718 4719 static void detach_sb_event(struct perf_event *event) 4720 { 4721 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4722 4723 raw_spin_lock(&pel->lock); 4724 list_del_rcu(&event->sb_list); 4725 raw_spin_unlock(&pel->lock); 4726 } 4727 4728 static bool is_sb_event(struct perf_event *event) 4729 { 4730 struct perf_event_attr *attr = &event->attr; 4731 4732 if (event->parent) 4733 return false; 4734 4735 if (event->attach_state & PERF_ATTACH_TASK) 4736 return false; 4737 4738 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4739 attr->comm || attr->comm_exec || 4740 attr->task || attr->ksymbol || 4741 attr->context_switch || attr->text_poke || 4742 attr->bpf_event) 4743 return true; 4744 return false; 4745 } 4746 4747 static void unaccount_pmu_sb_event(struct perf_event *event) 4748 { 4749 if (is_sb_event(event)) 4750 detach_sb_event(event); 4751 } 4752 4753 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4754 { 4755 if (event->parent) 4756 return; 4757 4758 if (is_cgroup_event(event)) 4759 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4760 } 4761 4762 #ifdef CONFIG_NO_HZ_FULL 4763 static DEFINE_SPINLOCK(nr_freq_lock); 4764 #endif 4765 4766 static void unaccount_freq_event_nohz(void) 4767 { 4768 #ifdef CONFIG_NO_HZ_FULL 4769 spin_lock(&nr_freq_lock); 4770 if (atomic_dec_and_test(&nr_freq_events)) 4771 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4772 spin_unlock(&nr_freq_lock); 4773 #endif 4774 } 4775 4776 static void unaccount_freq_event(void) 4777 { 4778 if (tick_nohz_full_enabled()) 4779 unaccount_freq_event_nohz(); 4780 else 4781 atomic_dec(&nr_freq_events); 4782 } 4783 4784 static void unaccount_event(struct perf_event *event) 4785 { 4786 bool dec = false; 4787 4788 if (event->parent) 4789 return; 4790 4791 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4792 dec = true; 4793 if (event->attr.mmap || event->attr.mmap_data) 4794 atomic_dec(&nr_mmap_events); 4795 if (event->attr.build_id) 4796 atomic_dec(&nr_build_id_events); 4797 if (event->attr.comm) 4798 atomic_dec(&nr_comm_events); 4799 if (event->attr.namespaces) 4800 atomic_dec(&nr_namespaces_events); 4801 if (event->attr.cgroup) 4802 atomic_dec(&nr_cgroup_events); 4803 if (event->attr.task) 4804 atomic_dec(&nr_task_events); 4805 if (event->attr.freq) 4806 unaccount_freq_event(); 4807 if (event->attr.context_switch) { 4808 dec = true; 4809 atomic_dec(&nr_switch_events); 4810 } 4811 if (is_cgroup_event(event)) 4812 dec = true; 4813 if (has_branch_stack(event)) 4814 dec = true; 4815 if (event->attr.ksymbol) 4816 atomic_dec(&nr_ksymbol_events); 4817 if (event->attr.bpf_event) 4818 atomic_dec(&nr_bpf_events); 4819 if (event->attr.text_poke) 4820 atomic_dec(&nr_text_poke_events); 4821 4822 if (dec) { 4823 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4824 schedule_delayed_work(&perf_sched_work, HZ); 4825 } 4826 4827 unaccount_event_cpu(event, event->cpu); 4828 4829 unaccount_pmu_sb_event(event); 4830 } 4831 4832 static void perf_sched_delayed(struct work_struct *work) 4833 { 4834 mutex_lock(&perf_sched_mutex); 4835 if (atomic_dec_and_test(&perf_sched_count)) 4836 static_branch_disable(&perf_sched_events); 4837 mutex_unlock(&perf_sched_mutex); 4838 } 4839 4840 /* 4841 * The following implement mutual exclusion of events on "exclusive" pmus 4842 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4843 * at a time, so we disallow creating events that might conflict, namely: 4844 * 4845 * 1) cpu-wide events in the presence of per-task events, 4846 * 2) per-task events in the presence of cpu-wide events, 4847 * 3) two matching events on the same context. 4848 * 4849 * The former two cases are handled in the allocation path (perf_event_alloc(), 4850 * _free_event()), the latter -- before the first perf_install_in_context(). 4851 */ 4852 static int exclusive_event_init(struct perf_event *event) 4853 { 4854 struct pmu *pmu = event->pmu; 4855 4856 if (!is_exclusive_pmu(pmu)) 4857 return 0; 4858 4859 /* 4860 * Prevent co-existence of per-task and cpu-wide events on the 4861 * same exclusive pmu. 4862 * 4863 * Negative pmu::exclusive_cnt means there are cpu-wide 4864 * events on this "exclusive" pmu, positive means there are 4865 * per-task events. 4866 * 4867 * Since this is called in perf_event_alloc() path, event::ctx 4868 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4869 * to mean "per-task event", because unlike other attach states it 4870 * never gets cleared. 4871 */ 4872 if (event->attach_state & PERF_ATTACH_TASK) { 4873 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4874 return -EBUSY; 4875 } else { 4876 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4877 return -EBUSY; 4878 } 4879 4880 return 0; 4881 } 4882 4883 static void exclusive_event_destroy(struct perf_event *event) 4884 { 4885 struct pmu *pmu = event->pmu; 4886 4887 if (!is_exclusive_pmu(pmu)) 4888 return; 4889 4890 /* see comment in exclusive_event_init() */ 4891 if (event->attach_state & PERF_ATTACH_TASK) 4892 atomic_dec(&pmu->exclusive_cnt); 4893 else 4894 atomic_inc(&pmu->exclusive_cnt); 4895 } 4896 4897 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4898 { 4899 if ((e1->pmu == e2->pmu) && 4900 (e1->cpu == e2->cpu || 4901 e1->cpu == -1 || 4902 e2->cpu == -1)) 4903 return true; 4904 return false; 4905 } 4906 4907 static bool exclusive_event_installable(struct perf_event *event, 4908 struct perf_event_context *ctx) 4909 { 4910 struct perf_event *iter_event; 4911 struct pmu *pmu = event->pmu; 4912 4913 lockdep_assert_held(&ctx->mutex); 4914 4915 if (!is_exclusive_pmu(pmu)) 4916 return true; 4917 4918 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4919 if (exclusive_event_match(iter_event, event)) 4920 return false; 4921 } 4922 4923 return true; 4924 } 4925 4926 static void perf_addr_filters_splice(struct perf_event *event, 4927 struct list_head *head); 4928 4929 static void _free_event(struct perf_event *event) 4930 { 4931 irq_work_sync(&event->pending); 4932 4933 unaccount_event(event); 4934 4935 security_perf_event_free(event); 4936 4937 if (event->rb) { 4938 /* 4939 * Can happen when we close an event with re-directed output. 4940 * 4941 * Since we have a 0 refcount, perf_mmap_close() will skip 4942 * over us; possibly making our ring_buffer_put() the last. 4943 */ 4944 mutex_lock(&event->mmap_mutex); 4945 ring_buffer_attach(event, NULL); 4946 mutex_unlock(&event->mmap_mutex); 4947 } 4948 4949 if (is_cgroup_event(event)) 4950 perf_detach_cgroup(event); 4951 4952 if (!event->parent) { 4953 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4954 put_callchain_buffers(); 4955 } 4956 4957 perf_event_free_bpf_prog(event); 4958 perf_addr_filters_splice(event, NULL); 4959 kfree(event->addr_filter_ranges); 4960 4961 if (event->destroy) 4962 event->destroy(event); 4963 4964 /* 4965 * Must be after ->destroy(), due to uprobe_perf_close() using 4966 * hw.target. 4967 */ 4968 if (event->hw.target) 4969 put_task_struct(event->hw.target); 4970 4971 /* 4972 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4973 * all task references must be cleaned up. 4974 */ 4975 if (event->ctx) 4976 put_ctx(event->ctx); 4977 4978 exclusive_event_destroy(event); 4979 module_put(event->pmu->module); 4980 4981 call_rcu(&event->rcu_head, free_event_rcu); 4982 } 4983 4984 /* 4985 * Used to free events which have a known refcount of 1, such as in error paths 4986 * where the event isn't exposed yet and inherited events. 4987 */ 4988 static void free_event(struct perf_event *event) 4989 { 4990 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4991 "unexpected event refcount: %ld; ptr=%p\n", 4992 atomic_long_read(&event->refcount), event)) { 4993 /* leak to avoid use-after-free */ 4994 return; 4995 } 4996 4997 _free_event(event); 4998 } 4999 5000 /* 5001 * Remove user event from the owner task. 5002 */ 5003 static void perf_remove_from_owner(struct perf_event *event) 5004 { 5005 struct task_struct *owner; 5006 5007 rcu_read_lock(); 5008 /* 5009 * Matches the smp_store_release() in perf_event_exit_task(). If we 5010 * observe !owner it means the list deletion is complete and we can 5011 * indeed free this event, otherwise we need to serialize on 5012 * owner->perf_event_mutex. 5013 */ 5014 owner = READ_ONCE(event->owner); 5015 if (owner) { 5016 /* 5017 * Since delayed_put_task_struct() also drops the last 5018 * task reference we can safely take a new reference 5019 * while holding the rcu_read_lock(). 5020 */ 5021 get_task_struct(owner); 5022 } 5023 rcu_read_unlock(); 5024 5025 if (owner) { 5026 /* 5027 * If we're here through perf_event_exit_task() we're already 5028 * holding ctx->mutex which would be an inversion wrt. the 5029 * normal lock order. 5030 * 5031 * However we can safely take this lock because its the child 5032 * ctx->mutex. 5033 */ 5034 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5035 5036 /* 5037 * We have to re-check the event->owner field, if it is cleared 5038 * we raced with perf_event_exit_task(), acquiring the mutex 5039 * ensured they're done, and we can proceed with freeing the 5040 * event. 5041 */ 5042 if (event->owner) { 5043 list_del_init(&event->owner_entry); 5044 smp_store_release(&event->owner, NULL); 5045 } 5046 mutex_unlock(&owner->perf_event_mutex); 5047 put_task_struct(owner); 5048 } 5049 } 5050 5051 static void put_event(struct perf_event *event) 5052 { 5053 if (!atomic_long_dec_and_test(&event->refcount)) 5054 return; 5055 5056 _free_event(event); 5057 } 5058 5059 /* 5060 * Kill an event dead; while event:refcount will preserve the event 5061 * object, it will not preserve its functionality. Once the last 'user' 5062 * gives up the object, we'll destroy the thing. 5063 */ 5064 int perf_event_release_kernel(struct perf_event *event) 5065 { 5066 struct perf_event_context *ctx = event->ctx; 5067 struct perf_event *child, *tmp; 5068 LIST_HEAD(free_list); 5069 5070 /* 5071 * If we got here through err_file: fput(event_file); we will not have 5072 * attached to a context yet. 5073 */ 5074 if (!ctx) { 5075 WARN_ON_ONCE(event->attach_state & 5076 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5077 goto no_ctx; 5078 } 5079 5080 if (!is_kernel_event(event)) 5081 perf_remove_from_owner(event); 5082 5083 ctx = perf_event_ctx_lock(event); 5084 WARN_ON_ONCE(ctx->parent_ctx); 5085 perf_remove_from_context(event, DETACH_GROUP); 5086 5087 raw_spin_lock_irq(&ctx->lock); 5088 /* 5089 * Mark this event as STATE_DEAD, there is no external reference to it 5090 * anymore. 5091 * 5092 * Anybody acquiring event->child_mutex after the below loop _must_ 5093 * also see this, most importantly inherit_event() which will avoid 5094 * placing more children on the list. 5095 * 5096 * Thus this guarantees that we will in fact observe and kill _ALL_ 5097 * child events. 5098 */ 5099 event->state = PERF_EVENT_STATE_DEAD; 5100 raw_spin_unlock_irq(&ctx->lock); 5101 5102 perf_event_ctx_unlock(event, ctx); 5103 5104 again: 5105 mutex_lock(&event->child_mutex); 5106 list_for_each_entry(child, &event->child_list, child_list) { 5107 5108 /* 5109 * Cannot change, child events are not migrated, see the 5110 * comment with perf_event_ctx_lock_nested(). 5111 */ 5112 ctx = READ_ONCE(child->ctx); 5113 /* 5114 * Since child_mutex nests inside ctx::mutex, we must jump 5115 * through hoops. We start by grabbing a reference on the ctx. 5116 * 5117 * Since the event cannot get freed while we hold the 5118 * child_mutex, the context must also exist and have a !0 5119 * reference count. 5120 */ 5121 get_ctx(ctx); 5122 5123 /* 5124 * Now that we have a ctx ref, we can drop child_mutex, and 5125 * acquire ctx::mutex without fear of it going away. Then we 5126 * can re-acquire child_mutex. 5127 */ 5128 mutex_unlock(&event->child_mutex); 5129 mutex_lock(&ctx->mutex); 5130 mutex_lock(&event->child_mutex); 5131 5132 /* 5133 * Now that we hold ctx::mutex and child_mutex, revalidate our 5134 * state, if child is still the first entry, it didn't get freed 5135 * and we can continue doing so. 5136 */ 5137 tmp = list_first_entry_or_null(&event->child_list, 5138 struct perf_event, child_list); 5139 if (tmp == child) { 5140 perf_remove_from_context(child, DETACH_GROUP); 5141 list_move(&child->child_list, &free_list); 5142 /* 5143 * This matches the refcount bump in inherit_event(); 5144 * this can't be the last reference. 5145 */ 5146 put_event(event); 5147 } 5148 5149 mutex_unlock(&event->child_mutex); 5150 mutex_unlock(&ctx->mutex); 5151 put_ctx(ctx); 5152 goto again; 5153 } 5154 mutex_unlock(&event->child_mutex); 5155 5156 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5157 void *var = &child->ctx->refcount; 5158 5159 list_del(&child->child_list); 5160 free_event(child); 5161 5162 /* 5163 * Wake any perf_event_free_task() waiting for this event to be 5164 * freed. 5165 */ 5166 smp_mb(); /* pairs with wait_var_event() */ 5167 wake_up_var(var); 5168 } 5169 5170 no_ctx: 5171 put_event(event); /* Must be the 'last' reference */ 5172 return 0; 5173 } 5174 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5175 5176 /* 5177 * Called when the last reference to the file is gone. 5178 */ 5179 static int perf_release(struct inode *inode, struct file *file) 5180 { 5181 perf_event_release_kernel(file->private_data); 5182 return 0; 5183 } 5184 5185 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5186 { 5187 struct perf_event *child; 5188 u64 total = 0; 5189 5190 *enabled = 0; 5191 *running = 0; 5192 5193 mutex_lock(&event->child_mutex); 5194 5195 (void)perf_event_read(event, false); 5196 total += perf_event_count(event); 5197 5198 *enabled += event->total_time_enabled + 5199 atomic64_read(&event->child_total_time_enabled); 5200 *running += event->total_time_running + 5201 atomic64_read(&event->child_total_time_running); 5202 5203 list_for_each_entry(child, &event->child_list, child_list) { 5204 (void)perf_event_read(child, false); 5205 total += perf_event_count(child); 5206 *enabled += child->total_time_enabled; 5207 *running += child->total_time_running; 5208 } 5209 mutex_unlock(&event->child_mutex); 5210 5211 return total; 5212 } 5213 5214 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5215 { 5216 struct perf_event_context *ctx; 5217 u64 count; 5218 5219 ctx = perf_event_ctx_lock(event); 5220 count = __perf_event_read_value(event, enabled, running); 5221 perf_event_ctx_unlock(event, ctx); 5222 5223 return count; 5224 } 5225 EXPORT_SYMBOL_GPL(perf_event_read_value); 5226 5227 static int __perf_read_group_add(struct perf_event *leader, 5228 u64 read_format, u64 *values) 5229 { 5230 struct perf_event_context *ctx = leader->ctx; 5231 struct perf_event *sub; 5232 unsigned long flags; 5233 int n = 1; /* skip @nr */ 5234 int ret; 5235 5236 ret = perf_event_read(leader, true); 5237 if (ret) 5238 return ret; 5239 5240 raw_spin_lock_irqsave(&ctx->lock, flags); 5241 5242 /* 5243 * Since we co-schedule groups, {enabled,running} times of siblings 5244 * will be identical to those of the leader, so we only publish one 5245 * set. 5246 */ 5247 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5248 values[n++] += leader->total_time_enabled + 5249 atomic64_read(&leader->child_total_time_enabled); 5250 } 5251 5252 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5253 values[n++] += leader->total_time_running + 5254 atomic64_read(&leader->child_total_time_running); 5255 } 5256 5257 /* 5258 * Write {count,id} tuples for every sibling. 5259 */ 5260 values[n++] += perf_event_count(leader); 5261 if (read_format & PERF_FORMAT_ID) 5262 values[n++] = primary_event_id(leader); 5263 5264 for_each_sibling_event(sub, leader) { 5265 values[n++] += perf_event_count(sub); 5266 if (read_format & PERF_FORMAT_ID) 5267 values[n++] = primary_event_id(sub); 5268 } 5269 5270 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5271 return 0; 5272 } 5273 5274 static int perf_read_group(struct perf_event *event, 5275 u64 read_format, char __user *buf) 5276 { 5277 struct perf_event *leader = event->group_leader, *child; 5278 struct perf_event_context *ctx = leader->ctx; 5279 int ret; 5280 u64 *values; 5281 5282 lockdep_assert_held(&ctx->mutex); 5283 5284 values = kzalloc(event->read_size, GFP_KERNEL); 5285 if (!values) 5286 return -ENOMEM; 5287 5288 values[0] = 1 + leader->nr_siblings; 5289 5290 /* 5291 * By locking the child_mutex of the leader we effectively 5292 * lock the child list of all siblings.. XXX explain how. 5293 */ 5294 mutex_lock(&leader->child_mutex); 5295 5296 ret = __perf_read_group_add(leader, read_format, values); 5297 if (ret) 5298 goto unlock; 5299 5300 list_for_each_entry(child, &leader->child_list, child_list) { 5301 ret = __perf_read_group_add(child, read_format, values); 5302 if (ret) 5303 goto unlock; 5304 } 5305 5306 mutex_unlock(&leader->child_mutex); 5307 5308 ret = event->read_size; 5309 if (copy_to_user(buf, values, event->read_size)) 5310 ret = -EFAULT; 5311 goto out; 5312 5313 unlock: 5314 mutex_unlock(&leader->child_mutex); 5315 out: 5316 kfree(values); 5317 return ret; 5318 } 5319 5320 static int perf_read_one(struct perf_event *event, 5321 u64 read_format, char __user *buf) 5322 { 5323 u64 enabled, running; 5324 u64 values[4]; 5325 int n = 0; 5326 5327 values[n++] = __perf_event_read_value(event, &enabled, &running); 5328 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5329 values[n++] = enabled; 5330 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5331 values[n++] = running; 5332 if (read_format & PERF_FORMAT_ID) 5333 values[n++] = primary_event_id(event); 5334 5335 if (copy_to_user(buf, values, n * sizeof(u64))) 5336 return -EFAULT; 5337 5338 return n * sizeof(u64); 5339 } 5340 5341 static bool is_event_hup(struct perf_event *event) 5342 { 5343 bool no_children; 5344 5345 if (event->state > PERF_EVENT_STATE_EXIT) 5346 return false; 5347 5348 mutex_lock(&event->child_mutex); 5349 no_children = list_empty(&event->child_list); 5350 mutex_unlock(&event->child_mutex); 5351 return no_children; 5352 } 5353 5354 /* 5355 * Read the performance event - simple non blocking version for now 5356 */ 5357 static ssize_t 5358 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5359 { 5360 u64 read_format = event->attr.read_format; 5361 int ret; 5362 5363 /* 5364 * Return end-of-file for a read on an event that is in 5365 * error state (i.e. because it was pinned but it couldn't be 5366 * scheduled on to the CPU at some point). 5367 */ 5368 if (event->state == PERF_EVENT_STATE_ERROR) 5369 return 0; 5370 5371 if (count < event->read_size) 5372 return -ENOSPC; 5373 5374 WARN_ON_ONCE(event->ctx->parent_ctx); 5375 if (read_format & PERF_FORMAT_GROUP) 5376 ret = perf_read_group(event, read_format, buf); 5377 else 5378 ret = perf_read_one(event, read_format, buf); 5379 5380 return ret; 5381 } 5382 5383 static ssize_t 5384 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5385 { 5386 struct perf_event *event = file->private_data; 5387 struct perf_event_context *ctx; 5388 int ret; 5389 5390 ret = security_perf_event_read(event); 5391 if (ret) 5392 return ret; 5393 5394 ctx = perf_event_ctx_lock(event); 5395 ret = __perf_read(event, buf, count); 5396 perf_event_ctx_unlock(event, ctx); 5397 5398 return ret; 5399 } 5400 5401 static __poll_t perf_poll(struct file *file, poll_table *wait) 5402 { 5403 struct perf_event *event = file->private_data; 5404 struct perf_buffer *rb; 5405 __poll_t events = EPOLLHUP; 5406 5407 poll_wait(file, &event->waitq, wait); 5408 5409 if (is_event_hup(event)) 5410 return events; 5411 5412 /* 5413 * Pin the event->rb by taking event->mmap_mutex; otherwise 5414 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5415 */ 5416 mutex_lock(&event->mmap_mutex); 5417 rb = event->rb; 5418 if (rb) 5419 events = atomic_xchg(&rb->poll, 0); 5420 mutex_unlock(&event->mmap_mutex); 5421 return events; 5422 } 5423 5424 static void _perf_event_reset(struct perf_event *event) 5425 { 5426 (void)perf_event_read(event, false); 5427 local64_set(&event->count, 0); 5428 perf_event_update_userpage(event); 5429 } 5430 5431 /* Assume it's not an event with inherit set. */ 5432 u64 perf_event_pause(struct perf_event *event, bool reset) 5433 { 5434 struct perf_event_context *ctx; 5435 u64 count; 5436 5437 ctx = perf_event_ctx_lock(event); 5438 WARN_ON_ONCE(event->attr.inherit); 5439 _perf_event_disable(event); 5440 count = local64_read(&event->count); 5441 if (reset) 5442 local64_set(&event->count, 0); 5443 perf_event_ctx_unlock(event, ctx); 5444 5445 return count; 5446 } 5447 EXPORT_SYMBOL_GPL(perf_event_pause); 5448 5449 /* 5450 * Holding the top-level event's child_mutex means that any 5451 * descendant process that has inherited this event will block 5452 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5453 * task existence requirements of perf_event_enable/disable. 5454 */ 5455 static void perf_event_for_each_child(struct perf_event *event, 5456 void (*func)(struct perf_event *)) 5457 { 5458 struct perf_event *child; 5459 5460 WARN_ON_ONCE(event->ctx->parent_ctx); 5461 5462 mutex_lock(&event->child_mutex); 5463 func(event); 5464 list_for_each_entry(child, &event->child_list, child_list) 5465 func(child); 5466 mutex_unlock(&event->child_mutex); 5467 } 5468 5469 static void perf_event_for_each(struct perf_event *event, 5470 void (*func)(struct perf_event *)) 5471 { 5472 struct perf_event_context *ctx = event->ctx; 5473 struct perf_event *sibling; 5474 5475 lockdep_assert_held(&ctx->mutex); 5476 5477 event = event->group_leader; 5478 5479 perf_event_for_each_child(event, func); 5480 for_each_sibling_event(sibling, event) 5481 perf_event_for_each_child(sibling, func); 5482 } 5483 5484 static void __perf_event_period(struct perf_event *event, 5485 struct perf_cpu_context *cpuctx, 5486 struct perf_event_context *ctx, 5487 void *info) 5488 { 5489 u64 value = *((u64 *)info); 5490 bool active; 5491 5492 if (event->attr.freq) { 5493 event->attr.sample_freq = value; 5494 } else { 5495 event->attr.sample_period = value; 5496 event->hw.sample_period = value; 5497 } 5498 5499 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5500 if (active) { 5501 perf_pmu_disable(ctx->pmu); 5502 /* 5503 * We could be throttled; unthrottle now to avoid the tick 5504 * trying to unthrottle while we already re-started the event. 5505 */ 5506 if (event->hw.interrupts == MAX_INTERRUPTS) { 5507 event->hw.interrupts = 0; 5508 perf_log_throttle(event, 1); 5509 } 5510 event->pmu->stop(event, PERF_EF_UPDATE); 5511 } 5512 5513 local64_set(&event->hw.period_left, 0); 5514 5515 if (active) { 5516 event->pmu->start(event, PERF_EF_RELOAD); 5517 perf_pmu_enable(ctx->pmu); 5518 } 5519 } 5520 5521 static int perf_event_check_period(struct perf_event *event, u64 value) 5522 { 5523 return event->pmu->check_period(event, value); 5524 } 5525 5526 static int _perf_event_period(struct perf_event *event, u64 value) 5527 { 5528 if (!is_sampling_event(event)) 5529 return -EINVAL; 5530 5531 if (!value) 5532 return -EINVAL; 5533 5534 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5535 return -EINVAL; 5536 5537 if (perf_event_check_period(event, value)) 5538 return -EINVAL; 5539 5540 if (!event->attr.freq && (value & (1ULL << 63))) 5541 return -EINVAL; 5542 5543 event_function_call(event, __perf_event_period, &value); 5544 5545 return 0; 5546 } 5547 5548 int perf_event_period(struct perf_event *event, u64 value) 5549 { 5550 struct perf_event_context *ctx; 5551 int ret; 5552 5553 ctx = perf_event_ctx_lock(event); 5554 ret = _perf_event_period(event, value); 5555 perf_event_ctx_unlock(event, ctx); 5556 5557 return ret; 5558 } 5559 EXPORT_SYMBOL_GPL(perf_event_period); 5560 5561 static const struct file_operations perf_fops; 5562 5563 static inline int perf_fget_light(int fd, struct fd *p) 5564 { 5565 struct fd f = fdget(fd); 5566 if (!f.file) 5567 return -EBADF; 5568 5569 if (f.file->f_op != &perf_fops) { 5570 fdput(f); 5571 return -EBADF; 5572 } 5573 *p = f; 5574 return 0; 5575 } 5576 5577 static int perf_event_set_output(struct perf_event *event, 5578 struct perf_event *output_event); 5579 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5580 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5581 struct perf_event_attr *attr); 5582 5583 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5584 { 5585 void (*func)(struct perf_event *); 5586 u32 flags = arg; 5587 5588 switch (cmd) { 5589 case PERF_EVENT_IOC_ENABLE: 5590 func = _perf_event_enable; 5591 break; 5592 case PERF_EVENT_IOC_DISABLE: 5593 func = _perf_event_disable; 5594 break; 5595 case PERF_EVENT_IOC_RESET: 5596 func = _perf_event_reset; 5597 break; 5598 5599 case PERF_EVENT_IOC_REFRESH: 5600 return _perf_event_refresh(event, arg); 5601 5602 case PERF_EVENT_IOC_PERIOD: 5603 { 5604 u64 value; 5605 5606 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5607 return -EFAULT; 5608 5609 return _perf_event_period(event, value); 5610 } 5611 case PERF_EVENT_IOC_ID: 5612 { 5613 u64 id = primary_event_id(event); 5614 5615 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5616 return -EFAULT; 5617 return 0; 5618 } 5619 5620 case PERF_EVENT_IOC_SET_OUTPUT: 5621 { 5622 int ret; 5623 if (arg != -1) { 5624 struct perf_event *output_event; 5625 struct fd output; 5626 ret = perf_fget_light(arg, &output); 5627 if (ret) 5628 return ret; 5629 output_event = output.file->private_data; 5630 ret = perf_event_set_output(event, output_event); 5631 fdput(output); 5632 } else { 5633 ret = perf_event_set_output(event, NULL); 5634 } 5635 return ret; 5636 } 5637 5638 case PERF_EVENT_IOC_SET_FILTER: 5639 return perf_event_set_filter(event, (void __user *)arg); 5640 5641 case PERF_EVENT_IOC_SET_BPF: 5642 { 5643 struct bpf_prog *prog; 5644 int err; 5645 5646 prog = bpf_prog_get(arg); 5647 if (IS_ERR(prog)) 5648 return PTR_ERR(prog); 5649 5650 err = perf_event_set_bpf_prog(event, prog, 0); 5651 if (err) { 5652 bpf_prog_put(prog); 5653 return err; 5654 } 5655 5656 return 0; 5657 } 5658 5659 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5660 struct perf_buffer *rb; 5661 5662 rcu_read_lock(); 5663 rb = rcu_dereference(event->rb); 5664 if (!rb || !rb->nr_pages) { 5665 rcu_read_unlock(); 5666 return -EINVAL; 5667 } 5668 rb_toggle_paused(rb, !!arg); 5669 rcu_read_unlock(); 5670 return 0; 5671 } 5672 5673 case PERF_EVENT_IOC_QUERY_BPF: 5674 return perf_event_query_prog_array(event, (void __user *)arg); 5675 5676 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5677 struct perf_event_attr new_attr; 5678 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5679 &new_attr); 5680 5681 if (err) 5682 return err; 5683 5684 return perf_event_modify_attr(event, &new_attr); 5685 } 5686 default: 5687 return -ENOTTY; 5688 } 5689 5690 if (flags & PERF_IOC_FLAG_GROUP) 5691 perf_event_for_each(event, func); 5692 else 5693 perf_event_for_each_child(event, func); 5694 5695 return 0; 5696 } 5697 5698 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5699 { 5700 struct perf_event *event = file->private_data; 5701 struct perf_event_context *ctx; 5702 long ret; 5703 5704 /* Treat ioctl like writes as it is likely a mutating operation. */ 5705 ret = security_perf_event_write(event); 5706 if (ret) 5707 return ret; 5708 5709 ctx = perf_event_ctx_lock(event); 5710 ret = _perf_ioctl(event, cmd, arg); 5711 perf_event_ctx_unlock(event, ctx); 5712 5713 return ret; 5714 } 5715 5716 #ifdef CONFIG_COMPAT 5717 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5718 unsigned long arg) 5719 { 5720 switch (_IOC_NR(cmd)) { 5721 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5722 case _IOC_NR(PERF_EVENT_IOC_ID): 5723 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5724 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5725 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5726 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5727 cmd &= ~IOCSIZE_MASK; 5728 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5729 } 5730 break; 5731 } 5732 return perf_ioctl(file, cmd, arg); 5733 } 5734 #else 5735 # define perf_compat_ioctl NULL 5736 #endif 5737 5738 int perf_event_task_enable(void) 5739 { 5740 struct perf_event_context *ctx; 5741 struct perf_event *event; 5742 5743 mutex_lock(¤t->perf_event_mutex); 5744 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5745 ctx = perf_event_ctx_lock(event); 5746 perf_event_for_each_child(event, _perf_event_enable); 5747 perf_event_ctx_unlock(event, ctx); 5748 } 5749 mutex_unlock(¤t->perf_event_mutex); 5750 5751 return 0; 5752 } 5753 5754 int perf_event_task_disable(void) 5755 { 5756 struct perf_event_context *ctx; 5757 struct perf_event *event; 5758 5759 mutex_lock(¤t->perf_event_mutex); 5760 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5761 ctx = perf_event_ctx_lock(event); 5762 perf_event_for_each_child(event, _perf_event_disable); 5763 perf_event_ctx_unlock(event, ctx); 5764 } 5765 mutex_unlock(¤t->perf_event_mutex); 5766 5767 return 0; 5768 } 5769 5770 static int perf_event_index(struct perf_event *event) 5771 { 5772 if (event->hw.state & PERF_HES_STOPPED) 5773 return 0; 5774 5775 if (event->state != PERF_EVENT_STATE_ACTIVE) 5776 return 0; 5777 5778 return event->pmu->event_idx(event); 5779 } 5780 5781 static void perf_event_init_userpage(struct perf_event *event) 5782 { 5783 struct perf_event_mmap_page *userpg; 5784 struct perf_buffer *rb; 5785 5786 rcu_read_lock(); 5787 rb = rcu_dereference(event->rb); 5788 if (!rb) 5789 goto unlock; 5790 5791 userpg = rb->user_page; 5792 5793 /* Allow new userspace to detect that bit 0 is deprecated */ 5794 userpg->cap_bit0_is_deprecated = 1; 5795 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5796 userpg->data_offset = PAGE_SIZE; 5797 userpg->data_size = perf_data_size(rb); 5798 5799 unlock: 5800 rcu_read_unlock(); 5801 } 5802 5803 void __weak arch_perf_update_userpage( 5804 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5805 { 5806 } 5807 5808 /* 5809 * Callers need to ensure there can be no nesting of this function, otherwise 5810 * the seqlock logic goes bad. We can not serialize this because the arch 5811 * code calls this from NMI context. 5812 */ 5813 void perf_event_update_userpage(struct perf_event *event) 5814 { 5815 struct perf_event_mmap_page *userpg; 5816 struct perf_buffer *rb; 5817 u64 enabled, running, now; 5818 5819 rcu_read_lock(); 5820 rb = rcu_dereference(event->rb); 5821 if (!rb) 5822 goto unlock; 5823 5824 /* 5825 * compute total_time_enabled, total_time_running 5826 * based on snapshot values taken when the event 5827 * was last scheduled in. 5828 * 5829 * we cannot simply called update_context_time() 5830 * because of locking issue as we can be called in 5831 * NMI context 5832 */ 5833 calc_timer_values(event, &now, &enabled, &running); 5834 5835 userpg = rb->user_page; 5836 /* 5837 * Disable preemption to guarantee consistent time stamps are stored to 5838 * the user page. 5839 */ 5840 preempt_disable(); 5841 ++userpg->lock; 5842 barrier(); 5843 userpg->index = perf_event_index(event); 5844 userpg->offset = perf_event_count(event); 5845 if (userpg->index) 5846 userpg->offset -= local64_read(&event->hw.prev_count); 5847 5848 userpg->time_enabled = enabled + 5849 atomic64_read(&event->child_total_time_enabled); 5850 5851 userpg->time_running = running + 5852 atomic64_read(&event->child_total_time_running); 5853 5854 arch_perf_update_userpage(event, userpg, now); 5855 5856 barrier(); 5857 ++userpg->lock; 5858 preempt_enable(); 5859 unlock: 5860 rcu_read_unlock(); 5861 } 5862 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5863 5864 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5865 { 5866 struct perf_event *event = vmf->vma->vm_file->private_data; 5867 struct perf_buffer *rb; 5868 vm_fault_t ret = VM_FAULT_SIGBUS; 5869 5870 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5871 if (vmf->pgoff == 0) 5872 ret = 0; 5873 return ret; 5874 } 5875 5876 rcu_read_lock(); 5877 rb = rcu_dereference(event->rb); 5878 if (!rb) 5879 goto unlock; 5880 5881 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5882 goto unlock; 5883 5884 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5885 if (!vmf->page) 5886 goto unlock; 5887 5888 get_page(vmf->page); 5889 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5890 vmf->page->index = vmf->pgoff; 5891 5892 ret = 0; 5893 unlock: 5894 rcu_read_unlock(); 5895 5896 return ret; 5897 } 5898 5899 static void ring_buffer_attach(struct perf_event *event, 5900 struct perf_buffer *rb) 5901 { 5902 struct perf_buffer *old_rb = NULL; 5903 unsigned long flags; 5904 5905 WARN_ON_ONCE(event->parent); 5906 5907 if (event->rb) { 5908 /* 5909 * Should be impossible, we set this when removing 5910 * event->rb_entry and wait/clear when adding event->rb_entry. 5911 */ 5912 WARN_ON_ONCE(event->rcu_pending); 5913 5914 old_rb = event->rb; 5915 spin_lock_irqsave(&old_rb->event_lock, flags); 5916 list_del_rcu(&event->rb_entry); 5917 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5918 5919 event->rcu_batches = get_state_synchronize_rcu(); 5920 event->rcu_pending = 1; 5921 } 5922 5923 if (rb) { 5924 if (event->rcu_pending) { 5925 cond_synchronize_rcu(event->rcu_batches); 5926 event->rcu_pending = 0; 5927 } 5928 5929 spin_lock_irqsave(&rb->event_lock, flags); 5930 list_add_rcu(&event->rb_entry, &rb->event_list); 5931 spin_unlock_irqrestore(&rb->event_lock, flags); 5932 } 5933 5934 /* 5935 * Avoid racing with perf_mmap_close(AUX): stop the event 5936 * before swizzling the event::rb pointer; if it's getting 5937 * unmapped, its aux_mmap_count will be 0 and it won't 5938 * restart. See the comment in __perf_pmu_output_stop(). 5939 * 5940 * Data will inevitably be lost when set_output is done in 5941 * mid-air, but then again, whoever does it like this is 5942 * not in for the data anyway. 5943 */ 5944 if (has_aux(event)) 5945 perf_event_stop(event, 0); 5946 5947 rcu_assign_pointer(event->rb, rb); 5948 5949 if (old_rb) { 5950 ring_buffer_put(old_rb); 5951 /* 5952 * Since we detached before setting the new rb, so that we 5953 * could attach the new rb, we could have missed a wakeup. 5954 * Provide it now. 5955 */ 5956 wake_up_all(&event->waitq); 5957 } 5958 } 5959 5960 static void ring_buffer_wakeup(struct perf_event *event) 5961 { 5962 struct perf_buffer *rb; 5963 5964 if (event->parent) 5965 event = event->parent; 5966 5967 rcu_read_lock(); 5968 rb = rcu_dereference(event->rb); 5969 if (rb) { 5970 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5971 wake_up_all(&event->waitq); 5972 } 5973 rcu_read_unlock(); 5974 } 5975 5976 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5977 { 5978 struct perf_buffer *rb; 5979 5980 if (event->parent) 5981 event = event->parent; 5982 5983 rcu_read_lock(); 5984 rb = rcu_dereference(event->rb); 5985 if (rb) { 5986 if (!refcount_inc_not_zero(&rb->refcount)) 5987 rb = NULL; 5988 } 5989 rcu_read_unlock(); 5990 5991 return rb; 5992 } 5993 5994 void ring_buffer_put(struct perf_buffer *rb) 5995 { 5996 if (!refcount_dec_and_test(&rb->refcount)) 5997 return; 5998 5999 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6000 6001 call_rcu(&rb->rcu_head, rb_free_rcu); 6002 } 6003 6004 static void perf_mmap_open(struct vm_area_struct *vma) 6005 { 6006 struct perf_event *event = vma->vm_file->private_data; 6007 6008 atomic_inc(&event->mmap_count); 6009 atomic_inc(&event->rb->mmap_count); 6010 6011 if (vma->vm_pgoff) 6012 atomic_inc(&event->rb->aux_mmap_count); 6013 6014 if (event->pmu->event_mapped) 6015 event->pmu->event_mapped(event, vma->vm_mm); 6016 } 6017 6018 static void perf_pmu_output_stop(struct perf_event *event); 6019 6020 /* 6021 * A buffer can be mmap()ed multiple times; either directly through the same 6022 * event, or through other events by use of perf_event_set_output(). 6023 * 6024 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6025 * the buffer here, where we still have a VM context. This means we need 6026 * to detach all events redirecting to us. 6027 */ 6028 static void perf_mmap_close(struct vm_area_struct *vma) 6029 { 6030 struct perf_event *event = vma->vm_file->private_data; 6031 struct perf_buffer *rb = ring_buffer_get(event); 6032 struct user_struct *mmap_user = rb->mmap_user; 6033 int mmap_locked = rb->mmap_locked; 6034 unsigned long size = perf_data_size(rb); 6035 bool detach_rest = false; 6036 6037 if (event->pmu->event_unmapped) 6038 event->pmu->event_unmapped(event, vma->vm_mm); 6039 6040 /* 6041 * rb->aux_mmap_count will always drop before rb->mmap_count and 6042 * event->mmap_count, so it is ok to use event->mmap_mutex to 6043 * serialize with perf_mmap here. 6044 */ 6045 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6046 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6047 /* 6048 * Stop all AUX events that are writing to this buffer, 6049 * so that we can free its AUX pages and corresponding PMU 6050 * data. Note that after rb::aux_mmap_count dropped to zero, 6051 * they won't start any more (see perf_aux_output_begin()). 6052 */ 6053 perf_pmu_output_stop(event); 6054 6055 /* now it's safe to free the pages */ 6056 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6057 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6058 6059 /* this has to be the last one */ 6060 rb_free_aux(rb); 6061 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6062 6063 mutex_unlock(&event->mmap_mutex); 6064 } 6065 6066 if (atomic_dec_and_test(&rb->mmap_count)) 6067 detach_rest = true; 6068 6069 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6070 goto out_put; 6071 6072 ring_buffer_attach(event, NULL); 6073 mutex_unlock(&event->mmap_mutex); 6074 6075 /* If there's still other mmap()s of this buffer, we're done. */ 6076 if (!detach_rest) 6077 goto out_put; 6078 6079 /* 6080 * No other mmap()s, detach from all other events that might redirect 6081 * into the now unreachable buffer. Somewhat complicated by the 6082 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6083 */ 6084 again: 6085 rcu_read_lock(); 6086 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6087 if (!atomic_long_inc_not_zero(&event->refcount)) { 6088 /* 6089 * This event is en-route to free_event() which will 6090 * detach it and remove it from the list. 6091 */ 6092 continue; 6093 } 6094 rcu_read_unlock(); 6095 6096 mutex_lock(&event->mmap_mutex); 6097 /* 6098 * Check we didn't race with perf_event_set_output() which can 6099 * swizzle the rb from under us while we were waiting to 6100 * acquire mmap_mutex. 6101 * 6102 * If we find a different rb; ignore this event, a next 6103 * iteration will no longer find it on the list. We have to 6104 * still restart the iteration to make sure we're not now 6105 * iterating the wrong list. 6106 */ 6107 if (event->rb == rb) 6108 ring_buffer_attach(event, NULL); 6109 6110 mutex_unlock(&event->mmap_mutex); 6111 put_event(event); 6112 6113 /* 6114 * Restart the iteration; either we're on the wrong list or 6115 * destroyed its integrity by doing a deletion. 6116 */ 6117 goto again; 6118 } 6119 rcu_read_unlock(); 6120 6121 /* 6122 * It could be there's still a few 0-ref events on the list; they'll 6123 * get cleaned up by free_event() -- they'll also still have their 6124 * ref on the rb and will free it whenever they are done with it. 6125 * 6126 * Aside from that, this buffer is 'fully' detached and unmapped, 6127 * undo the VM accounting. 6128 */ 6129 6130 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6131 &mmap_user->locked_vm); 6132 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6133 free_uid(mmap_user); 6134 6135 out_put: 6136 ring_buffer_put(rb); /* could be last */ 6137 } 6138 6139 static const struct vm_operations_struct perf_mmap_vmops = { 6140 .open = perf_mmap_open, 6141 .close = perf_mmap_close, /* non mergeable */ 6142 .fault = perf_mmap_fault, 6143 .page_mkwrite = perf_mmap_fault, 6144 }; 6145 6146 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6147 { 6148 struct perf_event *event = file->private_data; 6149 unsigned long user_locked, user_lock_limit; 6150 struct user_struct *user = current_user(); 6151 struct perf_buffer *rb = NULL; 6152 unsigned long locked, lock_limit; 6153 unsigned long vma_size; 6154 unsigned long nr_pages; 6155 long user_extra = 0, extra = 0; 6156 int ret = 0, flags = 0; 6157 6158 /* 6159 * Don't allow mmap() of inherited per-task counters. This would 6160 * create a performance issue due to all children writing to the 6161 * same rb. 6162 */ 6163 if (event->cpu == -1 && event->attr.inherit) 6164 return -EINVAL; 6165 6166 if (!(vma->vm_flags & VM_SHARED)) 6167 return -EINVAL; 6168 6169 ret = security_perf_event_read(event); 6170 if (ret) 6171 return ret; 6172 6173 vma_size = vma->vm_end - vma->vm_start; 6174 6175 if (vma->vm_pgoff == 0) { 6176 nr_pages = (vma_size / PAGE_SIZE) - 1; 6177 } else { 6178 /* 6179 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6180 * mapped, all subsequent mappings should have the same size 6181 * and offset. Must be above the normal perf buffer. 6182 */ 6183 u64 aux_offset, aux_size; 6184 6185 if (!event->rb) 6186 return -EINVAL; 6187 6188 nr_pages = vma_size / PAGE_SIZE; 6189 6190 mutex_lock(&event->mmap_mutex); 6191 ret = -EINVAL; 6192 6193 rb = event->rb; 6194 if (!rb) 6195 goto aux_unlock; 6196 6197 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6198 aux_size = READ_ONCE(rb->user_page->aux_size); 6199 6200 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6201 goto aux_unlock; 6202 6203 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6204 goto aux_unlock; 6205 6206 /* already mapped with a different offset */ 6207 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6208 goto aux_unlock; 6209 6210 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6211 goto aux_unlock; 6212 6213 /* already mapped with a different size */ 6214 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6215 goto aux_unlock; 6216 6217 if (!is_power_of_2(nr_pages)) 6218 goto aux_unlock; 6219 6220 if (!atomic_inc_not_zero(&rb->mmap_count)) 6221 goto aux_unlock; 6222 6223 if (rb_has_aux(rb)) { 6224 atomic_inc(&rb->aux_mmap_count); 6225 ret = 0; 6226 goto unlock; 6227 } 6228 6229 atomic_set(&rb->aux_mmap_count, 1); 6230 user_extra = nr_pages; 6231 6232 goto accounting; 6233 } 6234 6235 /* 6236 * If we have rb pages ensure they're a power-of-two number, so we 6237 * can do bitmasks instead of modulo. 6238 */ 6239 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6240 return -EINVAL; 6241 6242 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6243 return -EINVAL; 6244 6245 WARN_ON_ONCE(event->ctx->parent_ctx); 6246 again: 6247 mutex_lock(&event->mmap_mutex); 6248 if (event->rb) { 6249 if (data_page_nr(event->rb) != nr_pages) { 6250 ret = -EINVAL; 6251 goto unlock; 6252 } 6253 6254 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6255 /* 6256 * Raced against perf_mmap_close() through 6257 * perf_event_set_output(). Try again, hope for better 6258 * luck. 6259 */ 6260 mutex_unlock(&event->mmap_mutex); 6261 goto again; 6262 } 6263 6264 goto unlock; 6265 } 6266 6267 user_extra = nr_pages + 1; 6268 6269 accounting: 6270 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6271 6272 /* 6273 * Increase the limit linearly with more CPUs: 6274 */ 6275 user_lock_limit *= num_online_cpus(); 6276 6277 user_locked = atomic_long_read(&user->locked_vm); 6278 6279 /* 6280 * sysctl_perf_event_mlock may have changed, so that 6281 * user->locked_vm > user_lock_limit 6282 */ 6283 if (user_locked > user_lock_limit) 6284 user_locked = user_lock_limit; 6285 user_locked += user_extra; 6286 6287 if (user_locked > user_lock_limit) { 6288 /* 6289 * charge locked_vm until it hits user_lock_limit; 6290 * charge the rest from pinned_vm 6291 */ 6292 extra = user_locked - user_lock_limit; 6293 user_extra -= extra; 6294 } 6295 6296 lock_limit = rlimit(RLIMIT_MEMLOCK); 6297 lock_limit >>= PAGE_SHIFT; 6298 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6299 6300 if ((locked > lock_limit) && perf_is_paranoid() && 6301 !capable(CAP_IPC_LOCK)) { 6302 ret = -EPERM; 6303 goto unlock; 6304 } 6305 6306 WARN_ON(!rb && event->rb); 6307 6308 if (vma->vm_flags & VM_WRITE) 6309 flags |= RING_BUFFER_WRITABLE; 6310 6311 if (!rb) { 6312 rb = rb_alloc(nr_pages, 6313 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6314 event->cpu, flags); 6315 6316 if (!rb) { 6317 ret = -ENOMEM; 6318 goto unlock; 6319 } 6320 6321 atomic_set(&rb->mmap_count, 1); 6322 rb->mmap_user = get_current_user(); 6323 rb->mmap_locked = extra; 6324 6325 ring_buffer_attach(event, rb); 6326 6327 perf_event_update_time(event); 6328 perf_event_init_userpage(event); 6329 perf_event_update_userpage(event); 6330 } else { 6331 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6332 event->attr.aux_watermark, flags); 6333 if (!ret) 6334 rb->aux_mmap_locked = extra; 6335 } 6336 6337 unlock: 6338 if (!ret) { 6339 atomic_long_add(user_extra, &user->locked_vm); 6340 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6341 6342 atomic_inc(&event->mmap_count); 6343 } else if (rb) { 6344 atomic_dec(&rb->mmap_count); 6345 } 6346 aux_unlock: 6347 mutex_unlock(&event->mmap_mutex); 6348 6349 /* 6350 * Since pinned accounting is per vm we cannot allow fork() to copy our 6351 * vma. 6352 */ 6353 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6354 vma->vm_ops = &perf_mmap_vmops; 6355 6356 if (event->pmu->event_mapped) 6357 event->pmu->event_mapped(event, vma->vm_mm); 6358 6359 return ret; 6360 } 6361 6362 static int perf_fasync(int fd, struct file *filp, int on) 6363 { 6364 struct inode *inode = file_inode(filp); 6365 struct perf_event *event = filp->private_data; 6366 int retval; 6367 6368 inode_lock(inode); 6369 retval = fasync_helper(fd, filp, on, &event->fasync); 6370 inode_unlock(inode); 6371 6372 if (retval < 0) 6373 return retval; 6374 6375 return 0; 6376 } 6377 6378 static const struct file_operations perf_fops = { 6379 .llseek = no_llseek, 6380 .release = perf_release, 6381 .read = perf_read, 6382 .poll = perf_poll, 6383 .unlocked_ioctl = perf_ioctl, 6384 .compat_ioctl = perf_compat_ioctl, 6385 .mmap = perf_mmap, 6386 .fasync = perf_fasync, 6387 }; 6388 6389 /* 6390 * Perf event wakeup 6391 * 6392 * If there's data, ensure we set the poll() state and publish everything 6393 * to user-space before waking everybody up. 6394 */ 6395 6396 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6397 { 6398 /* only the parent has fasync state */ 6399 if (event->parent) 6400 event = event->parent; 6401 return &event->fasync; 6402 } 6403 6404 void perf_event_wakeup(struct perf_event *event) 6405 { 6406 ring_buffer_wakeup(event); 6407 6408 if (event->pending_kill) { 6409 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6410 event->pending_kill = 0; 6411 } 6412 } 6413 6414 static void perf_sigtrap(struct perf_event *event) 6415 { 6416 /* 6417 * We'd expect this to only occur if the irq_work is delayed and either 6418 * ctx->task or current has changed in the meantime. This can be the 6419 * case on architectures that do not implement arch_irq_work_raise(). 6420 */ 6421 if (WARN_ON_ONCE(event->ctx->task != current)) 6422 return; 6423 6424 /* 6425 * perf_pending_event() can race with the task exiting. 6426 */ 6427 if (current->flags & PF_EXITING) 6428 return; 6429 6430 send_sig_perf((void __user *)event->pending_addr, 6431 event->attr.type, event->attr.sig_data); 6432 } 6433 6434 static void perf_pending_event_disable(struct perf_event *event) 6435 { 6436 int cpu = READ_ONCE(event->pending_disable); 6437 6438 if (cpu < 0) 6439 return; 6440 6441 if (cpu == smp_processor_id()) { 6442 WRITE_ONCE(event->pending_disable, -1); 6443 6444 if (event->attr.sigtrap) { 6445 perf_sigtrap(event); 6446 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6447 return; 6448 } 6449 6450 perf_event_disable_local(event); 6451 return; 6452 } 6453 6454 /* 6455 * CPU-A CPU-B 6456 * 6457 * perf_event_disable_inatomic() 6458 * @pending_disable = CPU-A; 6459 * irq_work_queue(); 6460 * 6461 * sched-out 6462 * @pending_disable = -1; 6463 * 6464 * sched-in 6465 * perf_event_disable_inatomic() 6466 * @pending_disable = CPU-B; 6467 * irq_work_queue(); // FAILS 6468 * 6469 * irq_work_run() 6470 * perf_pending_event() 6471 * 6472 * But the event runs on CPU-B and wants disabling there. 6473 */ 6474 irq_work_queue_on(&event->pending, cpu); 6475 } 6476 6477 static void perf_pending_event(struct irq_work *entry) 6478 { 6479 struct perf_event *event = container_of(entry, struct perf_event, pending); 6480 int rctx; 6481 6482 rctx = perf_swevent_get_recursion_context(); 6483 /* 6484 * If we 'fail' here, that's OK, it means recursion is already disabled 6485 * and we won't recurse 'further'. 6486 */ 6487 6488 perf_pending_event_disable(event); 6489 6490 if (event->pending_wakeup) { 6491 event->pending_wakeup = 0; 6492 perf_event_wakeup(event); 6493 } 6494 6495 if (rctx >= 0) 6496 perf_swevent_put_recursion_context(rctx); 6497 } 6498 6499 #ifdef CONFIG_GUEST_PERF_EVENTS 6500 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6501 6502 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6503 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6504 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6505 6506 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6507 { 6508 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6509 return; 6510 6511 rcu_assign_pointer(perf_guest_cbs, cbs); 6512 static_call_update(__perf_guest_state, cbs->state); 6513 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6514 6515 /* Implementing ->handle_intel_pt_intr is optional. */ 6516 if (cbs->handle_intel_pt_intr) 6517 static_call_update(__perf_guest_handle_intel_pt_intr, 6518 cbs->handle_intel_pt_intr); 6519 } 6520 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6521 6522 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6523 { 6524 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6525 return; 6526 6527 rcu_assign_pointer(perf_guest_cbs, NULL); 6528 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6529 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6530 static_call_update(__perf_guest_handle_intel_pt_intr, 6531 (void *)&__static_call_return0); 6532 synchronize_rcu(); 6533 } 6534 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6535 #endif 6536 6537 static void 6538 perf_output_sample_regs(struct perf_output_handle *handle, 6539 struct pt_regs *regs, u64 mask) 6540 { 6541 int bit; 6542 DECLARE_BITMAP(_mask, 64); 6543 6544 bitmap_from_u64(_mask, mask); 6545 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6546 u64 val; 6547 6548 val = perf_reg_value(regs, bit); 6549 perf_output_put(handle, val); 6550 } 6551 } 6552 6553 static void perf_sample_regs_user(struct perf_regs *regs_user, 6554 struct pt_regs *regs) 6555 { 6556 if (user_mode(regs)) { 6557 regs_user->abi = perf_reg_abi(current); 6558 regs_user->regs = regs; 6559 } else if (!(current->flags & PF_KTHREAD)) { 6560 perf_get_regs_user(regs_user, regs); 6561 } else { 6562 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6563 regs_user->regs = NULL; 6564 } 6565 } 6566 6567 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6568 struct pt_regs *regs) 6569 { 6570 regs_intr->regs = regs; 6571 regs_intr->abi = perf_reg_abi(current); 6572 } 6573 6574 6575 /* 6576 * Get remaining task size from user stack pointer. 6577 * 6578 * It'd be better to take stack vma map and limit this more 6579 * precisely, but there's no way to get it safely under interrupt, 6580 * so using TASK_SIZE as limit. 6581 */ 6582 static u64 perf_ustack_task_size(struct pt_regs *regs) 6583 { 6584 unsigned long addr = perf_user_stack_pointer(regs); 6585 6586 if (!addr || addr >= TASK_SIZE) 6587 return 0; 6588 6589 return TASK_SIZE - addr; 6590 } 6591 6592 static u16 6593 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6594 struct pt_regs *regs) 6595 { 6596 u64 task_size; 6597 6598 /* No regs, no stack pointer, no dump. */ 6599 if (!regs) 6600 return 0; 6601 6602 /* 6603 * Check if we fit in with the requested stack size into the: 6604 * - TASK_SIZE 6605 * If we don't, we limit the size to the TASK_SIZE. 6606 * 6607 * - remaining sample size 6608 * If we don't, we customize the stack size to 6609 * fit in to the remaining sample size. 6610 */ 6611 6612 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6613 stack_size = min(stack_size, (u16) task_size); 6614 6615 /* Current header size plus static size and dynamic size. */ 6616 header_size += 2 * sizeof(u64); 6617 6618 /* Do we fit in with the current stack dump size? */ 6619 if ((u16) (header_size + stack_size) < header_size) { 6620 /* 6621 * If we overflow the maximum size for the sample, 6622 * we customize the stack dump size to fit in. 6623 */ 6624 stack_size = USHRT_MAX - header_size - sizeof(u64); 6625 stack_size = round_up(stack_size, sizeof(u64)); 6626 } 6627 6628 return stack_size; 6629 } 6630 6631 static void 6632 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6633 struct pt_regs *regs) 6634 { 6635 /* Case of a kernel thread, nothing to dump */ 6636 if (!regs) { 6637 u64 size = 0; 6638 perf_output_put(handle, size); 6639 } else { 6640 unsigned long sp; 6641 unsigned int rem; 6642 u64 dyn_size; 6643 6644 /* 6645 * We dump: 6646 * static size 6647 * - the size requested by user or the best one we can fit 6648 * in to the sample max size 6649 * data 6650 * - user stack dump data 6651 * dynamic size 6652 * - the actual dumped size 6653 */ 6654 6655 /* Static size. */ 6656 perf_output_put(handle, dump_size); 6657 6658 /* Data. */ 6659 sp = perf_user_stack_pointer(regs); 6660 rem = __output_copy_user(handle, (void *) sp, dump_size); 6661 dyn_size = dump_size - rem; 6662 6663 perf_output_skip(handle, rem); 6664 6665 /* Dynamic size. */ 6666 perf_output_put(handle, dyn_size); 6667 } 6668 } 6669 6670 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6671 struct perf_sample_data *data, 6672 size_t size) 6673 { 6674 struct perf_event *sampler = event->aux_event; 6675 struct perf_buffer *rb; 6676 6677 data->aux_size = 0; 6678 6679 if (!sampler) 6680 goto out; 6681 6682 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6683 goto out; 6684 6685 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6686 goto out; 6687 6688 rb = ring_buffer_get(sampler); 6689 if (!rb) 6690 goto out; 6691 6692 /* 6693 * If this is an NMI hit inside sampling code, don't take 6694 * the sample. See also perf_aux_sample_output(). 6695 */ 6696 if (READ_ONCE(rb->aux_in_sampling)) { 6697 data->aux_size = 0; 6698 } else { 6699 size = min_t(size_t, size, perf_aux_size(rb)); 6700 data->aux_size = ALIGN(size, sizeof(u64)); 6701 } 6702 ring_buffer_put(rb); 6703 6704 out: 6705 return data->aux_size; 6706 } 6707 6708 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6709 struct perf_event *event, 6710 struct perf_output_handle *handle, 6711 unsigned long size) 6712 { 6713 unsigned long flags; 6714 long ret; 6715 6716 /* 6717 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6718 * paths. If we start calling them in NMI context, they may race with 6719 * the IRQ ones, that is, for example, re-starting an event that's just 6720 * been stopped, which is why we're using a separate callback that 6721 * doesn't change the event state. 6722 * 6723 * IRQs need to be disabled to prevent IPIs from racing with us. 6724 */ 6725 local_irq_save(flags); 6726 /* 6727 * Guard against NMI hits inside the critical section; 6728 * see also perf_prepare_sample_aux(). 6729 */ 6730 WRITE_ONCE(rb->aux_in_sampling, 1); 6731 barrier(); 6732 6733 ret = event->pmu->snapshot_aux(event, handle, size); 6734 6735 barrier(); 6736 WRITE_ONCE(rb->aux_in_sampling, 0); 6737 local_irq_restore(flags); 6738 6739 return ret; 6740 } 6741 6742 static void perf_aux_sample_output(struct perf_event *event, 6743 struct perf_output_handle *handle, 6744 struct perf_sample_data *data) 6745 { 6746 struct perf_event *sampler = event->aux_event; 6747 struct perf_buffer *rb; 6748 unsigned long pad; 6749 long size; 6750 6751 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6752 return; 6753 6754 rb = ring_buffer_get(sampler); 6755 if (!rb) 6756 return; 6757 6758 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6759 6760 /* 6761 * An error here means that perf_output_copy() failed (returned a 6762 * non-zero surplus that it didn't copy), which in its current 6763 * enlightened implementation is not possible. If that changes, we'd 6764 * like to know. 6765 */ 6766 if (WARN_ON_ONCE(size < 0)) 6767 goto out_put; 6768 6769 /* 6770 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6771 * perf_prepare_sample_aux(), so should not be more than that. 6772 */ 6773 pad = data->aux_size - size; 6774 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6775 pad = 8; 6776 6777 if (pad) { 6778 u64 zero = 0; 6779 perf_output_copy(handle, &zero, pad); 6780 } 6781 6782 out_put: 6783 ring_buffer_put(rb); 6784 } 6785 6786 static void __perf_event_header__init_id(struct perf_event_header *header, 6787 struct perf_sample_data *data, 6788 struct perf_event *event) 6789 { 6790 u64 sample_type = event->attr.sample_type; 6791 6792 data->type = sample_type; 6793 header->size += event->id_header_size; 6794 6795 if (sample_type & PERF_SAMPLE_TID) { 6796 /* namespace issues */ 6797 data->tid_entry.pid = perf_event_pid(event, current); 6798 data->tid_entry.tid = perf_event_tid(event, current); 6799 } 6800 6801 if (sample_type & PERF_SAMPLE_TIME) 6802 data->time = perf_event_clock(event); 6803 6804 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6805 data->id = primary_event_id(event); 6806 6807 if (sample_type & PERF_SAMPLE_STREAM_ID) 6808 data->stream_id = event->id; 6809 6810 if (sample_type & PERF_SAMPLE_CPU) { 6811 data->cpu_entry.cpu = raw_smp_processor_id(); 6812 data->cpu_entry.reserved = 0; 6813 } 6814 } 6815 6816 void perf_event_header__init_id(struct perf_event_header *header, 6817 struct perf_sample_data *data, 6818 struct perf_event *event) 6819 { 6820 if (event->attr.sample_id_all) 6821 __perf_event_header__init_id(header, data, event); 6822 } 6823 6824 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6825 struct perf_sample_data *data) 6826 { 6827 u64 sample_type = data->type; 6828 6829 if (sample_type & PERF_SAMPLE_TID) 6830 perf_output_put(handle, data->tid_entry); 6831 6832 if (sample_type & PERF_SAMPLE_TIME) 6833 perf_output_put(handle, data->time); 6834 6835 if (sample_type & PERF_SAMPLE_ID) 6836 perf_output_put(handle, data->id); 6837 6838 if (sample_type & PERF_SAMPLE_STREAM_ID) 6839 perf_output_put(handle, data->stream_id); 6840 6841 if (sample_type & PERF_SAMPLE_CPU) 6842 perf_output_put(handle, data->cpu_entry); 6843 6844 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6845 perf_output_put(handle, data->id); 6846 } 6847 6848 void perf_event__output_id_sample(struct perf_event *event, 6849 struct perf_output_handle *handle, 6850 struct perf_sample_data *sample) 6851 { 6852 if (event->attr.sample_id_all) 6853 __perf_event__output_id_sample(handle, sample); 6854 } 6855 6856 static void perf_output_read_one(struct perf_output_handle *handle, 6857 struct perf_event *event, 6858 u64 enabled, u64 running) 6859 { 6860 u64 read_format = event->attr.read_format; 6861 u64 values[4]; 6862 int n = 0; 6863 6864 values[n++] = perf_event_count(event); 6865 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6866 values[n++] = enabled + 6867 atomic64_read(&event->child_total_time_enabled); 6868 } 6869 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6870 values[n++] = running + 6871 atomic64_read(&event->child_total_time_running); 6872 } 6873 if (read_format & PERF_FORMAT_ID) 6874 values[n++] = primary_event_id(event); 6875 6876 __output_copy(handle, values, n * sizeof(u64)); 6877 } 6878 6879 static void perf_output_read_group(struct perf_output_handle *handle, 6880 struct perf_event *event, 6881 u64 enabled, u64 running) 6882 { 6883 struct perf_event *leader = event->group_leader, *sub; 6884 u64 read_format = event->attr.read_format; 6885 u64 values[5]; 6886 int n = 0; 6887 6888 values[n++] = 1 + leader->nr_siblings; 6889 6890 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6891 values[n++] = enabled; 6892 6893 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6894 values[n++] = running; 6895 6896 if ((leader != event) && 6897 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6898 leader->pmu->read(leader); 6899 6900 values[n++] = perf_event_count(leader); 6901 if (read_format & PERF_FORMAT_ID) 6902 values[n++] = primary_event_id(leader); 6903 6904 __output_copy(handle, values, n * sizeof(u64)); 6905 6906 for_each_sibling_event(sub, leader) { 6907 n = 0; 6908 6909 if ((sub != event) && 6910 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6911 sub->pmu->read(sub); 6912 6913 values[n++] = perf_event_count(sub); 6914 if (read_format & PERF_FORMAT_ID) 6915 values[n++] = primary_event_id(sub); 6916 6917 __output_copy(handle, values, n * sizeof(u64)); 6918 } 6919 } 6920 6921 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6922 PERF_FORMAT_TOTAL_TIME_RUNNING) 6923 6924 /* 6925 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6926 * 6927 * The problem is that its both hard and excessively expensive to iterate the 6928 * child list, not to mention that its impossible to IPI the children running 6929 * on another CPU, from interrupt/NMI context. 6930 */ 6931 static void perf_output_read(struct perf_output_handle *handle, 6932 struct perf_event *event) 6933 { 6934 u64 enabled = 0, running = 0, now; 6935 u64 read_format = event->attr.read_format; 6936 6937 /* 6938 * compute total_time_enabled, total_time_running 6939 * based on snapshot values taken when the event 6940 * was last scheduled in. 6941 * 6942 * we cannot simply called update_context_time() 6943 * because of locking issue as we are called in 6944 * NMI context 6945 */ 6946 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6947 calc_timer_values(event, &now, &enabled, &running); 6948 6949 if (event->attr.read_format & PERF_FORMAT_GROUP) 6950 perf_output_read_group(handle, event, enabled, running); 6951 else 6952 perf_output_read_one(handle, event, enabled, running); 6953 } 6954 6955 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6956 { 6957 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6958 } 6959 6960 void perf_output_sample(struct perf_output_handle *handle, 6961 struct perf_event_header *header, 6962 struct perf_sample_data *data, 6963 struct perf_event *event) 6964 { 6965 u64 sample_type = data->type; 6966 6967 perf_output_put(handle, *header); 6968 6969 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6970 perf_output_put(handle, data->id); 6971 6972 if (sample_type & PERF_SAMPLE_IP) 6973 perf_output_put(handle, data->ip); 6974 6975 if (sample_type & PERF_SAMPLE_TID) 6976 perf_output_put(handle, data->tid_entry); 6977 6978 if (sample_type & PERF_SAMPLE_TIME) 6979 perf_output_put(handle, data->time); 6980 6981 if (sample_type & PERF_SAMPLE_ADDR) 6982 perf_output_put(handle, data->addr); 6983 6984 if (sample_type & PERF_SAMPLE_ID) 6985 perf_output_put(handle, data->id); 6986 6987 if (sample_type & PERF_SAMPLE_STREAM_ID) 6988 perf_output_put(handle, data->stream_id); 6989 6990 if (sample_type & PERF_SAMPLE_CPU) 6991 perf_output_put(handle, data->cpu_entry); 6992 6993 if (sample_type & PERF_SAMPLE_PERIOD) 6994 perf_output_put(handle, data->period); 6995 6996 if (sample_type & PERF_SAMPLE_READ) 6997 perf_output_read(handle, event); 6998 6999 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7000 int size = 1; 7001 7002 size += data->callchain->nr; 7003 size *= sizeof(u64); 7004 __output_copy(handle, data->callchain, size); 7005 } 7006 7007 if (sample_type & PERF_SAMPLE_RAW) { 7008 struct perf_raw_record *raw = data->raw; 7009 7010 if (raw) { 7011 struct perf_raw_frag *frag = &raw->frag; 7012 7013 perf_output_put(handle, raw->size); 7014 do { 7015 if (frag->copy) { 7016 __output_custom(handle, frag->copy, 7017 frag->data, frag->size); 7018 } else { 7019 __output_copy(handle, frag->data, 7020 frag->size); 7021 } 7022 if (perf_raw_frag_last(frag)) 7023 break; 7024 frag = frag->next; 7025 } while (1); 7026 if (frag->pad) 7027 __output_skip(handle, NULL, frag->pad); 7028 } else { 7029 struct { 7030 u32 size; 7031 u32 data; 7032 } raw = { 7033 .size = sizeof(u32), 7034 .data = 0, 7035 }; 7036 perf_output_put(handle, raw); 7037 } 7038 } 7039 7040 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7041 if (data->br_stack) { 7042 size_t size; 7043 7044 size = data->br_stack->nr 7045 * sizeof(struct perf_branch_entry); 7046 7047 perf_output_put(handle, data->br_stack->nr); 7048 if (perf_sample_save_hw_index(event)) 7049 perf_output_put(handle, data->br_stack->hw_idx); 7050 perf_output_copy(handle, data->br_stack->entries, size); 7051 } else { 7052 /* 7053 * we always store at least the value of nr 7054 */ 7055 u64 nr = 0; 7056 perf_output_put(handle, nr); 7057 } 7058 } 7059 7060 if (sample_type & PERF_SAMPLE_REGS_USER) { 7061 u64 abi = data->regs_user.abi; 7062 7063 /* 7064 * If there are no regs to dump, notice it through 7065 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7066 */ 7067 perf_output_put(handle, abi); 7068 7069 if (abi) { 7070 u64 mask = event->attr.sample_regs_user; 7071 perf_output_sample_regs(handle, 7072 data->regs_user.regs, 7073 mask); 7074 } 7075 } 7076 7077 if (sample_type & PERF_SAMPLE_STACK_USER) { 7078 perf_output_sample_ustack(handle, 7079 data->stack_user_size, 7080 data->regs_user.regs); 7081 } 7082 7083 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7084 perf_output_put(handle, data->weight.full); 7085 7086 if (sample_type & PERF_SAMPLE_DATA_SRC) 7087 perf_output_put(handle, data->data_src.val); 7088 7089 if (sample_type & PERF_SAMPLE_TRANSACTION) 7090 perf_output_put(handle, data->txn); 7091 7092 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7093 u64 abi = data->regs_intr.abi; 7094 /* 7095 * If there are no regs to dump, notice it through 7096 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7097 */ 7098 perf_output_put(handle, abi); 7099 7100 if (abi) { 7101 u64 mask = event->attr.sample_regs_intr; 7102 7103 perf_output_sample_regs(handle, 7104 data->regs_intr.regs, 7105 mask); 7106 } 7107 } 7108 7109 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7110 perf_output_put(handle, data->phys_addr); 7111 7112 if (sample_type & PERF_SAMPLE_CGROUP) 7113 perf_output_put(handle, data->cgroup); 7114 7115 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7116 perf_output_put(handle, data->data_page_size); 7117 7118 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7119 perf_output_put(handle, data->code_page_size); 7120 7121 if (sample_type & PERF_SAMPLE_AUX) { 7122 perf_output_put(handle, data->aux_size); 7123 7124 if (data->aux_size) 7125 perf_aux_sample_output(event, handle, data); 7126 } 7127 7128 if (!event->attr.watermark) { 7129 int wakeup_events = event->attr.wakeup_events; 7130 7131 if (wakeup_events) { 7132 struct perf_buffer *rb = handle->rb; 7133 int events = local_inc_return(&rb->events); 7134 7135 if (events >= wakeup_events) { 7136 local_sub(wakeup_events, &rb->events); 7137 local_inc(&rb->wakeup); 7138 } 7139 } 7140 } 7141 } 7142 7143 static u64 perf_virt_to_phys(u64 virt) 7144 { 7145 u64 phys_addr = 0; 7146 7147 if (!virt) 7148 return 0; 7149 7150 if (virt >= TASK_SIZE) { 7151 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7152 if (virt_addr_valid((void *)(uintptr_t)virt) && 7153 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7154 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7155 } else { 7156 /* 7157 * Walking the pages tables for user address. 7158 * Interrupts are disabled, so it prevents any tear down 7159 * of the page tables. 7160 * Try IRQ-safe get_user_page_fast_only first. 7161 * If failed, leave phys_addr as 0. 7162 */ 7163 if (current->mm != NULL) { 7164 struct page *p; 7165 7166 pagefault_disable(); 7167 if (get_user_page_fast_only(virt, 0, &p)) { 7168 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7169 put_page(p); 7170 } 7171 pagefault_enable(); 7172 } 7173 } 7174 7175 return phys_addr; 7176 } 7177 7178 /* 7179 * Return the pagetable size of a given virtual address. 7180 */ 7181 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7182 { 7183 u64 size = 0; 7184 7185 #ifdef CONFIG_HAVE_FAST_GUP 7186 pgd_t *pgdp, pgd; 7187 p4d_t *p4dp, p4d; 7188 pud_t *pudp, pud; 7189 pmd_t *pmdp, pmd; 7190 pte_t *ptep, pte; 7191 7192 pgdp = pgd_offset(mm, addr); 7193 pgd = READ_ONCE(*pgdp); 7194 if (pgd_none(pgd)) 7195 return 0; 7196 7197 if (pgd_leaf(pgd)) 7198 return pgd_leaf_size(pgd); 7199 7200 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7201 p4d = READ_ONCE(*p4dp); 7202 if (!p4d_present(p4d)) 7203 return 0; 7204 7205 if (p4d_leaf(p4d)) 7206 return p4d_leaf_size(p4d); 7207 7208 pudp = pud_offset_lockless(p4dp, p4d, addr); 7209 pud = READ_ONCE(*pudp); 7210 if (!pud_present(pud)) 7211 return 0; 7212 7213 if (pud_leaf(pud)) 7214 return pud_leaf_size(pud); 7215 7216 pmdp = pmd_offset_lockless(pudp, pud, addr); 7217 pmd = READ_ONCE(*pmdp); 7218 if (!pmd_present(pmd)) 7219 return 0; 7220 7221 if (pmd_leaf(pmd)) 7222 return pmd_leaf_size(pmd); 7223 7224 ptep = pte_offset_map(&pmd, addr); 7225 pte = ptep_get_lockless(ptep); 7226 if (pte_present(pte)) 7227 size = pte_leaf_size(pte); 7228 pte_unmap(ptep); 7229 #endif /* CONFIG_HAVE_FAST_GUP */ 7230 7231 return size; 7232 } 7233 7234 static u64 perf_get_page_size(unsigned long addr) 7235 { 7236 struct mm_struct *mm; 7237 unsigned long flags; 7238 u64 size; 7239 7240 if (!addr) 7241 return 0; 7242 7243 /* 7244 * Software page-table walkers must disable IRQs, 7245 * which prevents any tear down of the page tables. 7246 */ 7247 local_irq_save(flags); 7248 7249 mm = current->mm; 7250 if (!mm) { 7251 /* 7252 * For kernel threads and the like, use init_mm so that 7253 * we can find kernel memory. 7254 */ 7255 mm = &init_mm; 7256 } 7257 7258 size = perf_get_pgtable_size(mm, addr); 7259 7260 local_irq_restore(flags); 7261 7262 return size; 7263 } 7264 7265 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7266 7267 struct perf_callchain_entry * 7268 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7269 { 7270 bool kernel = !event->attr.exclude_callchain_kernel; 7271 bool user = !event->attr.exclude_callchain_user; 7272 /* Disallow cross-task user callchains. */ 7273 bool crosstask = event->ctx->task && event->ctx->task != current; 7274 const u32 max_stack = event->attr.sample_max_stack; 7275 struct perf_callchain_entry *callchain; 7276 7277 if (!kernel && !user) 7278 return &__empty_callchain; 7279 7280 callchain = get_perf_callchain(regs, 0, kernel, user, 7281 max_stack, crosstask, true); 7282 return callchain ?: &__empty_callchain; 7283 } 7284 7285 void perf_prepare_sample(struct perf_event_header *header, 7286 struct perf_sample_data *data, 7287 struct perf_event *event, 7288 struct pt_regs *regs) 7289 { 7290 u64 sample_type = event->attr.sample_type; 7291 7292 header->type = PERF_RECORD_SAMPLE; 7293 header->size = sizeof(*header) + event->header_size; 7294 7295 header->misc = 0; 7296 header->misc |= perf_misc_flags(regs); 7297 7298 __perf_event_header__init_id(header, data, event); 7299 7300 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7301 data->ip = perf_instruction_pointer(regs); 7302 7303 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7304 int size = 1; 7305 7306 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7307 data->callchain = perf_callchain(event, regs); 7308 7309 size += data->callchain->nr; 7310 7311 header->size += size * sizeof(u64); 7312 } 7313 7314 if (sample_type & PERF_SAMPLE_RAW) { 7315 struct perf_raw_record *raw = data->raw; 7316 int size; 7317 7318 if (raw) { 7319 struct perf_raw_frag *frag = &raw->frag; 7320 u32 sum = 0; 7321 7322 do { 7323 sum += frag->size; 7324 if (perf_raw_frag_last(frag)) 7325 break; 7326 frag = frag->next; 7327 } while (1); 7328 7329 size = round_up(sum + sizeof(u32), sizeof(u64)); 7330 raw->size = size - sizeof(u32); 7331 frag->pad = raw->size - sum; 7332 } else { 7333 size = sizeof(u64); 7334 } 7335 7336 header->size += size; 7337 } 7338 7339 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7340 int size = sizeof(u64); /* nr */ 7341 if (data->br_stack) { 7342 if (perf_sample_save_hw_index(event)) 7343 size += sizeof(u64); 7344 7345 size += data->br_stack->nr 7346 * sizeof(struct perf_branch_entry); 7347 } 7348 header->size += size; 7349 } 7350 7351 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7352 perf_sample_regs_user(&data->regs_user, regs); 7353 7354 if (sample_type & PERF_SAMPLE_REGS_USER) { 7355 /* regs dump ABI info */ 7356 int size = sizeof(u64); 7357 7358 if (data->regs_user.regs) { 7359 u64 mask = event->attr.sample_regs_user; 7360 size += hweight64(mask) * sizeof(u64); 7361 } 7362 7363 header->size += size; 7364 } 7365 7366 if (sample_type & PERF_SAMPLE_STACK_USER) { 7367 /* 7368 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7369 * processed as the last one or have additional check added 7370 * in case new sample type is added, because we could eat 7371 * up the rest of the sample size. 7372 */ 7373 u16 stack_size = event->attr.sample_stack_user; 7374 u16 size = sizeof(u64); 7375 7376 stack_size = perf_sample_ustack_size(stack_size, header->size, 7377 data->regs_user.regs); 7378 7379 /* 7380 * If there is something to dump, add space for the dump 7381 * itself and for the field that tells the dynamic size, 7382 * which is how many have been actually dumped. 7383 */ 7384 if (stack_size) 7385 size += sizeof(u64) + stack_size; 7386 7387 data->stack_user_size = stack_size; 7388 header->size += size; 7389 } 7390 7391 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7392 /* regs dump ABI info */ 7393 int size = sizeof(u64); 7394 7395 perf_sample_regs_intr(&data->regs_intr, regs); 7396 7397 if (data->regs_intr.regs) { 7398 u64 mask = event->attr.sample_regs_intr; 7399 7400 size += hweight64(mask) * sizeof(u64); 7401 } 7402 7403 header->size += size; 7404 } 7405 7406 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7407 data->phys_addr = perf_virt_to_phys(data->addr); 7408 7409 #ifdef CONFIG_CGROUP_PERF 7410 if (sample_type & PERF_SAMPLE_CGROUP) { 7411 struct cgroup *cgrp; 7412 7413 /* protected by RCU */ 7414 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7415 data->cgroup = cgroup_id(cgrp); 7416 } 7417 #endif 7418 7419 /* 7420 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7421 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7422 * but the value will not dump to the userspace. 7423 */ 7424 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7425 data->data_page_size = perf_get_page_size(data->addr); 7426 7427 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7428 data->code_page_size = perf_get_page_size(data->ip); 7429 7430 if (sample_type & PERF_SAMPLE_AUX) { 7431 u64 size; 7432 7433 header->size += sizeof(u64); /* size */ 7434 7435 /* 7436 * Given the 16bit nature of header::size, an AUX sample can 7437 * easily overflow it, what with all the preceding sample bits. 7438 * Make sure this doesn't happen by using up to U16_MAX bytes 7439 * per sample in total (rounded down to 8 byte boundary). 7440 */ 7441 size = min_t(size_t, U16_MAX - header->size, 7442 event->attr.aux_sample_size); 7443 size = rounddown(size, 8); 7444 size = perf_prepare_sample_aux(event, data, size); 7445 7446 WARN_ON_ONCE(size + header->size > U16_MAX); 7447 header->size += size; 7448 } 7449 /* 7450 * If you're adding more sample types here, you likely need to do 7451 * something about the overflowing header::size, like repurpose the 7452 * lowest 3 bits of size, which should be always zero at the moment. 7453 * This raises a more important question, do we really need 512k sized 7454 * samples and why, so good argumentation is in order for whatever you 7455 * do here next. 7456 */ 7457 WARN_ON_ONCE(header->size & 7); 7458 } 7459 7460 static __always_inline int 7461 __perf_event_output(struct perf_event *event, 7462 struct perf_sample_data *data, 7463 struct pt_regs *regs, 7464 int (*output_begin)(struct perf_output_handle *, 7465 struct perf_sample_data *, 7466 struct perf_event *, 7467 unsigned int)) 7468 { 7469 struct perf_output_handle handle; 7470 struct perf_event_header header; 7471 int err; 7472 7473 /* protect the callchain buffers */ 7474 rcu_read_lock(); 7475 7476 perf_prepare_sample(&header, data, event, regs); 7477 7478 err = output_begin(&handle, data, event, header.size); 7479 if (err) 7480 goto exit; 7481 7482 perf_output_sample(&handle, &header, data, event); 7483 7484 perf_output_end(&handle); 7485 7486 exit: 7487 rcu_read_unlock(); 7488 return err; 7489 } 7490 7491 void 7492 perf_event_output_forward(struct perf_event *event, 7493 struct perf_sample_data *data, 7494 struct pt_regs *regs) 7495 { 7496 __perf_event_output(event, data, regs, perf_output_begin_forward); 7497 } 7498 7499 void 7500 perf_event_output_backward(struct perf_event *event, 7501 struct perf_sample_data *data, 7502 struct pt_regs *regs) 7503 { 7504 __perf_event_output(event, data, regs, perf_output_begin_backward); 7505 } 7506 7507 int 7508 perf_event_output(struct perf_event *event, 7509 struct perf_sample_data *data, 7510 struct pt_regs *regs) 7511 { 7512 return __perf_event_output(event, data, regs, perf_output_begin); 7513 } 7514 7515 /* 7516 * read event_id 7517 */ 7518 7519 struct perf_read_event { 7520 struct perf_event_header header; 7521 7522 u32 pid; 7523 u32 tid; 7524 }; 7525 7526 static void 7527 perf_event_read_event(struct perf_event *event, 7528 struct task_struct *task) 7529 { 7530 struct perf_output_handle handle; 7531 struct perf_sample_data sample; 7532 struct perf_read_event read_event = { 7533 .header = { 7534 .type = PERF_RECORD_READ, 7535 .misc = 0, 7536 .size = sizeof(read_event) + event->read_size, 7537 }, 7538 .pid = perf_event_pid(event, task), 7539 .tid = perf_event_tid(event, task), 7540 }; 7541 int ret; 7542 7543 perf_event_header__init_id(&read_event.header, &sample, event); 7544 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7545 if (ret) 7546 return; 7547 7548 perf_output_put(&handle, read_event); 7549 perf_output_read(&handle, event); 7550 perf_event__output_id_sample(event, &handle, &sample); 7551 7552 perf_output_end(&handle); 7553 } 7554 7555 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7556 7557 static void 7558 perf_iterate_ctx(struct perf_event_context *ctx, 7559 perf_iterate_f output, 7560 void *data, bool all) 7561 { 7562 struct perf_event *event; 7563 7564 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7565 if (!all) { 7566 if (event->state < PERF_EVENT_STATE_INACTIVE) 7567 continue; 7568 if (!event_filter_match(event)) 7569 continue; 7570 } 7571 7572 output(event, data); 7573 } 7574 } 7575 7576 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7577 { 7578 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7579 struct perf_event *event; 7580 7581 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7582 /* 7583 * Skip events that are not fully formed yet; ensure that 7584 * if we observe event->ctx, both event and ctx will be 7585 * complete enough. See perf_install_in_context(). 7586 */ 7587 if (!smp_load_acquire(&event->ctx)) 7588 continue; 7589 7590 if (event->state < PERF_EVENT_STATE_INACTIVE) 7591 continue; 7592 if (!event_filter_match(event)) 7593 continue; 7594 output(event, data); 7595 } 7596 } 7597 7598 /* 7599 * Iterate all events that need to receive side-band events. 7600 * 7601 * For new callers; ensure that account_pmu_sb_event() includes 7602 * your event, otherwise it might not get delivered. 7603 */ 7604 static void 7605 perf_iterate_sb(perf_iterate_f output, void *data, 7606 struct perf_event_context *task_ctx) 7607 { 7608 struct perf_event_context *ctx; 7609 int ctxn; 7610 7611 rcu_read_lock(); 7612 preempt_disable(); 7613 7614 /* 7615 * If we have task_ctx != NULL we only notify the task context itself. 7616 * The task_ctx is set only for EXIT events before releasing task 7617 * context. 7618 */ 7619 if (task_ctx) { 7620 perf_iterate_ctx(task_ctx, output, data, false); 7621 goto done; 7622 } 7623 7624 perf_iterate_sb_cpu(output, data); 7625 7626 for_each_task_context_nr(ctxn) { 7627 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7628 if (ctx) 7629 perf_iterate_ctx(ctx, output, data, false); 7630 } 7631 done: 7632 preempt_enable(); 7633 rcu_read_unlock(); 7634 } 7635 7636 /* 7637 * Clear all file-based filters at exec, they'll have to be 7638 * re-instated when/if these objects are mmapped again. 7639 */ 7640 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7641 { 7642 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7643 struct perf_addr_filter *filter; 7644 unsigned int restart = 0, count = 0; 7645 unsigned long flags; 7646 7647 if (!has_addr_filter(event)) 7648 return; 7649 7650 raw_spin_lock_irqsave(&ifh->lock, flags); 7651 list_for_each_entry(filter, &ifh->list, entry) { 7652 if (filter->path.dentry) { 7653 event->addr_filter_ranges[count].start = 0; 7654 event->addr_filter_ranges[count].size = 0; 7655 restart++; 7656 } 7657 7658 count++; 7659 } 7660 7661 if (restart) 7662 event->addr_filters_gen++; 7663 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7664 7665 if (restart) 7666 perf_event_stop(event, 1); 7667 } 7668 7669 void perf_event_exec(void) 7670 { 7671 struct perf_event_context *ctx; 7672 int ctxn; 7673 7674 for_each_task_context_nr(ctxn) { 7675 perf_event_enable_on_exec(ctxn); 7676 perf_event_remove_on_exec(ctxn); 7677 7678 rcu_read_lock(); 7679 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7680 if (ctx) { 7681 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7682 NULL, true); 7683 } 7684 rcu_read_unlock(); 7685 } 7686 } 7687 7688 struct remote_output { 7689 struct perf_buffer *rb; 7690 int err; 7691 }; 7692 7693 static void __perf_event_output_stop(struct perf_event *event, void *data) 7694 { 7695 struct perf_event *parent = event->parent; 7696 struct remote_output *ro = data; 7697 struct perf_buffer *rb = ro->rb; 7698 struct stop_event_data sd = { 7699 .event = event, 7700 }; 7701 7702 if (!has_aux(event)) 7703 return; 7704 7705 if (!parent) 7706 parent = event; 7707 7708 /* 7709 * In case of inheritance, it will be the parent that links to the 7710 * ring-buffer, but it will be the child that's actually using it. 7711 * 7712 * We are using event::rb to determine if the event should be stopped, 7713 * however this may race with ring_buffer_attach() (through set_output), 7714 * which will make us skip the event that actually needs to be stopped. 7715 * So ring_buffer_attach() has to stop an aux event before re-assigning 7716 * its rb pointer. 7717 */ 7718 if (rcu_dereference(parent->rb) == rb) 7719 ro->err = __perf_event_stop(&sd); 7720 } 7721 7722 static int __perf_pmu_output_stop(void *info) 7723 { 7724 struct perf_event *event = info; 7725 struct pmu *pmu = event->ctx->pmu; 7726 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7727 struct remote_output ro = { 7728 .rb = event->rb, 7729 }; 7730 7731 rcu_read_lock(); 7732 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7733 if (cpuctx->task_ctx) 7734 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7735 &ro, false); 7736 rcu_read_unlock(); 7737 7738 return ro.err; 7739 } 7740 7741 static void perf_pmu_output_stop(struct perf_event *event) 7742 { 7743 struct perf_event *iter; 7744 int err, cpu; 7745 7746 restart: 7747 rcu_read_lock(); 7748 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7749 /* 7750 * For per-CPU events, we need to make sure that neither they 7751 * nor their children are running; for cpu==-1 events it's 7752 * sufficient to stop the event itself if it's active, since 7753 * it can't have children. 7754 */ 7755 cpu = iter->cpu; 7756 if (cpu == -1) 7757 cpu = READ_ONCE(iter->oncpu); 7758 7759 if (cpu == -1) 7760 continue; 7761 7762 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7763 if (err == -EAGAIN) { 7764 rcu_read_unlock(); 7765 goto restart; 7766 } 7767 } 7768 rcu_read_unlock(); 7769 } 7770 7771 /* 7772 * task tracking -- fork/exit 7773 * 7774 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7775 */ 7776 7777 struct perf_task_event { 7778 struct task_struct *task; 7779 struct perf_event_context *task_ctx; 7780 7781 struct { 7782 struct perf_event_header header; 7783 7784 u32 pid; 7785 u32 ppid; 7786 u32 tid; 7787 u32 ptid; 7788 u64 time; 7789 } event_id; 7790 }; 7791 7792 static int perf_event_task_match(struct perf_event *event) 7793 { 7794 return event->attr.comm || event->attr.mmap || 7795 event->attr.mmap2 || event->attr.mmap_data || 7796 event->attr.task; 7797 } 7798 7799 static void perf_event_task_output(struct perf_event *event, 7800 void *data) 7801 { 7802 struct perf_task_event *task_event = data; 7803 struct perf_output_handle handle; 7804 struct perf_sample_data sample; 7805 struct task_struct *task = task_event->task; 7806 int ret, size = task_event->event_id.header.size; 7807 7808 if (!perf_event_task_match(event)) 7809 return; 7810 7811 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7812 7813 ret = perf_output_begin(&handle, &sample, event, 7814 task_event->event_id.header.size); 7815 if (ret) 7816 goto out; 7817 7818 task_event->event_id.pid = perf_event_pid(event, task); 7819 task_event->event_id.tid = perf_event_tid(event, task); 7820 7821 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7822 task_event->event_id.ppid = perf_event_pid(event, 7823 task->real_parent); 7824 task_event->event_id.ptid = perf_event_pid(event, 7825 task->real_parent); 7826 } else { /* PERF_RECORD_FORK */ 7827 task_event->event_id.ppid = perf_event_pid(event, current); 7828 task_event->event_id.ptid = perf_event_tid(event, current); 7829 } 7830 7831 task_event->event_id.time = perf_event_clock(event); 7832 7833 perf_output_put(&handle, task_event->event_id); 7834 7835 perf_event__output_id_sample(event, &handle, &sample); 7836 7837 perf_output_end(&handle); 7838 out: 7839 task_event->event_id.header.size = size; 7840 } 7841 7842 static void perf_event_task(struct task_struct *task, 7843 struct perf_event_context *task_ctx, 7844 int new) 7845 { 7846 struct perf_task_event task_event; 7847 7848 if (!atomic_read(&nr_comm_events) && 7849 !atomic_read(&nr_mmap_events) && 7850 !atomic_read(&nr_task_events)) 7851 return; 7852 7853 task_event = (struct perf_task_event){ 7854 .task = task, 7855 .task_ctx = task_ctx, 7856 .event_id = { 7857 .header = { 7858 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7859 .misc = 0, 7860 .size = sizeof(task_event.event_id), 7861 }, 7862 /* .pid */ 7863 /* .ppid */ 7864 /* .tid */ 7865 /* .ptid */ 7866 /* .time */ 7867 }, 7868 }; 7869 7870 perf_iterate_sb(perf_event_task_output, 7871 &task_event, 7872 task_ctx); 7873 } 7874 7875 void perf_event_fork(struct task_struct *task) 7876 { 7877 perf_event_task(task, NULL, 1); 7878 perf_event_namespaces(task); 7879 } 7880 7881 /* 7882 * comm tracking 7883 */ 7884 7885 struct perf_comm_event { 7886 struct task_struct *task; 7887 char *comm; 7888 int comm_size; 7889 7890 struct { 7891 struct perf_event_header header; 7892 7893 u32 pid; 7894 u32 tid; 7895 } event_id; 7896 }; 7897 7898 static int perf_event_comm_match(struct perf_event *event) 7899 { 7900 return event->attr.comm; 7901 } 7902 7903 static void perf_event_comm_output(struct perf_event *event, 7904 void *data) 7905 { 7906 struct perf_comm_event *comm_event = data; 7907 struct perf_output_handle handle; 7908 struct perf_sample_data sample; 7909 int size = comm_event->event_id.header.size; 7910 int ret; 7911 7912 if (!perf_event_comm_match(event)) 7913 return; 7914 7915 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7916 ret = perf_output_begin(&handle, &sample, event, 7917 comm_event->event_id.header.size); 7918 7919 if (ret) 7920 goto out; 7921 7922 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7923 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7924 7925 perf_output_put(&handle, comm_event->event_id); 7926 __output_copy(&handle, comm_event->comm, 7927 comm_event->comm_size); 7928 7929 perf_event__output_id_sample(event, &handle, &sample); 7930 7931 perf_output_end(&handle); 7932 out: 7933 comm_event->event_id.header.size = size; 7934 } 7935 7936 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7937 { 7938 char comm[TASK_COMM_LEN]; 7939 unsigned int size; 7940 7941 memset(comm, 0, sizeof(comm)); 7942 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7943 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7944 7945 comm_event->comm = comm; 7946 comm_event->comm_size = size; 7947 7948 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7949 7950 perf_iterate_sb(perf_event_comm_output, 7951 comm_event, 7952 NULL); 7953 } 7954 7955 void perf_event_comm(struct task_struct *task, bool exec) 7956 { 7957 struct perf_comm_event comm_event; 7958 7959 if (!atomic_read(&nr_comm_events)) 7960 return; 7961 7962 comm_event = (struct perf_comm_event){ 7963 .task = task, 7964 /* .comm */ 7965 /* .comm_size */ 7966 .event_id = { 7967 .header = { 7968 .type = PERF_RECORD_COMM, 7969 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7970 /* .size */ 7971 }, 7972 /* .pid */ 7973 /* .tid */ 7974 }, 7975 }; 7976 7977 perf_event_comm_event(&comm_event); 7978 } 7979 7980 /* 7981 * namespaces tracking 7982 */ 7983 7984 struct perf_namespaces_event { 7985 struct task_struct *task; 7986 7987 struct { 7988 struct perf_event_header header; 7989 7990 u32 pid; 7991 u32 tid; 7992 u64 nr_namespaces; 7993 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7994 } event_id; 7995 }; 7996 7997 static int perf_event_namespaces_match(struct perf_event *event) 7998 { 7999 return event->attr.namespaces; 8000 } 8001 8002 static void perf_event_namespaces_output(struct perf_event *event, 8003 void *data) 8004 { 8005 struct perf_namespaces_event *namespaces_event = data; 8006 struct perf_output_handle handle; 8007 struct perf_sample_data sample; 8008 u16 header_size = namespaces_event->event_id.header.size; 8009 int ret; 8010 8011 if (!perf_event_namespaces_match(event)) 8012 return; 8013 8014 perf_event_header__init_id(&namespaces_event->event_id.header, 8015 &sample, event); 8016 ret = perf_output_begin(&handle, &sample, event, 8017 namespaces_event->event_id.header.size); 8018 if (ret) 8019 goto out; 8020 8021 namespaces_event->event_id.pid = perf_event_pid(event, 8022 namespaces_event->task); 8023 namespaces_event->event_id.tid = perf_event_tid(event, 8024 namespaces_event->task); 8025 8026 perf_output_put(&handle, namespaces_event->event_id); 8027 8028 perf_event__output_id_sample(event, &handle, &sample); 8029 8030 perf_output_end(&handle); 8031 out: 8032 namespaces_event->event_id.header.size = header_size; 8033 } 8034 8035 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8036 struct task_struct *task, 8037 const struct proc_ns_operations *ns_ops) 8038 { 8039 struct path ns_path; 8040 struct inode *ns_inode; 8041 int error; 8042 8043 error = ns_get_path(&ns_path, task, ns_ops); 8044 if (!error) { 8045 ns_inode = ns_path.dentry->d_inode; 8046 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8047 ns_link_info->ino = ns_inode->i_ino; 8048 path_put(&ns_path); 8049 } 8050 } 8051 8052 void perf_event_namespaces(struct task_struct *task) 8053 { 8054 struct perf_namespaces_event namespaces_event; 8055 struct perf_ns_link_info *ns_link_info; 8056 8057 if (!atomic_read(&nr_namespaces_events)) 8058 return; 8059 8060 namespaces_event = (struct perf_namespaces_event){ 8061 .task = task, 8062 .event_id = { 8063 .header = { 8064 .type = PERF_RECORD_NAMESPACES, 8065 .misc = 0, 8066 .size = sizeof(namespaces_event.event_id), 8067 }, 8068 /* .pid */ 8069 /* .tid */ 8070 .nr_namespaces = NR_NAMESPACES, 8071 /* .link_info[NR_NAMESPACES] */ 8072 }, 8073 }; 8074 8075 ns_link_info = namespaces_event.event_id.link_info; 8076 8077 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8078 task, &mntns_operations); 8079 8080 #ifdef CONFIG_USER_NS 8081 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8082 task, &userns_operations); 8083 #endif 8084 #ifdef CONFIG_NET_NS 8085 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8086 task, &netns_operations); 8087 #endif 8088 #ifdef CONFIG_UTS_NS 8089 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8090 task, &utsns_operations); 8091 #endif 8092 #ifdef CONFIG_IPC_NS 8093 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8094 task, &ipcns_operations); 8095 #endif 8096 #ifdef CONFIG_PID_NS 8097 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8098 task, &pidns_operations); 8099 #endif 8100 #ifdef CONFIG_CGROUPS 8101 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8102 task, &cgroupns_operations); 8103 #endif 8104 8105 perf_iterate_sb(perf_event_namespaces_output, 8106 &namespaces_event, 8107 NULL); 8108 } 8109 8110 /* 8111 * cgroup tracking 8112 */ 8113 #ifdef CONFIG_CGROUP_PERF 8114 8115 struct perf_cgroup_event { 8116 char *path; 8117 int path_size; 8118 struct { 8119 struct perf_event_header header; 8120 u64 id; 8121 char path[]; 8122 } event_id; 8123 }; 8124 8125 static int perf_event_cgroup_match(struct perf_event *event) 8126 { 8127 return event->attr.cgroup; 8128 } 8129 8130 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8131 { 8132 struct perf_cgroup_event *cgroup_event = data; 8133 struct perf_output_handle handle; 8134 struct perf_sample_data sample; 8135 u16 header_size = cgroup_event->event_id.header.size; 8136 int ret; 8137 8138 if (!perf_event_cgroup_match(event)) 8139 return; 8140 8141 perf_event_header__init_id(&cgroup_event->event_id.header, 8142 &sample, event); 8143 ret = perf_output_begin(&handle, &sample, event, 8144 cgroup_event->event_id.header.size); 8145 if (ret) 8146 goto out; 8147 8148 perf_output_put(&handle, cgroup_event->event_id); 8149 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8150 8151 perf_event__output_id_sample(event, &handle, &sample); 8152 8153 perf_output_end(&handle); 8154 out: 8155 cgroup_event->event_id.header.size = header_size; 8156 } 8157 8158 static void perf_event_cgroup(struct cgroup *cgrp) 8159 { 8160 struct perf_cgroup_event cgroup_event; 8161 char path_enomem[16] = "//enomem"; 8162 char *pathname; 8163 size_t size; 8164 8165 if (!atomic_read(&nr_cgroup_events)) 8166 return; 8167 8168 cgroup_event = (struct perf_cgroup_event){ 8169 .event_id = { 8170 .header = { 8171 .type = PERF_RECORD_CGROUP, 8172 .misc = 0, 8173 .size = sizeof(cgroup_event.event_id), 8174 }, 8175 .id = cgroup_id(cgrp), 8176 }, 8177 }; 8178 8179 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8180 if (pathname == NULL) { 8181 cgroup_event.path = path_enomem; 8182 } else { 8183 /* just to be sure to have enough space for alignment */ 8184 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8185 cgroup_event.path = pathname; 8186 } 8187 8188 /* 8189 * Since our buffer works in 8 byte units we need to align our string 8190 * size to a multiple of 8. However, we must guarantee the tail end is 8191 * zero'd out to avoid leaking random bits to userspace. 8192 */ 8193 size = strlen(cgroup_event.path) + 1; 8194 while (!IS_ALIGNED(size, sizeof(u64))) 8195 cgroup_event.path[size++] = '\0'; 8196 8197 cgroup_event.event_id.header.size += size; 8198 cgroup_event.path_size = size; 8199 8200 perf_iterate_sb(perf_event_cgroup_output, 8201 &cgroup_event, 8202 NULL); 8203 8204 kfree(pathname); 8205 } 8206 8207 #endif 8208 8209 /* 8210 * mmap tracking 8211 */ 8212 8213 struct perf_mmap_event { 8214 struct vm_area_struct *vma; 8215 8216 const char *file_name; 8217 int file_size; 8218 int maj, min; 8219 u64 ino; 8220 u64 ino_generation; 8221 u32 prot, flags; 8222 u8 build_id[BUILD_ID_SIZE_MAX]; 8223 u32 build_id_size; 8224 8225 struct { 8226 struct perf_event_header header; 8227 8228 u32 pid; 8229 u32 tid; 8230 u64 start; 8231 u64 len; 8232 u64 pgoff; 8233 } event_id; 8234 }; 8235 8236 static int perf_event_mmap_match(struct perf_event *event, 8237 void *data) 8238 { 8239 struct perf_mmap_event *mmap_event = data; 8240 struct vm_area_struct *vma = mmap_event->vma; 8241 int executable = vma->vm_flags & VM_EXEC; 8242 8243 return (!executable && event->attr.mmap_data) || 8244 (executable && (event->attr.mmap || event->attr.mmap2)); 8245 } 8246 8247 static void perf_event_mmap_output(struct perf_event *event, 8248 void *data) 8249 { 8250 struct perf_mmap_event *mmap_event = data; 8251 struct perf_output_handle handle; 8252 struct perf_sample_data sample; 8253 int size = mmap_event->event_id.header.size; 8254 u32 type = mmap_event->event_id.header.type; 8255 bool use_build_id; 8256 int ret; 8257 8258 if (!perf_event_mmap_match(event, data)) 8259 return; 8260 8261 if (event->attr.mmap2) { 8262 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8263 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8264 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8265 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8266 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8267 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8268 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8269 } 8270 8271 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8272 ret = perf_output_begin(&handle, &sample, event, 8273 mmap_event->event_id.header.size); 8274 if (ret) 8275 goto out; 8276 8277 mmap_event->event_id.pid = perf_event_pid(event, current); 8278 mmap_event->event_id.tid = perf_event_tid(event, current); 8279 8280 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8281 8282 if (event->attr.mmap2 && use_build_id) 8283 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8284 8285 perf_output_put(&handle, mmap_event->event_id); 8286 8287 if (event->attr.mmap2) { 8288 if (use_build_id) { 8289 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8290 8291 __output_copy(&handle, size, 4); 8292 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8293 } else { 8294 perf_output_put(&handle, mmap_event->maj); 8295 perf_output_put(&handle, mmap_event->min); 8296 perf_output_put(&handle, mmap_event->ino); 8297 perf_output_put(&handle, mmap_event->ino_generation); 8298 } 8299 perf_output_put(&handle, mmap_event->prot); 8300 perf_output_put(&handle, mmap_event->flags); 8301 } 8302 8303 __output_copy(&handle, mmap_event->file_name, 8304 mmap_event->file_size); 8305 8306 perf_event__output_id_sample(event, &handle, &sample); 8307 8308 perf_output_end(&handle); 8309 out: 8310 mmap_event->event_id.header.size = size; 8311 mmap_event->event_id.header.type = type; 8312 } 8313 8314 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8315 { 8316 struct vm_area_struct *vma = mmap_event->vma; 8317 struct file *file = vma->vm_file; 8318 int maj = 0, min = 0; 8319 u64 ino = 0, gen = 0; 8320 u32 prot = 0, flags = 0; 8321 unsigned int size; 8322 char tmp[16]; 8323 char *buf = NULL; 8324 char *name; 8325 8326 if (vma->vm_flags & VM_READ) 8327 prot |= PROT_READ; 8328 if (vma->vm_flags & VM_WRITE) 8329 prot |= PROT_WRITE; 8330 if (vma->vm_flags & VM_EXEC) 8331 prot |= PROT_EXEC; 8332 8333 if (vma->vm_flags & VM_MAYSHARE) 8334 flags = MAP_SHARED; 8335 else 8336 flags = MAP_PRIVATE; 8337 8338 if (vma->vm_flags & VM_LOCKED) 8339 flags |= MAP_LOCKED; 8340 if (is_vm_hugetlb_page(vma)) 8341 flags |= MAP_HUGETLB; 8342 8343 if (file) { 8344 struct inode *inode; 8345 dev_t dev; 8346 8347 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8348 if (!buf) { 8349 name = "//enomem"; 8350 goto cpy_name; 8351 } 8352 /* 8353 * d_path() works from the end of the rb backwards, so we 8354 * need to add enough zero bytes after the string to handle 8355 * the 64bit alignment we do later. 8356 */ 8357 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8358 if (IS_ERR(name)) { 8359 name = "//toolong"; 8360 goto cpy_name; 8361 } 8362 inode = file_inode(vma->vm_file); 8363 dev = inode->i_sb->s_dev; 8364 ino = inode->i_ino; 8365 gen = inode->i_generation; 8366 maj = MAJOR(dev); 8367 min = MINOR(dev); 8368 8369 goto got_name; 8370 } else { 8371 if (vma->vm_ops && vma->vm_ops->name) { 8372 name = (char *) vma->vm_ops->name(vma); 8373 if (name) 8374 goto cpy_name; 8375 } 8376 8377 name = (char *)arch_vma_name(vma); 8378 if (name) 8379 goto cpy_name; 8380 8381 if (vma->vm_start <= vma->vm_mm->start_brk && 8382 vma->vm_end >= vma->vm_mm->brk) { 8383 name = "[heap]"; 8384 goto cpy_name; 8385 } 8386 if (vma->vm_start <= vma->vm_mm->start_stack && 8387 vma->vm_end >= vma->vm_mm->start_stack) { 8388 name = "[stack]"; 8389 goto cpy_name; 8390 } 8391 8392 name = "//anon"; 8393 goto cpy_name; 8394 } 8395 8396 cpy_name: 8397 strlcpy(tmp, name, sizeof(tmp)); 8398 name = tmp; 8399 got_name: 8400 /* 8401 * Since our buffer works in 8 byte units we need to align our string 8402 * size to a multiple of 8. However, we must guarantee the tail end is 8403 * zero'd out to avoid leaking random bits to userspace. 8404 */ 8405 size = strlen(name)+1; 8406 while (!IS_ALIGNED(size, sizeof(u64))) 8407 name[size++] = '\0'; 8408 8409 mmap_event->file_name = name; 8410 mmap_event->file_size = size; 8411 mmap_event->maj = maj; 8412 mmap_event->min = min; 8413 mmap_event->ino = ino; 8414 mmap_event->ino_generation = gen; 8415 mmap_event->prot = prot; 8416 mmap_event->flags = flags; 8417 8418 if (!(vma->vm_flags & VM_EXEC)) 8419 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8420 8421 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8422 8423 if (atomic_read(&nr_build_id_events)) 8424 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8425 8426 perf_iterate_sb(perf_event_mmap_output, 8427 mmap_event, 8428 NULL); 8429 8430 kfree(buf); 8431 } 8432 8433 /* 8434 * Check whether inode and address range match filter criteria. 8435 */ 8436 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8437 struct file *file, unsigned long offset, 8438 unsigned long size) 8439 { 8440 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8441 if (!filter->path.dentry) 8442 return false; 8443 8444 if (d_inode(filter->path.dentry) != file_inode(file)) 8445 return false; 8446 8447 if (filter->offset > offset + size) 8448 return false; 8449 8450 if (filter->offset + filter->size < offset) 8451 return false; 8452 8453 return true; 8454 } 8455 8456 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8457 struct vm_area_struct *vma, 8458 struct perf_addr_filter_range *fr) 8459 { 8460 unsigned long vma_size = vma->vm_end - vma->vm_start; 8461 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8462 struct file *file = vma->vm_file; 8463 8464 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8465 return false; 8466 8467 if (filter->offset < off) { 8468 fr->start = vma->vm_start; 8469 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8470 } else { 8471 fr->start = vma->vm_start + filter->offset - off; 8472 fr->size = min(vma->vm_end - fr->start, filter->size); 8473 } 8474 8475 return true; 8476 } 8477 8478 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8479 { 8480 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8481 struct vm_area_struct *vma = data; 8482 struct perf_addr_filter *filter; 8483 unsigned int restart = 0, count = 0; 8484 unsigned long flags; 8485 8486 if (!has_addr_filter(event)) 8487 return; 8488 8489 if (!vma->vm_file) 8490 return; 8491 8492 raw_spin_lock_irqsave(&ifh->lock, flags); 8493 list_for_each_entry(filter, &ifh->list, entry) { 8494 if (perf_addr_filter_vma_adjust(filter, vma, 8495 &event->addr_filter_ranges[count])) 8496 restart++; 8497 8498 count++; 8499 } 8500 8501 if (restart) 8502 event->addr_filters_gen++; 8503 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8504 8505 if (restart) 8506 perf_event_stop(event, 1); 8507 } 8508 8509 /* 8510 * Adjust all task's events' filters to the new vma 8511 */ 8512 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8513 { 8514 struct perf_event_context *ctx; 8515 int ctxn; 8516 8517 /* 8518 * Data tracing isn't supported yet and as such there is no need 8519 * to keep track of anything that isn't related to executable code: 8520 */ 8521 if (!(vma->vm_flags & VM_EXEC)) 8522 return; 8523 8524 rcu_read_lock(); 8525 for_each_task_context_nr(ctxn) { 8526 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8527 if (!ctx) 8528 continue; 8529 8530 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8531 } 8532 rcu_read_unlock(); 8533 } 8534 8535 void perf_event_mmap(struct vm_area_struct *vma) 8536 { 8537 struct perf_mmap_event mmap_event; 8538 8539 if (!atomic_read(&nr_mmap_events)) 8540 return; 8541 8542 mmap_event = (struct perf_mmap_event){ 8543 .vma = vma, 8544 /* .file_name */ 8545 /* .file_size */ 8546 .event_id = { 8547 .header = { 8548 .type = PERF_RECORD_MMAP, 8549 .misc = PERF_RECORD_MISC_USER, 8550 /* .size */ 8551 }, 8552 /* .pid */ 8553 /* .tid */ 8554 .start = vma->vm_start, 8555 .len = vma->vm_end - vma->vm_start, 8556 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8557 }, 8558 /* .maj (attr_mmap2 only) */ 8559 /* .min (attr_mmap2 only) */ 8560 /* .ino (attr_mmap2 only) */ 8561 /* .ino_generation (attr_mmap2 only) */ 8562 /* .prot (attr_mmap2 only) */ 8563 /* .flags (attr_mmap2 only) */ 8564 }; 8565 8566 perf_addr_filters_adjust(vma); 8567 perf_event_mmap_event(&mmap_event); 8568 } 8569 8570 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8571 unsigned long size, u64 flags) 8572 { 8573 struct perf_output_handle handle; 8574 struct perf_sample_data sample; 8575 struct perf_aux_event { 8576 struct perf_event_header header; 8577 u64 offset; 8578 u64 size; 8579 u64 flags; 8580 } rec = { 8581 .header = { 8582 .type = PERF_RECORD_AUX, 8583 .misc = 0, 8584 .size = sizeof(rec), 8585 }, 8586 .offset = head, 8587 .size = size, 8588 .flags = flags, 8589 }; 8590 int ret; 8591 8592 perf_event_header__init_id(&rec.header, &sample, event); 8593 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8594 8595 if (ret) 8596 return; 8597 8598 perf_output_put(&handle, rec); 8599 perf_event__output_id_sample(event, &handle, &sample); 8600 8601 perf_output_end(&handle); 8602 } 8603 8604 /* 8605 * Lost/dropped samples logging 8606 */ 8607 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8608 { 8609 struct perf_output_handle handle; 8610 struct perf_sample_data sample; 8611 int ret; 8612 8613 struct { 8614 struct perf_event_header header; 8615 u64 lost; 8616 } lost_samples_event = { 8617 .header = { 8618 .type = PERF_RECORD_LOST_SAMPLES, 8619 .misc = 0, 8620 .size = sizeof(lost_samples_event), 8621 }, 8622 .lost = lost, 8623 }; 8624 8625 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8626 8627 ret = perf_output_begin(&handle, &sample, event, 8628 lost_samples_event.header.size); 8629 if (ret) 8630 return; 8631 8632 perf_output_put(&handle, lost_samples_event); 8633 perf_event__output_id_sample(event, &handle, &sample); 8634 perf_output_end(&handle); 8635 } 8636 8637 /* 8638 * context_switch tracking 8639 */ 8640 8641 struct perf_switch_event { 8642 struct task_struct *task; 8643 struct task_struct *next_prev; 8644 8645 struct { 8646 struct perf_event_header header; 8647 u32 next_prev_pid; 8648 u32 next_prev_tid; 8649 } event_id; 8650 }; 8651 8652 static int perf_event_switch_match(struct perf_event *event) 8653 { 8654 return event->attr.context_switch; 8655 } 8656 8657 static void perf_event_switch_output(struct perf_event *event, void *data) 8658 { 8659 struct perf_switch_event *se = data; 8660 struct perf_output_handle handle; 8661 struct perf_sample_data sample; 8662 int ret; 8663 8664 if (!perf_event_switch_match(event)) 8665 return; 8666 8667 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8668 if (event->ctx->task) { 8669 se->event_id.header.type = PERF_RECORD_SWITCH; 8670 se->event_id.header.size = sizeof(se->event_id.header); 8671 } else { 8672 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8673 se->event_id.header.size = sizeof(se->event_id); 8674 se->event_id.next_prev_pid = 8675 perf_event_pid(event, se->next_prev); 8676 se->event_id.next_prev_tid = 8677 perf_event_tid(event, se->next_prev); 8678 } 8679 8680 perf_event_header__init_id(&se->event_id.header, &sample, event); 8681 8682 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8683 if (ret) 8684 return; 8685 8686 if (event->ctx->task) 8687 perf_output_put(&handle, se->event_id.header); 8688 else 8689 perf_output_put(&handle, se->event_id); 8690 8691 perf_event__output_id_sample(event, &handle, &sample); 8692 8693 perf_output_end(&handle); 8694 } 8695 8696 static void perf_event_switch(struct task_struct *task, 8697 struct task_struct *next_prev, bool sched_in) 8698 { 8699 struct perf_switch_event switch_event; 8700 8701 /* N.B. caller checks nr_switch_events != 0 */ 8702 8703 switch_event = (struct perf_switch_event){ 8704 .task = task, 8705 .next_prev = next_prev, 8706 .event_id = { 8707 .header = { 8708 /* .type */ 8709 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8710 /* .size */ 8711 }, 8712 /* .next_prev_pid */ 8713 /* .next_prev_tid */ 8714 }, 8715 }; 8716 8717 if (!sched_in && task->on_rq) { 8718 switch_event.event_id.header.misc |= 8719 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8720 } 8721 8722 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8723 } 8724 8725 /* 8726 * IRQ throttle logging 8727 */ 8728 8729 static void perf_log_throttle(struct perf_event *event, int enable) 8730 { 8731 struct perf_output_handle handle; 8732 struct perf_sample_data sample; 8733 int ret; 8734 8735 struct { 8736 struct perf_event_header header; 8737 u64 time; 8738 u64 id; 8739 u64 stream_id; 8740 } throttle_event = { 8741 .header = { 8742 .type = PERF_RECORD_THROTTLE, 8743 .misc = 0, 8744 .size = sizeof(throttle_event), 8745 }, 8746 .time = perf_event_clock(event), 8747 .id = primary_event_id(event), 8748 .stream_id = event->id, 8749 }; 8750 8751 if (enable) 8752 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8753 8754 perf_event_header__init_id(&throttle_event.header, &sample, event); 8755 8756 ret = perf_output_begin(&handle, &sample, event, 8757 throttle_event.header.size); 8758 if (ret) 8759 return; 8760 8761 perf_output_put(&handle, throttle_event); 8762 perf_event__output_id_sample(event, &handle, &sample); 8763 perf_output_end(&handle); 8764 } 8765 8766 /* 8767 * ksymbol register/unregister tracking 8768 */ 8769 8770 struct perf_ksymbol_event { 8771 const char *name; 8772 int name_len; 8773 struct { 8774 struct perf_event_header header; 8775 u64 addr; 8776 u32 len; 8777 u16 ksym_type; 8778 u16 flags; 8779 } event_id; 8780 }; 8781 8782 static int perf_event_ksymbol_match(struct perf_event *event) 8783 { 8784 return event->attr.ksymbol; 8785 } 8786 8787 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8788 { 8789 struct perf_ksymbol_event *ksymbol_event = data; 8790 struct perf_output_handle handle; 8791 struct perf_sample_data sample; 8792 int ret; 8793 8794 if (!perf_event_ksymbol_match(event)) 8795 return; 8796 8797 perf_event_header__init_id(&ksymbol_event->event_id.header, 8798 &sample, event); 8799 ret = perf_output_begin(&handle, &sample, event, 8800 ksymbol_event->event_id.header.size); 8801 if (ret) 8802 return; 8803 8804 perf_output_put(&handle, ksymbol_event->event_id); 8805 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8806 perf_event__output_id_sample(event, &handle, &sample); 8807 8808 perf_output_end(&handle); 8809 } 8810 8811 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8812 const char *sym) 8813 { 8814 struct perf_ksymbol_event ksymbol_event; 8815 char name[KSYM_NAME_LEN]; 8816 u16 flags = 0; 8817 int name_len; 8818 8819 if (!atomic_read(&nr_ksymbol_events)) 8820 return; 8821 8822 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8823 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8824 goto err; 8825 8826 strlcpy(name, sym, KSYM_NAME_LEN); 8827 name_len = strlen(name) + 1; 8828 while (!IS_ALIGNED(name_len, sizeof(u64))) 8829 name[name_len++] = '\0'; 8830 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8831 8832 if (unregister) 8833 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8834 8835 ksymbol_event = (struct perf_ksymbol_event){ 8836 .name = name, 8837 .name_len = name_len, 8838 .event_id = { 8839 .header = { 8840 .type = PERF_RECORD_KSYMBOL, 8841 .size = sizeof(ksymbol_event.event_id) + 8842 name_len, 8843 }, 8844 .addr = addr, 8845 .len = len, 8846 .ksym_type = ksym_type, 8847 .flags = flags, 8848 }, 8849 }; 8850 8851 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8852 return; 8853 err: 8854 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8855 } 8856 8857 /* 8858 * bpf program load/unload tracking 8859 */ 8860 8861 struct perf_bpf_event { 8862 struct bpf_prog *prog; 8863 struct { 8864 struct perf_event_header header; 8865 u16 type; 8866 u16 flags; 8867 u32 id; 8868 u8 tag[BPF_TAG_SIZE]; 8869 } event_id; 8870 }; 8871 8872 static int perf_event_bpf_match(struct perf_event *event) 8873 { 8874 return event->attr.bpf_event; 8875 } 8876 8877 static void perf_event_bpf_output(struct perf_event *event, void *data) 8878 { 8879 struct perf_bpf_event *bpf_event = data; 8880 struct perf_output_handle handle; 8881 struct perf_sample_data sample; 8882 int ret; 8883 8884 if (!perf_event_bpf_match(event)) 8885 return; 8886 8887 perf_event_header__init_id(&bpf_event->event_id.header, 8888 &sample, event); 8889 ret = perf_output_begin(&handle, data, event, 8890 bpf_event->event_id.header.size); 8891 if (ret) 8892 return; 8893 8894 perf_output_put(&handle, bpf_event->event_id); 8895 perf_event__output_id_sample(event, &handle, &sample); 8896 8897 perf_output_end(&handle); 8898 } 8899 8900 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8901 enum perf_bpf_event_type type) 8902 { 8903 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8904 int i; 8905 8906 if (prog->aux->func_cnt == 0) { 8907 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8908 (u64)(unsigned long)prog->bpf_func, 8909 prog->jited_len, unregister, 8910 prog->aux->ksym.name); 8911 } else { 8912 for (i = 0; i < prog->aux->func_cnt; i++) { 8913 struct bpf_prog *subprog = prog->aux->func[i]; 8914 8915 perf_event_ksymbol( 8916 PERF_RECORD_KSYMBOL_TYPE_BPF, 8917 (u64)(unsigned long)subprog->bpf_func, 8918 subprog->jited_len, unregister, 8919 prog->aux->ksym.name); 8920 } 8921 } 8922 } 8923 8924 void perf_event_bpf_event(struct bpf_prog *prog, 8925 enum perf_bpf_event_type type, 8926 u16 flags) 8927 { 8928 struct perf_bpf_event bpf_event; 8929 8930 if (type <= PERF_BPF_EVENT_UNKNOWN || 8931 type >= PERF_BPF_EVENT_MAX) 8932 return; 8933 8934 switch (type) { 8935 case PERF_BPF_EVENT_PROG_LOAD: 8936 case PERF_BPF_EVENT_PROG_UNLOAD: 8937 if (atomic_read(&nr_ksymbol_events)) 8938 perf_event_bpf_emit_ksymbols(prog, type); 8939 break; 8940 default: 8941 break; 8942 } 8943 8944 if (!atomic_read(&nr_bpf_events)) 8945 return; 8946 8947 bpf_event = (struct perf_bpf_event){ 8948 .prog = prog, 8949 .event_id = { 8950 .header = { 8951 .type = PERF_RECORD_BPF_EVENT, 8952 .size = sizeof(bpf_event.event_id), 8953 }, 8954 .type = type, 8955 .flags = flags, 8956 .id = prog->aux->id, 8957 }, 8958 }; 8959 8960 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8961 8962 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8963 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8964 } 8965 8966 struct perf_text_poke_event { 8967 const void *old_bytes; 8968 const void *new_bytes; 8969 size_t pad; 8970 u16 old_len; 8971 u16 new_len; 8972 8973 struct { 8974 struct perf_event_header header; 8975 8976 u64 addr; 8977 } event_id; 8978 }; 8979 8980 static int perf_event_text_poke_match(struct perf_event *event) 8981 { 8982 return event->attr.text_poke; 8983 } 8984 8985 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8986 { 8987 struct perf_text_poke_event *text_poke_event = data; 8988 struct perf_output_handle handle; 8989 struct perf_sample_data sample; 8990 u64 padding = 0; 8991 int ret; 8992 8993 if (!perf_event_text_poke_match(event)) 8994 return; 8995 8996 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8997 8998 ret = perf_output_begin(&handle, &sample, event, 8999 text_poke_event->event_id.header.size); 9000 if (ret) 9001 return; 9002 9003 perf_output_put(&handle, text_poke_event->event_id); 9004 perf_output_put(&handle, text_poke_event->old_len); 9005 perf_output_put(&handle, text_poke_event->new_len); 9006 9007 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9008 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9009 9010 if (text_poke_event->pad) 9011 __output_copy(&handle, &padding, text_poke_event->pad); 9012 9013 perf_event__output_id_sample(event, &handle, &sample); 9014 9015 perf_output_end(&handle); 9016 } 9017 9018 void perf_event_text_poke(const void *addr, const void *old_bytes, 9019 size_t old_len, const void *new_bytes, size_t new_len) 9020 { 9021 struct perf_text_poke_event text_poke_event; 9022 size_t tot, pad; 9023 9024 if (!atomic_read(&nr_text_poke_events)) 9025 return; 9026 9027 tot = sizeof(text_poke_event.old_len) + old_len; 9028 tot += sizeof(text_poke_event.new_len) + new_len; 9029 pad = ALIGN(tot, sizeof(u64)) - tot; 9030 9031 text_poke_event = (struct perf_text_poke_event){ 9032 .old_bytes = old_bytes, 9033 .new_bytes = new_bytes, 9034 .pad = pad, 9035 .old_len = old_len, 9036 .new_len = new_len, 9037 .event_id = { 9038 .header = { 9039 .type = PERF_RECORD_TEXT_POKE, 9040 .misc = PERF_RECORD_MISC_KERNEL, 9041 .size = sizeof(text_poke_event.event_id) + tot + pad, 9042 }, 9043 .addr = (unsigned long)addr, 9044 }, 9045 }; 9046 9047 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9048 } 9049 9050 void perf_event_itrace_started(struct perf_event *event) 9051 { 9052 event->attach_state |= PERF_ATTACH_ITRACE; 9053 } 9054 9055 static void perf_log_itrace_start(struct perf_event *event) 9056 { 9057 struct perf_output_handle handle; 9058 struct perf_sample_data sample; 9059 struct perf_aux_event { 9060 struct perf_event_header header; 9061 u32 pid; 9062 u32 tid; 9063 } rec; 9064 int ret; 9065 9066 if (event->parent) 9067 event = event->parent; 9068 9069 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9070 event->attach_state & PERF_ATTACH_ITRACE) 9071 return; 9072 9073 rec.header.type = PERF_RECORD_ITRACE_START; 9074 rec.header.misc = 0; 9075 rec.header.size = sizeof(rec); 9076 rec.pid = perf_event_pid(event, current); 9077 rec.tid = perf_event_tid(event, current); 9078 9079 perf_event_header__init_id(&rec.header, &sample, event); 9080 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9081 9082 if (ret) 9083 return; 9084 9085 perf_output_put(&handle, rec); 9086 perf_event__output_id_sample(event, &handle, &sample); 9087 9088 perf_output_end(&handle); 9089 } 9090 9091 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9092 { 9093 struct perf_output_handle handle; 9094 struct perf_sample_data sample; 9095 struct perf_aux_event { 9096 struct perf_event_header header; 9097 u64 hw_id; 9098 } rec; 9099 int ret; 9100 9101 if (event->parent) 9102 event = event->parent; 9103 9104 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9105 rec.header.misc = 0; 9106 rec.header.size = sizeof(rec); 9107 rec.hw_id = hw_id; 9108 9109 perf_event_header__init_id(&rec.header, &sample, event); 9110 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9111 9112 if (ret) 9113 return; 9114 9115 perf_output_put(&handle, rec); 9116 perf_event__output_id_sample(event, &handle, &sample); 9117 9118 perf_output_end(&handle); 9119 } 9120 9121 static int 9122 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9123 { 9124 struct hw_perf_event *hwc = &event->hw; 9125 int ret = 0; 9126 u64 seq; 9127 9128 seq = __this_cpu_read(perf_throttled_seq); 9129 if (seq != hwc->interrupts_seq) { 9130 hwc->interrupts_seq = seq; 9131 hwc->interrupts = 1; 9132 } else { 9133 hwc->interrupts++; 9134 if (unlikely(throttle 9135 && hwc->interrupts >= max_samples_per_tick)) { 9136 __this_cpu_inc(perf_throttled_count); 9137 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9138 hwc->interrupts = MAX_INTERRUPTS; 9139 perf_log_throttle(event, 0); 9140 ret = 1; 9141 } 9142 } 9143 9144 if (event->attr.freq) { 9145 u64 now = perf_clock(); 9146 s64 delta = now - hwc->freq_time_stamp; 9147 9148 hwc->freq_time_stamp = now; 9149 9150 if (delta > 0 && delta < 2*TICK_NSEC) 9151 perf_adjust_period(event, delta, hwc->last_period, true); 9152 } 9153 9154 return ret; 9155 } 9156 9157 int perf_event_account_interrupt(struct perf_event *event) 9158 { 9159 return __perf_event_account_interrupt(event, 1); 9160 } 9161 9162 /* 9163 * Generic event overflow handling, sampling. 9164 */ 9165 9166 static int __perf_event_overflow(struct perf_event *event, 9167 int throttle, struct perf_sample_data *data, 9168 struct pt_regs *regs) 9169 { 9170 int events = atomic_read(&event->event_limit); 9171 int ret = 0; 9172 9173 /* 9174 * Non-sampling counters might still use the PMI to fold short 9175 * hardware counters, ignore those. 9176 */ 9177 if (unlikely(!is_sampling_event(event))) 9178 return 0; 9179 9180 ret = __perf_event_account_interrupt(event, throttle); 9181 9182 /* 9183 * XXX event_limit might not quite work as expected on inherited 9184 * events 9185 */ 9186 9187 event->pending_kill = POLL_IN; 9188 if (events && atomic_dec_and_test(&event->event_limit)) { 9189 ret = 1; 9190 event->pending_kill = POLL_HUP; 9191 event->pending_addr = data->addr; 9192 9193 perf_event_disable_inatomic(event); 9194 } 9195 9196 READ_ONCE(event->overflow_handler)(event, data, regs); 9197 9198 if (*perf_event_fasync(event) && event->pending_kill) { 9199 event->pending_wakeup = 1; 9200 irq_work_queue(&event->pending); 9201 } 9202 9203 return ret; 9204 } 9205 9206 int perf_event_overflow(struct perf_event *event, 9207 struct perf_sample_data *data, 9208 struct pt_regs *regs) 9209 { 9210 return __perf_event_overflow(event, 1, data, regs); 9211 } 9212 9213 /* 9214 * Generic software event infrastructure 9215 */ 9216 9217 struct swevent_htable { 9218 struct swevent_hlist *swevent_hlist; 9219 struct mutex hlist_mutex; 9220 int hlist_refcount; 9221 9222 /* Recursion avoidance in each contexts */ 9223 int recursion[PERF_NR_CONTEXTS]; 9224 }; 9225 9226 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9227 9228 /* 9229 * We directly increment event->count and keep a second value in 9230 * event->hw.period_left to count intervals. This period event 9231 * is kept in the range [-sample_period, 0] so that we can use the 9232 * sign as trigger. 9233 */ 9234 9235 u64 perf_swevent_set_period(struct perf_event *event) 9236 { 9237 struct hw_perf_event *hwc = &event->hw; 9238 u64 period = hwc->last_period; 9239 u64 nr, offset; 9240 s64 old, val; 9241 9242 hwc->last_period = hwc->sample_period; 9243 9244 again: 9245 old = val = local64_read(&hwc->period_left); 9246 if (val < 0) 9247 return 0; 9248 9249 nr = div64_u64(period + val, period); 9250 offset = nr * period; 9251 val -= offset; 9252 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9253 goto again; 9254 9255 return nr; 9256 } 9257 9258 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9259 struct perf_sample_data *data, 9260 struct pt_regs *regs) 9261 { 9262 struct hw_perf_event *hwc = &event->hw; 9263 int throttle = 0; 9264 9265 if (!overflow) 9266 overflow = perf_swevent_set_period(event); 9267 9268 if (hwc->interrupts == MAX_INTERRUPTS) 9269 return; 9270 9271 for (; overflow; overflow--) { 9272 if (__perf_event_overflow(event, throttle, 9273 data, regs)) { 9274 /* 9275 * We inhibit the overflow from happening when 9276 * hwc->interrupts == MAX_INTERRUPTS. 9277 */ 9278 break; 9279 } 9280 throttle = 1; 9281 } 9282 } 9283 9284 static void perf_swevent_event(struct perf_event *event, u64 nr, 9285 struct perf_sample_data *data, 9286 struct pt_regs *regs) 9287 { 9288 struct hw_perf_event *hwc = &event->hw; 9289 9290 local64_add(nr, &event->count); 9291 9292 if (!regs) 9293 return; 9294 9295 if (!is_sampling_event(event)) 9296 return; 9297 9298 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9299 data->period = nr; 9300 return perf_swevent_overflow(event, 1, data, regs); 9301 } else 9302 data->period = event->hw.last_period; 9303 9304 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9305 return perf_swevent_overflow(event, 1, data, regs); 9306 9307 if (local64_add_negative(nr, &hwc->period_left)) 9308 return; 9309 9310 perf_swevent_overflow(event, 0, data, regs); 9311 } 9312 9313 static int perf_exclude_event(struct perf_event *event, 9314 struct pt_regs *regs) 9315 { 9316 if (event->hw.state & PERF_HES_STOPPED) 9317 return 1; 9318 9319 if (regs) { 9320 if (event->attr.exclude_user && user_mode(regs)) 9321 return 1; 9322 9323 if (event->attr.exclude_kernel && !user_mode(regs)) 9324 return 1; 9325 } 9326 9327 return 0; 9328 } 9329 9330 static int perf_swevent_match(struct perf_event *event, 9331 enum perf_type_id type, 9332 u32 event_id, 9333 struct perf_sample_data *data, 9334 struct pt_regs *regs) 9335 { 9336 if (event->attr.type != type) 9337 return 0; 9338 9339 if (event->attr.config != event_id) 9340 return 0; 9341 9342 if (perf_exclude_event(event, regs)) 9343 return 0; 9344 9345 return 1; 9346 } 9347 9348 static inline u64 swevent_hash(u64 type, u32 event_id) 9349 { 9350 u64 val = event_id | (type << 32); 9351 9352 return hash_64(val, SWEVENT_HLIST_BITS); 9353 } 9354 9355 static inline struct hlist_head * 9356 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9357 { 9358 u64 hash = swevent_hash(type, event_id); 9359 9360 return &hlist->heads[hash]; 9361 } 9362 9363 /* For the read side: events when they trigger */ 9364 static inline struct hlist_head * 9365 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9366 { 9367 struct swevent_hlist *hlist; 9368 9369 hlist = rcu_dereference(swhash->swevent_hlist); 9370 if (!hlist) 9371 return NULL; 9372 9373 return __find_swevent_head(hlist, type, event_id); 9374 } 9375 9376 /* For the event head insertion and removal in the hlist */ 9377 static inline struct hlist_head * 9378 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9379 { 9380 struct swevent_hlist *hlist; 9381 u32 event_id = event->attr.config; 9382 u64 type = event->attr.type; 9383 9384 /* 9385 * Event scheduling is always serialized against hlist allocation 9386 * and release. Which makes the protected version suitable here. 9387 * The context lock guarantees that. 9388 */ 9389 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9390 lockdep_is_held(&event->ctx->lock)); 9391 if (!hlist) 9392 return NULL; 9393 9394 return __find_swevent_head(hlist, type, event_id); 9395 } 9396 9397 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9398 u64 nr, 9399 struct perf_sample_data *data, 9400 struct pt_regs *regs) 9401 { 9402 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9403 struct perf_event *event; 9404 struct hlist_head *head; 9405 9406 rcu_read_lock(); 9407 head = find_swevent_head_rcu(swhash, type, event_id); 9408 if (!head) 9409 goto end; 9410 9411 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9412 if (perf_swevent_match(event, type, event_id, data, regs)) 9413 perf_swevent_event(event, nr, data, regs); 9414 } 9415 end: 9416 rcu_read_unlock(); 9417 } 9418 9419 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9420 9421 int perf_swevent_get_recursion_context(void) 9422 { 9423 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9424 9425 return get_recursion_context(swhash->recursion); 9426 } 9427 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9428 9429 void perf_swevent_put_recursion_context(int rctx) 9430 { 9431 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9432 9433 put_recursion_context(swhash->recursion, rctx); 9434 } 9435 9436 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9437 { 9438 struct perf_sample_data data; 9439 9440 if (WARN_ON_ONCE(!regs)) 9441 return; 9442 9443 perf_sample_data_init(&data, addr, 0); 9444 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9445 } 9446 9447 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9448 { 9449 int rctx; 9450 9451 preempt_disable_notrace(); 9452 rctx = perf_swevent_get_recursion_context(); 9453 if (unlikely(rctx < 0)) 9454 goto fail; 9455 9456 ___perf_sw_event(event_id, nr, regs, addr); 9457 9458 perf_swevent_put_recursion_context(rctx); 9459 fail: 9460 preempt_enable_notrace(); 9461 } 9462 9463 static void perf_swevent_read(struct perf_event *event) 9464 { 9465 } 9466 9467 static int perf_swevent_add(struct perf_event *event, int flags) 9468 { 9469 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9470 struct hw_perf_event *hwc = &event->hw; 9471 struct hlist_head *head; 9472 9473 if (is_sampling_event(event)) { 9474 hwc->last_period = hwc->sample_period; 9475 perf_swevent_set_period(event); 9476 } 9477 9478 hwc->state = !(flags & PERF_EF_START); 9479 9480 head = find_swevent_head(swhash, event); 9481 if (WARN_ON_ONCE(!head)) 9482 return -EINVAL; 9483 9484 hlist_add_head_rcu(&event->hlist_entry, head); 9485 perf_event_update_userpage(event); 9486 9487 return 0; 9488 } 9489 9490 static void perf_swevent_del(struct perf_event *event, int flags) 9491 { 9492 hlist_del_rcu(&event->hlist_entry); 9493 } 9494 9495 static void perf_swevent_start(struct perf_event *event, int flags) 9496 { 9497 event->hw.state = 0; 9498 } 9499 9500 static void perf_swevent_stop(struct perf_event *event, int flags) 9501 { 9502 event->hw.state = PERF_HES_STOPPED; 9503 } 9504 9505 /* Deref the hlist from the update side */ 9506 static inline struct swevent_hlist * 9507 swevent_hlist_deref(struct swevent_htable *swhash) 9508 { 9509 return rcu_dereference_protected(swhash->swevent_hlist, 9510 lockdep_is_held(&swhash->hlist_mutex)); 9511 } 9512 9513 static void swevent_hlist_release(struct swevent_htable *swhash) 9514 { 9515 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9516 9517 if (!hlist) 9518 return; 9519 9520 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9521 kfree_rcu(hlist, rcu_head); 9522 } 9523 9524 static void swevent_hlist_put_cpu(int cpu) 9525 { 9526 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9527 9528 mutex_lock(&swhash->hlist_mutex); 9529 9530 if (!--swhash->hlist_refcount) 9531 swevent_hlist_release(swhash); 9532 9533 mutex_unlock(&swhash->hlist_mutex); 9534 } 9535 9536 static void swevent_hlist_put(void) 9537 { 9538 int cpu; 9539 9540 for_each_possible_cpu(cpu) 9541 swevent_hlist_put_cpu(cpu); 9542 } 9543 9544 static int swevent_hlist_get_cpu(int cpu) 9545 { 9546 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9547 int err = 0; 9548 9549 mutex_lock(&swhash->hlist_mutex); 9550 if (!swevent_hlist_deref(swhash) && 9551 cpumask_test_cpu(cpu, perf_online_mask)) { 9552 struct swevent_hlist *hlist; 9553 9554 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9555 if (!hlist) { 9556 err = -ENOMEM; 9557 goto exit; 9558 } 9559 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9560 } 9561 swhash->hlist_refcount++; 9562 exit: 9563 mutex_unlock(&swhash->hlist_mutex); 9564 9565 return err; 9566 } 9567 9568 static int swevent_hlist_get(void) 9569 { 9570 int err, cpu, failed_cpu; 9571 9572 mutex_lock(&pmus_lock); 9573 for_each_possible_cpu(cpu) { 9574 err = swevent_hlist_get_cpu(cpu); 9575 if (err) { 9576 failed_cpu = cpu; 9577 goto fail; 9578 } 9579 } 9580 mutex_unlock(&pmus_lock); 9581 return 0; 9582 fail: 9583 for_each_possible_cpu(cpu) { 9584 if (cpu == failed_cpu) 9585 break; 9586 swevent_hlist_put_cpu(cpu); 9587 } 9588 mutex_unlock(&pmus_lock); 9589 return err; 9590 } 9591 9592 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9593 9594 static void sw_perf_event_destroy(struct perf_event *event) 9595 { 9596 u64 event_id = event->attr.config; 9597 9598 WARN_ON(event->parent); 9599 9600 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9601 swevent_hlist_put(); 9602 } 9603 9604 static int perf_swevent_init(struct perf_event *event) 9605 { 9606 u64 event_id = event->attr.config; 9607 9608 if (event->attr.type != PERF_TYPE_SOFTWARE) 9609 return -ENOENT; 9610 9611 /* 9612 * no branch sampling for software events 9613 */ 9614 if (has_branch_stack(event)) 9615 return -EOPNOTSUPP; 9616 9617 switch (event_id) { 9618 case PERF_COUNT_SW_CPU_CLOCK: 9619 case PERF_COUNT_SW_TASK_CLOCK: 9620 return -ENOENT; 9621 9622 default: 9623 break; 9624 } 9625 9626 if (event_id >= PERF_COUNT_SW_MAX) 9627 return -ENOENT; 9628 9629 if (!event->parent) { 9630 int err; 9631 9632 err = swevent_hlist_get(); 9633 if (err) 9634 return err; 9635 9636 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9637 event->destroy = sw_perf_event_destroy; 9638 } 9639 9640 return 0; 9641 } 9642 9643 static struct pmu perf_swevent = { 9644 .task_ctx_nr = perf_sw_context, 9645 9646 .capabilities = PERF_PMU_CAP_NO_NMI, 9647 9648 .event_init = perf_swevent_init, 9649 .add = perf_swevent_add, 9650 .del = perf_swevent_del, 9651 .start = perf_swevent_start, 9652 .stop = perf_swevent_stop, 9653 .read = perf_swevent_read, 9654 }; 9655 9656 #ifdef CONFIG_EVENT_TRACING 9657 9658 static int perf_tp_filter_match(struct perf_event *event, 9659 struct perf_sample_data *data) 9660 { 9661 void *record = data->raw->frag.data; 9662 9663 /* only top level events have filters set */ 9664 if (event->parent) 9665 event = event->parent; 9666 9667 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9668 return 1; 9669 return 0; 9670 } 9671 9672 static int perf_tp_event_match(struct perf_event *event, 9673 struct perf_sample_data *data, 9674 struct pt_regs *regs) 9675 { 9676 if (event->hw.state & PERF_HES_STOPPED) 9677 return 0; 9678 /* 9679 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9680 */ 9681 if (event->attr.exclude_kernel && !user_mode(regs)) 9682 return 0; 9683 9684 if (!perf_tp_filter_match(event, data)) 9685 return 0; 9686 9687 return 1; 9688 } 9689 9690 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9691 struct trace_event_call *call, u64 count, 9692 struct pt_regs *regs, struct hlist_head *head, 9693 struct task_struct *task) 9694 { 9695 if (bpf_prog_array_valid(call)) { 9696 *(struct pt_regs **)raw_data = regs; 9697 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9698 perf_swevent_put_recursion_context(rctx); 9699 return; 9700 } 9701 } 9702 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9703 rctx, task); 9704 } 9705 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9706 9707 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9708 struct pt_regs *regs, struct hlist_head *head, int rctx, 9709 struct task_struct *task) 9710 { 9711 struct perf_sample_data data; 9712 struct perf_event *event; 9713 9714 struct perf_raw_record raw = { 9715 .frag = { 9716 .size = entry_size, 9717 .data = record, 9718 }, 9719 }; 9720 9721 perf_sample_data_init(&data, 0, 0); 9722 data.raw = &raw; 9723 9724 perf_trace_buf_update(record, event_type); 9725 9726 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9727 if (perf_tp_event_match(event, &data, regs)) 9728 perf_swevent_event(event, count, &data, regs); 9729 } 9730 9731 /* 9732 * If we got specified a target task, also iterate its context and 9733 * deliver this event there too. 9734 */ 9735 if (task && task != current) { 9736 struct perf_event_context *ctx; 9737 struct trace_entry *entry = record; 9738 9739 rcu_read_lock(); 9740 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9741 if (!ctx) 9742 goto unlock; 9743 9744 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9745 if (event->cpu != smp_processor_id()) 9746 continue; 9747 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9748 continue; 9749 if (event->attr.config != entry->type) 9750 continue; 9751 /* Cannot deliver synchronous signal to other task. */ 9752 if (event->attr.sigtrap) 9753 continue; 9754 if (perf_tp_event_match(event, &data, regs)) 9755 perf_swevent_event(event, count, &data, regs); 9756 } 9757 unlock: 9758 rcu_read_unlock(); 9759 } 9760 9761 perf_swevent_put_recursion_context(rctx); 9762 } 9763 EXPORT_SYMBOL_GPL(perf_tp_event); 9764 9765 static void tp_perf_event_destroy(struct perf_event *event) 9766 { 9767 perf_trace_destroy(event); 9768 } 9769 9770 static int perf_tp_event_init(struct perf_event *event) 9771 { 9772 int err; 9773 9774 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9775 return -ENOENT; 9776 9777 /* 9778 * no branch sampling for tracepoint events 9779 */ 9780 if (has_branch_stack(event)) 9781 return -EOPNOTSUPP; 9782 9783 err = perf_trace_init(event); 9784 if (err) 9785 return err; 9786 9787 event->destroy = tp_perf_event_destroy; 9788 9789 return 0; 9790 } 9791 9792 static struct pmu perf_tracepoint = { 9793 .task_ctx_nr = perf_sw_context, 9794 9795 .event_init = perf_tp_event_init, 9796 .add = perf_trace_add, 9797 .del = perf_trace_del, 9798 .start = perf_swevent_start, 9799 .stop = perf_swevent_stop, 9800 .read = perf_swevent_read, 9801 }; 9802 9803 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9804 /* 9805 * Flags in config, used by dynamic PMU kprobe and uprobe 9806 * The flags should match following PMU_FORMAT_ATTR(). 9807 * 9808 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9809 * if not set, create kprobe/uprobe 9810 * 9811 * The following values specify a reference counter (or semaphore in the 9812 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9813 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9814 * 9815 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9816 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9817 */ 9818 enum perf_probe_config { 9819 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9820 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9821 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9822 }; 9823 9824 PMU_FORMAT_ATTR(retprobe, "config:0"); 9825 #endif 9826 9827 #ifdef CONFIG_KPROBE_EVENTS 9828 static struct attribute *kprobe_attrs[] = { 9829 &format_attr_retprobe.attr, 9830 NULL, 9831 }; 9832 9833 static struct attribute_group kprobe_format_group = { 9834 .name = "format", 9835 .attrs = kprobe_attrs, 9836 }; 9837 9838 static const struct attribute_group *kprobe_attr_groups[] = { 9839 &kprobe_format_group, 9840 NULL, 9841 }; 9842 9843 static int perf_kprobe_event_init(struct perf_event *event); 9844 static struct pmu perf_kprobe = { 9845 .task_ctx_nr = perf_sw_context, 9846 .event_init = perf_kprobe_event_init, 9847 .add = perf_trace_add, 9848 .del = perf_trace_del, 9849 .start = perf_swevent_start, 9850 .stop = perf_swevent_stop, 9851 .read = perf_swevent_read, 9852 .attr_groups = kprobe_attr_groups, 9853 }; 9854 9855 static int perf_kprobe_event_init(struct perf_event *event) 9856 { 9857 int err; 9858 bool is_retprobe; 9859 9860 if (event->attr.type != perf_kprobe.type) 9861 return -ENOENT; 9862 9863 if (!perfmon_capable()) 9864 return -EACCES; 9865 9866 /* 9867 * no branch sampling for probe events 9868 */ 9869 if (has_branch_stack(event)) 9870 return -EOPNOTSUPP; 9871 9872 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9873 err = perf_kprobe_init(event, is_retprobe); 9874 if (err) 9875 return err; 9876 9877 event->destroy = perf_kprobe_destroy; 9878 9879 return 0; 9880 } 9881 #endif /* CONFIG_KPROBE_EVENTS */ 9882 9883 #ifdef CONFIG_UPROBE_EVENTS 9884 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9885 9886 static struct attribute *uprobe_attrs[] = { 9887 &format_attr_retprobe.attr, 9888 &format_attr_ref_ctr_offset.attr, 9889 NULL, 9890 }; 9891 9892 static struct attribute_group uprobe_format_group = { 9893 .name = "format", 9894 .attrs = uprobe_attrs, 9895 }; 9896 9897 static const struct attribute_group *uprobe_attr_groups[] = { 9898 &uprobe_format_group, 9899 NULL, 9900 }; 9901 9902 static int perf_uprobe_event_init(struct perf_event *event); 9903 static struct pmu perf_uprobe = { 9904 .task_ctx_nr = perf_sw_context, 9905 .event_init = perf_uprobe_event_init, 9906 .add = perf_trace_add, 9907 .del = perf_trace_del, 9908 .start = perf_swevent_start, 9909 .stop = perf_swevent_stop, 9910 .read = perf_swevent_read, 9911 .attr_groups = uprobe_attr_groups, 9912 }; 9913 9914 static int perf_uprobe_event_init(struct perf_event *event) 9915 { 9916 int err; 9917 unsigned long ref_ctr_offset; 9918 bool is_retprobe; 9919 9920 if (event->attr.type != perf_uprobe.type) 9921 return -ENOENT; 9922 9923 if (!perfmon_capable()) 9924 return -EACCES; 9925 9926 /* 9927 * no branch sampling for probe events 9928 */ 9929 if (has_branch_stack(event)) 9930 return -EOPNOTSUPP; 9931 9932 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9933 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9934 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9935 if (err) 9936 return err; 9937 9938 event->destroy = perf_uprobe_destroy; 9939 9940 return 0; 9941 } 9942 #endif /* CONFIG_UPROBE_EVENTS */ 9943 9944 static inline void perf_tp_register(void) 9945 { 9946 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9947 #ifdef CONFIG_KPROBE_EVENTS 9948 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9949 #endif 9950 #ifdef CONFIG_UPROBE_EVENTS 9951 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9952 #endif 9953 } 9954 9955 static void perf_event_free_filter(struct perf_event *event) 9956 { 9957 ftrace_profile_free_filter(event); 9958 } 9959 9960 #ifdef CONFIG_BPF_SYSCALL 9961 static void bpf_overflow_handler(struct perf_event *event, 9962 struct perf_sample_data *data, 9963 struct pt_regs *regs) 9964 { 9965 struct bpf_perf_event_data_kern ctx = { 9966 .data = data, 9967 .event = event, 9968 }; 9969 struct bpf_prog *prog; 9970 int ret = 0; 9971 9972 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9973 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9974 goto out; 9975 rcu_read_lock(); 9976 prog = READ_ONCE(event->prog); 9977 if (prog) 9978 ret = bpf_prog_run(prog, &ctx); 9979 rcu_read_unlock(); 9980 out: 9981 __this_cpu_dec(bpf_prog_active); 9982 if (!ret) 9983 return; 9984 9985 event->orig_overflow_handler(event, data, regs); 9986 } 9987 9988 static int perf_event_set_bpf_handler(struct perf_event *event, 9989 struct bpf_prog *prog, 9990 u64 bpf_cookie) 9991 { 9992 if (event->overflow_handler_context) 9993 /* hw breakpoint or kernel counter */ 9994 return -EINVAL; 9995 9996 if (event->prog) 9997 return -EEXIST; 9998 9999 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10000 return -EINVAL; 10001 10002 if (event->attr.precise_ip && 10003 prog->call_get_stack && 10004 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 10005 event->attr.exclude_callchain_kernel || 10006 event->attr.exclude_callchain_user)) { 10007 /* 10008 * On perf_event with precise_ip, calling bpf_get_stack() 10009 * may trigger unwinder warnings and occasional crashes. 10010 * bpf_get_[stack|stackid] works around this issue by using 10011 * callchain attached to perf_sample_data. If the 10012 * perf_event does not full (kernel and user) callchain 10013 * attached to perf_sample_data, do not allow attaching BPF 10014 * program that calls bpf_get_[stack|stackid]. 10015 */ 10016 return -EPROTO; 10017 } 10018 10019 event->prog = prog; 10020 event->bpf_cookie = bpf_cookie; 10021 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10022 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10023 return 0; 10024 } 10025 10026 static void perf_event_free_bpf_handler(struct perf_event *event) 10027 { 10028 struct bpf_prog *prog = event->prog; 10029 10030 if (!prog) 10031 return; 10032 10033 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10034 event->prog = NULL; 10035 bpf_prog_put(prog); 10036 } 10037 #else 10038 static int perf_event_set_bpf_handler(struct perf_event *event, 10039 struct bpf_prog *prog, 10040 u64 bpf_cookie) 10041 { 10042 return -EOPNOTSUPP; 10043 } 10044 static void perf_event_free_bpf_handler(struct perf_event *event) 10045 { 10046 } 10047 #endif 10048 10049 /* 10050 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10051 * with perf_event_open() 10052 */ 10053 static inline bool perf_event_is_tracing(struct perf_event *event) 10054 { 10055 if (event->pmu == &perf_tracepoint) 10056 return true; 10057 #ifdef CONFIG_KPROBE_EVENTS 10058 if (event->pmu == &perf_kprobe) 10059 return true; 10060 #endif 10061 #ifdef CONFIG_UPROBE_EVENTS 10062 if (event->pmu == &perf_uprobe) 10063 return true; 10064 #endif 10065 return false; 10066 } 10067 10068 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10069 u64 bpf_cookie) 10070 { 10071 bool is_kprobe, is_tracepoint, is_syscall_tp; 10072 10073 if (!perf_event_is_tracing(event)) 10074 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10075 10076 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10077 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10078 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10079 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10080 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10081 return -EINVAL; 10082 10083 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10084 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10085 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10086 return -EINVAL; 10087 10088 /* Kprobe override only works for kprobes, not uprobes. */ 10089 if (prog->kprobe_override && 10090 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 10091 return -EINVAL; 10092 10093 if (is_tracepoint || is_syscall_tp) { 10094 int off = trace_event_get_offsets(event->tp_event); 10095 10096 if (prog->aux->max_ctx_offset > off) 10097 return -EACCES; 10098 } 10099 10100 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10101 } 10102 10103 void perf_event_free_bpf_prog(struct perf_event *event) 10104 { 10105 if (!perf_event_is_tracing(event)) { 10106 perf_event_free_bpf_handler(event); 10107 return; 10108 } 10109 perf_event_detach_bpf_prog(event); 10110 } 10111 10112 #else 10113 10114 static inline void perf_tp_register(void) 10115 { 10116 } 10117 10118 static void perf_event_free_filter(struct perf_event *event) 10119 { 10120 } 10121 10122 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10123 u64 bpf_cookie) 10124 { 10125 return -ENOENT; 10126 } 10127 10128 void perf_event_free_bpf_prog(struct perf_event *event) 10129 { 10130 } 10131 #endif /* CONFIG_EVENT_TRACING */ 10132 10133 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10134 void perf_bp_event(struct perf_event *bp, void *data) 10135 { 10136 struct perf_sample_data sample; 10137 struct pt_regs *regs = data; 10138 10139 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10140 10141 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10142 perf_swevent_event(bp, 1, &sample, regs); 10143 } 10144 #endif 10145 10146 /* 10147 * Allocate a new address filter 10148 */ 10149 static struct perf_addr_filter * 10150 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10151 { 10152 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10153 struct perf_addr_filter *filter; 10154 10155 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10156 if (!filter) 10157 return NULL; 10158 10159 INIT_LIST_HEAD(&filter->entry); 10160 list_add_tail(&filter->entry, filters); 10161 10162 return filter; 10163 } 10164 10165 static void free_filters_list(struct list_head *filters) 10166 { 10167 struct perf_addr_filter *filter, *iter; 10168 10169 list_for_each_entry_safe(filter, iter, filters, entry) { 10170 path_put(&filter->path); 10171 list_del(&filter->entry); 10172 kfree(filter); 10173 } 10174 } 10175 10176 /* 10177 * Free existing address filters and optionally install new ones 10178 */ 10179 static void perf_addr_filters_splice(struct perf_event *event, 10180 struct list_head *head) 10181 { 10182 unsigned long flags; 10183 LIST_HEAD(list); 10184 10185 if (!has_addr_filter(event)) 10186 return; 10187 10188 /* don't bother with children, they don't have their own filters */ 10189 if (event->parent) 10190 return; 10191 10192 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10193 10194 list_splice_init(&event->addr_filters.list, &list); 10195 if (head) 10196 list_splice(head, &event->addr_filters.list); 10197 10198 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10199 10200 free_filters_list(&list); 10201 } 10202 10203 /* 10204 * Scan through mm's vmas and see if one of them matches the 10205 * @filter; if so, adjust filter's address range. 10206 * Called with mm::mmap_lock down for reading. 10207 */ 10208 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10209 struct mm_struct *mm, 10210 struct perf_addr_filter_range *fr) 10211 { 10212 struct vm_area_struct *vma; 10213 10214 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10215 if (!vma->vm_file) 10216 continue; 10217 10218 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10219 return; 10220 } 10221 } 10222 10223 /* 10224 * Update event's address range filters based on the 10225 * task's existing mappings, if any. 10226 */ 10227 static void perf_event_addr_filters_apply(struct perf_event *event) 10228 { 10229 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10230 struct task_struct *task = READ_ONCE(event->ctx->task); 10231 struct perf_addr_filter *filter; 10232 struct mm_struct *mm = NULL; 10233 unsigned int count = 0; 10234 unsigned long flags; 10235 10236 /* 10237 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10238 * will stop on the parent's child_mutex that our caller is also holding 10239 */ 10240 if (task == TASK_TOMBSTONE) 10241 return; 10242 10243 if (ifh->nr_file_filters) { 10244 mm = get_task_mm(task); 10245 if (!mm) 10246 goto restart; 10247 10248 mmap_read_lock(mm); 10249 } 10250 10251 raw_spin_lock_irqsave(&ifh->lock, flags); 10252 list_for_each_entry(filter, &ifh->list, entry) { 10253 if (filter->path.dentry) { 10254 /* 10255 * Adjust base offset if the filter is associated to a 10256 * binary that needs to be mapped: 10257 */ 10258 event->addr_filter_ranges[count].start = 0; 10259 event->addr_filter_ranges[count].size = 0; 10260 10261 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10262 } else { 10263 event->addr_filter_ranges[count].start = filter->offset; 10264 event->addr_filter_ranges[count].size = filter->size; 10265 } 10266 10267 count++; 10268 } 10269 10270 event->addr_filters_gen++; 10271 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10272 10273 if (ifh->nr_file_filters) { 10274 mmap_read_unlock(mm); 10275 10276 mmput(mm); 10277 } 10278 10279 restart: 10280 perf_event_stop(event, 1); 10281 } 10282 10283 /* 10284 * Address range filtering: limiting the data to certain 10285 * instruction address ranges. Filters are ioctl()ed to us from 10286 * userspace as ascii strings. 10287 * 10288 * Filter string format: 10289 * 10290 * ACTION RANGE_SPEC 10291 * where ACTION is one of the 10292 * * "filter": limit the trace to this region 10293 * * "start": start tracing from this address 10294 * * "stop": stop tracing at this address/region; 10295 * RANGE_SPEC is 10296 * * for kernel addresses: <start address>[/<size>] 10297 * * for object files: <start address>[/<size>]@</path/to/object/file> 10298 * 10299 * if <size> is not specified or is zero, the range is treated as a single 10300 * address; not valid for ACTION=="filter". 10301 */ 10302 enum { 10303 IF_ACT_NONE = -1, 10304 IF_ACT_FILTER, 10305 IF_ACT_START, 10306 IF_ACT_STOP, 10307 IF_SRC_FILE, 10308 IF_SRC_KERNEL, 10309 IF_SRC_FILEADDR, 10310 IF_SRC_KERNELADDR, 10311 }; 10312 10313 enum { 10314 IF_STATE_ACTION = 0, 10315 IF_STATE_SOURCE, 10316 IF_STATE_END, 10317 }; 10318 10319 static const match_table_t if_tokens = { 10320 { IF_ACT_FILTER, "filter" }, 10321 { IF_ACT_START, "start" }, 10322 { IF_ACT_STOP, "stop" }, 10323 { IF_SRC_FILE, "%u/%u@%s" }, 10324 { IF_SRC_KERNEL, "%u/%u" }, 10325 { IF_SRC_FILEADDR, "%u@%s" }, 10326 { IF_SRC_KERNELADDR, "%u" }, 10327 { IF_ACT_NONE, NULL }, 10328 }; 10329 10330 /* 10331 * Address filter string parser 10332 */ 10333 static int 10334 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10335 struct list_head *filters) 10336 { 10337 struct perf_addr_filter *filter = NULL; 10338 char *start, *orig, *filename = NULL; 10339 substring_t args[MAX_OPT_ARGS]; 10340 int state = IF_STATE_ACTION, token; 10341 unsigned int kernel = 0; 10342 int ret = -EINVAL; 10343 10344 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10345 if (!fstr) 10346 return -ENOMEM; 10347 10348 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10349 static const enum perf_addr_filter_action_t actions[] = { 10350 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10351 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10352 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10353 }; 10354 ret = -EINVAL; 10355 10356 if (!*start) 10357 continue; 10358 10359 /* filter definition begins */ 10360 if (state == IF_STATE_ACTION) { 10361 filter = perf_addr_filter_new(event, filters); 10362 if (!filter) 10363 goto fail; 10364 } 10365 10366 token = match_token(start, if_tokens, args); 10367 switch (token) { 10368 case IF_ACT_FILTER: 10369 case IF_ACT_START: 10370 case IF_ACT_STOP: 10371 if (state != IF_STATE_ACTION) 10372 goto fail; 10373 10374 filter->action = actions[token]; 10375 state = IF_STATE_SOURCE; 10376 break; 10377 10378 case IF_SRC_KERNELADDR: 10379 case IF_SRC_KERNEL: 10380 kernel = 1; 10381 fallthrough; 10382 10383 case IF_SRC_FILEADDR: 10384 case IF_SRC_FILE: 10385 if (state != IF_STATE_SOURCE) 10386 goto fail; 10387 10388 *args[0].to = 0; 10389 ret = kstrtoul(args[0].from, 0, &filter->offset); 10390 if (ret) 10391 goto fail; 10392 10393 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10394 *args[1].to = 0; 10395 ret = kstrtoul(args[1].from, 0, &filter->size); 10396 if (ret) 10397 goto fail; 10398 } 10399 10400 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10401 int fpos = token == IF_SRC_FILE ? 2 : 1; 10402 10403 kfree(filename); 10404 filename = match_strdup(&args[fpos]); 10405 if (!filename) { 10406 ret = -ENOMEM; 10407 goto fail; 10408 } 10409 } 10410 10411 state = IF_STATE_END; 10412 break; 10413 10414 default: 10415 goto fail; 10416 } 10417 10418 /* 10419 * Filter definition is fully parsed, validate and install it. 10420 * Make sure that it doesn't contradict itself or the event's 10421 * attribute. 10422 */ 10423 if (state == IF_STATE_END) { 10424 ret = -EINVAL; 10425 10426 /* 10427 * ACTION "filter" must have a non-zero length region 10428 * specified. 10429 */ 10430 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10431 !filter->size) 10432 goto fail; 10433 10434 if (!kernel) { 10435 if (!filename) 10436 goto fail; 10437 10438 /* 10439 * For now, we only support file-based filters 10440 * in per-task events; doing so for CPU-wide 10441 * events requires additional context switching 10442 * trickery, since same object code will be 10443 * mapped at different virtual addresses in 10444 * different processes. 10445 */ 10446 ret = -EOPNOTSUPP; 10447 if (!event->ctx->task) 10448 goto fail; 10449 10450 /* look up the path and grab its inode */ 10451 ret = kern_path(filename, LOOKUP_FOLLOW, 10452 &filter->path); 10453 if (ret) 10454 goto fail; 10455 10456 ret = -EINVAL; 10457 if (!filter->path.dentry || 10458 !S_ISREG(d_inode(filter->path.dentry) 10459 ->i_mode)) 10460 goto fail; 10461 10462 event->addr_filters.nr_file_filters++; 10463 } 10464 10465 /* ready to consume more filters */ 10466 kfree(filename); 10467 filename = NULL; 10468 state = IF_STATE_ACTION; 10469 filter = NULL; 10470 kernel = 0; 10471 } 10472 } 10473 10474 if (state != IF_STATE_ACTION) 10475 goto fail; 10476 10477 kfree(filename); 10478 kfree(orig); 10479 10480 return 0; 10481 10482 fail: 10483 kfree(filename); 10484 free_filters_list(filters); 10485 kfree(orig); 10486 10487 return ret; 10488 } 10489 10490 static int 10491 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10492 { 10493 LIST_HEAD(filters); 10494 int ret; 10495 10496 /* 10497 * Since this is called in perf_ioctl() path, we're already holding 10498 * ctx::mutex. 10499 */ 10500 lockdep_assert_held(&event->ctx->mutex); 10501 10502 if (WARN_ON_ONCE(event->parent)) 10503 return -EINVAL; 10504 10505 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10506 if (ret) 10507 goto fail_clear_files; 10508 10509 ret = event->pmu->addr_filters_validate(&filters); 10510 if (ret) 10511 goto fail_free_filters; 10512 10513 /* remove existing filters, if any */ 10514 perf_addr_filters_splice(event, &filters); 10515 10516 /* install new filters */ 10517 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10518 10519 return ret; 10520 10521 fail_free_filters: 10522 free_filters_list(&filters); 10523 10524 fail_clear_files: 10525 event->addr_filters.nr_file_filters = 0; 10526 10527 return ret; 10528 } 10529 10530 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10531 { 10532 int ret = -EINVAL; 10533 char *filter_str; 10534 10535 filter_str = strndup_user(arg, PAGE_SIZE); 10536 if (IS_ERR(filter_str)) 10537 return PTR_ERR(filter_str); 10538 10539 #ifdef CONFIG_EVENT_TRACING 10540 if (perf_event_is_tracing(event)) { 10541 struct perf_event_context *ctx = event->ctx; 10542 10543 /* 10544 * Beware, here be dragons!! 10545 * 10546 * the tracepoint muck will deadlock against ctx->mutex, but 10547 * the tracepoint stuff does not actually need it. So 10548 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10549 * already have a reference on ctx. 10550 * 10551 * This can result in event getting moved to a different ctx, 10552 * but that does not affect the tracepoint state. 10553 */ 10554 mutex_unlock(&ctx->mutex); 10555 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10556 mutex_lock(&ctx->mutex); 10557 } else 10558 #endif 10559 if (has_addr_filter(event)) 10560 ret = perf_event_set_addr_filter(event, filter_str); 10561 10562 kfree(filter_str); 10563 return ret; 10564 } 10565 10566 /* 10567 * hrtimer based swevent callback 10568 */ 10569 10570 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10571 { 10572 enum hrtimer_restart ret = HRTIMER_RESTART; 10573 struct perf_sample_data data; 10574 struct pt_regs *regs; 10575 struct perf_event *event; 10576 u64 period; 10577 10578 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10579 10580 if (event->state != PERF_EVENT_STATE_ACTIVE) 10581 return HRTIMER_NORESTART; 10582 10583 event->pmu->read(event); 10584 10585 perf_sample_data_init(&data, 0, event->hw.last_period); 10586 regs = get_irq_regs(); 10587 10588 if (regs && !perf_exclude_event(event, regs)) { 10589 if (!(event->attr.exclude_idle && is_idle_task(current))) 10590 if (__perf_event_overflow(event, 1, &data, regs)) 10591 ret = HRTIMER_NORESTART; 10592 } 10593 10594 period = max_t(u64, 10000, event->hw.sample_period); 10595 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10596 10597 return ret; 10598 } 10599 10600 static void perf_swevent_start_hrtimer(struct perf_event *event) 10601 { 10602 struct hw_perf_event *hwc = &event->hw; 10603 s64 period; 10604 10605 if (!is_sampling_event(event)) 10606 return; 10607 10608 period = local64_read(&hwc->period_left); 10609 if (period) { 10610 if (period < 0) 10611 period = 10000; 10612 10613 local64_set(&hwc->period_left, 0); 10614 } else { 10615 period = max_t(u64, 10000, hwc->sample_period); 10616 } 10617 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10618 HRTIMER_MODE_REL_PINNED_HARD); 10619 } 10620 10621 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10622 { 10623 struct hw_perf_event *hwc = &event->hw; 10624 10625 if (is_sampling_event(event)) { 10626 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10627 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10628 10629 hrtimer_cancel(&hwc->hrtimer); 10630 } 10631 } 10632 10633 static void perf_swevent_init_hrtimer(struct perf_event *event) 10634 { 10635 struct hw_perf_event *hwc = &event->hw; 10636 10637 if (!is_sampling_event(event)) 10638 return; 10639 10640 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10641 hwc->hrtimer.function = perf_swevent_hrtimer; 10642 10643 /* 10644 * Since hrtimers have a fixed rate, we can do a static freq->period 10645 * mapping and avoid the whole period adjust feedback stuff. 10646 */ 10647 if (event->attr.freq) { 10648 long freq = event->attr.sample_freq; 10649 10650 event->attr.sample_period = NSEC_PER_SEC / freq; 10651 hwc->sample_period = event->attr.sample_period; 10652 local64_set(&hwc->period_left, hwc->sample_period); 10653 hwc->last_period = hwc->sample_period; 10654 event->attr.freq = 0; 10655 } 10656 } 10657 10658 /* 10659 * Software event: cpu wall time clock 10660 */ 10661 10662 static void cpu_clock_event_update(struct perf_event *event) 10663 { 10664 s64 prev; 10665 u64 now; 10666 10667 now = local_clock(); 10668 prev = local64_xchg(&event->hw.prev_count, now); 10669 local64_add(now - prev, &event->count); 10670 } 10671 10672 static void cpu_clock_event_start(struct perf_event *event, int flags) 10673 { 10674 local64_set(&event->hw.prev_count, local_clock()); 10675 perf_swevent_start_hrtimer(event); 10676 } 10677 10678 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10679 { 10680 perf_swevent_cancel_hrtimer(event); 10681 cpu_clock_event_update(event); 10682 } 10683 10684 static int cpu_clock_event_add(struct perf_event *event, int flags) 10685 { 10686 if (flags & PERF_EF_START) 10687 cpu_clock_event_start(event, flags); 10688 perf_event_update_userpage(event); 10689 10690 return 0; 10691 } 10692 10693 static void cpu_clock_event_del(struct perf_event *event, int flags) 10694 { 10695 cpu_clock_event_stop(event, flags); 10696 } 10697 10698 static void cpu_clock_event_read(struct perf_event *event) 10699 { 10700 cpu_clock_event_update(event); 10701 } 10702 10703 static int cpu_clock_event_init(struct perf_event *event) 10704 { 10705 if (event->attr.type != PERF_TYPE_SOFTWARE) 10706 return -ENOENT; 10707 10708 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10709 return -ENOENT; 10710 10711 /* 10712 * no branch sampling for software events 10713 */ 10714 if (has_branch_stack(event)) 10715 return -EOPNOTSUPP; 10716 10717 perf_swevent_init_hrtimer(event); 10718 10719 return 0; 10720 } 10721 10722 static struct pmu perf_cpu_clock = { 10723 .task_ctx_nr = perf_sw_context, 10724 10725 .capabilities = PERF_PMU_CAP_NO_NMI, 10726 10727 .event_init = cpu_clock_event_init, 10728 .add = cpu_clock_event_add, 10729 .del = cpu_clock_event_del, 10730 .start = cpu_clock_event_start, 10731 .stop = cpu_clock_event_stop, 10732 .read = cpu_clock_event_read, 10733 }; 10734 10735 /* 10736 * Software event: task time clock 10737 */ 10738 10739 static void task_clock_event_update(struct perf_event *event, u64 now) 10740 { 10741 u64 prev; 10742 s64 delta; 10743 10744 prev = local64_xchg(&event->hw.prev_count, now); 10745 delta = now - prev; 10746 local64_add(delta, &event->count); 10747 } 10748 10749 static void task_clock_event_start(struct perf_event *event, int flags) 10750 { 10751 local64_set(&event->hw.prev_count, event->ctx->time); 10752 perf_swevent_start_hrtimer(event); 10753 } 10754 10755 static void task_clock_event_stop(struct perf_event *event, int flags) 10756 { 10757 perf_swevent_cancel_hrtimer(event); 10758 task_clock_event_update(event, event->ctx->time); 10759 } 10760 10761 static int task_clock_event_add(struct perf_event *event, int flags) 10762 { 10763 if (flags & PERF_EF_START) 10764 task_clock_event_start(event, flags); 10765 perf_event_update_userpage(event); 10766 10767 return 0; 10768 } 10769 10770 static void task_clock_event_del(struct perf_event *event, int flags) 10771 { 10772 task_clock_event_stop(event, PERF_EF_UPDATE); 10773 } 10774 10775 static void task_clock_event_read(struct perf_event *event) 10776 { 10777 u64 now = perf_clock(); 10778 u64 delta = now - event->ctx->timestamp; 10779 u64 time = event->ctx->time + delta; 10780 10781 task_clock_event_update(event, time); 10782 } 10783 10784 static int task_clock_event_init(struct perf_event *event) 10785 { 10786 if (event->attr.type != PERF_TYPE_SOFTWARE) 10787 return -ENOENT; 10788 10789 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10790 return -ENOENT; 10791 10792 /* 10793 * no branch sampling for software events 10794 */ 10795 if (has_branch_stack(event)) 10796 return -EOPNOTSUPP; 10797 10798 perf_swevent_init_hrtimer(event); 10799 10800 return 0; 10801 } 10802 10803 static struct pmu perf_task_clock = { 10804 .task_ctx_nr = perf_sw_context, 10805 10806 .capabilities = PERF_PMU_CAP_NO_NMI, 10807 10808 .event_init = task_clock_event_init, 10809 .add = task_clock_event_add, 10810 .del = task_clock_event_del, 10811 .start = task_clock_event_start, 10812 .stop = task_clock_event_stop, 10813 .read = task_clock_event_read, 10814 }; 10815 10816 static void perf_pmu_nop_void(struct pmu *pmu) 10817 { 10818 } 10819 10820 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10821 { 10822 } 10823 10824 static int perf_pmu_nop_int(struct pmu *pmu) 10825 { 10826 return 0; 10827 } 10828 10829 static int perf_event_nop_int(struct perf_event *event, u64 value) 10830 { 10831 return 0; 10832 } 10833 10834 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10835 10836 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10837 { 10838 __this_cpu_write(nop_txn_flags, flags); 10839 10840 if (flags & ~PERF_PMU_TXN_ADD) 10841 return; 10842 10843 perf_pmu_disable(pmu); 10844 } 10845 10846 static int perf_pmu_commit_txn(struct pmu *pmu) 10847 { 10848 unsigned int flags = __this_cpu_read(nop_txn_flags); 10849 10850 __this_cpu_write(nop_txn_flags, 0); 10851 10852 if (flags & ~PERF_PMU_TXN_ADD) 10853 return 0; 10854 10855 perf_pmu_enable(pmu); 10856 return 0; 10857 } 10858 10859 static void perf_pmu_cancel_txn(struct pmu *pmu) 10860 { 10861 unsigned int flags = __this_cpu_read(nop_txn_flags); 10862 10863 __this_cpu_write(nop_txn_flags, 0); 10864 10865 if (flags & ~PERF_PMU_TXN_ADD) 10866 return; 10867 10868 perf_pmu_enable(pmu); 10869 } 10870 10871 static int perf_event_idx_default(struct perf_event *event) 10872 { 10873 return 0; 10874 } 10875 10876 /* 10877 * Ensures all contexts with the same task_ctx_nr have the same 10878 * pmu_cpu_context too. 10879 */ 10880 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10881 { 10882 struct pmu *pmu; 10883 10884 if (ctxn < 0) 10885 return NULL; 10886 10887 list_for_each_entry(pmu, &pmus, entry) { 10888 if (pmu->task_ctx_nr == ctxn) 10889 return pmu->pmu_cpu_context; 10890 } 10891 10892 return NULL; 10893 } 10894 10895 static void free_pmu_context(struct pmu *pmu) 10896 { 10897 /* 10898 * Static contexts such as perf_sw_context have a global lifetime 10899 * and may be shared between different PMUs. Avoid freeing them 10900 * when a single PMU is going away. 10901 */ 10902 if (pmu->task_ctx_nr > perf_invalid_context) 10903 return; 10904 10905 free_percpu(pmu->pmu_cpu_context); 10906 } 10907 10908 /* 10909 * Let userspace know that this PMU supports address range filtering: 10910 */ 10911 static ssize_t nr_addr_filters_show(struct device *dev, 10912 struct device_attribute *attr, 10913 char *page) 10914 { 10915 struct pmu *pmu = dev_get_drvdata(dev); 10916 10917 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10918 } 10919 DEVICE_ATTR_RO(nr_addr_filters); 10920 10921 static struct idr pmu_idr; 10922 10923 static ssize_t 10924 type_show(struct device *dev, struct device_attribute *attr, char *page) 10925 { 10926 struct pmu *pmu = dev_get_drvdata(dev); 10927 10928 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10929 } 10930 static DEVICE_ATTR_RO(type); 10931 10932 static ssize_t 10933 perf_event_mux_interval_ms_show(struct device *dev, 10934 struct device_attribute *attr, 10935 char *page) 10936 { 10937 struct pmu *pmu = dev_get_drvdata(dev); 10938 10939 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10940 } 10941 10942 static DEFINE_MUTEX(mux_interval_mutex); 10943 10944 static ssize_t 10945 perf_event_mux_interval_ms_store(struct device *dev, 10946 struct device_attribute *attr, 10947 const char *buf, size_t count) 10948 { 10949 struct pmu *pmu = dev_get_drvdata(dev); 10950 int timer, cpu, ret; 10951 10952 ret = kstrtoint(buf, 0, &timer); 10953 if (ret) 10954 return ret; 10955 10956 if (timer < 1) 10957 return -EINVAL; 10958 10959 /* same value, noting to do */ 10960 if (timer == pmu->hrtimer_interval_ms) 10961 return count; 10962 10963 mutex_lock(&mux_interval_mutex); 10964 pmu->hrtimer_interval_ms = timer; 10965 10966 /* update all cpuctx for this PMU */ 10967 cpus_read_lock(); 10968 for_each_online_cpu(cpu) { 10969 struct perf_cpu_context *cpuctx; 10970 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10971 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10972 10973 cpu_function_call(cpu, 10974 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10975 } 10976 cpus_read_unlock(); 10977 mutex_unlock(&mux_interval_mutex); 10978 10979 return count; 10980 } 10981 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10982 10983 static struct attribute *pmu_dev_attrs[] = { 10984 &dev_attr_type.attr, 10985 &dev_attr_perf_event_mux_interval_ms.attr, 10986 NULL, 10987 }; 10988 ATTRIBUTE_GROUPS(pmu_dev); 10989 10990 static int pmu_bus_running; 10991 static struct bus_type pmu_bus = { 10992 .name = "event_source", 10993 .dev_groups = pmu_dev_groups, 10994 }; 10995 10996 static void pmu_dev_release(struct device *dev) 10997 { 10998 kfree(dev); 10999 } 11000 11001 static int pmu_dev_alloc(struct pmu *pmu) 11002 { 11003 int ret = -ENOMEM; 11004 11005 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11006 if (!pmu->dev) 11007 goto out; 11008 11009 pmu->dev->groups = pmu->attr_groups; 11010 device_initialize(pmu->dev); 11011 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11012 if (ret) 11013 goto free_dev; 11014 11015 dev_set_drvdata(pmu->dev, pmu); 11016 pmu->dev->bus = &pmu_bus; 11017 pmu->dev->release = pmu_dev_release; 11018 ret = device_add(pmu->dev); 11019 if (ret) 11020 goto free_dev; 11021 11022 /* For PMUs with address filters, throw in an extra attribute: */ 11023 if (pmu->nr_addr_filters) 11024 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11025 11026 if (ret) 11027 goto del_dev; 11028 11029 if (pmu->attr_update) 11030 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11031 11032 if (ret) 11033 goto del_dev; 11034 11035 out: 11036 return ret; 11037 11038 del_dev: 11039 device_del(pmu->dev); 11040 11041 free_dev: 11042 put_device(pmu->dev); 11043 goto out; 11044 } 11045 11046 static struct lock_class_key cpuctx_mutex; 11047 static struct lock_class_key cpuctx_lock; 11048 11049 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11050 { 11051 int cpu, ret, max = PERF_TYPE_MAX; 11052 11053 mutex_lock(&pmus_lock); 11054 ret = -ENOMEM; 11055 pmu->pmu_disable_count = alloc_percpu(int); 11056 if (!pmu->pmu_disable_count) 11057 goto unlock; 11058 11059 pmu->type = -1; 11060 if (!name) 11061 goto skip_type; 11062 pmu->name = name; 11063 11064 if (type != PERF_TYPE_SOFTWARE) { 11065 if (type >= 0) 11066 max = type; 11067 11068 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11069 if (ret < 0) 11070 goto free_pdc; 11071 11072 WARN_ON(type >= 0 && ret != type); 11073 11074 type = ret; 11075 } 11076 pmu->type = type; 11077 11078 if (pmu_bus_running) { 11079 ret = pmu_dev_alloc(pmu); 11080 if (ret) 11081 goto free_idr; 11082 } 11083 11084 skip_type: 11085 if (pmu->task_ctx_nr == perf_hw_context) { 11086 static int hw_context_taken = 0; 11087 11088 /* 11089 * Other than systems with heterogeneous CPUs, it never makes 11090 * sense for two PMUs to share perf_hw_context. PMUs which are 11091 * uncore must use perf_invalid_context. 11092 */ 11093 if (WARN_ON_ONCE(hw_context_taken && 11094 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11095 pmu->task_ctx_nr = perf_invalid_context; 11096 11097 hw_context_taken = 1; 11098 } 11099 11100 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11101 if (pmu->pmu_cpu_context) 11102 goto got_cpu_context; 11103 11104 ret = -ENOMEM; 11105 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11106 if (!pmu->pmu_cpu_context) 11107 goto free_dev; 11108 11109 for_each_possible_cpu(cpu) { 11110 struct perf_cpu_context *cpuctx; 11111 11112 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11113 __perf_event_init_context(&cpuctx->ctx); 11114 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11115 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11116 cpuctx->ctx.pmu = pmu; 11117 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11118 11119 __perf_mux_hrtimer_init(cpuctx, cpu); 11120 11121 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11122 cpuctx->heap = cpuctx->heap_default; 11123 } 11124 11125 got_cpu_context: 11126 if (!pmu->start_txn) { 11127 if (pmu->pmu_enable) { 11128 /* 11129 * If we have pmu_enable/pmu_disable calls, install 11130 * transaction stubs that use that to try and batch 11131 * hardware accesses. 11132 */ 11133 pmu->start_txn = perf_pmu_start_txn; 11134 pmu->commit_txn = perf_pmu_commit_txn; 11135 pmu->cancel_txn = perf_pmu_cancel_txn; 11136 } else { 11137 pmu->start_txn = perf_pmu_nop_txn; 11138 pmu->commit_txn = perf_pmu_nop_int; 11139 pmu->cancel_txn = perf_pmu_nop_void; 11140 } 11141 } 11142 11143 if (!pmu->pmu_enable) { 11144 pmu->pmu_enable = perf_pmu_nop_void; 11145 pmu->pmu_disable = perf_pmu_nop_void; 11146 } 11147 11148 if (!pmu->check_period) 11149 pmu->check_period = perf_event_nop_int; 11150 11151 if (!pmu->event_idx) 11152 pmu->event_idx = perf_event_idx_default; 11153 11154 /* 11155 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11156 * since these cannot be in the IDR. This way the linear search 11157 * is fast, provided a valid software event is provided. 11158 */ 11159 if (type == PERF_TYPE_SOFTWARE || !name) 11160 list_add_rcu(&pmu->entry, &pmus); 11161 else 11162 list_add_tail_rcu(&pmu->entry, &pmus); 11163 11164 atomic_set(&pmu->exclusive_cnt, 0); 11165 ret = 0; 11166 unlock: 11167 mutex_unlock(&pmus_lock); 11168 11169 return ret; 11170 11171 free_dev: 11172 device_del(pmu->dev); 11173 put_device(pmu->dev); 11174 11175 free_idr: 11176 if (pmu->type != PERF_TYPE_SOFTWARE) 11177 idr_remove(&pmu_idr, pmu->type); 11178 11179 free_pdc: 11180 free_percpu(pmu->pmu_disable_count); 11181 goto unlock; 11182 } 11183 EXPORT_SYMBOL_GPL(perf_pmu_register); 11184 11185 void perf_pmu_unregister(struct pmu *pmu) 11186 { 11187 mutex_lock(&pmus_lock); 11188 list_del_rcu(&pmu->entry); 11189 11190 /* 11191 * We dereference the pmu list under both SRCU and regular RCU, so 11192 * synchronize against both of those. 11193 */ 11194 synchronize_srcu(&pmus_srcu); 11195 synchronize_rcu(); 11196 11197 free_percpu(pmu->pmu_disable_count); 11198 if (pmu->type != PERF_TYPE_SOFTWARE) 11199 idr_remove(&pmu_idr, pmu->type); 11200 if (pmu_bus_running) { 11201 if (pmu->nr_addr_filters) 11202 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11203 device_del(pmu->dev); 11204 put_device(pmu->dev); 11205 } 11206 free_pmu_context(pmu); 11207 mutex_unlock(&pmus_lock); 11208 } 11209 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11210 11211 static inline bool has_extended_regs(struct perf_event *event) 11212 { 11213 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11214 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11215 } 11216 11217 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11218 { 11219 struct perf_event_context *ctx = NULL; 11220 int ret; 11221 11222 if (!try_module_get(pmu->module)) 11223 return -ENODEV; 11224 11225 /* 11226 * A number of pmu->event_init() methods iterate the sibling_list to, 11227 * for example, validate if the group fits on the PMU. Therefore, 11228 * if this is a sibling event, acquire the ctx->mutex to protect 11229 * the sibling_list. 11230 */ 11231 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11232 /* 11233 * This ctx->mutex can nest when we're called through 11234 * inheritance. See the perf_event_ctx_lock_nested() comment. 11235 */ 11236 ctx = perf_event_ctx_lock_nested(event->group_leader, 11237 SINGLE_DEPTH_NESTING); 11238 BUG_ON(!ctx); 11239 } 11240 11241 event->pmu = pmu; 11242 ret = pmu->event_init(event); 11243 11244 if (ctx) 11245 perf_event_ctx_unlock(event->group_leader, ctx); 11246 11247 if (!ret) { 11248 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11249 has_extended_regs(event)) 11250 ret = -EOPNOTSUPP; 11251 11252 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11253 event_has_any_exclude_flag(event)) 11254 ret = -EINVAL; 11255 11256 if (ret && event->destroy) 11257 event->destroy(event); 11258 } 11259 11260 if (ret) 11261 module_put(pmu->module); 11262 11263 return ret; 11264 } 11265 11266 static struct pmu *perf_init_event(struct perf_event *event) 11267 { 11268 bool extended_type = false; 11269 int idx, type, ret; 11270 struct pmu *pmu; 11271 11272 idx = srcu_read_lock(&pmus_srcu); 11273 11274 /* Try parent's PMU first: */ 11275 if (event->parent && event->parent->pmu) { 11276 pmu = event->parent->pmu; 11277 ret = perf_try_init_event(pmu, event); 11278 if (!ret) 11279 goto unlock; 11280 } 11281 11282 /* 11283 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11284 * are often aliases for PERF_TYPE_RAW. 11285 */ 11286 type = event->attr.type; 11287 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11288 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11289 if (!type) { 11290 type = PERF_TYPE_RAW; 11291 } else { 11292 extended_type = true; 11293 event->attr.config &= PERF_HW_EVENT_MASK; 11294 } 11295 } 11296 11297 again: 11298 rcu_read_lock(); 11299 pmu = idr_find(&pmu_idr, type); 11300 rcu_read_unlock(); 11301 if (pmu) { 11302 if (event->attr.type != type && type != PERF_TYPE_RAW && 11303 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11304 goto fail; 11305 11306 ret = perf_try_init_event(pmu, event); 11307 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11308 type = event->attr.type; 11309 goto again; 11310 } 11311 11312 if (ret) 11313 pmu = ERR_PTR(ret); 11314 11315 goto unlock; 11316 } 11317 11318 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11319 ret = perf_try_init_event(pmu, event); 11320 if (!ret) 11321 goto unlock; 11322 11323 if (ret != -ENOENT) { 11324 pmu = ERR_PTR(ret); 11325 goto unlock; 11326 } 11327 } 11328 fail: 11329 pmu = ERR_PTR(-ENOENT); 11330 unlock: 11331 srcu_read_unlock(&pmus_srcu, idx); 11332 11333 return pmu; 11334 } 11335 11336 static void attach_sb_event(struct perf_event *event) 11337 { 11338 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11339 11340 raw_spin_lock(&pel->lock); 11341 list_add_rcu(&event->sb_list, &pel->list); 11342 raw_spin_unlock(&pel->lock); 11343 } 11344 11345 /* 11346 * We keep a list of all !task (and therefore per-cpu) events 11347 * that need to receive side-band records. 11348 * 11349 * This avoids having to scan all the various PMU per-cpu contexts 11350 * looking for them. 11351 */ 11352 static void account_pmu_sb_event(struct perf_event *event) 11353 { 11354 if (is_sb_event(event)) 11355 attach_sb_event(event); 11356 } 11357 11358 static void account_event_cpu(struct perf_event *event, int cpu) 11359 { 11360 if (event->parent) 11361 return; 11362 11363 if (is_cgroup_event(event)) 11364 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11365 } 11366 11367 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11368 static void account_freq_event_nohz(void) 11369 { 11370 #ifdef CONFIG_NO_HZ_FULL 11371 /* Lock so we don't race with concurrent unaccount */ 11372 spin_lock(&nr_freq_lock); 11373 if (atomic_inc_return(&nr_freq_events) == 1) 11374 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11375 spin_unlock(&nr_freq_lock); 11376 #endif 11377 } 11378 11379 static void account_freq_event(void) 11380 { 11381 if (tick_nohz_full_enabled()) 11382 account_freq_event_nohz(); 11383 else 11384 atomic_inc(&nr_freq_events); 11385 } 11386 11387 11388 static void account_event(struct perf_event *event) 11389 { 11390 bool inc = false; 11391 11392 if (event->parent) 11393 return; 11394 11395 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11396 inc = true; 11397 if (event->attr.mmap || event->attr.mmap_data) 11398 atomic_inc(&nr_mmap_events); 11399 if (event->attr.build_id) 11400 atomic_inc(&nr_build_id_events); 11401 if (event->attr.comm) 11402 atomic_inc(&nr_comm_events); 11403 if (event->attr.namespaces) 11404 atomic_inc(&nr_namespaces_events); 11405 if (event->attr.cgroup) 11406 atomic_inc(&nr_cgroup_events); 11407 if (event->attr.task) 11408 atomic_inc(&nr_task_events); 11409 if (event->attr.freq) 11410 account_freq_event(); 11411 if (event->attr.context_switch) { 11412 atomic_inc(&nr_switch_events); 11413 inc = true; 11414 } 11415 if (has_branch_stack(event)) 11416 inc = true; 11417 if (is_cgroup_event(event)) 11418 inc = true; 11419 if (event->attr.ksymbol) 11420 atomic_inc(&nr_ksymbol_events); 11421 if (event->attr.bpf_event) 11422 atomic_inc(&nr_bpf_events); 11423 if (event->attr.text_poke) 11424 atomic_inc(&nr_text_poke_events); 11425 11426 if (inc) { 11427 /* 11428 * We need the mutex here because static_branch_enable() 11429 * must complete *before* the perf_sched_count increment 11430 * becomes visible. 11431 */ 11432 if (atomic_inc_not_zero(&perf_sched_count)) 11433 goto enabled; 11434 11435 mutex_lock(&perf_sched_mutex); 11436 if (!atomic_read(&perf_sched_count)) { 11437 static_branch_enable(&perf_sched_events); 11438 /* 11439 * Guarantee that all CPUs observe they key change and 11440 * call the perf scheduling hooks before proceeding to 11441 * install events that need them. 11442 */ 11443 synchronize_rcu(); 11444 } 11445 /* 11446 * Now that we have waited for the sync_sched(), allow further 11447 * increments to by-pass the mutex. 11448 */ 11449 atomic_inc(&perf_sched_count); 11450 mutex_unlock(&perf_sched_mutex); 11451 } 11452 enabled: 11453 11454 account_event_cpu(event, event->cpu); 11455 11456 account_pmu_sb_event(event); 11457 } 11458 11459 /* 11460 * Allocate and initialize an event structure 11461 */ 11462 static struct perf_event * 11463 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11464 struct task_struct *task, 11465 struct perf_event *group_leader, 11466 struct perf_event *parent_event, 11467 perf_overflow_handler_t overflow_handler, 11468 void *context, int cgroup_fd) 11469 { 11470 struct pmu *pmu; 11471 struct perf_event *event; 11472 struct hw_perf_event *hwc; 11473 long err = -EINVAL; 11474 int node; 11475 11476 if ((unsigned)cpu >= nr_cpu_ids) { 11477 if (!task || cpu != -1) 11478 return ERR_PTR(-EINVAL); 11479 } 11480 if (attr->sigtrap && !task) { 11481 /* Requires a task: avoid signalling random tasks. */ 11482 return ERR_PTR(-EINVAL); 11483 } 11484 11485 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11486 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11487 node); 11488 if (!event) 11489 return ERR_PTR(-ENOMEM); 11490 11491 /* 11492 * Single events are their own group leaders, with an 11493 * empty sibling list: 11494 */ 11495 if (!group_leader) 11496 group_leader = event; 11497 11498 mutex_init(&event->child_mutex); 11499 INIT_LIST_HEAD(&event->child_list); 11500 11501 INIT_LIST_HEAD(&event->event_entry); 11502 INIT_LIST_HEAD(&event->sibling_list); 11503 INIT_LIST_HEAD(&event->active_list); 11504 init_event_group(event); 11505 INIT_LIST_HEAD(&event->rb_entry); 11506 INIT_LIST_HEAD(&event->active_entry); 11507 INIT_LIST_HEAD(&event->addr_filters.list); 11508 INIT_HLIST_NODE(&event->hlist_entry); 11509 11510 11511 init_waitqueue_head(&event->waitq); 11512 event->pending_disable = -1; 11513 init_irq_work(&event->pending, perf_pending_event); 11514 11515 mutex_init(&event->mmap_mutex); 11516 raw_spin_lock_init(&event->addr_filters.lock); 11517 11518 atomic_long_set(&event->refcount, 1); 11519 event->cpu = cpu; 11520 event->attr = *attr; 11521 event->group_leader = group_leader; 11522 event->pmu = NULL; 11523 event->oncpu = -1; 11524 11525 event->parent = parent_event; 11526 11527 event->ns = get_pid_ns(task_active_pid_ns(current)); 11528 event->id = atomic64_inc_return(&perf_event_id); 11529 11530 event->state = PERF_EVENT_STATE_INACTIVE; 11531 11532 if (parent_event) 11533 event->event_caps = parent_event->event_caps; 11534 11535 if (event->attr.sigtrap) 11536 atomic_set(&event->event_limit, 1); 11537 11538 if (task) { 11539 event->attach_state = PERF_ATTACH_TASK; 11540 /* 11541 * XXX pmu::event_init needs to know what task to account to 11542 * and we cannot use the ctx information because we need the 11543 * pmu before we get a ctx. 11544 */ 11545 event->hw.target = get_task_struct(task); 11546 } 11547 11548 event->clock = &local_clock; 11549 if (parent_event) 11550 event->clock = parent_event->clock; 11551 11552 if (!overflow_handler && parent_event) { 11553 overflow_handler = parent_event->overflow_handler; 11554 context = parent_event->overflow_handler_context; 11555 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11556 if (overflow_handler == bpf_overflow_handler) { 11557 struct bpf_prog *prog = parent_event->prog; 11558 11559 bpf_prog_inc(prog); 11560 event->prog = prog; 11561 event->orig_overflow_handler = 11562 parent_event->orig_overflow_handler; 11563 } 11564 #endif 11565 } 11566 11567 if (overflow_handler) { 11568 event->overflow_handler = overflow_handler; 11569 event->overflow_handler_context = context; 11570 } else if (is_write_backward(event)){ 11571 event->overflow_handler = perf_event_output_backward; 11572 event->overflow_handler_context = NULL; 11573 } else { 11574 event->overflow_handler = perf_event_output_forward; 11575 event->overflow_handler_context = NULL; 11576 } 11577 11578 perf_event__state_init(event); 11579 11580 pmu = NULL; 11581 11582 hwc = &event->hw; 11583 hwc->sample_period = attr->sample_period; 11584 if (attr->freq && attr->sample_freq) 11585 hwc->sample_period = 1; 11586 hwc->last_period = hwc->sample_period; 11587 11588 local64_set(&hwc->period_left, hwc->sample_period); 11589 11590 /* 11591 * We currently do not support PERF_SAMPLE_READ on inherited events. 11592 * See perf_output_read(). 11593 */ 11594 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11595 goto err_ns; 11596 11597 if (!has_branch_stack(event)) 11598 event->attr.branch_sample_type = 0; 11599 11600 pmu = perf_init_event(event); 11601 if (IS_ERR(pmu)) { 11602 err = PTR_ERR(pmu); 11603 goto err_ns; 11604 } 11605 11606 /* 11607 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11608 * be different on other CPUs in the uncore mask. 11609 */ 11610 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11611 err = -EINVAL; 11612 goto err_pmu; 11613 } 11614 11615 if (event->attr.aux_output && 11616 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11617 err = -EOPNOTSUPP; 11618 goto err_pmu; 11619 } 11620 11621 if (cgroup_fd != -1) { 11622 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11623 if (err) 11624 goto err_pmu; 11625 } 11626 11627 err = exclusive_event_init(event); 11628 if (err) 11629 goto err_pmu; 11630 11631 if (has_addr_filter(event)) { 11632 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11633 sizeof(struct perf_addr_filter_range), 11634 GFP_KERNEL); 11635 if (!event->addr_filter_ranges) { 11636 err = -ENOMEM; 11637 goto err_per_task; 11638 } 11639 11640 /* 11641 * Clone the parent's vma offsets: they are valid until exec() 11642 * even if the mm is not shared with the parent. 11643 */ 11644 if (event->parent) { 11645 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11646 11647 raw_spin_lock_irq(&ifh->lock); 11648 memcpy(event->addr_filter_ranges, 11649 event->parent->addr_filter_ranges, 11650 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11651 raw_spin_unlock_irq(&ifh->lock); 11652 } 11653 11654 /* force hw sync on the address filters */ 11655 event->addr_filters_gen = 1; 11656 } 11657 11658 if (!event->parent) { 11659 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11660 err = get_callchain_buffers(attr->sample_max_stack); 11661 if (err) 11662 goto err_addr_filters; 11663 } 11664 } 11665 11666 err = security_perf_event_alloc(event); 11667 if (err) 11668 goto err_callchain_buffer; 11669 11670 /* symmetric to unaccount_event() in _free_event() */ 11671 account_event(event); 11672 11673 return event; 11674 11675 err_callchain_buffer: 11676 if (!event->parent) { 11677 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11678 put_callchain_buffers(); 11679 } 11680 err_addr_filters: 11681 kfree(event->addr_filter_ranges); 11682 11683 err_per_task: 11684 exclusive_event_destroy(event); 11685 11686 err_pmu: 11687 if (is_cgroup_event(event)) 11688 perf_detach_cgroup(event); 11689 if (event->destroy) 11690 event->destroy(event); 11691 module_put(pmu->module); 11692 err_ns: 11693 if (event->ns) 11694 put_pid_ns(event->ns); 11695 if (event->hw.target) 11696 put_task_struct(event->hw.target); 11697 kmem_cache_free(perf_event_cache, event); 11698 11699 return ERR_PTR(err); 11700 } 11701 11702 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11703 struct perf_event_attr *attr) 11704 { 11705 u32 size; 11706 int ret; 11707 11708 /* Zero the full structure, so that a short copy will be nice. */ 11709 memset(attr, 0, sizeof(*attr)); 11710 11711 ret = get_user(size, &uattr->size); 11712 if (ret) 11713 return ret; 11714 11715 /* ABI compatibility quirk: */ 11716 if (!size) 11717 size = PERF_ATTR_SIZE_VER0; 11718 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11719 goto err_size; 11720 11721 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11722 if (ret) { 11723 if (ret == -E2BIG) 11724 goto err_size; 11725 return ret; 11726 } 11727 11728 attr->size = size; 11729 11730 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11731 return -EINVAL; 11732 11733 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11734 return -EINVAL; 11735 11736 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11737 return -EINVAL; 11738 11739 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11740 u64 mask = attr->branch_sample_type; 11741 11742 /* only using defined bits */ 11743 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11744 return -EINVAL; 11745 11746 /* at least one branch bit must be set */ 11747 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11748 return -EINVAL; 11749 11750 /* propagate priv level, when not set for branch */ 11751 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11752 11753 /* exclude_kernel checked on syscall entry */ 11754 if (!attr->exclude_kernel) 11755 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11756 11757 if (!attr->exclude_user) 11758 mask |= PERF_SAMPLE_BRANCH_USER; 11759 11760 if (!attr->exclude_hv) 11761 mask |= PERF_SAMPLE_BRANCH_HV; 11762 /* 11763 * adjust user setting (for HW filter setup) 11764 */ 11765 attr->branch_sample_type = mask; 11766 } 11767 /* privileged levels capture (kernel, hv): check permissions */ 11768 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11769 ret = perf_allow_kernel(attr); 11770 if (ret) 11771 return ret; 11772 } 11773 } 11774 11775 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11776 ret = perf_reg_validate(attr->sample_regs_user); 11777 if (ret) 11778 return ret; 11779 } 11780 11781 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11782 if (!arch_perf_have_user_stack_dump()) 11783 return -ENOSYS; 11784 11785 /* 11786 * We have __u32 type for the size, but so far 11787 * we can only use __u16 as maximum due to the 11788 * __u16 sample size limit. 11789 */ 11790 if (attr->sample_stack_user >= USHRT_MAX) 11791 return -EINVAL; 11792 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11793 return -EINVAL; 11794 } 11795 11796 if (!attr->sample_max_stack) 11797 attr->sample_max_stack = sysctl_perf_event_max_stack; 11798 11799 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11800 ret = perf_reg_validate(attr->sample_regs_intr); 11801 11802 #ifndef CONFIG_CGROUP_PERF 11803 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11804 return -EINVAL; 11805 #endif 11806 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11807 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11808 return -EINVAL; 11809 11810 if (!attr->inherit && attr->inherit_thread) 11811 return -EINVAL; 11812 11813 if (attr->remove_on_exec && attr->enable_on_exec) 11814 return -EINVAL; 11815 11816 if (attr->sigtrap && !attr->remove_on_exec) 11817 return -EINVAL; 11818 11819 out: 11820 return ret; 11821 11822 err_size: 11823 put_user(sizeof(*attr), &uattr->size); 11824 ret = -E2BIG; 11825 goto out; 11826 } 11827 11828 static int 11829 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11830 { 11831 struct perf_buffer *rb = NULL; 11832 int ret = -EINVAL; 11833 11834 if (!output_event) 11835 goto set; 11836 11837 /* don't allow circular references */ 11838 if (event == output_event) 11839 goto out; 11840 11841 /* 11842 * Don't allow cross-cpu buffers 11843 */ 11844 if (output_event->cpu != event->cpu) 11845 goto out; 11846 11847 /* 11848 * If its not a per-cpu rb, it must be the same task. 11849 */ 11850 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11851 goto out; 11852 11853 /* 11854 * Mixing clocks in the same buffer is trouble you don't need. 11855 */ 11856 if (output_event->clock != event->clock) 11857 goto out; 11858 11859 /* 11860 * Either writing ring buffer from beginning or from end. 11861 * Mixing is not allowed. 11862 */ 11863 if (is_write_backward(output_event) != is_write_backward(event)) 11864 goto out; 11865 11866 /* 11867 * If both events generate aux data, they must be on the same PMU 11868 */ 11869 if (has_aux(event) && has_aux(output_event) && 11870 event->pmu != output_event->pmu) 11871 goto out; 11872 11873 set: 11874 mutex_lock(&event->mmap_mutex); 11875 /* Can't redirect output if we've got an active mmap() */ 11876 if (atomic_read(&event->mmap_count)) 11877 goto unlock; 11878 11879 if (output_event) { 11880 /* get the rb we want to redirect to */ 11881 rb = ring_buffer_get(output_event); 11882 if (!rb) 11883 goto unlock; 11884 } 11885 11886 ring_buffer_attach(event, rb); 11887 11888 ret = 0; 11889 unlock: 11890 mutex_unlock(&event->mmap_mutex); 11891 11892 out: 11893 return ret; 11894 } 11895 11896 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11897 { 11898 if (b < a) 11899 swap(a, b); 11900 11901 mutex_lock(a); 11902 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11903 } 11904 11905 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11906 { 11907 bool nmi_safe = false; 11908 11909 switch (clk_id) { 11910 case CLOCK_MONOTONIC: 11911 event->clock = &ktime_get_mono_fast_ns; 11912 nmi_safe = true; 11913 break; 11914 11915 case CLOCK_MONOTONIC_RAW: 11916 event->clock = &ktime_get_raw_fast_ns; 11917 nmi_safe = true; 11918 break; 11919 11920 case CLOCK_REALTIME: 11921 event->clock = &ktime_get_real_ns; 11922 break; 11923 11924 case CLOCK_BOOTTIME: 11925 event->clock = &ktime_get_boottime_ns; 11926 break; 11927 11928 case CLOCK_TAI: 11929 event->clock = &ktime_get_clocktai_ns; 11930 break; 11931 11932 default: 11933 return -EINVAL; 11934 } 11935 11936 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11937 return -EINVAL; 11938 11939 return 0; 11940 } 11941 11942 /* 11943 * Variation on perf_event_ctx_lock_nested(), except we take two context 11944 * mutexes. 11945 */ 11946 static struct perf_event_context * 11947 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11948 struct perf_event_context *ctx) 11949 { 11950 struct perf_event_context *gctx; 11951 11952 again: 11953 rcu_read_lock(); 11954 gctx = READ_ONCE(group_leader->ctx); 11955 if (!refcount_inc_not_zero(&gctx->refcount)) { 11956 rcu_read_unlock(); 11957 goto again; 11958 } 11959 rcu_read_unlock(); 11960 11961 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11962 11963 if (group_leader->ctx != gctx) { 11964 mutex_unlock(&ctx->mutex); 11965 mutex_unlock(&gctx->mutex); 11966 put_ctx(gctx); 11967 goto again; 11968 } 11969 11970 return gctx; 11971 } 11972 11973 static bool 11974 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 11975 { 11976 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 11977 bool is_capable = perfmon_capable(); 11978 11979 if (attr->sigtrap) { 11980 /* 11981 * perf_event_attr::sigtrap sends signals to the other task. 11982 * Require the current task to also have CAP_KILL. 11983 */ 11984 rcu_read_lock(); 11985 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 11986 rcu_read_unlock(); 11987 11988 /* 11989 * If the required capabilities aren't available, checks for 11990 * ptrace permissions: upgrade to ATTACH, since sending signals 11991 * can effectively change the target task. 11992 */ 11993 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 11994 } 11995 11996 /* 11997 * Preserve ptrace permission check for backwards compatibility. The 11998 * ptrace check also includes checks that the current task and other 11999 * task have matching uids, and is therefore not done here explicitly. 12000 */ 12001 return is_capable || ptrace_may_access(task, ptrace_mode); 12002 } 12003 12004 /** 12005 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12006 * 12007 * @attr_uptr: event_id type attributes for monitoring/sampling 12008 * @pid: target pid 12009 * @cpu: target cpu 12010 * @group_fd: group leader event fd 12011 * @flags: perf event open flags 12012 */ 12013 SYSCALL_DEFINE5(perf_event_open, 12014 struct perf_event_attr __user *, attr_uptr, 12015 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12016 { 12017 struct perf_event *group_leader = NULL, *output_event = NULL; 12018 struct perf_event *event, *sibling; 12019 struct perf_event_attr attr; 12020 struct perf_event_context *ctx, *gctx; 12021 struct file *event_file = NULL; 12022 struct fd group = {NULL, 0}; 12023 struct task_struct *task = NULL; 12024 struct pmu *pmu; 12025 int event_fd; 12026 int move_group = 0; 12027 int err; 12028 int f_flags = O_RDWR; 12029 int cgroup_fd = -1; 12030 12031 /* for future expandability... */ 12032 if (flags & ~PERF_FLAG_ALL) 12033 return -EINVAL; 12034 12035 /* Do we allow access to perf_event_open(2) ? */ 12036 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12037 if (err) 12038 return err; 12039 12040 err = perf_copy_attr(attr_uptr, &attr); 12041 if (err) 12042 return err; 12043 12044 if (!attr.exclude_kernel) { 12045 err = perf_allow_kernel(&attr); 12046 if (err) 12047 return err; 12048 } 12049 12050 if (attr.namespaces) { 12051 if (!perfmon_capable()) 12052 return -EACCES; 12053 } 12054 12055 if (attr.freq) { 12056 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12057 return -EINVAL; 12058 } else { 12059 if (attr.sample_period & (1ULL << 63)) 12060 return -EINVAL; 12061 } 12062 12063 /* Only privileged users can get physical addresses */ 12064 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12065 err = perf_allow_kernel(&attr); 12066 if (err) 12067 return err; 12068 } 12069 12070 /* REGS_INTR can leak data, lockdown must prevent this */ 12071 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12072 err = security_locked_down(LOCKDOWN_PERF); 12073 if (err) 12074 return err; 12075 } 12076 12077 /* 12078 * In cgroup mode, the pid argument is used to pass the fd 12079 * opened to the cgroup directory in cgroupfs. The cpu argument 12080 * designates the cpu on which to monitor threads from that 12081 * cgroup. 12082 */ 12083 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12084 return -EINVAL; 12085 12086 if (flags & PERF_FLAG_FD_CLOEXEC) 12087 f_flags |= O_CLOEXEC; 12088 12089 event_fd = get_unused_fd_flags(f_flags); 12090 if (event_fd < 0) 12091 return event_fd; 12092 12093 if (group_fd != -1) { 12094 err = perf_fget_light(group_fd, &group); 12095 if (err) 12096 goto err_fd; 12097 group_leader = group.file->private_data; 12098 if (flags & PERF_FLAG_FD_OUTPUT) 12099 output_event = group_leader; 12100 if (flags & PERF_FLAG_FD_NO_GROUP) 12101 group_leader = NULL; 12102 } 12103 12104 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12105 task = find_lively_task_by_vpid(pid); 12106 if (IS_ERR(task)) { 12107 err = PTR_ERR(task); 12108 goto err_group_fd; 12109 } 12110 } 12111 12112 if (task && group_leader && 12113 group_leader->attr.inherit != attr.inherit) { 12114 err = -EINVAL; 12115 goto err_task; 12116 } 12117 12118 if (flags & PERF_FLAG_PID_CGROUP) 12119 cgroup_fd = pid; 12120 12121 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12122 NULL, NULL, cgroup_fd); 12123 if (IS_ERR(event)) { 12124 err = PTR_ERR(event); 12125 goto err_task; 12126 } 12127 12128 if (is_sampling_event(event)) { 12129 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12130 err = -EOPNOTSUPP; 12131 goto err_alloc; 12132 } 12133 } 12134 12135 /* 12136 * Special case software events and allow them to be part of 12137 * any hardware group. 12138 */ 12139 pmu = event->pmu; 12140 12141 if (attr.use_clockid) { 12142 err = perf_event_set_clock(event, attr.clockid); 12143 if (err) 12144 goto err_alloc; 12145 } 12146 12147 if (pmu->task_ctx_nr == perf_sw_context) 12148 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12149 12150 if (group_leader) { 12151 if (is_software_event(event) && 12152 !in_software_context(group_leader)) { 12153 /* 12154 * If the event is a sw event, but the group_leader 12155 * is on hw context. 12156 * 12157 * Allow the addition of software events to hw 12158 * groups, this is safe because software events 12159 * never fail to schedule. 12160 */ 12161 pmu = group_leader->ctx->pmu; 12162 } else if (!is_software_event(event) && 12163 is_software_event(group_leader) && 12164 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12165 /* 12166 * In case the group is a pure software group, and we 12167 * try to add a hardware event, move the whole group to 12168 * the hardware context. 12169 */ 12170 move_group = 1; 12171 } 12172 } 12173 12174 /* 12175 * Get the target context (task or percpu): 12176 */ 12177 ctx = find_get_context(pmu, task, event); 12178 if (IS_ERR(ctx)) { 12179 err = PTR_ERR(ctx); 12180 goto err_alloc; 12181 } 12182 12183 /* 12184 * Look up the group leader (we will attach this event to it): 12185 */ 12186 if (group_leader) { 12187 err = -EINVAL; 12188 12189 /* 12190 * Do not allow a recursive hierarchy (this new sibling 12191 * becoming part of another group-sibling): 12192 */ 12193 if (group_leader->group_leader != group_leader) 12194 goto err_context; 12195 12196 /* All events in a group should have the same clock */ 12197 if (group_leader->clock != event->clock) 12198 goto err_context; 12199 12200 /* 12201 * Make sure we're both events for the same CPU; 12202 * grouping events for different CPUs is broken; since 12203 * you can never concurrently schedule them anyhow. 12204 */ 12205 if (group_leader->cpu != event->cpu) 12206 goto err_context; 12207 12208 /* 12209 * Make sure we're both on the same task, or both 12210 * per-CPU events. 12211 */ 12212 if (group_leader->ctx->task != ctx->task) 12213 goto err_context; 12214 12215 /* 12216 * Do not allow to attach to a group in a different task 12217 * or CPU context. If we're moving SW events, we'll fix 12218 * this up later, so allow that. 12219 * 12220 * Racy, not holding group_leader->ctx->mutex, see comment with 12221 * perf_event_ctx_lock(). 12222 */ 12223 if (!move_group && group_leader->ctx != ctx) 12224 goto err_context; 12225 12226 /* 12227 * Only a group leader can be exclusive or pinned 12228 */ 12229 if (attr.exclusive || attr.pinned) 12230 goto err_context; 12231 } 12232 12233 if (output_event) { 12234 err = perf_event_set_output(event, output_event); 12235 if (err) 12236 goto err_context; 12237 } 12238 12239 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12240 f_flags); 12241 if (IS_ERR(event_file)) { 12242 err = PTR_ERR(event_file); 12243 event_file = NULL; 12244 goto err_context; 12245 } 12246 12247 if (task) { 12248 err = down_read_interruptible(&task->signal->exec_update_lock); 12249 if (err) 12250 goto err_file; 12251 12252 /* 12253 * We must hold exec_update_lock across this and any potential 12254 * perf_install_in_context() call for this new event to 12255 * serialize against exec() altering our credentials (and the 12256 * perf_event_exit_task() that could imply). 12257 */ 12258 err = -EACCES; 12259 if (!perf_check_permission(&attr, task)) 12260 goto err_cred; 12261 } 12262 12263 if (move_group) { 12264 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12265 12266 if (gctx->task == TASK_TOMBSTONE) { 12267 err = -ESRCH; 12268 goto err_locked; 12269 } 12270 12271 /* 12272 * Check if we raced against another sys_perf_event_open() call 12273 * moving the software group underneath us. 12274 */ 12275 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12276 /* 12277 * If someone moved the group out from under us, check 12278 * if this new event wound up on the same ctx, if so 12279 * its the regular !move_group case, otherwise fail. 12280 */ 12281 if (gctx != ctx) { 12282 err = -EINVAL; 12283 goto err_locked; 12284 } else { 12285 perf_event_ctx_unlock(group_leader, gctx); 12286 move_group = 0; 12287 goto not_move_group; 12288 } 12289 } 12290 12291 /* 12292 * Failure to create exclusive events returns -EBUSY. 12293 */ 12294 err = -EBUSY; 12295 if (!exclusive_event_installable(group_leader, ctx)) 12296 goto err_locked; 12297 12298 for_each_sibling_event(sibling, group_leader) { 12299 if (!exclusive_event_installable(sibling, ctx)) 12300 goto err_locked; 12301 } 12302 } else { 12303 mutex_lock(&ctx->mutex); 12304 12305 /* 12306 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx, 12307 * see the group_leader && !move_group test earlier. 12308 */ 12309 if (group_leader && group_leader->ctx != ctx) { 12310 err = -EINVAL; 12311 goto err_locked; 12312 } 12313 } 12314 not_move_group: 12315 12316 if (ctx->task == TASK_TOMBSTONE) { 12317 err = -ESRCH; 12318 goto err_locked; 12319 } 12320 12321 if (!perf_event_validate_size(event)) { 12322 err = -E2BIG; 12323 goto err_locked; 12324 } 12325 12326 if (!task) { 12327 /* 12328 * Check if the @cpu we're creating an event for is online. 12329 * 12330 * We use the perf_cpu_context::ctx::mutex to serialize against 12331 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12332 */ 12333 struct perf_cpu_context *cpuctx = 12334 container_of(ctx, struct perf_cpu_context, ctx); 12335 12336 if (!cpuctx->online) { 12337 err = -ENODEV; 12338 goto err_locked; 12339 } 12340 } 12341 12342 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12343 err = -EINVAL; 12344 goto err_locked; 12345 } 12346 12347 /* 12348 * Must be under the same ctx::mutex as perf_install_in_context(), 12349 * because we need to serialize with concurrent event creation. 12350 */ 12351 if (!exclusive_event_installable(event, ctx)) { 12352 err = -EBUSY; 12353 goto err_locked; 12354 } 12355 12356 WARN_ON_ONCE(ctx->parent_ctx); 12357 12358 /* 12359 * This is the point on no return; we cannot fail hereafter. This is 12360 * where we start modifying current state. 12361 */ 12362 12363 if (move_group) { 12364 /* 12365 * See perf_event_ctx_lock() for comments on the details 12366 * of swizzling perf_event::ctx. 12367 */ 12368 perf_remove_from_context(group_leader, 0); 12369 put_ctx(gctx); 12370 12371 for_each_sibling_event(sibling, group_leader) { 12372 perf_remove_from_context(sibling, 0); 12373 put_ctx(gctx); 12374 } 12375 12376 /* 12377 * Wait for everybody to stop referencing the events through 12378 * the old lists, before installing it on new lists. 12379 */ 12380 synchronize_rcu(); 12381 12382 /* 12383 * Install the group siblings before the group leader. 12384 * 12385 * Because a group leader will try and install the entire group 12386 * (through the sibling list, which is still in-tact), we can 12387 * end up with siblings installed in the wrong context. 12388 * 12389 * By installing siblings first we NO-OP because they're not 12390 * reachable through the group lists. 12391 */ 12392 for_each_sibling_event(sibling, group_leader) { 12393 perf_event__state_init(sibling); 12394 perf_install_in_context(ctx, sibling, sibling->cpu); 12395 get_ctx(ctx); 12396 } 12397 12398 /* 12399 * Removing from the context ends up with disabled 12400 * event. What we want here is event in the initial 12401 * startup state, ready to be add into new context. 12402 */ 12403 perf_event__state_init(group_leader); 12404 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12405 get_ctx(ctx); 12406 } 12407 12408 /* 12409 * Precalculate sample_data sizes; do while holding ctx::mutex such 12410 * that we're serialized against further additions and before 12411 * perf_install_in_context() which is the point the event is active and 12412 * can use these values. 12413 */ 12414 perf_event__header_size(event); 12415 perf_event__id_header_size(event); 12416 12417 event->owner = current; 12418 12419 perf_install_in_context(ctx, event, event->cpu); 12420 perf_unpin_context(ctx); 12421 12422 if (move_group) 12423 perf_event_ctx_unlock(group_leader, gctx); 12424 mutex_unlock(&ctx->mutex); 12425 12426 if (task) { 12427 up_read(&task->signal->exec_update_lock); 12428 put_task_struct(task); 12429 } 12430 12431 mutex_lock(¤t->perf_event_mutex); 12432 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12433 mutex_unlock(¤t->perf_event_mutex); 12434 12435 /* 12436 * Drop the reference on the group_event after placing the 12437 * new event on the sibling_list. This ensures destruction 12438 * of the group leader will find the pointer to itself in 12439 * perf_group_detach(). 12440 */ 12441 fdput(group); 12442 fd_install(event_fd, event_file); 12443 return event_fd; 12444 12445 err_locked: 12446 if (move_group) 12447 perf_event_ctx_unlock(group_leader, gctx); 12448 mutex_unlock(&ctx->mutex); 12449 err_cred: 12450 if (task) 12451 up_read(&task->signal->exec_update_lock); 12452 err_file: 12453 fput(event_file); 12454 err_context: 12455 perf_unpin_context(ctx); 12456 put_ctx(ctx); 12457 err_alloc: 12458 /* 12459 * If event_file is set, the fput() above will have called ->release() 12460 * and that will take care of freeing the event. 12461 */ 12462 if (!event_file) 12463 free_event(event); 12464 err_task: 12465 if (task) 12466 put_task_struct(task); 12467 err_group_fd: 12468 fdput(group); 12469 err_fd: 12470 put_unused_fd(event_fd); 12471 return err; 12472 } 12473 12474 /** 12475 * perf_event_create_kernel_counter 12476 * 12477 * @attr: attributes of the counter to create 12478 * @cpu: cpu in which the counter is bound 12479 * @task: task to profile (NULL for percpu) 12480 * @overflow_handler: callback to trigger when we hit the event 12481 * @context: context data could be used in overflow_handler callback 12482 */ 12483 struct perf_event * 12484 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12485 struct task_struct *task, 12486 perf_overflow_handler_t overflow_handler, 12487 void *context) 12488 { 12489 struct perf_event_context *ctx; 12490 struct perf_event *event; 12491 int err; 12492 12493 /* 12494 * Grouping is not supported for kernel events, neither is 'AUX', 12495 * make sure the caller's intentions are adjusted. 12496 */ 12497 if (attr->aux_output) 12498 return ERR_PTR(-EINVAL); 12499 12500 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12501 overflow_handler, context, -1); 12502 if (IS_ERR(event)) { 12503 err = PTR_ERR(event); 12504 goto err; 12505 } 12506 12507 /* Mark owner so we could distinguish it from user events. */ 12508 event->owner = TASK_TOMBSTONE; 12509 12510 /* 12511 * Get the target context (task or percpu): 12512 */ 12513 ctx = find_get_context(event->pmu, task, event); 12514 if (IS_ERR(ctx)) { 12515 err = PTR_ERR(ctx); 12516 goto err_free; 12517 } 12518 12519 WARN_ON_ONCE(ctx->parent_ctx); 12520 mutex_lock(&ctx->mutex); 12521 if (ctx->task == TASK_TOMBSTONE) { 12522 err = -ESRCH; 12523 goto err_unlock; 12524 } 12525 12526 if (!task) { 12527 /* 12528 * Check if the @cpu we're creating an event for is online. 12529 * 12530 * We use the perf_cpu_context::ctx::mutex to serialize against 12531 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12532 */ 12533 struct perf_cpu_context *cpuctx = 12534 container_of(ctx, struct perf_cpu_context, ctx); 12535 if (!cpuctx->online) { 12536 err = -ENODEV; 12537 goto err_unlock; 12538 } 12539 } 12540 12541 if (!exclusive_event_installable(event, ctx)) { 12542 err = -EBUSY; 12543 goto err_unlock; 12544 } 12545 12546 perf_install_in_context(ctx, event, event->cpu); 12547 perf_unpin_context(ctx); 12548 mutex_unlock(&ctx->mutex); 12549 12550 return event; 12551 12552 err_unlock: 12553 mutex_unlock(&ctx->mutex); 12554 perf_unpin_context(ctx); 12555 put_ctx(ctx); 12556 err_free: 12557 free_event(event); 12558 err: 12559 return ERR_PTR(err); 12560 } 12561 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12562 12563 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12564 { 12565 struct perf_event_context *src_ctx; 12566 struct perf_event_context *dst_ctx; 12567 struct perf_event *event, *tmp; 12568 LIST_HEAD(events); 12569 12570 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12571 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12572 12573 /* 12574 * See perf_event_ctx_lock() for comments on the details 12575 * of swizzling perf_event::ctx. 12576 */ 12577 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12578 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12579 event_entry) { 12580 perf_remove_from_context(event, 0); 12581 unaccount_event_cpu(event, src_cpu); 12582 put_ctx(src_ctx); 12583 list_add(&event->migrate_entry, &events); 12584 } 12585 12586 /* 12587 * Wait for the events to quiesce before re-instating them. 12588 */ 12589 synchronize_rcu(); 12590 12591 /* 12592 * Re-instate events in 2 passes. 12593 * 12594 * Skip over group leaders and only install siblings on this first 12595 * pass, siblings will not get enabled without a leader, however a 12596 * leader will enable its siblings, even if those are still on the old 12597 * context. 12598 */ 12599 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12600 if (event->group_leader == event) 12601 continue; 12602 12603 list_del(&event->migrate_entry); 12604 if (event->state >= PERF_EVENT_STATE_OFF) 12605 event->state = PERF_EVENT_STATE_INACTIVE; 12606 account_event_cpu(event, dst_cpu); 12607 perf_install_in_context(dst_ctx, event, dst_cpu); 12608 get_ctx(dst_ctx); 12609 } 12610 12611 /* 12612 * Once all the siblings are setup properly, install the group leaders 12613 * to make it go. 12614 */ 12615 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12616 list_del(&event->migrate_entry); 12617 if (event->state >= PERF_EVENT_STATE_OFF) 12618 event->state = PERF_EVENT_STATE_INACTIVE; 12619 account_event_cpu(event, dst_cpu); 12620 perf_install_in_context(dst_ctx, event, dst_cpu); 12621 get_ctx(dst_ctx); 12622 } 12623 mutex_unlock(&dst_ctx->mutex); 12624 mutex_unlock(&src_ctx->mutex); 12625 } 12626 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12627 12628 static void sync_child_event(struct perf_event *child_event) 12629 { 12630 struct perf_event *parent_event = child_event->parent; 12631 u64 child_val; 12632 12633 if (child_event->attr.inherit_stat) { 12634 struct task_struct *task = child_event->ctx->task; 12635 12636 if (task && task != TASK_TOMBSTONE) 12637 perf_event_read_event(child_event, task); 12638 } 12639 12640 child_val = perf_event_count(child_event); 12641 12642 /* 12643 * Add back the child's count to the parent's count: 12644 */ 12645 atomic64_add(child_val, &parent_event->child_count); 12646 atomic64_add(child_event->total_time_enabled, 12647 &parent_event->child_total_time_enabled); 12648 atomic64_add(child_event->total_time_running, 12649 &parent_event->child_total_time_running); 12650 } 12651 12652 static void 12653 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12654 { 12655 struct perf_event *parent_event = event->parent; 12656 unsigned long detach_flags = 0; 12657 12658 if (parent_event) { 12659 /* 12660 * Do not destroy the 'original' grouping; because of the 12661 * context switch optimization the original events could've 12662 * ended up in a random child task. 12663 * 12664 * If we were to destroy the original group, all group related 12665 * operations would cease to function properly after this 12666 * random child dies. 12667 * 12668 * Do destroy all inherited groups, we don't care about those 12669 * and being thorough is better. 12670 */ 12671 detach_flags = DETACH_GROUP | DETACH_CHILD; 12672 mutex_lock(&parent_event->child_mutex); 12673 } 12674 12675 perf_remove_from_context(event, detach_flags); 12676 12677 raw_spin_lock_irq(&ctx->lock); 12678 if (event->state > PERF_EVENT_STATE_EXIT) 12679 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12680 raw_spin_unlock_irq(&ctx->lock); 12681 12682 /* 12683 * Child events can be freed. 12684 */ 12685 if (parent_event) { 12686 mutex_unlock(&parent_event->child_mutex); 12687 /* 12688 * Kick perf_poll() for is_event_hup(); 12689 */ 12690 perf_event_wakeup(parent_event); 12691 free_event(event); 12692 put_event(parent_event); 12693 return; 12694 } 12695 12696 /* 12697 * Parent events are governed by their filedesc, retain them. 12698 */ 12699 perf_event_wakeup(event); 12700 } 12701 12702 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12703 { 12704 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12705 struct perf_event *child_event, *next; 12706 12707 WARN_ON_ONCE(child != current); 12708 12709 child_ctx = perf_pin_task_context(child, ctxn); 12710 if (!child_ctx) 12711 return; 12712 12713 /* 12714 * In order to reduce the amount of tricky in ctx tear-down, we hold 12715 * ctx::mutex over the entire thing. This serializes against almost 12716 * everything that wants to access the ctx. 12717 * 12718 * The exception is sys_perf_event_open() / 12719 * perf_event_create_kernel_count() which does find_get_context() 12720 * without ctx::mutex (it cannot because of the move_group double mutex 12721 * lock thing). See the comments in perf_install_in_context(). 12722 */ 12723 mutex_lock(&child_ctx->mutex); 12724 12725 /* 12726 * In a single ctx::lock section, de-schedule the events and detach the 12727 * context from the task such that we cannot ever get it scheduled back 12728 * in. 12729 */ 12730 raw_spin_lock_irq(&child_ctx->lock); 12731 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12732 12733 /* 12734 * Now that the context is inactive, destroy the task <-> ctx relation 12735 * and mark the context dead. 12736 */ 12737 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12738 put_ctx(child_ctx); /* cannot be last */ 12739 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12740 put_task_struct(current); /* cannot be last */ 12741 12742 clone_ctx = unclone_ctx(child_ctx); 12743 raw_spin_unlock_irq(&child_ctx->lock); 12744 12745 if (clone_ctx) 12746 put_ctx(clone_ctx); 12747 12748 /* 12749 * Report the task dead after unscheduling the events so that we 12750 * won't get any samples after PERF_RECORD_EXIT. We can however still 12751 * get a few PERF_RECORD_READ events. 12752 */ 12753 perf_event_task(child, child_ctx, 0); 12754 12755 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12756 perf_event_exit_event(child_event, child_ctx); 12757 12758 mutex_unlock(&child_ctx->mutex); 12759 12760 put_ctx(child_ctx); 12761 } 12762 12763 /* 12764 * When a child task exits, feed back event values to parent events. 12765 * 12766 * Can be called with exec_update_lock held when called from 12767 * setup_new_exec(). 12768 */ 12769 void perf_event_exit_task(struct task_struct *child) 12770 { 12771 struct perf_event *event, *tmp; 12772 int ctxn; 12773 12774 mutex_lock(&child->perf_event_mutex); 12775 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12776 owner_entry) { 12777 list_del_init(&event->owner_entry); 12778 12779 /* 12780 * Ensure the list deletion is visible before we clear 12781 * the owner, closes a race against perf_release() where 12782 * we need to serialize on the owner->perf_event_mutex. 12783 */ 12784 smp_store_release(&event->owner, NULL); 12785 } 12786 mutex_unlock(&child->perf_event_mutex); 12787 12788 for_each_task_context_nr(ctxn) 12789 perf_event_exit_task_context(child, ctxn); 12790 12791 /* 12792 * The perf_event_exit_task_context calls perf_event_task 12793 * with child's task_ctx, which generates EXIT events for 12794 * child contexts and sets child->perf_event_ctxp[] to NULL. 12795 * At this point we need to send EXIT events to cpu contexts. 12796 */ 12797 perf_event_task(child, NULL, 0); 12798 } 12799 12800 static void perf_free_event(struct perf_event *event, 12801 struct perf_event_context *ctx) 12802 { 12803 struct perf_event *parent = event->parent; 12804 12805 if (WARN_ON_ONCE(!parent)) 12806 return; 12807 12808 mutex_lock(&parent->child_mutex); 12809 list_del_init(&event->child_list); 12810 mutex_unlock(&parent->child_mutex); 12811 12812 put_event(parent); 12813 12814 raw_spin_lock_irq(&ctx->lock); 12815 perf_group_detach(event); 12816 list_del_event(event, ctx); 12817 raw_spin_unlock_irq(&ctx->lock); 12818 free_event(event); 12819 } 12820 12821 /* 12822 * Free a context as created by inheritance by perf_event_init_task() below, 12823 * used by fork() in case of fail. 12824 * 12825 * Even though the task has never lived, the context and events have been 12826 * exposed through the child_list, so we must take care tearing it all down. 12827 */ 12828 void perf_event_free_task(struct task_struct *task) 12829 { 12830 struct perf_event_context *ctx; 12831 struct perf_event *event, *tmp; 12832 int ctxn; 12833 12834 for_each_task_context_nr(ctxn) { 12835 ctx = task->perf_event_ctxp[ctxn]; 12836 if (!ctx) 12837 continue; 12838 12839 mutex_lock(&ctx->mutex); 12840 raw_spin_lock_irq(&ctx->lock); 12841 /* 12842 * Destroy the task <-> ctx relation and mark the context dead. 12843 * 12844 * This is important because even though the task hasn't been 12845 * exposed yet the context has been (through child_list). 12846 */ 12847 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12848 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12849 put_task_struct(task); /* cannot be last */ 12850 raw_spin_unlock_irq(&ctx->lock); 12851 12852 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12853 perf_free_event(event, ctx); 12854 12855 mutex_unlock(&ctx->mutex); 12856 12857 /* 12858 * perf_event_release_kernel() could've stolen some of our 12859 * child events and still have them on its free_list. In that 12860 * case we must wait for these events to have been freed (in 12861 * particular all their references to this task must've been 12862 * dropped). 12863 * 12864 * Without this copy_process() will unconditionally free this 12865 * task (irrespective of its reference count) and 12866 * _free_event()'s put_task_struct(event->hw.target) will be a 12867 * use-after-free. 12868 * 12869 * Wait for all events to drop their context reference. 12870 */ 12871 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12872 put_ctx(ctx); /* must be last */ 12873 } 12874 } 12875 12876 void perf_event_delayed_put(struct task_struct *task) 12877 { 12878 int ctxn; 12879 12880 for_each_task_context_nr(ctxn) 12881 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12882 } 12883 12884 struct file *perf_event_get(unsigned int fd) 12885 { 12886 struct file *file = fget(fd); 12887 if (!file) 12888 return ERR_PTR(-EBADF); 12889 12890 if (file->f_op != &perf_fops) { 12891 fput(file); 12892 return ERR_PTR(-EBADF); 12893 } 12894 12895 return file; 12896 } 12897 12898 const struct perf_event *perf_get_event(struct file *file) 12899 { 12900 if (file->f_op != &perf_fops) 12901 return ERR_PTR(-EINVAL); 12902 12903 return file->private_data; 12904 } 12905 12906 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12907 { 12908 if (!event) 12909 return ERR_PTR(-EINVAL); 12910 12911 return &event->attr; 12912 } 12913 12914 /* 12915 * Inherit an event from parent task to child task. 12916 * 12917 * Returns: 12918 * - valid pointer on success 12919 * - NULL for orphaned events 12920 * - IS_ERR() on error 12921 */ 12922 static struct perf_event * 12923 inherit_event(struct perf_event *parent_event, 12924 struct task_struct *parent, 12925 struct perf_event_context *parent_ctx, 12926 struct task_struct *child, 12927 struct perf_event *group_leader, 12928 struct perf_event_context *child_ctx) 12929 { 12930 enum perf_event_state parent_state = parent_event->state; 12931 struct perf_event *child_event; 12932 unsigned long flags; 12933 12934 /* 12935 * Instead of creating recursive hierarchies of events, 12936 * we link inherited events back to the original parent, 12937 * which has a filp for sure, which we use as the reference 12938 * count: 12939 */ 12940 if (parent_event->parent) 12941 parent_event = parent_event->parent; 12942 12943 child_event = perf_event_alloc(&parent_event->attr, 12944 parent_event->cpu, 12945 child, 12946 group_leader, parent_event, 12947 NULL, NULL, -1); 12948 if (IS_ERR(child_event)) 12949 return child_event; 12950 12951 12952 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12953 !child_ctx->task_ctx_data) { 12954 struct pmu *pmu = child_event->pmu; 12955 12956 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12957 if (!child_ctx->task_ctx_data) { 12958 free_event(child_event); 12959 return ERR_PTR(-ENOMEM); 12960 } 12961 } 12962 12963 /* 12964 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12965 * must be under the same lock in order to serialize against 12966 * perf_event_release_kernel(), such that either we must observe 12967 * is_orphaned_event() or they will observe us on the child_list. 12968 */ 12969 mutex_lock(&parent_event->child_mutex); 12970 if (is_orphaned_event(parent_event) || 12971 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12972 mutex_unlock(&parent_event->child_mutex); 12973 /* task_ctx_data is freed with child_ctx */ 12974 free_event(child_event); 12975 return NULL; 12976 } 12977 12978 get_ctx(child_ctx); 12979 12980 /* 12981 * Make the child state follow the state of the parent event, 12982 * not its attr.disabled bit. We hold the parent's mutex, 12983 * so we won't race with perf_event_{en, dis}able_family. 12984 */ 12985 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12986 child_event->state = PERF_EVENT_STATE_INACTIVE; 12987 else 12988 child_event->state = PERF_EVENT_STATE_OFF; 12989 12990 if (parent_event->attr.freq) { 12991 u64 sample_period = parent_event->hw.sample_period; 12992 struct hw_perf_event *hwc = &child_event->hw; 12993 12994 hwc->sample_period = sample_period; 12995 hwc->last_period = sample_period; 12996 12997 local64_set(&hwc->period_left, sample_period); 12998 } 12999 13000 child_event->ctx = child_ctx; 13001 child_event->overflow_handler = parent_event->overflow_handler; 13002 child_event->overflow_handler_context 13003 = parent_event->overflow_handler_context; 13004 13005 /* 13006 * Precalculate sample_data sizes 13007 */ 13008 perf_event__header_size(child_event); 13009 perf_event__id_header_size(child_event); 13010 13011 /* 13012 * Link it up in the child's context: 13013 */ 13014 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13015 add_event_to_ctx(child_event, child_ctx); 13016 child_event->attach_state |= PERF_ATTACH_CHILD; 13017 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13018 13019 /* 13020 * Link this into the parent event's child list 13021 */ 13022 list_add_tail(&child_event->child_list, &parent_event->child_list); 13023 mutex_unlock(&parent_event->child_mutex); 13024 13025 return child_event; 13026 } 13027 13028 /* 13029 * Inherits an event group. 13030 * 13031 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13032 * This matches with perf_event_release_kernel() removing all child events. 13033 * 13034 * Returns: 13035 * - 0 on success 13036 * - <0 on error 13037 */ 13038 static int inherit_group(struct perf_event *parent_event, 13039 struct task_struct *parent, 13040 struct perf_event_context *parent_ctx, 13041 struct task_struct *child, 13042 struct perf_event_context *child_ctx) 13043 { 13044 struct perf_event *leader; 13045 struct perf_event *sub; 13046 struct perf_event *child_ctr; 13047 13048 leader = inherit_event(parent_event, parent, parent_ctx, 13049 child, NULL, child_ctx); 13050 if (IS_ERR(leader)) 13051 return PTR_ERR(leader); 13052 /* 13053 * @leader can be NULL here because of is_orphaned_event(). In this 13054 * case inherit_event() will create individual events, similar to what 13055 * perf_group_detach() would do anyway. 13056 */ 13057 for_each_sibling_event(sub, parent_event) { 13058 child_ctr = inherit_event(sub, parent, parent_ctx, 13059 child, leader, child_ctx); 13060 if (IS_ERR(child_ctr)) 13061 return PTR_ERR(child_ctr); 13062 13063 if (sub->aux_event == parent_event && child_ctr && 13064 !perf_get_aux_event(child_ctr, leader)) 13065 return -EINVAL; 13066 } 13067 return 0; 13068 } 13069 13070 /* 13071 * Creates the child task context and tries to inherit the event-group. 13072 * 13073 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13074 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13075 * consistent with perf_event_release_kernel() removing all child events. 13076 * 13077 * Returns: 13078 * - 0 on success 13079 * - <0 on error 13080 */ 13081 static int 13082 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13083 struct perf_event_context *parent_ctx, 13084 struct task_struct *child, int ctxn, 13085 u64 clone_flags, int *inherited_all) 13086 { 13087 int ret; 13088 struct perf_event_context *child_ctx; 13089 13090 if (!event->attr.inherit || 13091 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13092 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13093 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13094 *inherited_all = 0; 13095 return 0; 13096 } 13097 13098 child_ctx = child->perf_event_ctxp[ctxn]; 13099 if (!child_ctx) { 13100 /* 13101 * This is executed from the parent task context, so 13102 * inherit events that have been marked for cloning. 13103 * First allocate and initialize a context for the 13104 * child. 13105 */ 13106 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13107 if (!child_ctx) 13108 return -ENOMEM; 13109 13110 child->perf_event_ctxp[ctxn] = child_ctx; 13111 } 13112 13113 ret = inherit_group(event, parent, parent_ctx, 13114 child, child_ctx); 13115 13116 if (ret) 13117 *inherited_all = 0; 13118 13119 return ret; 13120 } 13121 13122 /* 13123 * Initialize the perf_event context in task_struct 13124 */ 13125 static int perf_event_init_context(struct task_struct *child, int ctxn, 13126 u64 clone_flags) 13127 { 13128 struct perf_event_context *child_ctx, *parent_ctx; 13129 struct perf_event_context *cloned_ctx; 13130 struct perf_event *event; 13131 struct task_struct *parent = current; 13132 int inherited_all = 1; 13133 unsigned long flags; 13134 int ret = 0; 13135 13136 if (likely(!parent->perf_event_ctxp[ctxn])) 13137 return 0; 13138 13139 /* 13140 * If the parent's context is a clone, pin it so it won't get 13141 * swapped under us. 13142 */ 13143 parent_ctx = perf_pin_task_context(parent, ctxn); 13144 if (!parent_ctx) 13145 return 0; 13146 13147 /* 13148 * No need to check if parent_ctx != NULL here; since we saw 13149 * it non-NULL earlier, the only reason for it to become NULL 13150 * is if we exit, and since we're currently in the middle of 13151 * a fork we can't be exiting at the same time. 13152 */ 13153 13154 /* 13155 * Lock the parent list. No need to lock the child - not PID 13156 * hashed yet and not running, so nobody can access it. 13157 */ 13158 mutex_lock(&parent_ctx->mutex); 13159 13160 /* 13161 * We dont have to disable NMIs - we are only looking at 13162 * the list, not manipulating it: 13163 */ 13164 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13165 ret = inherit_task_group(event, parent, parent_ctx, 13166 child, ctxn, clone_flags, 13167 &inherited_all); 13168 if (ret) 13169 goto out_unlock; 13170 } 13171 13172 /* 13173 * We can't hold ctx->lock when iterating the ->flexible_group list due 13174 * to allocations, but we need to prevent rotation because 13175 * rotate_ctx() will change the list from interrupt context. 13176 */ 13177 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13178 parent_ctx->rotate_disable = 1; 13179 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13180 13181 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13182 ret = inherit_task_group(event, parent, parent_ctx, 13183 child, ctxn, clone_flags, 13184 &inherited_all); 13185 if (ret) 13186 goto out_unlock; 13187 } 13188 13189 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13190 parent_ctx->rotate_disable = 0; 13191 13192 child_ctx = child->perf_event_ctxp[ctxn]; 13193 13194 if (child_ctx && inherited_all) { 13195 /* 13196 * Mark the child context as a clone of the parent 13197 * context, or of whatever the parent is a clone of. 13198 * 13199 * Note that if the parent is a clone, the holding of 13200 * parent_ctx->lock avoids it from being uncloned. 13201 */ 13202 cloned_ctx = parent_ctx->parent_ctx; 13203 if (cloned_ctx) { 13204 child_ctx->parent_ctx = cloned_ctx; 13205 child_ctx->parent_gen = parent_ctx->parent_gen; 13206 } else { 13207 child_ctx->parent_ctx = parent_ctx; 13208 child_ctx->parent_gen = parent_ctx->generation; 13209 } 13210 get_ctx(child_ctx->parent_ctx); 13211 } 13212 13213 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13214 out_unlock: 13215 mutex_unlock(&parent_ctx->mutex); 13216 13217 perf_unpin_context(parent_ctx); 13218 put_ctx(parent_ctx); 13219 13220 return ret; 13221 } 13222 13223 /* 13224 * Initialize the perf_event context in task_struct 13225 */ 13226 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13227 { 13228 int ctxn, ret; 13229 13230 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13231 mutex_init(&child->perf_event_mutex); 13232 INIT_LIST_HEAD(&child->perf_event_list); 13233 13234 for_each_task_context_nr(ctxn) { 13235 ret = perf_event_init_context(child, ctxn, clone_flags); 13236 if (ret) { 13237 perf_event_free_task(child); 13238 return ret; 13239 } 13240 } 13241 13242 return 0; 13243 } 13244 13245 static void __init perf_event_init_all_cpus(void) 13246 { 13247 struct swevent_htable *swhash; 13248 int cpu; 13249 13250 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13251 13252 for_each_possible_cpu(cpu) { 13253 swhash = &per_cpu(swevent_htable, cpu); 13254 mutex_init(&swhash->hlist_mutex); 13255 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13256 13257 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13258 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13259 13260 #ifdef CONFIG_CGROUP_PERF 13261 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13262 #endif 13263 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13264 } 13265 } 13266 13267 static void perf_swevent_init_cpu(unsigned int cpu) 13268 { 13269 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13270 13271 mutex_lock(&swhash->hlist_mutex); 13272 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13273 struct swevent_hlist *hlist; 13274 13275 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13276 WARN_ON(!hlist); 13277 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13278 } 13279 mutex_unlock(&swhash->hlist_mutex); 13280 } 13281 13282 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13283 static void __perf_event_exit_context(void *__info) 13284 { 13285 struct perf_event_context *ctx = __info; 13286 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13287 struct perf_event *event; 13288 13289 raw_spin_lock(&ctx->lock); 13290 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13291 list_for_each_entry(event, &ctx->event_list, event_entry) 13292 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13293 raw_spin_unlock(&ctx->lock); 13294 } 13295 13296 static void perf_event_exit_cpu_context(int cpu) 13297 { 13298 struct perf_cpu_context *cpuctx; 13299 struct perf_event_context *ctx; 13300 struct pmu *pmu; 13301 13302 mutex_lock(&pmus_lock); 13303 list_for_each_entry(pmu, &pmus, entry) { 13304 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13305 ctx = &cpuctx->ctx; 13306 13307 mutex_lock(&ctx->mutex); 13308 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13309 cpuctx->online = 0; 13310 mutex_unlock(&ctx->mutex); 13311 } 13312 cpumask_clear_cpu(cpu, perf_online_mask); 13313 mutex_unlock(&pmus_lock); 13314 } 13315 #else 13316 13317 static void perf_event_exit_cpu_context(int cpu) { } 13318 13319 #endif 13320 13321 int perf_event_init_cpu(unsigned int cpu) 13322 { 13323 struct perf_cpu_context *cpuctx; 13324 struct perf_event_context *ctx; 13325 struct pmu *pmu; 13326 13327 perf_swevent_init_cpu(cpu); 13328 13329 mutex_lock(&pmus_lock); 13330 cpumask_set_cpu(cpu, perf_online_mask); 13331 list_for_each_entry(pmu, &pmus, entry) { 13332 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13333 ctx = &cpuctx->ctx; 13334 13335 mutex_lock(&ctx->mutex); 13336 cpuctx->online = 1; 13337 mutex_unlock(&ctx->mutex); 13338 } 13339 mutex_unlock(&pmus_lock); 13340 13341 return 0; 13342 } 13343 13344 int perf_event_exit_cpu(unsigned int cpu) 13345 { 13346 perf_event_exit_cpu_context(cpu); 13347 return 0; 13348 } 13349 13350 static int 13351 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13352 { 13353 int cpu; 13354 13355 for_each_online_cpu(cpu) 13356 perf_event_exit_cpu(cpu); 13357 13358 return NOTIFY_OK; 13359 } 13360 13361 /* 13362 * Run the perf reboot notifier at the very last possible moment so that 13363 * the generic watchdog code runs as long as possible. 13364 */ 13365 static struct notifier_block perf_reboot_notifier = { 13366 .notifier_call = perf_reboot, 13367 .priority = INT_MIN, 13368 }; 13369 13370 void __init perf_event_init(void) 13371 { 13372 int ret; 13373 13374 idr_init(&pmu_idr); 13375 13376 perf_event_init_all_cpus(); 13377 init_srcu_struct(&pmus_srcu); 13378 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13379 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13380 perf_pmu_register(&perf_task_clock, NULL, -1); 13381 perf_tp_register(); 13382 perf_event_init_cpu(smp_processor_id()); 13383 register_reboot_notifier(&perf_reboot_notifier); 13384 13385 ret = init_hw_breakpoint(); 13386 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13387 13388 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13389 13390 /* 13391 * Build time assertion that we keep the data_head at the intended 13392 * location. IOW, validation we got the __reserved[] size right. 13393 */ 13394 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13395 != 1024); 13396 } 13397 13398 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13399 char *page) 13400 { 13401 struct perf_pmu_events_attr *pmu_attr = 13402 container_of(attr, struct perf_pmu_events_attr, attr); 13403 13404 if (pmu_attr->event_str) 13405 return sprintf(page, "%s\n", pmu_attr->event_str); 13406 13407 return 0; 13408 } 13409 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13410 13411 static int __init perf_event_sysfs_init(void) 13412 { 13413 struct pmu *pmu; 13414 int ret; 13415 13416 mutex_lock(&pmus_lock); 13417 13418 ret = bus_register(&pmu_bus); 13419 if (ret) 13420 goto unlock; 13421 13422 list_for_each_entry(pmu, &pmus, entry) { 13423 if (!pmu->name || pmu->type < 0) 13424 continue; 13425 13426 ret = pmu_dev_alloc(pmu); 13427 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13428 } 13429 pmu_bus_running = 1; 13430 ret = 0; 13431 13432 unlock: 13433 mutex_unlock(&pmus_lock); 13434 13435 return ret; 13436 } 13437 device_initcall(perf_event_sysfs_init); 13438 13439 #ifdef CONFIG_CGROUP_PERF 13440 static struct cgroup_subsys_state * 13441 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13442 { 13443 struct perf_cgroup *jc; 13444 13445 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13446 if (!jc) 13447 return ERR_PTR(-ENOMEM); 13448 13449 jc->info = alloc_percpu(struct perf_cgroup_info); 13450 if (!jc->info) { 13451 kfree(jc); 13452 return ERR_PTR(-ENOMEM); 13453 } 13454 13455 return &jc->css; 13456 } 13457 13458 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13459 { 13460 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13461 13462 free_percpu(jc->info); 13463 kfree(jc); 13464 } 13465 13466 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13467 { 13468 perf_event_cgroup(css->cgroup); 13469 return 0; 13470 } 13471 13472 static int __perf_cgroup_move(void *info) 13473 { 13474 struct task_struct *task = info; 13475 rcu_read_lock(); 13476 perf_cgroup_switch(task); 13477 rcu_read_unlock(); 13478 return 0; 13479 } 13480 13481 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13482 { 13483 struct task_struct *task; 13484 struct cgroup_subsys_state *css; 13485 13486 cgroup_taskset_for_each(task, css, tset) 13487 task_function_call(task, __perf_cgroup_move, task); 13488 } 13489 13490 struct cgroup_subsys perf_event_cgrp_subsys = { 13491 .css_alloc = perf_cgroup_css_alloc, 13492 .css_free = perf_cgroup_css_free, 13493 .css_online = perf_cgroup_css_online, 13494 .attach = perf_cgroup_attach, 13495 /* 13496 * Implicitly enable on dfl hierarchy so that perf events can 13497 * always be filtered by cgroup2 path as long as perf_event 13498 * controller is not mounted on a legacy hierarchy. 13499 */ 13500 .implicit_on_dfl = true, 13501 .threaded = true, 13502 }; 13503 #endif /* CONFIG_CGROUP_PERF */ 13504 13505 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13506